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1 Introduction

The modern description of everything regarding elementary particles and their
interactions is given by the Standard Model of particle physics. The Standard
Model is based on quantum field theories.

Quantum field theory combines three of the major themes of modern physics:
quantum theory, the field concept, and the principle of relativity. Quantum field
theory describes modern elementary particle physics and supplies essential tools
to nuclear physics, atomic physics, condensed matter physics, and astrophysics
[1].

The Standard Model excels in experimental precision, having some results
known up to 13 significant figures (for instance, QED prediction for the magnetic
moment of the electron [2]).

On the way from classical quantities like position, momentum, time, and
energy to the quantum observables which are described by wave functions and
operators, quantum field theory is essential for a modern understanding of the
concept of particle–field duality. Initially the wave functions were classical fields
which described the probability distributions of kinematics of individual
particles. However, the substantial addition of quantum theory led to the
quantification of these fields which enabled them to describe systems of multiple
particles. This is known as the canonical quantisation, which is in essence the
principle that multi-particle states are created from the vacuum state via creation
and annihilation operators.

Starting from a few specific relativistic field equations (Klein–Gordon,
Dirac, Maxwell, and Proca equations), scalar bosons (e.g. Higgs boson),
fermions (e.g. electron and quarks), and vector bosons (e.g. photon, W and Z
bosons) could be described. In quantum field theory these various particle types
contribute to the Lagrangian, from which differential equations evolve via the
Euler–Lagrange formalism, describing the propagation of the fields. On this way
through quantisation of particles and fields we arrived at the pinnacle of our
understanding of elementary particles and their interactions – the quantum field
theory.

The vector bosons were introduced via gauge theory. For the field operators
to be invariant under a phase transformation, a gauge field needs to be added
which is connected to the initial field operator via the interaction contribution.
All known vector bosons are gauge bosons, although their connection to
fermions may not be as simple as the photon’s connection to fermions which is
given by the electric charges of the fermions. Gauge theories are based on
group theory, and semisimple Lie groups and algebras are appropriate tools to
describe interactions. This led to the development of theories for the strong
interaction (quantum chromodynamics, SU(3)), the electroweak interaction
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(Glashow–Weinberg–Salam theory, SU(2) × U(1)), and the Higgs mechanism
which describes how particles feel their inertial mass through spontaneous
symmetry breaking.

It would be beneficial to solve the quantum system described by the
Lagrangian as a whole, as it is possible in some specific classical cases, but
unfortunately this is not possible in case of quantum field theory. However, if one
considers the strength of interaction in a certain kinematic region one can expand
the interaction into a series. For example, in the short range (due to asymptotic
freedom) the strong interaction is relatively weak, but in case of the larger range
(due to confinement) the interaction is much stronger. If one expands the
interaction into a series, one obtains contributions of different orders, the strength
of which is decreasing gradually. This enables one to calculate a process with
relative ease and to add minute so-called radiative corrections with increasing
complexity and decreasing significance. If the interaction is weak enough, the
leading order (LO) and the next-to-leading order (NLO) contributions often give
a clue about how well the series converges. This is the reason why in this work
only radiative corrections up to NLO are considered.

Richard P. Feynman developed an excellent tool for the calculation of the
series which is also named after him. A Feynman diagram contains a large part
of the important information about the process of interest in a simple and
easy-to-understand visual way. Every interaction is visualised as a connection
point of lines (vertex), and the movement of a free particle is visualised as a line
connecting the vertices (propagator). External lines describe initial and final
states of particles. The Feynman rules give us a procedure for assembling these
elements into a process and interpreting the diagram mathematically. Such a
diagram also gives us a way to visually evaluate the types of interactions
involved in the process.

The elements of the Feynman diagrams are mathematically translated into
contributions to the matrix element which in turn is related to experimentally
measurable quantities. If the process of interest is a decay process (as in article
III), the decay width is measured. If the process is a scattering event (as in article
I), the scattering cross section is measured. These quantities that depend (either
explicitly or indirectly) on kinematic variables enable us to find expectation
values which determine the values of macroscopic quantities like momentum or
polarisation.
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2 Preface to tt̄ spin correlation

2.1 Overview

Article I presents analytical results for O(αs) corrections to the double spin
density matrix elements in the reaction e+e− → tt̄. These results are related to
the research planned for the scheduled linear collider projects (ILC and CLIC).
Studying the top quark and the Higgs boson are two of the main reasons why
new e+e− colliders are considered [3, 4].

Hadron colliders and e+e− colliders have intrinsically different settings for
studying heavy quarks. For other heavy quarks like c and b quarks, there have been
experiments in both types of colliders, but top quarks have been studied up to now
only in hadron colliders, because the pair production threshold of the top quark is
around 350 GeV, higher than the center of mass energy of any e+e− collider that
has operated so far [3]. This explains the need to study top quark production at a
e+e− collider. Compared to the LHC, there are advantages for studying top quark
in e+e− colliders such as cleanliness (low backgrounds), a high production rate
for heavy particles, the simplicity of the experimental event topology, and a high
accuracy of the theoretical calculations for the underlying processes [5].

One of the points of interest in e+e− colliders is the study of top quark
production and decay. These measurements will make use of the accurate
reconstruction of tt̄ events to probe the full structure of the top quark coupling
to electroweak interactions and provide excellent sensitivity to physics
beyond the Standard Model [3]. Additionally, due to its mass, the top quark
couples strongest to the Higgs field and, therefore, plays a central role in
many Beyond-Standard Model models. Precision measurements of top-quark
properties at e+e− colliders promise therefore to be highly sensitive to physics
beyond the Standard Model [4].

2.2 Methodology

2.2.1 Cross section and Feynman rules to calculate it

We can start for example with the diagrams for the process e+e− → tt̄ which is
examined in article I. The zeroth order (also known as the Born level) diagram is
shown in Figure 1a.

We want to calculate the scattering cross section for this process. The
differential cross section element dσ is connected to the scattering matrix
elementM via

dσ = |M|2dPS, (1)

where the phase space element dPS stands for a generic phase space element
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(a) (b)

(c)
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e+

γ, Z

t ↑

G

t ↑

(d)

Figure 1: (a) The LO (Born term level) Feynman diagram, (b) NLO vertex correction, (c)
and (d) NLO tree corrections to the Feynman diagram for the process e+e− → tt̄.

that remains after single or multiple phase space integrations. The square of the
modulus |M|2 is the probability of this process happening when e+ and e−

collide.
For this calculation we can use the following Feynman rules

−ieγµQf fermion and photon vertex
ie(vf + afγ5)γµ

2 sin(2θW )
fermion and Z boson vertex

− igµν
q2

photon propagator

− igµν
q2

χZ(q2) Z boson propagator, (2)

where e is the elementary charge, γµ are the Dirac gamma matrices, Qf is the
electric charge of the fermion to which the electroweak currents directly couple,
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and vf and af are the electroweak vector and axial vector coupling constants. For
the top quark the vector and axial-vector couplings (in the Glashow–Weinberg–
Salam model) are given by

vt = 1− 8

3
sin2 θW (3)

at = 1. (4)

θW is the Weinberg (weak mixing) angle. χZ is the Breit–Wigner multiplier

χZ(q2) =
gm2

Zq
2

q2 −m2
Z + imZΓZ

, (5)

where ΓZ is the width (decay rate) of the Z boson, g is the interaction strength
factor, and q is the boson momentum. Initial fermion and antifermion states are
described by the spinors u and v, and final fermion and antifermion states are
described by the adjoint spinors ū = u†γ0 and v̄ = v†γ0 respectively, which
satisfy the completeness relations

u(p, s)ū(p, s) =
1

2
(1 + γ5s/)(p/+m)

v(p, s)v̄(p, s) =
1

2
(1 + γ5s/)(p/−m), (6)

where p is the momentum,m is the mass and s is the spin of the fermion. The slash
notation p/ and s/ denote a sum of 4-vector components multiplied with respective
gamma matrices,

p/ =

3∑
µ=0

pµγ
µ = pµγ

µ. (7)

For a more complete listing of Feynman rules see e.g. [6] (chapter 2.4.2.2 for
QCD and Appendix A.2 for electroweak) and [7] (chapter 4).

The boson momentum is carried by the two neutral vector bosons of the
electroweak theory, the photon and the Z boson. While the photon couples to the
fermions via the vector coupling, for the Z boson the coupling is a mixture of
vector and axial vector components. Before we dwell into this point, for
simplicity we start with the photon only. We divide the calculation of the
scattering matrix up into two parts, the lepton part (related to the electron and the
positron on the left-hand side of the diagram) and the hadron part (related to the
quarks on the right hand side of the diagram),

|M|2 = LµνH
µν . (8)
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Taking the hadron part of the diagram of the LO (Born term level) process and
taking into account how all the indices combine into a trace operator, we get a
rather long expressions like for instance

Hµν = Tr(
1

2
(1 + γ5s/1)(p/1 +m)γµ

1

2
(1 + γ5s/2)(p/2 −m)γν). (9)

The calculation of this kind of traces is extensive but highly systematical, thus we
let a computer do all the work for us.

At this point one needs to specify kinematics, that is to give a specific frame
of reference in which all vectors are described in terms of energies and angles.
For example, θ is the angle between the directions of electron and top quark.

Generally there will be too many variables after the trace calculation.
In order to get a reasonably interpretable result one has to integrate out the
non-observed quantities. Only the “interesting” variables are left which in this
case are the center-of-mass energy

√
q2 and the cosine of the angle θ.

Finally we can add up the Born term level result with the NLO corrections
(with appropriate general factors) to obtain an improved result for the angular
dependence of the probability of this process at any examined energy. (See Figures
1 through 7 in article I.)

2.2.2 Vector and axial vector contributions

The calculation employed for evaluating tt̄ spin–spin correlation follows the
same pattern as the example in section 2.2.1. To distinguish between vector and
axial vector contributions (the latter appear only in case of the Z boson) in a
trace expression like in equation (9) we add upper indices V and A which
denote the substitution of γµ (V ) with γ5γµ (A). This shortens the Z boson
contribution, as part of it repeats the photon contribution. The hadron tensor
components HAA, HAV , HV A and HV V corresponding to vector and axial
vector vertices are redistributed into different tensor components

H1
α =

1

2
(HV V

α +HAA
α ), H2

α =
1

2
(HV V

α −HAA
α ),

H3
α =

i

2
(HV A

α −HAV
α ), H4

α =
1

2
(HV A

α +HAV
α ). (10)

The same is done for the corresponding components LV V , LV A, LAV and LAA.
This allows us to reassemble the entire cross–section via the electroweak coupling
matrix gij(q2) (for explicit terms see [8]):

|M|2 = ΣLiµνgijH
j µν . (11)

This scheme has also been used in earlier works (for example [9]) and descri-
bes the result by large parts H1, H4 and small parts H2, H3.
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2.2.3 NLO correction and regularisation

In the calculation of e+e− → tt̄, the NLO corrections shown in Figures 1b, 1c,
and 1d were also taken into account. Even though the Born term level diagram
(Figure 1a) and the first order loop diagram (Figure 1b) contribute to a different
(two-particle) phase space than the first order tree diagrams (three-particle phase
space, Figures 1c and 1d), they are inextricably related to each other and will be
dealt with together in this work. The reason is that the Lee–Nauenberg theorem
predicts the cancellation of infrared (IR) singularities between the two first order
parts. It is worth to note that the majority of work done on the calculations of
article I has gone into evaluating integrals arising from tree correction (Figure 1c
and 1d). These integrals tend to be infinite and thus need to be carefully handled
to cancel all the infinities, because the final result must be finite.

The basic integrals have the structure

Inynz(my,mz) =

∫ y+

y−

dy

∫ z+(y)

z−(y)
dz ymyzmzR

ny
y R

nz
z , (12)

where Ry =
√

(1− y)2 − ξ, Rz =
√

(1− z)2 − ξ and ξ = 4m2/q2. The
integrals with my + mz = −2 are IR singular. For the regularisation of the
IR singularity at y = z = 0 we use a finite gluon mass mG =

√
Λq2 with

infinitesimally small parameter Λ. The subtraction of the singularity is performed
by adding and subtracting an integral with the same singular behaviour but with a
simpler integrand. The simplified integrand is obtained from the original
integrand by an expansion around y = 0. In this expansion, both Ry and Rz are
replaced by

√
1− ξ, leading to generic divergent parts.

2.2.4 Observables and reference frames

The cross section is connected to observables. The observables in question
include the polarisation of the particles. The spin polarisation is an inherent
quantum effect derived from the spin. Therefore, a consideration of spin states is
in order here [10].

If we have a mixture of pure states

|ψ(i)〉 =
s∑

m=−s
cm|sm〉 (13)

each with probability p(i) (
∑

i p
(i) = 1) and an arbitrary operator O with matrix

elements
Omm′ = 〈m|O|m′〉, (14)
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the mean value over the entire ensemble of states |ψ(i)〉 given by

〈O〉 =
∑
i

p(i)〈O〉ψ(i) =
∑
i

p(i)
∑
m,m′

c
(i)∗

m′ Om′mc
(i)
m

=
∑
m,m′

Om′m
∑
i

p(i)c
(i)∗

m′ c
(i)
m =

∑
m,m′

Om′mρmm′ = Tr(ρ̂O). (15)

Therefore, the mean value 〈O〉 of the arbitrary operator O is obtained by calcula-
ting the trace Tr(ρ̂O) with the spin density matrix ρ̂ with components

ρmm′ =
∑
i

p(i)c
(i)∗
m′ c

(i)
m . (16)

In case of two polarised top quarks in the final state, the polarisation
observables are described in terms of the spin density matrix, and the spin–spin
correlation in terms of the double spin density matrix. The 4 × 4 unnormalised
double density matrix ρ̂ is parametrised by expanding it in outer products of the
standard set of 2× 2 matrices:

ρ̂ = (ρ̂λ1λ2,λ′1λ′2) =
1

4

(
ρ 1l⊗ 1l + ρe

i
1σi ⊗ 1l + ρē

j
21l⊗ σj + ρe

i
1ē

j
2σi ⊗ σj

)
,

(17)
where ~e1 and ~̄e2 describe spin quantisation axes, σ are Paul matrices, and the outer
product symbol ⊗ denotes the tensor product between the spin states of top and
antitop quark according to (A ⊗ B)λ1λ2,λ′1λ′2 = Aλ1λ′1Bλ2λ′2 . The labels λ1 (λ′1)
and λ2 (λ′2) denote the two spin states of the top and antitop quark, respectively.

There are several possible ways to define spin quantisation axes. As in Refs.
[11, 12] we choose to attach the reference frame to the top quark rest frame (or the
beam frame). Forming an orthonormal triplet as in Ref. [13], the basis vectors are
defined via the directions of the momenta of top quark and electron (see Figure
2),

t̂ =
(~pe− × ~pt)× ~pt
|(~pe− × ~pt)× ~pt|

, n̂ =
~pe− × ~pt
|~pe− × ~pt|

, l̂ =
~pt
|~pt|

. (18)

Another possible orthonormal frame is the event frame, in which the basis
vectors do not depend on the direction of the electron momentum but instead are
defined via the directions of top and antitop quark momenta,

T̂ =
(~pt × ~pt̄)× ~pt
|(~pt × ~pt̄)× ~pt|

, N̂ =
~pt × ~pt̄
|~pt × ~pt̄|

, L̂ =
~pt
|~pt|

(19)

The analytical results of calculations are somewhat more complicated in this
case, as they contain additionally elliptic functions. The results have still to be
published.
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Figure 2: The orthonormal bases.

2.3 Results

The aim of calculating the spin–spin correlations of the top–antitop quark pair was
to find analytical expressions which describe these correlations. The originality
of these results stems from the inclusion of mass and spin polarisation effects.
Analytical results enable us to study the dependence of the result on masses, initial
beam polarisations and other parameters and to determine the limiting behaviour
in different kinematical cases.

The coefficients ρe
i
1ē

j
2 in equation (17) describe the spin–spin correlation and

are given as an analytical result in Appendix B of article I. However, these are
not the actual quantities observed in experiments. The quark polarisation can be
deduced from analysing the angular distribution of subsequent quark decay
directly in the quark rest frame [14, 15].

The coefficients ρe
i
1ē

j
2 are incorporated into observables. Following the ideas

from Refs. [11, 12], the observables are defined as

Oe1e2 =
dσe1e2

dσ
, (20)
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where ~e1 and ~e2 are elements of the same frame, i.e. the top quark rest frame, and
are selected from the basis in (18). The cross section rate for observables in (20)
is calculated via the double spin density matrix ρ̂ according to

dσe1e2 =
1

2q2
Tr

(
ρ̂ ei1

1

2
σi ⊗ ej2

1

2
σj

)
dPS =

1

2q2
ρe1e2dPS, (21)

and the unpolarised normalisation rate can be calculated by

dσ =
1

2q2
Tr (ρ̂ 1l⊗ 1l) dPS =

1

2q2
ρ dPS. (22)

The analytic results for the NLOO(αs) contributions to the correlation matrix
are given in terms of the three unit vectors t̂, n̂ and l̂ in the laboratory frame. The
detailed results have to be combined with the electroweak form factors (see Eq.
(11)) to obtain

ρP1P2 =

4∑
i,j=1

gijρ
P1P2
ij P1, P2 ∈ {t, n, l}. (23)

ρP1P2
ij is divided up into five different angular dependencies,

ρP1P2
ij =

1

4
(1 + cos2 θ)ρP1P2

ijU +
1

2
sin2 θρP1P2

ijL +
1

2
cos θρP1P2

ijF

+
1

2
sin θ cos θρP1P2

ijI +
1

2
sin θρP1P2

ijA , (24)

where the additional indices stand for unpolarised transverse (U ), longitudinal
(L), forward/backward asymmetric (F ), longitudinal/transverse interference (I),
and parity asymmetric (A) components of the intermediate (γ or Z) boson.

The top quarks decay almost immediately, and they can be detected via their
decay products. The main decay channel is t→ b+W+, where the W boson will
decay into a quark–antiquark pair or into a pair consisting of charged lepton and
neutrino. The latter is again the main channel, and the best particle to detect is the
charged lepton. Thus the polarisation of the top quarks manifests itself through the
angle between the momenta of charged lepton and antilepton, and also through
respective angles between both of their momenta and the chosen basis. These
angular dependencies, which are derived from hadronic collision [14], are written
in article I as

1

σ

dσ

d cos θ1d cos θ2
=

1

4
(1 +B1 cos θ1 −B2 cos θ2 − C cos θ1 cos θ2) , (25)
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where θ1 and θ2 are the angles between a fixed direction given by the basis used
and the direction of flight of the charged lepton in the rest frames of the top and
antitop quark, respectively, and

1

σ

dσ

dφ
=

1

4
(1−D cosφ) , (26)

where φ is the angle between the directions of flight q̂1 and q̂2 of the charged
leptons in the rest frames of the top and antitop quark, respectively. The details of
how experimentally measurable values can be attained from the aforementioned
observables are shown in article I.

The opening angle φ between the two charged leptons is defined by
q̂1 · q̂2 = cosφ. In order to determine the distribution of the opening angle one
has to integrate over all angles except for φ. One obtains

1

8π2

∫
Tr (ρ̂(tt̄) (ρ̂(t)⊗ ρ̂(t̄))) dχdχ1d(cos θ1)

= ρ(t)2ρ

(
1− 1

3

(
〈Ott〉+ 〈Onn〉+ 〈Oll〉

)
cosφ

)
. (27)

Therefore, the trace TrO = Ott + Onn + Oll of the three-dimensional
correlation matrix in phase-space integrated form can be determined by
measuring the distribution of the opening angle. The polar angle dependence of
the trace is shown in Figure 3. Note that because this observable is equally
derived from the trace of ρ̂ with the tensor product of the spin operator with
itself, the value is equal to 1 at LO (and at threshold) and decreases slightly
(especially in backward direction) if we include NLO radiative corrections.
Therefore, the dependence on cosφ is at most 1/3 of the integrated contribution.
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√
q2 = 400 GeV (solid

line), 500 GeV (dotted), 800 GeV (dashed), and 1000 GeV (dashed dotted)

3 Preface to Källén function and dilogarithms

3.1 Overview

Article II summarises some aspects related to the kinematics, and thus connects
the respective parts of articles I and III. The main topic of article II is the
appearance of the Källén function

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc (28)

in processes related to the interaction of three particles. The Källén function
defines the kinematics, and it’s arguments are the squares of (invariant) masses of
the three particles. For example, the sign of the Källén function determines
whether the process is real or virtual and thus generally also determines the
integration domain. Article II examines more of these kinds of properties in
depth.

3.2 Methodology

3.2.1 The appearance of the Källén function in kinematics

Let’s examine a process where one particle with massm1 (e.g. a top quark) decays
into two particles with masses m2 and m3 (e.g. W boson and bottom quark). We
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make a simplifying assumption that all particles are real. If this assumption does
not apply, the invariant masses need to be used instead. Even though the result
is Lorentz invariant, we use the rest frame of the decaying particle, in which the
momentum four-vector in the form of p1 = (m1; 0, 0, 0). From the conservation
of four-momentum we get E2 +E3 = m1 and ~p2 + ~p3 = ~0. In addition, for every
particle there is the mass shell conditionm2

2 = E2
2−~p 2

2 andm2
3 = E2

3−~p 2
3 . Using

E3 = m1 − E2 and ~p 2
3 = ~p 2

2 , all the parameters of the 3rd particle except for m3

can be expressed by the parameters of the 2nd particle. The resulting system of
equations can be solved for E2 and E3 to obtain

E2 =
m2

1 +m2
2 −m2

3

2m1
and

E3 = mt − E2 =
m2

1 −m2
2 +m2

3

2m1
. (29)

For the (equal) squares of three-momenta we have

~p 2
2 = E2

2 −m2
2 = λ(m2

1,m
2
2,m

2
3)/(4m2

1) = E2
3 −m2

3 = ~p 2
3 . (30)

While the denominators are determined by one particle being in the rest frame
(i.e. the particle 1), the Källén function appears in the numerator of the squared
three-momentum in every kinetic frame.

3.2.2 Dilogarithms

The dilogarithms appear naturally while integrating over the phase space, as is
necessary and done in article I. In the result given for the coefficients ρe

i
1ē

j
2 in

article I, one finds dilogarithms

Li2(z) = −
∫ z

0

ln(1− u)

u
du, z ∈ C \ [1,∞) (31)

which are transcendental. The dilogarithms demand a particular care and
tinkering due to their non-unique representation. There are relations between
dilogarithms leading to transformations that convert a dilogarithm with one
argument to a dilogarithm with another argument. The most important of these
relations are

Li2(z) + Li2

(
1

z

)
= −π

2

6
− 1

2
ln2(−z), z /∈ [0, 1[

Li2(z) + Li2(1− z) =
π2

6
− ln z ln(1− z). (32)
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It is interesting to note that since both resulting transformations are involutions,
there exist a hexagon orbit (33) which describes how to arrive from one
dilogarithm argument to another.

z

↗↙ ↖↘

1− z 1

zxy xy (33)
1

1− z
1− 1

z

↖↘ ↗↙
−z

1− z

Expressions involving dilogarithms may need to undergo several transforma-
tions to become manifestly real-valued. The same transformations can be used to
group dilogarithms and to cancel similar terms. Such expressions have no defini-
te shortest or simplest representation and expressions which are essentially iden-
tical may look very different.

3.3 Results

In article II it is shown how the appearance of the Källén function is the
consequence of three particle kinematics and how the integration domain can be
derived from the Källén function. Additionally, some useful substitutions are
shown which are used in the calculations in articles I and III.

The relation to dilogarithms is found in that the arguments of the dilogarithms
include the kinematics of the process and thus the Källén function. Besides the
standard dilogarithm, there are also modifications of it. For example, the Bloch–
Wigner dilogarithm is closely related to the Källén function and this connection
is discussed in the second chapter of article II. The main result of the article are
similarities between the Källén function and Bloch–Wigner dilogarithms which
can be used as a simplifying approximation.

One of the results of article II is an approximation for the (transcendental)
Bloch–Wigner dilogarithm given by the Källén function in equation (40) in article
II. Unfortunately, a typographical error has occurred and this equation does not
include the correct normalisation for the masses in the original version of article
II. The correct equation reads
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D
(
z(m2

1,m
2
2,m

2
3)
)
≈

√
27 Im

(√
λ(m2

1,m
2
2,m

2
3)
)

(m1 +m2 +m3)2
, (34)

where the Bloch–Wigner dilogarithm is

D(z) = Im (Li2(z) + ln|z| ln(1− z)) (35)

and

z(m2
1,m

2
2,m

2
3) =

m2
1 −m2

2 +m2
3 +

√
λ(m2

1,m
2
2,m

2
3)

2m2
1

. (36)
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4 Preface to lepton mass effects in Higgs decay

4.1 Overview

One of the main aims for creating the LHC was to find and study the Higgs boson.
Even though the proclamation of the discovery of the Higgs boson in 2012 [16, 17]
may have seemed final to an outside observer, in reality the examination of the
properties of the Higgs boson had just started. The mass, production and decay
rates have been found consistent with Standard Model predictions [18]. Additional
knowledge about the particle believed to be the Higgs boson can be attained by
examining its decay processes.

Article III describes the τ -lepton mass effects to the overall rate and angular
decay distribution of Higgs cascade decays H → Z(→ `+`−) + Z∗(→ τ+τ−)
andH →W−(→ `−ν̄`)+W+∗(→ τ+ντ ) (see Figure 4) where one in the pair of
gauge bosons is on mass shell (and, therefore, can be seen and identified as track in
the detector) and its counterpart is not. The aim of these calculations is to examine
the dependence of the results on the masses of final particles and the polarisations
of intermediate particles using the helicity formalism. Theoretical results can be
precisely compared to the experiment in order to examine the precision of the
Standard Model including effects of mass and polarisation.

H

Z

Z*

e+

e−

τ+

τ−

(a)

H

W −

W +*

νe

e−

τ+

ντ
(b)

Figure 4: The Feynman diagrams of processes (a) H → Z(→ e+e−) + Z∗(→ τ+τ−)
and (b) H →W−(→ e−ν̄e) +W+∗(→ τ+ντ )
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4.2 Methodology

4.2.1 Energy and angular dependencies

The energies of the decay particles and the angular dependencies are examined in
the decay process. For this purpose, five quantities are presented in article
III, namely the invariant mass of the on-shell gauge boson

√
p2, the polar

angle θp between the direction of momentum of the gauge boson and the
(positively) charged light fermion, the off-shell gauge boson invariant mass

√
q2,

the polar angle θq between the direction of momentum of gauge boson and
(positively) charged heavy fermion, and the azimuthal angle between the two
decay planes. The more complicated situation where the two gauge bosons are
not distinguishable by their decay products either does not appear in case of the
process H → WW at all because of the charges or, in the case of the process
H → ZZ, is removed from the discussion and will be examined in a future
publication. Like the bracket notation implies, the conventions for processes
H → ZZ and H → WW are slightly different (look at the figures in article III).
The off-shell boson is the one which can decay through the tau channel (in
case of Z∗ it is Z∗ → τ+τ− and in case of W+∗ it is W+∗ → τ+ντ ). In the
discussion different energy and single angle dependencies are shown, and in
comparison with the massless results the mass effect is revealed.

The angular dependencies can be disassembled by Legendre polynomials and
in addition to differential decay rates, observables like convexity parameter and
forward–backward asymmetry (for H → WW ) are defined and given in article
III. The results are separated into helicity flip and helicity non-flip contributions
based on whether the helicity (the projection of polarisation on the momentum
vector) is conserved in the transition from vector boson to leptons or not.

4.2.2 Helicity formalism

There are two ways to reach the result: the direct route or the route via the helicity
formalism. The helicity formalism enables the gauge boson contributions to be
separated into vector and scalar parts, and the mass effects originate from the
latter (which does not contribute in the on-shell case). The unitary gauge is used
to prevent the appearance of Goldstone bosons. The boson propagator is split into

P νβ0⊕1(q) = −gνβ +
qνqβ

m2
V

=

(
−gνβ +

qνqβ

q2︸ ︷︷ ︸
spin 1

)
− qνqβ

q2
FS(q2)︸ ︷︷ ︸

spin 0

, (37)

where mV is the mass of boson and

FS(q2) =

(
1− q2

m2
V

)
. (38)
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The propagators can be given in the helicity formalism as external products of the
polarisation vector,

Pαµ1 (p) =
∑

λV =±1,0

ε̄α(λV )ε̄∗µ(λV ) = −gαµ +
pαpµ

p2
(39)

(p2 = m2
V ) and

Pµ
′α′

0⊕1 (q) = −
∑

λV ∗=t,±1,0

εµ
′
(λV ∗)ε

∗α′(λV ∗) ĝλV ∗λV ∗ = −gµ′α′ + qµ
′
qα
′

m2
V

. (40)

The polarisation vectors determine the helicity amplitudes,

Hmn = ε̄∗α(λV , p)Hαα′ε
∗α′(λV ∗ , q), (41)

which are connected to the lepton and hadron tensors from article I in the form of

on-shell side: ε̄α(±, p) =
1√
2

(0;±1,−i, 0)

ε̄µ(0) =
1√

p2
√

(pq)2 − p2q2

(
(pq)pµ − p2qµ

)
ε̄µ(t) =

pµ√
p2

off-shell side: εµ(±, q) =
1√
2

(0;∓1,−i, 0)

εµ(0) =
1√

q2
√

(pq)2 − p2q2

(
(pq)qµ − q2pµ

)
εµ(t) =

qµ√
q2

(42)

Using Hαα′ = gαα′ in case of the Standard Model we arrive at

H++ = H−− = 1, H00 = Htt =
pq√
p2
√
q2
,

H0t = Ht0 =

√
(pq)2 − p2q2√
p2
√
q2

=
mH |~pV |√
p2
√
q2
. (43)

The results are given by bilinear forms consisting of helicity amplitudes

ρ00 = |H00|2, ρ±± = |H±±|2, ρtt = ReH0tH
∗
0t,

ρ±0 = ReH±±H
∗
00, ρ±∓ = ReH±±H

∗
∓∓,

ρ±t = ReH±±H
∗
0t, ρt± = ReH0tH

∗
±±,

ρ0t = ReH00H
∗
0t, ρt0 = ReHt0H

∗
00. (44)

Compared to these the helicity amplitudes related to the lepton tensor are in a
simpler form. The angular dependence comes from the Wigner d-function, and
the connection to the system given in article I is given by

ρU = ρ++ + ρ−−, ρL = ρ00 and ρS = ρtt. (45)
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All contributions except for the last (scalar) one are already known from article I
(cf. Section 2). The resolution into U , L, and S parts is evident for every
observable, both in case of massless and massive leptons.

4.2.3 Analytical vs. numerical calculations

Differential decay rates that depend on the invariant masses of the gauge bosons
can be calculated analytically, whereas in the calculation of the process with three
masses (mH ,

√
p2 and

√
q2) once again the Källén function appears. Only when

it becomes necessary to integrate over the invariant mass of the second boson
(which is off-shell), we need numeric integration. For this purpose we use a well-
known Monte Carlo program called VEGAS [19] which is fast and reliable, and
also double-check with Mathematica’s numeric integration.

4.3 Results

Lepton mass effects are evident in the off-shell decays Z∗ → τ+τ− and W+∗ →
τ+ντ . Lepton mass effects are larger for the H → ZZ∗ mode where a reduction
of 3.97 % in the decay rate to τ relative to the decay rates to e or µ is found (see
figures 5 and 6).

The important point is that in case of off-shell decay the scalar and
longitudinal-scalar interference contributions are no longer on scale with the
square of lepton mass which could be neglected at the scale of m2

W,Z . Instead
they depend on the off-shellness of respective gauge bosons which is limited by
the zero recoil point q2 = (mH − mW,Z)2. In low energy calculations one
usually drops the term q2/m2

W,Z , since q2 � m2
W,Z , but in case of the decay

process considered in article III the factor q2/m2
W,Z can be as large as 30% at the

zero recoil point.
The rate reduction due to lepton mass effects is significantly larger at the lower

end of the q2 spectrum where the ratio of m2
τ to q2 is larger. In the charged-

current case one finds a non-vanishing forward–backward asymmetry in the cos θq
distribution through lepton mass induced scalar–longitudinal interference effects.
The forward–backward asymmetry can become quite large in the low-q2 region.
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Figure 5: Differential rates dΓZα/dq
2 for the decay H → Z(→ e+e−) + Z∗(→ `+`−)

with m` = 0 and m` = mτ

Figure 6: Differential rates dΓWα /dq
2 for the decayH →W−(→ e−ν̄e)+W

+∗(→ `+ν`)
with m` = 0 and m` = mτ
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5 Summary

Particle physics research related to the LHC and CLIC/ILC colliders is one of
the major areas of modern science. The theoretical calculations presented in this
thesis are connected to elementary particle collisions in these colliders.

The thesis consists of two main topics. The first topic focuses on the spin–
spin correlation of a top and antitop quark pair created in an electron–positron
annihilation. Article I provides analytical Standard Model results describing the
first order O(αs) corrections to the double spin density matrix elements of such
a quark pair in the beam frame spanned by the momenta of the electron and the
quark. The correlation of combinations of longitudinal, transverse and normal spin
orientations are studied. A possible method for measuring spin–spin correlations
through an angular analysis of the polarized quark decays based on spin–spin
density formalism is discussed. Furthermore, a way to generalise the results to the
case of polarized electron–positron annihilation is provided.

The other topic is lepton mass effects in Higgs boson decay presented in
article III. Considered are the four-body decays H → Z(→ `+`−) + Z∗(→
τ+τ−) and H → W−(→ `−ν̄`) + W+∗(→ τ+ντ ), where one in the pair of the
gauge bosons is on mass shell and its counterpart is not. The inclusion of τ
lepton mass effects explains an overall rate reduction relative to the zero mass
case. The reduction is larger for the ZZ∗ case. From the energy-dependence
perspective the rate reduction is significantly larger at the lower end of energy
spectrum near the zero recoil point. In the charged-current case one finds a
non-vanishing forward–backward asymmetry in the angular distribution through
lepton mass induced scalar–longitudinal interference effects.

The results of both studies are given analytically as angular decay
distributions and partial rates in the helicity formalism. This allows to analyse
dependencies on different parameters in detail and to calculate the behaviour in
different kinematical limits. Taking into account mass and spin polarisation
effects for the decay products, our results help to guide future experiments and
enable a more detailed comparison with the Standard Model. Both topics also
encompass massive particles decays that employ the Källén function which is
examined in relation to dilogarithms in article II.
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Kokkuvõte (Summary in Estonian)

Fermionite spinni polarisatsiooni ja massi mõju top-kvargipaari
tekkel ja Higgsi bosoni lagunemisel

Tänapäeva teaduse üks suuremaid valdkondi on osakestefüüsika, mis hõlmab
endas ka LHC-ga (suur hadronite põrguti) ja CLIC-ga (kompaktne lineaarne
põrguti) ning ILC-ga (rahvusvaheline lineaarne põrguti) seonduvat. Käesolevas
väitekirjas kirjeldatud teoreetilised arvutused on seotud elementaarosakeste
põrgetega neis kiirendites.

Käesolev väitekiri sisaldab kahte põhilist teemat. Esimene teema keskendub
elektroni ja positroni annihileerumisel tekkinud top-antitop-kvargipaari
spinn-spinn-korrelatsioonile. Artikkel I annab Standardmudeli järgi arvutatud
analüütilised tulemused, mis kirjeldavad esimest järku O(αs)-parandeid sellise
kvargipaari spinn-spinn-kaksiktihedusmaatriksi elementidele elektronkiire ja
kvargi poolt määratud taustsüsteemis. Uuritakse spinni piki- ja ristisuunaliste
orientatsioonide kombinatsioonide korrelatsioone. Käsitletakse spinn-spinn-
korrelatsioonide mõõtmise võimalust polariseeritud kvargi lagunemisproduktide
liikumissuundade nurkade abil kasutades tihedusformalismi. Lisaks sellele
antakse viis, kuidas üldistada antud tulemusi polariseeritud elektron- ja
positronkiirte korral.

Teine teema on leptonmassi efektid Higgsi bosoni lagunemisel artiklis III.
Nimelt saab Higgsi boson laguneda neljaks osakeseks läbi Z-bosoni paari
H → Z(→ `+`−) + Z∗(→ τ+τ−) ja W-bosoni paari H → W−(→
`−ν̄`) + W+∗(→ τ+ντ ), kusjuures üks vahebosonitest on massipinnal ja selle
teisik ei ole. τ -leptoni massi arvessevõtmine annab kogu reaktsiooni ristlõike
vähenemise võrreldes leptoni massi mittearvestamisega. Vähenemine on
suurem ZZ∗ korral. Energiasõltuvuse vaatenurgast on ristlõike vähenemine
märkimisväärselt suurem energiaspektri madalamas otsas, kus massipinnal
olev boson on paigal. W-bosoni korral ilmneb nurkjaotuses mittekaduv
edasi-tagasisuunaline asümmeetria, mis on tingitud leptoni massi poolt tekitatud
skalaarse ja pikipanuse interferentsist.

Mõlema teema uurimistulemused on antud analüütiliselt lagunemise
nurkjaotustena ja osaliste ristlõigetena helitsiteetsusformalismis. See võimaldab
täpsemalt uurida sõltuvust erinevatest parameetritest ja arvutada tulemuste
käitumist erinevatel piirjuhtudel. Need leiud heidavad valgust massi- ja
spinniefektidele osakeste lagunemisel ja sellest juhinduvalt saab tulevastes
eksperimentides läbi viia täpsemaid võrdlusi Standardmudeliga. Mõlemad
teemad hõlmavad massiga osakeste lagunemist, mille arvutamise käigus
rakendatakse Källén funktsiooni, mida ja mille seost dilogaritmidega uuritakse
lähemalt artiklis II.
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2011 – 2016 Eesti Füüsika Selts – toimetaja/tõlkija
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