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Kokkuvõte 66

Curriculum Vitae 67

8



List of Original Publications:
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misest. Eesti Statistikaseltsi Teabevihik, 11, 44–53.
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Introduction

Linear mixed models are used in many different research areas like biology,
sociology, medicine, ecology etc. Linear mixed models together with gener-
alized linear mixed models are one of the main techniques used in longitu-
dinal and spatial data analysis, multilevel modelling, small area estimation
etc. In applying linear mixed models one often encounters difficulties in
choosing correct covariance structure. Most theoretical works barely touch
the question. Even those rare coverages have sparked some controversies,
see, for example, the article by Voss (1999). In more practice oriented work
authors usually limit themselves to suggesting some plausible covariance
structure. Proving the correctness of the suggested (or used) covariance
structure is often quite limited at best.

Some work has been done to investigate the effects of misspecification of
the covariance structure in linear mixed models (see for example Puntanen
& Styan 1989, Harville 1997). However, several aspects, like the effect of
covariance structure misspecification on mixed model predictions, have so
far remain largely uncovered. Further theoretical results providing tech-
niques to interpret and justify the assumptions made about the covariance
structure are therefore needed. The work presented here, in these Thesis,
intends to make step further on the road to provide these techniques.

In Chapter 3 the results are presented showing that a popular estimation
technique — Restricted Maximum Likelihood (REML) — can be viewed
as estimation with respect to a misspecified covariance structure.

In Chapter 4 it is shown that for solving typical prediction-related problems
unique determination of covariance matrix is not necessary. As an alterna-
tive to fixing the sample covariance matrix (or covariance structure) a new
approach, reparameterisation constraints for random effects, is suggested.

Replacing one covariance structure with another may or may not lead to
different prediction results. A relatively easy to check condition for different
covariance structures to yield equivalent prediction results for a wide class
of prediction problems is presented in Chapter 5.
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To derive the results presented in Chapters 3–5 several results from matrix
algebra and linear mixed models theory are needed. These supplementary
results are presented together with introduction of notation in Chapters
1–2. The main results presented in Chapters 4 and 5 are previously pub-
lished by author (Möls 2003, Möls 2004), but the coverage here adds several
details. The investigated ideas are used by author in Möls, Nõges & Nõges
(2001) and in Frisk, Bilaletdin, Kaipainen, Malve & Möls (1999). Results
presented in Chapter 3 are new and not published before.
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1. Matrix Algebra

In this chapter we give basic definitions and results from matrix algebra,
which are needed in the following chapters. Most proofs are omitted, they
can be found in graduate textbooks of Matrix Algebra. An interested reader
is referred to Harville (1997) and Rao (1998). A few proofs are included
because of their exceptional beauty or rarity.

1.1 Basic Terminology

The transposed matrix of the m× n matrix A is denoted by AT .

A matrix is said to be square if it has as many rows as columns. An 1× n
matrix is called row vector and n× 1 matrix is called column vector. If the
dimension of a vector is clear from context, the attribute ”row” or ”column”
can be omitted.

A square matrix A is idempotent if AA = A.

A real square matrix is said to be orthogonal if AT A = I.

The determinant of a square matrix A is denoted by |A|.
Sum of all diagonal elements of a square matrix A is called trace and denoted
by tr(A).

A symmetric m×m matrix A is called positive definite if

xT Ax > 0

for any vector x 6= 0.

A symmetric m×m matrix A is called non-negative definite if

xT Ax ≥ 0

for any vector x.

The square root of a non-negative definite matrix A, denoted by A
1/2 , is

a symmetric matrix satisfying A = A
1/2A

1/2 . The square root of A−1 is
denoted by A− 1/2 .
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1.2 Linear Spaces

Definition 1.1. The column space of an m× n matrix A is the set of all
m-dimensional column vectors that can be expressed as linear combinations
of the columns of A. The symbol C(A) will be used to denote the column
space of matrix A.

Proposition 1.1. For any m× n matrix A and m× p matrix B, C(A) ⊂
C(B) if and only if there exists an n× p matrix M such that B = AM .

Definition 1.2. The rank of matrix A is defined as the dimension of the
column space of matrix A and it is denoted by rank(A).

Proposition 1.2. For an arbitrary m × n matrix A following statements
hold:

1. rank(A) = rank(AT ).

2. rank(A) = rank(AT A).

3. Let B be an m×m nonsingular matrix and C be an n×n nonsingular
matrix. Then

rank(BA) = rank(A) and rank(AC) = rank(A). (1.1)

Definition 1.3. Let U be a subspace of the Euclidean space Rm of all m-
component real column vectors. The orthogonal complement of U , denoted
by U⊥, is the collection of all vectors in Rm that are orthogonal to every
vector in U ; that is, U⊥ = {x : x ∈ Rm and xT y = 0 for all y ∈ U}.

Proposition 1.3. If U is a subspace of Rm, then its orthogonal complement
U⊥ is also a subspace of Rm.

Definition 1.4. Let U and W be subspaces of the linear space Rm. If
xT y = 0 for every x ∈ U and y ∈ W, then U and W are said to be
orthogonal.

Definition 1.5. Let U and W be subspaces of the linear space Rm, and let
A is a symmetric positive definite matrix. If xT Ay = 0 for every x ∈ U
and y ∈ W, then U and W are said to be orthogonal with respect to A.

Definition 1.6. Let U and W be subspaces of the linear space Rm. If
U ∩W = {0} then U and W are said to be essentially disjoint.
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Proposition 1.4. Let U represent an m×n matrix and V an m×p matrix.
The column spaces C(U) and C(V ) are essentially disjoint if and only if

rank
(

U
V

)
= rank(U) + rank(V ). (1.2)

Proof. See Harville (1997), Theorem 17.2.4. ¤

Proposition 1.5. Let U and W represent essentially disjoint subspaces of
Rm. Then there exists a (not necessarily uniquely determined) matrix A
such, that U and W are orthogonal with respect to A.

Proof. See Harville (1997), Theorem 17.7.1. ¤

Proposition 1.6. Let U represent an m×n matrix and V an m×p matrix.
If matrices U and V satisfy the condition (1.2), then there exists a matrix
A such that

UAV T = 0.

Proof. Follows directly from Proposition 1.4 and Proposition 1.5. ¤

1.3 Generalized Inverse

Definition 1.7. A generalized inverse of n × m matrix A is any m × n
matrix A− satisfying

A = AA−A. (1.3)

Unfortunately, a generalized inverse matrix may not be uniquely deter-
mined.

Proposition 1.7. Let A be an m×n matrix. Then the following statements
hold.

1. There exist a generalized inverse A−.

2. (A−)T is a generalized inverse of AT .

3. Let B represent an m× k matrix and C an n× q matrix. If C(BT ) ⊂
C(AT ) and C(C) ⊂ C(A), then BT A−C does not depend on the choice
of A−.
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4. Let V represent an n×n positive definite matrix. Then A(AT V A)−AT

is invariant to the choice of the generalized inverse of (AT V A)−.

5. rank(A−) ≥ rank(A−A) = rank(AA−) = rank(A)

6. A(AT A)− is a generalized inverse of AT

Proposition 1.8. Let A be any m×n matrix, G any n×m matrix. Then
GB is a solution of the linear system AX = B for every m × p matrix B
for which the linear system is consistent if and only if G = A−.

Definition 1.8. The Moore-Penrose inverse of the n×m matrix A is an
m× n matrix A+ satisfying

A = AA+A (1.4)
A+ = A+AA+ (1.5)

AA+ = (AA+)T (1.6)
A+A = (A+A)T (1.7)

Proposition 1.9. Corresponding to each n×m matrix A there exists one
and only one m× n matrix A+ satisfying conditions (1.4)–(1.7).

Proposition 1.10. Let A be a symmetric m×m matrix. Then A+ is also
symmetric.

Proposition 1.11. Let A be an n×p matrix and V an n×n symmetric pos-
itive definite matrix. Then A(AT V A)−AT is uniquely defined, symmetric
and non-negative definite.

Proof. Matrix AT V A is symmetric and non-negative definite. Hence
(AT V A)+ is also symmetric (Proposition 1.10). The equality

A(AT V A)−AT = A(AT V A)+AT

follows directly from Proposition 1.7, statement 4. It remains to prove that
A(AT V A)+AT is non-negative definite. But

A(AT V A)+AT = A(AT V A)+(AT V A)(AT V A)+AT .

Hence, for any vector v,

vA(AT V A)+AT vT = v∗V vT
∗ , (1.8)

where v∗ = vA(AT V A)+AT . But v∗V vT∗ ≥ 0 for any vector v∗, because V
is positive definite. ¤
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1.4 Projectors

Definition 1.9. Let X be an n × m matrix. An n × n matrix P is a
projector matrix onto column space of X if for arbitrary n-vector v

Pv ∈ C(X) (1.9)

and for any vector u ∈ C(X)

Pu = u. (1.10)

Definition 1.10. An n × n matrix P is called projector if there exists a
matrix X so that P is a projector matrix onto C(X).

These conditions can be presented also in a slightly different form. From
Proposition 1.1 it follows that condition (1.9) holds if and only if there
exists an m× n matrix M such that

P = XM. (1.11)

The condition (1.10) is equivalent to the condition

PX = X. (1.12)

Proposition 1.12. A matrix P is a projector if and only if it is idempotent.

Proof. P is projector ⇒ P is idempotent

Follows immediately from (1.9) and (1.10).

P is idempotent ⇒ P is projector onto some column space

If P is idempotent then it is a projector onto the column space of C(P ):
P = PI and therefore condition (1.11) is satisfied, and because PP = P ,
the equality (1.12) also holds. ¤

Definition 1.11. A symmetric projector matrix P is called orthogonal pro-
jector.

Proposition 1.13. The n× n matrix PX is an orthogonal projector onto
the subspace C(X) if and only if

PX = X(XT X)−XT . (1.13)
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Proof. PX is orthogonal projector onto C(X) ⇒ PX = X(XT X)−XT .

If PX is an orthogonal projector then it is idempotent, PXPX = PX , and
symmetric, P T

X = PX . Hence PX = PX(PX)−PX = PX(PXPX)−PX =
PX(P T

XPX)−P T
X . Because PX is projector to the subspace of C(X) it has to

have the form PX = XM for some matrix M (Proposition 1.1). Hence

PX = XM(MT XT XM)−MT XT . (1.14)

This does not depend on the choice of generalized inverse (Proposition 1.7
statement 4). One choice for the generalized inverse is (MT XT XM)− =
X(XT X)−XT :

(MT XT XM)X(XT X)−XT (MT XT XM) = MT XT XM,

because XMX = PXX = X. Using this generalized inverse in (1.14) leads
to

PX = X(XT X)−XT ,

which is uniquely determined because of Proposition 1.7. Therefore any
orthogonal projector into the subspace of C(X) has to have the form (1.13).

PX = X(XT X)−XT PX ⇒ PX is orthogonal projector onto C(X). As
matrix PX = X(XT X)−XT is idempotent and symmetric (see Proposition
1.11), it is an orthogonal projector. For any vector v with appropriate
length PXv ∈ C(X) because it can presented as a linear combination of
columns of X: PXv = Xv∗ for v∗ = (XT X)−XT v. For any vector u ∈ C(X)
(which can be expressed as u = Xu∗) we have PXu = u because

PXu = PXXu∗ = X(XT X)−XT Xu∗.

From Proposition 1.7 it follows that X(XT X)−XT X = X and hence
Xu∗ = u, which proves the lemma. ¤

Proposition 1.14. If P is a projector then also I − P is a projector.

Proposition 1.15. Let X be an arbitrary n × p matrix, denote rank(X)
by k, and let V be an n × n symmetric positive definite matrix. Then for
the matrices

PX,V = X(XT V −1X)−XT V −1 (1.15)

and
PX⊥,V = I − PX,V (1.16)

18



the following equalities hold:

PX,V · PX,V = PX,V and PX⊥,V · PX⊥,V = PX⊥,V (1.17)

PX,V X = X and PX⊥,V X = 0 (1.18)

rank(PX,V ) = k; (1.19)

rank(PX⊥,V ) = n− k; (1.20)

V −1PX,V = P T
X,V V −1 (1.21)

V −1PX⊥,V = P T
X⊥,V V −1 (1.22)

PX,V V = V P T
X,V (1.23)

PX⊥,V V = V P T
X⊥,V (1.24)

XT V −1PX,V = XT V −1 and XT V −1PX⊥,V = 0 (1.25)

Theorem 1.1. Let X be an n×p matrix, rank(X) = k, A be an (n−k)×n
matrix, rank(A) = n− k, and let V be an n× n positive definite matrix. If
AX = 0 then

AT (AV AT )−1A = V −1 − V −1X(XT V −1X)−XT V −1. (1.26)

Proof given below is taken from Searle (1992), and has attributed by him
to Pukelsheim.

Proof. Matrices AT (AAT )−1A and X(XT X)−XT are both symmetric
and idempotent. Define a matrix

T = I −AT (AAT )−1A−X(XT X)−XT .

The matrix T is also symmetric and idempotent (because AX = 0). There-
fore

tr(TT T ) = tr(T 2) = tr(I)− tr(AT (AAT )−1A)− tr(X(XT X)−XT ).

Trace of an idempotent matrix is equal to its rank, and

rank(X(XT X)−XT ) = rank(X) = k,

rank(AT (AAT )−1A) = rank(A) = n− k.

Therefore

tr(TT T ) = n− (n− k)− k = 0.
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Matrix T is real, therefore from tr(TT T ) = 0 follows T = 0. Hence I −
X(XT X)−XT = AT (AAT )−1A. One may replace simultaneously A with
AV 1/2 and X with V −1/2X, because AV 1/2V −1/2X = AX = 0. Making
these replacements gives

I − V −1/2X(XT V −1X)−XT V −1/2 = V 1/2AT (AV AT )−1AV 1/2,

what gives us, after multiplying both sides from left and right with V −1/2,
the desired equality

V −1 − V −1X(XT V −1X)−XT V −1 = AT (AV AT )−1A.

¤

Definition 1.12. One can remove k linearly dependent rows from matrix
PX⊥ = I−X(XT X)−XT to derive an (n−k)×n matrix with rank equal to
n−k. This (not necessarily uniquely defined) matrix is denoted throughout
the thesis by symbol K.

Notice, that because PX⊥X = 0 also KX = 0.

There exist a useful relationship between matrices P⊥
X,V and K, which is

stated in the following proposition.

Proposition 1.16. Consider matrices P T
X⊥,V

— as defined in (1.16) —
and K, defined by Definition 1.12. Then the following equality holds:

KT (KV KT )−1K = P T
X⊥,V V −1PX⊥,V (1.27)

Proof. To prove (1.27) use the equality

KT (KV KT )−1K = V −1 − V −1X(XT V −1X)−XT V −1, (1.28)

which follows from Theorem 1.1. Because of (1.28) and the properties (1.17)
and (1.22), on can write

KT (KV KT )−1K = V −1 − V −1X(XT V −1X)−XT V −1

= V −1PX⊥,V

= V −1PX⊥,V PX⊥,V

= P T
X⊥,V V −1PX⊥,V ,

which proves the equality (1.27) and, hence, also the property 1.16. ¤
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1.5 Eigenvalues and Eigenvectors

Definition 1.13. Let A be a n×n matrix. The eigenvalues of A are defined
as roots of the characteristic equation

|A− λIn| = 0. (1.29)

Equation (1.29) has n roots, in general complex.

Definition 1.14. If λ is eigenvalue of A, then there exists vector v (v 6= 0)
such that

Av = λv. (1.30)

The vector v in (1.30) is called eigenvector of A associated with the eigen-
value λ.

Proposition 1.17. Let A be a real n × n matrix. Then the following
statements hold.

1. A real symmetric matrix has only real eigenvalues.

2. If A is an n × n matrix and G a nonsingular n × n matrix, then A
and G−1AG have the same eigenvalues.

3. Matrices A and AT have the same eigenvalues.

4. Matrices AB and BA have the same nonzero eigenvalues.

5. If λ1, . . . , λn are eigenvalues of a nonsingular n × n matrix A then
λ−1

1 , . . . , λ−1
n are eigenvalues of A−1.

6. An idempotent matrix has only eigenvalues 0 or 1.

7. If λ1, . . . , λn are eigenvalues of a n×n matrix A, then |A| = λ1 ·. . .·λn

and tr(A) = λ1 + . . . + λn.

Definition 1.15. An n × n matrix A is said to be diagonalizable if there
exists an n × n nonsingular matrix Q such that Q−1AQ = D for some
diagonal matrix D, in which case Q is said to diagonalize A (or A is said
to be diagonalized by Q).

An n×n matrix A is said to be orthogonally diagonalizable if it is diagonal-
izable by an orthogonal matrix; that is, if there exists an n× n orthogonal
matrix Q such that QT AQ is diagonal.
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Proposition 1.18. An n× n matrix A is diagonalizable by an n× n non-
singular matrix Q if and only if the columns of Q are linearly independent
eigenvectors of A.

Proposition 1.19. Every symmetric matrix is orthogonally diagonalizable.

Proposition 1.20. Let A represent an n × n symmetric matrix, and let
d1, . . . , dn represent the (not necessarily distinct) eigenvalues of A (in ar-
bitrary order). Then there exists an n× n orthogonal matrix Q such that

QT AQ = diag(d1, . . . , dn).

Proposition 1.21. Let A be an n×n symmetric matrix. And let Q repre-
sent an n×n orthogonal matrix and D = diag(d1, . . . , dn) an n×n diagonal
matrix such that QT AQ = D. Then matrix A can be expressed as

A = QDQT . (1.31)

The decomposition (1.31), also known under the name of spectral decom-
position, is unique aside from the ordering of the diagonal elements (eigen-
values) and corresponding columns in Q (eigenvectors).

Comment: From Proposition 1.20 and Proposition 1.21 it follows: If a
symmetric n×n matrix A has a decomposition A = QDQT , where Q is an
orthogonal matrix and D is a diagonal matrix, then the diagonal elements
of D have to be eigenvalues of matrix A.

Definition 1.16. Let A1, . . . , Ak represent k matrices of dimensions n ×
n. If there exists an n × n nonsingular matrix Q such that Q−1A1Q =
D1, . . . Q

−1AkQ = Dk for some diagonal matrices D1, . . . Dk, then matrices
A1, . . . , Ak are simultaneously diagonalizable.

Proposition 1.22. If n× n matrices A1, . . . , Ak are simultaneously diag-
onalizable then they commute in pairs, i.e.

AsAi = AiAs (s > i = 1, . . . , k).

If n × n symmetric matrices A1, . . . , Ak commute in pairs, then they can
be simultaneously diagonalized by an orthogonal matrix; that is there exist
an orthogonal matrix P and diagonal matrices D1, . . . , Dk such that for
i = 1, . . . , k

P T AiP = Di.

Proof. For proof see for example Harville (1997), Theorem 21.13.1. ¤
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2. Linear Mixed Model

2.1 Notation

Consider the model
Y = Xβ + Zγ + ε, (2.1)

where Y is a vector of n observable random variables, β is a vector of
p unknown parameters having fixed values (fixed effects), γ is a random
vector of length r (random effects) and ε is a random n-vector of errors.
Matrix X is an n × p and matrix Z is an n × r matrix. Both X and Z
is assumed to be known and are sometimes referred to as design or model
matrices. Models in the form of (2.1) are called Linear Mixed Models.

We assume that the expectations of γ and ε are zero, E(γ) = 0, E(ε) = 0
and, hence, EY = Xβ. In addition we assume

Var
[

γ
ε

]
=

[
G 0
0 R

]
.

The (co-)variance matrix of Y can be expressed as

V = R + ZGZT . (2.2)

Throughout the thesis it is assumed that V and R are nonsingular matrices.

For some results additional distributional assumptions are needed. These
frequently used additional assumptions require γ and ε to have multivariate
normal distribution with covariance matrices G and R respectively:

γ ∼ N (0, G); (2.3)
ε ∼ N (0, R). (2.4)

The distribution of Y is determined by (2.1)–(2.4):

Y ∼ N (Xβ, V ). (2.5)
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2.1.1 Examples

Variety of models can be considered as special cases of linear mixed models.
By choosing r = 0 (no random effects) and by taking V = σ2I we get the
traditional linear model from (2.1). The special cases of traditional linear
model like linear regression and analysis of variance (ANOVA) models are
therefore also special cases of linear mixed model. Small area estimation
methodology used in survey sampling makes heavy use of mixed models,
being particularly interested in predicting random effects γ. Multilevel
models, popular in human and biological sciences, are also basically mixed
models with diagonal matrix G, as are variance components models. Linear
mixed models are also an essential technique in longitudinal and spatial
data analysis. In spatial or longitudinal data analysis usually considerable
effort is directed to modelling and interpretation of matrix R.

2.2 Estimation and prediction

Definition 2.1. An estimator A(Y ) of parameter vector Θ is called Best
Linear Unbiased Estimator (BLUE) if

• A(Y ) is linear estimator:

A(Y ) = BY for some matrix B; (2.6)

• A(Y ) is unbiased:
EA(Y ) = Θ (2.7)

• A(Y ) has minimum variance among all linear unbiased estimators:

Var(BY ) ≤ Var(B∗Y ) (2.8)

for any fixed matrix B∗ for which EB∗Y = Θ.

Even if the covariance matrix V is known, there exists a BLUE estimator
for fixed effects in linear mixed model (2.1) only if matrix X is of full column
rank. However, for vector Xβ there exists a BLUE estimator as stated by
the extended Gauss-Markov Theorem.

Theorem 2.1. Consider linear mixed model (2.1) and assume the covari-
ance matrix V to be known. Then the Best Linear Unbiased Estimator
(BLUE) of Xβ is given by

Xβ̂ = X(XT V −1X)−XT V −1Y. (2.9)
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There exist extensions of this result to the case where V is singular (see
Searle, 1994). In this thesis we assume that V is nonsingular, which allows
us to ignore the relatively complex form of the general BLUE estimator.

Definition 2.2. A predictor A(Y ) of a random variable θ is called Best
Linear Unbiased Predictor (BLUP) if

• A(Y ) is linear predictor:

A(Y ) = BY for some matrix B; (2.10)

• A(Y ) is unbiased:
EA(Y ) = Eθ (2.11)

• A(Y ) has minimum mean square error among all linear unbiased pre-
dictors:

E(BY − θ)2 ≤ E(B∗Y − θ)2 (2.12)

for any fixed matrix B∗ for which EB∗Y = Eθ.

Theorem 2.2. Consider linear mixed model (2.1) and assume the covari-
ance matrices V and G to be known. Then the Best Linear Unbiased Pre-
dictor (BLUP) of γ is given by

γ̂ = GZT V −1(Y −Xβ̂). (2.13)

Proof. See for example Henderson (1963) or Searle (1997a). ¤

Note: Formulas for BLUE (2.9) and BLUP (2.13) are derived without using
the distributional assumptions (2.3) and (2.4). However, if one is willing
to assume (2.3) and (2.4), then it is possible to use maximum likelihood
method to estimate the unknown quantities. The results obtained by max-
imum likelihood are equal to (2.9) and (2.13) as stated by the following two
theorems.

Theorem 2.3. Consider the linear mixed model (2.1) and assume that
the distributional assumption (2.5) holds and that the covariance matrix V
is known. Then the maximum likelihood estimator Xβ̂ of Xβ is given by
(2.9).

Proof. The well-known proof is presented here in detail because of the
author’s desire to refer later to some intermediate results.
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If the distributional assumptions hold, it is possible to write down likelihood
function L for Y :

L = |2πV |− 1/2 exp
(
−1

2
(Y −Xβ)T V −1(Y −Xβ)

)
, (2.14)

and the log-likelihood function:

l = −1
2

ln(|2πV |)− 1
2
(Y −Xβ)T V −1(Y −Xβ). (2.15)

To derive maximum likelihood estimates for β one has to take derivative
from l with respect to β,

∂l

∂β
= XV −1(Y −Xβ)

and equate it to zero. From ∂l/∂β = 0 we get the equation

XV −1Y = XV −1Xβ. (2.16)

This equation has unique solution for β if and only if matrix X is of full
column rank. More generally the solution can be written as

β̂ = (XV −1X)−XV −1Y,

where the generalized inverse (XV −1X)− is not uniquely defined. However,
the estimate of Xβ,

Xβ̂ = X(XV −1X)−XV −1Y

is always unique because of the properties of generalized inverse (see Lemma
1.7). ¤

Theorem 2.4. Consider the linear mixed model (2.1). We assume that
the distributional assumptions (2.3) and (2.4) hold and that the covariance
matrices G and R (and hence also V) are known. Then the value of γ
which maximizes the joint likelihood function fY,γ of Y and γ is given by
(2.13) and the value of β maximizing fY,γ is given by (2.9).

Proof. Assume for now G to be nonsingular. Then the joint density of
Y and γ can be written down as

fY,γ = fY |γ · fγ

= |2πR|− 1/2 exp
(
−1

2
(Y −Xβ − Zγ)T R−1(Y −Xβ − Zγ)

)

×|2πG|− 1/2 exp
(
−1

2
γT G−1γ

)
. (2.17)
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It is easier to maximize the log-density ln(fY,γ) than the joint density itself.
The logarithm of the joint density function is

ln(fY,γ) = −1
2

ln(|2πR|)− 1
2
(Y −Xβ − Zγ)T R−1(Y −Xβ − Zγ)

−1
2

ln(|2πG|)− 1
2
γT G−1γ.

Partial derivative of ln(fY,γ) with respect to γ is

∂fY,γ

∂γ
= ZT R−1(Y −Xβ − Zγ) + G−1γ

and partial derivative of ln(fY,γ) with respect to β is

∂fY,γ

∂β
= XT R−1(Y −Xβ − Zγ).

To find the values of γ and β maximizing (2.17) we equate the partial
derivatives to zero and solve the resulting system of equations:

ZT R−1Y − ZT R−1Xβ − (ZT R−1Z + G−1)γ = 0, (2.18)
XT R−1Y −XT R−1Xβ −XT R−1Zγ = 0 (2.19)

which can be rewritten in the matrix form as
[

ZT R−1X ZT R−1Z
XT R−1X XT R−1Z + G−1

] [
β
γ

]
=

[
ZT R−1Y
XT R−1Y

]
. (2.20)

Equations (2.20) are called Mixed Models Equation (MME). To solve the
MME one can solve (2.19) for γ to derive

γ = (ZT R−1Z + G−1)−1ZT R−1(Y −Xβ). (2.21)

The derived value of γ can now be plugged into (2.18):

XT R−1Y −XT R−1Xβ−XT R−1Z(ZT R−1Z+G−1)−1ZT R−1(Y −Xβ) = 0.

After some simple algebra we get

XT (R−1 −R−1Z(ZT R−1Z + G−1)−1ZT R−1)Y =
XT (R−1 −R−1Z(ZT R−1Z + G−1)−1ZT R−1)Xβ.

Now one may use the equality (which can be easily shown by multiplying
with V = ZGZT + R):

R−1 −R−1Z(ZT R−1Z + G−1)−1ZT R−1 = V −1
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to derive

XT V −1Y = XT V −1Xβ. (2.22)

From (2.22) follows

β̂ = (XT V −1X)−XT V −1Y. (2.23)

It is worth to notice that β̂ is not uniquely determined — different gener-
alized inverses of XT V −1X can lead to different values for β̂, all of which
maximize the likelihood function. Now we can plug (2.23) into (2.21) and
use some simple algebra:

γ̂ = (ZT R−1Z + G−1)−1ZT R−1(Y −Xβ̂)
= (ZT R−1Z + G−1)−1ZT R−1V V −1(Y −Xβ̂)

(2.2)
= (ZT R−1Z + G−1)−1ZT R−1(ZGZT + R)V −1(Y −Xβ̂)
= (ZT R−1Z + G−1)−1(ZT R−1ZGZT + ZT )V −1(Y −Xβ̂)
= (ZT R−1Z + G−1)−1(ZT R−1Z + G−1)GZT V −1(Y −Xβ̂)
= GZT V −1(Y −Xβ̂). (2.24)

This result, together with (2.23), completes the proof for nonsingular G.

Now consider a case where some elements of γ are almost surely linearly
dependent, so that covariance matrix G becomes singular. If rank(G),
denoted here by g, is smaller than the number of random effects r, then
there exists a (normally distributed) random vector γ∗ of length g such,
that γ = Lγ∗ (and G = LG∗LT , where Var(γ∗) = G∗). We can rewrite the
mixed model (2.1) in the following way:

Y = Xβ + Z∗γ∗ + ε, (2.25)

where Z∗ = ZL. There is no problem in writing down BLU predictor for
γ∗ in (2.25), because the covariance matrix G∗ is nonsingular:

γ̂∗ = G∗ZT
∗ V −1(Y −Xβ̂). (2.26)

But if (2.26) is the best linear unbiased predictor for γ∗ then Lγ̂∗ is also the
best linear unbiased predictor for Lγ∗. Hence, BLU predictor for γ = Lγ∗
is

γ̂ = LG∗ZT
∗ V −1(Y −Xβ̂)

= LG∗LT ZT V −1(Y −Xβ̂)
= GZT V −1(Y −Xβ̂).

Therefore, the formula for BLUP (2.13) holds also for a singular G. ¤
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The derivation of BLUE and BLUP assume the variance matrices G and
R (and hence V ) are known. In practical situation this is rarely the case.
One frequently used solution to the problem is to use estimated variance
matrices R̃, G̃ and Ṽ instead of the unknown true variance matrices in
equations (2.9) and (2.13). The estimator of Xβ derived in this way,

Xβ̂EBLUE = X(XT Ṽ −1X)−XT Ṽ −1Y,

is called Estimated Best Linear Unbiased Estimator or EBLUE and the
predictor for γ in the form

γ̂EBLUP = G̃ZT Ṽ −1(Y −Xβ̂EBLUE)

is called Estimated Best Linear Unbiased Predictor or EBLUP. Because
there are more than one possibility to estimate the unknown variance ma-
trices, the EBLUP and EBLUE are relatively wide concepts. The two
most frequently used methods to obtain the estimates of variance matri-
ces are maximum likelihood and restricted maximum likelihood (REML).
Both of these methods require the additional distributional assumption
(2.5). There exist less restrictive methods for estimating G and V to use
in EBLUP and EBLUE. For example one can use ANOVA or Minimum
Norm Quadratic Estimation (MINQE) to obtain plausible estimates for
variance parameters without using the assumption of normality, and use
these estimates to derive EBLUP and EBLUE.

Comment on terminology. The term ”best linear unbiased predictor” was
made popular by Henderson, who started to use it since 1973 to evade
criticism of BLUP (Robinson, 1991). Robinson argues that phrases like
”estimator of random effects” or ”estimate of the realized value” would
be more correct. Even though the author of this thesis fully supports the
arguments of Robinson, in this thesis the more widespread terminology is
used and the estimation of random effects is called prediction of random
effects.

2.3 Inference

The questions related to inference remain outside of the main focus of these
thesis. Still one basic result and a concept are useful as tools for under-
standing and interpreting some of the main results presented. The first
proposition concerns the sampling variability of the predictors/estimators.
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Proposition 2.1. Let U be a particular generalized inverse (XV −1X)−.
The MSE of β̂ = UXT V −1Y and BLU predictor γ̂ of unknown parameters
can be calculated using the following result

Var
[

β̂ − β
γ̂ − γ

]
=

[
D11 D12

D12
T D22

]
,

where

D11 = U ;
D12 = −UXT R−1ZG

1/2(I + G
1/2ZT R−1ZG

1/2)−1G
1/2 ;

D22 = G
1/2(I + G

1/2ZT R−1ZG
1/2)−1G

1/2 −
−DT

12X
T R−1ZG

1/2(I + G
1/2ZT R−1ZG

1/2)−1G
1/2 .

Proof. The proof of a slightly more general result (incorporating also
some cases where V is singular) can be found in Harville (1976). This
particular result has been obtained from the more general case by choosing
the decomposition G = STU , used by Harville, to be following: T = I,
S = G

1/2 , U = G
1/2 ; and by assuming the existence of V −1 and R−1.

The result can be further simplified, as is done in Lemma 5.5. The form
presented here tries to follow the form given by Harville (1976). ¤

Notice that because β̂ is not uniquely determined, also the variance ma-
trix given in Proposition 2.1 is not uniquely determined. However, if one
calculates MSE for a prediction of

l1β + l2γ, (2.27)

where l1β is an estimable (and therefore uniquely determined) linear com-
bination of parameters, then formula given in Proposition 2.1 leads to a
uniquely determined variance for (2.27).

There are no exact formula available for calculating MSE for EBLUE
or EBLUP estimates. As a first approximation one can use the formu-
las for MSE of BLUP/BLUE estimates given in Proposition 2.1 together
with estimated variance/covariance matrices. This approach, which is
known to underestimate the variability of prediction results, is often used
by software to estimate mixed models (for example, PROC MIXED in
SAS). More exact approximations are available, see for example Prasad &
Rao (1990) and Lahiri & Rao (1995). To illustratively compare the accu-
racy of EBLUP/EBLUE and BLUP/BLUE estimators, two simple sample
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designs are considered. Figure 2.1 describes the accuracy of EBLU predic-
tor (obtained using ML estimates of variance components) for a model with
one random factor with two observed levels. On each level there are two
observations available. Figure 2.2 describes also a model with one random
factor, but with ten levels sampled. If there are sampled only a few levels
from a random factor, then the prediction accuracy achieved by including
the factor to the model as a fixed factor can be considerably better than the
accuracy of EBLUP predictions. The prediction accuracy of a random fac-
tor achieved by considering it as a fixed factor is illustrated by the straight
dashed line in both figures.

Several other aspects of inference, like hypothesis testing, are not covered
here. Interested reader is referred to Khuri, Mathew & Sinha (1998) for
more detailed presentation of the topic.
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3. REML Estimation

The REML (REsidual Maximum Likelihood or REstricted Maximum Like-
lihood) method was put on a broad basis by Patterson & Thompson (1971).
Often REML is considered as a method providing the estimates of unknown
variance parameters only. For example, Searle et al (1992) state: ”REML
estimation includes no procedure for estimating fixed effects”. However,
in practice, REML estimates of variance parameters are often used to de-
rive estimates for fixed parameters. In this chapter an overview of REML
methodology is presented. Also a new approach is proposed to look at the
REML estimation of variance and fixed parameters in a unified way.

Majority of leading statistical software packages use REML as default
method of estimating covariance parameters and fixed effects in mixed mod-
els (SAS version 8.2 — procedure MIXED, R version 1.9 — function lme,
S-Plus 2000 — function lme, SPSS version 12.0 — procedure MIXED).

3.1 REML estimation of variance parameters

One way to present the idea of REML estimation is the following. Es-
timate the fixed effects using ordinary least squares estimator (OLSE):
Xβ̂OLSE = PXY = X(XT X)−XY . This estimator does not depend on
unknown variance parameters. One may then calculate the OLSE residu-
als ε̂OLSE = Y − PXY = PX⊥Y . These residuals are normally distributed,
ε̂OLSE ∼ N (0, PX⊥V P T

X⊥). The distribution of OLSE residuals does not
depend any more on unknown fixed effects. Now estimate the unknown
variance parameters by maximizing the likelihood of OLSE residuals. This
is why the method is called REsidual Maximum Likelihood or REML. The
OLSE residuals are linearly dependent, rank(PX⊥) = n− rank(X) = n−k,
and therefore their distribution is singular multinormal distribution. It is
often easier to work with nonsingular variance matrix, therefore tradition-
ally instead of n dependent residuals one often works with n−k independent
residuals, or more generally, with n − k independent linear combinations
of residuals. Let L be a (n − k) × n matrix selecting n − k independent
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residuals (or independent linear combinations of residuals, or error con-
trasts). Then matrix K, K = LPX⊥ , is an (n− k)×n matrix with full row
rank, rank(LPX⊥) = n − k. Hence one may maximize the likelihood (or
log-likelihood) of KY instead of the likelihood of PX⊥Y . This leads to the
most widespread definition of REML — see for example Searle et al (1992),
Verbeke & Molenberghs (2000), Patterson & Thompson (1971). Suppose
that each element of V is a differentiable function of covariance parame-
ters ν1, . . . , νt. Choose unknown covariance parameters to maximize the
log-likelihood

lKY = −1
2
log|2πKV KT | − 1

2
Y T KT (KV KT )−1KY (3.1)

of KY . To maximize lKY , we differentiate (3.1) with respect to ν1, . . . , νt:

∂lKY

∂νi
= −1

2
tr((KV KT )−1K

∂V

∂νi
KT ) (3.2)

−1
2
Y T KT (KV KT )−1K

∂V

∂νi
KT (KV KT )−1KY.

To obtain the REML estimates one has to equate (3.2) to zero and solve
the resulting equations. Sometimes additional restrictions are added to
covariance parameters (for example in variance components models the
estimates of covariance parameters are often required to be positive, νi > 0).
One should notice, that (3.2) depends on the matrix K only via the matrix
KT (KV KT )−1K, because

tr((KV KT )−1K
∂V

∂νi
KT ) = tr(KT (KV KT )−1K

∂V

∂νi
).

But, according to Theorem 1.1,

KT (KV KT )−1K = V −1 − V −1X(XT V −1X)−XT V −1,

which does not depend on the choice of K. Therefore the REML estimates
do not depend on the particular choice of matrix K.

There exists another interpretation of REML. Frequently the main interest
concerns the covariance parameters, not the fixed effects (for example in es-
timating heritability in genetics). One possibility to eliminate the nuisance
parameters (fixed effects) is by conditioning on an appropriate sufficient
statistic. Cox & Reid (1987) have shown using approximate methods that
conditioning on a sufficient statistic for fixed effects leads to REML esti-
mates of variance parameters (parameters of interest). Smyth & Verbyla
(1996) have shown, that the proposed equality is exact.

34



3.2 REML estimation of fixed effects

Some authors consider the REML estimation method as a method pro-
viding the estimates of unknown variance parameters only. For example,
Searle et al (1992) state: ”REML estimation includes no procedure for
estimating fixed effects”. Later the same authors argue, that it seems to
be reasonable to use maximum likelihood estimate of Xβ together with
covariance matrix estimate Ṽ obtained by REML.

Others provide a method to estimate the Xβ in the context of REML, re-
sults of which coincide with the previous suggestion. Patterson and Thomp-
son in their article separate the likelihood of Y into two parts, lY = l1 + l2.
By maximizing the first part l1, which is equivalent to maximization of
(3.1), they obtain the REML estimate Ṽ of V . Then the second part of the
likelihood l2 (which depends on V ) is maximized with respect to β to find
the REML estimates of fixed effects. It is noted that given the covariance
matrix V , maximizing l2 and lY with respect to β will yield equivalent
answers.

In practice the REML estimation of fixed effects tends to work reasonably
well as illustrated in the following example.

Example 3.1. Consider following random effects model:

Y = µ + γi + εij , i = 1 . . . 3, j = 1 . . . ni,

where n1 = 1, n2 = 2, n3 = 10, γi are independent, γi ∼ N (0, σ2
γ), and

εij are independent, εij ∼ N (0, σ2
ε). The parameters for this unbalanced

model can be estimated using both ML or REML. In a simulation study the
relative precision of REML estimator of µ was compared to the precision
of ML estimator. For each value of σγ/σε there were performed 20 000
simulations. Simulation results are presented in Figure 3.1.

It may be noticed that neither REML nor ML are uniformly better with
respect to precision measured by Mean Square Error.

3.3 REML estimation as ML estimation with re-
spect to a misspecified covariance structure

For a covariance structure V one can derive the ML estimates of covariance
and fixed effects parameters. It is also possible to use the REML estimation
methodology described in sections 3.1 and 3.2. In this section a modified
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Figure 3.1: Comparison of precision of REML and ML estimators: estima-
tion of intercept µ.

covariance structure V∗ = V∗(V ) is constructed and some of it’s properties
are described. It is shown that if one uses V∗ instead of V during the esti-
mation of unknown parameters (fixed effects and covariance parameters),
then the ML estimates for V∗ are equal to the REML estimates obtained
using V . In other words, REML estimation methodology can be viewed as
ML estimation with respect to a misspecified covariance structure.

3.3.1 Definition of the covariance structure V∗(V )

In this subsection we construct an alternative covariance structure V∗ =
V∗(V ) for Y . It will be shown in the next subsection, that if one uses this
misspecified covariance structure V∗ to obtain ML estimates for covariance
parameters and fixed effects, then the results are equal to REML estimates
obtained using the true covariance structure V .

Define

V∗ = 1/c ·X(XT UX)−XT + PX⊥,V V P T
X⊥,V , (3.3)
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where U is any symmetric positive definite n× n matrix not depending on
β and the scalar c = c(V ) is defined by formula

c =
( |2πKV KT |
|D∗

1| · |2πV |
)−1/k

, (3.4)

where k = rank(X) and D∗
1 denotes the diagonal matrix of nonzero eigen-

values of matrix A,

A = V −1/2X(XT UX)−XT V −1/2. (3.5)

Remark: the matrix A in (3.5) is non-negative definite (see Proposition
1.11) and, hence, it’s eigenvalues are non-negative. Therefore matrices
KV KT , D∗

1 and V are all symmetric positive definite, and their determi-
nants are hence all greater than 0. Therefore c is correctly defined and
c > 0.

The Definition (3.3) describes a relatively wide class of covariance matrices.
To determine V∗ uniquely, one has to choose some particular value for
matrices U and K.

It may not be obvious, whether the alternative covariance structure pre-
sented in (3.3) is positive definite or not. The following lemma proves that
proposed covariance structure is positive definite indeed.

Lemma 3.1. If V∗ has the form given in (3.3), then V −1∗ exists and

V −1
∗ = c · P T

X,V UPX,V + P T
X⊥,V V −1PX⊥,V . (3.6)

Proof. Define B = c · P T
X,V UPX,V + P T

X⊥,V
V −1PX⊥,V . Then

V∗ ·B = [1/c ·X(XT UX)−XT + PX⊥,V V P T
X⊥,V ]

·[c · P T
X,V UPX,V + P T

X⊥,V V −1PX⊥,V ]

= X(XT UX)−XT P T
X,V UPX,V

+PX⊥,V V P T
X⊥,V P T

X⊥,V V −1PX⊥,V (3.7)

because P T
X⊥,V

P T
X,V = 0 and XT P T

X⊥,V
= 0 (property 1.18).

Using P T
X⊥,V

P T
X⊥,V

= P T
X⊥,V

(property (1.17)) and XT P T
X,V = XT (prop-

erty (1.18)) one may simplify the expression (3.7) further to obtain

V∗ ·B = X(XT UX)−XT UPX,V + PX⊥,V V P T
X⊥,V V −1PX⊥,V . (3.8)
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Notice now that, via (1.15) and (1.18),

X(XT UX)−XT UPX,V = PX,U−1PX,V

= PX,U−1X(XT V −1X)−XT V −1

= X(XT V −1X)−XT V −1

= PX,V ,

which together with property (1.24) yields

(3.8) = PX,V + PX⊥,V V V −1PX⊥,V PX⊥,V

= PX,V + PX⊥,V

= I.

Therefore V∗ ·B = I and hence B = V −1∗ . ¤

The misspecified model for Y can be defined in the following way:

Y ∼ N (Xβ, V∗),

and the log-likelihood for the misspecified model is

l∗ = −1
2

ln(|2πV∗|)− 1
2
(Y −Xβ)T V −1

∗ (Y −Xβ). (3.9)

If the covariance matrix V depends on unknown covariance parameters
ν1, . . . , νt, then the covariance matrix V∗ is also a function of these unknown
parameters.

One can consider some particular choice for matrix U . For example, one
may choose U = V −1. Then matrix A, defined in (3.5), is idempotent and
non-negative definite. Therefore, all it’s non-zero eigenvalues are equal to
one and, hence, |D∗

1| = 1. This leads to a simplified formula for c in (3.4):

c =
( |2πKV KT |

|2πV |
)1/k

and the alternative covariance structure V∗ has the form

V∗ =
( |2πKV KT |

|2πV |
)1/k

PX,V V + PX⊥,V V (3.10)

and

V −1
∗ =

( |2πKV KT |
|2πV |

)−1/k

P T
X,V V −1 + P T

X⊥,V V −1. (3.11)
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Example 3.2. Consider n independent normally distributed random vari-
ables with common mean,

Y ∼ N (1µ, Iσ2),

where 1 denotes a column of ones. We construct a matrix V∗(V ) for this
particular example, using U = V −1 and taking K equal to first n− 1 rows
from the matrix κ1/(2n−2)PX⊥,V , where κ is any strictly positive constant.
Then

c =
κ

2πσ2n
(3.12)

and V∗(V ) has the form of

V∗(V ) =
(

I − 1
n

J

)
σ2 +

κ

2πn2
J, (3.13)

where J denotes an n × n matrix of ones. By choosing κ = 2πn2 we can
further simplify Equation 3.13 to derive

V∗(V ) =
(

I − 1
n

J

)
σ2 + J.

3.3.2 Derivation of ML estimates using covariance structure
V∗(V )

First we prove a technical lemma.

Lemma 3.2. For V∗ defined in (3.3) the following equality holds:

|2πV∗| = |2πKV KT |.

Proof. On can express V∗ in the following way:

V∗ = V
1/2V

−1/2

[
1/c ·X(XT UX)−XT + PX⊥,V V P T

X⊥,V

]
V
−1/2V

1/2

= V
1/2 [1/c · V −1/2X(XT UX)−XT V

−1/2

+V
−1/2PX⊥,V V P T

X⊥,V V
−1/2 ]V

1/2

= V
1/2 [1/c ·A + B]V

1/2 ,

where
A = V −1/2X(XT UX)−XT V −1/2
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and

B = V
−1/2PX⊥,V V P T

X⊥,V V
−1/2

= I − V −1/2X((V −1/2X)T V −1/2X)−(V −1/2X)T .

Matrices A and B are symmetric and they commute because of AB = 0 and
BA = 0. Hence they are simultaneously diagonalizable by an orthogonal
matrix O (Proposition 1.22):

OAOT = D1 and OBOT = D2,

where D1 and D2 are diagonal matrices of the eigenvalues of A and B,
correspondingly. This result can be rewritten in the following form:

A = OT D1O and B = OT D2O.

Therefore, it follows from AB = 0 that D1D2 = 0.

Because A and B are simultaneously diagonalizable by orthogonal matrix
O, the following equality holds:

|V∗| = |V 1/2 [1/c ·A + B] V 1/2|
= |V ||OT [1/c ·D1 + D2]O|
= |V ||1/c ·D1 + D2|,

because the determinant of an orthogonal matrix is ±1.

The rank of matrix A equals to the rank of X:

rank(A) = rank(V −1/2X(XT UX)−XT V −1/2)
(1.1)
= rank(X(XT UX)−XT )

(1.1)
= rank(X(XT UX)−XT U)

(1.19)
= rank(X) = k

and the rank of matrix B is n− k:

rank(I −A) = rank
(
I − (V −1/2X)

[
XT V −1X

]−
(V −1/2X)T

)

(1.20)
= n− rank(V −1/2X)

(1.1)
= n− rank(X).
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Therefore, matrix A has k and matrix B has n − k nonzero (positive)
eigenvalues. From D1D2 = 0 one can conclude, that these nonzero ele-
ments occupy different positions on the diagonal and hence |D1 + D2| can
be calculated as a product of nonzero eigenvalues of matrices A and B.
Because matrix B is idempotent, it’s eigenvalues are either 0 or 1, and the
product of nonzero eigenvalues of matrices A and B is therefore equal to
the product of nonzero eigenvalues of matrix A.

After denoting with D∗
1 a diagonal matrix of the nonzero eigenvalues of

matrix A, we have

|2πV∗| = |c−1D∗
1| · |2πV |

= c−k|D∗
1||2πV |. (3.14)

After substituting the value of c,

c =
( |2πKV KT |
|D∗

1| · |2πV |
)−1/k

,

(3.14) can be written as

|2πV∗| =
|2πKV KT |
|D∗

1| · |2πV | |D
∗
1||2πV |

= |2πKV KT |,

which completes the proof. ¤

Theorem 3.1. The ML estimates of covariance and fixed effects parame-
ters obtained using misspecified model Y ∼ N (Xβ, V∗), where V∗ is given in
(3.3), are equal to the REML estimates for the true model Y ∼ N (Xβ, V ).

Proof. If l∗ is the log-likelihood for the misspecified model (3.9), then

2l∗ = − ln(|2πV∗|)− (Y −Xβ)T V −1
∗ (Y −Xβ)

(3.6)
= − ln(|2πV∗|)− c(Y −Xβ)T P T

X,V UPX,V (Y −Xβ)

−(Y −Xβ)T P T
X⊥,V V −1PX⊥,V (Y −Xβ)

(1.18)
= − ln(|2πV∗|)
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− (
c(PX,V Y −Xβ)T U(PX,V Y −Xβ) + (PX⊥,V Y )T V −1(PX⊥,V Y )

)

= − ln(|2πKV KT |)−
− (

c(PX,V Y −Xβ)T U(PX,V Y −Xβ) + KT (KV KT )−1K
)
.

Last equality follows from Lemma 3.2 and (1.27). Clearly, the likelihood
can be maximized with respect to β by choosing Xβ̂ = PX,V Y what is
equivalent to choosing a generally non-uniquely determined β̂ of the form

β̂ = (XT V −1X)−XT V −1Y.

After the maximization with respect to β one has to maximize the likelihood
with respect to the covariance parameters, but the function to maximize is
equal to the likelihood of KY used by REML to estimate the covariance
parameters (see Equation 3.1). Hence, also the estimates of covariance
parameters will coincide with those obtained by REML. ¤
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4. Reparameterisation of Fixed and Random
Effects

Identifiability problems for fixed effects have been under great attention.
The overview of the developments in the area, given in Section 4.1, is mainly
based on Scheffe (1959) and Searle (1971). Interested reader is referred to
these sources for in-depth coverage of the topic. Problems related to repa-
rameterisation of random effects have largely remained neglected. Some
results on reparameterisation of random effects are given in Möls (2004).
These results, together with added details, are presented in Section 4.2.

4.1 Estimable functions and Reparameterisation
Constraints for Fixed Effects

The BLU estimator for fixed effects,

β̂ = (XT V −1X)−XT V −1Y,

is not uniquely determined if matrix X is not of full column rank. Namely,
if X is not of full column rank, then there exist infinity many different
generalized inverses of matrix XT V −1X leading to different estimates of
β. Two strategies are commonly used to cope with the problem of iden-
tifiability. One approach is to restrict the interest to estimable parameter
functions only.

Definition 4.1. The estimable parameter function is a linear combination
of fixed effects which can be expressed as kXβ, where k is row-vector of
length n.

Even though β̂ may not be uniquely determined, the functions of the form
Xβ̂ are unique because the value of X(XT V −1X)−XT does not depend on
the choice of generalized inverse (see Proposition 1.7).

Another commonly used solution of the parameter identifiability problem is
to use additional restrictions to determine uniquely the parameter values.
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These restrictions are sometimes called usual constraints or reparameteri-
sation constraints. For example, for one-way ANOVA model

Yij = µ + αi + εij , i = 1 . . . m, j = 1 . . . ni

the two most frequently used reparameterisation constraints are
∑

αi = 0
and αm = 0.

Not all possible constraints are valid reparameterisation constraints. A
constraint in the form of Lβ̂ = 0, where L is some row-vector, is reparam-
eterisation constraint if and only if it is non-estimable function of param-
eters. To determine uniquely fixed effects parameter estimates one needs
p− k additional linearly independent constraints, where p is the number of
fixed effects’ parameters and k = rank(X), e.g. the matrix H has to have
n − k linearly independent rows, and each row has to be a non-estimable
function of parameters. These requirements are rephrased in the following
proposition.

Proposition 4.1. Suppose that X is n×p matrix and H is t×p, rank(X) =
k. Then the system

XT V −1Xβ = XT V −1Y

Hβ = 0

has a unique solution for any value of Y if and only if the following condi-
tions hold

rank(X) + rank(H) = rank
(

X
H

)

rank(X) + rank(H) = p.

In the following part of the chapter we show that similar conditions are
required to determine the EBLU predictor uniquely.

4.2 Reparameterisation Constraints for Random
Effects

To derive unique estimates for fixed effects one had to use additional ”usual
constraints” as described in the previous section. Random effects are often
(mistakenly) considered to be free of such indeterminacy problems. The
BLU predictor of γ,

γ̂(R,G) = GZT V −1(Y −Xβ̂), (4.1)
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where V = ZGZT + R, is a straightforward uniquely determined function
of Y . The BLU predictors certainly follow some rules. For each random
effects factor the sum of the BLUP’s of it’s effects is zero as stated by Searle
(1997b); McLean, Sanders & Stroup (1991). These restrictions are the
consequence of the BLU prediction process as clearly described by Searle
(1997b): ”These restrictions are a consequence of the very form of BLUP;
they are not a consequence of any definitional restrictions such as

∑
αi = 0

often seen as part of the model equation Yij = µ + αi + εij for the one-way
classification.”

However, situation can change radically, if one does not know exactly the
dispersion matrices G and V . If one has to estimate the variance matrices,
then additional restrictions are required to determine uniquely the EBLU
predictor

γ̂(R̂, Ĝ) = ĜZT V̂ −1(Y −Xβ̂(V̂ )),

as will be seen in this chapter. It will be shown that these required ad-
ditional restrictions may be stated exactly the same way as in classical
restrictions for fixed effects.

For fixed effects estimable parameter functions are of special importance.
For random effects it will be also shown, in this section, that predictors for
linear combinations depending on random effects only as functions of Zγ
can be uniquely determined for wide class of problems where G (and γ)
cannot be determined uniquely.

4.2.1 Existence of a model with constrained random factors

First imagine two separate mixed models which differ from each other only
by having different covariance matrices for γ. For Model 1 (reference model)
Var(γ) = G and for Model 2 (alternative model) Var(γ) = G∗. The first
theorem proves the existence of such alternative model for which BLU pre-
dictors satisfy ”reparameterisation constraints” in the form Hγ̂ = 0 and
for which the BLU predictors for linear combinations of Zγ (”predictable
linear combinations”) would be the same as for the reference model.

Theorem 4.1. Let H be a matrix for which the equality

rank
(

Z
H

)
= rank(Z) + rank(H) (4.2)

holds. Then there exists a matrix G∗ such, that

Hγ̂(R, G∗) = 0,

45



Zγ̂(R,G∗) = Zγ̂(R,G),

where γ̂(R,G) is the BLU predictor as defined in Equation 4.1.

Proof. From (4.2) and Proposition 1.6 there follows existence of a sym-
metric positive definite matrix A such that

HAZT = 0.

Using matrix A, define a projector matrix PZT ,A projecting onto column
space of ZT :

P T
ZT ,A = AZT (ZAZT )−Z.

Obviously
HP T

ZT ,A = HAZT (ZAZT )−Z = 0,

and from (1.18) it follows that

ZP T
ZT ,A = (PZT ,AZT )T = (ZT )T = Z.

As the final step, define matrix G∗ as the following covariance matrix:

G∗ = Var(P T
ZT ,Aγ) = P T

ZT ,AGPZT ,A. (4.3)

Then
ZG∗ZT = ZP T

ZT ,AG(ZP T
ZT ,A)T = ZGZT

and, hence,
V (G∗) = ZG∗ZT + R = ZGZT + R = V.

If V (G∗) = V then also β̂(V (G∗)) = β̂(V ), and

Zγ̂(R, G∗) = ZG∗ZT V −1(Y −Xβ̂(V (G∗)))
= ZGZT V −1(Y −Xβ̂(V ))
= Zγ̂(R, G).

Vector γ̂(R, G∗) of predicted random effects satisfies condition Hγ̂(R,G∗) =
0 because of HP T

ZT ,A
= 0:

Hγ̂(R,G∗) = HG∗V (G∗)−(Y −Xβ̂(V (G∗))
(4.3)
= HP T

ZT ,AGPZT ,AV (G∗)−(Y −Xβ̂(V (G∗))
= 0.

¤
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4.2.2 Identifiability of random effects

Consider the likelihood function for normally distributed Y ,

L(G|Y ) = |2π(R+ZGZT )|− 1/2 exp(−1
2
(Y −Xβ)T (R+ZGZT )−1(Y −Xβ)).

Replacing G with some other covariance matrix may change the likelihood
function, but does not have to. Let us consider a class of covariance matrices
G(G) which all lead to the same likelihood function (for any possible value
of Y ):

G(G) = {Gi : L(G|Y ) = L(Gi|Y ) | for all Y} .

The set G(G) consists of covariance matrices which are in the equally good
agreement with observed data and, hence, can not be preferred one over
another on the basis of observed data alone. Note, that the matrix G∗

defined in (4.3) also belongs to this set, G∗ ∈ G(G).

Two covariance matrices G1, G2 ∈ G(G) may lead to different predictors for
γ. However, if G1, G2 ∈ G(G) then Zγ̂(R, G1) = Zγ̂(R, G2), as is proved
in the following lemma.

Lemma 4.1. If G1, G2 ∈ G(G) then Zγ̂(R, G1) = Zγ̂(R, G2).

Proof. Instead of the likelihood function, it is easier to work with log-
likelihood function

l(G|Y ) = ln(L(G|Y ))

= ln(|2πV |−1/2)− 1
2
(Y −Xβ)T V −1(Y −Xβ). (4.4)

where V (G) = R + ZGZT . If G1, G2 ∈ G(G) then l(G1|Y ) = l(G2|Y ) for
any value of Y . Choosing Y = Xβ one gets the equality

ln(|2πV (G1)|−1/2) = ln(|2πV (G2)|−1/2), (4.5)

where V (G1) = R + ZG1Z
T and V (G2) = R + ZG2Z

T . Choosing Y =
Xβ + v and using (4.5) it follows from the equality of likelihood functions
that

vT V (G1)−1v = vT V (G2)−1v. (4.6)

The equation
vT (V (G1)−1 − V (G2)−1)v = 0 (4.7)
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holds for any value of v. In addition the matrix V (G1)−1 − V (G2)−1 is
symmetric. Consequently

V (G1)−1 = V (G2)−1. (4.8)

Due to (4.8) also Xβ̂(V (G1)) = Xβ̂(V (G2)). Because of

Zγ̂(R,G1) = ZG1Z
T V (G1)−1(Y −Xβ̂(V (G1)))

and ZG1Z
T = V (G1)−R, it follows that

Zγ̂(R, G1) = (Y −Xβ̂(V (G1)))−RV (G1)−1(Y −Xβ̂(V (G1)))
= (Y −Xβ̂(V (G2)))−RV (G2)−1(Y −Xβ̂(V (G2)))
= Zγ̂(R, G2),

which proves the lemma. ¤

Theorem 4.2. Let n×k matrix Z and v×k matrix H satisfy the condition

rank
(

Z
H

)
= rank(Z) + rank(H) = k.

Then the condition Hγ̂ = 0 determines uniquely the predictor of γ within
the set of covariance matrices G(G).

Proof. It follows from Theorem 4.1 that there exists a matrix G∗ ∈ G(G)
such that the condition Hγ̂(R, G∗) = 0 holds. Let two matrices G1, G2 ∈
G(G) satisfy the condition Hγ̂(R, G1) = Hγ̂(R,G2) = 0. Then one may
write [

Z
H

]
γ̂(R,G1) =

[
Z
H

]
γ̂(R, G2). (4.9)

Because the rank of (n + v)× k matrix
[

Z
H

]
is k, it is a full column rank

matrix and therefore the inverse of the matrix
[

Z
H

]T [
Z
H

]
exists. It is

sufficient to multiply the equation (4.9) from the left with the matrix
[[

Z
H

]T [
Z
H

]]−1 [
Z
H

]T

to get the conclusion
γ̂(R,G1) = γ̂(R, G2).

which proves the uniqueness. ¤
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4.2.3 Discussion

For fixed effects it is well known that if the matrix X is not of full column
rank, then one needs to apply additional constraints to define the unknown
parameters β uniquely. These constraints can be represented in the form
Hβ = 0, where

rank
(

X
H

)
= rank(X) + rank(H).

The validity of these constraints on observed data cannot be assessed using
the observed data. Different constraints will lead to different, but equivalent
parameterisations of the linear model. Nevertheless linear combinations of
the parameters in the form Xβ will remain equal for all parameterisations.

It was shown in this chapter, that based on the observed data, one cannot
identify exactly the covariance matrix G = Var(γ), if the matrix G does not
have full column rank. Unidentifiability of G causes also the unidentifiabil-
ity of γ. To determine γ uniquely one has to imply some assumptions that
can not be tested. These assumptions may be presented as assumptions on
the structure of G but they may also be represented in the form Hγ = 0,
where ranks satisfy (4.9).

The restrictions Hγ = 0 are preferable since they are less restrictive –
namely there exist several covariance matrices G yielding exactly the same
predictors γ̂. Choosing an exact form for the covariance matrix among
those covariance matrices (structures) yielding identical prediction results
may be unnecessary in practical applications.

As in the case of fixed effects, the correctness of implied restrictions cannot
be assessed using only the observed data.

There are some aspects of Theorem 4.1 which should be mentioned. First,
one can consider matrices G and R as some functions of unknown param-
eters ν1, . . . , νk. Then the matrix functions

V = ZG(ν1, . . . , νk)ZT + R(ν1, . . . , νk)

and
V (G∗) = ZG∗(ν1, . . . , νk)ZT + R(ν1, . . . , νk),

where
G∗(ν1, . . . , νk) = P T

ZT ,AG(ν1, . . . , νk)PZT ,A, (4.10)

are equal. Therefore, replacing G with G∗ does not change any function
which depends on G via the covariance matrix V only. For example, if Y
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is normally distributed, then the likelihood function of Y depends on the
covariance parameters via the matrix function of V only. Hence, the like-
lihood function does not change if one replaces G with G∗. In situations
where the covariance parameters are unknown and one uses the likelihood
function to derive the ML estimates of covariance parameters, the esti-
mates remain unaffected if one uses G∗ instead of G, because the likelihood
function does not change.

Under REML, one maximizes the likelihood of a linearly transformed vec-
tor KY instead of the likelihood of Y . But the likelihood of transformed
vector KY depends on G only via the matrix V (see for example Section
4.1). Hence, replacing G with G∗ does not affect the estimates of covari-
ance parameters (if Y is normally distributed and one uses REML or ML
method). Therefore, for normally distributed data and matrices G and G∗

related by (4.10) the EBLU (estimated BLU) estimators will be equal:

Xβ̂(V̂ ) = Xβ̂(V̂ (Ĝ∗)),

and EBLU (estimated BLU) predictors will also be equal

Zγ̂(R̂, Ĝ) = Zγ̂(R̂, Ĝ∗).

It is worth to note here that the derivation of G∗ is not necessarily unique,
because there may exist more than one matrix A satisfying the key condi-
tion HAZT = 0.
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5. Covariance Matrix Classes preserving
prediction results

5.1 Introduction

In Linear Mixed Models theory one is assumed to know the structure of ran-
dom effects’ covariance matrix. It is not always an easy task to determine
the correct covariance matrix or correct covariance structure. Even in some
relatively simple situations different authors can give contradictory sugges-
tions. Consider, as an example, interactions between a random factor and
a fixed factor. Some authors, like Searle (1971), and SAS software (SAS,
1999) use unconstrained parameter model, suggesting that these interac-
tion terms should be treated as independent random variables. Others,
like Sheffe (1959) and Neter, Wasserman & Kutner (1990) suggest that the
interaction terms should be restricted to sum zero over the levels of fixed
factor. These two approaches lead to quite different structures for G, if the
mixed model considered contains these type of interactions. The problem
has been recently addressed by Voss (1999); Wolfinger & Stroup (2000);
Hinkelmann (2000).

When treating complex practical situations it is often even harder to choose
a correct covariance structure. Therefore, it may be of interest to know,
which different covariance structures can lead to the same answers. This
question is considered in great detail for estimating fixed effects. For ex-
ample Puntanen & Styan (1989) give an impressive list of conditions when
Ordinary Least Squares Estimator — OLSE — is equal to the BLUE.
Harville (1997) gives a condition when two different covariance (weight)
matrices lead to the same estimators for fixed effects. However, question
when two different covariance structures lead to the same prediction re-
sults for linear combinations involving both random and fixed effects has
remained unanswered. In this chapter we intend to shed some light to this
particular problem.
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In the following we consider two mixed models differing from each other
only by having different variance matrices:

V1 = R1 + ZG1Z
T and V2 = R2 + ZG2Z

T .

The main purpose of this chapter is to understand the conditions under
which these two different models lead to identical prediction (and estima-
tion) results. The derivation and presentation of the results follows largely
the idea used by author in Möls (2003).

5.2 Derivation

First we need three intermediate results, which are presented in the follow-
ing lemmas.

Lemma 5.1. The estimators

β̂(V1) = (XT V1
−1X)−1XT V1

−1Y

β̂(V2) = (XT V2
−1X)−1XT V2

−1Y

are equal if and only if

C(V −1
1 X) = C(V −1

2 X).

Proof. See Harville (1997), page 265–266. ¤

Lemma 5.2. C(V1 − V2) ⊂ C(X) ⇒ C(V −1
1 X) = C(V −1

2 X).

Proof.

C(V1 − V2) ⊂ C(X) ⇔ ∃M V1 − V2 = XM

⇔ ∃M I − V −1
1 V2 = V −1

1 XM

⇔ ∃M V −1
2 − V −1

1 = V −1
1 XMV −1

2

⇒ ∃M V −1
2 X − V −1

1 X = V −1
1 XMV −1

2 X

⇔ ∃M V −1
2 X = V −1

1 X(I + MV −1
2 X)

⇔ C(V −1
2 X) ⊂ C(V −1

1 X).

Using similar reasoning one can also prove that C(V −1
1 X) ⊂ C(V −1

2 X) and,
hence,

C(V −1
2 X) = C(V −1

1 X).

¤
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Lemma 5.3. C(V2 − V1) ⊂ C(X) ⇔ C(V −1
1 − V −1

2 ) ⊂ C(V −1
1 X).

Proof.

C(V2 − V1) ⊂ C(X) ⇔ ∃M1 : V2 − V1 = XM1

⇔ ∃M1 : I − V1V
−1
2 = XM1V

−1
2

⇔ ∃M1 : V −1
1 − V −1

2 = V −1
1 XM1V

−1
2

⇔ C(V −1
1 − V −1

2 ) ⊂ C(V −1
1 X).

¤

Now we are sufficiently equipped with technical results to prove a major
theorem concerning predictors of random effects.

Theorem 5.1. If
C(Z(G1 −G2)ZT ) ⊂ C(X) (5.1)

and
C(R1 −R2) ⊂ C(X), (5.2)

then predictors

Zγ̂(V1) = ZG1Z
T V −1

1 (Y −Xβ̂(V1))

and
Zγ̂(V2) = ZG2Z

T V −1
2 (Y −Xβ̂(V2))

are equal.

Proof. The difference V1 − V2 equals

V1 − V2 = Z(G1 −G2)ZT + (R1 −R2).

From (5.1) and (5.2) follows C(V1−V2) ⊂ C(X). Hence, the requirements of
Lemma 5.2 are satisfied and therefore the equality C(V −1

1 X) = C(V −1
2 X)

holds. This allows us to apply Lemma 5.1 to derive

Xβ̂(V1) = Xβ̂(V2).

The common estimator for Xβ will be denoted by Xβ̂.

From C(V1−V2) ⊂ C(X) and Lemma 5.3 follows C(V −1
1 −V −1

2 ) ⊂ C(V −1
1 X)

and, hence, there exists a matrix M for which

V −1
1 − V −1

2 = V −1
1 XM (5.3)
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holds. Because V −1
1 and V −1

2 are symmetric, their difference is also sym-
metric and therefore (5.3) is equivalent to

V −1
1 − V −1

2 = MT XT V −1
1

or, equivalently,
V −1

2 = V −1
1 −MT XT V −1

1 . (5.4)

Now consider the difference

Zγ̂(V1)− Zγ̂(V2) =
= (ZG1Z

T V −1
1 − ZG2Z

T V −1
2 )(Y −Xβ̂)

(5.4)
= (ZG1Z

T V −1
1 − ZG2Z

T V −1
1 + ZG2Z

T MT XT V −1
1 )(Y −Xβ̂)

= (Z(G1 −G2)ZT V −1
1 + ZG2Z

T MT XT V −1
1 )(Y −Xβ̂). (5.5)

From (5.1) follows the existence of a matrix M2 satisfying

Z(G1 −G2)ZT = XM2.

Because G1 and G2 are symmetric

Z(G1 −G2)ZT = MT
2 XT .

Therefore we can write (5.5) as

Zγ̂(V1)− Zγ̂(V2) =
= (MT

2 XT V −1
1 + ZG2Z

T MT XT V −1
1 )(Y −Xβ̂)

= M3X
T V −1

1 (Y −Xβ̂) (5.6)

where M3 = MT
2 + ZG2Z

T MT . But Y −Xβ̂ = PX⊥,V1
Y and from Propo-

sition 1.25 follows
XT V −1

1 PX⊥,V1
= 0.

Hence, (5.6) is also zero and Zγ̂(V1) = Zγ̂(V2). ¤

Note that if R1 = R2 then also (5.2) holds.
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5.3 Examples

Example 5.1. Consider a model where column of 1’s belongs to the sub-
space C(X), for example a model with intercept included. Denote with τ
random variables corresponding to a random factor and with ω the remain-
ing random effects parameters, which are supposed to be independent of τ ,
ω⊥τ . Then the choices of Var(τ) = Iσ2

τ and Var(τ) = (I − 1
kJ)σ2

τ , where k
is the length of τ (number of factor levels), will lead to identical estimation
and prediction results for predictable linear combinations of parameters.

This follows from the next argument. The random effects covariance ma-
trices for the two models considered are

G1 = Var
[

τ
ω

]
=

[
Iσ2

τ 0
0 D

]

and

G2 = Var
[

τ
ω

]
=

[
(I − 1

kJ)σ2
τ 0

0 D

]
.

The design matrix of random effects can also be separated into two parts
corresponding to τ and ω : Z = (Zτ |Zω). We will assume here the design
matrix Zτ to have exactly one 1 in every row (the position of the 1 indicates
the factor level). Then

Z(G1 −G2)ZT = (Zτ |Zω)
[

1
kJk×kσ

2
τ 0

0 0

]
(Zτ |Zω)T

=
1
k
Jn×nσ2

τ .

Because column of 1’s belongs to the subspace C(X) and R1 = R2, the
equality of estimated fixed effects parameters and predicted random effects
follows from Theorem 5.1.

Remark. If cov(τ, ω) 6= 0 then Var(τ) = Iσ2
τ and Var(τ) = (I − 1

kJ)σ2
τ will

still lead to the same result as long as matrices G1 and G2 remain valid
covariance matrices, e.g. they are non-negative definite.

Example 5.2. Let random factor – fixed factor interaction terms ξ =
(ξ1, . . . , ξk′)T correspond to the fixed factor level represented in the design
matrix with column Xc. Denote by Zξ the columns from design matrix Z
corresponding to ξ, so that Z = [Zξ| · · ·]. One can change the part of G
corresponding to τβ from Iσ2

ξ to (I− 1
k′J)σ2

ξ without affecting the estimated
and predicted parameter values, eg matrices

G1 = Var
[

ξ
· · ·

]
=

[
Iσ2

ξ 0
0 D∗

]
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and

G2 = Var
[

ξ
· · ·

]
=

[
(I − 1

k′Jk′×k′)σ2
ξ 0

0 D∗

]

lead to equal predictions (in the sense Zγ̂(G1) = Zγ̂(G2)) and estimations.
One may notice that this change of covariance matrix restricts interaction
terms to sum zero over the particular fixed factor level (with probability
1).

Similar to the discussion of the previous example we have now the following
argument. Consider typical model parameterisation. Then matrix Zξ con-
tain rows with one 1 or rows filled entirely by zeros. The rows containing
ones correspond to the rows of Xc containing 1. Therefore

Z(G1 −G2)ZT = [Zξ| · · ·]
[

1
k′Jk′×k′σ

2
ξ 0

0 0

]
[Zτβ | · · ·]T

=
1
k′

σ2
ξZξJk′×k′Z

T
ξ =

1
k′

Xcσ
2
ξ .

Thus the assumptions of Theorem 5.1 are satisfied and, consequently, the
estimated and predicted parameters for both models are equal (in the sense
Xβ̂(G1) = Xβ̂(G2) and Zγ̂(G1) = Zγ̂(G2)).

Repeating the procedure for all levels of fixed effect we can conclude, that
the predictions of linear combinations of model parameters in the form
l1Xβ̂ + l2Zγ̂ will remain the same regardless wether one constrains the
fixed effect – random effect interaction terms to sum zero over fixed factor
levels or not.

5.4 Comparison of covariance parameter esti-
mates

Usually the covariance matrices R and G are not known, but have to be es-
timated from data. Here we restrict ourselves to the case, where covariance
structure can be presented as a linear matrix function of unknown (covari-
ance) parameters. A useful result will be given in the following lemma.

Lemma 5.4. Let two mixed models differ only by their covariance struc-
ture. Assume these two alternative covariance structures V and V ∗ can be
decomposed as

V = V1σ
2
1 + V2σ

2
2 + . . . + Vtσ

2
t ,

V ∗ = V ∗
1 σ2

1 + V ∗
2 σ2

2 + . . . + V ∗
t σ2

t .
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If

C(V1 − V ∗
1 ) ⊂ C(X), C(V2 − V ∗

2 ) ⊂ C(X), . . . , C(Vt − V ∗
t ) ⊂ C(X) (5.7)

and covariance parameters σ2
1, σ

2
2, . . . , σ

2
t can be uniquely estimated with

REML for at least one model, then the REML estimates σ̂2
1, σ̂

2
2, . . . , σ̂

2
t of

covariance parameters from both models are equal given the same observed
data vector Y .

Proof. The REML estimation method maximizes the likelihood of trans-
formed data vector KY , where KX = 0 (see Chapter 3 for details). If the
estimation in based on the covariance structure V , then REML assumes
the distribution of KY to be

KY ∼ N (0,KV KT ).

From (5.7) follows the existence of matrices M1,M2, . . . , Mt such that

V1 = V ∗
1 −XM1, . . . , Vt = V ∗

t −XMt.

Therefore, KV KT can be written as

KV KT = K(V1σ
2
1 + . . . + Vtσ

2
t )K

T

= K(V ∗
1 σ2

1 −XM1σ
2
1 + . . . + V ∗

t σ2
t −XMtσ

2
t )K

T

= K(V ∗
1 σ2

1 + . . . + V ∗
t σ2

t )K
T −K(XM1σ

2
1 −XMtσ

2
t )K

T

= KV ∗KT − 0.

Hence, the likelihood maximized by REML, is the same regardless which
covariance structure, V or V ∗, one uses. Therefore covariance parameter
estimates obtained by REML are equal as long as the likelihood function
has unique maximum. ¤

It may be worth to note that if the assumptions of Lemma 5.4 are satisfied,
then also the assumptions of Theorem 5.1 are satisfied.

However, maximum likelihood estimates of covariance parameters obtained
using V and V ∗ may differ from each other considerably, as can be seen in
the following small simulation study.

5.4.1 Simulation results

To investigate the effect of changing structure of the assumed (working)
covariance matrix, a simulation study was carried out. 10000 datasets were
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Table 5.1: Simulation results (σ2
γ = 9, σ2

ε = 1).

Form of G Method E(MSE) Eσ̂2
ε Eσ̂2

γ

Iσ2
γ ML 0.892 ± 0.002 0.999 ± 0.002 7.24 ± 0.05

(I − 1
5J)σ2

γ ML 0.890 ± 0.002 0.975 ± 0.002 9.08 ± 0.07
Iσ2

γ REML 0.890 ± 0.002 0.999 ± 0.002 9.07 ± 0.07
(I − 1

5J)σ2
γ REML 0.890 ± 0.002 0.999 ± 0.002 9.07 ± 0.07

generated using a model with intercept and one random factor γ with 5
levels drawn from normal distribution, G = σ2

γI5, σ
2
γ = 9. On each random

factor level, 5 repetitions were generated, R = σ2
εI25, σ

2
ε = 1.

Datasets were analyzed using both ML and REML estimation methods.
For each method, G was considered in two forms: Iσ2

γ and (I − 1
5J)σ2

γ .
Simulations were performed with SAS version 8.

One may notice that the REML estimates are equal for the two forms for
G (as they should in the light of Lemma 5.4), but the maximum likelihood
estimates are different.

5.5 Sampling variability of estimates and predic-
tions

Consider two mixed models, which differ only by their random effects’ co-
variance matrices G1 and G2. We show, that if these two covariance ma-
trices G1 and G2 satisfy the condition C(Z(G1 − G2)ZT ) ⊂ C(X), then
for a relatively wide class of linear combinations of model parameters the
sampling variability will remain the same. First we prove some preliminary
results.

Lemma 5.5. The MSE of combined vector ((Xβ̂ − Xβ)T , (Zγ̂ − Zγ)T )T

is

Var
[

Xβ̂ −Xβ
Zγ̂ − Zγ

]
=

[
D∗

11 D∗
12

D∗
12

T D∗
22

]
,

where

D∗
11 = X(XT V −1X)−XT ;

D∗
12 = −X(XT V −1X)−XT V −1ZGZT ;

D∗
22 = ZGZT V −1R− (D∗

12)
T V −1ZGZT .
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Proof. Notice, that this result resembles closely the form of MSE of com-
bined parameter vector given in standard textbooks, like Searle et al (1992).
The main difference is, that the proofs leading to those, similar results as-
sume the matrix G to be nonsingular. However, most steps can be easily
repeated even if G is singular. Our proof will be based on the results of
Harville (1976), which do not make such an assumption. The results of
Harville are rewritten using the notation of these thesis in Proposition 2.1.
Notice first that the equality

V −1 = R−1 −R−1ZG
1/2(I + G

1/2ZT R−1ZG
1/2)−1G

1/2ZT R−1 (5.8)

holds. The formula (5.8) can be easily proven by multiplying the right hand
side by (R+ZGZT ). A more general result of this kind, extending (5.8) to
the case of singular V and R is also given by Harville (1976). Multiplying
(5.8) by GZT gives us

GZT V −1 = GZT R−1− (5.9)

−G
1/2G

1/2ZT R−1ZG
1/2(I + G

1/2ZT R−1ZG
1/2)−1G

1/2ZT R−1.

After adding and subtracting G
1/2(I +G

1/2ZT R−1ZG
1/2)−1G

1/2ZT R−1 to
(5.9) we get

GZT V −1 = GZT R−1

−G
1/2(I + G

1/2ZT R−1ZG
1/2)(I + G

1/2ZT R−1ZG
1/2)−1G

1/2ZT R−1

+G
1/2(I + G

1/2ZT R−1ZG
1/2)−1G

1/2ZT R−1

= GZT R−1 −GZT R−1 + G
1/2(I + G

1/2ZT R−1ZG
1/2)−1G

1/2ZT R−1

= G
1/2(I + G

1/2ZT R−1ZG
1/2)−1G

1/2ZT R−1. (5.10)

Equality (5.10), together with Proposition 2.1, yields the desired result. ¤

Definition 5.1. We say that linear combination of fixed and random effects
is robustly predictable if it can be expressed in the form l(Xβ+Zγ) for some
vector l.

Lemma 5.6. The MSE of robustly predictable linear combination is

Var(l(Xβ̂ + Zγ̂)− l(Xβ + Zγ)) =
l(PX,V R + ZGZT V −1PX⊥,V R)lT . (5.11)
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Proof.

Var(Xβ̂ + Zγ̂ −Xβ − Zγ)

= Var
(

[X|Z ]
[

β̂ − β
γ̂ − γ

])

Lemma 5.5= X(XT V −1X)−1XT −
−X(XT V −1X)−XT V −1ZGZT −
−ZGZT V −1X(XT V −1X)−XT + ZGZT V −1R +
+ZGZT V −1X(XT V −1X)−XT V −1ZGZT . (5.12)

But

X(XT V −1X)−1XT −X(XT V −1X)−1XT V −1ZGZT

= X(XT V −1X)−1XT (I − V −1ZGZT )
= X(XT V −1X)−1XT (I − V −1ZGZT − V −1R + V −1R)
= X(XT V −1X)−1XT (I − V −1(R + ZGZT ) + V −1R)
= X(XT V −1X)−1XT V −1R

and, hence, (5.12) is equal to

Var(l(Xβ̂ + Zγ̂)− l(Xβ + Zγ)) =
= X(XT V −1X)−1XT V −1R−

−ZGZT V −1X(XT V −1X)−1XT V −1R + ZGZT V −1R

= X(XT V −1X)−1XT V −1R +
+ZGZT V −1(I −X(XT V −1X)−1XT V −1)R

= PX,V R + ZGZT V −1PX⊥,V R. (5.13)

If
Var(Xβ̂ + Zγ̂ −Xβ − Zγ) = PX,V R + ZGZT V −1PX⊥,V R,

then

Var(l(Xβ̂ + Zγ̂ −Xβ − Zγ)) = l(PX,V R + ZGZT V −1PX⊥,V R)lT ,

which completes the proof. ¤

Theorem 5.2. Consider two different mixed models differing from each
other only by their covariance matrices

V1 = ZG1Z
T + R, (5.14)

V2 = ZG2Z
T + R. (5.15)
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If
C(Z(G1 −G2)ZT ) ⊂ C(X) (5.16)

then for any robustly predictable linear combination its expected MSE,

Var(l(Xβ̂ + Zγ̂)− l(Xβ + Zγ)),

will be equal regardless of which mixed model, based on covariance matrix
V1 or V2, is used to calculate the MSE.

Proof. It is sufficient to show that the quantity Var(Xβ̂+Zγ̂−Xβ−Zγ)
will be the same for two covariance matrices satisfying the requirements of
the theorem. Because of Lemma 5.6 (and equivalences Xβ̂ = PX,V Y and
Zγ̂ = ZGZT V −1PX⊥,V Y ) we can write

Var(PX,V Y +ZGZT V −1PX⊥,V Y−Xβ−Zγ) = PX,V R+ZGZT V −1PX⊥,V R.

If (5.16) holds, then according to the Theorem 5.1, PX,V1 = PX,V2 and
ZGZT V −1

1 PX⊥,V1
= ZGZT V −1

2 PX⊥,V2
. Therefore, also

PX,V1R + ZG1Z
T V −1

1 PX⊥,V1
R = PX,V1R + ZG2Z

T V −1
2 PX⊥,V2

R

and, hence, the MSE of a robustly predictable linear combination calculated
by using V1 is the same as the one obtained by using V2. ¤

5.6 Discussion

Choosing the correct covariance structure for the linear mixed model may
sometimes be a difficult task. It may be especially difficult to decide how
to handle the interactions between random and fixed factors — different
experts have suggested different covariance structures for these interactions
(they are sometimes considered to be independent and sometimes restricted
to sum zero over the levels of fixed factor). Theory has not offered any rea-
sonable way to make choice between these two approaches. Major statistical
software packages like SAS have favored the independence assumption —
probably because solutions based on it are easier to implement. However,
it is encouraging to know, that there exist relatively general situations were
both approaches give equal results — like predicting or making inference on
robustly predictable linear combinations. Unfortunately this equality can
not be carried over to the wide inference space. Generally the results remain
depend on our subjective (and often untestable) choice of the covariance
matrix structure of random factors.
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Ekvivalentsete prediktoritega lineaarsed
segamudelid

Kokkuvõte

Lineaarseid segamudeleid kasutatakse paljudel erialadel — nagu näiteks
bioloogias, meditsiinis, sotsioloogias jne. Segamudelite rakendamisel osutub
sageli kõige raskemaks ülesandeks kasutatava kovariatsioonistruktuuri va-
lik. Teoreetilised käsitlused on teemat harva puudutanud ja antud vähesed
soovitused on olnud mõneti vastuolulised. Praktilisema kallakuga töödes on
sageli piirdutud kasutatud kovariatsioonistruktuuri võimalikkuse põhjen-
damisega, selle ainuõigsus on aga enamasti jäänud tõestamata. Selle tõttu
oleks hädasti vaja tulemusi, mis võimaldaks kirjeldada ja paremini mõista
kovariatsioonistruktuuri valikul tehtud vigade mõju analüüsi tulemustele.
Selles vallas on avaldatud üksikuid töid (näiteks Puntanen & Styan 1989,
Harville 1997), kuid mitmed probleemid, nagu näiteks mõju lineaarse se-
gamudeli prognoosidele, on jäänud käsitlemata. Antud töö sisaldab uusi
tulemusi, mis võimaldavad paremini mõista kovariatsioonistruktuuri valiku
mõju lineaarse segamudeli prognoositulemustele.

Töös kasutatavad abitulemused maatriksalgebrast ja lineaarsete segamude-
lite teooriast on esitatud peatükkides 1–2.

Peatükis 3 näidatakse, et lineaarse segamudeli parameetrite hindamisel ka-
sutatav populaarne tehnika — REML — on vaadeldav kui vale kovariat-
sioonistruktuuri kasutamine suurima tõepära meetodi rakendamisel.

Peatükis 4 näidatakse, et tüüpilise prognoosiülesande lahendamiseks pole
kovariatsioonistruktuuri ühene määratlemine hädavajalik. Ühe alternatii-
vina pakutakse välja võimalus osad kovariatsioonistruktuuri kohta käivad
eeldused asendada juhuslike faktorite reparametriseerimistingimustega.

Ühe kovariatsioonistruktuuri asendamine teisega võib, kuid ei pruugi, muu-
ta lineaarse segamudeli prognoositulemusi. Peatükis 5 on antud suhteliselt
kergesti rakendatav tingimus kontrollimaks, kas kaks kovariatsioonistruk-
tuuri viivad samade prognoositulemusteni.
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1996–2000 statistikakonsultant AS Restas
1997–1998 teadur Zooloogia ja Botaanika Instituudis
2000–2002 teadur Tartu Ülikoolis
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