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ABSTRACT

Mathematical Optimization is the process of finding an optimal solution among
others, with respect to a certain criterion. In other words, it is finding the optimal
solution of an optimization problem, i.e., the maximum or minimum value of a
real function (objective function) subjected to a set of constraints. This process
has been applied to several fields such as physics, biology, chemistry, social sci-
ences, computer science, and their intersections. Mathematical optimization is di-
vided into classes depending on the nature of the objective function as well as the
constraints. These classes vary in their computational complexity, for example,
Integer Programming is NP-hard whereas Linear Programming has a polynomial
complexity.

In practice, robust and fast processes are needed to tackle the problems, classes
with polynomial complexity are used directly. Several efficient algorithms exist
which solve optimization problems in those classes. But, in some cases, even
these efficient algorithms face difficulties in solving optimization problems such
as taking immensely long time to find the optimal solution or halting even when
the returned solution is still very far from the optimal solution. In this case, study-
ing the optimization, in-depth, leads to figuring out the reasons behind these pit-
falls and so either adjust the problem to avoid them or recommend the suitable
algorithm to be used. The problems which belong to classes of high complexity
can also be used in practice. They are not used directly but rather as an assist or
control to the quality of solution retrieved by heuristics.

This thesis applies optimization of polynomial and high complexity to some
complex systems. In one part, it studies the solution of a Convex Program which
was used to obtain partial information decomposition, a tool used recently to an-
alyze a particular complex system. Many difficulties arise in solving the Convex
Program and so the study done in this thesis resulted in a fast and robust algorithm
to tackle the problem. This part is concluded by studying the situation, appeared
recently in neuroscience, when the partial information decomposition obtained is
optimized subject to some constraints. In the other part, it studies a fundamental
optimization problem in the control of automated systems that is APX-hard. The
problem is modeled into IP and CNF which can be used, in future, to design good
heuristics which tackle the problem in reasonable time.
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1. INTRODUCTION

Optimization has applications in a broad spectrum of disciplines such as trans-
portation networks, circuit design, and economics. The theory of optimization
has been well developed since the 20th century. Many efficient algorithms have
been designed even for large-scale optimization problems. Thus making it a pow-
erful tool for tackling problems.

Due to the huge developments in optimization techniques, scientist started uti-
lizing optimization in analyzing and studying complex systems. A system is said
to be complex when its components interact in serpentine ways and reveal depen-
dencies at all scales. For example, earth climate, the human brain, living cells,
and biological networks are all complex systems in which analyzing them is vital
but rather complicated.

In particular, using optimization in analyzing complex system can be done ei-
ther by modeling aspects of the system as optimization problems or by using ana-
lytical techniques that rely on optimization. For example, automation systems are
complex systems where optimization can be used to design efficient algorithms to
tackle some problems involved in the control of these systems. Also studying the
information that the components of a complex system exchange is a way to ana-
lyze these systems. Partial information decomposition is a tool which decomposes
this information exchange and uses optimization to achieve such decomposition.

This thesis deals with using optimization for applications which analyzes and
studies complex systems. The thesis can be seen as two parts. One part stud-
ies an optimization problem related to decomposing the information which the
components of complex systems exchange. The other part tackles a fundamental
optimization problem involved in the control of an automated car parking system.

1.1. Partial information Decomposition

This section aims to give an overview of partial information decomposition.
This analytic tool is being used extensively in neuroscience. Before diving into the
formal definition of partial information decomposition in the next subsection, the
following is a motivating example describing partial information decomposition
on a conceptional level.

Let Y and Z be the source signals about a target signal X in a complex system.
E.g., two Y and Z are excitations by two different stimuli to a neuron X. Study-
ing the response of the neuron and the dependencies to characterize the relation
between the response and the stimuli is called neural coding. In this case, a neu-
rologist wants to investigate whether redundant information about the response of
X is provided by both Y and Z or they behave synergistically. Also, it is useful
to figure out whether any of the sources (stimuli) provides unique information
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about the response of X, i.e., information that can be obtained only from that spe-
cific source. Thus, in such system, determining the quantities of shared, unique,
and synergistic information that the components reveal can be used to analyze the
interaction between them.

1.1.1. Definition of Partial Information Decomposition

The neural coding example raises three different measures of information shared,
unique, and synergistic. Consider the random variables X,Y,Z sampled from the
finite sets X,Y,Z which represents the signals X, Y and Z. Suppose that P is the
joint probability distribution of (X,Y,Z).

So, the amount of shared information that Y and Z hold about X is SI(X;Y,Z).
The amount of unique information about X is split into two quantities, one con-
tained only in Y that is UI(X;Y\Z) and the other contained only in Z that is
UI(X;Z\Y). The amount of synergistic information about X that can be mea-
sured by knowing both Y and Z is CI(X;Y,Z). All the quantities SI(X;Y,Z),
UI(X;Y\Z), UI(X;Z\Y), and CI(X;Y,Z) are nonnegative functions that take
as argument the joint distribution P of (X,Y,Z). When confusion may arise,
SIp(X;Y,Z) will refer to the shared information where P is the joint probability
distribution of (X,Y,Z). Similar referring will be used for the other PID quanti-
ties.

Recall that the total information about X that (Y,Z) possesses can be quanti-
fied by the mutual information MI(X;Y,Z). In fact, shared, unique, and syner-
gistic information decompose the amount of total information that Y and Z hold
about X, i.e., MI(X;Y,Z). So, partial information decomposition (PID) aims to
divide MI(X;Y,Z) into more interpretable parts shared, unique, and synergistic
information

MI(X;Y,Z) = SI(X;Y,Z) + UI(X; Y\Z) + UI(X; Z\Y) + CI(X; Y,Z), (PID)

rather than estimating MI(X;Y,Z). Moreover, the quantity of total information
that Y has about X, i.e. MI(X;Y), is decomposed into the quantity of unique infor-
mation that Y has about X and Y shares with Z about X. Similarly for MI(X;Z),
the quantity of total information that Z has about X, thus leading to the following
identities:

MI(X;Y) = SI(X;Y,Z)+ UI(X;Y\Z),

MI(X;Z) = SI(X;Y,Z) + UI(X; Z\Y). (1.1)

To sum up, (PID) defines partial information decomposition. This decomposi-
tion must satisfy the two identities in (1.1). This decomposition is unique mean-
ing that give a joint distribution P of (X,Y,Z) there is one and only one PID of
MI(X;Y,Z). Furthermore, from the identities (1.1) and the definition (PID), it is
clear that there is (at most) one degree of freedom in defining the PID, whenever
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MI(X;Y,Z)

Figure 1. MI(X;Y,Z) decomposed into the four information quantities.

the joint distribution of (X,Y,Z) is known. In other words, defining the value
of one of the information quantities defines the PID. From now on, PID measure
refers to defining the value of one of the information quantities.

Unlike MI(X;Y,Z), the other quantities SI(X;Y,Z), UI(X;Y\Z),UI(X;Z\Y),
and CI(X;Y,Z) are qualitative, i.e., when introduced there was no closed form to
compute them — see Subsection 1.1.2 for details. This prompted scientists to de-
fine meaningful ways to compute them.

Applications. The need for PID has been addressed long before Williams and
Beer breakthrough — see Subsection 1.1.2, for example, neural coding [13, 53]
where the interest was mainly in studying whether two neurons (or neural popula-
tions) are correlated or not, i.e., exhibit synergy and whether ignoring this synergy
affect the success of stimulus decoding. Another addressing was in biological net-
works [8,9,30] where they needed to compute shared and synergistic information
empirically on neurophysiological datasets.

Recently, after being computable, scientists started utilizing PID in various
complex systems and some related fields, for example, PID was used to reevalu-
ate and define neural goals functions that help in understanding how information
is processed in certain neural structure [72,73]. Complex networks utilized PID
like neural [68,73] where PID was used in quantifying how information is mod-
ified within developing neural networks or biological [71] where PID helped in
identifying algorithms run by these systems or dynamical [5, 64, 66] where an-
alyzing information distribution in such systems was done by PID. In addition,
PID was used to directly study human brain [44] as PID gave new insights on
the pattern of information transfer in a network of scalp electrodes of EEG (Elec-
troencephalography).

15



1.1.2. Different Partial Information Measures

Williams and Beer in [74] were the first to give a concrete decomposition of
mutual information into nonnegative quantities. They introduced the so-called
Williams-Beer axioms [74] which are natural properties of shared information —
see Chapter 3 for the definition.

From these axioms, they proposed the partial information lattice framework
for partial information decomposition. They proposed I,,i, which is the quantity
of minimum information that any of the random variables Y or Z can obtain about
each outcome of X, averaged over all the possible outcomes, to be the quantity of
shared information, SI(X;Y,Z).

Unlike their framework, I,;, does not always give reliable values [6]. Iy
results in a counterintuitive PID for the COPY gate. The COPY gate is defined as
X = (Y,Z) where Y and Z are sampled. The intuitive decomposition of COPY
gate is the following:

SI(X;Y,Z) = MI(Y;Z)
UI(X;Y\Z) =H(Y | Z)
UI(X;Z\Y) = H(Y 1Z)
CI(X:Y,Z) =

But I,i, quantifies shared information to be 1 bit even when Y and Z are sam-
pled independently, i.e., MI(Y;Z) = 0. The problem is that the estimated shared
information by I, is very large.

Harder, Salge, and Polani’s [34] claimed that I.,;, overestimates shared and
synergistic information. In order to solve the COPY gate issue of I, Harder,
Salge, and Polani’s suggested adding the so-called identity axiom to Williams-
beer lattice — see Chapter 3 for the definition. Then, they defined the decomposi-
tion based on projections in the probability simplex.

However, several arguments were formulated against adding the identity ax-
iom. In fact, Bertschinger et al. [6] studied the case when the so-called strong
symmetry — see Chapter 3 for the definition — is added to Williams-beer lattice.
They proved [6, Theorem 1] that there exists no shared information measure that
simultaneously satisfies the original Williams-beer axioms, strong symmetry, and
has all other measures nonnegative.

The latter motivated their BROJA measure — see Chapter 3 for details — with a
restriction made by dropping the strong symmetry axiom. Following this, Griffith
and Koch [32] proposed that synergy comes from information which is not neces-
sarily present given the marginal distributions (X,Y) and (X,Z) which coincides
with the BROJA measure.

BROJA PID measure. This thesis deals with the PID measure introduced by
Bertschinger, Rauh, Olbrich, Jost, and Ay [7]. They defined their measure based
on ideas from decision theory. They proposed UI(X;Y\Z) to be the minimum in-
formation that Y holds on X given the marginal distributions of (X,Y) and (X,Z)
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which will be referred to as the BROJA PID measure. The thesis chose to deal
with this measure among others for its desirable properties which makes it suit-
able and currently used for several problems in neuroscience, for more details
see [73, Section 4.1].

1.1.3. Contributions to Computing Partial Information
Decomposition

The supervisor, Dirk Oliver Theis, had conjectured that the difficulties of state-of-
the-art solvers resulted from smoothness problems of the objective function at the
boundary of the feasible region. This view stood in contrast with other opinions,
which suggested that the shape of the feasible region itself was problematic.

In our paper [42], Bivariate partial information decomposition: The optimiza-
tion perspective authored jointly with Dirk Oliver Theis and Raul Vicente, the
author of this thesis studied the behavior of the objective function near the bound-
ary of the feasible region. He found that while the optimum is obtained on the
boundary for some problems, the boundary region where that can happen is a low
dimensional manifold (i.e., a subset of) the boundary region such that all surround-
ing boundary points are infinitely repellent (have infinite directional derivatives).
This strongly advocated that the difficulties in solving the problem result from the
characteristics of the objective function.

In the search for a robust approach for computing BROJA PID, the author
also implemented 6 different approaches to solving the convex program, including
Geometric Programming and several Cone Programming models, and performed
extensive computational experiments.

The conclusion was that the MOSEK [1, 2] solver was robust and very fast,
while one of the Cone Programming models was the most robust, with satisfying
speed. These computations and comparisons were coded in the scientific comput-
ing programming language JULIA [39], and is available on GITHUB!.

The contents of the paper [42] are discussed in Chapter 4 of this thesis; the
whole paper [42] is included in the thesis. The author’s contribution among oth-
ers in [42] is working out the Cone Programming model and Geometric Program-
ming model along with proof of optimality conditions (Proposition 4.2.1) and
other proofs. The author also performed all the computational experiments and
produced the code needed.

BROJA_2PID. Based on the results of [42], the author of this thesis proceeded
to develop a production-quality software for the robust computation of the BROJA
PID. The result was a Python module, dubbed BROJA_2PID, whose user-friendly
interface makes decomposing mutual information easy: If pdf is a Python dictio-
nary containing the joint probability distribution, then the following two lines are
all that is needed to print the shared information.

lhttps ://github.com/Abzinger/BROJA-Bivariate-Partial_Information_
Decomposition
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pid = BROJA_2PID.pid( pdf )
print ("Shared information: ", pid[’SI’])

The user interface for the Python module (there are more technical details for
the expert user), along with in-depth discussion of the Cone Programming model
based on the so-called Exponential Cone, are discussed in the paper [43], A robust
estimator for Bertschinger et al’s bivariate partial information decomposition,
authored jointly with Dirk Oliver Theis and Raul Vicente. The estimator is avail-
able on GITHUB?.

The paper [43] also discusses the formulation of a multivariate partial informa-
tion decomposition measure as Exponential Cone Programs in a way that allows
BROJA_2PID, with some modifications, to estimate a multivariate partial infor-
mation decomposition.

The contents of the paper [43] are discussed in Chapter 5 and included in the
thesis. The author’s contribution among others in [43] is implementing the solver
along with working out proofs that the theoretical model solves the problem to
optimality and the modeling of a multivariate partial information decomposition
measure as Cone Programming.

1.2. Optimizing Partial Decomposition Measures

Consider the problem in neural networks that aims to measure where and when
the information does not only pass through the channel but gets modified. In this
case, Y,Z are two sources of the channel and X is the target of the channel. The
information from both Y and Z are getting modified via a mechanism and then
outputted within X. This information modification of Y and Z can be identified
as the synergistic information.

Thus CI(X;Y,Z) quantifies how much information modification the channel
mechanism performed. But this contribution does not inform about the potential
of the channel mechanism to modify information. Wibral et al. [73] formulated
the question of the capability of the mechanism to modify information as follows:

max CIp(X:;Y,Z),
Q€A z)

where Ay z) is the set of all joint distributions of (Y,Z) and P is a joint probability
distribution of (X,Y,Z) such that Q is its YZ-marginal distribution. The set Ay z,
can be expressed as constraints and so hints the need to maximize or minimize any
of the information decomposition measures subject to constraints.

Other problems, see extractable shared information problem [60], that can be
formulated as maximizing or minimizing one of the information decomposition
measures subject to different sets of constraints. In this case, one must understand
how the objective value changes when parameters of an optimization problem are

*https://github.com/Abzinger/BROJA_2PID
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changed, in order to formulate a general approach which can be used for tackling
this type of problems. The latter is known as Sensitivity Analysis in Convex
Optimization. Primal-dual methods are useful when applying sensitivity analysis
since they provide the so-called optimal dual solution which plays the main role
in sensitivity analysis, for example, Gradient descent does not give access to the
optimal dual solution and thus does not offer a clue about sensitivity analysis.

Unfortunately, the functions that are minimized inside the BROJA Convex Pro-
gram (variants of conditional entropy) are not convex on the whole probability
simplex (they require some marginals to be fixed to be convex). Hence most
likely® the most powerful part of the theory of sensitivity analysis is not applica-
ble.

Fortunately, the author of this thesis was able to give what we believe are use-
ful data in this situation. In generic situations (optimum is not on the boundary),
we can produce the gradient of the information decomposition measure, and in
the degenerate cases, we can still obtain a “local” sub-/super-gradient. In future
research, this will allow us to use gradient descent or ascent approaches” for opti-
mizing information decomposition measures subject to constraints.

1.2.1. Contributions to Optimizing Partial Decomposition Measures

The author of this thesis was able to prove formulas for the gradients and sub-
/super-gradients for the information decomposition measures conjectured by Dirk
Oliver Theis. The results are in the preprint [41], which is discussed in Chapter 6
of this thesis. The author of this thesis also developed Julia code for the computa-
tion of the PID and simultaneous extraction of the (sub-/super-) gradients from the
Karush-Kuhn-Tucker optimality conditions returned by the MOSEK solver. The
software is available on GITHUB’. In future work, the author of this thesis plans
to use it to develop heuristics for computing extractable shared information and
for other applications of optimizing information decomposition measures.

1.3. Automation Systems

An automation system is a system where machines can carry out designated tasks
from start to finish, without human assistance. This section explains a specific
automation system, the automated valet parking system. Subsection 1.3.1 presents
the automated valet parking system. Subsection 1.3.2 presents the contributions
regarding automated valet parking system.

3Rare cases of non-convex optimization have the required conditions in which sensitivity anal-
ysis can be fully applied, for more details see [11]

“which which will only provide local minima or maxima, since the information decomposition
measures are not convex or concave

Shttps: //github.com/Abzinger/Opt_PID
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1.3.1. Automated Valet Parking Systems

In May 2015, the Miami Herald [46] printed an article about a fancy condominium
tower in Miami. That building was equipped with a state-of-the-art automated
valet parking system. In these systems, a central computer controls a small army
of robots moving in the parking area. The robots have the capability to move in
two directions, move under cars, lift a car up, carry it to another parking slot, and
drop it. A human driver drops off his car at a vehicle transfer station, where the
car is picked up by a robot. The robots store away the car in the parking lot until
the driver requests to retrieve it. Systems like these are installed in parking lots of
apartment complexes, airports, and malls in many countries.

According to the Miami Herald, in that apartment complex, the following was
happening. In the morning, when the inhabitants of the apartments wanted to
drive to work, the system was overloaded: Its algorithms were not able to steer
the robots to satisfy a large number of requests within a small time window. Car
owners experienced long waiting times (20-30 minutes) between the time when
they requested their cars, and when they were delivered to the vehicle transfer
stations. According to the Miami Herald, the car owners took Ubers to work,
instead of waiting for the sluggish machines to drag out their cars. The operator
promised improvement of the algorithms [46], but ultimately had to shut down the
project [45], went into bankruptcy [47], and was sued by the residents [37].

This example illustrates nothing else than the need for optimization in the robot
operated car parking systems: according to the New York Times, “the technology
is there” [61].

This thesis also deals with a fundamental optimization problem involved in the
control of an automated car parking system. It studies the theoretical throughput
limitations of these systems: Given a car park layout, an initial configuration of a
car park (location of cars, robots), into a desired, terminal configuration, what is
the optimal set of control instructions for the robots to reorganize the initial con-
figuration into the terminal configuration. The notion “optimal” in this problem,
means fastest, in terms of clock-on-the-wall waiting time until the robots have
completed their tasks.

1.3.2. Contributions to Automated Valet Parking Systems

In our paper [40], Comparison of IP and CNF Models for Control of Automated
Valet Parking Systems, authored jointly with Dirk Oliver Theis, the author studied
exact methods to tackle the involved optimization problem. The results showed
the need for heuristic algorithms to tackle the control of an automated car parking
system.

The author’s contribution’s among others in [40] is partly formulating the
Integer Programming model and fully the CNF-based Constraint Programming
model. In addition, the author implemented in the general-purpose programming
language C++ [35] the two models and performed the computational experiments,
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and is available on GITHUB®.

6https ://github.com/Abzinger/crobots
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2. CONVEX OPTIMIZATION

This chapter reviews the relevant definitions and facts about convex optimization
which are needed for this thesis. It starts with reviewing some definitions needed
for optimality conditions and then proceed to state optimality conditions for a
specific Convex Optimization Problem. Later it explains in a nutshell Interior
Point methods, a class of algorithms which solves convex optimization problems,
in particular, the Barrier method. The chapter is a collection of known results
taken from the literature on convexity (e.g. [11] and [51]), and on interior point
methods (e.g. [48], [52], and [62]).

2.1. Basics

The section aims to shed light on an important issue in Convex Optimization,
namely, optimality conditions. First, it recalls some notions needed for developing
the optimality conditions. Then derives the optimality conditions for a specific
constrained Convex Optimization problem which is used in this thesis.

2.1.1. Useful Definitions

This subsection aims to review some of the notions needed to develop the so-
called “optimality conditions”. It states the notions of directional derivative, sub-
gradient, and some of their needed properties.

The functions are considered to take the special values: —eo and +<<. So, R will
be augmented with these values and denoted by R. For every function f : R" — R,
the domain of f is the set:

dom(f) := {x| f(x) < +ee}.

Definition 2.1.1. Let f : R” — R be a convex function and x € dom(f). Then for
every d € R" the quantity
fx+ed)—fx)

fld) = ;1{% c , 2.1

is called the directional derivative of f at x in the direction d.

Remark 2.1.1 ( [62, Lemma 2.71]). The limit in (2.1) exists in [—oo, 00|, by the
convexity of f.

Definition 2.1.2. Let f: R" — R be a convex function and let x € dom(f). A
vector g € R" such that

fO) = f(x)+g" (y—x) forally e R",

is called a sub-gradient of f at x.
Remark 2.1.2. Let f: R” — R be a convex function. Then the following hold.
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1. There can be many sub-gradients of a convex function f at x.

2. The set of all sub-gradients of f is called the subdifferential of f at x and is
denoted by d f(x).

3. If f is differentiable at x, then V f(x) is the only sub-gradient of f at x.
Lemma 2.1.1 ( [62, Lemma 2.73]). Let f be a convex function and x € dom(f).
If g is a sub-gradient of f, then g' (y —x) < f'(x;y —x).

This subsection is concluded by the following lemma for convenience (it is

used in the proof of Proposition 4.2.1). It is a simplification of the Moreau-
Rockafellar Theorem ( [62, Theorem 2.85]).

Lemma 2.1.2. Let C; C RY,i = 1,... .,k be closed convex sets, fi : C; = R contin-
uous convex functions, and

k
forx=(x1,...,x) € HCi C (ROX.If fori=1,... k,g; is a sub-gradient of f; at
i=1
X;, then g :=(g1,...,8i) is a sub-gradient of f at x. Moreover, all sub-gradients of
f at x are of this form.

2.1.2. Optimality Conditions

This subsection discusses the optimality conditions for a specific Convex Opti-
mization. Recall the standard form of the constrained convex optimization prob-
lem. Let f; : C; CR" — R, i =1,..., p be convex functions and »; : R* - R, i =
1...q be affine functions, then a constrained Convex Optimization problem is of

the form
minimize  fo(x)

subjectto  fi(x) <0 foralli=1,...,p
hi(x)=0 foralli=1,...,q.

The remainder of this subsection deals with the following Convex Optimization

minimize f(x)
subjectto Ax=0»>b P
x> 0.

where f: R" — R is a convex function, A € R™", and b € R™.

Definition 2.1.3. Consider the problem (P) with it feasible region C = {x € R" |
Ax=0b,x >0} and let d € R" be a vector. Then d is said to be a

(a) feasible direction of f at x, if for some € > 0, x+&d € C.

(b) descent direction of f at x, if f'(x;d) < 0.
Remark 2.1.3. Consider the problem (P). If there exists a feasible descent direc-
tion of f at x, then x is not a minimum of f over C.
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Now the optimality conditions of (P) are ready to be given. Throughout the
literature, these conditions have been referred to as the Karush-Kuhn-Tucker con-
ditions (KKT). The following theorem is a direct consequence of [62, Theo-
rem 3.34] applied to (P).

Theorem 2.1.1 (Karush-Kuhn-Tucker). Let C = {x € R" | Ax="b,x > 0}. Suppose
that for every j=1,...,n, there is an x € C with x; > 0. The function f attains a
minimum over C at a point x € C if, and only if, there exist

e a sub-gradient g of f at x

e and an m-vector A € R™
such that A'A < g, and for all j=1,...,n with x; > 0, equality holds: (A'A); =
8-

The condition “x; =0 or (A'A); = g;” is called complementarity.

2.2. Interior point Theory

This section discusses a subclass of Interior Point methods called the Barrier
method. Interior Point methods are class of algorithms which solves linear and
nonlinear Convex Optimization problems. The featuring property of these meth-
ods is that while the iterates can converge to a point on the boundary, none of the
iterates actually lie on the boundary. In 1986, Narendra Karmarkar presented an
algorithm for solving Linear Programming which falls into the class of Interior
Point methods. The importance of Karmarkar’s algorithm is not being the first to
address an Interior Point method but rather in its complexity which was polyno-
mial. Form that point on, scientists started developing new Interior Point methods
one of which is the Barrier method.

2.2.1. Self-concordant functions

Self-concordant barriers play an important role in having a polynomial time Inte-
rior Point method, namely, Barrier method. The subsection starts by defining the
self-concordant functions, then the v-self-concordant barriers, and concluding by
a theorem about the existence of self-concordant barriers for closed convex sets.
Definition 2.2.1. Let C C R” be a convex set with non-empty interior. A point x
is an interior point of C, denoted by x € int(C), if there exists € > 0 such that for
any y € R", we have y € C whenever |x —y|| < e.

Definition 2.2.2. Let C C R" be a convex set with non-empty interior, and let
f:R" — R be a three times continuously differentiable convex function defined on
the int(C). Then f is self-concordant with constant M if for all x € int(C),h € R",

D3 f(x)[h,h,h) < M- (WWHf(x)h) ",

where Hf(x) is the Hessian of f at point x and D? denotes the tensor of third
derivatives. Moreover, if M = 2 then f is called a standard self-concordant func-
tion.

24



Definition 2.2.3. Let C C R" be a convex set with non-empty interior. Then the
function F : int(C) — R is a barrier of C if

F(x) — 4o, asx— dC,

where dC is the boundary of the set C.

Remark 2.2.1. This section only considers strictly convex barriers. Also the do-
main of definition of F is extended to R" where F(x) = +oo for x ¢ int(C).
Definition 2.2.4. A barrier function F is a v-self-concordant barrier for a closed
convex set C € R" with non-empty interior if it is a standard self-concordant func-
tion and

HF (x) > %VF(x)TVF(x), for all x € int(C). (2.2)

n
Example 2.2.1. F:R" , =R, F(x) =— Z log(x;) is an n-self-concordant barrier
forC=R'. -

Similar to convex sets there are some operations which conserve the self-
concordance of a barrier. This following proposition is a consequence of [52,
Proposition 2.3.1].

Proposition 2.2.1. Let {C;} jc; be a family of convex sets for some finite index set
J. Let F; be vj-self-concordant barriers C; respectively. Then

e Intersection. F (x) = Z Fi(x)isa (Z v j> -self-concordant barrier for the
jel jel
intersection C = CiN---NCyyy.

e Direct Product. F(x) =) Fj(x;) isa <Z vj> -self-concordant barrier
JjeJ jeJ
Jor the product C = Cy x --- X ().
Theorem 2.2.1 ( [14, Theorem 5.5]). Let C C R" be a convex set with non-empty
interior. There exists F which is a (c - n)-self-concordant barrier for C (where c is
some universal constant)

2.2.2. Barrier Method

This section will explain the barrier method specialized to the following Convex
Optimization problem:
minimize  f(x)
subjectto Ax=0»>b P
x> 0.

where f : R" — R is a convex function, A € R™", and b € R™. Tt starts with
sketching a pseudo-code of the Barrier method. Then, it explains the algorithm
and the role that the barriers play. Finally, it concludes with the maximum number
of iterations of the barrier method.
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Let F be a v-self concordant barrier for C := {x | Ax = b,x > 0}. If f(x) is not
linear, then the problem (P) is written in the epigraph form

minimize s

subjectto  f(x) <s
Ax=b>b
—x<0,

where its feasible region

C':={(x,s) eR"xR| f(x) < s,Ax = b,x > 0} (2.3)

is still convex. Then, suppose that f(x) = ¢! x where ¢ € R". The barrier method
or sometimes called the path-following method is described in the following algo-
rithm.

Algorithm 1: Barrier method

1 Given ¢ :=1y > 0 and tolerance € > 0.

2 Initialize x to a point in the interior of the feasible region (strictly feasible).

3 repeat

4 Compute x* () by minimizing 7 - ¢’ x4 F (x), subjected to Ax = b starting
at x.

5 Update x := x™(¢)

1
6 increase t such thatt .= 1+ —— | t.
(37

2

. n
until n <€

The iteration of the barrier method is referred to as the outer iteration. In any
outer iteration k, the algorithm has to solve an equality-constrained minimization

x*(t) := argmin (t- " x+ F(x)) . (2.4)
xeR"
Ax=b
The equality-constrained problem is solved by a variant of Newton’s method. Re-
call that Newton’s method, which is itself iterative, is used to solve the uncon-
strained optimization problem

x*(t) := argmin <tk . ch—l—F(x)), (2.5)
xeR?

as follows. If x is the current iterate, Newton’s method finds the minimum to the
second order Taylor expansion about x of the objective function g: x — - ¢ x +
F(x):
argmin (g(x) + V8(x) (v ) + 4y ~)Hg () (v~ )
yeR"
=x—Hg(x)"'Vg(x).
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where Hg(x) denotes the Hessian of g at x.

Thus in the Barrier method, if x is the current iterate, then Newton’s method
finds the minimum to the second order Taylor expansion about x of the function
g x>l x+F (x) subject to the equations Ax = b, using Lagrange multipliers,
i.e., it solves the system

Hg(x)y+A'A = —Vg(x)

Ax=0b. (2.6)

Recall that if Hg(x) = HF (x) satisfies certain conditions, other than being
invertible, the convergence of Newton’s method is quadratic. The importance of
F(x) being a v-self-concordant barrier for the feasible region of (2.2.2) aligns
in ensuring that those conditions are satisfied in any outer iteration. Precisely,
the standard self-concordant property allows finding 7y and the initial point xg
ensuring that the convergence of Newton’s method for x*(#), is quadratic. The

1
condition that F (x) satisfies (2.2) ensures that by choosing #; = (1 + M) t—1,

in any future outer iteration k, the convergence of Newton’s method for x*(#;) is
quadratic.

The following is an example of a barrier which can be used for (P). Note that
the barrier used in the example is not necessarily a self-concordant barrier for
{x|Ax=Db,x > 0}.

Example 2.2.2. One of the most common barriers is the logarithmic barrier.
Using this barrier method for (2.2.2), in every outer iteration k, Newton’s method
solves (2.6) where g: x — t; fo(x) — Zln(xj).

In this case, Newton’s method solves the system (2.6) with Hg(x) = 1 H f (x) +
Diagj(l/xi) and Vg(x) =V f(x) — Diag,(1/x;), where Diag(-) denotes a diag-
onal matrix of appropriate size with the given diagonal.

By convexity of f, Hf(x) is positive semidefinite, so that adding the diagonal
matrix results in a (strictly) positive definite matrix. Hence, the system of linear
equations always has a solution.

Complexity. The section is concluded by the following theorem which gives
an upper bound on the number of iterations that Algorithm 1 needs to return an
e-optimal solution of (P), i.e., || — X H2 < & where % is the optimal solution of (P)
and x* is th returned solution of Algorithm 1. The theorem can be seen as a
consequence of [14, Theorem 5.6].

Theorem 2.2.2. The number of iterations that Algorithm 1 performs before it
returns an €-optimal solution of (P)

v
o log— | .
(ﬁogmg)
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3. PARTIAL INFORMATION DECOMPOSITION

The introduction gave an overview of partial information decomposition. This
chapter discusses in-depth Williams-Beer axioms which led to the first definition
of a partial information decomposition measure. Then it goes through the modifi-
cations of Williams-Beer axioms which motivated the introduction of BROJA PID
measure. Finally, it explains in details the BROJA PID measure that is modeled
as an optimization problem.

3.1. Preliminaries

The section reviews definitions and facts about information theory that will be
used in the partial information decomposition framework. All information-theoretic
measures will be defined in nats instead of bits. Consider the random variables
X,Y,Z sampled from the finite sets X,Y,Z. Let P be a joint probability distribu-
tion of X,Y,Z where

p(x,3,2) : =PX=x,Y=y,Z=7)
px,y) =PX=xY =y)
p(x) =P(X=x)
px[y)=PX=x|Y=y)

3.1.1. Classical Information Theory Measures

Shannon entropy or entropy of X defined as,

H(X) = ==Y p(x)Inp(x
xeX
is the measure of uncertainty of the random variable X, i.e., the amount of infor-
mation the random variable X holds. Conditional entropy of X given Y defined
as,
H(X|Y)=Hp(X|Y):= =) p(xy)np(y|x),
(x,y)eX XY

is a measure of the uncertainty of the random variable X given that the value of Y
is known. Mutual information of X and Y defined as,

MI(X;Y) =Mp(X;Y):= Y p(xy)n _ply)
(eyieXxY p(x)p(y)
is a measure of the amount of information that Y contains about X or that X
contains about Y. Also, MI(X;Y) can be seen as the reduction in uncertainty of X
due to the knowledge of Y or conversely and so it can be equivalently expressed
by the following identities:



Conditional mutual information of X and Y given Z defined as

plx,y|z)
MI(X;Y |Z)=MIp(X;Y | Z) := px,y,2)In ———————
XX =M [2):=  }, e T

is the measure of the amount of information that Y contains about X or X contains
about Y given Z. Finally, the chain rule of entropy and mutual information is as
follows:

H(X,Y) = H(X) + H(Y | X)

H(X,Y) =H(Y) +H(X|Y) G
MI(X;Y,Z) = MI(X,Y) +MI(X;Z|Y) '
MI(X;Y,Z) = MI(X,Z) + MI(X;Y | Z).

3.1.2. Partial Information Decomposition Extension

The goal of partial information decomposition is to partition MI(X;Y,Z), the
amount of total information that Y and Z hold about X, into more interpretable
parts, namely, shared, unique, and synergistic information,

MI(X;Y,Z) = SI(X;Y,Z) 4+ UI(X; Y\Z) + UI(X; Z\Y) + CI(X; Y,Z). (PID)

The partitions of PID are all nonnegative functions in R that take as argument
the joint distribution P of (X,Y,Z). In addition, this PID must also fulfill the
following two identities:

MI(X;Y) = SI(X; Y, Z) + UI(X;Y\Z),

3.2

MI(X;Z) =SI(X;Y,Z) + UI(X;Z\Y). (3:2)

using the chain rule of mutual information (3.1) and (PID), the two identities
in (3.2) can be written as follows:

MI(X;Y | Z) = CI(X; Y, Z) — UI(X; Y\Z)
MI(X:Z | Y) = CI(X;Y,Z) — UI(X;Z\Y)

Hence, PID doesn’t only decompose the MI(X;Y;Z) into more interpretable parts
but also all the other classical partitions of it.

Finally, recall some properties of PID which were mentioned in Section 1.1.
This decomposition is unique meaning that given a joint distribution P of (X, Y,Z)
there is one and only one PID of MI(X;Y,Z). In this decomposition, defining
the value of one of the information quantities defines the whole PID. So, PID
measure refers to defining the value of one of the information quantities. There
are no known closed forms which quantify SI(X;Y,Z),UI(X;Y\Z), UI(X;Z\Y),
or CI(X;Y,Z).
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MI(X;Y,Z)

Figure 2. MI(X;Y,Z) decomposed into the four information quantities.

3.2. Evaluating Partial Information Decomposition

This section gives the definition of Williams-Beer axioms, the main result that
yielded the first PID measure. Then, it discusses several enhancements of these
axioms and the different resulted PID measures from these enhancements. Finally,
it gives an in-depth overview of the BROJA measure which is used in this thesis.

3.2.1. Williams-Beer Axioms and its Variations

During their work to define a PID measure with nonnegative quantities, Williams
and Beer claimed some natural properties of shared information which will be
later called Williams-Beer axioms [74]. These axioms are the following:
(S) SI(X;Y,Z) =SI(X;Z,Y), (Symmetry)
(SR) SI(X;Y) =MI(X;Y) and SI(X;Z) = MI(X;Z), (Self-redundancy)
M) SI(X;Y,Z) <SI(X;Y) and SI(X;Y,Z) < SI(X;Z),

with equality if Y = f(Z) and Z = f(Y) respectively

for some function f. (Monotonicity)
These axioms were the starting point for their PID measure I,,;;, which evaluated
the quantity of shared information SI(X;Y,Z) as the quantity of minimum infor-
mation that any of the random variables Y or Z can obtain about each outcome of
X averaged over all the possible outcomes.

Unlike their framework, I,;, does not always give reliable values [6]. Iy
results in a counterintuitive PID for the COPY gate. The COPY gate is defined as
X = (Y,Z) and intuitively SI((Y,Z);Y,Z)MI(Y;Z), but I i, = In2 even when
MI(Y;Z) = 0.
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Harder, Salge, and Polani’s [34], following this misevaluation of SI(X;Y,Z)
by Imin, suggested to enforce the COPY gate shared information as an additional
axiom to Williams-beer lattice:

(Id) S1((Y,Z);Y,Z) =MI(Y;Z). (Identity)
However, adding (Id) to the Williams-Beer axiom was highly criticized. For ex-
ample, Bertschinger et al. [6] presented a game theoretic analysis resulted in a
non-trivial shared information in the COPY gate when Y and Z are independent
random variables. Their conclusion was that I,,;, overestimated this non-trivial
shared information and that in this case the value should be shared information
should be positive but much smaller than In2.

Bertschinger et al. [6] studied the consequence of adding to Williams-Beer
axioms another natural property of shared information called strong symmetry:
(SS) SI(X;Y,Z) =SI(Y;X,Z) =SI(Z;X,Y). (Strong Symmetry)
Their argument was that (SS) is a natural extension of (SR) as SI(X;Y) = SI(Y; X)
which the strong symmetry property in the case of (X,Y). But they found out that
(SS) cannot be added to the Williams-Beer lattice and proved [6, Theorem 1]
that there exists no shared information measure that simultaneously satisfies the
original Williams-beer axioms, the strong symmetry, and has all other measures
nonnegative. This motivated their BROJA measure—see next subsection for full
details— with a restriction made by dropping (SS).

3.2.2. BROJA Partial Information Decomposition

This subsection explains BROJA PID measure introduced by Bertschinger, Rauh,
Olbrich, Jost, and Ay [7] which is used in this thesis. The definition of the BROJA
measure is based on ideas from decision theory. They proposed UI(X;Y\Z) to be
the minimum information that Y holds on X given the marginal distributions of
(X,Y) and (X,Z).

Motivation. Let P € A where A is the set of all joint probability distributions
of (X,Y,Z). Bertschinger et al. core idea to construct the BROJA PID measure
is that if Y has a unique information about X means that it is possible for Y to
exploit this unique information in its favor against Z — at least given a suitable
situation. The suitable situation was formulated in terms of a decision problem —
see [7, Section 2] for details. The analysis of the decision problem resulted in the
following:

Ulp(X;Y\Z) =Ulp(X;Y\Z) forall Q € Ap
and (UC)
Ulp(X;Z\Y) =Ulp(X;Z\Y) forall Q € Ap.
where
Ap := {Q €A ‘Q(X =x,Y :y> = P(X =x,Y :y)v
O0X=x,Z=z7)=PX=x,Z=2)
for all (x,y,z) € X xY x Z}.
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So, (UC) states that unique information is constant over Ap and by exploiting this
result a definition of unique information can be formulated.

Defining Unique Information. From (UC) and the identities (3.2), it follows
that shared information is also constant over Ap, i.e., SIp(X;Y,Z) = SIp(X;Y,Z)
for all Q € Ap. But MIp(X;Y,Z) is not constant on Ap and so CI(X;Y,Z) varies
on Ap by (PID). Bertschinger et al. noticed that if there exists Qyp € Ap such that
Clp,(X;Y,Z) =0, then

Ulp(X;Y\Z) = Ulp,(X; Y\Z) =M, (X;Y | Z)
leading to an evaluation of unique information. Unfortunately, such Qg doesn’t
necessarily exist for all definitions of SI, Ul, and CI. Thus, they introduced a

definition of unique information that guarantees the existence of this special Qg [7,
Lemma 3]:

Ulp(X;Y\Z) = min MIp(X;Y | Z)
Q€Ap

. (BROJA I)
Ulp(X;Z\Y) = min MIp(X;Z | Y).
Q€Ap
So, from (PID) and (3.2),
SIp(X;Y,Z) = max Colp(X;Y;Z)
oche (BROJA II)

Clp(X;Y,Z) = MIp(X;(Y,Z)) — min Miy(X; (Y, Z)).
€Ap

where Colp(X;Y;Z) =MIp(X;Y) —MIp(X;Y | Z). In addition, they proved that
the four optimization problems in (BROJA I) and (BROJA II) are equivalent [7,
Lemma 4].
Convex Program. To computing BROJA PID measure it is enough to evaluate
CIp(X;Y,Z) which requires computing éléiAn Ml (X;(Y,Z)). So, the BROJA PID
P

measure can be obtained by solving the following optimization problem which is
convex — see Chapter 4.

minimize MI, ., (x;y,2) overgqe RXxYxz
subject to gy ys = b, forall (x,y) e X xY P)
Grz = D%, forall (x,z) e X xZ
Gryz >0 for all (x,y,z) e X XY X Z,
where
Gryz: =0 X=xY=yZ=2) for all (x,y,z) e X XY xXZ
Gy = qu,y,W forall (x,y) € X XY
W
Gz i= Z%,w,z forall (x,z) e X X Z
w
by, :=P(X=x,Y=y) forallxc X,ycY
b: =P(X=x2Z=x) forallxe X,z€ Z.
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4. COMPUTATION OF A BIVARIATE PARTIAL
INFORMATION DECOMPOSITION MEASURE

Chapter 3 defines partial information decomposition (PID), explains what is meant
by PID measure, and presents different measures for PID, in particular, focuses
on Bertschinger et al. (BROJA) PID measure.

This chapter looks into the Bertschinger et al. (BROJA) measure of bivariate
PID [7]. In particular, it studies the solution of the convex program resulting from
this measure. This chapter is a collection of the results obtained in [42].

Recall from Chapter 3 Subsection 3.2.2, that the core of the BROJA PID mea-
sure is solving the following Convex Optimization problem,

minimize MI(, ), (x;y,2) overgq € RYXXVxZ

subject t0 gy« = b3 forall (x,y) eX xY P)
Gz =%, forall (x,z) e X X Z
Gryz >0 for all (x,y,z) e X XY X Z,
where
Gryor = Y Qryow forall (x,y) e X xY
w
Qx5 i= qu7yv,z forall (x,z) e X X Z
w
by, :=P(X=x,Y=y) forallxeX,yeY
b:.:=P(X=x,Z=2) forallxe X, ze Z.

Before indulging into discussing the problem above and its solution, readers who
do not recall convexity well are invited to check Appendix A that serves as a
background on convex sets and convex functions.

4.1. Feasible Region and Optimality

This section starts by defining the feasible region of (CP),
q(b) := {q € RX< >z ‘ VX, 9,20 Qrys = DYy, Qrsz = bi,z}-

Note that ¢ lies on the boundary! of the feasible region if qx,y,; = 0 for at least one
triplet (x,y,z). The following assumptions hold for the feasible region.

1. b¥ and b* are probability distributions.

'In fact ¢ lies on the relative boundary since J[(b) is lower-dimensional. The differentiate be-
tween the two concepts will be explicit when needed.
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2. No element of X is “redundant”, i.e., for every x € X we have both ) , > 0
and b7, > 0.

First of all, consider the vectors d € R**Y*Z from Appendix A.1 of [7], defined
by
d‘x,y,z,y’,z’ g L 1x.,y’,z’ _ lx,y,z/ _ IX-,)’I-,Z’ 4.1)

(where 1 is the vector with exactly one non-zero entry in the given position, and
0 otherwise) satisfy dy . = dy ., = 0 for all x,y,z (we omit the superscripts for
convenience, when possible). Recall the equations (PID) and (3.2) which define
the information decomposition, it is obvious that there will always exist a partial
information decomposition for MI(X;Y,Z). In the following proposition we show
that the optimization problem (CP) is always feasible, i.e., {(b) is non-empty for
any b.

Proposition 4.1.1. () is non-empty for any b.

Proof. 1f (D) is empty, then gy y . # by, Or gy« . 7 by, for all . It is easy to see
that g can be constructed such that it satisfies one of the two equalities. Without

loss of generality, assume that gy, = b}, and gy.. # b%_, then
Grz 7 Vo, = qu,y,z #P(X=xand Z =72)

= ZZqW;AZP( =xand Z =7)
— quxﬂ;éxp(x xand Z =7z)
= qu%*;éZP(X xand Z =z)
= Y P(x —xandz{ y ;AZP( =xand Z =7)
— y by« # b3,

Thus §[(b) is non-empty is equivalent to by, = b7, forall x € X. O

The first attempt to simplify the problem is by reducing the feasible region, i.e.,
fixing variables when possible. This will help in diminishing the complexity of
computing the objective function and its derivatives. The evident candidates are
the variables that they are implied equations, i.e., gy, = 0 holds for all ¢ € {(b).
Tracing the latter candidates, Proposition 4.1.2 restrict the set of variables of the
Convex Program (CP) to those triples

(x,y,z) for which a feasible ¢ exists with g, # 0.

Proposition 4.1.2 ( [42, Proposition 11). If, for some (x,y,z) € X XY X Z, gy, =0
holds for all q € Y((b), then b¥, =0 or by, = 0.
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Denote the restricted set of variables by
Fb):={(x,,2) EXxYXZ| b, >0,b%7, >0 }, 4.2)

then the dimension of the feasible region (with respect to the number of variables,
| Z(b)]) is given by Corollary 4.1.1. The term “(b)” is omitted whenever no
confusion can arise.

Corollary 4.1.1 ( [42, Corollary 1]). The dimension of {(b) is

|7 B+ X = [{(x,) [ 6%, > O} — [{(x,2) | b7, > 0}

The rest of the chapter discusses several possibilities for finding the optimal
solution of the convex program (CP): Gradient descent, interior point methods,
and geometric programming.

4.2. Direct Methods

This section starts with the direct methods for finding the optimal solution, namely,
gradient descent and interior point method. First, it analyzes the objective func-
tion, gradient, and Hessian. Then, accordingly, it discusses whether each method
is appropriate or not for tackling the problem.

4.2.1. Preliminaries
The objective function to be minimized is
MI(x7y7z)~q (X;y7 Z) = H(x7y7z)~q(x) - H(x,y,z)Nq(x | Y Z)' 4.3)

Since the distribution of x is fixed by the marginal equations, the first term in the
sum is a constant, and what is left is minimizing the negative conditional entropy.
The negative conditional entropy is defined as:

fiR =5 R
q— Y GeycIn (quz> . @4
(xyz)e s Dr.yz
From now on, the Convex Program which is dealt with is
minimize  — H(,y)4(x|y,2) overge€ R/
subject to gy« = b, for all (x,y) € Zs, (P
Grpz = b2, forall (x,z) € Zx.
Gryz >0 for all (x,y,2) € 7.

where 7., ={(x,y)| (x,y,2) € #}and 7., ={(x,2)| (x,y,2) € 7} The func-

tion f is continuous on its domain, and it is smooth on ]O,oo[’f¢ . The gradient is

(V@) =aaf@) =m(T2%). 45)

XY, q+.y,z
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and the Hessian

0, if (v',2) # (».2)
-1
, if (,7)=02),x#x
(Hf(q)) =00y f(@) =X Gy 02) = 2). x #
(e3:2), (' y',2)

Qxyz —Gxyz o0 1 1

———= if (x,y,7) = (xy2).

x,yz 9+.yz2 ( )= )

(4.6)
It is worth pointing out that the Hessian, while positive semidefinite, is not pos-
itive definite, and, more pertinently, is not in general positive definite on the tan-
gent space of the feasible region, i.e., r' H f(q)r = 0 is possible for r € R/ with
Feys = I'exz = 0 for all (x,y,z). Indeed, if, e.g., # =X xY x Z, it is easy to
see that the kernel of H f(q) has dimension |Y X Z|, whereas the feasible region
has dimension |X|(|Y|—1)(|Z| - 1) = |X xY x Z| — |X||Y| — |X||Z| + 1. Hence,
if |Y x Z| > |X||Y|+ |X||Z| — 1, then for every ¢(!) the kernel of H f(g) must have
a non-empty intersection with the tangent space of the feasible region.

OPTIMALITY CONDITION AND BOUNDARY ISSUES. In the case of points ¢
which lie on the boundary of the domain, i.e., gy, = O for at least one triplet
(x,y,z), some partial derivatives do not exist. For y, z, denote X, := {x | (x,y,2) €
7 }. Proposition 4.2.1 describes the situation when the optimal solution lies on
the boundary.

Definition 4.2.1 (Section 2.3 [23]). The relative entropy or Kullback—Leibler dis-
tance between two probability mass functions p(x) and g(x) is defined as

Dy (p(x)||q(x) Z;,(p ) log( ())

)

Moreover, if there is any symbol x € X such that p(x) > 0 and ¢g(x) = 0, then

Dy (p(x)[lg(x)) = .

Otherwise, if there is any symbol x € X such that p(x) = 0 and g(x) > 0, then by
convention Dy, (p(x)]|g(x)) = 0.
Proposition 4.2.1. Let g €.
(a) Ifthere is an (x,y,z) € ¥ with gy, =0 but q. . >0, then f does not have
a sub-gradient at q. Indeed, there is a feasible descent direction of f at q
with directional derivative —oo.

(b) Otherwise — i.e., for all (x,y,z) € #, qx,. =0 only if q.y. =0 — sub-
gradients exist. For all y,z, let p** €0, I]X"‘” be a probability distribution
on X,,. Suppose that, for all y,z with q. . > 0,

pi= s gl x e X %))
Gxyz
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Then g defined by g := In(py*), for all (x,y,z) € 7, is a sub-gradient
of f at q.
Moreover; g’ is a sub-gradient iff there exists such a g with
® &y, S gforall(x,yz) € F with gy, =0;
° g;%z =g forall (x,y,z) € F with gy, > 0.
Proof. For (a), let (y,z) €Y x Z with g, > 0, and x € X, with g, ,, = 0. There

exist y',z’ such that ¢y ;,¢xyy > 0. This means that d := d% ag defined
in (4.1) is a feasible direction. Now let’s show that f'(g;d) = —e.

f/(C]; d_) —1In ( dx.yz ) 4 In ( qxy 7 ) —In ( qx.y7 ) —In < qxy z )

Qxyz qxy 7 qxy7 qxyz
=1In ( Axyz Gxy 7Gxy Gxy' 2 )
xyz Gxy 2 Gxyz 9y 2

evaluating all the variables, accordingly, we get that f'(g;d) = —oo. Invoking
Lemma 2.1.1 yields non-existence of the sub-gradient.
As to (b), we prove the statement for every pair (y,z) € Y x Z for the function

Xy
R —= R
q— Z qx1n(qx/q-),
xeXy;

and then use Lemma 2.1.2.

Let us fix one pair (y,z). If g.; > 0 for all x € X, holds, then f is differen-
tiable at g, so we simply apply Remark 2.1.1.

Now assume g, ,, = 0. A vector g € R%: is a sub-gradient of Sy iff

Z FryeI0(Feye/Tiyz) = fr(q+7) > fre(@) +8'r = fre(q) + Z regx, (4.8)

xeXy; x€Xy;

holds for all » € R with rryz > forall (x,y,z) € #,and r, > 0.

We immediately deduce g, < 0 for all x. Let p. := % for all x, and p, :=
p./C, with C := p. Clearly, p is a probability distribution on X,,. Moreover, the
difference LHS — RHS of (4.8) is equal to

DKL(F/I’*HP) —ll’lc,

with Dy, denoting Kullback-Leibler divergence. From the usual properties of the
Kullback-Leibler divergence, we see that this expression is greater-than-or-equal
to O for all r, if and only if C < 1, which translates to

ZegX§ 1.

X

From this, the statements in (b) follow. ]
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From the proposition, the following corollary is derived.
Corollary 4.2.1 ( [42, Corollary 2]). Suppose a minimum of f over J(b) is at-
tained in a point q with gy, = 0 for a triple (x,y,z) with b¥, > 0 and by, > 0.
Then qy.y, =0 for all u € X.

Now the optimality conditions can be written down based on Proposition 4.2.1
and the KKT conditions.

Corollary 4.2.2 ( [42, Corollary 3]). Let g € {(b). The minimum of f over {(b)
is attained in q if, and only if, (a) .. = 0 holds whenever there is an (x,y,z) €
J (b) with qy.y,, = 0; and (D) there exist

® Ay €R, for each (x,y) with b¥, > 0;

® U €R, foreach (x,z) with by > 0;
satisfying the following: For all y,z with gy, > 0,

Acy -+t = In (M) holds for all x € Xy.;

Qxyz

for all y,z with q.,. =0 (but X, # 0), there is a probability distribution p &
10,11 on X,, such that

Avy + Wy < In(p*) holds for all x € X,,.

4.2.2. Gradient Descent

It is clear from Proposition 4.2.1 and Corollary 4.2.1 that the boundary is “prob-
lematic”. On the one hand, the optimal point can sometimes be on the boundary
(e.g. the AND-gate, see Appendix A.2 of [7].) On the other hand, by Corollary
4.2.1, optimal boundary points lie in a lower dimensional subset inside the bound-
ary (codimension = |X|), and the optimal points on the boundary are “squeezed
in” between boundary regions which are “infinitely strongly repellent”.

From the perspective of choosing an algorithm, it is pertinent that sub-gradients
do not exist everywhere on the boundary. This rules out the use of algorithms
which rely on evaluating (sub-)gradients on the boundary, such as projected (sub-
)gradient descent as well as generic active set and sequential quadratic program-
ming methods”.

Due to the huge popularity of gradient descent, the decision has been made to
present at least one version of it. Thus, a designed ad-hoc quick-and-dirty gradient
descent algorithm which does its best to avoid the pitfalls of the feasible region:
its boundary. We now describe this algorithm.

Denote by A the matrix representing the LHS of the equations in (CP); also
reduce A by removing rows which are linear combinations of other rows. Now,
multiplication by the matrix P := AT(ATA)*IA amounts to projection onto the

2We refer the interested reader to [54] for background on these optimization methods.
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tangent space {d | Ad = 0} of the feasible region, and PV f(gq) is the gradient of f
in the tangent space, taken at the point g.

The strategy by which we try to avoid the dangers of approaching the boundary
of the feasible region in the “wrong” way is by never reducing the smallest entry
of the current iterate g by more than 10%. Here is the algorithm.

Algorithm 2: Gradient Descent

1 Construct the matrix A

2 Compute P:=A"(A"A)"'A

3 Initialize ¢ to a point in the interior of the feasible region

4 repeat

5 Compute f(q) if f(q) better than all previous solutions then
6 ‘ store ¢

7 Compute the gradient Vf(q)

8 Compute the projection of the gradient g := PV f(q)

9 Determine a step size 1, ensuring gy, > 1gx.y,. for all x,y,z
10 Update g =qg—ng

1 until sropping criterion is reached

o

There are lots of challenges with this approach, not the least of which is decid-
ing on the step size 1. Generally, a good step size for gradient descent is 1 over
the largest eigenvalue of the Hessian—but the eigenvalues of the Hessian tend to
infinity.

The stopping criterion is also not obvious: we use a combination of the norm
of the projected gradient, the distance to the boundary, and a maximum of 1000
iterations. (None of these decisions are motivated by careful thought.) It is worth
to note that this algorithm produced solutions which are far from being optimal,
see [42]. The latter might be due to that 2 is not designed well, but another
implementation based on the Frank-Wolfe algorithm, provided by the PYTHON
package DIT, used to solve (CP) and the tests in [43] showed that Frank-Wolfe
algorithm produces solutions which are far from being optimal.

4.2.3. Interior Point Methods

Using Interior Point Methods (IPMs) appears to be the natural approach: While
the iterations can converge to a point on the boundary, none of the iterations ac-
tually lie on the boundary, and that is an inherent property of the method. Conse-
quently, problems with gradients, or even non-existing sub-gradients, never occur.

Even here, however, there are caveats involving the boundary. Chapter 2 Sub-
section 2.2.2 discusses the convergence of a particular Interior Point method, Bar-
rier method. The complexity of this method depends mainly on computing the
gradient and the Hessian of the barrier rather than those of the objective function.
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Recall that the analysis of this method requires that the function

F:qetfolg) =Y 0(fi(q)),

i=1

be standard self-concordant, which means that, for some constant C, for all ¢,/
DF(q)[h,h,h) < C- (WHF (q)h) ", 4.9)

where f denotes the objective function of the convex problem, f; forall 1 <i<m
denote the inequality constraints, ¢ denotes the barrier function, and D* denotes

m
the tensor of third derivatives. If the function F: g — ¢ fo(q) — Z o(fi(q)) is a
i=1

standard self-concordant and
1
HF (x) > ;VF(x)TVF(x), for all x € int(C). (4.10)

then the feasible region has a v-self-concordant barrier, F'. Theorem 2.2.1 shows
that for any closed convex set, which is the case for (CP’), there exists a self-
concordant barrier. But as Nemirovski has stated

The aforementioned theorem says that such a barrier always exists,
and thus gives us certain encouragement. At the same time, the "uni-
versal" barrier given by the theorem usually is too complicated nu-
merically, since straightforward computation of a multidimensional
integral involved into the construction is, typically, an untractable
task.

So, the goal is to find a computable barrier for (CP’) where the gradient and
inverse of the Hessian for the barrier are easier to compute than those of the objec-
tive function. Consider the function F: g — tf(q) — Zln(quz), which is needed

Xyz
for the upcoming analysis, with its Hessian

D’F = vy NOxy F 4.11
( (Q)) (2 (¢/.) (x'y,7)9(x,y,2) (Q) ( )
—1
: if X' # x5 (v,2) = (v, 2)
9x,yz
t 1 1

- ) if X, ),2) = xlvylvzl
dx.y,z q}%,y,z dxyz ( ) ( )

0, otherwise,
4.12)
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its tensor of third derivative

D3F ) = a I\ S 4.13
( (q) (x,2),(x 2 ), (2 " ") (" y"2") ( )
(1 . ;éx #X,
P if 02)=0"2)=0"2")
*,y,Z
—t 2 t )
Ay ) Oy F(9) = —— 5t 5, if 63’ .
qx7y7Z q)ﬁy_z Q*’y./z
0, otherwise,
4.14)
and their evaluations at the point A € R¥*¥*Z
t 2 t
3F(Q)[hvhvh]zz T3 T 3 + 2 hiyz
xY2 qx vz xyz Dy
+3 thyy - hE
XXZ;Z *yz xyz b yz 4 hay.z M) 4.15)
x#x'

t
+6 Z o (hxw-,z Dy hx/’m) )

xxX ¥ yz Txy:2

x#x' #x

t 1 t t
ZF(Q)[h7h] = Z ( + 2 B ) hi}z Z (hx:yvz 'hx’,y7z) ’
X,

Axyz  Gxyz Gxyz XX 3z dxy,z
x#x'
(4.16)

where f is the negative conditional entropy function.

The first try is to use the logarithmic barrier, i.e., ¢(f;) = In(f;). Proposi-
tion 4.2.2 shows that the logarithmic barrier is not self-concordant when the opti-
mal solution is on the boundary. It explains why, even for some IPMs, approach-
ing the boundary can be problematic.

Proposition 4.2.2. Let n > 2, and consider the function
n
F:g—t Z gxIn(gx/qx) — Zln(%)'
x=1 X

There is no t such that (4.9) holds for all g € 0,e0[" and all h.
Proof. LetX ={0,1,...,n—1},Y = {0}, and Z = {0}. Set g to be

1

3 ifx=y=2z=0

9x,yz = 1 . 0 and 0 “4.17)
2 =1} ify=z=0and x # 0,
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hy n-—1 1
h:(h(hh],...,/’l])WhereFI ) andh]:m.
The terms of D*F (q)[h, h, h] sums up to more than wh?* and those of the Hessian

D?F(q)[h,h,h] to less than w'h*> where w > 2(w')”>. Hence

*F ()1, h,h) = 2(DF () [, 1)) > 0.
O

Thus, for the Convex Program (CP’) the log barrier does not work. How-
ever, (CP’) can be written as

minimize Z S
(x..2)EX XY xZ

subject to gy« = b7, for all (x,y) € Zxy
Grz = D%, forall (x,z) € 7,
Gryz 2 0 forall (x,yz) € 7  (4.18a)
Px.yz = Qxyz for all (x,y,z ) 7 (4.18b)
Fryz < Gy IN(Prye/ay.) for all (x,y,z) € 7. (4.18¢)

For (4.18), the function
F:RZ/ xR’ xR/ — R
(”a ‘Ivl’) - Z ln Qxy z nyz/%c) z) rX,y.,z) - ln(‘h,y;) - ln(Px.,y,z)
xX,),2
is a |_#|-self concordant barrier for .%¢y,. The next chapter shows that using the
barrier method the number of iterations needed until it converges to the €-optimal
solution (defined in Section 2.2.2) of the Convex Program (4.18) is

o(yi7ma()

4.3. Geometric Program

Geometric programming forms a sub-class of Convex Programs; they are consid-
ered to be easier to solve than general Convex Programs: Specialized algorithms
for solving Geometric Programs have been around for a half-century (or more).
The so-called “Lagrange dual” of (CP’) can be written as Geometric Program.
This section briefly reviews Geometric programming and writes down the Geo-
metric program corresponding to (CP’).
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4.3.1. Background

Geometric Programming (GP) is introduced by Duffin, Peterson, and Zener in [27,
1967]. GP is a famous sub-class of Convex Optimization since it models numer-
ous real-world applications in particularly integrated circuit designing [10,12] and
communication systems [20]. GP naturally are not convex but can be easily trans-
formed into Convex Programs. GP can be solved using an Interior Point method,
first described by Nesterov and Nemirovsky [52], which has a polynomial time
complexity. Recently, new solution methods emerged which solves Geometric
Programs (GP), even large-scale ones, efficiently and reliably (see e.g. [1]). Here
only the convex formulation of GPs is discussed. The GP can be written as fol-
lows,

K
minimize In [ZO exp (ag y +cox)]

k=1 (GP)

K;
subject to ln[z exp (a{ky+ci7k)] <0 i=1,....t,
k=1
over the variables y € R", where n > 0 such that aiTJ(, i=1,...,t is the kth
row of a matrix A; € RE*" and Ky + ---+ K, = n. It can be easily noted that
length of aj; is m. In what follows, let aj, = —b and ¢; = (cj1,...,Cjk;) =
(1HVj’1,...,1I1Vj7Kj) ,j=0,1,....t.

For every (GP), there exists the following so-called dual GP which was called
a linear logarithmic program in 1960s (see e.g. [22]),

maximize ngo— ZXO;IHXOj—FZ(C,-T'Xi— injln xTij )

subjectto ) A

x>0 i=1,....t,
(Dual GP)
over the variable x € R". For more details on the construction of the dual of GP
we refer to [11]. The next subsection shows that (CP’) is the dual of a primal
GP. Note that Chapter 5 expresses the GP which is a primal of (CP’) as a “Cone
Program” and discuss its duality.

4.3.2. (CP) is a Dual GP
From Equation (4.3), the BROJA measure can be seen as ( m'slx/H (X1|Y,Z)
x.)2)€ 2

subjected to some corresponding constraints.
Proposition 4.3.1. (CP’) is a dual Geometric Program.
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Proof. LetA =[Ok , A ,A7,...,Al] € R™" and Ag = (bY,b%_). Then we can
write (Dual GP) as

t t K

Ki . Ki
maximize Z injln% + Z Zx,-7jln(2x,~7j)
=1

i=0 j=1 Lj o i=1j=1 (4.19)

subjectto Ax=05b
x>0.

Now set t = |V x Z| and m = |X x Y|+ |X x Z|. For each (yj,zj) €Y x Z, let
Kj=Y I, when j#0,Ko=0,and (vj,...,vjx,) =1" forall j=0,....1.

xeX
Finally choosing A accordingly, we see that (CP’) is the dual of the Geometric
Program. O

Using the proof of Proposition 4.3.1, the primal of Problem (CP’) is

minimize Z b};y-/lw—i— Z bfc’z-ux’Z

(ey)eXx (rajex xZ
subjectto In ( Y exp (A + /.sz)> <0 for all (y,z) €Y x Z.
xeX

(GP)
over the variables A € R**Y, u € R,

4.4. Computational Results

This section serves to mention the computational results obtained by solving
BROJA Convex Program (CP’) on a large number of instances, using state-of-
art optimization toolkits. The author of this thesis performed numerous exper-
iments in Julia [39] and used different optimization solvers like MOSEK [1, 2],
IPOPT [69], ARTELYS KNITRO [15], CVXOPT [65], ECOS [25], and SCS [55,56].

The summary of the results is that the commercial convex optimization solver
MOSEK which uses interior point methods was the fastest in computing BROJA
PID measure for most of the instances, but MOSEK was not robust. ECOS which
is a Cone Programming solver and uses interior point methods was very robust
and comparably as fast as MOSEK except for some large instances.

As for the rest of the solvers, the results were inadequate. The best solvers
among this group were the ones which employ interior point methods, but even
these solvers were not able to compute BROJA PID measure for more than 40% of
the instances. The ones which use first-order methods were unable to compute the
BROIJA PID measure even for very easy and small instances such as X =Y XORZ
where Y and Z are uniformly distributed. For the full details of the computational
results, the reader is invited to check [42].
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5. ESTIMATOR OF BIVARIATE PARTIAL
INFORMATION DECOMPOSITION

Chapter 4 discusses the solution of the convex program (CP) and concludes that
interior point methods are the most effective and reliable in solving the problem.
Here, rather than dealing with (CP) as a general Convex Programming problem,
the chapter models it as a Cone Programming problem, a subclass of Convex
Optimization. Furthermore, the chapter discusses a software package to compute
the bivariate partial information decomposition based on the Cone Programming
model.

Section 5.1 explains Cone Programming, in essence, and discusses its du-
ality properties. Section 5.2 gives the Conic formulation of the BROJA PID
measure. Section 5.4 presents some of the computational results of the solver
BROJA_2PID [43] to compute the BROJA PID measure which is based one of the
Cone Programming models presented in Section 5.2.

5.1. Background on Cone Programming

This section reviews the mathematical definitions to the point in which they are
necessary to understand our model. Conic optimization is the largest proper
subclass in convex optimization. Many subclasses of convex optimization like
Semidefinite, Geometric, Quadratic, and Linear are in fact Cone Programming.
Before defining Cone Programming, recall the definition of closed convex cones
and their duals. The section is to a certain extent a collection of known results
taken from the literature on Cone Programming (e.g. [11,29,51, 62]).

5.1.1. Closed Convex Cones

A nonempty closed convex cone # C R" is a closed set which is convex, i.e., for
any x,y € # and 0 < 0 < 1 we have

Ox+(1—0)ye . x,
and is a cone, i.e., for any x € # and 6 > 0 we have

Oxe .

Example 5.1.1. Examples of closed convex cones.
{0} and R™.
The nonnegative orthant R”!.

The set of positive semidefinite matrices .7}

The Lorentz (second order) cone

m—1
R~ {(xl,...,xm,l,xm)T eER™ | xpy > Z xlz}
i=1
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Remark 5.1.1. Let 7", . Z C R be two closed convex cones. Then the direct sum
of # and .¥

A DL ={(x,y) eR"®R" |xe ¥ ,ye £} 5.1

is a closed convex cone.

The proof of Remark 5.1.1 is easy and left to the reader. (Closure can be
attained using a continuous bilinear mapping.) Note that since the direct sum will
be always done on finite indices we are going to use the terms direct sum and
direct product interchangeably.

Generalized inequalities. When working with closed convex cones, the defi-
nition of inequalities is generalized into the so-called “generalized inequalities”.
The generalized inequality is a partial ordering on R™ that has many properties of
the standard ordering on R. A closed convex cone .#  is associated with a partial
ordering on R™ defined by

x<yyey—xeXx.
Similarly, the strict generalized inequality is defined when a closed convex cone
A is associated with a strict partial ordering on R™
x<yy<ey—xeint(K).
Dual Cones. The dual of a closed convex cone % is the set %" defined as
A ={xcR"|y'x>0forallyc .#}.

Example 5.1.2. Examples of duals of closed convex cones.
The dual of {0} is R™.

The dual of R is {0}.

The dual of nonnegative orthant is itself.

The dual of .77}" is itself.

The dual of the Lorentz cone is itself.

Remark 5.1.2. The dual of a closed convex cone is again a closed convex cone.

The notion of cone duality can be applied to direct sums and so
Lemma 5.1.1. Let %, C R™ be two closed convex cones. Then

(L) =" L.

The eloquence of the notion of duality can be expressed by the following fact:
The dual of the dual is the original object.

Lemma 5.1.2. Let # C R™ be a closed convex cone. The dual of the cone H ™
is the cone J itself.

It is relevant to mention that the proof of the above lemma needs the so-called
“Separation Theorem”. Different styles of proofs can be found in [29,49,51,62].
This subsection is concluded by a special cone, namely, exponential cone, Hexp.
The cone #¢xp, will be the cornerstone of our model and shall be used throughout
the rest of the chapter.

46



Figure 3. Left - the cone ¢y, for —2 <r <0 and 0 < g,p < 2. Right - the cone Ji/e;:p
for -2 <u<0and 0 <w,v <2.

Exponential Cone. Before proceeding to construct the exponential cone which
is defined in [18], recall the following facts about convex functions.

Proposition 5.1.1. A function f : R" — R is convex if and only if its epigraph

epi(f) :={(x,1) eR" xR [ f(x) <1}

is a convex set. Moreover, f is said to be concave if —f is convex.

The perspective of a function f : R" — R is the function g : R" x R — R such
that

g(x,t) =tf(x/t) and dom(g) = {(x,7) | x/t € dom(f),? > 0}. (5.2)

Proposition 5.1.2. Let f : R" — R be a convex function then the perspective of f
is a convex function.

The epigraph of the perspective of ¢* is a cone
H ={(rq.p) €R*| g’ < p.g >0},
and so the exponential cone is the closure of ¢, i.e.,
Hexp :=KU{(r,0,p) | r<0,p>0}.

From the previous propositions and the construction of ey, it is clear that ey,
is a closed convex cone. Finally, the dual cone of 7, is written down in the
following lemma — for the proof see [18, Section 4.3].

Lemma 5.1.3. The dual cone of Hep is

op = L, v, w) € R | u<0,—ue’ < ew}U{(0,v,w)|v>0,w>0}. (5.3)
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5.1.2. Cone Programs

Cone Programming is a far-reaching generalization of Linear Programming, which
may contain generalized inequalities. This subsection gives the standard form
Cone Program and discusses important properties regarding the optimality.

Standard form Cone Program. Let ¥ C R" ¢ C R" be two closed convex
cones, A € R™" be a matrix, and ¢ € R",b € R™ be two vectors. The primal cone
program is of the form

minimize ¢! x
subjectto Ax <y b P)
xe X,

Example 5.1.3. The simplest Cone Program is the Linear Program which can
be defined using the following cones: non-negative orthant, {0}, and R". The
standard form Linear program is

T

minimize ¢ x
subjectto Ax=25> (5.4)
Gx<h.

over the variable x € R" where G € R”" and h € R”. Thus the Cone Program
model of a Linear Program is

minimize ¢!x
subjectto  Ax <, b
Gx SR’}r h

X ZRn 0.

5.9

Note that from now on the inequality x >gr» 0 is expressed by the statement “x is
a free variable”.

The Dual Cone Program. Before writing down the dual of a cone program,
the concept of duality is explained in a nutshell. Let fy, f1,. .., fi» be convex func-
tions from R" to R and G € R”" be a matrix. Then the general constrained convex
optimization problem can be written as

minimize fy(x)
subjectto  fi(x) <£ 0 foralll1 <i<m (5.6)
Gx = h.
Every problem of the form (5.6) is associated with the following Lagrangian func-
tion
L:R"xXR"xRF — R
n P 5.7
('xan79> - L()C,T],e):fo(X)+anﬁ<X)+ZGI(GX—h)I

i=1 i=1
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From the Lagrangian function, the Lagrangian dual function is defined as

¢:R"xR’ = R

m )4
n.6) - ;ggux,n,e)=;g;;(fo(x>+i21nfﬁ(x>+izlei<Gx—h)i,

(5.8)
where D := {x | x € N/, dom(f;),Gx = h} and g is the objective function of the
dual problem.

Proposition 5.1.3 ( [62], Lemma 4.4). The Lagrangian dual function g(n,0) is
concave. For any 1 > ¢+ 0 and any 6,

g(n,0) < fo(x") (5.9)

where x* is the optimal solution of fy(x).

Proposition 5.1.3 indicates that when maximizing g(7n, 6) subjected to 1 > o+
0 the result is a convex optimization problem which lower bounds the optimal
value of the primal problem. Thus the dual problem is

maximize g(n,0)

. (5.10)
subjectto 1 > o= 0.
Remark 5.1.3. The problem of (5.10) can also be written as
maximize g'(n,0
g(n,0) 5.11)

subjectto 1 > 0.
Proof. In Problem (5.6), f; <0, i =1,...,m can be written as
f1<0,i=1,....m,

where each f! explicitly represents the cone .. So, f] will replace f; in g(n,0).
The primal problem (5.6) becomes

minimize fo(x)
subject to £/ (x)

<g: 0 foralll<i<m (5.12)
Gx=h.

In the new dual problem, the constraint 7 > 0 follows from the fact (R".)" =
R’. O

Proposition 5.1.4. The dual cone problem which is the dual problem of the primal
cone program (P) is

maximize —b' -n
subjectto —ATn <, c (D)
-nesr.
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Proof. The Lagrangian of problem (P) is

Lix,n)=x"c+(b—Ax)T7’
:xT(C—ATn/)+bT /’
and so the dual objective function is
b'n if —ATn' fce
g(n') = {

—oo  otherwise.

Finally, define 7 = —n’ and we write the implicit constraint —7) € dom(g) explic-
itly as —ATn < 4 c. O

The following example writes down the dual of two special Cone Programs
that this section is using later.

Example 5.1.4. When .Z = {0} which is sometimes referred to as the equational
form of Cone Programs, the dual problem can be written as

maximize —b'n
subject to —ATn <y+cC (D)
7 is free.

When the variables are free, i.e., .# = {R"} the dual problem can be written as

maximize —b'n
subjectto —ATn=c (D)
—-nexy.

Weak and Strong Duality. From Proposition 5.1.3, the optimal value of the
dual problem is at most that of the primal problem. This property is referred to as
the weak duality. The primal-dual pair (P), (D) always have weak duality. In what
follows, a stating of another duality property for the Cone Program pair namely
strong duality which the primal-dual pair may not necessarily have.

Definition 5.1.1. Consider the primal-dual pair (P), (D). Then the following is
defined,

1. A vector x € R" (resp. n € R™) is said to be a feasible solution of (P)

(resp. (D)) if b—Ax € £ and x € ¥ (resp. —1 € dom(g) N.ZL™).

2. We say that (P) and (D) satisfy weak duality if for any x and any 7 feasible

solutions of (P) and (D) respectively,

cTx+b'n>0.

3. If x is a feasible solution of (P) and 1) is a feasible solution of (D), then the
duality gap d is
d:=c'x+b'n.

50



4. We say that (P) and (D) satisfy strong duality if and only if d is zero.
Remark. If strong duality holds for (P) and (D), then x* and n* in which ¢? x* +
b'n* =0 are the optimal solutions of (P) and (D) respectively.

As mentioned before, strong duality does not necessarily hold for the Cone
Program pair. In what follows, the definition of the interior point of a Cone Pro-
gram (P) is stated which is sufficient for the strong duality of the Cone program
pair to hold.

Definition 5.1.2 (Definition 4.6.4 [29]). An interior point of the cone program (P)
is a point X such that
Ai<gbandi e X,

and the following additional requirement holds:

feint(x) if £ ={0},and
b—Ax €int(.¥) otherwise.

Remark. Let 7 be a closed convex cone. Recall that, x € int(_#") is equivalent
to the following: there exists € > 0 such that for any y € R", we have y € J#
whenever |[x—y| <e.

Theorem 5.1.1 (Theorem 4.7.1 [29]). If the Primal program (P) is feasible, has a
finite value Y, and an interior point X, then the dual program (D) is also feasible
and has the same value 7.

Conic formulation of Geometric Program. The previous chapter mentions
that our Convex program is a dual of a Geometric Program and that such duality
can be obtained using a conic formulation of a special Geometric Program. The
remainder of this section discusses the duality of that GP which will serve as a
primary example of our conic formulation of (CP). From now on, the triplets
(x,¥,2) for which bY , = 0 or b5, = 0 are ignored. The latter is valid since Propo-
sition 4.1.2 allows tracing their corresponding values in the optimal solution.

Let 7.y :={(x,y) |3z (x,y,2) € ¢} and similarly define 7., and 2.
Recall the following GP which will be shown to be a primal of (CP),

minimize Y A+ ) DA

(Xyejxv (XZE]AL
(BGP)
subjectto In < Y exp (A + lxz)> <0 forall (y,2) € Z..
xeX

where A.,,A . € R for all (x,y,z) € #. The cone which is used in model-
ing (BGP) is called the geometric cone, 4", defined as

G"={(s,v) R xR | Y eV <1} (5.13)
i=1

Note that by convention e —Si/V — () whenever v = 0. The author refers to [31] for
the proof as well as the construction of the geometric cone and its following dual.
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Proposition 5.1.5. 4" is a closed convex cone with a nonempty interior. More-
over, its corresponding dual cone is (9")" is

qi
9"V ={(¢q,z) eR. xR |z> ) giln———}.
@) =109 R xRIz2 Tt

Proposition 5.1.6. The following Convex Program is the dual of (BGP)

maximize Y gey:In <‘1 *J;z)

(er2)e.s Ty

subjectto  qyy.=b¥, forall (x,y) € Zyy (5.14)
Gxz = Dby, forall (x,z) € Fx.
qx,y,z >0 Jor all (x,y,z) € /

Proof. Let A be the accordingly chosen matrix in Proposition 4.3.1, 1y, be
the all ones vector of size |Y x Z|, and /,, = {(x,y,z) | for some (y,z) € _7,.},
K, . = |¢;_|. The problem (BGP) can be written as

. . Z
minimize Z bY yAxy + Z b% Ax

(xy)EX XY (x2)EXXZ
subjectto ATA+s5=0
V=1yxz
(Aasfy,z,vy,z) c RXXYIHIXXZ] o rKe for all (12) € S

(GP-Cone)
Using the dual of the equational form of a Cone Program, the dual of (GP-Cone)
is
maximize — 1‘TYX2‘ -Z
subjectto Ag=2»b (5.15)
(q0,.,2p,2) € (") forall (y,2) € 2.
Now by writing the generalized constraints explicitly

qi
Zyz 2 Z giln
icly, Dxoy2) T Tk v2)

qgi>0 foralliel,,,

and replacing z by their tails in the objective function, the desired optimization
problem is

maximize Z Gry2In Gx.y.z
(xy2)€ 7 Gx.yz
j (5.16)
subjectto Ag=10>b
Gryz: >0 forall (x,y,z) € £.
]
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Remark. The dual of the Geometric Program obtained has a linear objective func-
tion. Furthermore, if looking at the primal cone RIXXYIHXXZ] s czm of this GP, it
is clear that for s = n, i.e., A,y + A, = —n the point (4,s,1) € int(RIPOYIHIXxZ] o
@"). The latter means that strong duality always holds for this GP.

5.2. Exponential Cone Program for Computing (CP)

This section presents two models for computing the bivariate BROJA PID based
on Cone Programming. The corresponding Cone Programs use the exponential
cone and thus will refer to the models as “Exponential Cone Programming”. For
each model, the duality properties are discussed.

5.2.1. Exponential Cone programming |

Before introducing the first conic formalization of (CP) using an exponential cone,
recall from Chapter 4 some of the notations which are used here. The Convex
Program which yields a partial information decomposition is

minimize Ml ), (x:y,2) over g € RX* V4

subject to gy y+ = b, forall (x,y) e X xY (5.17a)
vz = 2. for all (x,z) € X x Z (5.17b)
Gryz >0 for all (x,y,z) e X XY X Z.

As discussed in Subsection 4.2.1, the objective function is reduced to the negative
conditional entropy (in nats)

~H(X|Y,Z)= Y} qx%zln%. (5.18)

X, 9,2 e
The set of restricted variables that (5.17) is optimized over is
J(b) :={(x,y,2) X XY XZ| b, >0,b% >0}

Consider the following Exponential Cone Program where r,q € R/ and pE R
are the variables,

minimize — Z Fry,z
(ry2)€f
subject to gy« = b, forall (x,y) € Z.y
ez = b5 forall (x,z) € Fr: (EXP-I)
Gryz— Py =0 for all (y, ) S
Feye < Gy In(Pri/qy,.)  forall (x,y,z) € 7
(Fxyz)Gxyzs Pyz) are free  forall (x,y,2) € Z.
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The first two constraints represent the marginal equations (5.17a) and (5.17b).
The third type of equations connects the p-variables with the g-variables. Finally,
the inequalities connect the r-variables, p-variables, and g-variables forming the
objective function (5.18). The following proposition shows that the Cone Pro-
gram (EXP-I) computes the BROJA bivariate PID.

Proposition 5.2.1. The exponential cone program (EXP-I) is equivalent to (CP).

Proof. Let qcp and Jexp be the feasible regions of (CP) and (EXP-I) respectively.
Denote by gcp(g) and gexp(r,¢, p) the objective functions of (CP) and (EXP-I)
respectively. Set |X, .| = ny, Yy | = n2, and |Z, | = n3 where
X)@Z ::{x| (x,y,z) € f}
xz':{y|(x))a )6/}
Zey:={z| (x,y,2) € 7}

Define the following function
S 9ep — (][exp
q— f(q):=(r,q,p),

where
r 3:(”x1,y1,Z1 IREEELE AR R )

:<qx] Y0215 Dy Yy -,Zn3)
(Pyiais-- 2 Pyny \2ny )

and forall x,y,z € ¢
Gx.y.z

Gx,yz1n if gy, >0
Tryz -= x.Y,2

0 if ey, =0
p)’,Z = q*%Z'

For g € cp,
gexp(f(q)) = — Z Txyz = (_1n1a0nz>0n3)T -f(q),

X, V.2
where 1,0 are the vectors all ones and zeros respectively. Since conditional en-
tropy at gy, = 0 vanishes, then
8cp(q) = gexp(f(q))-

In addition, when Im(f) C Jexp, i.e., there exists a triplet (x,y,z) such that ry,,; <
Gx,y.zIn(Pre/qy,), the objective function of (EXP-I) is

q
gexP(rq p er,y,z > Z(hyz L _gexP(f(Q))
X2 Xz Py
Hence the two optimization problems are equivalent. O
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Duality. In what follows, the dual of (EXP-I) is written down and whether this
primal-dual pair has strong duality holds is checked.

Proposition 5.2.2. The dual of (EXP-I) is

maximize — Z kx,ybﬁ,y - Z A ,zb;,z
(x)€ Fry (x,2)€ Zrz
subject to 7y7 =1 forall (x,y,z) € 7
—),W—)l, — Uy — xyZ—O forall (x,y,z) € 7
— Uy, — ,)z =0 forall (y,2) € 7y,
_(V):yzav)gyp xyz) efji/e)tp forall (x .z ) /
(Axy, Az, y ) are free forall (x,y,2) € 7.
(DEXP-I)

Proof. The Primal Cone program (EXP-I) has .#" = {R"} and . which connects
the variables v! _, v and nyz for all (x,y,z) € _# such that £ = H'gx;y,z

X3,z Vxy,20

where o
»%c,y,z = {0} X {0} X {0} X %xp-

So the dual is of the form (D”) where 1 = (Ary, Avz, fyz, V) ey vfﬂ, ”Z) The

objective function and the first three affine constraints of (EXP-I) can be obtained
by direct computations of A and b. The last constraint in (D) is —n € .£*. Using

Lemma 5.1.1, we get £* = H ey Where
'xy7

2 = (RIZo N s RIZs x (RIAN % 7

X2 ° exp
1 2 3 * .. .
S0, —(Vyyzs Veyor Vayz) € Hexp and the remaining variables are free. O

This subsection is concluded by showing that strong duality does not always
hold for (EXP-I) and (DEXP-I). And so (DEXP-I) can only be used to obtain
lower bounds on the actual optimal solution. For (EXP-I), .#" = {0} and .£ =
H 2.y, Where
X, 0,2

Ly =10} x {0} x {0} x Hexp.
It is clear that the cone .’ does not have an interior point and using Theorem 5.1.1
the primal-dual pair (EXP-I) and (DEXP-I) doesn’t satisfy strong duality. There-
fore, the next subsection discusses a modified Cone Program where strong duality
holds.

5.2.2. Exponential Cone programming |l

This subsection slightly modifies the latter formalization so it guarantees strong
duality and then obtains an upper bound on the number of iterations that the barrier

55



method needs to get the optimal solution of the Convex Program 4.18 as promised
in Chapter 4 Section 4.2.3. The primal cone program becomes

minimize — Z Txyz
(xy2)€ 7
subject to  gyy« = bJ for all (x,y) € Zy,
Gz = D%, forall (x,z) € Zx. (EXP-ID)
G+yz — Pxyz =0 for all (x,y,z) € 7
(FxyzsGxyzs Pryz) € Hexp  forall (x,y,z) € 7.

Again the above Cone Program is shown that it computes the BROJA PID mea-
sure.
Proposition 5.2.3. The exponential cone program (EXP-II) is equivalent to (CP).

Proof. Let{cp(b) and Jexp(b) be the feasible region of (CP) and (EXP-II) respec-
tively. Define the following

f:q[CP(b) — (ﬂexp(b)

Gy, :
(%,y,z In == yqx,y,2) Q*,y,z) if gry; >0 (5.19)
Grye = f(quyz) = Iy )
(Oy%c,y,m Q*,y,z) if gry. = 0.

Using f and following the same scheme as in the proof of proposition 5.2.1, the
two problems (EXP-II) and (CP) are equivalent. ]

Duality. In what follows, the dual of (EXP-II) is written down and it is shown
that the obtained primal-dual pair has strong duality.

Proposition 5.2.4. The dual of (EXP-II) is

maximize — Z biy?tx?y - Z b*x,7+ Ay,
(x,y)Gfx,y (X,Z)Gfr,z
subjectto 0 < —1 forall (x,y,z) € 7
(5.20a)
_)vxy - Afxz —Hsyz S%ip 0 for all (x,y,z) € /
(5.20b)
Myz <z, O forall (x,y,z) € 7
(5.20¢)
Aey, Mgy My, are free forall (x,y,z) € 7.
(5.20d)

Proof. The Primal Cone program (EXP-II) has . = {0} and #" = H Hexp- SO

'x‘-7.y7Z

the dual is of the form (D’) where n = (Ary, Acz, Uy ;). Using Lemma 5.1.1, we
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get X" = H Ji{;ﬁp. So, the objective function and the three inequality constraints
X2

of (EXP-II) can be obtained by direct computations of A and b. O

Using the definition of Ji/e;p the system consisting of (5.20a), (5.20b), (5.20c),
and (5.20d) is equivalent to

Aoy + Az + iy +1+In(—pey ) >0 forall (x,y,2) € 7,

and so the dual problem of (EXP-II) can be formulated as

maximize — Z A ybY, — Z Ax b3,
(xa)’)efx,y (x,Z)E/x,g
subject to  Ayy+ A+ iy + 1 +In(—py ) >0 forall (x,y,z) € 7.

(DEXP-II)

The following proposition shows that strong duality holds for (EXP-II) and
(DEXP-II).

Proposition 5.2.5. Strong duality holds for the primal-dual pair (EXP-1I) and
(DEXP-II).

Proof. Without loss of generality assume that by |, b7 . > 0. Consider the point r
with 7y, - = (Feyz, Gx.y,zs Pryz) Such that

Frye 1= Gryelog 222 — 100

Axyz

_ o bLbE, (5.21)
qx,y7z = by
X, %

Pxyz = Gxyz-

In what follows it is shown that 7 is an interior point of (EXP-II). First, 7 is a
feasible point of (EXP-II) since it can be easily verified that
VA pNX'ryvz

Gryx = bz,wqu*ﬂ = by, and Gy log( P ) = Fryz
x.,2

Now since .Z = {0}, it is sufficient for 7 to be an interior point of (EXP-II)
that 7 € int(.#") where
H = H%xp

X, 02

This means that it is enough to prove for any s € R" such that the entry sy, . =
(Ux,yz) VayzsWryz) and ||s — 7|, < € that sy, € Hoxp forall (x,y,2) €X XY X Z
holds. If € is sufficiently small, then

Uryz < VeyoIN(Wee/ve,.) forall (x,y,z) € 7.

Hence 7 € int(.#) and by Theorem 5.1.1, strong duality holds for the primal-dual
pair (EXP-1I), (DEXP-II). O
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Complexity. Efficient algorithms for Cone Programming exist for some closed
convex cones; in particular for the exponential cone. Interior point methods are
widely used to solve Exponential Cone Programming. In practice, cone solvers,
e.g. ECos, use the so-called primal-dual interior point method which outperforms
the barrier method. The remainder of this subsection is dedicated to providing a
proof for the upper bound on the number of iterations that barrier method needs
in order to find an optimal solution of the following Convex Program (4.18).

maximize Z —Fryz
(x)2)EX XY XZ
subject 0 Gy« = by, forall (x,y) € Zxy
Gx ez = b3, forall (x,z) € 7. (5.22)
Gxyz =0 for all (x,y,z) € 7
Dxyz = Gxyz for all (x,y,z) € 7
Feyz < QuyI0(Prvi/qy,.)  forall (x,y,z) € 7.

The latter Convex Program can be seen as a Cone Program of the form

minimize ¢! x
subjectto ATx=b (5.23)
xex.

where % is a direct product of JZ¢,. Recall from Chapter 2 that one of the
important factors in the convergence of barrier method is the existence of a v-self-
concordant barrier for ¢ . In this case, there exists a v-self-concordant barrier for
Jexp, Which can be used to formulate a v'-self-concordant barrier for #". The
barrier was derived by Yurii Nesterov and the author refers to the proof of the
following theorem to [50].

Theorem 5.2.1 (Theorem 3 [50]). The function
F:RxRi— R
(ng,p) = —In(qln(p/q) —r)—In(q) —In(p)

is a 3-self-concordant barrier for the exponential cone.

(5.24)

Now the upper bound on the number of iterations in which the barrier method
do to find the optimal solution of (4.18) follows by applying Theorem 5.2.1 to the
Cone Program (EXP-II).

Corollary 5.2.1. Let € > 0 be the optimality gap, and to > 0 a factor in the initial
descent step. Then, the number of iterations for which the barrier method is €-
away from the optimal solution of (EXP-II) is

o(ym(Z))
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Proof. The inequality constraints in the problem (EXP-II) form the following
closed convex cone
H = H =%/expa
(xy.2)€ 2
where ¥, is the exponential cone. The function (5.24) is a 3-self concordant
barrier for JZ¢y,. By Proposition 2.2.1,

F:R” xR/ xR/ — R
(r.9:p) - - Z In(quyz In(Prye/Gryz) = Feyz) = 1n(Guyz) — In(pxy.2)

X2

isa |_Z|-self concordant barrier for .%". Now using Proposition 2.2.2, the number

of iterations is | y; |
(0] 1 -z .
(Virmee (1))

The author of the thesis and others in [43] developed BROJA_2PID solver that
implement the Cone Program (EXP-II) to compute BROJA bivariate PID and
tested it against some datasets. The solver used to solve the Exponential Cone
Programming is ECOS. ECOS [26] is a lightweight numerical software for solv-
ing convex cone programs [25], using an Interior Point approach. In BROJA_2PID,
the version from Nov 8, 2016 of EcoOSs is used. The next section discusses the re-
sults of these tests with respect to the quality of the solution and computational
time of the solver. More details on how to use the BROJA_2PID solver can be
found in [43].

O

5.3. Cone Programming Model for a Multivariate PID

Danial Chicharro [21] has introduced a multivariate PID measure using the so-
called tree-base decompositions. The measure determines multivariate shared in-
formation within the framework of maximum entropy. BROJA PID measure is a
special case of the Chicharro measure in the bivariate case. This section shows
how to model the trivariate PID quantities using the exponential cone which en-
able to obtain a trivariate PID. First, Chicharro trivriate PID is defined and then
the exponential formulations of each PID quantity are presented.

5.3.1. Chicharro Trivariate PID

Recall that the trivariate PID is decomposing MI(S; Xy, X5, X3), the mutual infor-
mation, into shared, unique, and synergistic information where S, Xy, X, X3 are
random variables with finite range. Let A be the set of all joint distributions of
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(S,X1,X>,X3). Suppose that (S;Xy,X;;X3) are sampled from the joint distribu-
tion P, then the following convex set can be defined:
Ap := {Q EA |Q(S = S,Xl :xl) = P(S = S,Xl :xl),

Q(S = S,X2 IXQ) = P(S = S,Xz :)Cz),

Q(S = S,X3 :)C3) = P(S = S,X3 :X3),

for all (s,x1,x2,x3) € S X X| X X X X3},
Forall i, j,k € {1,2,3}, the co-information of S, Xj, X; namely CoI(S;Xj;X;) and
the co-information of S, Xj, X; given Xk namely Col(S; Xj; X | X) are defined as
follows

(5.25)

Col(S; Xi; Xj) := MI(S; X;) — MI(S; X | Xj)
COI(S;Xi;Xj ‘ Xk) = MI(S;Xi ’ Xk) —MI(S;Xi ’ Xj,Xk).
Chicharro [21] defines the trivariate PID of MI(S; X1, X3, X3) as follows:

(5.26)

CI(S;XI,Xz,X:;) = MI(S;XI,Xz,X3) - émAn MI(S;XI,Xz,X3) (5.27&)
EAp
SI(S;XI,Xz,X:;) = min MI(S;XI,Xz,Xg,) — min MI(S;X17X27X3),
oy o s @) oS0
(5.27b)
UI(S;Xi\Xj,Xk) = min MI(S;Xi,Xj,Xk) — min MI(S;Xj,Xk) (5.270)
Q€cAp Q€Ap
UI(S;Xi,Xj\Xk) = 0 IPin ) MI(S;Xi,Xj,Xk) —éniAn MI(S;Xi,Xj,Xk),
€A COI(S:X;:X j[ X )=0 cAp

(5.27d)

for all i, j,k € {1,2,3} and where w(Q) evaluates SI(S;X3, (X1,X>)) as follows,
such that Q is its input distribution,

minimize  Col(sy, v, vs)nq (85 (X1,%2)3%3) over ¢ € RiXXl XXy X X3
subjectto ¢, . .. = O(S =5,X3=1x3) for all (s,x3) € S x X3

q;-,Xl-,Xzy* = Q(S =5,X1 =x1,X3 = xz) for all (S,xl,)CQ) €S x X1 xXs.

Note that the optimization problems in (5.27a) and (5.27¢c) are convex prob-
lems whereas those in (5.27d) and (5.27b) are nonconvex since the some of the
equality constraints of the problems in (5.27d) and (5.27b) are not affine. Thus
if it is possible to make the non-affine equality constraints of the optimization
problems in (5.27d) implicit, then this will allow finding a trivariate PID since all
components of the PID will be evaluated except for the shared information which
can be computed using the following identity:

MI(S: X1, X3, X3) = CI(S: X1, X2, X3) + Y UI(S;: X;\Xj, Xy)
ijke{123)
it ik j<k

+ ) UI(S:X;, X;\Xk) + SI(S: X1, X2, X3).
i.jke{1,23}
ki kA j,i<j
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5.3.2. Exponential Formulation of the Trivariate Synergistic
Information

The objective function of (5.27a), given the marginal conditions, is equal, up to
a constant H(S) to the negative conditional entropy H(S | X1,X3,X3). So, the
optimization problem (5.27a) is equivalent to the following Convex Program:

minimize Y gor 0 Jn L e o e REXKIXKXXs
8,X1,X2,X3 q*m >X2,X3
subject t0 gy, x = b3k, for all (s,x1) € S x X
s ey = b33, for all (s,xp) € S x X,
s ey = D53y for all (s,x3) € S x X3
qs.x1,x2,x3 > 0 for all (S,X],XQ,X3) eSx X1 X X5 X X3.
(5.28)
where
bt =P(S=s,X1=1x1) for all (s,x1) € S x X
b2, =P(S=s5,X3=x2) for all (s,xp) € S x X
b, = P(S=5,X3=1x3) for all (s,x3) € S X X3

The exponential formulation of (5.28) is expressed via the following Exponential
Cone Program where the variables are r, p, g € RS*X1>XxXs

minimize — Z Tsx x0,%3
§.00 42,63
subject t0 gy x, 4« = D34, for all (s,x;) € S x X;
Qs = D32, for all (s,x2) € Sx X,
sy = b33 for all (s,x3) € S X X3
Gxx1 203 — Psxi o = 0 for all (s,x1,%2,x3) €S X X] X Xp X X3
(Fsx1 00,03 Qs oy s P o s ) € Hexp  forall (s,x1,00,x3) € S x X1 X Xp x X3.

(5.29)
Using the same approach as in Proposition 5.2.3, the exponential cone pro-
gram (5.29) is equivalent to the Convex Program (5.28). The dual problem of (5.29)
can be formulated as
maximize — Z Asx, b;{n — Z )’S7x2b}{3€2 — Z As xs b;‘fm
(s,x1)ESXX] (5,02)ESXX) (5,43)ESXX;3
subject t0  Agy, + Ag ey + Ay + Mixy o + L HIN(— U, 1y05) >0

for all (S,xl,)C2,X3) ESX X x X X Xj.
(5.30)

Using the same approach as in Proposition 5.2.5, strong duality holds for the
primal-dual pair (5.29), (5.30).
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5.3.3. Exponential Formulation of the Trivariate Unique Information

In the trivariate PID there are two types of unique information: UI(S; X;\ X, Xy),
the information that any variable X; holds unique about S, and UI(S; Xj, X;\Xk),
the information that any two variables Xj and X; share uniquely about S. First, the
exponential formulation of the first type of unique information, i.e., (5.27¢) will
be given and then the exponential formulation of the other type, i.e., (5.27d) will
be given.

In (5.27c¢) there are two optimization problems,

min MI(S; Xy, X>, X3) and min MI(S; Xj, Xy).
Q€Ap Q€Ap

The first problem is the same as (5.28) and it has been discussed before. Using
the chain rule of mutual information:

MI(S;Xj,Xk) = H(S) —H(S | Xj,Xk).
But, H(S) is constant on Ap and so the second problem is written as the Convex

Program:

nimi 5% x0,x
minimize Y Gy 222 over g € RS

$.03 G %,x7 %3
subject to gy« = D3k, for all (s,x1) € S x X
G550 = D33, for all (s,x2) € S x X,
s s = b33, for all (s,x3) € S x X3
Gsx1 a3 = 0 for all (s,x1,x2,x3) € S X X X Xp X Xj.

(5.31)
The exponential formulation of (5.31) is expressed via the following Exponen-
tial Cone Program where the variables are r, p € RS*2% apd g € RS XXX

minimize — Z Tsx.%3
5,03
subject to gy, ++ = b3, for all (s,x1) € S x X
sy = D2, for all (s,x2) € Sx X,
sk x3 = b?ir} for all (S,)C3) ESXX3
sy s xnp; =0 for all (s,x2,x3) €S X Xp X X3
(7)’37)627)53, —tsxp .03 qu,%me) S Jifexp for all (S,xz,X3) €S xXp X X3.

(5.32)
Using the same approach as in Proposition 5.2.3, the exponential cone program
(5.32) is equivalent to the Convex Program (5.31). Using Proposition 5.2.5 it can
be shown that strong duality hold for (5.32) and its dual.
In (5.27d) there are two optimization problems:
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min  MI(S; X;, X, Xk) and min MI(S; X;, X, Xk).

Q€A Col($:X;:X Xy )=0 QeAp
The second optimization problem is the same as the one in (5.27a) and so its expo-
nential formulation is (5.29). For any i, j, k € {1,2,3}, the optimization problem

min MI(S;Xi,Xj,Xk)

0EAp Col ($:X;:X|X) =0

is nonconvex since the constraint Col(S;Xj; Xj | Xk) = 0 is not affine. But using
the chain rule of mutual information (3.1),

COI(S;Xi;Xj | Xk) = MI(S;Xi ’ Xk) +MI(S;Xj ‘ Xk) —MI(S;Xi,Xj | Xk)
MI(S;Xi,Xj,Xk) = MI(S;Xk) +MI(S;Xi,Xj ‘ Xk).
(5.33)
Then, the constraint Col(S; X;; X | X3) = 0 implies that
MI(S;Xi,Xj ‘ Xk) = MI(S;Xi | Xk) +MI(S;Xj ’ Xk).
So, the optimization problems

min  MI(S;X;,X;,Xk) and min (MI(S;X; | Xk) +MI(S; X | Xk))

QAR Col(S:X;:X X} )=0 Q€eAp

are equivalent.
Hence what is left to formulate (5.27d) as Exponential Cone Programming is to
formulate éniAn (MI(S; X; | Xi) +MI(S; X | X)) as Exponential Cone Program-
CAp

ming. Using the chain rule for mutual information:
MI(S; X; | Xi) = H(S | Xi) —H(S | X, Xk).
Since H(S | X;) is constant on Ap, it is left to solve the following,

min —H(S | Xi,Xk)
Q€Ap

which is exponentially formulated as (5.31). Similarly for MI(S; Xj | X).

Hence the Chicharro trivariate PID measure can be computed using Exponen-
tial Cone Programming. Due to the similarity of constraints and objective func-
tions of the required Exponential Cone Programs for this trivariate PID measure
and BROJA PID measure, BROJA_2PID can be extended to compute trivariate
PID.

5.4. Computational Results

Due to the need in the scientific computing community to have a reliable easily
usable software for computing the BROJA bivariate PID, BROJA_2PID was made
available on GITHUB! as a PYTHON implementation of the Exponential Cone
Programming that is explained in Section 5.2.2.

1 github.com/Abzinger/BROJA_2PID/.
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5.4.1. Data

In what follows, the main set of instances for which testing the efficiency of the
solver is presented. It has three subsets of instances where each one of them is
useful for an aspect of efficiency when the solver is used against large systems. It
has been used in testing other solver which computes BROJA PID measure [4].
This set of instances had many hard distributions in the sense that the solution lies
on the boundary of the feasible region of (CP).

This set of instances is based on the joint distributions of X,Y,Z sampled
uniformly at random over the probability simplex, i.e., each joint distribution is a
random vector p of size |X||Y||Z| such that

0< Pxyz < 1 and Z Pxyz= 1
X, ),2EXXY XZ

where p, . is the probability of obtaining (X = x,Y = y,Z = z). In particu-
lar, in the experiments, the random variables X,Y,Z are sampled from the sets
X:=2,,Y:=2,,Z:=Z,_ respectively. The distributions are divided into three
different sets of the joint distributions depending on the size of X,Y, and Z as
follows.

a) Forset 1, ny =n,=2,ie., X =Y ={0,1} and n_ varies in {2,3,...,14}.
Then, for each n,, 500 joint distribution of X,Y,Z are sampled uniformly
at random over the probability simplex.

b) For set 2, n, = n; = 2 and n, varies in {2,3,...,14}. Then, for each n,,
500 joint distribution of X,Y,Z are sampled uniformly at random over the
probability simplex.

c) For set 3, ny = ny, = n, = s where s € {8,9,...,18}. Then, for each s,
500 joint distribution of X,Y,Z are sampled uniformly at random over the
probability simplex.

Note that in each set, instances are grouped according to the varying value, i.e.,
ny,n;, and s respectively.

5.4.2. Results

In what follows for each of the sets, UI(X;Y\Z) is used to validate the solution,
in addition, feasibility gap and duality gap are used to examine the quality of
the solution—see details below, and the running time is used to analyze the effi-
ciency of the solver. The feasibility shows how much the constraints are violated,
whereas, the duality gap tells how far each of the obtained PID quantities from the
actual PID quantities. Recall from Chapter 3 that UI(X;Y\Z) is the quantity of
unique information that a random variable Y has about X in some complex system
(X;Y,Z).

Validation. Sets 1 and 2 are mainly used to validate the solution of the estima-
tor BROJA_2PID. For set 1, when |Z| is considerably larger than |Y|, the amount of
unique information that Y has about X is more likely to be small for any sampled
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joint distribution. So for set 1, the average UI(X;Y\Z) is expected to decrease as
the size of Z increases. Whereas for set 2, UI(X;Y\Z) is expected to increase as
the size of Y increases, i.e., when |Y| is considerably larger that |Z|. BROJA_2PID
shows such behavior of UI(X;Y\Z) on the instances of sets 1 and 2 see Figures 4.
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N 03
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2 4 6 8 10 12 14
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Figure 4. For each group of instances in set 1 (left) and set 2 (right), the figure shows: the
instance with the largest UI(X;Y\Z), the average value of UI(X;Y\Z) for the instances,
and the instance with the smallest UL(X; Y\Z).

Quality. Before discussing the quality aspect, what is meant by quality of the
solution is explained. In Definition 5.1.1, for strong duality, the solution needed
to be feasible and duality gap to be zero. But the solver uses primal-dual interior
point methods which find the solution that is &-far from the actual optimal solu-
tion. In addition, the variables are in R, i.e., computations have to deal with real
numbers. Since computers represent real numbers up to floating precisions, the
feasibility (primal and dual) or the value of the duality gap is going to depend on
€ and the floating precision. As mentioned before, the duality gap can be used as
a reference for the PID precision.

For the remainder of the section the maximum violation of, primal feasibility,
dual feasibility, and duality gap is referred to as the maximum numerical error.

The solver did well in most of the instances. The percentage of solved in-
stances to €-optimality was at least 99.8% for each size in any set of instances.
The term €-optimality means that solution returned is €-far form the actual opti-
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Figure 5. For each group of instances in set 1 (left), set 2 (right), and 3 (bottom center)
the figure shows: the instance with the largest €, the average value of € for the instances,
and the instance with the smallest €; where € is the maximum numerical error.

mal solution. In BROJA_2PID, € was of order 10~% as well as the ratio of € to the
primal and dual objective values should be of order 1078,

Figures 5 plot the successfully solved instances against the maximum numer-
ical error. On one hand, these plots show that whenever an instance is solved
successfully the quality of the solution is good. On the other hand, it is noticed
that, for any instance for which the Cone Programming solver failed to find an op-
timal solution, the duality gap was very large and the Cone Programming solver
terminated since the search direction became too small. This suggests that the so-
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lution of the system that Newton’s method solves was not changing. In this case,
since not much can be done with respect to the optimization, an ad-hoc fix is to
the pick an input distribution close to the original one. Note that the author tried
this ad-hoc fix on the unsuccessful instances and was able to either retrieve the
optimal solution or at least a feasible solution with better duality gap.

Thus, these results reflect the reliability of the solution returned by the esti-
mator BROJA_2PID. Note that even when BROJA_2PID fails to solve an instance
to -optimality, it will return a solution® which is based on the last triplet (r,p,q)
before the solver halted. This means that even when BROJA_2PID fails to solve an
instance to €-optimality, it provides the users with a piece of information which
is the solution in this case. For example, such a solution can be regarded as an
inaccurate solution if the duality gap was large.

Efficiency. Set 3 is used in order to test the efficiency of BROJA_2PID in the
sense of running time. The reason is that set 1 and 2 are small-scale systems.
Whereas, set 3 has a large input size mimicking large-scale systems. Testing
set 3 instances also reveals how the solver empirically scales with the size of
the input. Figure 6 shows that the running time for BROJA_2PID solver against
large instances was below 50 minutes. Furthermore, the solver has a scaling of
(IX| x |¥| x |Z])?, so on set 3, it scales as N> where N is the size of input for the
sampled distributions such that n, =ny, =n, =5 = VN.

2BROJA_2PID raise an exception if the conic optimization solver fails to return a solution.
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Figure 6. For each group of instances in set 3 the figure shows: the slowest instance,
the average value of running times, and the fastest instance; where the running time of
BROJA_2PID, ¢ (secs), is scaled to t1/0 (top left), t1/3 , (top right) and non-scaled (bottom
center).
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6. OPTIMIZING PARTIAL INFORMATION MEASURES

Chapter 1 Section 1.2 describes a problem where optimization of several infor-
mation decomposition measures over a constraint set of probability distribution
is needed. Unfortunately, the functions which are minimized inside the BROJA
Convex Program are not convex on the whole probability simplex. This hints that
sensitivity analysis of the above optimization problems will not be as informative
as it would have been if the problems were convex optimization problems.

This chapter presents to some extent useful data to understand how the ob-
jective value changes when parameters of the above optimization problems are
changed. It derives the sub-/super-gradients (and local sub-/super-gradients when
differentiable) of information decomposition measures when optimized over a
constrained set of probability distributions and presents a standard optimization
problem to compute the extractable shared information.

6.1. BROJA PID Quantities: Functions of Distributions

This section studies the properties of BROJA PID quantities: shared, unique, and
synergistic quantities when considered as functions of probability distributions.
It derives important results which are needed whenever these functions are opti-
mized over a constrained set of probability distributions. It starts off by describing
the notation and terminology used in the remainder of the chapter.

6.1.1. Terminology and notation

Consider the random variables X,Y,Z with the joint probability distribution p.
Since the BROJA PID quantities are treated directly as functions of p rather than
X,Y,Z, the following shorthand will be conveniently used:

SI(p) = SI(X; Y, Z)
Cl(p) =CI(X;Y,Z)
Uly(p) = UI(X; Y\Z)
Ulz(p) = UI(X;Z\Y)

and the common shorthand [n] := {1,...,n} as well. For a (finite) set X of size n,
the probability simplex is denoted by

Y:={peRL|p.=1}

and so, a probability distribution on a set X, is a vector in ¥.
Definition 6.1.1. Let X be a random variable. The range Rg(X) of a random
variable X is the set

Rg(X) :={x|P(X=x) > 0}.
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If a range of a random variable exists, then it is unique. If the range of a random
variable exists and is finite, then the random variable is said to have finite range.
All random variables considered in this chapter have finite range (unless explicitly
stated otherwise). If X,Y,Z are random variables with the joint distribution p,
then let

Rgy(p) :={x € X | pxys > 0}.

such that X is the domain of the random variable X and so Rg(X) = Rg,(p).

6.1.2. Derivatives of PID Quantities

The Convex Program (CP) which computes the BROJA PID measure can be writ-
ten as a function of the input distribution P. The function M(p) is defined as
follows:

maximum  h(q) over g € RX*V*Z (6.1a)
subject to gy y« = Pxyx for all (x,y) e X XY (6.1b)
Gxxz = Pz forall (x,z) e X X Z (6.1¢)
Gryz >0 for all (x,y,z) e X XY X Z. (6.1d)

where h(q) is the conditional entropy Hy(X | Y,Z) such that

Prye =P(X=xY =y Z=2)
Gry: = QX =xY =yZ=2).

Recall the optimality conditions of (CP) derived in Chapter 4 —see Corollary 4.2.2,

Proposition 6.1.1. A feasible point q is an optimal solution to (6.1), if and only if
there exist A € R*Y and p € RX*Z satisfying the following:

(a) Forall (y,z) €Y x Z with g . > O:

By + oz = n(E22)  olds for all x € X;
/ q*7yvz
(b) For all (y,z) € Y X Z with g, = 0, there is a probability distribution p
with support X such that

Ay + Wy < In(p*) holds for all x € X.

If g,A,u are as in the proposition, then A, are called the Lagrange multi-
pliers certifying optimality. The following lemma uses the Lagrange multipliers
certifying optimality to formulate the gradient of M(p) when it is differentiable
and derives its super-gradients otherwise.

Lemma 6.1.1. Suppose p has full support'. Let q be an optimal solution of (6.1),
and let A, L be Lagrange multipliers certifying optimality.

'Rg(X,Y,Z) = [X xY x Z|.
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(a) If qxy. > 0forall (x,y,2) € X XY X Z, then M is differentiable in p, and we
have

ax,y,zM(p) = _Ax,y — Mz (6.2)
(b) In any case, the vector defined by

Q(P)x,y,z = _l&y — Uz (6.3)

is a super-gradient on M in the point p.

Proof. Since g is the optimal solution of (6.1), then

M(p) = maxh(q) = —min—h(q) = h(q)

where h(q) = H(X | Y,Z). So, the gradient of M in p is

VM(p) = — <ln (;’x”» (6.4)
02 X2

If gy, > 0 forall (x,y,z) € X xY xZ, then g, > 0 forall (y,z) €Y xZ and so
inverse function theorem shows that M is differentiable as a function of p. More-
over, Equation (6.2) follows from the fact that ¢, A, u are as in Proposition 6.1.1
and the gradient defined in (6.4).

From Proposition 4.2.1 and Proposition 6.1.1, it follows that 7Lx7y + [y ; is a sub-
gradient to W(p) := mqin —h(q) subject to the constraints (6.1b), (6.1c), and (6.1d)

in the point p. Hence —A,, — [, ; is a super-gradient on M in the point p. O

It is important to emphasize that, in this lemma as well as in the following
results, the condition that p has full support is only there to simplify notation,
and can be readily abandoned. The following theorem uses the (super-) gradient
of M(p) to provide the gradients of the BROJA PID quantities along with their
corresponding sub-gradients or super-gradients when they are not smooth.
Theorem 6.1.1. Suppose p has full support. Let g be an optimal solution of (6.1),
and let A, | be Lagrange multipliers certifying optimality.

(a) If gxy. > 0 forall (x,y,z) € X xY x Z, then CI, SI, Uly, Ulz are all differ-
entiable in p, and we have

ax,y,z CI(p) =In <p*yz> - A'x,y — Hxz (6.5a)
Pxyz

dey-SI(p) = —1+1n <p”p“> — Dy — (6.5b)

px,*,*p*,y,*p*,*,z

9y Uly(p) =1In (f, - ) + Ay + Moz (6.5¢)
X,%,2

dey-Ulz(p) = In <§*Y*> Ay + e (6.5d)
x,),*
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(b) In any case, the vectors defined by

dcr (p)xy,z =1In <p*yz> - Ax,y — Hxz (6.6a)
Dxy.z
gSI(p)x,y,z =—1 +1n <px'y’*px’*z> — A'x,y — .u'X,Z (66b)
Dxx %Py« Pxx 2
are local super-gradients of Cl and S1 respectively and the vectors defined
by

_ Prxz
QUIy (p)x,y,z =In < > + )Lx7y + ‘LLX,Z (673.)

Pxxz
guLz(P)xyz =In <’; y) + Ay + e (6.7b)

x?}’?*

are local sub-gradients of Uly and Ulz in the point p respectively.

Proof. For 6.1.1, Bertschinger et al. in [7] defined the partial information decom-
position as follows:

Cl(p) = MI(X:Y.Z) ~minMI(X:Y.Z)
SI(p) = m(?xCoI(X;Y,Z)

Uly(p) = mqinMI(X;Y | Z)

Ulz(p) = mqin(X;Z 1Y)

where the optimization is subject to the constraints (6.1b), (6.1c), and (6.1d). Us-
ing the definition of MI(X;Y,Z) and the chain rule of entropy and mutual infor-
mation, the following holds:

Cl(p) = MI(X;Y,Z) — mqinMI(X;Y, Z)

=—-H(X|Y,Z)+M(p).
SI(p) = m;GCOI(X;Y;Z)

=MI(X;Y)—H(X|Z)+M(p)
Uly(p) = mqinMI(X;Y |Z).

— H(X| Z)— M(p).
Ulz(p) = mqinMI(X;Z 1Y)

=H(X|Y)—-M(p).
By direct computations, the equations in 6.1.1 follow from Lemma 6.1.1:

ax,y.zM(p) = _kx,y — M,z
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For (b), let

ga(p) =H(X|Y,Z)

gsi(p) =MIX;Y) - H(X|Z) 6.8)
guy(p) =MI(X;Z) + H(X)
gur(p) =MI(X;Y) + H(X).

Since p has a full support then all the functions in (6.8) are differentiable and

Px,
gai(p,d Zln( ”) X2

X V,Z pX}Z
ngI(p,d) _ Z <ln < Px,yxPxx.z ) _ 1> dey
X, 9,2 pX,*,*p*7y7*p*7*7Z
(6.9
p
gUIy p.d Zln( **Z> X2
xy,2 px *,Z
p
gUIZ p7 Zln( *y*>dX}Z
x,),2 Px.y,

where d € R¥*Y*Z_ From Lemma 6.1.1 and 2.1.1, g(p) is a super-gradient of M
at p and for any d € R¥*Y*Z we have ~M'(p,d) > —g'd. Hence, the vectors
defined by (6.6a) and (6.6b) are super-gradients of CI and SI respectively and the
vectors defined by (6.7a) and (6.7b) are local sub-gradients of Uly and Ulz in the
point p respectively. O
Corollary 6.1.1. Let I be any of C1,SI, Uly,Ulz. At the points where I is not
smooth it is

(a) concave, in the case of I = CI,SI;

(b) convex, in the case of I = Uly, Ulz.

Proof. Using the result (a) of Theorem 6.1.1, the vectors gcy(p) and gsi(p) are
local super-gradients of CI and SI and the vectors gury(p) and gur.(p) are local
sub-gradients of Uly and Ulz in the point p. From this, the statements in this
Corollary follow. O

6.2. Application: Extractable Shared Information

The concept of extractable shared information was introduced by Rauh et al. [60].
They studied the properties of extractable shared information measure aiming to
check whether it can be considered as a new measure for shared information. This
section is focused on how to compute this extractable shared information rather
than discussing it as a measure of shared information.
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6.2.1. Extractable Shared Information Measures

Let X,Y,Z be random variables with distribution p € **Y*Z Rauh et al. [60]
define extractable shared information of X,Y,Z as

SI®*'(p) := supSI(f(X);Y,Z) (6.10)
f
where the supremum is taken over all functions f: X — T such that X is the range
of X and T is an arbitrary finite set.

They generalized the definition of extractable shared information by looking
at “probabilistic extractability” rather than “deterministic extractability”, i.e., re-
placing f by a stochastic matrix. So, the probabilistically extractable shared in-
formation is defined as

SIP"*(p) := supSI(T; Y, Z) (6.11)
T

where the supremum is taken over all random variables T (with finite range) which
are conditionally independent of Y, Z given X.

6.2.2. Reformulation of SI®*! and SP®*

The optimization problems (6.10) and (6.11) are not concave as well as (6.11)
being an infinite dimensional problem. This subsection aims to reformulate the
two problems so that they are optimized over the set of stochastic matrices.

For a set R and a m € N, a column stochastic ([m] x R)-matrix is a matrix IT
with m rows (indexed 1,...,m as usual) and columns indexed by the elements
of R, whose entries are nonnegative reals such that I1, , = 1 for all r. Let p be
a probability distribution on X x Y x Z, and IT be a stochastic ([m] x X)-matrix.
Then define the probability distribution I1(p) as follows:

I(p)sy = Z T, <Py, forallt € [m] and (y,z) €Y x Z.
x€Rgy(p)

Reformulation of SI*. Consider the random variables X, Y, Z with distribu-
tion p. Forcing some integrality constraints, i.e,

II,,eZ  forall (t,x) € [m] xX
together with the nonnegativity inequalities, i.e.,
I,,>0  forall (1,X) € [m] xX

and restricting to
I, =1 for all x € X

have precisely the effect of ensuring that for every x in the range of X there exists a
unique ¢ € [m] with IT; , = 1. In other words, IT defines a mapping from Rg(X) to
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[m]. Finally, since m is the size of the range of X, then restricting to m to |X | simply
optimizes over all functions defined on the range of X, which is exactly (6.10).

Hence, it is straightforward that the extractable shared information of p is the
value of the following optimization problem:

With m := |X| :
SI™(p) :=max SI(I1(p)) (6.12a)
over IT € RI"*X
subject to
I, =1 forallx € X (6.12b)
I, >0 forall (,X) € [m] x X (6.12¢)
I, eZ for all (7,x) € [m] x X. (6.12d)

The optimization problem (6.12) has only a finite number of solutions which
is equal to the number of partitions of a finite set X, i.e., the Bell number of X.
Thus, it is possible to solve the optimization problem by enumerating all solution
(in a clever way). But since the Bell numbers increase super-exponentially, for
large sets X, the latter might not be feasible.

Reformulation of SFP™'. The probabilistically extractable shared information
is the value of the following optimization problem:

sup SI(TI(p)) (6.13a)
over m > |X| (6.13b)
IT € R
subject to
I, , =1 forallx e X (6.13¢)
I, >0 for all (r,x) € [m] x X. (6.13d)
(6.13e)

Lemma 6.2.1. The optimization problem (6.13) is equivalent to the definition
(6.11).

Proof. Let IT € R™*X such that it satisfies (6.13c) and (6.13d). Consider the
relation
I, =P(T=t|X=x). (6.14)

Let I1(p) be the probability distribution of (T,Y,Z) such that

I(p)iy, = Z IT, Py, forallt € [m] and (y,z) €Y X Z.
x€Rgy(p)

Now when condition on X = x,

II(p)sy: :=P(T =1)psy,;, forallt € [m] and (y,z) €Y x Z.
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which means that T is conditionally independent of Y and Z given X. Since m
is the size of the domain of T, the optimization problem (6.13) computes (6.11)
where the supremum is taken over all random variables T (with finite range) which
are conditionally independent of Y,Z given X.

On the other hand, given a random variable T conditionally independent of
Xi,..., X given X and set m := max |X|. Then relation (6.14) implies

P(T=1Y=yZ=2)=) P(T=t,Y=yZ=z|X=1x)-P(X=x)

xeX

=Y P(T=¢|X=x)-P(Y=yZ=z|X=x)-P(X=1x)
xeX

=Y P(T=¢|X=x)PX=x,Y=yZ=2).
xeX

Then any matrix I1 € R"*X with the conditions (6.13¢) and (6.13d) defines a
probability distribution IT(p) of (T,Y,Z). Hence, the optimization problem (6.11)
where the supremum is taken over all random variables T (with finite range) which
are conditionally independent of Y,Z given X computes (6.13). O

6.2.3. Bounds on SI®* and SiPrext

This subsection provides a standard optimization problem which is an upper bound
of (6.10) and a lower bound of (6.11).

There are two significant differences between the (6.12) and (6.13). Firstly,
(6.13) lacks the integrality constraints, making it a continuous optimization prob-
lem. Secondly, the dimension, m, is a variable, making the optimization problem
infinite dimensional (as observed in [60]), and thus basically intractable from an
algorithmic point of view. (The lower bound m > |X| is redundant, see Lemma
6.2.2 below).

The following optimization problem, however, is a standard continuous opti-
mization problem to which we can apply our results: For a fixed value of m € N,
define

SI*(p) :=max SI(T1(p)) (6.152)
over IT € RI"*X
subject to
IL . =1 forallx e X (6.15b)
I, >0 forall (7,x) € [m] x X. (6.15¢)
(6.15d)

Lemma 6.2.2. The sequence m — SI"‘(m) is non-decreasing and for every fixed
my > |X|,
SI*(p) < ST* (p) < supSI¥(p) = SI""(p).

m>0
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Proof. For any positive integers m; < mo, RImIXX = RI™IXX and so the feasible
region of (6.15) with fixed value m; is contained in that of (6.15) with fixed value
my. Thus, the sequence m — SI,",:( p) is nondecreasing and for every fixed value
nmy > ’X ’
t & & _ t
SI(p) < ST, (p) < supSI¥(p) = SP™(p),

m>0

where the first inequality holds since the set
(T e RMX |10, , = 1,11, € Z,} C {ITe R |10, . = 1,10, > 0}.

O

Note that the results obtained in the previous section can be used (with minor
modifications) to apply an appropriate gradient descent to compute the solution
of (6.15).
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7. CONTROL OF AUTOMATED VALET PARKING
SYSTEMS

This chapter studies a fundamental optimization problem involved in the control
of an automated car parking system. It studies the theoretical throughput limita-
tions of these systems: Given a car park layout, an initial configuration of a car
park (location of cars, robots), into a desired, terminal configuration, what is the
optimal set of control instructions for the robots to reorganize the initial configu-
ration into the terminal configuration. The notion optimal in this chapter means
fastest in terms of clock-on-the-wall waiting time until the robots have completed
their tasks.

With the ultimate goal of heuristic algorithms for the control of the robots, this
chapter studies exact algorithms. The importance of the modeling approach in
this chapter is that it took into consideration the physical properties of the robots.
It proposes an Integer Programming (IP) model and a Constraint Programming
model (Boolean variables with constraints in conjunctive normal form, CNF), and
compares the two approaches by testing them on different parking lot scenarios.

The Chapter is based on the results obtained in [40]. Section 7.1.1, presents
the problem and the basic approach to solve it and review literature relevant to
the problem. Section 7.2, describes the variables used for both the IP- and CNF-
model. Section 7.3 gives an overview of the IP clauses and objective function.
Section 7.4 describes, in brief, the CNF clauses. Section 7.5 describes the data,
the computational experiments that are run and discusses the obtained results.
Section 7.6 draws some conclusions regarding the problem.

7.1. Basic Approach and Related work

This section describes the basic approach which is used in modeling the problem.
Then the section is concluded by reviewing proposed simplified versions of the
problem from the literature which were shown to be NP-hard.

7.1.1. Problem Data and Basic Modeling Approach

The technical details of the problem were the result of a collaboration with a
company which considered entering the market of automated valet parking instal-
lations. In the considered parking lots, all slots have the same width (3m) and
length (6m), and all slots are parallel: the width is in East-West direction, the
length is in North-South direction. The parking lots have a rectangular bounding
box: e.g., if the bounding box is 300m in wide and 600m long, the parking lot can
contain up to 10x10=100 slots. Correspondingly, slots are identified by x (East-
to-West) and y (South-to-North) coordinates. We allow for slots to be unusable,
due to either obstacle (walls, pillars, broken down robots) or simply parked cars
which, for some reason, we currently do not want to move.
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Figure 7. North movement of a loaded robot. t = time interval; p = position associated
and S = stage of the move. Robots are drawn in the physical location which it occupies
at the beginning of the time interval.

The robots can move either in North-South or in East-West direction (but not,
e.g., diagonally); also they do not need to “rotate”. A robot must come to a com-
plete standstill before changing directions. The robots’ maximum speed is 3m/s
when empty, and 1.5m/s when carrying a car. In real life, robots do not reach
their maximum speed from standstill in no time, they need to accelerate. The best
way to model this acceleration is via probability distribution but this will make the
modeling complicated. The acceleration modeling which is used is a compromise
between satisfying the physical properties and the complexity of the model. The
robots require 1s to accelerate to maximum speed or decelerate from maximum
speed to standing still'. (We do not allow for a robot to standstill between two
slots.) The robot needs 6s to lift a car and 2s to drop it.

This data suggests to discretize time into intervals of .25s. E.g., Fig. 7 shows
a complete sequence of a North-movement by a robot carrying a car from a
slot (x,y) to a slot (x,y+2) and then accelerate West. In time interval 7, the
robot picks up speed and moves 1/8 of the length of a slot. In time intervals
to+1,...,10+7, the robot moves at full speed. In time interval 7y + 8, it slows
down and comes to a stand two places north of where it started. The control in-
struction “ready” causes the robot to initiate stopping. In time interval #p + 9, the
robot could be executing a new control instruction; in the figure, it is accelerating
West.

The discrete optimal control problem we aim to solve is now the following:
Given two configurations of locations of robots and cars on the parking lot, an
“initial configuration” and a “terminal configuration”, determine a feasible set of
control instructions for the robots which transforms the initial configuration into
the terminal configuration; minimize the time the reconfiguration takes. Clearly
equivalent to a set of control instructions is a sequence of configurations, each one
of which can be derived from the previous one by a feasible move of the robot.

Tt was suggested by Karl Tarbe [67].
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Note that in practice, whenever a customer wants to retrieve his or her car, a
new set of initial and terminal configurations are generated and the above discrete
optimal control problem should be solved.

Also, in a practical application, there is usually no need to fix initial and termi-
nal locations of each individual car. It is, e.g., not relevant whether car #47 goes
to vehicle transfer station #23 and car number #54 goes to vehicle transfer station
#22 — or vice versa. Hence, the model deals with “colored” cars, and the initial
and terminal configurations specify only whether a slot is occupied by a car and
if so, what the “color” of that car should be. In the implemented computer code,
IP and CNF models are formulated and solved where these models have feasible
solutions which are sequences of configurations, for 3 colors. The number of col-
ors was fixed to three in order to distinguish between the cars which just arrived,
the ones just requested, and the dormant ones.

7.1.2. Simplifications and literature review

Simplified versions of the problem have been studied theoretically. Most im-
portantly, disregarding the role of robots (i.e., assuming that the cars move by
themselves) and the speeds give variants of pebble motion and reconfiguration
problems in grids, or, more generally graphs: Vertices represent parking slots,
and edges represent slots sharing an edge. We now review what is known.

The most famous problem in this group is the 15-Puzzle: on a 4x4 grid, 15
vertices are occupied by labeled pebbles. Labeled means that each pebble has a
color of its own. The decision version of the problem is whether a given initial
configuration can be transformed into a given terminal configuration through a
sequence of moving pebbles to adjacent vertices; the optimization version asks for
a reconfiguration with the smallest number of total moves. The decision problem
can be solved in polynomial time [75]. The optimization problem on grids is
NP-hard [59], but constant factor approximation algorithms exist [58].

For graphs in general, Papadimitriou et al. [S7] proved that with two labels, one
pebble has a unique label, the problem is NP-hard. They also gave a polynomial
time algorithm, using flow techniques, for the optimal solution on trees. The
result was later improved to O(ns) by Auletta et al. [3]. Pach et al. [16] showed
that the optimization problem on graphs is APX-hard. Moreover, when allowing
more pebbles to move at the same time, J. Yu and S. La Valle [76] proved that the
optimization problem on graphs is NP-hard. It follows from [16] and [76] that
there is no polynomial time approximation scheme for the simplified version of
our problem, unless P = NP.

As for the practical aspect of the problem, several robot control systems prob-
lems have been modeled using Integer Programming [36] and Mixed Integer Pro-
gramming [28, 38]. But their simulations were tested with small inputs, e.g. no
more than 4 robots, where all robots have the same color. Similar simplified prob-
lems have been studied in path scheduling problems [17, 19,24, 70] using Mixed
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Integer Programming models. These simplifications arise in the path topology
(studied only free-obstacle grids or other simpler topologies) and in the loose time
limit of the problem. To the author’s knowledge, there is no CNF formulation of
the problem or any simplification of it even though there were some Boolean logic
formulations in [38] which were transformed into inequalities.

Sections 7.2, 7.3, and 7.4 describe the variables of the IP- and CNF-model that
were introduced in [40], the constraints of that IP-model, and the clauses of that
CNF-model.

7.2. Variables

This section describes the variables of the IP model and CNF model. Both IP-
and CNF-models have the same variables. The two models are completely new
models formulated by the author among others in [40].

Let C:={0,1,...,|C| —1} denote the set of colors of cars. The models require
an upper bound on the number of time intervals: Each time interval is identified
by an element of 7 = {0,1,...,fma}. The configuration at ¢+ = 0 is the initial
configuration, the configuration at ¢ = #,,,,« is the terminal configuration. A car is
called stationary if it is not carried by a robot.

For every time interval and slot, there are four types of variables to determine
what is happening there and then: slot occupation status (whether there is a sta-
tionary car, and if so, of what color), slot robot-status (whether there is a robot,
and if so, what it is carrying and doing), robot vertical process (if there is a robot
lifting or dropping a car, which phase of that process is it executing), robot hori-
zontal movements (if there is a moving robot, which phase of the movement is it
executing). All variables are Boolean. At most one variable in each group is ac-
tive, i.e., it has value 1. In what follows, a description for each group of variables
and its role is presented.

7.2.1. Slot Occupation Status

These variables inform whether a car of a certain color is occupying the slot or
if it is empty. These variables are of the form x,, .. For every slot v = (x,y),
every time interval 7 =0, ..., fmax, and every ¢ € {¢ } UC, we have a variable x,; .
The symbol ¢ stands for “no car”. Example: x,; ¢ = 1 iff during time interval ¢,
there is no stationary car at the slot with coordinates v; x,;> = 1 iff during time
interval ¢, there is a stationary car of color 2 at the slot with coordinates v. Note
that the case whether a slot has a robot or not is not recognized by this group of
variables.

7.2.2. Slot Robot-Status (SRS)

These variables inform whether a certain slot is occupied by a robot, and if so,
reports what the robot is carrying or doing. These variables are vital since they
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help in determining whether a future action is valid, but if so, they do not make the
robot do the action, i.e., they are acting as consultants. These variables are of the
form s, . 4. For every slot v, every time interval 7, every ¢ € {¢ } UC, and every
d € {e,p,u,{}, there is a variable s, . 4. The symbol € stands for “no robot”, p
stands for “ready”, u stands for “robot moving”, { stands for “vertical process”.
Example: s,;4p = 1 iff at the slot with coordinates v, during time interval ¢,
there is a robot executing the “ready” control instruction, i.e., it is doing one of
the following: (1) nothing (being idle); (2) ending a movement (decelerating);
(3) ending lifting or dropping a car. Note that the being idle case in the “ready”
instructions is important since, as mentioned before, robots are not allowed to
change direction unless they become standstill. Another example: s, » = 1, iff
at the slot with coordinates v, during time interval ¢, there which is in the process
of either lifting or dropping a car of type 2. In the table below SRS variables are
listed with description.

Variable | Description
Svpd.e v has no robot occupying it.
Sut,0.p v has an unloaded robot executing the “ready” control instruction.
Sutip v has a loaded robot with car of type i executing the “ready” control instruction.
Svt o1 v has an unloaded robot moving horizontally.
Svtip v has a loaded robot with car of type i which is moving horizontally.
Syl v has a loaded robot is in the process of either lifting or dropping a car of type i.

Table 1. List of SRS variables at the slot with coordinates v during time interval ¢.

7.2.3. Robot Vertical Movements (RVert)

These variables determine which phase of the lifting or dropping process the robot
is executing. These variables are of the form z,, ,. For every slot v, every time
interval 7, and every p € {49, 41,42,43,A4, 8}, there is a variable z,; ,. The sym-
bols A; for 0 < i < 4 stand for the phases of “lifting”, & stands for “dropping”.
Example: z,,,, = 1 iff during time interval ¢, the robot is in the third phase of
lifting at the slot with coordinates v.

Note that the assigned phases of lifting (resp. dropping) took into considera-
tion that the robot needs 6s (resp. 2s) to lift (resp. drop) a car. For example, lifting
the process has 4 phases each takes 1s and the two remaining seconds are counted
by forcing the robot to be ready before and after it finishes the lift. The following
diagram shows the interconnection between x-, s-, and z-variables:

t=1o X3 =1,8,0p=12,+=0 | acarof color 3, arobot
t=t0+1 | x9=15,3¢c=1,2,2 =1 | nocar arobot lifting a car of color 3

t=10+5 | xv9=1,8,3¢=1,2,2, =1 | nocar; arobot lifting a car of color 3
t=104+6 | X190 =1,5,30 =1,z =0 | no car; robot executing “ready”
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7.2.4. Robot Horizontal movements (RMove)

These variables determine the displacement movements of the robot. These vari-
ables are of the form m,, ... For every slot v, every time interval 7, every ¢ €
{9} U{C}, and every

€€ {Nacc }U{N;|0 < i <3}U{Sacc}U{Si|0 <i <3} U{Eacc} U{Ei[0 <i < 1}U{Wacc}U{W;[0 <i< 1},

there is a variable m,; . .. The symbol N, stands for * acceleration in the north
direction” and N; for 0 <i < 3 stands for the phases of “northern move”. Similarly,
the others stand for the other directions. Example: m,; > g, = 1 iff during time
interval ¢, the robot moving E at the slot with coordinates v towards its east.

Similar to the (Rvert), these variables take into consideration the time to tra-
verse the slot North-South is double that of East-West, the difference between the
speed of the loaded and unloaded robot, and the acceleration times. The intercon-
nection between the x-, the s—, and the m-variables is similar to the RVert case.
RVert and RMove can be seen as the decision variables for they are the actions that
the model should perform.

7.3. IP Model

This section discusses the IP-model constraints and objective function. The setup
of the variables allows formulating the [P-model by linking only consecutive time
intervals ¢,¢ + 1. The main focus is to allow all possible feasible movements. Sim-
ilarly, the objective function pushes robot into reaching the terminal configuration
as quickly as possible — see below for details.

7.3.1. Constraints

In this subsection, we present an overview of the IP model constraints. As was
mentioned before, no constraint links more than two-time intervals, and if so,
these time intervals should be consecutive. For every time interval, there are two
types of constraints, namely, stationary and time link.

Stationary Constraints. At a given time interval and on a certain slot, these
constraints encode the feasible movements that can occur on this slot and its
neighbors (adjacent slots). It is clear that a slot can have up to four neighbors.
The stationary constraints set basic rules like: (1) at a given time interval, on any
slot there can be at most one car (2) a robot can move in at most one direction (3) a
robot can be in at most one phase of movement (resp. vertical process) and so on.
Most importantly, by including the feasible movements on the adjacent slots, this
permit simultaneous motion of robots while avoiding collisions (see Figure 7.3.1).
The following constraints describe a loaded robot on a slot of coordinate v = (x,y)
moving north during the time interval ¢. These constraints will just be concerned
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with the feasible movements of the robot at only during time .
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The inequality (7.1) states that if a robot is in the northern move phase Ny then
north of it can be nothing or a robot accelerating in the same direction as it and so
on. E.g., when a robot is the northern move phase N; from (7.3) there cannot be
arobot to the north of it accelerating since a collision will occur. Moreover, since
Ny is the northern move phase in which the robot arrives at (x,y) and is almost
occupying all of (x,y) slot, then by (7.6) (x,y — 1) be either unoccupied or there
can be a robot in the northern phase Ny at (x,y — 1).

Time Link Constraints. For any two consecutive time intervals 7,7+ 1 and any
slot v, these constraints encode the feasible decisions (movements or processes)
from time ¢ to time 7 + 1 for a robot. Similarly to the stationary constraints they
also take into consideration the neighboring slots to decide whether a decision is
feasible. The following constraints describe the future feasible movements of a
loaded robot on (x,y) moving east.
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Figure 8. North east collision
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Before starting to explain this group of constraints, it is important to understand
how the phases of movements work. An example of a robot moving East is utilized
to explain the phases. Recall that E,.. and Ep on (x,y) refer to start moving
(accelerating) towards (x+ 1,y) and continue the movement towards (x+ 2,y)
respectively.

On one hand, during ¢ and on the slot (x,y), if the robot accelerates, then during
¢+ 1 it will either continue moving towards (x+2,y) or prepare to stop at (x+1,y)
(starts decelerating). Since the robot is moving with half its speed, then either it
continues moving towards (x+2,y) but will not reach (x+2,y) during 7 +2 or it
decelerates but still cover parts of (x,y) during z + 1.

On the other hand, during 7+ 1 and on the slot (x,y), if the robot continues
moving towards (x+2,y), then during ¢ and on slot (x — 1,y) it had the choice
of either continue moving towards (x+ 1,y) or stopping at (x,y). Similarly, the
robot either will not reach (x+2,y) during # + 2 or decelerate but still cover parts
of (x—1,y) during ¢ + 1.

In order to encode the above, transition phases

e after the robot accelerates,

e before and after the robot continues moving,

e and before the robot decelerates

are added where the robot undergoes these phases. In the case of East (resp. West)
loaded robot movement, there is a need for one transition phase, namely, E;
(resp. Wi). Whereas there is no need for it in East (resp. West) unloaded robot
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movement since robots move at double speed, so after acceleration during ¢, robots
will be halfway between (x,y) and (x+ 1,y) and during ¢ 4 1 robots will be fully
on (x+ 1,y) when decelerating and halfway on (x+2,y) if it continues moving.

Remark. Since the length in the North-South direction is double the width, there
is a need for three transition phases for the North and South loaded robot move-
ments and one transition phase for the unloaded robots.

Now back to the above set of constraints, as mentioned when the robot starts
accelerating towards a certain direction it has to standstill. Inequality (7.7) obliges
the robot to standstill, i.e., the SRS variable s ,),;, = 1 when the robot acceler-
ates east. Inequalities (7.8), (7.9), (7.10), and (7.11) organize the eastern move
phases.

Inequalities (7.8) and (7.9) encode the following case. Either after the robot
accelerates during t and on (x,y), i.e., Mm(yy) ;i ... = | or the robot plans to con-
tinue moving towards (x +2,y), i.e., m(. )i, = | there should be a transition
phase during 7+ 1, i.e., myy) ;41 = 1. Conversely, if during 7 + 1 there is any
transition phase, i.e., m(yy),41,r = 1, then there should be either during 7 ac-
celerating on (x,y), i.e., m(yy) ... OF continue moving towards (x+2,y), i.e.,
Mixy)aiko = 1

Inequality (7.10) encodes the following case. During 7 + 1 when the robot is
planning to continue moving towards (x+1,y), i.e., M(xy)1+1,i,E, = 1 there should
be a transition on (x — 1,y) during 7, i.e., M1 y)0iE = 1

Inequality (7.11) encodes the following case. During ¢ if the robot is in tran-
sition phase on (x,y), i.e., m(yy) g, = 1, then the robot should either stop de-
celerate on (x+ 1,y) during ¢, i.e., S(x+1y).,ip = 1 Or is planing to move toward
(0 2,9), e Mty 1 = 1.

Finally, inequality (7.12) encodes the following case. During ¢ if the robot is in

transition phase on (x,y) then the slot is no longer occupied by a robot during # + 1,
1., S(xy)+1,9,e = | unless some unloaded robot was planning to move towards
(x,y) during t + 1, i.e., m(y ) 111,65, = 1. Now we state the following result that
can be obtained by counting.
Proposition 7.3.1. The IP-formulation using the x-, s-, z-, and m-variables on an
n x n grid has O(|Cltmaxn®) inequalities and variables. Moreover, in the compu-
tations done, the number of colors was fixed to three and so there were O(Imaxnz)
inequalities and variables.

7.3.2. Objective Function

Numerous experiments were made with different objective functions. The best
objective function was the one that aimed to “nudge” the robots into movement
while trying to support reaching the terminal configuration as quickly as possible.

For each time interval, f(r) = was the cost of the SRS excluding s,;4 o and

max
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Svt.0,e- The objective function is as follows,

F@) - (Svrip +Svagp+ Suaipn + Sn9.0) (7.13)
eV teT NieC

7.4. SAT Model

The SAT-model follows the same basic approach as the IP-model. Indeed, many
of the clauses have a direct counterpart in an inequality and vice versa. Overall,
deriving the CNF clauses from the control requirements and the variables is an
exercise in logical thinking. The following clauses determine the situation of a
slot v at time ¢ after lifting or before dropping.

Svitlip Vo St Voxge Voo Zua forallie C  (7.14)
jec
J#i
Svtip \V  swijp VoXyue Vo Zuirs foralli,jeC (7.15)
jec
J#i
SSyra1,ip Vo Syl foralli,jeC (7.16)
—Sytip Vo SSypp foralli,jeC (7.17)

By (7.14) and (7.16), in t + 1, if a loaded robot (car of type i) will be ready
on v, then, in ¢, v has no cars or the robot is done with lifting a car of type i.
Similarly (7.15) and (7.17), if in ¢, the loaded robot is ready on v, then, inz+ 1, v
will have no cars or the robot will drop a car of type i.

7.5. Computational Results

This section aims to compare and analyze the performance of IP- and CNF-model
on different instances. The next subsection describes the set of instances in which
some of them are based on existing parking lots in Tallinn, Estonia. Subsec-
tion 7.5.2 explains the software which was used to solve the IP and CNF-model
and the platform where the computations are done. Subsection 7.5.3 is a summary
of the performance of both model solvers on different instances.

7.5.1. The data

There are two sets of parking lots. Five parking lots (a,b,c,d, and e) are derived
from an existing parking area (Marsi-3) in Tallinn, Estonia (e.g. Figure 9 and 10).
That parking area has been split up into parts, based on requirements such as
having vehicle transfer stations accessible from elevators for pedestrians. Humans
and robots cannot use the same floor area for operational safety. E.g. the name of
the third parking lot is Marsi-3c. Then there is a set of 5 parking lots generated
randomly: Starting from an m x n grid, a “walls” is placed between parking slots
with a given probability (e.g. Figure 11). The randomly generated parking lots are
referred to as rnd-y where y € {1,2,8,7,19}
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Each parking lot gives rise to several instances to be solved by choosing the
initial and terminal configurations of the cars and robots and the number of robots
and cars. Each instance is solved several times, for varying fmax. (The difficulty
is that no good upper bound on f,,,x is known.) The size of C in all the instances
is 3. All configurations were chosen randomly (discarding those with no recon-
figuration of initial to terminal configurations.) An instance is refer to as either
Marsi-304ng.g or rnd-¥nq.3 Where o € {a,b,c,d, e}, B varies from 1 to 4, and
ye{1,2,8,7,19}.

An important feature of any instance is the number of free slots, i.e., the slots
with no cars or robots on and the robots can move along them (not obstacles).
Another feature which plays a role in the complexity is the bottleneck slots (see
Figure 11) which is the only slot that the robot has to traverse when passing from
one area of the parking lot to another. The number of bottleneck slots is assumed
to make the instance harder—see Subsection 7.5.3.

The total number of instances is 30. The largest instances were 13 x 10 with
only 41 free spots (e.g. Figure 10). For these instances, 7 cars of 3 different colors
and 5 robots were used in the generation of the initial and terminal configurations.
The smallest instances 4 x 4 with 9 free spots (see Figure 9) have 6 cars of 3 dif-
ferent colors and 2 robots. Compared to real-world problems, the instances are
small in terms of the number of cars, but the sizes and number of colors are com-
patible with real-world ones. The full description of all parking lots and instances
is presented in Table 3.

1 0
0 1
r r
0 0
1
Initial Configuration Terminal Configuration

Figure 9. The instance Marsi-3b,,4.1 with 9 free spots and the tiled spot is an obstacle.
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Figure 10. The instance Marsi-3e;,q.4 With 41 free slots. The tiled spots are obstacles,
and the bold borders are uncrossable too.

7.5.2. Hardware and Software

The GUROBI optimizer [33] in version 7.0 is used to solve the IP-model, and
CRYPTOMINISAT 5 [63] is used as SAT solver. The times were taken on a com-
puter server with Intel(R) Core(TM) 17-4790K CPU (4 cores) and 16GB of RAM.
(Both solvers were run with one thread.) GUROBI is run with the parameters
MIPFocus= 2, Presolve=2. CRYPTOMINISAT 5 is run with preproc= 1. Both
solvers are given a time limit of 10000sec. The time to read in the data from a file
and construct the models is negligible.

7.5.3. Results

Since the CNF-model does not optimize an objective function, for the compari-
son, GUROBI is asked to give only a feasible solution, a solution where the termi-
nal configuration is matched. CRYPTOMINISAT 5 very significantly outperforms
GUROBI especially when the number of robots is more than two.

GUROBI is able to solve only one of the IPs within the time limit. For that
instance, GUROBI returns the solution in 90 sec, however, CRYPTOMINISAT 5
returns the same solution in 76 sec.

CRYPTOMINISAT 5, on the other hand, gives relatively satisfactory results.
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Initial Configuration Terminal Configuration

Figure 11. The instance rnd-8,4.1 with bottlenecks. The tiled spots are obstacles, and
the red circles are place on the bottlenecks

CRYPTOMINISAT 5 terminates within the given time limit for 85% of the CNF-
models (yielding either a feasible solution or the information that there was none).
In 60% of the instances, the running time is below 3600 sec. In only 20% of the
instances, the running time is larger than 6000 sec.

The experiments reveal that the complexity of the instance depends on the
number of robots versus cars (e.g. Marsi-3emmg.2 and Marsi-3epg.s), the size of
the parking lot (e.g. Marsi-3e), and the number of bottlenecks in the parking lot
(rnd-8). In addition, the complexity highly depends on the choice of 7.« (large
tmax Or small #,« are not good). The full computational results are presented in
Tables 4, 5, and 6. The code, instances, and solutions are in the github https:
//github.com/Abzinger/crobots.

Before developing the CNF-model, another IP-model, TH, for the same prob-
lem was developed within Algorithms and Theory research group for the master
thesis [67]. The idea is to create a model with fewer variables and different model
than this [P-model. Indeed, the constraints will become more complicated (con-
straints use variables from more than consecutive time-steps).

The TH model considered the parking lot as a graph G(V,E) where V is set
of all parking spaces and there is an edge between two parking lots if they are
reachable from one another. Cars are supposed to be moved by robots on the
graph. So, in this case, there cannot be a robot occupying part of a vertex instead
itis going to occupy the edge. Therefore, instead of having a variable for each step
of the move in a certain direction, e.g., My iN; for all j € {0,...,3} there is one
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variable indicating that the robot is still moving in this direction m,; ; y and when
a robot is moving along an edge ¢ = (u,v), namely, occ,,, and the edge should
be marked occupied until the move is done, i.e., occ,; forall i € {z,...,t+n}
where 7 is the time for a move to be completed. Also, the node status of nodes u
and v should stay the same until the move is done. This forces to have constraints
linking time ¢ and # + 1, e.g., if at time ¢ a robot is doing a move that needs 1) time
steps to finish along an edge ¢ = (u,v) in order to check whether the edge e can
be occupied during the move there will be a constraint connecting the variable of
status of u at time ¢ with the variables of edge occupation for all the time steps ¢
till # +n. Table 2 summarizes the main difference between TH and this IP model.

Thesis IP TH IP
Encodes directly the parking lot Encodes the parking lot via a graph G(V,E)
O(|C|tmaxn?) variables O(|C|tmax max(n, |E|)) variables
O(|Cltmaxn®) constraints O(tmax max (n|C|, |E||C]?))
Slot Occupation variables Edge Occupation variables
Variables representing each step of a move | One variable for all steps of a move
Constraints connect only consecutive times | Constraints can connect nonconsecutive times

Table 2. Summary of the main difference between TH and the thesis IP model.

TH was not tested with any of these instances since already its performance is
as good as the IP-model on the instances tested in [67]. More details about the TH
model and how it compares with the current IP-model can be found in [67].

7.6. Conclusion

Difficult discrete optimal control problems arise in the control of automated valet
parking systems. For the study of exact methods for the problems, a time-expanded
model is devised, and its solution via Integer Programming and CNF-based Con-
straint Programming is compared. Using state of the art software for the two
approaches, Integer Programming is found useless.

The CNF-model, however, proved to be usable. Now, the next goal is to (de-
sign and) compare the solution qualities (amount of time needed to reach a termi-
nal configuration from a current configuration) of heuristic algorithms to optimal
solutions, which can be found or at least bounded using our CNF-model.
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Parking Lot Robots & Cars
Name Area  Spaces Bottleneck(?) Name #Robots #Cars/0 #Cars/l #Cars/2 Free Spaces #Avg. Dist.

Marsi-3a  04x05 17 no rnd-1 2 2 2 1 10 50
no rnd-2 2 2 2 1 11 57

no rnd-3 2 2 2 2 9 54

Marsi-3b  04x04 16 no rnd-1 2 2 2 1 10 68
no rnd-2 2 2 2 1 10 52

Marsi-3¢  11x04 30 yes rnd-1 3 2 2 2 22 58
Marsi-3d  10x07 37 yes nd-1 4 4 3 0 23 64
rnd-2 3 2 2 2 29 56

rnd-3 5 4 2 1 27 67

rnd-4 5 4 2 1 25 55

rnd-5 5 4 2 1 26 53

Marsi-3e  13x10 48 yes rnd-1 3 2 2 1 41 63
rnd-2 3 2 2 2 39 72

rnd-3 3 2 2 2 39 69

rnd-4 5 4 2 1 38 51

rmd-5 5 4 2 1 36 66

rnd-1 04x04 15 no rnd-1 1 2 2 0 11 87
rnd-2 05x05 19 yes rnd-1 1 2 2 0 14 62
rnd-2 1 2 2 0 16 65

rnd-3 1 2 2 0 15 68

rnd-7 05x05 20 no rnd-1 2 2 1 1 14 59
rnd-2 2 2 2 1 13 73

rnd-8 06x06 27 yes rnd-1 2 2 1 1 21 86
rnd-2 2 2 1 1 21 78

rnd-3 2 2 1 1 22 83

rnd-4 2 2 2 1 21 92

rnd-19 05x10 39 yes rnd-1 4 4 2 1 30 62
rnd-2 4 4 2 1 30 58

rnd-3 4 4 2 1 29 54

rnd-4 3 4 3 0 30 70

Table 3. List of instances. The Parking Lot columns describe the parking lot in general
such as, the name of the grid, its area, number of cells it contains which are not obstacles,
and whether it has bottlenecks or not. The Robot & Cars columns describe the config-
urations of cars and robots on a certain grid. For most of the grids, there were multiple
configurations and so Name here refers to the configuration. #Robots, #Cars/0, #Cars/1,
#Cars/2 are the number of robots and cars of type 0, 1, and 2 respectively. Free spaces
represents the number of empty parking spaces, i.e., no cars or robots. The Avg. Dist. is
computed by finding a weighted perfect matching between the initial and final configura-
tions then evenly distributing the result over the robots.
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Instance CNF 1P
tmax  SOlve time (sec) feasible solve time (sec) feasible
Marsi-3arnd-1 90 814 y oo n/a
78 268 y oo n/a
65 ) n/a oo n/a
53 ) n/a oo n/a
40 30 n 1861 n
rnd-2 90 8280 y oo n/a
78 2088 y oo n/a
65 oo n/a oo n/a
53 ) n/a oo n/a
40 13 n 893 n
rnd-3 90 2554 y oo n/a
85 9604 y oo n/a
70 oo n/a oo n/a
55 ) n/a oo n/a
40 29 n 1520 n
Marsi-3brnd-1 90 1585 y oo n/a
80 1039 y oo n/a
70 oo n/a oo n/a
60 oo n/a oo n/a
50 576 n oo n/a
rnd-2 90 2113 y oo n/a
80 2023 y oo n/a
70 6271 y oo n/a
60 oo n/a oo n/a
50 5010 n oo n/a
Marsi-3c rnd-1 120 7999 y oo n/a
100 4054 y o0 n/a
80 101 y oo n/a
60 o0 n/a oo n/a
40 10 n 5 n
Marsi-3d rnd-1 90 1906 y oo n/a
80 6223 y o0 n/a
70 ) n/a oo n/a
60 3165 n o0 n/a
50 19 oo n/a
rnd-2 90 1400 y oo n/a
80 6694 y o0 n/a
70 ) n/a oo n/a
60 305 n o0 n/a
50 19 n oo n/a
rnd-3 90 1857 y oo n/a
80 1539 y oo n/a
70 1841 y oo n/a
60 93 y oo n/a
50 15 n 17 n
rnd-4 90 1331 y o0 n/a
80 994 y o0 n/a
70 o n/a 3 n/a
60 oo n/a oo n/a
50 39 n oo n/a
rnd-5 90 4891 y oo n/a
80 3085 y oo n/a
70 9706 y oo n/a
60 oo n/a oo n/a
50 21 n oo n/a

Table 4. Computational results I
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Instance CNF 1P

tmax SOlve time (sec) feasible solve time (sec) feasible

Marsi-3e rnd-1 100 2080 y o0 n/a
90 6584 y oo n/a

80 oo n/a o0 n/a

70 213 n oo n/a

Marsi-3e rnd-1 60 22 n 96 n
50 18 n 31 n

rnd-2 90 2811 y oo n/a
80 oo n/a oo n/a

70 o n/a oo n/a

60 46 n oo n/a

50 19 n 62 n

rnd-3 90 3246 y oo n/a
80 oo n/a oo n/a

70 oo n/a oo n/a

60 731 n o0 n/a

50 18 n 113 n

rnd-4 90 oo n/a oo n/a
80 2479 y oo n/a

70 2807 y oo n/a

60 4009 y oo n/a

50 94 n oo n/a

rnd-5 100 1587 y oo n/a
90 2173 y o0 n/a

80 896 y oo n/a

70 4330 y o0 n/a

60 22 n 820 n

50 21 n 24 n

rnd-1 rnd-1 110 2334 y oo n/a
100 2124 y oo n/a

95 5261 n oo n/a

90 3082 n oo n/a

80 1019 n oo n/a

rnd-2 rnd-1 150 2761 y oo n/a
120 6260 y oo n/a

100 o n/a oo n/a

80 1489 n oo n/a

60 61 n o0 n/a

rnd-2 150 3797 y oo n/a
120 2516 y oo n/a

100 7269 y oo n/a

80 2922 n oo n/a

60 123 n oo n/a

rnd-3 150 3683 y oo n/a
120 9781 y oo n/a

100 9008 n oo n/a

80 1764 n ) n/a

60 38 n oo n/a

rnd-7 rnd-1 90 76 y 90 y
70 21 y ] n/a

65 1141 y oo n/a

60 oo n/a oo n/a

50 133 n oo n/a

Table 5. Computational results II
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Instance CNF
tmax SOlve time (sec) feasible solve time (sec) feasible
rnd-2 100 3726 y oo n/a
88 1532 y oo n/a
75 0 n/a oo n/a
62 oo n/a oo n/a
50 1105 n oo n/a
rnd-8 rnd-1 140 496 y oo n/a
120 1024 y oo n/a
100 5970 y oo n/a
80 182 n oo n/a
60 15 n 50 n
rnd-8 rnd-2 140 2927 y ) n/a
120 2581 y oo n/a
100 623 y oo n/a
80 oo n/a oo n/a
60 16 n oo n/a
rnd-3 140 3040 y oo n/a
120 1319 y oo n/a
100 2333 y oo n/a
80 5847 n oo n/a
60 17 n oo n/a
rnd-4 150 2350 y oo n/a
133 1585 y oo n/a
115 6740 y oo n/a
98 oo n/a oo n/a
80 922 n oo n/a
rnd-19 rnd-1 90 5537 y o0 n/a
80 525 y oo n/a
70 8902 y oo n/a
60 oo n/a oo n/a
50 19 n 67 n
rnd-2 90 1488 y o0 n/a
80 3126 y oo n/a
70 1654 y o0 n/a
60 732 y oo n/a
50 19 n 15 n
rnd-3 90 7821 y o0 n/a
80 3929 y oo n/a
70 2239 y oo n/a
60 3617 y oo n/a
50 775 n oo n/a
rnd-4 90 2012 y oo n/a
80 4780 y oo n/a
70 oo n/a o0 n/a
60 oo n/a oo n/a
50 78 n oo n/a

Table 6. Computational results II1
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8. CONCLUSION

Many fundamental problems in several disciplines can be modeled as Optimiza-
tion problems. One significant class of these problems which has been widely
applied is Convex Optimization. Efficient algorithms exist to find the solutions
of Convex optimizations. But sometimes these problems express some nontrivial
difficulties when being solved. In this case, studying the solution of the prob-
lem can lead to a better understanding of how to avoid these caveats by choosing
the suitable model and algorithm. Also, optimization can be used to model hard
problems in order to study its theoretical limitations and use these in designing
heuristics and controlling their solutions qualities.

This thesis applies optimization to some complex systems. In one part, it stud-
ies a convex optimization problem to obtain partial information decomposition
that serves as an analytical tool for some complex systems such as biological net-
works. In the other part, it designs exact algorithms for an optimization problem
in the control of automated valet parking systems to study the theoretical limita-
tion throughputs of these systems. The thesis is a collection of results obtained
in [40-43].

In [42], the author among others studied the solution of the Convex Program
involved in computing the bivariate BROJA PID measure. The author among oth-
ers found that if the optimal solution of the problem is obtained on the boundary
of the feasible region, then the boundary where the solution lies have an infinite
directional derivative, i.e., all the surrounding points are infinitely repellent. The
latter advocates the opinion of the supervisor of this thesis Dirk Oliver Theis that
the difficulties which arise when solving the BROJA Convex Program are caused
by the smoothness problems of the objective function on the boundary of the fea-
sible region and not the shape of the feasible region itself.

The extensive study of the BROJA Convex Program gave strong insights on
which optimization methods are used to achieve an efficient solver for BROJA
PID. The author coded 6 different approaches, including Geometric Programming
and other Cone Programming models, in order to have a robust solver for BROJA
PID measure. He found out that MOSEK, a commercial Convex Optimization
solver, was robust and fast, however, one of the Cone Programming models was
the most robust, with satisfying speed.

In [43], based on the results in [42], the author among others developed a
production-quality software for the robust computations of BROJA PID that is
based on the reliable Cone Programming model of [42]. Then, the author among
others discussed several Cone Programming models of BROJA PID based on the
exponential cone and their properties and explained the technical details of the
software. In addition, the author among others formulated Exponential Cone Pro-
gramming to compute a multivariate PID.

The author also studied some properties of problems when optimizing partial
information measures subjected to some constraints. The latter problem arises in
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neural coding, for example, when studying the capability of a mechanism inde-
pendently from the input distribution to modify the information of the output [73].

The author found that such optimization is not convex or concave revealing the
need for heuristic approaches to solve it. He also proved formulas for the gradients
and sub-/super-gradients for the information decomposition measures conjectured
by Dirk Oliver Theis. Using these gradients, the future plan is to utilize it in
designing heuristic algorithms to compute the extractable shared information [60]
and the maximum capacity of a mechanism for modifying information [73].

In [40], the author among others studied the theoretical throughput limita-
tions of an optimization problem in the control of automated parking systems.
The study was done via designing exact methods to solve the following problem:
Given a car park layout, an initial configuration of a car park (location of cars,
robots), into a desired, terminal configuration, what is the optimal set of control
instructions for the robots to reorganize the initial configuration into the terminal
configuration. The notion “optimal” in this problem, means fastest, in terms of
clock-on-the-wall waiting time until the robots have completed their tasks.

The author among others designed an IP- and a CNF-model to solve the prob-
lem. The IP-model was not able to produce results most of the time, even when
directed to only find one feasible solution, making the current version useless for
the study. However, the CNF-model was found to be useful. Note that improving
the IP model using, e.g., cutting planes should be an option. But, the future work
is mainly focused on designing heuristics to solve the problem and utilizing the
CNF-model to compare the solution qualities (amount of time needed to reach
a terminal configuration from a current configuration) of heuristic algorithms to
optimal solutions, which can be found or at least bounded using our CNF model.
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Appendix A. CONVEXITY

This short appendix aims to define and review properties of convex sets and con-
vex functions. The appendix is to a certain extent a collection of known results
taken from the literature on convexity (e.g. [11,51,62]).

A.1. Convex Sets

Recall the definition of convex sets and some of their properties.
Definition A.1.1. A set C € R" is said to be convex if for all ¢, ¢, € C it contains
all points
aci+(1—o)cr, 0< < 1.

Example A.1.1. Some examples of convex sets.

e The set of all n-tuples of real numbers R" where n > 0.
The half space {x | a’ x < b} where a # 0.
The hyperplane {x | a’ x = b} where a # 0.
B(x,,r), the (Euclidean) ball in R", defined as {x | (x —x.)T (x — x.) < r}
where r > 0 and x,. € R".

There are operations which preserve convexity. Thus one can check whether a
set C is convex either by using the definition of convexity or by showing that C is

the image of another convex set under a transformation which preserves convexity.
Below are some examples of such transformations.

Proposition A.1.1 ([62]). Let {C;}jcs be a family of convex sets for some index
set J. Let o/ : R" — R"™ such that </ (x) = Ax+ b for some A € R™" and b € R™
be an affine mapping. Then

1. Intersection. ﬂ C; is a convex set. Note that, in this case, J can have an
infinite cardinéjl{ty
2. Direct product. Cy X --- XCM = {(xl,...,xm) | x1 EC],...,XU‘ EC‘J‘} isa
convex set (|J| < o).
3. Composition with affine function. The set <7 (C;) :={</(x;) | x; € Cj} is
a convex set for any j € J.
Example A.1.2. Using Proposition A.1.1, the set C = {x € R" | Ax =bAx >0}
is a convex set where A € R™" and b € R™.

A.2. Convex Functions

Recall the definition of convex functions.

Definition A.2.1. A function f : R" — R is convex if and only if for all x;,x; € R"
and for all 0 < ¢ < 1 we have

flaxi+(1—a)x) < af(x)+(1—a)f(x).
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Definition A.2.2. A function f is called proper if f(x) > —oo for all x and f(x) <
+oo for at least one x.

All the functions that are used in this thesis are considered to be proper unless
otherwise mentioned.

Example A.2.1. Here are some examples of convex functions.
e Exponential. ™ is convex on R, for any a € R.
o Logarithm. logx is convex on R ;.
o Negative entropy. xlogx is convex on Ry (or Ry ).

Similar to convex sets there are some operations which conserve the convexity
of a function. The proposition below lists some of the transformations which will
be used later.

Proposition A.2.1 ( [62]). Let F; : C; CR" = R, for all 1 < i < m be convex
functions where C;, 1 < i < m are convex sets. Then

1. Nonnegative weighted sum. The function F(x) =Y 0;F;(x;) is convex on
i

Cy X---xXCy where a; > 0forall1 <i<m.
2. Pointwise supremum. For any 1 <i<m,leth; :C;xY CR"xR" — R be
a convex function in x € C; for each 'y € Y. Then the function g;, defined as

gi(x) = sup h;(x,y)
yey

is convex in x where the domain of g; is

dom(g;) = {x| (x,y) € dom(h;) for all y € Y,sup h;(x,y) < eo}.
yey
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SISUKOKKUVOTE (SUMMARY IN ESTONIAN)

Optimeerimise rakendamine keerulistes slisteemides

Paljusid erinevate ainevaldkondade probleeme saab esitada optimeerimisiilesan-
netena. Uheks mirkimisviirseks iilesannete klassiks, kus optimeerimist rakenda-
dakse, on kumer optimeerimine (Convex Optimization). Kumera optimeerimis-
iilesande lahendamiseks leiduvad efektiivsed algoritmid, aga monikord tulevad
nende lilesannete lahendamisel esile mittetriviaalsed takistused. Nendel juhtudel
on aga vdimalik lahenduse analiiiisimise teel valida sobiv lahendusmeetod, mis
neid takistusi vildib. Lisaks saab optimeerimist kasutada keeruliste iilesannete
modelleerimisel, et uurida nende teoreetilisi piire ning kasutada saadud teadmisi
heuristikute loomiseks ja lahenduse kvaliteedi kontrollimiseks.

Antud t66 rakendab optimeerimist keerulistele siisteemidele. Esiteks uuritakse
BROJA kumerat optimeerimisiilesannet osaliseks informatsiooni lahutuseks (par-
tial information decomposition). Seda kasutatakse nditeks analiiiitilise tooriistana
bioloogiliste vorkude uurimiseks. BROJA abil leiti, et kui iilesande optimaalne
lahend saavutatakse lubatava piirkonna (feasible region) piiril, siis sellel piiril on
16pmatu suunatud tuletis. See tdhendab, et koik iimbritsevad punktid on 15pmatult
torjuvad. Viimane toetab juhendaja Dirk Oliver Theisi arvamust, et raskused, mis
tekivad BROJA kumera iilesande lahendamisel, ei ole mitte pohjustatud lubatava
piirkonna kujust, vaid tilesande eesmirkfunktsiooni siledusega seotud probleemi-
dest lubatava piirkonna piiril.

Peale ulatuslike arvutuslike katsete 1dbiviimist jouti jareldusele, et optimeeri-
misiilesannete lahendamise tarkvara Mosek on kiire ja robustne, aga koonuspla-
neerimise (cone programming) mudel on kdige robustsem rahuldava kiirusega.
Tulemuste pohjal loodi koonusplaneerimise mudelil pdhinev robustne BROJA
PID lahendamise tarkvara.

Antud t60s uuritakse samuti situatsiooni, mis tuli hiljuti esile neuroteaduse
valdkonnas, kus osaline informatsiooni lahutamise iilesanne lahendatakse kitsen-
dustega. See optimeerimine ei ole kumer ega ndgus ning seetdttu vajab lahenda-
miseks heuristilist ldhenemist. Selleks tuletatakse antud t66s informatsiooni la-
hutamise niitajate sub- ja supergradiendid. Edasiseks todks on nende tulemuste
kasutamine heuristilise algoritmi loomiseks.

Viimasena uuritakse antud t60s optimeerimisiilesandena automaatse parkimis-
sisteemi ldbilaskevdime teoreetilist limiiti. To0s luuakse tdisarvulise planeeri-
mise mudel ja kehtestatavuse kontrollimise ehk SAT mudel iilesande lahenda-
miseks. Tdisarvulise planeerimise formulatsioon enamus ajast lahendeid efektiiv-
selt leida ei voimalda, seda isegi juhul kui nduda vaid iihe lubatava lahendi otsi-
mist, ning seega on antud mudel vaadeldava iilesande lahendamiseks kasutu. An-
tud t60s aga leitakse, et SAT mudel on antud iilesande jaoks kasulik. Edasine t66
on pohiliselt suunatud antud iilesande jaoks heuristikute loomisele ning heuristi-
liste algoritmide ja optimaalsete lahenduste kvaliteedi (aeg, mis kulub praegusest

106



konfiguratsioonist Idppkonfiguratsiooni jdudmiseks) vordlemisele, kasutades SAT
mudelit, mille abil saab leida optimaalsed lahendid voi tokked nendele.
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