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1 INTRODUCTION

1.1 Motivation
Every once in a while, I find my social media friends sharing a screen capture
of how ‘inaccurately’ the well-known Google Translate tool1 translates sentences
or phrases in Estonian, often with absurd results. Machine translation does not
usually fail when translating single words, but has difficulty with longer word-
units such as phrases and sentences. Expressions that are not translatable word for
word are particularly problematic. For example, one can attempt to translate the
sentence Ta läks lepinguga alt into English. The Google translation is ‘He went
under the contract’. Although the machine ignored the fact that the word leping
‘contract’ is in the comitative case, the direct translation of the words is correct.
However, the translation does not express the real meaning of the sentence – ‘He
was deceived by the contract/He was deceived when he signed the contract’. As
the meaning of the sentence is not a sum of the meanings of its component words,
the machine is not able to express the meaning of the sentence. Why is Google
not able to understand the correct meaning of the sentence? What additional
information is required for the correct translation?

Despite this provocative example, analysing and improving the quality of the
machine translation is not the topic of this thesis. Nevertheless, the example
illustrates why it is important to improve on the quality of processing (including
translating) compounds of words that behave like one word. These kinds of
word-units that contain more than one word are called multiword expressions
(MWEs) in natural language processing (NLP). MWE processing is important for
machine translation; other known NLP tasks, such as named-entity recognition,
information retrieval and question answering, also benefit from it. Successful
MWE processing creates a situation in which the information that MWEs convey
does not become lost.

The aim of MWE processing is clear, but it is recognised as one of the
most complex tasks for NLP applications because MWEs are a highly diverse
class of constructions; thus, they cannot be treated the same way. Therefore,
MWE processing has been divided into subtasks (such as MWE discovery, MWE
identification, and so on), and many more or less successful methods have been
introduced to improve the quality of solving these problems. For example, lexical
association measures (AMs), distributional methods and machine learning appear
in many studies concerning MWE modelling and processing. While the work
on English (and other larger languages) has developed rapidly, comparatively few
experiments on Estonian MWEs have been conducted. Because Estonian is a
morphologically rich language, the treatment of Estonian MWEs has proved to be
even more challenging than has the treatment of English MWEs, for example.

In summary, the main motivation of this work is to test well known methods
of MWE processing on Estonian and to study how they work on a morpholo-
gically rich but relatively under-resourced language. In addition, the successful
processing of Estonian MWEs is important in order to improve the quality of
Estonian NLP tools as well.

1https://translate.google.ee (accessed 07.07.2018).

14

https://translate.google.ee


1.2 Research object
MWEs are a highly diverse class of linguistic constructions. For example, Con-
stant et al. (2017) identify the following MWE categories that are commonly seen
in the literature – idioms, light-verb and verb-particle constructions (VPCs), nom-
inal/noun/verb compounds, complex function words, multiword name entities and
multiword terms. This list reveals that it is challenging to find one common feature
among all MWEs. Why MWEs cannot be treated uniformly was explained long
ago (see e.g. Sag et al. 2002); thus, investigating different MWE types separately
has been revealed to be an effective and well-recognised method.

Based on this widely adopted approach, the thesis does not study the entire
range of MWEs, but focuses specifically on the exploration of the automatic
processing of Estonian particle verbs (PVs). Similarly to other MWEs, PVs are
a frequent phenomenon in Estonian, but the automatic processing thereof has
not been studied in detail. Moreover, the compositionality of PVs has received
minimal attention. Estonian PVs are similar to the English VPCs that Sag et al.
(2002) categorised as syntactically flexible expressions. In addition, as Estonian
has adopted numerous PVs from the German language (Hasselblatt 1990, as cited
in Erelt 2013; Erelt et al. 2017), there is a significant amount of research on
German PVs. This provides the opportunity to compare the behaviour of two
similar linguistic phenomena in two languages from different language families.

1.3 Selection of methods
MWE processing involves many subtasks, and numerous methods have been pro-
posed over the years (see the overview of computational research on MWEs in
Section 2.3). Constant et al. (2017) mentioned two main subtasks, namely MWE
discovery and MWE identification2. In general, MWE discovery focuses on find-
ing new MWEs in text corpora, and MWE identification addresses automatic
annotation of MWEs. From a semantic point of view, MWEs are considered
to have some degree of compositionality; thus, the detection of composition-
ality has become central to semantic research on MWEs. The main methods
used in MWE discovery are AMs, substitution and insertion, semantic similar-
ity, and supervised learning. MWE identification has primarily been done using
rule-based methods, classifiers and sequence tagging methods. (Constant et al.
2017) Some of these methods have also been employed for Estonian data. For
example, AMs have been applied successfully to the automatic discovery of Esto-
nian PVs (see Aedmaa 2014) and tested for classifying PVs (see Aedmaa 2017);
Aedmaa (2016) demonstrated the possibility of using distributional methods to
detect the compositionality of PVs. The first supervised classifier to detect the
(non-)literalness of Estonian PVs was proposed by Aedmaa et al. (2018).

The discovery of Estonian PVs (that is, the detection of the compositional-
ity of PVs, see Chapter 5) was conducted using distributional semantic models

2The literature often follows Baldwin and Kim (2010) in considering MWE identification to
be a token-level task for determining individual occurrences of MWEs in running text, and MWE
discovery to be a type-level lexicon induction task. We follow the distinction introduced by Constant
et al. (2017).
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(DSMs); a supervised classifier was developed for the identification of PVs – the
classification of the literal and non-literal usage of PVs (see Chapter 6). The
selection of the applied methods is based on previous research on particle-verb
constructions. These methods have proven to be successful in the discovery and
identification of MWEs in other languages. The choice of methods also follows
the current trends in NLP. More precisely, the use of DSMs is motivated by the
rise of word embeddings (that is, word or phrase representations that are mapped
onto vectors of real numbers, see Section 3.2) that are widely adopted for per-
forming a wide range of NLP tasks, including MWE processing. In addition,
the feasibility of adopting these methods for research on the Estonian language
was an important factor in selecting these methods, as it includes the potential for
evaluating the applied methods. The evaluation of MWE discovery is considered
to be complex (Constant et al. 2017) because human judgements, dictionaries and
special datasets are often needed, and the creation of these kinds of datasets is
unquestionably expensive.

MWEs have been studied in the context of many frameworks within the
different sub-fields of (computational) linguistics (see Section 2). As a result,
the methods applied in this study originated in different approaches to MWE
processing. Nonetheless, this thesis does not follow any particular theoretical
framework; instead of fitting the study into a particular approach, the results are
described through definitions adopted from related research. Following common
practice in computational linguistics, the study is corpus-based.

In summary, the applied methods were chosen based on their success in
previous studies, their applicability to Estonian data and the feasibility of the
assessment.

1.4 Research purposes and questions
This dissertation has multiple purposes.

The first aim is the automatic detection of the compositionality of Estonian
PVs. Although some research on differentiating between compositional and non-
compositional PVswas done previously, the goal of this dissertation is to determine
which information is necessary in order to distinguish among the different levels
of compositionality of PVs. The focus is on the (linguistic) information that can
be obtained from electronic resources.

The second purpose is to introduce and apply methods that have been adopted
widely and successfully for computational research on different kinds of MWEs
in various languages, but which have not yet been used extensively for linguistic
research on the Estonian language. While the ultimate goal is to create a model
that detects the compositionality of PVs successfully and automatically, the thesis
further investigates the advantages and drawbacks of the applied methods that are
crucial with regard to the investigation of the compositionality of PVs.

The third goal is to provide a study that is influential for further research in this
field. The analyses of methods and models presented in this thesis could be used
as guidelines for further investigation of the semantic compositionality of other
MWEs, or of other linguistic phenomena. The methods and models applied, the
datasets that were created, and the trained word and multi-sense embeddings are
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useful not only for various topics concerning NLP but also for other areas, such
as lexicography.

In order to accomplish these goals, the research addresses the following ques-
tions:

1. To what extent do human annotators agree with each other when eval-
uating the compositionality of PVs? What are the main reasons for
disagreement?
The evaluation of the degree of compositionality might be challenging
not only for computers but also for humans. Computational models pre-
dicting compositionality are evaluated against datasets containing human
annotations (gold standards). Therefore, novel datasets including human
judgements of PV compositionality were created for this research. The
quality of the human-annotated datasets is evaluated by seeking agreement
among annotators. This assessment not only indicates the value of the
dataset but also presents cases of disagreement. The reasons for variance
in annotations can thus be analysed and discussed.

2. How well do DSMs predict the compositionality of Estonian PVs?
Which training parameters and other aspects influence the quality of
word and multi-sense embeddings for detecting the degree of composi-
tionality?
DSMs have become widely used and successful methods in NLP. Among
other tasks, a variety of distributional techniques has been applied to pre-
dict MWE compositionality in various languages (e.g. Baldwin et al. 2003;
Reddy et al. 2011b; Cordeiro et al. 2016a). Although the models are applic-
able to all languages that have large text corpora, good human-annotated
datasets are necessary for the evaluation of the DSMs. The composition-
ality predictions of DSMs are compared to the created datasets containing
human judgements of compositionality. In addition, based on the research,
there are general discussions concerning how model training parameters
affect the quality of embeddings. Consequently, which parameter settings
help to train embeddings that achieve the best possible results in terms of
predicting the degree of compositionality of Estonian PVs can be determ-
ined. However, applying the embeddings in linguistic research to Estonian
is a relatively new approach, and little work has been undertaken. Hence,
the impact of some vital parameters on word and multi-sense embeddings
to detect the compositionality of Estonian PVs is explored.

3. Which (linguistic) features predict the use of compositional versus non-
compositional PVs? How well are the values of these features automat-
ically acquirable?
In DSMs, the meaning of the targeted linguistic unit (word, phrase, clause,
sentence and so on) emerges via its context. Other than the lemmas of the
surrounding words, there might be other contextually hidden features that
help to predict the meaning of the target linguistic unit. Work on other
languages has ascertained some standard features that predict literal versus
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non-literal language usage. PV-specific features are unigrams (contextual
lemmas), affective ratings (such as the abstractness of surrounding words),
and the subject and the object of the PV. In addition to these features,
Estonian language-specific features are suggested, and are applied to predict
the literal versus the non-literal usage of Estonian PVs. In order to train a
supervised classifier, the data must be labelled with information regarding
the studied features. This allows for the analysis of the cost of annotation
of these features.

4. How does frequency affect the compositionality of Estonian PVs? How
are human judgements of PV compositionality and automatic compos-
itionality predictions associated with frequency?
The co-occurrence frequency of the components of PVs has been demon-
strated to work well for the automatic processing of PVs, Krenn and Evert
(see, for example, 2001); Uiboaed (see, for example, 2010); Aedmaa (see,
for example, 2014). In addition, the role of frequency in composition-
ality (judgements) has been investigated (McCarthy et al. 2003; Bott and
Schulte im Walde 2014) because the effect of frequency on language sys-
tems has long been discussed (see, for example, Bybee et al. 2007; Gries
and Divjak 2012). Furthermore, the results of DSMs are affected by the
frequency of the words (Sahlgren and Lenci 2016). Moreover, frequent
words tend to be more polysemous than are infrequent ones, which poses a
challenge not only while detecting compositionality automatically but also
for humans when evaluating the degree of compositionality of PVs. Hence,
it is important to study the association between frequency and the results of
the models, while also evaluating the human-annotated datasets.

5. Are widely adopted and successful computational methods suitable
for detecting the compositionality of Estonian PVs? What are the
drawbacks and benefits of these methods?
The automatic detection of MWEs has been studied for decades. As a
result, numerous more or less successful approaches have been suggested
for this task. The success of the method often depends on the availability
and universality of the required resources. Hence, methods using unla-
belled corpora are preferred to approaches in which an annotated dataset
or large databases are needed. The applied methods were thus selected by
considering the results reported earlier, and the applicability to Estonian
data. Therefore, the quality of the results and the cost and convenience of
the suggested methods to Estonian are also analysed.

1.5 Contributions
Word embeddings and machine learning are methods that are used commonly
and successfully in NLP for numerous different tasks, such as parsing, sentiment
analysis, machine translation, text classification and so on. However, these meth-
ods have not been widely adopted to study Estonian MWEs or other linguistic
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phenomena. Therefore, in addition to exploiting and describing these methods
for the automatic processing of Estonian PVs, one of the extensive contributions
of this dissertation is to describe the methods in such a way that encourages their
application within wider linguistic research.

The creation, evaluation and analysis of three novel datasets for the Estonian
language are an original contribution of this research. While the aim of building
these datasets was to support the development and assessment of the models,
the description, assessment and investigation of these datasets provide valuable
knowledge regarding howdatasets containing compositionality information should
be built. For example, the problemswith automatically generated or crowdsourced
datasets are discussed, the differences between collecting the compositionality
ratings of PVs and PVmeanings are outlined, and the reasons that compositionality
is difficult for both computers and humans to evaluate are highlighted.

The compositionality of PVs is predicted utilising two approaches, namely
DSMs and supervised classifiers. While word embeddings have been adopted
for compositionality predictions previously, context-dependent compositionality
predictions have been explored less often. Thus, in addition to word embeddings,
multi-sense embedding models are introduced. Both models were trained with
a variety of parameter settings. Thus, this research provides an overview of the
influence of the parameter values on the quality of embeddings. As there is scant
existing research on the impact of DSM parameters on embeddings for Estonian,
this is an original contribution thatwill be available for future research. In addition,
pre-trained word and multi-sense embedding models are made publicly available,
and can therefore prove useful for a variety of future studies.

In addition to standard (language-independent) features, the study of the dis-
tinction between literal versus non-literal PV usage introduces a set of linguistic
features that have not been previously investigated thoroughly as indicators of
compositionality. In addition, the challenge of acquiring labelled data that are
crucial for the development of the supervised models is analysed.

The frequency of the studied PVs and their components receives special atten-
tion throughout the thesis. How frequency is associated with the compositionality
annotations and the compositionality predictions of word and multi-sense em-
bedding models is investigated. In addition, frequency, as an indicator of PV
literalness, is described. Therefore, the study provides a comprehensive overview
of the relationship between frequency and PV compositionality.

The evaluation of the employed models shows how the applied methods con-
tribute to the automatic processing of Estonian PVs’ compositionality. From a
theoretical point of view, the results of corpus-based experiments contribute to a
wider and deeper understanding of PVs and their compositionality than what has
been provided in the existing literature thus far (see Section 2.4 for details). Such
a comparison provides evidence that complements the current treatment of the
compositionality of Estonian PVs.

1.6 Chapters outline
The remainder of this thesis is structured as follows: Chapter 2 provides a back-
ground to MWEs and Estonian PVs, in order to explain the general properties
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of MWEs, and discusses the compositionality of Estonian PVs. The treatment
of MWEs and Estonian PVs in theoretical and computational linguistics is also
discussed. Chapter 3 introduces the theoretical background to the chosen methods
of research. Machine learning as a statistical method is discussed first, followed
by an overview of distributional methods and supervised classification. The text
corpora used and the three created datasets are introduced in Chapter 4. This
chapter contains an exhaustive analysis of score distributions, an evaluation of
annotations and an analysis of the effect of frequency on human compositionality
judgements. Chapter 5 details the experiments and results of the out-of-context
discovery of Estonian PVs – the detection of the degree of compositionality of PVs
using unsupervised distributional semantic models. The impact of the training
parameters on models’ predictions is explored. In addition, the results of word
and multi-sense embedding models are compared. The context-dependent identi-
fication of the literal versus the non-literal usage of Estonian PVs is provided in
Chapter 6. This chapter presents further details regarding how the studied context
features, including frequency, influence the results of a suggested classifier.
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2 MULTIWORD EXPRESSIONS AND PARTICLE VERBS
This chapter provides background pertaining to MWEs and PVs that is funda-
mental to the thesis. In Section 2.1, MWEs are defined and the main properties
of MWEs are described. A brief overview of discussions on MWEs in theoretical
linguistics is given in Section 2.2. The computational research on MWEs, more
specifically the discovery of MWEs and their compositionality, is reported in Sec-
tion 2.3. Estonian PVs and their compositionality are introduced in Section 2.4.
The same section includes analyses of the existing theoretical and computational
research on Estonian PVs.

2.1 Multiword expressions and their properties
MWEs have many different definitions. For example, Sag et al. (2002) defined
MWEs as “idiosyncratic interpretations that cross word boundaries (or spaces)”.
Van De Cruys andMoirón (2007) described them as “expressions whose linguistic
behaviour is not predictable from the linguistic behaviour of their component
words”. Alternate definitions have suggested that “an MWE is a combination
of two or more simplex word, covering compounds as well as collocations”, as
suggested by Kühner and Schulte im Walde (2010). According to the definition
proposed by Tsvetkov and Wintner (2014), MWEs are “lexical items that consist
of multiple orthographic words”. The most exhaustive research on Estonian
MWEs, which took their computational treatment into account, was conducted
by Muischnek (2006), who suggested that “an MWE consists of two or more
words that occur together to express some meaning”. This research adopts the
definition by Baldwin and Kim (2010): “MWEs are lexical items that: (a) can be
decomposed into multiple lexemes; and (b) display lexical, syntactic, semantic,
pragmatic and/or statistical idiomaticity”. Several studies contain an overview of
the existing definitions of MWEs (e.g. Ramisch 2014; Constant et al. 2017).

Due to the dissimilarities among MWEs, multiple and conflicting definitions
of MWEs have been suggested. These definitions emphasise different features of
MWEs because each category of MWE is distinct. Within the existing literature,
the following phenomena have been defined as MWEs: compounds (for example,
noun-noun, noun-verb, and verb-particle constructions), idioms, collocations,
multiword name entities andmultiword terms (Constant et al. 2017). This research
focuses on Estonian PVs, which are comparable to English VPCs.

Sag et al.’s (2002) contribution is notorious within the field due to the argu-
ment that MWEs are a key problem hindering the development of large-scale,
linguistically sound NLP technology. Since Sag et al. called MWEs “a pain in
the neck of NLP”, many studies have been conducted on the discovery of MWEs.
Existing work is introduced in more detail in Section 2.3.1.

One must take multiple properties of MWEs into account while attempting to
process them automatically. For example, Ramisch (2014) identified arbitrariness,
institutionalisation, limited semantic and syntactic variability and heterogeneity,
while Constant et al. (2017) mentioned arbitrarily prominent co-occurrence (col-
location), discontiguity, non-compositionality, ambiguity and variability. Sub-
sequently, we present an overview of the main characteristics of MWEs focusing
on those that are challenging for the discovery and identification of Estonian PVs.
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2.1.1 Co-occurrence
Collocation, that is, arbitrarily prominent co-occurrence, is one of the properties
of MWEs (Constant et al. 2017). The common distinction between co-occurrence
and collocations is that ‘co-occurrence’ is used as a term when describing gen-
eral statistical understandings, while ‘collocation’ corresponds to a linguistically
grounded approach (Seretan 2008).

The co-occurrence of words is defined as occurrences within the same lin-
guistic unit; that is, a window (clause, sentence, paragraph, article and so forth).
In MWE research, co-occurrence commonly describes the relationship between
two words (Evert 2005). For example, the window needs to be defined in order to
find all the adverb and verb co-occurrences in example (1). As the components
of the PV appear in the same clause, it is reasonable to define the clause as a
window. Thus, one needs to note that there are three clauses in the sentence and
process these clauses separately. The adverb lahti ‘open’3 and the verb tegema ‘to
do’ occur in the first clause Ma tegin silmad lahti ja, the verb mõtlema ‘to think’
in the second clause mõtlesin, and the verb olema ‘to be’ in the third clause et on
esmaspäev. Therefore, there is only one adverb-verb co-occurrence (lahti tegema)
in example (1).

(1) Ma
I

teg-i-n
do-pst-1sg

silma-d
eye-pl

lahti
open

ja
and

mõtle-si-n,
think-pst-1sg

et
that

on
be.3sg

esmaspäev.
Monday

‘I opened my eyes and thought it was Monday.’

The frequent co-occurrence of words might indicate that the words form a
collocation. For example, the adverb ette ‘in advance/ahead/forward’ and the
verb heitma ‘to throw’ occur together more frequently than do the adverb ette and
the verb virutama ‘to whack’4. The components of the first combination occur
together much more often than do the components of the second combination.
Ette heitma is a PV with a non-compositional meaning ‘to reproach/blame’, but
ette and virutama do not occur frequently in the same clause. Although simple
co-occurrence information alone is not sufficient for the automatic discovery of
MWEs (Manning and Schütze 1999), the feature has been a basis for many more
sophisticated methods, such as AMs (see Section 2.3), developed for the MWE
discovery task.

2.1.2 Non-compositionality
The compositionality of MWEs is a consequential relationship between the whole
and its parts (Bannard et al. 2003), expressed by the degree to which the semantics
of the parts of an MWE contribute to the meaning of the whole (Li and Sporleder
2009). Van De Cruys and Moirón (2007) claimed that, of all the properties,

3Note that the English translations are provided for better readability for non-Estonian speakers;
they do not include an exhaustive list of interpretations.

4According to the Google search outputs (18.07.2018) for the queries ‘ette heitma’ and ‘ette
virutama’, the lemmas ette and heitma are adjacent to each other 5,360 times, but ette and virutama
only once.
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semantic non-compositionality was the most influential property of MWEs. A
generally adopted idea is thatMWEs form a continuum from fully compositional to
fully non-compositional expressions (Moon 1998). Themeaning of compositional
MWEs is transparent, and is the sum of the meanings of the components of
the MWE. The meaning of non-compositional MWEs is not derivable from the
meanings of its components. For example, the meaning ‘to admit defeat’ is not
obtainable from the meanings of the components of the phrasal verb ‘to give up’.

Addressing with the compositionality of MWEs is an important task not
only for NLP applications but also for lexicographers in order to decide which
expressions should be treated as lexicon entries (Kühner and Schulte im Walde
2010: 47). Due to their idiosyncratic behaviour, Sag et al. (2002) suggested
that MWEs needed to be described in lexicons. However, this is not a realistic
approach because it is prohibitively expensive to build large lexical resources and
to keep them updated. Therefore, automated methods for the discovery of MWEs
in large text corpora are more beneficial for NLP.

Non-compositional MWEs are considered to pose a special challenge for NLP
applications (Lin 1999: 317) because their meaning is not easily ascertainable.
This is also why word-to-word translations of non-compositional expressions are
prone to generating absurd outcomes. Thus, it is necessary to identify non-
compositional expressions automatically. Instead of classifying MWEs according
to binary classes, which is a difficult and somewhat outdated approach, an increas-
ing number of empirical studies concentrate on the degree of compositionality of
MWEs. Some of the earliest studies on MWE compositionality were carried out
more than 15 years ago (e.g. McCarthy et al. 2003). The compositionality of
Estonian PVs is explained in Section 2.4.1.

Because of MWEs’ non-compositionality, synonyms, equivalent words or
constructions cannot be substitutes for the components of MWEs. For example,
the verb heitma ‘to throw’ cannot be substituted by its synonyms (for example,
viskama, pilduma and paiskama) andmaintain the meaning of ‘to reproach/blame’
in the PV ette heitma. Methods based on substitution and insertion are used for
automatic discovery of MWEs (see Section 2.3.1).

Besides the notion of compositionality other terms are used to designate the
formation and usage ofMWEs. A non-compositional expression, a combination of
words, meaning or usage is frequently defined as ‘non-literal’ or ‘idiomatic’. Sim-
ilarly, instead of the word ‘compositional’, the terms ‘literal’ and ‘non-idiomatic’
are often employed. The (non-)compositionality of one kind of MWE – idioms –
has been discussed thoroughly in the existing literature, with some authors ar-
guing that non-compositionality is a defining property of idioms, while others
have claimed that both non-compositional and compositional idioms exist (Vil-
lada Moirón 2005). The notions ‘compositionality’, ‘literality’, and ‘literalness’
are used as synonyms in this thesis5, but the terms ‘idiom’ and ‘idiomaticity’ are
avoided for the sake of clarity. Therefore, PVs are MWEs with various degrees of
compositionality (or literalness).

5Note that ‘compositionality’ has not always viewed as ‘literality/literalness’ (Reddy et al.
2011b).
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2.1.3 Ambiguity
Although MWEs tend to be less polysemous than single-words (Finlayson and
Kulkarni 2011: 20), the fact that many words have multiple meanings complicates
the task of MWE discovery. From a computational linguistics point of view, it
is important to discriminate among the different senses of a word within a given
context (Iomdin et al. 2016: 214). According to Constant et al. (2017), the
most influential type of ambiguity for MWE processing is the choice between a
compositional and a non-compositional reading of a sequence of words.

For example, the following sentence (see example (2)) can have two readings.
The first, interpretation would be that a friend used physical force – ‘My friend
pushed me forward’. Hence, the reading is more compositional. The second
interpretationwould suggest that this friendwas acting in an encouragingmanner –
‘My friend pushed me (to do something)’. This reading is less compositional.

(2) Mu
I-gen

sõber
friend

tõuka-s
push-pst.3sg

min-d
I-prt

tagant.
from behind

Lit. ‘My friend pushed me from behind.’
‘My friend pushed me forward.’
‘My friend encouraged me.’

In some cases, morphological and syntactic analyses can aid in determining
whether the sequence of words should be recognised as an MWE (Constant et al.
2017). For example, the meaning of the PV järele vaatama ‘to watch someone’ in
the first sentence (see example (3)) is more compositional, but less compositional –
‘to look up’ – in the second sentence (see example (4)).

(3) Ta
s/he

vaata-s
look-pst.3sg

mehe-le
man-all

järele.
after

Lit. ‘She/he looked after the man.’
‘Her/his eyes followed the man.’

(4) Ta
s/he

vaata-s
look-pst.3sg

interneti-st
Internet-ela

järele.
after

Lit. ‘She/he looked after from the Internet.’
‘She/he looked up on the Internet.’

The difference in the meanings is detectable with the help of the case of the
argument – the compositional meaning requires an argument in the allative case,
while the non-compositional meaning is detectable with the help of an argument
in the elative case.

2.1.4 Other properties
Among the properties of MWEs mentioned previously, there are further con-
siderations for automatic MWE processing. Two of them – discontiguity and
variability – are discussed briefly below.

24



In the text, the words not belonging to an MWE can appear in between
the core elements of discontinuous MWEs (Kaalep and Muischnek 2008). For
example, Estonian word order is heterogeneous, which means that the components
of the PV (or other MWEs) are not necessarily adjacent or in a particular order
(particle + verb). In fact, there can be several intervening words between the
components. The problem of discontiguity could be solved with the help of
syntactic analysis, or parsing (Constant et al. 2017). Numerous parsing tools are
available for Estonian (see Muischnek et al. 2016) which can be applied to resolve
the discontiguity of Estonian MWEs (including PVs).

Variability is also one of the properties of MWEs that might create obstacles
to finding all possible forms of the sameMWE (Constant et al. 2017). As Estonian
is a morphologically rich language, the verbal components of an Estonian PV can
occur in a variety of surface forms within a text. Nevertheless, the quality of
the existing Estonian morphological analyser (Kaalep 1997) is sufficient so that
variability does not pose a challenge for processing Estonian PVs.

2.2 Multiword expressions in theoretical linguistics
Theoretical discussions about MWEs usually adopt one of two approaches – the
first takes a previously developed theory and adapts it to MWEs. The second
observes the properties of MWEs and modifies the theory accordingly. Hence,
MWEs are modelled inside frameworks, or new insights into the properties of
words and grammatical processes are collected. (Sailer and Markantonatou 2018)

MWEs (and idioms, collocations, and phraseologisms) have been discussed by
many researchers in multiple sub-fields of linguistics using numerous theoretical
frameworks. Based on the distinction between lexicon and grammar, approaches
are generally divided into dual-system theories and single-system theories (Snider
and Arnon 2012). For example, in recent decades, different approaches to generat-
ive grammar have discussed the treatment of idioms (e.g. Chomsky 1965; Nunberg
et al. 1994; Chafe 1968; Weinreich 1969; Fraser 1970; Jackendoff 1975; Wasow
et al. 1983; Jackendoff 1997; Culicover 1999), including Lexical Functional Gram-
mar (e.g. Attia 2006) and Head-driven Phrase Structure Grammar (e.g. Krenn and
Erbach 1994; Sailer 2003; Richter and Sailer 2009;Webelhuth et al. 2018). Snider
and Arnon (2012) concluded that, as generative approach is a dual-system theory,
it differentiate between compositional and non-compositional phrases. Composi-
tional phrases are generated by a grammar, while non-compositional ones originate
from the lexicon where they are stored, together with their idiosyncratic, syntactic
and semantic features. Compositional phrases are derived in a predictable way,
and there is no need to keep them in the lexicon. (Snider and Arnon 2012)

Single-system models do not divide compositional and non-compositional
linguistic units in such a way. Instead, compositional and non-compositional
phrases are processed similarly, and like any other linguistic pattern. This approach
is characteristic of construction grammar (Fillmore et al. 1988) and usage-based
approaches in which grammatical knowledge emerges from linguistic experience.
(Snider and Arnon 2012)

Many other approaches have anticipated views on the treatment of MWEs,
although the term ‘MWE’ has not been always used. To name only a few, lexicon-
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grammar (e.g. Giry-Schneider 1978; Freckleton 1985; Gross 1986; Laporte 2018),
meaning-text theory (e.g. Mel’čuk and Polguere 1987; Mel’čuk 1998) and frame
semantics (e.g. Fontenelle 2001). In addition, collocations have been studied
in connection with semantic prosody (Louw 1993; Hoey 1997). An increasing
amount of (theoretical and experimental) psycholinguistic and cognitive research
on MWEs has been conducted (e.g. Dahlmann and Adolphs 2007; Eskildsen and
Cadierno 2007; Lavagnino and Park 2010; Nematzadeh et al. 2013; Siyanova-
Chanturia 2013). For example, Dahlmann and Adolphs (2007) explored whether
the analysis of pauses might be useful in the validation of automatically discovered
MWE candidates as MWEs. The authors’ aim was to test the assumption that
MWEs are stored in the mental lexicon, and are therefore produced without
pauses. Nematzadeh et al. (2013) studied how children learn to identify and
interpret different types of multiword lexemes.

This study does not concentrate on developing any of these theories; thus,
these approaches are not discussed further. Moreover, several thorough overviews
of the MWE treatment describing some of these frameworks have recently been
proposed (e.g. Gries 2008; Seretan 2008; Sailer and Markantonatou 2018). As
the scope of this thesis is focused narrowly on Estonian PVs and their acquisition,
an overview of the theoretical treatment of Estonian PVs is provided in Section
2.4.2.

2.3 Multiword expressions in computational linguistics
The study of MWEs in computational linguistics is connected firmly to the avail-
ability of large text corpora and computers that are sufficiently powerful to analyse
them. The first papers in the field described methods of collocation discovery.
Choueka (1988) proposed a method based on n-gram statistics, while Smadja
(1993) suggested a tool called Xtract that uses part-of-speech (POS) filters and
some statistical measures. Church and Hanks (1990) introduced mutual inform-
ation an AM, and Justeson and Katz (1995) combined POS information and
frequency for the discovery of technical terms from the text. As a criticism of
the use of AMs thus far, Dunning (1993) represented a more sound theory of his
approach – he suggested the log-likelihood measure, which is a popular method
for the automatic discovery of MWEs. One of the most well-known works on
MWEs in NLP is by Sag et al. (2002), who analysed MWEs and explained why
they pose such a challenge for NLP.

Since the aforementioned seminal papers, much work on different areas of
MWE processing has been conducted. With regard to the goals of this thesis,
the following sections introduce previous research that has focused solely on
the automatic discovery and identification of MWEs and their compositionality
by focusing mainly on studies of VPCs and PVs. As the following overview
describes the work on other languages, the related computational research on
Estonian PVs is introduced in Section 2.4.3. Other tasks in MWE processing are
beyond the scope of this study.
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2.3.1 Discovery and identification of multiword expressions
The previous work on the discovery and identification of MWEs, focusing on their
compositionality, is described in this section. According to the explanation by
Constant et al. (2017), MWE processing consists of MWE discovery and MWE
identification. Following this distinction, the automatic detection of MWEs falls
under the umbrella of MWE discovery, namely finding new MWEs in corpora.
As one of the main features of MWEs, semantic compositionality has attracted
much attention. The purpose of the research is to decide whether the semantics of
the sequence of words is compositional. This includes tasks such as detecting the
degree of compositionality of MWEs and the classification of MWEs according to
their compositionality. Large corpora are usually used, and the studies are focused
on a certain type of MWE at a time (Ramisch 2014). As most existing work has
been undertaken in English and German, the overview focuses on these languages.
However, some notable studies on other languages are also mentioned.

As noted earlier (see Section 1.3), the automatic discovery of MWEs began
using different AMs – a method to estimate the strength of the association between
two words based on their frequency of co-occurrence. In addition to pointwise
mutual information (PMI) (Church and Hanks 1990) and log-likelihood measure
(Dunning 1993), other more or less sophisticated AMs have been utilised for
candidate discovery. Some of them (for example, t-score) are based on hypothesis
testing. Others (such as χ2) use contingency tables and are considered to be
more sophisticated. For example, Pedersen (1996) suggested Fisher’s test for
automatic MWE discovery. While the initial studies concentrated on one AM at a
time, multiple AMs were later explored and compared (e.g. Krenn 2000; Weeber
et al. 2000; Schone and Jurafsky 2001; Pearce 2002; Bartsch 2004; Evert 2005;
Ramisch et al. 2008; Hoang et al. 2009; Ramisch et al. 2012). For example,
Pecina (2008) provided an exhaustive overview of 54 AMs in his study. AMs
and their combinations have been applied to discover MWEs such as German
PP-verb constructions (e.g. Krenn and Evert 2001; Wermter and Hahn 2004),
German adjective-noun pairs and preposition-noun-verb triples (e.g. Evert and
Krenn 2001), and noun-verb constructions in Japanese and English (e.g. Pereira
et al. 2014). Some studies have concentrated on specific MWEs (e.g. Evert and
Kermes 2003), while others have addressed a vast number of different MWEs
(in different languages) (e.g. Seretan 2008). Constant et al. (2017) stated that,
although much (comparative) work on AMs has been published, no single best
measure has been identified.

In addition to and in combination with AMs, other methods have been ap-
plied to MWE discovery. For example, Pearce (2001) used WordNet to discover
collocations while substituting synonyms of candidate components. Baldwin
and Villavicencio (2002) combined syntactic evidence using automatic POS tag-
gers and statistical chunkers, and added evidence from a number of tokens to
a memory-based learner for the discovery of verb-particle expressions. While
still using AMs such as mutual information (MI) and χ2, Ramisch et al. (2008)
proposed a new unsupervised measure that used syntactic permutations obtained
via reordered words inside MWEs. As another example of unsupervised learning,
Blaheta and Johnson (2001) discovered English VPCs using log-linear models.
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They demonstrated that, instead of estimating which particles belonged together,
and with which verbs, this information should be received from the parsed input.

One of the first papers to explore the discovery of idiomatic expressions was
by Lin (1999), who presented a method that used the statistical properties of non-
compositional expressions in a text corpus. He compared the MI values of non-
compositional phrases and phrases that were similar to their literal meaning. Their
experiment showed that non-compositional phrases have significantly different MI
values than have compositional ones.

Models based on semantics have been studied widely due to MWEs’ composi-
tionality. DSMs are gaining popularity for the discovery of MWEs. In these mod-
els, senses are represented as vectors of co-occurring context words (see e.g. Bald-
win et al. 2003). For example, McCarthy et al. (2003) and Bannard et al. (2003)
focused on VPCs. While Bannard et al. (2003) studied distributional techniques to
classify verb-particles as compositional and non-compositional, McCarthy et al.
(2003) judged the compositionality of verb-particles using an automatically ac-
quired thesaurus, and examined various measures using the nearest neighbours of
the PV, thus creating a list of 116 VPCs with compositionality judgements from
four annotators. They detected a significant relationship between human compos-
itionality judgements and the measures taking into account the semantic of the
particle. Venkatapathy and Joshi (2005) measured the relative compositionality of
verb-noun collocations using a Support Vector Machine-based ranking function.
They concluded that the correlation between the ranks computed by SVM-based
ranking function and the human ranking is significantly better than the correl-
ation between the ranking of individual features (such as frequency, distributed
frequency of the object, dissimilarity of the collocation with its constituent verb
using the LSA model and so on) and human ranking. Fazly and Stevenson (2006)
adopted an automatically generated thesaurus from Lin (1999), and used lex-
ical and syntactic fixedness as partial indicators of non-compositionality. They
demonstrated that the measures they introduced outperformed a widely used PMI.
Schulte im Walde et al. (2013) predicted the compositionality of German noun-
noun compounds and found that window-based features outperformed syntax-
based features. Bott and Schulte im Walde (2014) succeeded in evaluating the
degree of compositionality of German PVs via a DSM that relied on word window
information without syntactic information. The ranking of PVs according to the
distributional distance they showed from their corresponding base verbs correl-
ated to human judgement. The same authors consequently presented a successful
distributional approach to the same task by modelling changes in syntactic argu-
ment structure (Bott and Schulte im Walde 2015). Schulte im Walde et al. (2016)
predicted the degree of compositionality of the English and German noun-noun
compounds within a vector space model, and demonstrated that the empirical and
semantic properties of the compounds and the head nouns played a significant
role.

Classification methods of MWEs often use contextual features. For example,
the approach introduced by Katz and Giesbrecht (2006) is based on latent se-
mantic analysis (LSA) to examine the compositionality of MWEs. In order to
classify German verb-noun MWEs based on their compositionality, they pro-
posed that vector similarity between distribution vectors associated with an MWE
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as a whole, and those associated with its parts, would be a good measure of the
degree to which an MWE was compositional. Cook et al. (2007) developed tech-
niques for the semantic classification of potential English verb-noun expressions.
They successfully used information about the syntactic behaviour of an expres-
sion type to determine whether a specific expression was used idiomatically or
literally. Their unsupervised approach reached an accuracy of 72.8%. Boukobza
and Rappoport (2009) proposed a supervised learning method that used surface
features of sentences based on the canonical forms of expressions. They showed
that their, more sophisticated model than others introduced previously for MWE
identification, was able to improve the performance of identifying (any kind of)
English MWEs. (Bhatia et al. 2017) explored the extent to which the English
VPCs could be treated compositionally as opposed to idiomatically, relying on
the WordNet hierarchy. In order to compositionally compute the meaning of
a wide range of VPCs, they identified core senses of particles that have broad
application across verb classes and used this information to build computational
lexicons. In addition to English and German MWEs, models for other languages
have been developed. For example, Uchiyama et al. (2005) identified Japanese
verb compounds using statistical and rule-based methods. While the rule-based
method outperformed the statistical method, they suggested that fine-grained se-
mantic analysis is important for the Japanese compound verb disambiguation.
Hashimoto and Kawahara (2008) explored the behaviour of Japanese idioms and
improved upon the previous state-of-the-art method on transitive verb disambig-
uation task and on a compositionality detection task using a method for jointly
learning compositional and non-compositional phrase embeddings by weighting
both types of embeddings using compositionality scoring function.

From unsupervised methods, clustering has been applied to identify MWEs.
For example, Birke and Sarkar (2006) introduced a system that differentiated
between the literal and non-literal usage of English verbs with an accuracy that was
24.4% higher than the baseline. They suggested that their system is applicable to
all sorts of non-literal language and that it could be adapted to other POS and other
languages. Kühner and Schulte im Walde (2010) used unsupervised clustering to
determine the degree of compositionality of German PVs. Their simpler cluster
approach predicted the degree of compositionality for 59% of the particle verbs,
while the correlationwith the gold standardwas 0.43. They concluded these results
as reasonable because they worked with very simple distributional features. In
order to improve the prediction of compound-constituent compositionality, Bott
and Schulte im Walde (2017) suggested soft clustering to separate the different
senses of a word type and predicted the degrees of compositionality of German
noun-noun compounds and PVs. They showed that both types of MWEs benefited
from the use of clustering in distributional modelling.

Translation has been helpful for discovering MWEs. For example, Pichotta
and DeNero (2013) discovered English phrasal verbs by using a token-based
method, which was applied on parallel corpora for 50 languages. They demon-
strated that combining statistical evidence from many parallel corpora using the
ranking-oriented boosting algorithm resulted to a list of MWEs that was com-
parable to human-curated set. Salehi and Cook (2013) proposed a type-based
approach, utilising translation data from multiple languages, and string similarity
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between anMWE and each constituent component. They found their method to be
competitive with others addressing English noun compounds and VPCs. Salehi
et al. (2014) reimplemented their method using the longest common substring,
and subsequently combined it with a distributional similarity-based method that
measured the distributional similarity between each component word and the over-
all expressions. They showed that using translation and multiple target languages
enhances compositionality modelling.

Salehi et al. (2015) presented the first attempt to use word embeddings to
predict the compositionality of MWEs. They combined their approach with in-
formation from string similarity, and achieved satisfying results for three compos-
itionality datasets. For the prediction of compositionality of German noun-noun
and PVs, Köper and Schulte im Walde (2017b) compared a neural network DSM,
relying on textual co-occurrences, with a multi-modal model extension that integ-
rates visual information. They showed that visual features contribute differently
for verbs than for nouns and images complement textual information if the textual
modality is poor and appropriate image subsets are used or the textual modality is
rich and large images are added.

Verbal MWE identification was the goal for the two editions of PARSEME
Shared Tasks in 2017 and 2018. The first edition of the PARSEME Shared Task
in 2017 (Savary et al. 2017) provided annotated datasets for 18 languages, where
the goal was to identify verbal MWEs in context. The main outcome of the shared
task was a multilingual 5-million-word annotated corpus. However, most of the
seven systems submitted for the task used techniques originally developed for
parsing, one system exploited neural networks. The best F-scores were obtained
for Farsi, Romanian, Czech and Polish, while modest performance resulted for
Swedish, Hebrew, Lithuanian and Maltese. For the 1.1. edition of the PARSEME
Shared Task in 2018 (Ramisch et al. 2018), corpora were created for 20 languages.
Most of the submitted systems exploited neural networks (such as the best sys-
tem TRAPACC that was ranked first for 8 languages), but syntactic trees and
parsing methods (such as TRAVERSAL that was ranked first for 7 languages),
tree-structured CRF, statistical methods, association measures and Naïve Bayes
classifier were also employed in some systems. The highest F-scores (90.31 and
85.28) were obtained for Hungarian and Romanian, the lowest scores (23.28,
32.88 and 32.17) for Hebrew, English and Lithuanian. For both shared tasks, it
was suggested that the results depend on the amount of annotated training data.

To summarise, many methods for the discovery and identification of MWEs
have been introduced in the literature. For MWE processing, a wide range of
results has reported as state-of-the-art depending on the language and datasets
(Taslimipoor et al. 2018). However, thework onMWEdiscovery and identification
continues because large-scale discovery evaluation and broad-coverage MWE
identification are still open issues (Constant et al. 2017). The results of some
above-mentioned studies are described in detail and compared to the current
research in Section 7.2.
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2.3.2 Compositionality datasets of particle-verb constructions
One of the problems with compositionality studies is the lack of representative
datasets of human judgements. These datasets are necessary for training and
evaluating models of discovery and for the identification of MWEs. Some of the
datasets that have been created for other languages are described in this section.
Given that the main aim of this research is to explore the compositionality of
PVs, the primary focus is on datasets containing compositionality information of
similar phenomena from other languages.

The dataset introduced by Bannard et al. (2003) contains English VPCs. They
defined compositionality as an entailment relationship between a whole and its
component parts. Twenty-six annotators evaluated 40 sets of five sentences, in
which each of the five sentences contained one particular VPC. Two questions
were asked for each set – 1) whether the VPC implied the verb and 2) whether
the VPC implied the particle. Annotators evaluated the VPCs by answering the
questions with ‘yes’, ‘no’ or ‘don’t know’. Hence, the dataset contains binary
classifications of VPCs with regard to the base verb and the particle.

Another dataset with human judgements is available for 389 English VPCs,
with the particle ‘up’ balanced across three different frequency bands (Cook
and Stevenson 2006). This dataset was created for the prediction of particle
senses. Two annotators evaluated all the VPCs, and the final dataset includes only
VPCs upon which both annotators agreed. They focused on the classification of
meanings of the particle ‘up’; thus, the dataset is not specifically a compositionality
dataset.

Hartmann (2008), who collected compositional ratings for 99 German PVs
across 11 different particles and eight frequency bands, compiled the first compos-
itionality dataset for German PVs. Three annotators were asked to use their own
words to indicate ambiguities and to describe differences. These compositionality
ratings do not distinguish among different word senses.

Ghost-PV (Bott et al. 2016) is another gold standard for German PVs, and
consists of 400 randomly selected PVs. The resource is balanced across several
PVs and three frequency bands. The annotations for this dataset were crowd-
sourced. Annotators were asked to evaluate the extent to which the meaning of a
PV was related to the meaning of its base verb. Rating was done on a scale from 1
to 6. The final dataset consisted of 400 PVs and information about the frequency
bands of PVs, the number of human ratings for each PV, the standard deviation of
ratings among rates and so on.

For the classification of the literal versus the non-literal usage of German PVs,
Köper and Schulte im Walde (2016b) created a dataset containing sentences with
159 PVs and information about the degree of compositionality of the PV for each
sentence. Three annotators evaluated 8,128 sentences on a six-point scale, and
determined the degree of literalness of usage of the PV for each sentence. The
dataset was used to train the classifier for the binary classification of the literal
versus the non-literal usage of German PVs.

The PARSEME shared task 1.1 on automatic identification of verbal MWEs
included numerous languages that contain VPCs, such as Arabic, English, Ger-
man, Greek, Hebrew, Hungarian and Italian. They annotated two types of VPCs –
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fully (in which the particle totally changes the meaning of the verb) and semi
(in which the particle adds a partly predictable but non-spatial meaning to the
verb) non-compositional VPCs. Although the annotation did not include com-
positionality ratings, the context-based manual binary classification of VPCs was
provided. (Ramisch et al. 2018)

In conclusion, there are multiple datasets available for English VPC and
German PVs. However, the fact that English and German are large languages
allows them to create very specific datasets (e.g. Cook and Stevenson 2006),
collect human judgements via crowdsourcing (e.g. Bott et al. 2016) and annotate
large number of sentences (e.g. Köper and Schulte im Walde 2016b).

2.4 Estonian particle verbs
An Estonian PV is a productive MWE that consists of a verb and a verbal particle.
For example, in example (5), the verbal component of the PV tõusma ‘to wake
up’ is tõusma ‘to wake’ and the particle is üles ‘up’. In example (6), maha ‘off’ is
the particle and müüma ‘to sell’ is the verbal component. According to Estonian
grammar (Erelt et al. 1993), a verb is the semantic core of the PV and the verbal
particle specifies the connotation which expresses direction, perfectivity, state or
modality.

Particles such as alla ‘down’, eemale ‘away/off’, ette ‘in advance/ahead/
forward’, juurde ‘by/up’, kaasa ‘along’, maha ‘down/off’, peale ‘on’, sisse ‘in’,
taha ‘behind’, üles ‘up’, all ‘below/under’, alt ‘from under’, läbi ‘through’, mööda
‘along’, ringi ‘round’, üle ‘over’ and so forth express direction (like the particle üles
in example (5)). Perfectivity is expressed by particles such as ära ‘away/out/off’,
läbi ‘through’,maha ‘off’, otsa ‘out’, täis ‘up’, valmis ‘ready’, välja ‘out’ and so on.
(like the particle maha in example (6)). Particles kinni ‘up/to’, lahti ‘open/loose’,
kokku ‘together/up’, viltu ‘wrong’ may indicate the state (such as particle kokku
in example (7)). Particles vaja ‘need’ and tarvis ‘need’ express modality (like the
particle vaja in example (8)).

(5) Andres
Andres

tõus-is
rise-pst.3sg

kell
o’clock

kaheksa
eight

üles.
up

Lit. ‘Andres rose up at eight o’clock.’
‘Andres woke up at eight o’clock.’

(6) Mari
Mari

müü-s
sell-pst.3sg

kõik
all

raamatu-d
book-pl

maha.
off

‘Mari sold off all the books.’

(7) Korsten
chimney

kukku-s
fall-pst.3sg

eile
yesterday

kokku.
together

Lit. ‘The chimney fell together yesterday.’
‘The chimney collapsed yesterday.’
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(8) Mu-l
I-ade

on
be.3sg

pliiatsi-t
pen-prt

vaja.
need

‘I need a pen.’

PVs are challenging not only for NLP tasks but also for theoretical linguistics.
For example, Veismann and Sahkai (2016: 270) highlighted four issues regarding
the determination of PVs: 1) The distinction between noun-verb constructions
and adverb-verb constructions is not clear, 2) the category of verbal particles as a
separate word class is not explicit, 3) the category of PVs is not sound, and 4) the
syntactic status of PVs is not definite. As these problems are not associated directly
with the compositionality of PVs, these problems are not discussed further in this
thesis. However, a brief overview of the theoretical and computational research
on Estonian PVs with slightly more attention to semantic work is presented. The
description begins with a synopsis of how semantic compositionality of PVs has
been treated within existing research.

2.4.1 Compositionality of Estonian particle verbs
According to theoretical approaches (Rätsep 1978; Erelt et al. 1993, 2017), Esto-
nian PVs can be classified as compositional or idiomatic, depending on whether
the constituents retain their meanings or not. The components of a compositional
PV take a literal meaning. For example, in example (9), the meaning of the PV
maha võtma ‘to take down’ is a composition of the meanings of its components,
maha ‘down’ and võtma ‘to take’. The meaning of a non-compositional PV is
idiosyncratic and cannot be inferred from the literal meanings of the verb and the
verbal particle; for example, the meaning of the PVmaha võtma is ‘to lose weight’
in example (10).

(9) Lava
stage

võe-t-i
take-imps-pst

kohe
immediately

pärast
after

kontserti-∅
concert-prt

maha.
down

‘The stage was taken down right after the concert.’

(10) Ta
s/he

on
be.3sg

kümme
ten

kilo-∅
kilogram-prt

maha
down

võt-nud.
take-pst.ptcp

Lit. ‘She/he has taken down 10 kilograms.’
‘She/he has lost 10 kilograms.’

Some observations about the division of PVs have been stressed: a) the binary
division of PVs is most obvious within verbal particles that express orientation
(Erelt et al. 1993: 21), b) adverbs expressing state appear as verbal particles only
as components of non-compositional PVs. (Erelt et al. 1993: 21–22), and c)
the classification into compositional and non-compositional PVs is most difficult
for the PVs that contain verbal particles that express perfectivity (Veismann and
Sahkai 2016: 272). The aforementioned, widely adopted view that MWEs form
a continuum between entirely compositional and entirely non-compositional ex-
pressions (see Section 2.1.2) was mentioned byMuischnek (2006: 12), but has not
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been broadly adopted by Estonian theoretical linguists. The next section describes
how PVs and their compositionality have been described in previous research in
more detail.

2.4.2 Theoretical research on Estonian particle verbs
The notion ühendverb ‘particle verb’ was first used by Muuk (1938), who stated
that a PV was a verb construction that has its own figurative meaning. This defin-
ition included verb-particle and noun-verb compounds, such as the constructions
shown in examples (11), (12) and (13).

(11) jalga-∅
foot-prt

laskma
let

Lit. ‘to shoot the foot’
‘to leave’

(12) osa-∅
part-prt

võtma
take

‘to take part’

(13) keha-∅
body-prt

kinnitama
assure

Lit. ‘to assure the body’
‘to eat’

Mihkla (1964) suggested that verbs are the head of phraseological units, and that
complements of these kinds of expressions can be nouns (for example, aega viitma
‘to dawdle’, lit. ‘to spend time’, jagu saama ‘to overcome’, lit. ‘to receive a part’,
nõuks võtma ‘to decide’, lit. ‘to take for advice’ and so forth), adpositional phrases
(for example, südame peale panema ‘to urge/to recommend strongly’, lit. ‘to put
on the heart’), adjectives (or participles) in partitive or translative cases (haiget
tegema ‘to hurt’, lit. ‘to do/make sick’, pahaks minema ‘to become spoiled’, lit.
‘to go bad’), prefixal adverbs (such as alt vedama ‘to let down’, lit. ‘to pull from
under’) and sometimes even a pronoun. Hence, he categorised non-compositional
PVs as phraseological units, while compositional ones were called ‘particle verbs’.
Later (see Mihkla et al. 1974), a subgroup of phraseological units was defined as
‘phraseological PVs’, which included expressions formed by a verb as the head
of a phrase, and a nominal as the complement of a phrase. While the nominal is
usually in the partitive or illative case, the expression is only used figuratively, as
in jalga laskma ‘to leave’, lit. ‘to shoot the foot’, nõuks võtma ‘to decide’, lit. ‘to
take for advice’ and ühte hoidma ‘to stick together’, lit. ‘to keep one’.

In the first part of his grammar, Tauli (1973) described PVs as expressions that
contain verbs and nouns/adverbs in which the noun or adverb can occur before or
after the predicate. In the second part of the grammar, Tauli (1983) mentioned an
MWE that consisted of a verb and an object. He suggested that some of these kinds
of expressions are semantic compounds, most of which are so-called ‘PVs’, such
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as habet ajama ‘to shave’, kätt andma ‘to give hand for handshake’, tööd tegema
‘to work’, välku lööma ‘to lighten’, and so on. There are no PVs (according to the
definition followed in the present thesis, see Section 2.4) among his examples.

Rätsep (1978) differentiated between verb-particle and verb-noun compounds,
and only considered only verb-particle compounds to be PVs. Hence, his distinc-
tion is based on the POS of the complement. Before his approach, the specifica-
tions of PVs were not clear. He suggested four – orthographical, morphological,
syntactical and semantic – criteria that have been the basis of the differentiation
of PVs in other verb compounds. According to the orthographic criterion, PVs
are sometimes written as one unit and sometimes separately. The morphological
principle indicates that a PV consists of a verb and an adverb. The syntactical
criterion states that a particle-verb compound occurs as one POS, for example, as
a predicate. The semantic criterion proposes that adverbs appear as components
of PVs only if they complement the verb meaning, or add new dimensions to the
PV meaning. Rätsep (1978: 28) presented the division of PVs as compositional
(korrapärased) and non-compositional (ainukordsed) based on their productivity,
as introduced earlier (see Section 2.4.1). He offered also a brief description of how
the word compounds formed a range – free compounds of words, compositional
PVs, non-compositional PVs and verb-noun compounds (which are defined as
idiomatic). Rätsep’s approach to PVs has been followed in different descriptions
of Estonian syntax ever since (e.g. Erelt et al. 1993, 2017).

Muischnek (2006) illustrated the division of verb+noun constructions based
on the transparency of their meanings. She differentiated between idioms (with
opaque meanings and with transparent meanings) and collocations (half idioms
and support verb constructions). Although she did not comment on the semantic
compositionality of PVs in her dissertation, her approach followed the idea that
MWEs form a continuum from fully non-compositional to fully compositional
expressions. According to Kaalep and Muischnek (2009), who described the
automatic processing of Estonian MWEs, idiomatic expressions can be opaque
or transparent. Veismann and Sahkai (2016), who explored verb-particle com-
binations and their status as PVs as opposed to syntactic phrases, discussed this
claim. They emphasised that, as semantic non-compositionality is a scalar feature,
expressions can have different degrees of compositionality, then a binary division
is insufficient because there are expressions that do not have clearly compositional
or non-compositional meanings (Veismann and Sahkai 2016: 272).

Veismann and Sahkai (2016: 272) restated the special status of PVs that
contain an adverb expressing perfectivity. While Rätsep (1978) did not analyse
these along with non-compositional PVs, Veismann and Sahkai (2016) suggested
that these kinds of PVs cannot be treated as non-compositional because they did
not gain new, fully non-compositional meaning when the components occurred
together. Nonetheless, there are PVs that do not have fully transparent meanings,
such as ära keelama ‘to forbid’ and üles kirjutama ‘to write up/down’ (Veismann
and Sahkai 2016). This discussion demonstrates clearly that the division of PVs
should not be binary, nor based on the role of the adverb. Each PV should be
placed on the continuum from fully compositional to non-compositional based on
its degree of compositionality.

To conclude, since Rätsep (1978), Estonian PVs have been divided into two

35



classes – compositional and non-compositional. Although it has been discussed
that not all expressions can be determined as being one or the other, exhaustive
studies on the compositionality of PVs have not been conducted. One of the
contributions of this thesis is to study the compositionality of PVs by running
experiments following the binary classification of PVs, as well as an approach
suggesting that they form a continuum.

2.4.3 Computational studies of Estonian particle verbs
This section provides an overview of previous computational studies of Estonian
MWEs, with a particular focus on Estonian PVs. The main aim of the studies has
been to discover the PVs in text corpora automatically using different methods.
However, some resources that contain PVs are also described.

Kaalep and Muischnek (2002) used the language- and task-specific software
tool SENVA to discover Estonian multiword verbs (MWVs) from text corpora.
The outcome of thisworkwas a comprehensive list of 16,000MWVs. Anoverview
of the tool, the manual post-editing principles, and an evaluation of the dataset
was provided in the article. The tool itself uses a mutual expectation measure
to calculate the degree of cohesiveness between n-grams and the GenLocalMass
algorithm to filter out the candidate MWVs. Kaalep and Muischnek found that
approximately 15% of the frequently occurring MWVs remained undiscovered by
SENVA.

Kaalep and Muischnek (2006) focused on verbal MWEs such as PVs and
on combinations of a verb and nominal phrases; that is, idiomatic expressions,
support verb constructions and collocations. The primary finding concerning
Estonian PVs was that, due to the free order, the context for the automatic identi-
fication of PVs should be limited to a clause. Therefore, the detection of clause
boundaries is important; otherwise, the output is inaccurate. In addition, the
authors emphasised that for Estonian, which is a morphologically rich and flective
language, morphological analysis and disambiguation prior to the identification
of MWEs are crucial. They highlighted two main problems they encountered
while performing the automatic identification of PVs – the order of the com-
ponents vary, and the components of PVs are not adjacent to each other within a
clause. Moreover, most particles are homonymous with adpositions, which causes
problems for disambiguation.

Kaalep and Muischnek (2008) introduced a database6 of 13,000 Estonian
MWVs and a 300,000-word corpus with annotated MWVs. They described
the types of Estonian MWVs, and discussed how the word order and inflection
also influenced work with MWVs. Among MWVs such as noun-verb construc-
tions (idiomatic expressions and collocations), support verb constructions and
catenative verb constructions, PVs are isolated as one type of MWV in the data-
base and in the corpus. The database of Estonian verbal MWEs contains PVs,
noun(phrase)-verb expressions (idiomatic expressions and collocations), support
verb and catenative verb constructions.

6http://www.cl.ut.ee/ressursid/pysiyhendid (accessed 01.10.2017).
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Uiboaed (2010) applied different AMs to discover PVs from the Corpus of
Estonian Dialects. The log-likelihood was the best measure for dialect data in
general, but MI and χ2 worked well for low-frequency data. The role of PVs in
Estonian syntax was also analysed in within the framework of Constraint Grammar
(Muischnek et al. 2013). In an applied two-fold approach – non-compositional
PVs were listed in a lexicon and compositional ones were composed by the rules –
the authors achieved high levels of recall and precision.

This study is a continuation and extension of the research previously conducted
and published by the author earlier. Aedmaa (2014, 2015) concentrated on the
comparison of lexical AMs for the automatic discovery of Estonian PVs from text
corpora. AMs distinguish between random co-occurrences and true statistical
associations by computing the association score for each word pair. The outcome
can then be used for ranking or selection by setting a cut-off threshold (Evert 2005).
The co-occurrence of the components of the MWEs introduced previously (see
Section 2.1.1) has been the basis of these widely used methods. Over time, many
different AMs have been suggested for the discovery of MWEs (and for VPCs,
see Section 2.3.1), but the most common AMs are (P)MI, t-score, log-likelihood,
dice and χ2.

For the study of discovering Estonian PVs in text corpora, seven AMs (t-test,
log-likelihood, χ2, MI, minimum sensitivity, ∆P and conditional probability)
were compared to the co-occurrence frequency of a verb and a particle. The
primary conclusions of these studies showed that the t-test performed better than
did the other AMs, and that the corpus size had an impact on the results. (Aedmaa
2014, 2015)

After determining that AMs could be used for the automatic discovery of
Estonian PVs, based on the results of previous research (particularly that by
Evert and Krenn 2001; Evert and Kermes 2003), it was hypothesised that fully
compositional and fully non-compositional PVs could be differentiated via the
use of AMs (Aedmaa 2016). Tests were conducted to determine whether the AMs
(t-score, MI, χ2, log-likelihood function, minimum sensitivity and co-occurrence
frequency) discovered fully compositional and/or fully non-compositional PVs
successfully (with high recall). However, it was not assumed that AMs divided
all PVs into two fixed classes. As a first step, the association scores for all
PVs were computed. A higher score indicated a stronger association between
the adverb and the verb. As a second stage of analysis, the PVs were ranked
according to their association score values. As five different AMs were compared,
a distinct ranking for each AM was created. These rankings were compared to
the binary division according to human judgements (see Section 4.2), and the
percentages expressing the amount of compositional and non-compositional PVs
that each AM discovered were calculated. It was ascertained that none of the AMs
discovered fully compositional or fully non-compositional PVs particularly well.
Compositional or non-compositional Estonian PVs are thus not automatically
identifiable using AMs. In addition, it was demonstrated that there were no linear
relationships among the rankings. (Aedmaa 2016)

Aedmaa (2016, 2017); Aedmaa et al. (2018) explored the automatic discovery
and identification of PVs based on their compositionality. Aedmaa (2016) showed
that the degree of compositionality of PVs could be predicted with the help
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of cosine similarity (CS). The results were not evaluated because appropriate
resources were not available. Aedmaa (2017) presented a novel dataset and
demonstrated that two rankings – one based on human judgement and another
on CS – correlated poorly, and that a more sophisticated model needed to be
developed for the task. The follow-up to these studies is proposed as part of the
current thesis (see Section 5). Aedmaa et al. (2018) studied the compositionality
of PVs by classifying sentences based on the usage of the PVs. While focusing
on the language-specific features, a random forest classifier, which predicted the
literal versus the non-literal usage of the PVs, was introduced. The work on this
topic is continued and complemented in Section 6.

In summary, the automatic processing of MWEs, particularly MWVs, has
been on-going work in Estonian for more than 15 years. While different, more or
less successful methods have been proposed for the discovery and identification of
PVs, there is little existing work in the direction of detecting the compositionality
as one of the main characteristics of MWEs, including PVs. However, several
studies of MWE compositionality have been published recently, and the current
thesis continues this trend.
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3 METHODS
This chapter provides a theoretical survey of the methods employed in this thesis.
DSMs are implemented to predict the compositionality of PVs, and the random
forest classifier to distinguish between the literal and the non-literal usages of PVs
was developed. The methods were chosen based on their previous success in
solving similar problems in other languages, as well as for their applicability to
Estonian data.

Recent trends in computationalMWE research show that the focus has changed
from using the co-occurrence of MWEs to investigating the compositionality of
MWEs (see Section 2.3). Widely used AMs that are based on the co-occurrence
frequencies have been used several times to discover Estonian MWEs (see Section
2.4.3). Therefore, this study focuses on exploring the compositionality of PVs
using methods that have been applied successfully to many NLP tasks, including
MWE processing, but which have not been investigated thoroughly with regard to
Estonian data.

While many of the proposed methods for compositionality research have used
previously created resources, the selection of methods for this study had to also
take the availability of necessary resources in Estonian into account. Accordingly,
DSMs were selected, as the training of these models only requires large amounts
of text and lemmatisation, both of which are available for research in Estonian.
For the second method, we chose supervised learning that requires labelled data,
but is presumably more accurate approach. Although it demands longer and
more expensive preparation period, it was thus possible to provide an analysis
of the collection of (automatically) annotated data using the available resources
and tools for Estonian. Furthermore, two methods used for investigating the
compositionality of Estonian PVs could be compared.

This chapter is organised as follows: In Section 3.1, the general introduction
to machine learning is presented in order to provide a general background to the
applied models. Section 3.2 provides an overview of distributional semantics, as
well as the models and toolkits developed to predict the degree of compositionality
of PVs. The third part of the chapter, Section 3.3, explains the means of automatic
identification of the literalness of PVs, and introduces the random forest classifier,
feature selection and cross-validation. Section 3.4 concerns evaluation measures
that are used for evaluating the agreement of the annotators of datasets used to
evaluate models and assess the work of the suggested models in both studies.

3.1 Machine learning
Machine learning is generally defined as a set of computational methods using
past information available to the learner to improve the performance of predictions
(Mohri et al. 2012). Machine learning is an intersection of statistics, artificial
intelligence and computer science (Müller and Guido 2016). Electronic data are
indispensable for machine learning, as efficient and accurate prediction algorithms
are designed based on the data (Mohri et al. 2012).

Learning algorithms can be applied to different tasks; examples include text
and document classification (spam detection), NLP (morphological analysis, POS
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tagging, statistical parsing and named-entity recognition), speech recognition,
speaker verification and so forth. These applications correspond to a variety of
learning problems, such as classification, regression, ranking, clustering, dimen-
sionality reduction and so on. (Mohri et al. 2012)

Machine learning techniques are typically classified according to two broad
categories, namely supervised and unsupervised learning. Supervised learning
is used most commonly for classification, regression and ranking problems. In
supervised learning, the user provides a set of labelled examples as training data,
and the learner makes predictions for all unseen points. (Mohri et al. 2012) Hence,
an algorithm can create an output for an input it has never seen without any human
help. Unsupervised learning is a machine learning technique in which there is
no known output and no teacher to instruct the learning algorithm. (Müller and
Guido 2016) The training data are unlabelled, and the learner makes predictions
for all unseen points. The quantitative evaluation of unsupervised models can
be challenging because labelled datasets are often not available. Examples of
unsupervised learning are clustering and dimensionality reduction. (Mohri et al.
2012)

Aside from these broad categories, there are more complex and intermediate
learning scenarios. For example, among other techniques, Mohri et al. (2012:
7–8) presented among other techniques semi-supervised learning. The learner in
the semi-supervised approach receives labelled and unlabelled data, and makes
predictions for all unseen points. This technique is often used when unlabelled
data are easily accessible, but labels are difficult to obtain. For example, one of
the semi-supervised learning techniques is pre-training, in which the unsupervised
model is trained using unlabelled data and the weights that the model has learnt
are then applied to supervised models and trained on the labelled data.

Following the broad classification of machine learning methods, both ap-
proaches are employed in this thesis. The word and multi-sense embedding
models of compositionality predictions were trained in an unsupervised manner
(as described in Section 3.2). The supervised random forest classifier was de-
veloped to detect the literal versus the non-literal usage of PVs (as described in
Section 3.3).

3.2 Distributional semantic modelling
The statistical distribution of words in context is key for characterising their
semantic behaviour (Lenci 2008). The methods for the computational analysis
of word distributional properties have been developed over many years, but they
all rely on a distributional hypothesis. In this section, the theoretical background
to modelling distributional semantics is provided – overviews of distributional
semantics and DSMs are given first, followed by a description of the specific tools
used for learning word and multi-sense representations in this study.

3.2.1 Distributional semantics
Every study of meaning involves semantic similarity – a case in which two words
have exactly the same meaning and are thus semantically similar. Semantic sim-
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ilarity can be described through linguistic distributions. Distributional semantics,
which has recently attracted much attention in computational linguistics, has its
roots in work within the field of linguistics undertaken by structuralists such as
Charles Hockett, Martin Joos, George Trager and Zellig Harris (Lenci 2008). It
has been highlighted (e.g. Lenci 2008; Sahlgren 2008) that Harris’ distributional
procedure (Harris 1951) is a starting point for distributional semantics in general,
but it is important to note that distributional procedure was not proposed first in
the context of semantics, but in the phonemic analysis (Goldsmith 2005).

Harris transferred the distributional methodology from mathematics to lin-
guistics – he defined the distribution of element as “the sumof all its environments”
(Harris 1951). The environment of an element A was understood as an existing
array of its co-occurrents; that is, the other elements, each in a particular position,
with which A occurs to yield an utterance. According to Harris’ distributional
methodology, the classes of the basic entities of a language behave distributionally
similarly, and can be grouped according to their distributional behaviour. Harris
believed that a language can be described in terms of distributional structure.
According to Harris’ view of meaning, differences in meaning can be expressed
by differences in distribution. (Harris 1970)

To conclude, the Distributional Hypothesis states that there is a correlation
between distributional similarity and meaning similarity, which allows one to util-
ise distributional semantics in order to estimate the meaning similarity (Sahlgren
2008). The hypothesis is the basis of models of distributional semantics, also
known as vector-space methods, which are introduced in the following section.

3.2.2 Distributional semantic models
Unlike theoretical linguistics7, corpus linguistics and lexicography have adopted
the idea of studying word meaning with the help of the distributional analysis
of linguistic contexts. For example, distributional methods bring corpora and
statistical methods closer to the lexicographers who can examine the behaviour of
words in different contexts.

Lenci (2008) mentioned some terms that are commonly used when describing
semantic approaches based on the distributional hypothesis, such as distributional,
corpus-based, statistical, vector semantics, and so on. Mathematical and computa-
tional techniques help to convert the informal notion of contextual representation
into empirically testable semantic models. Corpora are connected to distributional
semantics because they provide thousands of examples of language usage; thus,
they are a primary source of information to identify the distributional properties
of a word. Many tools and techniques for building distributional semantic rep-
resentations from huge text corpora have been developed over the years. (Lenci
2008)

“You shall know a word by the company it keeps” (Firth 1957: 11) is the
motto behind vector-based models. These models have to take the core features of
semantic representations into account – namely, that they are context-based (the

7See an overview of the criticism of the structuralist distributional methodology by Lenci (2008:
5–6).

41



composition of the word is derived from the context), distributed (the semantic
content of a word is the result of its global distributional history), quantitative
and gradual (the meaning is represented in terms of its statistical distribution in
various linguistic contexts). (Lenci 2008)

The popularity of DSMs has been increased by their ability to represent
word meanings using only distributional statistics. They operate as follows: The
semantic properties of words are captured in amulti-dimensional space by vectors.
Vectors are constructed from a large amount of text by adopting the distributional
patterns of co-occurrences with their neighbouring words. Information about co-
occurrences is collected in a frequency matrix in which rows correspond to target
words and columns show the given linguistic context. The DSMs of word co-
occurrence (also known as vector-space or word-space models) have been applied
to various NLP tasks, such as word sense discrimination (e.g. Schütze 1998) and
ranking (e.g. McCarthy et al. 2004), text segmentation (e.g. Choi et al. 2001),
and automatic thesaurus extraction (e.g. Grefenstette 1994). These models have
also been used in cognitive science; for example, in studies of simulated human
behaviour (e.g. Landauer and Dumais 1997; McDonald 2000; McDonald and
Brew 2004).

It has been suggested repeatedly that using just raw co-occurrence is often
insufficient. In addition to the count-based models (in which the semantic sim-
ilarity between words is learned by counting co-occurrence frequency), another
type of DSM, prediction-based representations (often called ‘embeddings’), has
been proposed. These models produce word representations that are using neural
network language models (Bengio et al. 2003), and they learn a function between
words and their contexts using co-occurrence information (Mikolov et al. 2013b).
Numerous studies have described and compared these two different types of DSMs
(e.g. Baroni et al. 2014; Levy et al. 2015); therefore, the differences will not be
discussed further at this point. However, in this study, embeddings are employed
to predict the compositionality of PVs.

The semantic similarities of the vector representations of words are quantified
using some type of distancemeasure (Padó and Lapata 2007). For example, cosine
similarity (CS) is one of the similarity measures used to determine the degree of
similarity between two objects. It measures the angle between two vectors and
normalises the vector length. A value of CS close to 1 indicates high similarity,
while a score close to 0 shows that the two objects are not related. In addition
to CS, other similarity functions are used to measure the distance between the
vectors. For example, Chakraborty et al. (2011) used the value of Euclidean
distance to measure the semantic similarity of the components of noun-noun
bigrams to identify MWEs in Bengali.

The creation of embeddings in distributional models has several parameters
that affect the performance of these models when solving different NLP tasks.
For example, the level of corpus processing, the number of vector dimensions
and the type of context window can affect the results of the DSM in MWE
discovery (Cordeiro et al. 2016a). The description of parameter settings within
the models used is provided in Section 3.2.2.1, and the impact of the parameters
on the compositionality predictions is analysed in Chapter 5. The evaluation of
methods based on distributional similarity can employ dedicated test sets or can
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use hand-built resources such as WordNet (Constant et al. 2017).
From anMWEdiscovery point of view, semantic similaritymethods have been

evaluated successfully evaluated on small samples of VPCs (e.g. Baldwin et al.
2003; Bannard 2005) and noun compounds (e.g. Reddy et al. 2011b; Yazdani et al.
2015; Cordeiro et al. 2016a), for example. For MWE discovery, the distributional
vectors have been combined and compared in several ways. The most common
approach is to measure the CS between the vector of an MWE and the member
word vectors; for example, Baldwin et al. (2003) and McCarthy et al. (2003) used
this approach.

Most DSMs represent each word via a single vector; thus, the different mean-
ings of one word are combined. Nevertheless, several approaches that produce
multiple representations of the same words and distinguish between different
senses have been proposed in the literature (e.g. Huang et al. 2012; Tian et al.
2014; Li and Jurafsky 2015; Neelakantan et al. 2015). These kinds of models are
mainly applied to WSD (e.g. Iacobacci et al. 2015; Pelevina et al. 2016), but some
studies have utilised multi-sense embeddings for compositionality studies (e.g.
Reddy et al. 2011a; Cheng and Kartsaklis 2015; Kober et al. 2017). Köper and
Schulte im Walde (2017a) used multi-sense embeddings to detect the composi-
tionality of German PVs. The compositionality of Estonian PVs was predicted
using word and multi-sense embedding models. The tools used for computing the
representations are introduced in the following sections.

3.2.2.1 word2vec
Mikolov et al. (2013a) proposed word2vec for learning the vector representations
of words. It has consequently become a widely applied toolkit in NLP. The reason
for its popularity might be derived from the fact that it has a simple and available
implementation.

Word2vec has two model architectures for learning the distributed representa-
tions of words. These models are based on the Feedforward Neural Net Language
Model (NNLM) introduced by Bengio et al. (2003). The NNLM consists of in-
put, projection, hidden and output layers. At the input layer, previous words are
encoded using 1-of-V coding, where V is the size of the vocabulary. The input
layer is then projected onto a projection layer using a shared projection matrix.
As only a limited number of previous words (input) are active at any given time,
the composition of the projection layer is a relatively inexpensive operation. The
NNLMarchitecture becomes complex for computation between the projection and
the hidden layer, as values in the projection layer are dense. The hidden layer is
used to compute the probability distribution over all the words in the vocabulary,
resulting in an output layer.

TheContinuousBag-of-WordsModel (CBOW) and theContinuous Skip-gram
Model (Skip-gram) attempt to minimise computational complexity. These models
do not have the non-linear hidden layer that NNLMs have – therefore, the data
are not represented as precisely, but more data are trained efficiently as opposed
to within recurrent neural networks. Figure 1 illustrates the architectures of the
CBOW and Skip-gram models. The CBOW is similar to the NNLM, but without
the non-linear hidden layer. The projection layer is shared for all words – thus,
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all words are projected onto the same position. The order of words in the history
does not influence the projection. Moreover, this model uses words from the
future. Unlike the standard bag-of-words model, it uses a continuous, distributed
representation of context. In other words, the current word is predicted based on
the context. The Skip-gram is similar to the CBOW, but it predicts words within a
certain range before and after the current word. Thus, each current word is used as
input for a log-linear classifier, with a continuous projection layer. Increasing the
range improves the quality of the resulting word vectors, but the computational
complexity also increases. As the more distant words are usually less related to
the current word than are closer words, the distant words are less weighted by
taking fewer samples from words in the training examples. (Mikolov et al. 2013a)

Figure 1: Architectures of the CBOW and Skip-gram models (adapted from
Mikolov et al. (2013a)).

Regardless of the model type, there are parameters that could be modified in
order to improve the quality of the produced embeddings. The parameters to be
studied later are as follows:

• The number of dimensions – the size of the vector; this indicates how many
dimensions the vector space contains. It has been suggested that more is
better, but this is not always the case. Increased dimensionality should
provide more fine-grained patterns of co-occurrence. (Google 2013)

• The size of the context window – this determines how many words before
and after a given word are included as the context words of a given word.
The authors of word2vec suggested around 10 for the Skip-gram model and
around five for the CBOW model (Google 2013).
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• Aminimum-count threshold – this compels the model to exclude words that
occur less often than the number dictates; the threshold is usually set to a
value between 1 and 5.

• Training iterations – this is a count of training iterations, indicating the
number of times the algorithm’s parameters are updated. When the iteration
number is small, the word embeddings exhibit a lack of learning but, when
it is large, the model is prone to overfitting (Lai et al. 2016).

Although there are some general recommendations regarding how parameters
should be set, they depend largely on both the data and the task. Therefore, in
order to determine the best parameter settings for predicting the compositionality
of Estonian PVs, severalmodelswere trained and analysed, as described inChapter
5.

In addition to these parameters, there are others, such as sampling methods
and sub-sampling, but the impact of these parameters on the compositionality
predictions is not explored in the current study. However, some research on
the influence of the parameters for the compositionality predictions of MWEs in
other languages has been conducted previously (see, for example, Lai et al. 2016;
Cordeiro 2017; Caselles-Dupré et al. 2018).

The output of word2vec is a file containing word vectors. In order to determine
the similarities among these vectors, the Gensim tool (Řehůřek and Sojka 2010)
is used. Gensim8 is a Python library for topic modelling, document indexing
and similarity retrieval with large corpora. Gensim provides the CS value among
requested word vectors. For example, after training on Estonian word embed-
dings using word2vec, it is possible to ascertain that the CS value between the
Estonian synonyms telekas and televiisor ‘television’ is 0.87 (indicates relatively
high similarity), but is 0.13 (low similarity) for unrelated words such as sülearvuti
‘laptop’ and kaalikas ‘swede’. In the same way, it is possible to request the CS
value between verbs such as jooksma ‘to run’ and sörkima ‘to jog’ (CS = 0.69) or
between jooksma and magama ‘to sleep’ (CS = 0.34).

3.2.2.2 SenseGram
SenseGram is an approach to learn word-sense (multi-sense) embeddings that
was proposed by Pelevina et al. (2016). Figure 2 illustrates the four main stages
of their method – a) learning word embeddings, b) building a graph of nearest
neighbours based on vector similarities, c) inducting word senses using ego-
network clustering, and d) aggregating word vectors with regard to the induced
senses. Hence, the model uses existing word embeddings and word similarity
graphs.

SenseGram learns word vectors using the word2vec toolkit (see Section
3.2.2.1); one can choose between CBOW and Skip-gram, and modify other para-
meters (see the previous section) as well. Word vectors are saved separately and
are given in order to calculate word similarity graphs. The 200 nearest neighbours

8Gensim and its documentation can be accessed at https://radimrehurek.com/gensim/
(accessed 12.05.2017).
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Figure 2: Schema of the multi-sense embeddings learning method (adapted from
Pelevina et al. (2016)).

are retrieved for each word. The nearest neighbours are ascertained by calcu-
lating the CS among word vectors – words with higher scores are their nearest
neighbours. The similarity graphs are the input for the word-sense induction. The
sense of the word is represented by a word cluster. For the derivation of senses, an
ego-network of a word is constructed, and the graph clustering of this network is
performed. The graph clustering uses the Chinese Whispers algorithm suggested
by Biemann (2006). The multi-sense embeddings are calculated for each sense
induced previously. A more detailed explanation of the stages was described by
Pelevina et al. (2016).

The difference between this approach and other methods that learnmulti-sense
embeddings is that, instead of learning multi-sense embeddings directly from the
corpus, it learns the embeddings from the existing word embeddings. Hence, it
encourages the reuse of resources. In addition, SenseGram does not rely on any
knowledge base (such as WordNet), which means it does not require the existence
of other resources. Moreover, Köper and Schulte im Walde (2017a: 537–538),
who tested multiple models for the prediction of German PV compositionality,
showed that, using this approach, (ChinWhisp) performed significantly better than
the baseline and achieved the best result.

There are two other reasons that SenseGram was used for the learning senses
for the automatic discovery of Estonian PVs. Firstly, the pilot studies (Aedmaa
2016, 2017) demonstrated that word2vec could be used for the detection of the de-
gree of compositionality of Estonian PVs. Thus, besides expanding the previous
studies by running more experiments with word2vec, the use of SenseGram guar-
antees a valid comparison of how the results of word embeddings impact on the
work of multi-sense embeddings. Secondly, SenseGram is a freely available tool9
with relatively easy implementation, and has obtained results that are comparable

9The implementation of the method with several pre-trained models is available at https:
//github.com/tudarmstadt-lt/sensegram (accessed 03.04.2018).
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to state-of-the-art instruments.
Gensim is also used for retrieving the CS scores of sense vectors, inquiring

into the number of senses each word obtained and investigating the meaning of
each sense by requesting the nearest neighbours (the most similar words) for each
sense. For example, the polysemous word klaas ‘glass’ has two meanings. Since
SenseGram also calculates the probabilities for each sense, this information is
included when requesting the number of senses. The probabilities of the senses
of the word klaas are 0.64 and 0.36, respectively. Hence, the first meaning of the
word klaas is more probable in the text than is the second meaning. It is possible
to study the meanings of the different senses by examining their nearest neigh-
bours. The nearest neighbours for the first meaning of klaas are mattpind ‘matte
surface’, klaasvahesein ‘glass partition wall’, plastliist ‘plastic slat’, metallkest
‘metal sheath’, and pimendav ‘darkening’. The second meaning of klaas is sim-
ilar to words such as topka ‘shot glass’, napsiklaas ‘shot glass’, pits ‘shot glass’,
tass ‘cup’, and vahumüts ‘cap of foam’. Therefore, the first meaning represents
‘a transparent solid material’ and the second represents ‘a drinking glass’. The
ability of SenseGram to predict the compositionality of Estonian PVs is discussed
in detail in Section 5.5.

3.3 Supervised learning
Supervised learning, whereby decisions are made by generalising from known
examples, is considered to be the most successful of the machine learning al-
gorithms. In supervised learning, machine learns a mapping from the input to
an output whose correct values are provided by a supervisor (Alpaydin 2009).
Thus, the user (a supervisor) gives the machine (a learner) an input and a desired
output, and the machine finds a way to produce this desired output from the input
provided to it. Compared to unsupervised learning algorithms, the supervised
ones are understood well, and their performance is easy to measure. Therefore,
when one is able to create a dataset containing the desired output, a supervised
learning algorithm could solve the problem. (Müller and Guido 2016: 2–3)

In this section, an introduction to the method employed to detect the literal
versus the non-literal usages of Estonian PVs – a random forest classifier – is
provided. An explanation of the importance of the feature selection process for
the creation of such a model and the evaluation technique are also presented.

3.3.1 Random forests
The random forest algorithm is one of many supervised learning methods that are
applied to solve classification and regression problems. The main idea behind the
algorithm is that it constructs a number of randomised decision trees during the
training phase and makes predictions by averaging the results. The random forest
algorithm was proposed by Breiman (2001), and has become widely used as a
data analysis tool (Scornet et al. 2015).

The random forest algorithm combines a set of decision trees that differ
slightly from each other (Müller and Guido 2016: 83). A decision tree is a
decision-making device whereby the probability of each of the possible choices is
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calculated based on the context of a given decision (Magerman 1995). A decision
tree is a data structure in which: a) each leaf is labelled with the name of a class,
b) the root and each internal node (called a decision node) are labelled with the
name of an attribute, and c) every internal node has a set of at least two children,
the branches of which are labelled with disjointed values or sets of values of that
node’s attribute. (Mahmood et al. 2011)

A decision tree is applied by starting at the top node, and finding the answer
to the test question for this node. Depending on the test result, it branches to
the subnode, and repeats this process until a terminal node is reached, the label
of which is returned as the result class. (Clark et al. 2013) In other words, the
idea of the decision tree algorithm is to select the attribute with the value that
best separates the training set into subsets as the root of the tree and to repeat it
recursively for each child node until a stopping criterion is met (Mahmood et al.
2011).

While each tree might work well for prediction, combining them reduces
overfitting and leads to a more reliable classifier. Building a random forest model
begins with a decision concerning how many trees the models contains. Each tree
is built independently from the other and is derived from bootstrapped samples of
the original training set. A bootstrapped sample has the same size as the original
dataset, and is created by drawing a random sample with a replacement from the
original set. Hence, some data points are missing from the new dataset, and some
of them are repeated. A decision tree is built based on the new dataset, while the
algorithm randomly selects a subset of features and looks for the best test in each
node. The maximum number of features is controlled by the user. The selection
of subset features is repeated in each node. Hence, the decision in each node could
be taken based on a different subsets of features. (Müller and Guido 2016)

The classifications of the different trees are combined by choosing the most
frequently predicted class (Clark et al. 2013). A so-called soft voting strategy
is used – each algorithm provides a probability for each possible class, and the
probabilities predicted by all the trees are averaged. Therefore, the class with the
highest probability is predicted. (Müller and Guido 2016)

A description of developing a random forest classifier for predicting the literal
versus the non-literal usage of Estonian PVs is provided in Chapter 6.

3.3.2 Feature selection
In machine learning, particularly when dealing with multivariate data, dimen-
sionality reduction is a prerequisite to decrease the number of random variables
under consideration (Roweis and Saul 2000). One way to decrease the number of
variables is to conduct a ‘feature selection’ (Pudil and Novovičová 1998), which
is a process that selects a subset of features occurring in the training set and uses
these features to solve a classification task (Manning et al. 2008). The purposes
of the feature selection are to increase the classifier accuracy, provide faster and
more cost-effective classifiers, and to provide a better understanding of the data
generation process (Guyon and Elisseeff 2003).

For better accuracy, the elimination of noise features, which are features that
increase the classification errors in new data, is conducted. Noise features may

48



cause overfitting, which is an incorrect generalisation from an accidental property
of the training set (Manning et al. 2008). For example, a feature, such as the
infrequent word animatsioon ‘animation’, does not convey any information about
a class (for example, the compositionality of Estonian PV), but all instances of
animatsioon happen to occur in sentences in which one particular PV is used with
a non-compositional meaning in the training set. In this case, the learning method
might produce a classifier that incorrectly predicts the class of the sentences that
contain the word animatsioon as having a non-compositional meaning. In statist-
ics, ‘overfitting’ is defined as ‘the production of an analysis which corresponds too
closely or exactly to a particular set of data, and may therefore fail to fit additional
data or reliably predict future observations’10.

Overall, the reduction of feature dimensionality is important to decrease the
computational complexity and to improve the generalisation ability of the classi-
fier – fewer features require less run time, and the low-dimensional representation
reduces the risk of overfitting (Liu and Zheng 2006). To conclude, feature selec-
tion is a method to replace a complex classifier that uses all the features with a
simpler one that uses a subset of features (Manning et al. 2008).

There are different methods for feature selection. Some methods focus on
the construction and selection of subsets of features that are useful in order to
build a good predictor, while others aim to find or rank all potentially relevant
features. Useful feature is not necessarily relevant (that is a feature that provides
some information about the target label), and vice a versa, meaning that a subset
of useful features may exclude redundant yet relevant features. (Guyon and
Elisseeff 2003) Feature selection techniques have been applied in many different
applications, such as text categorisation and data visualisation (Liu and Zheng
2006).

In general, feature selection methods are grouped according to three classes –
filter, wrapper and embedded methods (Guyon and Elisseeff 2003). The filter
methods are independent of the classifier and evaluate the performance via some
indirect assessments. The principal criteria for the feature selection of filter meth-
ods are simple and successful for practical applications – ranking (Chandrashekar
and Sahin 2014). The features are ranked according to the score and to a threshold
that is either selected or removed from the dataset. The features are usually con-
sidered independently or with regard to the dependent variable. These kinds of
methods include information gain, correlation coefficients, and chi-squared test
and so on. (Guyon and Elisseeff 2003)

Wrapper methods assess all possible subsets of features according to their
relative usefulness, they are classifier-dependent and are based on classification
accuracy. Therefore, it is necessary to define how the space of all possible
subsets is searched (such as best-first, branch-and-bound, genetic algorithms),
how to assess the predictions performance (usually done using a validation set or
by cross-validation), and which predictor to use (popular ones include decision
trees, Naïve Bayes and support vector machines). A predictive model evaluates a
subset of features and assigns a score based on the model’s accuracy. (Guyon and
Elisseeff 2003)

10https://en.oxforddictionaries.com/definition/overfitting (accessed 10.05.2018).
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Embedded methods select features in the process of training and are usually
specific to particular learning machines (Guyon and Elisseeff 2003). These meth-
ods aim to decrease the computation time of reclassifying different subsets; thus,
feature selection is performed as part of the training process (Chandrashekar and
Sahin 2014). One of the embedded feature selection methods is regularisation (or
penalisation), a method that introduces additional constraints into the optimisation
of a predictive algorithm that biases the model towards lower complexity.

For feature selection, two different filter methods (correlation coefficient and
information gain), and a wrapper method described by Kohavi and John (1997)
are implemented. Detailed descriptions of the methods and their results for the
dataset are presented in Section 6.3.1.

3.3.3 Cross-validation
The evaluation of a machine learning model shows how accurate it is for data it
has never seen previously. Cross-validation is a technique that is used to evaluate
models when data are limited. The main idea in this approach is that some data
are removed before training; after the training is complete, the removed part of
the data is used to evaluate the performance of the model. Cross-validation can
be carried out by applying different methods (such as the holdout method, k-
fold cross-validation, leave-one-out cross-validation, and so on). The classifier
presented in this thesis was evaluated using k-fold cross-validation.

K-fold cross-validation is a widely adopted method that is used when the
labelled data are too small to reserve a validation sample, since that would result
in an insufficient amount of training data. Therefore, the labelled data are used
for both model selection and for training (Mohri et al. 2012); instead of making
a single partition, the full set of available data is partitioned into k subsets, or
folds (Clark et al. 2013). The approach is used widely because it is a less biased
estimate of the model’s skill than are other methods, such as the simple train/test
split (the holdout method).

The evaluation is conducted as follows: Each k time, one of the k subsets is
used as the test set and the other k-1 subsets are combined to form a training set.
The error estimation is averaged over all k trials to ascertain the total effectiveness
of the model. Every item (data point) is used for training as well as for testing –
once in the test set and k-1 times in the training set. Thus, the results do not
reflect a particularly good or particularly bad choice of test set. It also reduces the
bias because most of the data are used for fitting. (Clark et al. 2013) In machine
learning applications, k is typically chosen to be 5 or 10 (Mohri et al. 2012).

The output of the evaluation model usually contains values of several eval-
uation metrics. The classification metrics used in this thesis are described in
Section 3.4.3.

3.4 Evaluation measures
In order to determine how well the suggested models work, evaluation measures
needed to be applied. In addition, the quality of the datasets containing human
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judgements was assessed. This section introduces the inter-rater agreement meas-
ures that are used to evaluate the datasets, and the correlation and classification
metrics used for the evaluation of the machine learning algorithms.

3.4.1 Inter-rater agreement measures
In order to evaluate human annotations, multiple inter-rater reliability measures
were developed. The aim of suchmeasures is to determine the degree of agreement
among rater. The simplest way is to calculate the percentage of annotations in
which all the annotators agree.

However, more statistics are considered to be better than the simple percentage
agreement calculation because they take the possibility of the agreement occurring
by chance into account; for example, kappa coefficients. Cohen’s kappa (Cohen
1960) and Fleiss’ kappa (κ) (Fleiss 1971) coefficients are the most frequently
used measures to evaluate datasets created by several annotators. These measures
presume that all the annotators have evaluated the same items. Cohen’s kappa
can only be used when measuring the agreement between two annotators, while
Fleiss’ kappa is suitable for evaluating an agreement among a larger number of
evaluators. Fleiss’s kappa score takes the following features into account – the
number of evaluators, the number of items and the number of categories; it also
measures pairwise agreement (Artstein and Poesio 2008). Value κ ≤ 0 indicates
that there is no agreement among the rates. When the annotators are in complete
agreement, κ = 1.

One of the limitations of κ is that all disagreements are treated equally, but
for some features (especially semantic and pragmatic ones) disagreements are not
all alike. Therefore, several weighted agreement coefficients have been proposed.
One of them, Krippendorff’s α (Krippendorff 2004), applies to multiple coders,
incomplete data, and it allows for different magnitude of disagreement. It is
suitable for nominal, interval, ordinal, and ratio scales. (Artstein and Poesio 2008)
As suggested by Krippendorff (2004), α = 0.8 is a threshold of good reliability,
but tentative conclusions can be made also when α ≥ 0.667.

In sum, for the assessment of inter-rate agreement among annotators of
(non-)literalness ratings (see Section 4.3), Fleiss’s kappa and Krippendorff’s α
are calculated.

3.4.2 Correlation measures
The comparison of two datasets with numerical values is feasible using correlation
measures. In the case of compositionality detection for Estonian PVs, the system’s
predictions can be compared to a human-annotated dataset to determine the quality
of the performance of the model. Hence, having human judgements and system
predictions for the same PVs allows one to evaluate how good the predictions of
the respective systems are.

As it is suggested that MWEs form a continuum ranging from fully composi-
tional to fully non-compositional expressions, system-based and human-annotated
ratings of degrees of compositionality of PVs can be viewed as rankings. Accord-
ingly, the datasets were compared using Spearman’s rank correlation coefficient
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(Spearman’s ρ). Spearman’s ρ is a special case of Pearson’s correlation coefficient
(r) that is applied to ranked variables; thus, it relies on the rank order of values.
Pearson’s r between two datasets (X and Y) is calculated using the expected val-
ues (E), means (µX , µY ), and the standard deviation (σX , σY ), as shown in the
following formula:

rX,Y = E[(X − µX)(Y − µY )]
σXσY

The calculation of Spearman’s ρ is similar to that of Pearson’s r, but it uses
ranks instead of raw scores. Therefore, it allows exploring how similarly two sets
of scores rank the same items. The value of Spearman’s ρ can range from –1
to +1. When one variable increases, another variable increases by a consistent
amount; thus, the value of Spearman’s ρ is +1. When the amount of increase is
inconsistent, the value of ρ is still positive, but is less than +1. In the event of
having a random or non-existent association between variables, the ρ value is close
to 0. A negative value occurs in a situation in which one variable increases and
another decreases. When the amount of the decrease is consistent, Spearman’s ρ
value is –1.

In addition to Pearson’s and Spearman’s correlation coefficients, Kendall rank
correlation coefficient (Kendall’s τ , Kendall 1938) is another widely applied
measure to express the association between twomeasured quantities. In this study,
Kendall’s τ is not presented because ρ has been shown to be more appropriate for
small datasets (Xu et al. 2013) and in significance testing these two coefficients
usually produce similar results (Colwell and Gillett 1982).

3.4.3 Classification metrics
Classification performance can be measured using many different metrics such
as accuracy, precision and recall, f-measures, a Matthews correlation coefficient
(MCC), a receiver operating characteristic curve (ROC curve), a precision-recall
curve (PRC curve) and so forth.

The classification of the literal versus the non-literal usage of Estonian PVs is
evaluated using classification accuracy and an f-measure. The accuracy reflects
the number of correct predictions among all the predictions made. As the target
variable classes (literal and non-literal sentences) in the data are not balanced,
the accuracy is used to show the general performance of the model. For a more
precise evaluation of the performance of the models, the f-measure (F1, f-score)
is calculated and reported.

The f-measure is a harmonic mean of precision and recall. The formula for
the calculation of the f-measure is the following:

F1 = 2· precison· recall
precision+ recall

Precision itself is defined as the proportion of true positives (TPs) among the
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sum of TPs and false positives (FPs). TPs are data points classified as positive
by the model that are actually positive. FPs are that cases that the model labels
incorrectly as positive that are actually negative. Recall is the proportion of TPs
among the sum of TPs and false negatives (FNs). FNs are data points the model
identifies as negative that actually are positive.

In the event of classifying non-literal versus literal sentences, the f-measure
values are calculated and presented for non-literal and literal sentences. For
non-literal sentences, TPs are sentences that are classified as non-literal and are
non-literal, FPs are classified as non-literal but are literal, and FNs are predicted to
be literal but are actually non-literal. For literal sentences, TPs are literal sentences
that are predicted to be literal, FPs are literal sentences classified as non-literal
and FNs are literal sentences that were predicted to be non-literal.
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4 MATERIAL AND DATASETS
This chapter introduces the data used in the present study. Firstly, Section 4.1
describes two corpora that were used for the development of the datasets and
for training the DSMs. The outline of the corpora also explains the selection of
the corpora for this study. Detailed overviews of three datasets are presented in
the following sections. The dataset of compositionality ratings is represented in
Section 4.2. Among other information, crowdsourcing as a data sourcing model
is discussed, the evaluation of the annotation is conducted and the content of the
dataset is described. The (non-)literalness ratings for Estonian PVs are described
in Section 4.3. The annotation is evaluated and a detailed overview of the content
of this dataset is also presented. In Section 4.5, the automatically created dataset
of abstractness/concreteness ratings for Estonian lemmas is presented.

4.1 Corpora
The datasets introduced in this chapter are based on the newspaper subcorpora
of the Estonian Reference Corpus11 (ERC), containing 170 million words. The
corpus only includes full texts that represent written Estonian. The largest volume
of texts is from the daily newspapers Eesti Päevaleht (88 million words), Õhtuleht
(45.5 million words) and Postimees (33 million words); several magazines and
local newspapers are also represented. The texts sourced were from 1995–2008.
The corpus was analysed and disambiguated morphologically, and the clause
boundaries were detected prior to building the datasets. As the current study
is a continuation of the author’s previous research on discovering Estonian PVs
in different corpora (see Aedmaa (2015)), the selection of PVs relied largely on
the results presented previously. Moreover, as newspaper texts are considered to
reflect common language usage better than are fiction or scientific texts, continuing
with newspaper texts was a legitimate choice. Furthermore, this corpus had
already been processed which enabled the automatic extraction of sentences for
the datasets.

Embeddings for this study were trained on the EstonianWeb Corpus12 (etTen-
Ten) text corpus, which is a web corpus containing approximately 270 million
words. The etTenTen is part of the TenTen Corpus Family13 that contains text
corpora created from the web and which now contains corpora in more than 30
languages. The etTenTen has a diverse selection of text types – approximately a
quarter of the corpus consists of periodicals, 20% are forums and 10% are blogs.
Informative, religious and government texts are also classified. Approximately
32% of the texts are unclassified. The corpus contains texts from 686,000 Esto-
nian web pages, and was the largest corpus of Estonian until the Estonian National
Corpus 201714 was created in 2017. The etTenTen corpus was chosen for this
study because it was the biggest morphologically analysed and disambiguated text

11http://www.cl.ut.ee/korpused/segakorpus/ (accessed 01.11.2017).
12http://www.keeleveeb.ee/dict/corpus/ettenten/about.html (accessed 14.09.2018).
13https://www.sketchengine.eu/documentation/tenten-corpora/ (accessed 14.09.2018).
14http://doi.org/10.15155/3-00-0000-0000-0000-071E7L (accessed 14.09.2018).
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corpus at the time that the embeddings needed to be trained15. Having much of the
data covering different types of texts made the etTenTen suitable for the current
study, but the experiments should definitely also be conducted on a larger number
of texts.

4.2 Compositionality ratings for Estonian particle verbs
The dataset of compositionality ratings for Estonian PVs16 is described in this
section. The purpose of the dataset and the choice of the scale of measurement
are explained first. The target PVs and example sentences are then described,
and crowdsourcing as a data collection method is outlined and discussed. The
annotation is evaluated and the content of the dataset is also presented. In addition,
the PVs that were challenging to evaluate are analysed.

4.2.1 Purpose and the choice of scale
The development of the dataset containing compositionality ratings was required
for the evaluation of the methods of distributional semantics described in Section
3.2. These methods are applied to rank Estonian PVs automatically according to
their degree of compositionality (see Chapter 5). It was thus necessary to collect
a set of ratings expressing the degree of compositionality of PVs from human
annotators.

The output of the DSM model helps to determine the semantic similarity of
words. The CS score indicates how similar the meanings of a PV and a verb
are. Based on the CS scores, the PVs can be ranked according to their degree
of compositionality. In order to evaluate such an output, the human-annotated
dataset also had to reflect the degrees of compositionality of PVs. Therefore, the
annotators were asked to evaluate the compositionality of the PVs using a scale.

The decision to use an interval scale (Stevens 1946) was based on the pre-
sumption that intervals between the points were equal. For example, the difference
between 1 and 2 is the same as the difference between 4 and 5. Moreover, the
numbers are comparable in terms of greater-than and lesser-than. For example,
5 is greater than 3, which is greater than 1; therefore, a PV with a rating of 5 is
more compositional than is a PV with a rating of 3, which is more compositional
than is a PV with a rating of 1. In fact, the value 1 was chosen arbitrarily; hence,
it does not signify that the PV is lacking compositionality. Using an interval scale
ensures that different statistical methods for the analysis of the data can be applied.
For example, standard deviations and rank-order correlations can be calculated.
(Stevens 1946)

The adapted scale had an odd number of options. This kind of Likert scale
is commonly used in linguistic research because it has a precise middle point
(Podesva and Sharma 2014). Furthermore, the odd-numbered scale provides the

15The analysed corpus is downloadable from META-SHARE repository at http://doi.org/
10.15155/1-00-0000-0000-0000-00158L (accessed 14.09.2018).

16The final version of the dataset is accessible from https://github.com/eleriaedmaa/
compositionality (accessed 10.11.2018).
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opportunity to consider the PVs that are difficult to evaluate at a binary level – the
middle point would be used for the PVs that the annotators found challenging to
evaluate as being more compositional than non-compositional and vice versa. In
addition, the aim was not to create a binary division of Estonian PVs; therefore,
there was no need to use an even-numbered scale. Furthermore, the meanings of
some PVs can be compositional or non-compositional depending on the context.
It is therefore likely that these kinds of PVs will be given the rating of 3 most
often. Moreover, the sixth option, ‘I don’t know’, was added for very difficult
cases. This option was required to be used only when an evaluation of the PV was
impossible. However, the annotators were not forced to submit a judgement when
to do so was challenging for them.

To conclude, the annotators were asked to rate the compositionality of the PVs
on a scale from 1 to 5; 1 meant that the meaning of the PV agreed fully with the
meanings of the verb and particle – thus, the PV was compositional. However, 5
meant that the meaning of the PV did not agree at all with the meanings of the
verb and particle; thus, the PV was non-compositional.

4.2.2 Target particle verbs and example sentences
The selection of the target PVs relied on the list of 1,67617 PVs that were previously
extracted automatically from the newspaper subcorpora of the ERC (Aedmaa
2015). The decision to select the automatically extracted PVs instead of the 1,737
PVs presented in the Explanatory Dictionary of Estonian18 (EED henceforth) was
motivated by the fact that the automatically detected PVs really occurred in the
corpora.

The remainder of the PVs were ranked according to their frequency, and
infrequent ones (that is, PVs that occurred less than nine times in the corpus)
were removed from the selection. Note that the frequency of the PV expresses
the co-occurrence frequency of a verb and an adverb in the same clause, not the
real frequency of a PV. This is due to by the fact that PVs are not annotated in
the corpus. In order to discover automatically PVs, all of the co-occurrences of a
verb and an adverb were counted. As an adverb and a verb can occur in the same
sentence as independent units, the frequencies of the PVs are approximate.

The number of target PVs was chosen based on a rough estimation of how
many people could possibly participate in the data collection. The aim was to
collect at least 10 assessments for each PV and to keep the number of the PVs each
annotator evaluated to a relatively reasonable level. It was thus decided to collect
ratings for approximately 200 PVs. Moreover, 200 PVs formed a representative
sample of all the PVs. After establishing the number of target PVs, a random
sample of 193 PVs with different frequencies was generated. In addition, in order
to study the effect of the frequency of the PV on compositionality, all 20 most

17Note that most PVs formed with the particle ära ‘away/out/off’ were excluded from the dataset
because the meaning of ära is not transparent (Veismann and Sahkai 2016) and needs to be studied
as a special case. However, two PVs containing ära – ära tegema ‘to finish doing’ and ära võtma ‘to
take away’ – were included in the dataset in order to analyse whether these PVs posed a challenge
for annotators. The annotation of these PVs is studied in Section 4.2.6.

18http://www.eki.ee/dict/ekss (accessed 14.01.2015).
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frequent PVs were added to the selection. Therefore, 18 more PVs were included
in the dataset, and 211 PVs were selected for the evaluation.

The third stage of dataset creation was to select sentences that would help
the annotators to evaluate the degree of compositionality of the PVs. To achieve
this, nine sentences for each PV were extracted automatically from the corpus.
Three example sentences were then selected manually as example sentences to
be displayed to the annotators when they rated the degree of compositionality
of the PVs. This manual work was inevitable because, although the corpus
was analysed and disambiguated morphologically, it contained some noise. For
example, adverbs and verbs can often appear in the same clause as independent
units without forming a PV. In order to remove sentences without a PV, the
selection was reviewed manually.

Example sentences were selected in such a way that their different meanings as
represented in the EED would be reflected. However, when automatic extraction
did not provide the meaning of the PV, it was included in the selection of example
sentences. Therefore, the most frequent (and prototypical) meanings were presen-
ted in the example sentences. For example, the PV välja paiskama19 has two
meanings in the EED – ‘to throw something out from somewhere’ and ‘to blurt
out something’. Thus, both meanings were reflected in the example sentences.
However, the PV peale tungima20 has four meanings, and not all of them were
reflected in the example sentences. For example, the meaning ‘to be insistent’
was not presented as an example because the meaning did not appear in the auto-
matically extracted sentences. Thus, it might not be as frequent as are the other
meanings. Some PVs have only one meaning – in these cases, all three sentences
expressed the same meaning. It was thus anticipated that these PVs would be
easier to evaluate as being fully compositional or fully non-compositional. For
example, all the example sentences containing the PV alla tingima expressed one
meaning, ‘to bargain/beat down’, because only one meaning is represented in the
EED.

In summary, the selection of the target PVs was random, but the aim was to
cover different frequency ranges equally. In addition, all 20 of the most frequent
PVs were included. The example sentences provided for the annotators were
selected randomly from the corpora. Therefore, the more frequent meanings of
the PVs were represented.

4.2.3 Crowdsourcing annotations
The compositionality ratings for Estonian PVs were crowdsourced. Human annot-
ators were asked ‘to what extent the meaning of the PV agreed with the meanings
of its components’. The number 1 on one side of the scale represented the answer
‘not at all’, while the number 5 on the other side of the scale reflected the answer
‘fully’. Hence, the PVs with a higher score are more compositional than are PVs
with a lower score.

The annotations were collected via the Qualtrics platform21. The decision to

19http://www.eki.ee/dict/ekss/index.cgi?Q=välja+paiskama (accessed 02.08.2018).
20http://www.eki.ee/dict/ekss/index.cgi?Q=peale+tungima (accessed 02.08.2018).
21https://www.qualtrics.com (accessed 13.03.2016).
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crowdsource the ratings was motivated by the possibility of collecting as many
annotations as possible. For the same reason, the backgrounds of the annotators
were not surveyed. Since it is not possible to have many people answer these kinds
of questionnaires, it was decided not to ask annotators for any personal details.
It was assumed that, by not asking about their backgrounds, people without any
background in linguistics would be more likely to participate. Furthermore, as
the annotators were not paid for their contributions, it was reasonable not to ask
them to spend more of their time answering secondary questions, as the aim was
to collect compositionality ratings.

The questionnaire was distributed among the author’s friends, family and
colleagues via social media and mailing lists. Only native speakers of Estonian
were asked to take part in the survey, and the annotators were encouraged to use
their intuition, not linguistic knowledge. It was emphasised that there were no
correct or incorrect answers. Each annotator was asked to annotate 21 PVs. The
annotators could not return to the PVs that they had evaluated previously. Around
130 fully completed surveys were collected within a few months. The annotators
who completed the questionnaire very quickly (in less than two minutes) or who
evaluated all of the PVs in the same way (for example, all 21 PVs were evaluated
as being fully non-compositional) were excluded from the analysis.

The most problematic aspect of collecting compositionality ratings was the
polysemy of PVs and their components. For example, the verb saama22 has 12,
the adverb kokku23 has 11 and the PV kokku saama24 has four different meanings
in the EED. Thus, it was clear that it would be difficult for annotators to evaluate all
of the meanings of the components and PVs using the same rating. Nevertheless,
despite considering other options, this was the chosen procedure.

More precisely, it was not reasonable to ask annotators to evaluate the specific
meanings of the PVs and their components because the dataset was created for
the evaluation of the DSMs that do not differentiate among possible senses of
the same word. The collection of compositionality scores for different meanings
of the PVs would have complicated the assessment process. Another aspect was
the choice of meanings to submit for the assessment. As it was clear that the
annotators were not able to evaluate all the meanings of all the PVs and their
components, a selection had to be made. Furthermore, many meanings are fixed
in the dictionary, but this does not ensure that all the possible readings of all the
words and PVs are included. On the contrary, the differences in meanings that
dictionaries distinguish are not always clear to everyone, and can be subjective.
Therefore, the choice of meanings can be problematic.

Instead of specifying the meanings of the PVs and their components, some
example sentences were provided. While there was an option not to give example
sentences in order to not prevent bias among the annotators, it was instead decided
to supply some information. This decision was mostly motivated as a means
to make the task more engaging and clear for the annotators who were lacking
a background in linguistics. While dropping all possible cognitive aspects of
deciding which meanings are predominant, it was assumed that frequent meanings

22http://www.eki.ee/dict/ekss/index.cgi?Q=saama (Accessed 12.03.2016)
23http://www.eki.ee/dict/ekss/index.cgi?Q=kokku (Accessed 12.03.2016)
24http://www.eki.ee/dict/ekss/index.cgi?Q=kokku+saama (Accessed 12.03.2016)

58

http://www.eki.ee/dict/ekss/index.cgi?Q=saama
http://www.eki.ee/dict/ekss/index.cgi?Q=kokku
http://www.eki.ee/dict/ekss/index.cgi?Q=kokku+saama


are dominant. The most frequently occurring meanings of a random selection of
sentences were thus picked as example sentences displayed to annotators. Yet, the
annotators were not expected to make their decisions based on these sentences.

From the data collection point of view, the selected method – crowdsourcing –
was challenging but also compelling at the same time. As described earlier, the
main motivation to crowdsource the ratings was to collect as many evaluations as
possible while saving time and money. The annotators could choose a time and
place when to answer the questionnaire and stay anonymous. At the same time,
there were circumstances that might have influenced the quality of the annotations,
such as the clarity and complexity of the task, the annotators’ motivation and
background, the author’s lack of experience, and so on. These issues are discussed
further in Section 4.4, in which the compositionality ratings of two different
datasets are compared, and in Chapter 5, in which the DSMs are evaluated using
these compositionality ratings.

To conclude, the dataset does not reflect the compositionality of certain mean-
ings of the PVs. Instead, the rating of the PV suggests its overall compositionality
thereof. However, as the example sentences shown to annotators expressed only
the most frequent meanings, it can be assumed that the ratings reflect the predom-
inant meaning of each PV. It was also expected that the annotators would select
the ‘I don’t know’ option when rating the PV was difficult to rate the PV.

4.2.4 Evaluation of the annotations
One hundred and ten satisfactory replieswere collected as a result of the annotation
process, each containing annotations for 21 PVs; each PV received at least 10
ratings, up to a maximum of 20. Fifty-four PVs received at least one ‘I don’t
know’ response. These PVs are not included in the dataset, but they are discussed
in Section 4.2.6 as PVs that are difficult to evaluate. The evaluation of the
dataset was thus conducted based on the 157 PVs forming the final dataset of the
compositionality ratings of Estonian PVs.

To measure the difficulty of annotations, we followed Cordeiro et al. (2016b)
and the standard deviations among the scores assigned by the annotators were
calculated. The high value of the standard deviations indicates low agreement
among the annotators, while low values suggest that the human judgements were
similar. The standard deviations were calculated for the 157 PVs. Figure 3
illustrates the distribution of the standard deviation values across these PVs.

The average standard deviation per rating was 1.13, while the lowest was 0.5
and the highest 1.85. The PVs ette jõudma ‘to get ahead’ or ‘to outstrip’ and
läbi tungima ‘to penetrate/go right through’ had the lowest standard deviation
(0.50). The PV läbi tungima25 has one meaning in the EED, and it can therefore
be assumed that the annotators assigned the same meaning, and that it is non-
compositional. Ette jõudma26 has twomeanings in theEED; thus, as the annotators
agreed, it can be assumed that both meanings are non-compositional.

25http://www.eki.ee/dict/ekss/index.cgi?Q=läbi+tungima (accessed 10.11.2018).
26http://www.eki.ee/dict/ekss/index.cgi?Q=ette+jõudma (accessed 10.11.2018).
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Figure 3: Distribution and density of standard deviation values across PVs.

The PVs ette heitma ‘to reproach/blame’ and ümber riietama ‘to change some-
body’s clothes’ had the greatest deviation (1.85 and 1.83, respectively), and they
both had average compositionality ratings of around 3.0. While both PVs27,28 have
one meaning in the EED, the annotators did not agree about the compositionality
of these PVs.

It is a well-known fact that frequent words tend to be more polysemous than
infrequent ones (see, for example, Zipf (1945); Hamilton et al. (2016)). It can thus
be suggested that, compared to the infrequent PVs, frequent PVs with frequent
components are more difficult to evaluate, and that this is reflected in the standard
deviations scores. In order to test this claim, the associations between frequency
and standard deviations were studied by considering the standard deviation scores
of three frequency groups of PVs, particles and verbs.

Frequent PVs occurred 1,000–35,929 times, infrequent PVs 9–96 times, and
PVs with medium frequency 102–999 times. The sizes of the PV frequency
groups were 52, 45 and 59, respectively. The group of PVs with frequent particles
consisted of five different particles that appeared 108,758–322,547 times. This
group contained 63 PVs. The group of PVswith infrequent particles also consisted
of five different particles that occurred in six different PVs. These particles
occurred 2,304–9,258 times. Eighty-seven PVs consisted of one to 20 particles
with medium frequency (11,589–99,135). The 20 most frequent verbs appeared
111,459–756,544 times in 41 different PVs. Sixty-five PVs consisted of one to 61
verbs with low frequency (117–9,586). The remainder of the PVs (50) had a verb
with moderate frequency – these 38 PVs occurred 10,482–82,453 times. Figure
4 illustrates the distributions of standard deviation values across three frequency
groups of the PVs, adverbs and verbs.

27http://www.eki.ee/dict/ekss/index.cgi?Q=ette+heitma (accessed 10.11.2018).
28http://www.eki.ee/dict/ekss/index.cgi?Q=ümber+riietama (accessed 10.11.2018).
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Figure 4: Distribution of standard deviation values for compositionality across
the frequency bands of PVs adverb and verbs.

The medians of the standard deviations of all frequency groups of PVs were
similar. The figures were insignificantly lower for PVs with high frequency than
for those with low frequency. As both groups included PVs that had relatively
high standard deviations, the data do not confirm that the highly frequent PVs
created more disagreement among annotators than did infrequent PVs. The com-
positionality of frequent PVs was not more complicated to evaluate than was the
compositionality of infrequent PVs.

The frequencies of the components of the PVs can also have an impact on
the compositionality. Figure 4 illustrates that the standard deviation values of
the PVs with infrequent particles were lower than they were for the PVs with
frequent particles. Thus, it is evident that the annotators disagreed more when
evaluating the PVs with particles with high and medium frequency than they
did when evaluating the PVs with infrequent particles. However, it is important
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to note that there were only five infrequent particles in the dataset, and that
the association between the particle frequency and the compositionality requires
further exploration.

The distribution of standard deviation values across the frequency bands of
verbs suggested that the disagreement among annotators was slightly lower when
evaluating PVs with frequent verbs than it was when evaluating PVs with infre-
quent verbs. Some PVs with infrequent verbs gave rise to the disagreement, but
some did not. In general, it seems that the frequency of the verb did not affect the
degree of disagreement among annotators.

To conclude, the observational study suggested that the frequency did not have
any significant impact on how similar the annotators’ judgements were. The only
finding that might suggest some association was that there was less disagreement
in the evaluation of PVs with infrequent particles. The effect of frequency on the
compositionality ratings is studied in the next section.

4.2.5 Analysis of the compositionality ratings
Thefinal dataset consisted of 157PVs. The following informationwas provided for
eachPV in the dataset – the adverb of the PV, the verb of the PV, the frequency of the
adverb, verb and PV, the number of human ratings, the average compositionality
rating and the standard deviation of the ratings. The content of the dataset is
analysed in this section.

The 157 PVs in the dataset consisted of 30 different adverbs and 119 different
verbs. Figure 5 shows the distribution of the average compositionality ratings
across adverbs. The adverbs are ranked based on their frequency.
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Figure 5: Distribution of the average compositionality ratings across adverbs.

The particle välja ‘out’ formed 34 PVs, which wasmore than any other adverb.
Most of the PVs with this adverb were evaluated as being more compositional
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than non-compositional, but there was one PV (välja nägema) ‘to appear to your
eyes/see outside’ that was evaluated as having a compositionality degree of less
than 2.0. The adverb kokku ‘together’ appeared in 13 PVs, and most of them
had a compositionality degree of more than 4.0 – therefore, they are highly
compositional. The PV kokku leppima ‘to agree’ was least compositional PV
among the PVs with the particle kokku. The adverbs peale ‘on’ and taga ‘behind’,
which belonged to three and two PVs, respectively, appeared to be the only PVs
that had an average compositionality rating of less than 3.0 – thus, they are more
non-compositional than compositional. Ten particles, such as ligi ‘near’, juurde
‘by’, vahele ‘between’ and so on, were part of only one PV. These adverbs were
generally less frequent than were the adverbs that formed more than one PV.

The PVs in the dataset consisted of 118 different verbs. The verb käima ‘to
go’ was the most frequent, and appeared in five different PVs. The verb vaatama
‘to watch’ occurred in four different PVs. The verbs andma ‘to give’, jääma ‘to
stay/remain’, minema ‘to go’, pääsema ‘to escape’ and tõmbama ‘to pull’ were
components of three different PVs. The other 112 verbs appeared in 1–2 PVs.
The least compositional PV with the verb käimawasmaha käima ‘to go down/run
down/go/degenerate’ (with an average rating of 2.5), and the most compositional
was kinni käima ‘to close/be able to be closed’ (with an average rating of 3.8). The
least compositional PV with the verb vaatama ‘to watch’ was the PV ette vaatama
‘to foresee/look ahead’ (with a rating of 2.7) and the most compositional was the
PV sisse vaatama ‘to look inside/visit something for a moment’ (with a rating of
4.4).

Table 1 presents the most compositional PVs (that is, PVs with an average
compositionality rating of ≥ 4.5) according to the compositionality ratings as-
signed by human annotators. The co-occurrence frequency of adverbs and verbs
in the same clause, the numbers of the senses in the EED and the standard devi-
ations (σ) are also provided. The most compositional PV was eemale tõukama
‘to push away/scare off/repel’ with an average rating of 4.7. The value of the
standard deviation shows that the level of agreement among the annotators was re-
latively high. Of these 10 PVs, only two were among the PVs with high frequency
(>1,000). The numbers of EED senses indicate that the most compositional PVs
are not highly ambiguous. In addition, the standard deviation values suggested that
the annotators agreed about the compositionality of these PVs. Therefore, several
observations can bemade: 1) Themost frequent PVs are not highly compositional,
2) highly compositional PVs are not highly polysemous, and 3) polysemous PVs
have one prominent meaning, or several meanings have similar compositionality.

Muru (2018) studied the effect of frequency on the compositionality of Es-
tonian PVs in her bachelor’s thesis and concluded, based on the six most com-
positional PVs in this dataset, that most compositional PVs were relatively mono-
semous and that annotators agreed about their degree of compositionality. How-
ever, the most compositional PVs, eemale tõukama29 and ette jõudma30, have two
meanings in the EED (‘to push away’ and ‘to repel’), and both were provided in
the example sentences. It can therefore be assumed that these meanings are all
compositional, or that the compositional ones are prominent.

29http://www.eki.ee/dict/ekss/index.cgi?Q=eemale+tõukama (accessed 10.11.2018).
30http://www.eki.ee/dict/ekss/index.cgi?Q=ette+jõudma (accessed 10.11.2018).
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Table 1: Themost compositional PVs according to human judgement, HJ – human
judgement, σ – standard deviation among the scores assigned by the annotators.

HJ PV in English frequency EED
senses σ

4.7 eemale ‘away’
tõukama ‘to push’ to push away 221 2 0.78

4.6 ette ‘ahead’
jõudma ‘to reach’ to get ahead 1,671 2 0.50

4.6 tagasi ‘back’
minema ‘to go’ to go back 5,023 3 0.79

4.5 järele ‘after’
kihutama ‘to race’ to chase 57 2 0.52

4.5 järele ‘after’
vahtima ‘to stare’

to stare after
somebody 23 1 0.82

4.5 kinni ‘up’
traageldama ‘to tack’ to baste up 10 1 1.17

4.5 sisse ‘in’
kutsuma ‘to invite’ to invite in 186 1 1.13

4.5 välja ‘out’
rändama ‘to migrate’ to emigrate 215 1 0.53

Table 2 shows the least compositional PVs (that is, PVs with an average com-
positionality rating of ≤ 2.4) according to the compositionality ratings assigned
by the human annotators. The frequency indicates the co-occurrence of a verb
and an adverb in the same clause. The numbers of the senses in the EED and
the values of the standard deviations (σ) are also shown. Similarly to the most
compositional PVs, there were two PVs with very high frequency amongst the
least compositional PVs – välja nägema ‘to appear to your eyes/see outside’ and
läbi viima ‘to conduct/pass through’. Hence, very frequent PVs occurred amongst
compositional and non-compositional PVs. In addition, the average composition-
ality scores indicated that the non-compositional meanings of ambiguous PVs
such as välja nägema, taga kihutama ‘to encourage/chase’, vahele kukkuma ‘to
get caught’ and so forth were predominant.

The least compositional PVs – vastu põrutama ‘to snap back at somebody/shoot
back’ and välja nägema ‘to appear to your eyes/see outside’ – both have twomean-
ings, but the example sentences expressed only one (non-compositional) meaning
for each PV. Therefore, the annotators assigned the following meanings: ‘to snap
back at somebody’ (vastu põrutama) and ‘to appear to your eyes’ (välja nägema).
Nevertheless, this was not the case for all non-compositional PVs.

Muru (2018) concluded that the correlation between frequency and compos-
itionality was low and statistically not significant. As she used the same dataset
for the statistical analysis, a further statistical analysis of the effect of frequency
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Table 2: The least compositional PVs according to human judgement, HJ – human
judgement, σ – standard deviation among the scores assigned by the annotators.

HJ PV in English frequency EED
senses σ

1.9 vastu ‘back’
põrutama ‘to knock’

to snap back at
somebody 107 2 1.00

1.9 välja ‘out’
nägema ‘to see’

to appear, to
see outside 11,986 2 0.74

2.0 üles ‘up’
kloppima ‘to fluff’ to fluff up 50 3 0.74

2.2 taga ‘back’
kihutama ‘to race’ to encourage 23 2 1.08

2.2 vahele ‘between’
kukkuma ‘to fall’ to get caught 16 1 1.17

2.3 maha ‘down’
käima ‘to go’ to degenerate 339 3 0.90

2.4 läbi ‘through’
viima ‘to carry’

to conduct, to
pass through 14,144 2 1.28

2.4 vastu ‘against’
raiuma ‘to chop’

to raise
objections 55 1 1.50

is not provided in the following overview. However, some additional insights into
the association between frequency and compositionality are presented.

Figure 6 shows the distribution of the averaged rating scores across the fre-
quency bands of PVs, adverbs and verbs. The frequency groups of PVs, adverbs
and verbs were the same as reported in Section 4.2.4. The frequent PVs were
slightly less compositional than were the infrequent ones, but the difference is not
substantial. The compositionality scores for infrequent PVs were more evenly
distributed on the scale from 1–5. PVs with medium frequency tended to be more
non-compositional than were other PVs, but there were PVs with high and low
degrees of compositionality that had a moderate frequency. Overall, there was no
clear difference in the degree of compositionality between frequent and infrequent
PVs, and the PV frequency did not seem to correlate with the compositionality
ratings.

PVs with frequent adverbs had a higher compositionality rating than did PVs
with infrequent adverbs. The range of the average compositionality score was
wider for the PVs with infrequent adverbs than it was for PVs with frequent ones.
Except for the PV välja nägema ‘to appear to your eyes/see outside’ the least
compositional PVs contained adverbs with medium frequency. While most of
the PVs with frequent particles had a compositionality degree greater than 3.5
and most of the PVs with infrequent adverbs had a compositionality degree less
than 3.5, the frequency of the adverb did not seem to correlate with the degree of
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Figure 6: Distribution of averaged compositionality scores across frequency bands
of PVs, adverbs and verbs.

compositionality of the PVs.
The PVswith infrequent verbs were rated as being slightlymore compositional

than were the PVs with frequent verbs. Nevertheless, there were highly non-
compositional and highly compositional PVs among the PVs with frequent and
infrequent verbs. The PVswith verbs ofmedium frequency tended to havemedium
compositionality. Depending on the frequency of the verb, the compositionality
degrees varied slightly, but it cannot be claimed that the frequency of the verb had
a considerable impact on the compositionality ratings of the PVs.

In summary, the dataset of compositionality ratings for the PVs contained 157
PVs with different frequencies. As demonstrated by Muru (2018) and evidenced
here, the frequencies of the PV and its components did not have a substantial
impact on the compositionality ratings.
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4.2.6 Particle verbs that are difficult to evaluate
The PVs that received at least one ‘I don’t know’ annotation are discussed in
this section. Of 211 PVs, 40 received this rating once, 11 PVs twice, and three
PVs three times. These PVs were not included in the final dataset because
the assessment of their compositionality posed a challenge for the annotators.
Some possible reasons that the evaluation of these PVs was complicated for the
annotators are described here.

As the annotators were not asked to evaluate a particular meaning of the PVs,
polysemous PVs were definitely problematic to evaluate because the target mean-
ing was not unequivocal. For example, three annotators found the PVmaha ajama
‘to drive/push/shave off/remove’ difficult to evaluate. In the EED, it31 has four
meanings, of which the example sentences expressed three. It is likely that the
annotators could not select one meaning to evaluate. Furthermore, the PV üles
võtma ‘to take something up/start something (song, conversation)/record’ hasmul-
tiple meanings that were represented in the example sentences, and two annotators
found it impossible to evaluate the compositionality of this PV. In addition to these
two PVs, the compositionality of PVs such as kõrvale tõrjuma ‘to displace/push
aside’, sisse virutama ‘to push inside/break something by throwing something else
at it’, vahele pistma ‘to interlard a conversation with/stick between something’, üle
pingutama ‘to strain/overdo’ and üles keerama ‘to wind up/provoke’ was probably
difficult to evaluate for the same reasons.

Muru (2018) analysed the effect of frequency on PVs that were difficult to
evaluate. She concluded that the frequency of the problematic PVs did not
influence the results, although the frequent components of the PVs and their
polysemy might have posed a challenge for the annotators (Muru 2018). For
example, six PVs contained the adverb järele ‘after’, and four of them received at
least one ‘I don’t know’ rating. The adverb järele has 11 meanings according to
the EED. Thus, it can be suggested that the polysemous adverb made it difficult
to evaluate the compositionality of PVs such as järele kiitma ‘to chime in’, järele
kuulama ‘to inquire/expiscate’, järele laskma ‘to loosen’ and järele vaatama ‘to
watch someone/check or investigate’. As the adverb in the PV ringi sõitma ‘to
take a detour/drive around’ has eight meanings in the EED, the PV might have
been too complex to evaluate due to the ambiguity of the adverbial component.

The role of a particle might also complicate the evaluation process. For
example, the function of the particle ära ‘away/out/off’ is to express perfectivity.
The difference when using the PV ära võtma ‘to take away’ instead of the verb
võtma ‘to take’ alone emphasises the completion of the activity of taking. Thus,
as the meaning of the PV can be understood almost entirely from the meaning
of the verb, it might be difficult to decide how great an impact the adverb in the
formation of the meaning of the PV has. As both PVs with the particle ära were
difficult to evaluate, it can be speculated that the reason was the role of the particle.
The same factor made it difficult to evaluate the compositionality of the PVsmaha
saagima ‘to saw off’, maha salgama ‘to deny’, maha tantsima ‘to dance off’ and
üles vuntsima ‘to soup up’.

In addition, the polysemy of the verbs could lead to difficulties in the as-

31http://www.eki.ee/dict/ekss/index.cgi?Q=maha+ajama (accessed 10.11.2018).
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sessment of the compositionality of the PVs. This was particularly the case for
frequent verbs. For example, the relatively frequent verb tegema ‘to do’ has a
total of 18 meanings in the EED. All three PVs with the verb tegema were marked
as difficult to evaluate at least once. Therefore, it may be the case that the am-
biguity of a verb can cause difficulties for the annotators with the evaluation of
PVs such as ette tegema ‘to do beforehand’, sisse tegema ‘to conserve’ and ära
tegema ‘to win somebody/finish doing something’. The evaluation of PVs such as
kokku ajama ‘to herd together/gather’, kokku saama ‘to meet, läbi tulema ‘to come
through’, otsa panema ‘to add’, sisse laskma ‘to let somebody in’, sisse taguma
‘to beat in(to)’, sisse õnnistama, välja kurnama ‘to wear out/filter’, välja minema
‘to go out’, välja tulema, välja võtma ‘to take out’, üle käima ‘to go/walk over’, üle
mängima ‘to overplay/outplay’, üle võtma and ümber tõmbama ‘to put something
around somebody or something/encircle’ might also have been difficult because
of the polysemy of the verb. According to the EED, many of these PVs have more
than 10 readings, such as minema ‘to go’, saama ‘to get/receive/have’, tulema ‘to
come’ and so on.

4.2.7 Summary of the compositionality ratings
The compositionality ratings for Estonian PVs were collected in order to evaluate
the DSMs. The ratings were crowdsourced by asking annotators to evaluate the
compositionality of PVs without specifying the meaning they should evaluate.
Therefore, there is one compositionality rating per PV in the dataset, although
the meaning that it represents is not determined. However, the dataset is suitable
for evaluating DSM models because they produce one representation per word
without discriminating among meanings.

The annotators evaluated 210 PVs, although the final dataset contained 157
PVs. The remainder of the PVs were excluded because the annotators found them
difficult to evaluate. The omitted PVs were often polysemous or had ambiguous
components; thus, the annotators could not decide which meaning to evaluate.
Nonetheless, the hypothesis that frequent PVs are polysemous and thus more
difficult to evaluate was not confirmed. However, the PVswith infrequent particles
occasioned marginally less disagreement.

Based on the compositionality ratings of the Estonian PVs, no statistically
significant correlation between frequency and the compositionality of Estonian
PVs was found.

4.3 Literalness ratings for Estonian particle verbs
In this section, the creation of the dataset of the literal and non-literal usage of
Estonian PVs (Aedmaa 2018) is described. The development of such a dataset was
necessary for the evaluation of the machine learning model for the classification
of the literal versus the non-literal usages of PVs, described in Section 6. The
compositionality ratings from this dataset were also used for the evaluation of
DSMs to detect the degree of compositionality of PVs (see Section 5). The dataset
was first introduced by Aedmaa et al. (2018), but has been modified slightly for the
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current, more exhaustive, research. The differences are explained in the following
sections.

4.3.1 Purpose and choice of measurement
The aim of the machine learning model was to distinguish between literal and non-
literal PV usage. In order to train the model for the task, a labelled dataset that
included information about the (non-)literalness of Estonian PVs was required.
Therefore, a set of sentences containing PVs needed to be evaluated based on the
meaning of the PVs. Accordingly, human annotators were asked to evaluate a PV
in each sentence based on the given context (that is, the sentence). The precise
question was the following: ‘To what extent does the meaning of the PV in the
sentence agree with the meanings of its components?’ The annotators were asked
to answer to the question using a scale from 0 to 5, on which 0 indicated that
the meaning of the PV agreed fully with the meaning of its components; hence,
the meaning of the PV was compositional. A rating of 5 meant that the PV was
non-compositional; in other words, the meaning of the PV did not agree at all
with the meaning of its components. Following the assessment, it was possible to
place the PVs were possible to place the PVs along a continuum based on their
degree of (non-)literalness (or compositionality)32.

When choosing a scale for the (non-)literalness ratings, it was decided to use
a similar scale to that which was used for the collection of the compositionality
ratings. However, following Köper and Schulte im Walde (2016b), a scale with
even numbers was selected. The reason was to force the annotators to decide
whether the PV was more literal than non-literal, or vice versa. The main purpose
of this dataset was to apply it to the classification task described in Section 6, for
which binary classification was necessary. For the final dataset, all those sentences
that caused disagreement among annotators at the binary level were discarded (see
Section 4.3.3). Using an even-numbered scale provided an opportunity to detect
problematic sentences that needed special treatment.

There were two main reasons for asking the annotators to evaluate the degree
of (non-)literalness of PVs on the scale instead of asking them to group the PVs
into two strict classes. Firstly, as mentioned earlier (see Section 2.1.2), it has
become common practice not to classify MWEs based on their compositionality,
but to place them along a continuum from compositional to non-compositional
expressions. Secondly, this dataset should be comparable to the dataset of the
compositionality ratings, as both are rankings of Estonian PVs based on their

32For the sake of a transparent distinction between the two datasets, the ratings of the datasets
were differentiated as follows – the dataset detailed in Section 4.2 contained compositionality ratings
for PVs and the current dataset presents the (non-)literalness ratings for PVs. However, asmentioned
earlier (see Section 2.1.2), the terms compositionality and literalness are treated as synonyms in this
thesis; thus, the datasets express the same thing. Moreover, the annotators evaluated the same thing,
namely the extent of the meanings of the components in the meanings of the PVs. Nonetheless,
the annotators for the compositionality ratings evaluated the overall degree of compositionality of
the PVs, while the annotators for the literalness ratings evaluated the meanings of PVs in a given
context (that is, a sentence). Therefore, the latter is used to distinguish between the literal versus
the non-literal usages of PVs.

69



compositionality. While the compositionality of the PVs was evaluated similarly
for both datasets, there were differences in the data collection methods for these
two datasets. Based on the obstacles encountered while crowdsourcing the com-
positionality ratings for PVs (see Section 4.2.3, an alternative but more costly
method was used for the data collection for the (non-)literalness ratings of PVs.
More specifically, three paid annotators with linguistic backgrounds evaluated the
(non-)literalness of the sentences. The evaluation of the distributional semantic
methods (see Section 5) also included a discussion of how differences in data
collection methods can influence the results.

4.3.2 Overview of the target PVs and sentences
In order to compare the two datasets, the annotations for the same PVs represented
in the dataset of compositionality ratings for Estonian PVs (described in Section
4.2) were collected. For each PV, 20 sentences were extracted automatically
from the ERC and revised manually. All extracted sentences included a PV, and
there were at least three sentences representing each PV. The following seven
PVs appeared in less than three sentences, and were subsequently omitted from
the dataset – kinni traageldama ‘to baste up’, läbi kobama ‘to fumble through’,
läbi kompama ‘to touch through’, üles käänama ‘to roll up’, üles tursuma ‘to
swell up’, ümber reastuma ‘to change a lane’ and ümber riietama ‘to change
somebody’s clothes’. In order to still have a representative number of PVs in
the dataset, sentences with six new PVs – alt minema ‘to fail or to be deceived’,
juurde lõikama ‘to cut/add (land)’, maha võtma ‘to take down’, peale käima ‘to
be insistent/impose/enforce’, üle ajama ‘to flow over’ and üles lööma ‘to dress
up/toss (upward)’ – were added to the dataset. All these PVs can be used in literal
and non-literal senses and were thus included in the dataset as interesting cases.

The number of sentences for each PV in the dataset was not equal. The
number mainly depended mostly on how many of these 20 automatically extrac-
ted sentences included a real PV, and how many did not. Some sentences were
omitted because they were too long or confusing. Naturally, frequent PVs ten-
ded to have a higher number of sentences. Those with the highest number of
sentences represented by PVs included üles keerama ‘to wind up/provoke’ (17),
vastu hakkama ‘to resist/detest’ (16), vastu kajama ‘to sound like an echo’ and
maha ajama ‘to drive/push/shave off/remove’ (15). The PVs kokku valguma ‘to
join/melt together’, kokku kiskuma ‘to shrink’, maha tantsima ‘to dance off’, sisse
taguma ‘to beat in(to)’, sisse virutama ‘to push inside/break something by throw-
ing something else at it’, tagasi nimetama ‘to give back old name’, välja nutma
‘to cry yourself out’, üle uhtuma ‘to flush/wash’ and üles ehmatama ‘to startle’
all appeared in three sentences. Most of the PVs that were represented by a low
number of sentences were less frequent than were other PVs. For example, the
frequency of kokku valguma was 18, while the frequency of vastu hakkama was
3,271. Overall, most PVs appeared in 7–12 sentences.

In the dataset, all the sentences with the same PV followed each other; six
incorrect sentences were added in order to ensure that annotators were paying
attention. In these sentences, homonymous adpositions were presented instead of
verbal particles; thus, it was impossible to evaluate the compositionality of the
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PVs. Examples (14)–(17) illustrate some of these incorrect sentences33.

(14) Millise-d
which-pl

osa-d
part-pl

selle-st
this-ela

ei
neg

tohi-∅
can-conneg

avalikkuse-∅
public-gen

ette
front

sattu-da?
get into-inf

Lit. ‘Which parts of it cannot get in front of the public?’
‘Which parts of it cannot become public?’

(15) Jä-i-n
stay-pst-1sg

üksi
alone

parve-∅
raft-gen

külge.
to

‘I stayed attached to the raft alone.’

(16) Külm
cold

tungi-b
invade-3sg

läbi
through

luku-ga
zipper-com

viltsaabas-te
felt boot-pl.gen

ja
and

sunni-b
force-3sg

jala-lt
foot-abl

jala-le
foot-all

tammu-ma.
step-sup

‘Cold air passes through the zippered felt boots and forces one to step from foot
to foot.’

(17) Prantsuse-∅
French-gen

kriitiku-d
critic-pl

ei
neg

vaevu
trouble-conneg

Alain
Alain

Deloni-∅
Delon-gen

viimase-i-d
last-pl-prt

filme-∅
film-pl.prt

maa-∅
ground-gen

sisse
into

tagu-ma-gi.
slog-sup-cl

Lit. ‘The French critics hardly bother to slog Alain Delon’s latest films into the
ground.’
‘The French critics hardly bother to criticise Alain Delon’s latest films.’

For example, in example (15), the word külge ‘to’ is not a verbal particle, but a
postposition – together with the word parv, it forms a postpositional phrase parve
külge ‘attached to the raft’. In example (16), the word läbi forms together with
the word viltsaabas a prepositional phrase läbi viltsaabaste ‘through felt boots’,
not a PV läbi tungima ‘to penetrate/go right through’ with the verb tungima ‘to
force’. These sentences were excluded from the final dataset before the evaluation
described in the following section.

4.3.3 Results of the human annotation
All three annotators with linguistic backgrounds evaluated the same 1,838 sen-
tences on a scale of 0 to 5. The evaluation of the dataset (1,832 sentences), based
on Fleiss’ kappa (κ) score, indicated that the agreement among the annotators
was fair (κ = 0.36); while the agreement was substantial for two categories, as

33The sentences might have been shortened to improve the readability thereof.
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κ = 0.71. In case of Krippendorff’s α, corresponding values were α = 0.68 and
α = 0.71.

For the classification task (see Section 6), the sentences needed to be divided
into two groups – the sentences were categorised as literal and non-literal based
on the degrees of (non-)literalness of the PVs. In order to accomplish this, the
three scores given by the annotators were averaged – if the PV received an average
degree of (non-)literalness equal to or lower than 2.4, the sentence was labelled as
literal. The sentences with an average degree of (non-)literalness of 2.5 or more
were classified as non-literal. The sentences with considerable disagreement were
rejected – if one annotator rated a PV as literal at the binary level, while the other
two rated it as non-literal, or vice versa, the sentencewas excluded from the dataset.
After removing problematic sentences, the agreement among annotators for six
categories was moderate (κ = 0.43) and reliable (α = 0.85). Altogether, 351
sentences with 73 different PVs were omitted from the final dataset. Two groups
were formed for the following overview and analysis of the omitted sentences,
namely the PVs that were completely excluded and the PVs that were partially
excluded from the dataset.

Of the original 210 PVs, 26 were omitted completely from the dataset – all the
sentences containing these PVs led to disagreement among the annotators. There
are several explanations regarding why the annotators did not agree unanimously
in their judgements. Except for the scale of measurement, the annotators were
not restricted in any way. Therefore, their evaluations may have been based on
information obtained from other resources, such as the EED. Furthermore, the
annotators were not required to explain their ratings. The subsequent analysis
suggested possible reasons why the annotators disagreed.

The following PVs were represented with one meaning in the sentence se-
lection – edasi müüma ‘to sell on’, kokku trehvama ‘to run across’ maha müüma
‘to sell off’, maha saagima ‘to saw off’, maha salgama ‘to deny’, maha tapma
‘to kill’, maha tantsima ‘to dance off’, tagasi nimetama ‘to give back old name’,
välja loosima ‘to raffle off’, välja nutma ‘to cry yourself out’, välja pakkima ‘to
unbox’, välja tahuma ‘to hew out’, üle küsima ‘to ask again’, üles harima ‘till
the soil’, üles joonistama ‘to draw’, üles vuntsima ‘to soup up’, ümber ristima ‘to
rename’ and ümber kohendama ‘to readjust’. As the annotators tended to evaluate
the same meaning via the same ratings, all the sentences with these PVs caused
disagreement among the annotators, and were thus excluded from the final dataset.

The verbs in most of these PVs have only one (prototypical) meaning. It is
thus likely that the reason for disagreement was the polysemy of particles. For
example, the PVswith the particlemaha ‘off/down’might have generated variance
when one annotator based the evaluation on the directional meaning (‘down’) of
the particle, while others assessed the meaning as expressing perfectivity.

Although the PV välja mõõtma ‘to measure out’ has one meaning in the EED,
one annotator did not evaluate all of the sentences with this PV in the same way.
Examples (18) (literalness score 2.67) and (19) (literalness score 3.00) illustrate
how they differentiated between the measurement of land (which was the most
common object to be measured in the dataset) and the measurement of other
things, such as energy.
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(18) Pendli-ga
pendulum-com

on
be.3sg

ta
s/he

mõõt-nud
measure-pst.ptcp

näiteks
for example

Tartu-s
Tartu-ine

välja
out

kõige
most

positiivse-ma-∅
positive-comp-gen

energia-ga
energy-com

koha-∅.
place-gen

‘With a pendulum, she/he has measured out, for example, the place with the most
positive energy in Tartu.’

(19) Krunti-∅
Plot-prt

ei
neg

ole-∅
be-conneg

veel
yet

välja
out

mõõde-tud,
measure-pst.ptcp

kuid
but

kõik
all

õiguse-d
right-pl

maa-le
land-all

on
be-3sg

ole-mas.
be-prs.sup

‘The land has not been measured out yet, but all rights to the land are available.’

The PVs that were represented as having multiple meanings were ringi sõitma
‘to take a detour/drive around’, välja tõrjuma ‘to crowd off/displace/supersede’, üle
pesema ‘to wash (again/over)’ and üles kündma ‘to plough up’. It is possible that
the annotators compared the meanings of the same PV and made their decisions
based on analogy. Furthermore, depending on how the annotators understood
their task, one may have assessed the components as having the same meaning
regardless of the meaning of the PV as a whole. Moreover, other annotators
changed the meaning of the components based on the meaning of the PV. This may
have been because the components are polysemous, and the particular meanings
that were to be assessed were not specified. For example, ringi sõitma has two
meanings – the first is to express taking a detour, and the other is to express driving
around. Both the particle and the verb have at least two different meanings, and
it cannot be expected that all the annotators evaluated the same meanings. The
disagreement might also have been caused by polysemous verbs such as koguma
‘to gather’ and kiiluma. For example, täis kiiluma expresses a situation in which
something is crowded. One possible meaning of kiiluma is ‘to become stuck’.
When an annotator had this meaning in mind, they probably assessed the PV
differently from the others.

In addition, the subjective understanding of literalness plays a role in dis-
agreement. Some PVs are very easy to evaluate subjectively at a binary level.
For example, all of the sentences containing the PV otsa sõitma ‘to run down’
expressed hitting something or somebody by driving. Although two of the an-
notators determined that the PV was literal, one decided that this PV was more
non-literal than literal. In order to understand the reasons for such decisions, a
more exhaustive study needs to be conducted.

Forty-seven PVs appeared at least in one sentence which led to disagreement,
and in at least one sentence, which did not cause disagreement among the an-
notators. It could be argued that the reasons for the differences were the same
as discussed above, but there are some additional sources of disagreement that
affect these types of PVs. One reason for the conflict amongst the annotators was
the lack of sufficient context. For example, the sentence in example (20) does
not provide sufficient context to determine clearly whether the meaning of the PV
edasi jõudma expresses spatial movement or progress in something. Therefore,
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each annotator added his or her own context and carried out the estimation based
on that. Furthermore, the disagreement might indicate that this PV did not have
one dominant meaning for all of the annotators.

(20) Niimoodi
like that

edasi
forward

ei
neg

jõu-a
reach-conneg

Lit. ‘Cannot reach forward like this.’
‘Cannot get ahead like this.’
‘Cannot succeed like this.’

Another reason for the difference might be an unusual usage of the PV. For
example, while some sentences containing the PV läbi sadama expressed its main
meaning of ‘to leak when raining’, the usage of this PV in the sentence in example
(21) is unexpected and fuzzy. Based on the context, it is not clear whether the
verb sadama expresses the meanings of ‘falling’ or of ‘unexpected appearance’34.
Thus, which meaning was required to be evaluated was not absolutely clear. This
resulted in an outcome in which the annotators understood the context differently
and did not agree about the literalness of this PV.

(21) Pundi-ga
group-com

või-b
might-3sg

läbi
through

sada-da,
fall/rain-inf

hoiata-si-d
warn-pst-3pl

korraldaja-d.
organiser-pl

Lit. ‘The organisers warned with a group might fall/rain.’
‘The organisers warned that it may fall when there is a group on it.’
‘The organisers warned that she/he might drop by with a group.’

When a PV has one (or more) clearly non-literal or literal meaning(s), it might
be difficult to evaluate other meanings of the same PV. The PV üles lööma was
presented as having different meanings in the initial selection of the sentences.
While the highly non-literal meaning ‘to dress up’ (as in example (22)) and the
extremely literal meaning ‘to toss (upward)’ (as in example (23)) did not spark
any differences, the third meaning was difficult to assess at a binary level. As the
meaning of the PV in the sentence in example (24) is neither fully literal nor fully
non-literal, the annotators evaluated it as being more literal than the sentence in
example (22), and less literal than the sentence in example (23). However, they
did not agree whether the usage was literal or non-literal at the binary level.

(22) Et
that

naine
woman

en-d
own-prt

moodsalt
fashionably

üles
up

lüü-a
beat-inf

saa-ks.
can-cond

Lit. ‘That woman can beat up fashionably.’
‘That woman can dress up fashionably.’

(23) Mõnikord
sometimes

löö-vad
beat-3pl

oma-∅
own-gen

jalg-u
foot-pl.prt

kõrgele
high

üles.
up

‘Sometimes they kick their legs up high.’

34The annotators suggested these meanings.
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(24) Tänavanurka
street corner

lüü-a-kse
beat-imps-prs

silt
sign

üles.
up

‘The sign is put up on the corner of the street.’

The same also occurred for PVswith fewermeanings. For example, ära tegema
has one clearly non-literal meaning – ‘to win (or be better than) somebody’ (as in
example (25)). Adjacent to the sentence in which ära tegema was used with this
meaning were sentences in which the meaning of the PV was more literal; that is,
‘(to finish) doing something’ (as in example (26)). While the non-literal meaning
was unanimously evaluated as being extremely non-literal, the annotators did not
agree regarding the extent of the literalness of the literal meaning of the PV.

(25) Teh-ke
do-imp.2pl

sakslas-te-le
German-pl-all

ära,
off

Inglismaa-ga
England-com

saa-me
can-1pl

ise
ourselves

hakkama.
cope with-sup

Lit. ‘You do off the Germans, we can cope with England ourselves.’
‘You beat the Germans, we will handle England ourselves.’

(26) Inimene
human

saa-b
can-3sg

midagi
something

ära
off

teh-a
do-inf

oma-∅
own-gen

vererõhu-∅
blood pressure-gen

heaks.
for

‘A person can do something about his blood pressure.’

Another reason that the PV ära tegema in example (26) might have caused
disagreement is the indistinct role of the particle. For example, the particles ära
‘away/out/off’ and maha ‘off’ are the main particles used to express perfectivity.
Eleven of the 16 PVs containing the particle maha led to conflict amongst the
annotators. The reason might have been that the meaning of the particle is
complex to determine because its role as a part of the component of the PV is
difficult to evaluate. Moreover, the annotators might have been assessing different
meanings of the adverb.

Even though the sentences with the same PV expressed the same meaning,
and the annotators agreed on whether the usage of the PVwas literal or non-literal,
there were some sentences with the same PV upon which the annotators did not
agree. For example, the PV kinni minema has two main meanings – ‘to close’ (as
in example (27)) and ‘to go to prison’ (as in example (28)). All the annotators
determined that the sentences with the first meaning were literal and the sentences
with the second meaning were non-literal. However, one sentence (see example
(29)) caused disagreement because one annotator evaluated it differently from the
others.

(27) Ukse-d
door-pl

lä-k-sid
go-pst-3pl

kinni.
closed

Lit. ‘The doors went closed.’
‘The doors closed.’
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(28) Kaido
Kaido

läk-s
go-pst.3sg

kinni
closed

seitsme-ks
seven-trl

aasta-ks,
year-trl

Markel
Markel

viie-ks.
five-trl

Lit. ‘Kaido went closed for seven years, Markel for five.’
‘Kaido went to jail for seven years, Markel for five.’

(29) Samuti
also

läk-s
go-pst.3sg

esmaspäeva-st
Monday-ela

kinni
closed

osa
part

Tartu-∅
Tartu-gen

maantee-st.
highway-ela

Lit. ‘Part of the Tartu highway went closed also on Monday.’
‘Part of the Tartu highway closed also on Monday.’

The reason for this might have been the unusual subject (osa Tartu maanteest
‘part of the Tartu highway’) – in general, roads are closed by somebody, and do
not close themselves. This might have influenced the annotator’s decision, thus
causing the annotators to disagree amongst themselves.

In some cases, the annotator adhered strictly to the EED and the meanings
presented in it. For example, the EED presents one meaning for the PV vastu
küsima35 – ‘to answer the question with a question’. There are sentences in which
the PV has been used with this meaning (as in example (30)), but there are also
sentences in which the meaning of this PV is ‘to ask something in return’ (as in
example (31)). One annotator evaluated all the sentences in the same way, but two
annotators differentiated between these two meanings. Therefore, the annotators
did not agree about the sentences in which the meaning of the PV was ‘to answer
the question with a question’.

(30) Kui
when

Joala-lt
Joala-abl

küsi-da,
ask-inf

küsi-b
ask-3sg

endine
former

laulja
singer

vastu.
back

‘When Joala is asked, the former singer asks back.’

(31) NRG
NRG

küsi-b
ask-3sg

vastu
in return

pool
half

loodava-∅
to be created-gen

ühisfirma-∅
joint venture-gen

aktsia-te-st.
stock-pl-ela
‘In return, NRG asks for half of the stocks of the created joint venture.’

Three sentences in which the PV üle kaalumawas used to express the meaning
‘to outweigh’ (as in example (32)) received special attention from the annotators.
In fact, two annotators suggested that üle kaaluma was a typographic error. They
noted that, instead of the particle üle, the particle üles should have been used
because the PV üle kaaluma does not have the meaning ‘to outweigh’ that the PV
üles kaaluma has. They annotated these sentences as if the particle had been üles
‘up’. The third annotator determined that the PV was fully non-literal. While
two annotators did not assess the meaning of the adverb üle ‘over’, these three
sentences were excluded from the final dataset.

35http://www.eki.ee/dict/ekss/index.cgi?Q=vastu+küsima (accessed 10.11.2018).
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(32) Kasu
benefit

kaalu-b
weigh-3sg

üle
over

selle-∅
this-gen

kahju-∅,
harm-gen

mis
what

looma-d
animal-pl

loomaaia-st
zoo-ela

saa-vad.
get-3pl

Lit. ‘The benefit weighs over the harm that the animals get from the zoo.’
‘The benefit outweighs the harm that the animals experience as a result of living
in the zoo.’

In addition to the PVs mentioned in the previous discussion, at least one
sentence with each of the following PVs led to disagreement amongst the an-
notators – eemale tõukama ‘to push away/scare off/repel’, ette jõudma ‘to get
ahead/outstrip/outdistance’, ette tegema ‘to do beforehand’, järele kihutama ‘to
chase’, järele vahtima ‘to stare after somebody’, kaasa tõmbama ‘to persuade
to join/pull along’, kokku monteerima ‘to assemble/edit video’, kokku sättima
‘to set/put together’, lahti pääsema ‘to break loose/get free’, ligi pääsema ‘to
access something/get close to somebody/be comparable’, läbi lendama ‘to fly
through/fail’, läbi põletama ‘to fuse something/to burn something out’, läbi tulema
‘to come through’, läbi valgustama ‘to x-ray/dissert’, maha jahtuma ‘to cool
down’, maha kustutama ‘to erase/wipe out’, maha kõmmutama ‘to shoot dead’,
maha minema ‘to get off’, maha rahunema ‘to calm down’, maha võtma ‘to take
down’, mööda käima ‘to bypass’, otsa panema ‘to add’, peale hakkama ‘to start
out/in’, sisse torkama ‘to stick in’, tagasi vaatama ‘to look back’, vastu rääkima
‘to talk back/dispute’, vastu vahtima ‘to stare back at somebody’, vastu võtma ‘to
accept/welcome/admit’, välja ilmuma ‘to debouch/emerge/appear unexpectedly’,
välja kostma ‘to be heard’, välja minema ‘to go out’, välja puhastama ‘to clean
out/restore’, välja saagima ‘to saw out’, välja venima ‘to stretch out’, välja võtma
‘to take out’, ära võtma ‘to take away’, üles keerama ‘to wind up/provoke’, üle
lugema ‘to read over/recount’, üle pakkuma ‘to exaggerate’, üles lööma ‘to dress
up/toss (upward)’ and ümber tõmbama ‘to put something around somebody or
something/encircle’. Although the annotators were provided with a description of
the task, it is not possible to provide the exact reasons and explanations concerning
which meaning they evaluated, or why they assessed the PVs as they did.

The initial selection of the target PVs for the literalness rating dataset was
very similar to the target PVs for the compositionality dataset (see Section 4.2.1).
Therefore, the PVs that caused disagreement amongst the annotators of this dataset
were compared to the PVs the annotators of the compositionality dataset referred to
as being difficult to evaluate (see Section 4.2.6). The comparison revealed that 19
PVs were omitted from the compositionality dataset because they were difficult to
evaluate, and appeared in at least one sentence that caused disagreement amongst
the annotators of literalness. The PVswith themost problematic compositionality,
and which were thus omitted from both datasets, were kokku trehvama ‘to run
across’, maha saagima ‘to saw off’, maha salgama ‘to deny’, maha tantsima ‘to
dance off’, ringi sõitma ‘to take a detour/drive around’, tagasi nimetama ‘to give
back old name’ and välja nutma ‘to cry yourself out’. The reasons that these PVs
were difficult to evaluate were discussed previously – the role of the particle was
not clear, or the ambiguous components caused disagreement (see Section 4.2.6).

Overall, the final dataset contained 1,481 sentences – 1,096 sentences were
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labelled as non-literal and 385 as literal. This information and averaged literalness
scores given by annotators were added to the dataset for each sentence. Compared
to the first version of the dataset introduced by Aedmaa et al. (2018), which
included 1,490 sentences, the current version of the dataset excluded six incorrect
sentences and three sentences containing the PV üle kaaluma ‘to weigh again’.
The reasons for the exclusions are discussed above.

4.3.4 Analysis of (non-)literalness ratings
There were (non-)literalness ratings for 184 Estonian PVs in the dataset. These
PVs consisted of 120 verbs and 32 particles. In this section, the average
(non-)literalness ratings of PVs, adverbs and verbs in the dataset are analysed.
In addition, the association between frequency and (non-)literalness ratings is
examined.

The 32 particles in the PVs in the dataset had different frequencies; hence,
the number of PVs they formed was not equal. this means that some particles
were part of more than 10 PVs, and some particles only occurred in one PV. For
example, välja ‘out’ was the most frequent particle in the dataset and the most
frequent adverb in the corpus. It was also a constituent of the greatest number of
different PVs (28). While PVs containing the particle välja form the biggest group
of PVs represented in the EED (226 PVs), it can be suggested that the particle
välja forms the highest number of PVs in Estonian; this was reflected in the
dataset. Other particles that, according to the EED, are components of many PVs,
were also present in the dataset, including ära ‘away/out/off’, maha ‘down/off’,
läbi ‘through’, sisse ‘in’, kokku ‘together’ and üles ‘up’. While the particle ära
is the second most productive particle after the particle välja, it only appeared
in four sentences formed with two different PVs in the dataset. The reason for
the poor representation of PVs containing the particle ära is that most of them
were excluded from the initial selection of PVs (see Section 4.2.1). Moreover, the
annotators found the literalness of these PVs challenging to assess (see Section
4.3.3).

In general, the number including the sentences of a particle was in compliance
with the number of different PVs to which the particle belonged to. However,
there were some exceptions. For example, 13 PVs containing the particle üle
‘over’ appeared in more sentences than did the 14 PVs containing the particle
läbi. Furthermore, six PVs containing the particle tagasi ‘back’ were represented
in more sentences than were the nine PVs containing the particle sisse ‘in’. These
kinds of differences occurred for two main reasons. Firstly, some automatically
extracted sentences (20 for each PV) did not contain an actual PV, and were
omitted from the annotation. Secondly, the annotators did not agree about some
of the sentences containing some of the PVs; these were also omitted from the
final dataset (see Section 4.3.3).

The number of sentences that included particles did not correlate to the
particles’ frequencies in the corpus. As the selection of the PVs had already been
based on the frequency of various individual components (see Section 4.3.2), the
frequencies of the components were not a factor when selecting PVs for the data-
set. Moreover, as the components of a PV can occur independently in a sentence,

78



the high frequency of a particle does not necessarily imply that it is a frequent
component of a frequent PV. For example, ära ‘away/out/off’ is a frequent adverb
in the corpus and, according to the EED, it is also a component in many PVs.
Nevertheless, the annotators evaluated 20 sentences containing two PVs with the
particle ära, and only four of these sentences did not cause disagreement among
the annotators. Therefore, the number of sentences that includes the particle does
not reflect the frequency of the particle in the corpus.

The particle ligi ‘near’ was the least frequent in the dataset, while ühte ‘to-
gether’ occurred less often in the corpus than did any other adverb in the dataset.
The annotators evaluated 11 sentences containing one PV that included the particle
ligi. As eight sentences caused the annotators to disagree, the particle ligi was
represented in three sentences. The particle ühte was also represented via one PV
(ühte hoidma ‘to stick together’), but all seven sentences expressed one meaning
that was assessed similarly by all the annotators.

Particles that appear as components of the PVs are present in the EED, but
these were not in the dataset; example include ilma ‘without’, järel ‘after’, kaasas
‘with/along’, kallale ‘on/upon/at’, koos ‘together’, kõrvalt ‘from aside’, kätte ‘into
hands’, lahku ‘apart’, laiali ‘around’, minema ‘to go’, peal ‘on’, pealt ‘from’,
pihta ‘at’, pärale ‘across’, püsti ‘up(right)’, ringi ‘round’, taha ‘behind’, takka
‘behind’, tasa ‘even’, tulema ‘to come’, täis ‘full’, vahelt ‘between’, valla ‘open’,
valmis ‘ready’, ühes ‘with’, ülal ‘above’ and üleval ‘above’. While some other
particles were not included in the collection at all, ringi and täiswere evaluated as
components of the PVs ringi sõitma ‘to take a detour/drive around’ and täis kiiluma
‘to become stuck’, respectively. However, this led to disagreement amongst the
annotators, and the particles were consequently omitted from the final dataset (see
Section 4.3.3).

As the PVs in the dataset contained particles with various frequencies, it
can be assumed that the PVs containing frequent particles had more meanings
represented in the dataset than did those containing infrequent particles. The
distribution of the average (non-)literalness ratings across the particles in the
literalness dataset is illustrated in Figure 7. The order of particles reflects the
number of PVs containing the particles. Accordingly, the particle välja ‘out’ is
a component of more PVs than is the particle ühte ‘together’. Most sentences
containing these particles were evaluated as being more non-literal than literal, as
the medians for these particles tended to be greater than 3. Although sisse ‘in’
and lahti ‘open’ received ratings from 0–5, at least half of the scores for these
particles signified more literal than non-literal meanings. It can thus be suggested
that these two particles tended to be components of the PVs expressing a literal
meaning.

The most frequent particle, välja ‘out’, appeared in 28 different PVs, and these
PVs were evaluated as being fully literal (compositional), fully non-literal (non-
compositional) and as having scores between these two extremes. Most of the
meanings of the particle ette ‘in advance/ahead/forward’ are non-literal. However,
as there were some outliers, the scores were different from themajority of the given
evaluations in some cases. In the current study, these scores indicated highly literal
meanings for ette andma ‘to put something in front of somebody/feed/specify’,
ette vaatama ‘to foresee/look ahead’ and ette sattuma expressing ‘to run across or
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Figure 7: Average (non-)literalness scores across particles.
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meet somebody or something on the way’. At the binary level, most of the PVs
appeared at least once in a literal sentence and once in a non-literal sentence.

Even though 11 particles only appeared once in one PV, most of the PVs had
multiple meanings. Only the particles ühte ‘together’, ligi ‘near’ and alt ‘from
under’ formed part of PVs that had only one meaning in the dataset. While
ühte hoidma36 ‘to stick together’ and alt minema37 ‘to fail or to be deceived’
also have one meaning according to the EED, the PV ligi pääsema38 has three –
‘to access something’, ‘to get close to somebody’ and ‘to be comparable’. The
second meaning of this PV was represented in the dataset. The first meaning was
evaluated, but it created disagreement amongst the annotators and was therefore
excluded from the dataset. The third meaning was not included in the initial
selection of sentences. It can thus be assumed that two meanings of the PV ligi
pääsema are more frequent than is the third one.

The particle eemale appeared in one PV – eemale tõukama – which has two
different meanings. The first meaning ‘to push away’ (see example (33)) was rated
as being fully literal, while the other meaning ‘to scare off’ (see example (34)) was
given an average score of 3. Therefore, the second meaning is less literal than is
the first meaning, but neither of them is fully non-literal. This example is a good
illustration of how the same PVs can have several meanings with various degrees
of compositionality.

(33) Jüri
Jüri

püüd-is
try-pst.3sg

tundmatu-t
stranger-prt

eemale
away

tõuga-ta,
push-inf

kuid
but

too
that

lõ-i
hit-pst.3sg

ta-lle
s/he-all

noa-∅
knife-gen

südame-∅
heart-gen

piirkonda-∅.
area-ill

‘Jüri tried to push the stranger away, but he stabbed him around the heart area.’

(34) Kooli-s
school-ine

olevad
being

pitsliniku-d
lace doily-pl

ja
and

toataime-d
houseplant-pl

tõuka-vat
push-quot

poisi-d
boy-pl

eemale.
away
Lit. ‘The lace doilies and houseplants in the school seem to push boys away.’
‘The lace doilies and houseplants in the school seem to repel boys.’

In summary, the frequency of the particles varied from frequent to relatively
infrequent, and frequent particles were included in more PVs than did infrequent
ones. Despite the fact that most of the sentences in the dataset were evaluated as
being more non-literal than literal, the average (non-)literalness scores across the
particles suggest that it is likely that most of the particles can be components of
PVs with various degrees of (non-)literalness, regardless of the frequency of the
particle. At the binary level, most particles occurred at least once in a PV that was
evaluated as being literal.

36http://www.eki.ee/dict/ekss/index.cgi?Q=ühte+hoidma (accessed 10.11.2018).
37http://www.eki.ee/dict/ekss/index.cgi?Q=alt+minema (accessed 10.11.2018).
38http://www.eki.ee/dict/ekss/index.cgi?Q=ligi+pääsema (accessed 10.11.2018).
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The group of verbs included in 184 PVs in the dataset was more diverse than
was the set of adverbs – 120 different verbs were represented. Therefore, most of
the verbs only appeared in one PV. However, this does not imply that the average
compositionality scores for these verbs were similar. The average (non-)literalness
scores for the verbs forming the PVs in the dataset are explored in the following
section.

The frequency of the verbs varied – the most frequent verb was saama ‘to
get/receive/have’ with a frequency of 1,150,781 and the most infrequent one was
kõlksuma ‘to clatter’, which only occurred 64 times. Other infrequent verbs, such
as sülgama ‘to spit’, voltima ‘to fold’, kõmmutama ‘to bang’, tükkima ‘to intrude’,
trumpama ‘to trump/ruff’, kajama ‘to echo’, tuhnima ‘to dig/grub/rout’, kloppima
‘to fluff’, soojenema ‘to warm up’, uhtuma ‘to flush/wash’, kuhjama ‘to heap up’
and kehastuma ‘to be incarnated’, appeared 100–1,000 times. The number of
the sentences is not associated with the frequency – there were many verbs with
different frequencies that formed part of one PV. For example, both saama and
kõmmutama were part of only one PV.

The number of sentences was not based on the frequency of the verbs, but
does correlate with it to some extent. For example, the frequency of the verbs
that appeared in seven or fewer sentences was less than 81,000. However, there
were some verbs that had a relatively low frequency (less than 10,000), but which
appeared in more than 10 sentences, such as tõukama ‘to push’, pistma ‘to stick’,
kajama ‘to echo’ and peksma ‘to beat’. Of the 17 verbs that appeared in 20 or
more sentences, 11 had a frequency greater than 100,000. The exceptions were
the verbs ajama ‘to drive/run’, tõmbama ‘to pull’, lugema ‘to read’, laskma ‘to
let/have/allow/shoot’, heitma ‘to throw’ and kasvama ‘to grow’.

The verbs võtma ‘to take’ and käima ‘to go/walk’ formed part of seven PVs,
while the first occurred in 59 sentences and second is in 51 sentences. The verbs
saagima ‘to saw’, ilmuma ‘to appear’, valguma ‘to flow’, venima ‘to stretch’,
ehmatama ‘to frighten’, kiskuma ‘to tear’, kõmmutama ‘to bang’, kustutama ‘to
erase’, torkama ‘to prick/sting’, uhtuma ‘to flush/wash’ and virutama ‘to whack’
appeared in one PV, but in less than five sentences. The reason for so few
sentences might have been the low frequency of the PV (for example, kokku
kiskuma, sisse virutama ‘to push inside/break something by throwing something
else at it’ and üle uhtuma) ‘to flush/wash’ or disagreement amongst annotators
(for example, maha kustutama ‘to erase/wipe out’, välja venima and välja ilmuma
‘to debouch/emerge/appear unexpectedly’).

Figure 8 illustrates the average (non-)literalness scores for the verbs in the
PVs. The verbs are ranked based on the number of different PVs to which they
belonged to. The verbs that appear only in one PV with one meaning are not
presented. According to the EED, the most frequent verbs in the dataset are also
polysemous. Therefore, it can be assumed that different meanings of the verbs are
represented in the dataset forming both literal and non-literal PVs.

The verbs käima ‘to go/walk’ and võtma ‘to take’ were both part of seven PVs.
These PVs were evaluated as being more non-literal than literal, but there were
some meanings that were literal. Examples are the meaning ‘to walk (expressing
perfectivity of the activity)’ of the PV maha käima and the meaning ‘to take
something out from somewhere’ of the PV välja võtma. The verbs minema ‘to

82



●
●●
●●●●

●

●

●
●

●●

●

●

●●●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●

●●●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

virutama võitma voltima

suruma tõrjuma tükkima uhtuma uurima valguma valgustama valmistama venima viima

riputama saama särama sättima sattuma seadma siduma soojenema sulama sülgama

paigutama paiskama pakkuma pilduma pingutama põletama põrkama põrutama rääkima rändama

kuulutama langema lendama libisema lõikama lööma mängima monteerima nutma õnnistama

kandma keerama kirjutama kloppima kuhjama kuluma kurnama kustutama kutsuma kuulama

sündima taguma tooma tõukama tungima vahtima hüüdma ilmuma kajama kallama

kostma kukkuma küsima maksma mõtlema nägema panema peksma pidama pistma

lugema pääsema tegema hakkama heitma hoidma jõudma kaaluma kasvama kihutama

käima võtma minema vaatama ajama tõmbama tulema andma jääma laskma

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

av
er

ag
e 

of
 r

at
in

gs

Figure 8: (Non-)literalness ratings across the verbal components of PVs.
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go’, vaatama ‘to look’, ajama ‘to drive/run’ and tõmbama ‘to pull’ were part of
four or five PVs with various (non-)literalness scores. All the (non-)literalness
scores for these three PVs containing the verb lugema ‘to read’ suggest that this
verb only formed part of PVs that were non-literal at the binary level.

Many verbs were components of only one PV. Verbs such as lendama ‘to fly’,
lööma ‘to hit’, rääkima ‘to talk’, riputama ‘to hang’, siduma ‘to tie/bind’, valguma
‘to flow’, valgustama ‘to lighten’, viima ‘to carry’ seemed to form part of PVs that
had several meanings. For example, lendama formed part of the PV läbi lendama
‘to fly through/fail’, which had at least three meanings with very different degrees
of (non-)literalness. The example (35) expresses the most literal meaning of the
PV, which is ‘to visit many places by flying’. The meaning in example (36) is ‘to
visit something quickly’, and was evaluated as being more non-literal than was
the meaning of the PV in example (35), but not fully non-literal like the meaning
‘to fail the exam’ in example (37).

(35) Ta
s/he

ol-i
be-pst.3sg

selle-ga
this-com

pool
half

maailma-∅
world-prt

läbi
through

lenna-nud.
fly-pst.ptcp

Lit. ‘She/he had flown through half the world with it.’
‘She/he had flown half the world with it.’

(36) Ja
and

järgmine
next

kord
time

lenda-b
fly-3sg

klient
customer

juba
already

läbi
through

kuskilt
somewhere

mujalt
elsewhere

Lit. ‘And next time the client will fly through someplace else.’
‘And next time the client will visit someplace else.’

(37) Karemäe
Karemäe

ei
neg

lase-∅
let-conneg

tuju-l
mood-ade

lange-da:
fall-inf

“Noh,
well

läbi
through

lenda-si-n!”.
fly-pst-1sg

Lit. ‘Karemäe does not let the mood fall: “Well, I flew through!”’
‘Karemäe does not mourn: “Well, I failed!”’

Even though some verbs appeared in several PVs, the (non-)literalness de-
grees of these PVs were similar. For example, PVs containing the verbs tegema
‘to do’, hakkama ‘to start’, heitma ‘to throw’ and hoidma ‘to keep’ were all con-
sidered more non-literal than literal, and none of the PVs received an average
(non-)literalness rating lower than 3. This observation indicates that some verbs
were more likely to appear in non-literal PVs than in literal PVs.

In conclusion, the frequency of the 120 verbs in the PVs varied from 64
to 1,150,781, but this does not reflect upon the number of sentences or PVs.
Frequent verbs tended to form part of more PVs, and thus appeared in a greater
number of sentences. The average (non-)literalness scores reveal that few verbs
only appeared as components of fully literal or non-literal PVs. However, the
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sample of the verbal components of the PVs is not sufficiently representative to
draw exhaustive conclusions about the compositionality/literalness of the verbal
components of PVs.

The final dataset consisted of 184 PVs. The number of sentences containing
PVs varied due to several reasons. Firstly, not all extracted sentences contained a
PV and some PVs were so infrequent that it was impossible to collect 20 sentences
for each PV (see from Section 4.3.2). In the following section, the PVs from the
dataset of (non-)literalness ratings are analysed. As an overview, the PVs were
grouped according to the degree to which the average (non-)literalness rating
for the sentences containing the same PV varied. The variation was calculated
based on the difference between the maximum and minimum average degrees of
(non-)literalness.

The first group of PVs are considered to have a very high degree of variation
in the average (non-)literalness ratings. The difference between the maximum and
minimum ratings for these 49 PVs was 3.33–5. The second group consisted of
22 PVs with a high degree of variation (2.33–3) in their average (non-)literalness
ratings. Thirty-two PVs had a moderate degree of variation (1–2) and 25 PVs had
a low degree of variation in their average (non-)literalness ratings (0.33–0.67).
The sentences with the 56 PVs from the last group were rated using the same
scores and there was no variation.

Figure 9 illustrates the average (non-)literalness ratings for the PVs with very
high variations. These PVs were the most polysemous PVs in the dataset, and they
all had multiple meanings with different degrees of (non-)literalness. There were
seven PVs that formed part of sentences that were evaluated as having a score
of 0 in some cases, and a score of 5 in others – these were läbi lendama ‘to fly
through/fail’, tagant tõukama ‘to push from behind/boost’, üles lööma ‘to dress
up/toss (upward)’, üles võtma ‘to take something up/start something (song, con-
versation)/record’, vahele kukkuma ‘to fall between/get caught’, vahele pistma ‘to
interlard a conversation with/stick between something’ and välja pistma ‘to stick
out’. Hence, they had at least two usages, with one being fully literal and the other
fully non-literal. One of these PVs – läbi lendama ‘to fly through/fail’ – was dis-
cussed earlier in this section (see examples (35)–(37)) – three different meanings
were represented in five sentences. The annotators identified different meanings
for the verb lendama ‘to fly’ with varying degrees of (non-)literalness. Üles lööma
and üles võtmawere assessed similarly – there were sentences that included a fully
literal meaning and a fully non-literal meaning, and sentences that had meanings
with differing degrees of (non-)literalness in between. Vahele pistma ‘to interlard
a conversation with/stick between something’ and välja pistma ‘to stick out’ were
also used in sentences with different degrees of (non-)literalness – most sentences
containing vahele pistma were more non-literal than literal, and most sentences
containing välja pistma had more literal than non-literal meanings. The sen-
tences containing the PVs tagant tõukama ‘to push from behind/boost’ and vahele
kukkuma ‘to fall between/get caught’ had two different meanings – most of the
sentences were non-literal and one sentence was literal. Therefore, the non-literal
meanings of these PVs were more frequent (and predominant) than were the literal
ones.
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Figure 9: (Non-)literalness scores across PVs with very high variations in ratings.
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The difference in the minimum and maximum ratings of four PVs – ette
vaatama ‘to foresee/look ahead’, välja nägema ‘to appear to your eyes/see outside’,
välja paiskama ‘to throw something from somewhere/blurt out’ and välja võtma
‘to take out’ – was 4.67. Ette vaatama39 and välja nägema40 both have two
meanings – themore frequent one is non-literal and the infrequent one is literal. For
example, välja nägema occurred in 14 sentences – 13 sentences were evaluated as
having a fully non-literal meaning expressing how something or someone appears
to your eyes and one sentence had the non-literal meaning ‘to be able to see
outside’, with an average score of 0.33. These meanings corresponded to the
meanings in the EED.According to the EED, välja paiskama41 has twomeanings –
‘to throw something from somewhere’ and ‘to blurt out something’. The first
meaning was assessed as being fully literal with a (non-)literalness rating of 0.0
(three sentences). The second meaning appeared in six sentences and had a
(non-)literalness degree of 4.67. In addition, there was one sentence with a rating
of 3.0 and two sentences with a rating of 3.67 – these were evaluated in a different
way because of the abstractness of the subjects and objects. The most literal
meaning of välja võtma is ‘to take something out from somewhere’ and the least
literal is ‘to tire out’. The degree of literalness of other meanings fits in between
these two.

The difference between the minimum and maximum ratings was 4.33 for the
following 11PVs– ette andma ‘to put something in front of somebody/feed/specify’,
ette sattuma ‘to run across or meet somebody or something on the way’, juurde
tulema ‘to approach/accrue’, kokku valguma ‘to join/melt together’, läbi tungima
‘to penetrate/go right through’, läbi viima ‘to conduct/pass through’,maha suruma
‘to suppress/bottle up/allay’,maha tõmbama ‘to cross off/out/pull down’, sisse kal-
lama ‘to pour in/drink up’, välja ajama ‘to send off/out’, and välja minema ‘to
go out’. Of these PVs, läbi viima has two meanings, which are also given in the
EED42 – ‘to go through something’ and ‘to conduct’. Maha suruma appeared
in 11 sentences that had four meanings; three of them had very similar degrees
of (non-)literalness. The PV juurde tulema ‘to approach/accrue’ also has one
meaning that is fully literal, while other two are non-literal and are probably very
similar to each other. For other PVs, the scores were distributed more evenly.
For example, ette sattuma appeared in seven sentences, half of which had ratings
lower than 0.67. Twelve sentences containing the PV maha tõmbama were eval-
uated as having various degrees of (non-)literalness. The most literal meaning,
‘to pull on the ground’, had an average score of 0.0 and occurred in one sentence.
The meaning ‘to pull down’ appeared in four sentences – when the object was
a building, the average (non-)literalness degree was 1.67, and when the object
was something else, it was 0.33. Three sentences with the meaning ‘to reduce’
received a rating of 3.67, and four sentences with the meaning ‘to cross something
out or delete’ received a rating of 4.33. Half of the eight sentences containing
välja ajama received an average score that was greater than 2.33, and there were
sentences with a score of 0.0–4.33 amongst them.

39http://www.eki.ee/dict/ekss/index.cgi?Q=ette+vaatama (accessed 10.11.2018).
40http://www.eki.ee/dict/ekss/index.cgi?Q=välja+nägema (accessed 10.11.2018).
41http://www.eki.ee/dict/ekss/index.cgi?Q=välja+paiskama (accessed 10.11.2018).
42http://www.eki.ee/dict/ekss/index.cgi?Q=läbi+viima (accessed 10.11.2018).
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Eleven PVs, namely kinni minema ‘to close/go to prison’, läbi laskma ‘to let
through/pretermit’, läbi põletama ‘to fuse something/to burn something out’, läbi
tulema ‘to come through’, läbi valgustama ‘to x-ray/dissert’, lahti siduma ‘to un-
tie/unbind’, sisse kutsuma ‘to invite in’, taga kihutama ‘to encourage/chase’, tagasi
põrkama ‘to bounce back’, välja sülgama ‘to spit out’ and välja tulema had a differ-
ence between the average minimum and maximum ratings for
(non-)literalness of 4.0. While most of the PVs have multiple meanings according
to the EED and these meanings were also represented in the dataset, there were
some exceptions. For example, sisse kutsuma has one meaning in the EED43 – ‘to
invite somebody in’. Most of the sentences containing this PV were also evaluated
as being fully literal. Nevertheless, there was one sentence (see example (38)) in
which the subject was inanimate; thus, the annotators determined the degree of
the (non-)literalness of this meaning to be 4.0. The PV lahti siduma44 also has one
meaning – ‘to unbind (tie or knot)’ – and the sentences expressing ‘unbinding a
tie or knot or something similar’ were evaluated as being literal. At the same time,
there were sentences (see example (39)) that were assessed as being non-literal
because the object of the PV was not a tie or knot but a currency – the sentences
described currencies being ‘tied’ to each other.

(38) Tartu-∅
Tartu

jaamahoone
station building

ei
neg

kutsu-∅
invite-conneg

mitte
not

kuidagi
someway

sisse.
inside

Lit. ‘Tartu station does not invite in in any way.’
‘Tartu station does not look inviting.’

(39) Seetõttu
therefore

suurene-ks
increase-cond

surve
pressure

sidu-da
bind-inf

kroon
kroon

saksa-∅
Deutsche-gen

marga-st
mark-ela

lahti.
loose

‘Therefore, the pressure to bind loose the Estonian kroon from the Deutsche mark
would increase.’
‘Therefore, the pressure to unpeg the Estonian kroon from the Deutsche mark
would increase.’

PVs such as taga kihutama ‘to encourage/chase’, tagasi põrkama ‘to bounce
back’ and välja tulema ‘to get out (of)/turn up/come up with’ had multiple mean-
ings with similar degrees of (non-)literalness and one meaning that was much
more literal. For example, the most literal meaning of tagasi põrkama appeared
in three sentences, and the average (non-)literalness score was 0.0. The most
non-literal meaning ‘to be scared’ received an average (non-)literalness rating of
4.0 and was the most common meaning (appearing in seven sentences). The third
meaning ‘to stand back’ occurred in two sentences, and was considered to be
slightly more literal.

The difference for the following 10 PVs – otsa panema ‘to add’, sisse laskma
‘to let somebody in’, sisse vaatama ‘to look inside/visit something for a moment’,

43http://www.eki.ee/dict/ekss/index.cgi?Q=sisse+kutsuma (accessed 10.11.2018).
44http://www.eki.ee/dict/ekss/index.cgi?Q=lahti+siduma (accessed 10.11.2018).
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tagasi minema ‘to go back’, tagasi vaatama ‘to look back’, üle käima ‘to go/walk
over’, üle tooma ‘to carry something/adapt/change the location of something’, üles
keerama ‘to wind up/provoke’, vastu kajama and kaasa tõmbama ‘to persuade to
join/pull along’ – was 3.76. For most of these PVs, the sentences had more
non-literal than literal readings; exceptions were the PVs sisse laskma and sisse
vaatama. Most of the sentences containing sisse laskma expressed themeaning ‘to
let somebody/something in’, and the degrees of (non-)literalness varied based on
the subjects, objects and adverbials. One sentence expressed the meaning ‘to try a
new gun by shooting’, which was evaluated as being much more non-literal. The
most common meaning of sisse vaatama is ‘to look inside something’; another
meaning expresses ‘to visit something for a moment’. However, the annotators
identified additional meanings for these PVs. For example, the annotators did
not evaluate one sentence (see example (40)) as being similar to the sentences
expressing the aforementioned meanings. The reason for this was most likely the
fact that the annotators could not decide whether one could really visit an e-shop or
look inside it. The meaning of one sentence (see example (41)) was not evaluated
as being fully literal because the subject was an abstract entity.

(40) Soovi-des
wish-ger

saa-da
get-inf

ülevaade-t
overview-prt

tema-∅
s/he-gen

teos-te-st,
work-pl-ela

vaata-si-n
look-pst-1sg

sisse
inside

Interneti-∅
Internet-gen

raamatupoodi-∅.
bookstore-ill

‘Wishing to get an overview of his work, I looked in the e-bookstore.’

(41) Vaesus
poverty-gen

vaata-b
watch-3sg

ukse-st
door-ela

ja
and

akna-st
window-ela

sisse,
inside

keegi
somebody

pea-b
must-3sg

selle-∅
this-gen

eest
for

vastuta-ma.
be responsible for-sup

Lit. ‘Poverty looks inside from the door and the window, somebody has to take
responsibility for it.’
‘Poverty is everywhere and somebody has to take responsibility for it.’

In addition to these two PVs, tagasi vaatama ‘to look back’, üle käima ‘to
go/walk over’ and üle tooma also have one or two dominating meanings (most
of the sentences had similar ratings), and one or two meanings that occurred less
often and had a significantly different rating from the majority. These mean-
ings might or might not be differentiated by the EED. For example, the EED
provides one meaning for the PV üle tooma45, but the annotators identified three
meanings. One sentence expressed the most literal meaning ‘to carry something’
((non-)literalness score 1.33). The fully literal usage (average rating 5.0) of this
PV was ‘to adapt a storyline’, and it appeared in two sentences. The remainder of
the sentences had ameaning similar to the one in the EED – ‘to change the location
where some activity is carried out, e.g. ‘to change the place of employment’.

The average scores for (non-)literalnesswere distributedmore equally amongst
sentences for PVs such as otsa panema ‘to add’, tagasi minema ‘to go back’, üles

45http://www.eki.ee/dict/ekss/index.cgi?Q=üle+tooma (accessed 10.11.2018).
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keerama ‘to wind up/provoke’, vastu kajama and kaasa tõmbama ‘to persuade
to join/pull along’. For example, üles keerama46 has four meanings in the EED,
but more in the dataset. The most literal was ‘to roll up’, which appeared in
two sentences with a (non-)literalness degree of 1.33. The meaning of ‘to turn
up (higher)’ was also rated as being more literal than non-literal, with an average
(non-)literalness score of 2.0. The meanings ‘to get agitated’ and ‘to turn someone
against someone else’ were considered to be fully literal, with a rating of 5.0.
These meanings appeared in five sentences. The meaning ‘to wind up (the clock)’
appeared in two sentences, with an average (non-)literalness rating of 3.67. In
addition, there was one sentence that received a (non-)literalness rating of 4.33
(see example (42)), and one sentence was evaluated as having a score of 4.0 (see
example (43)). Therefore, the annotators indicated six degrees of (non-)literalness
for the PV üles keerama.

(42) Asi
thing

keera-b
turn-3sg

end
itself

üles.
up

‘The thing winds itself up.’

(43) Akadeemik
academician

Kapitsa
Kapitasa

on
be.3sg

leid-nud,
found-pst.ptcp

et
that

kuigi
although

inimkonna-∅
mankind-gen

kasvukõver
growth curve

kasva-b,
increase-3sg

tõuse-b
rise-3sg

ta
it

ikka
still

kaldu,
inclined

kuid
but

ta
it

või-b
might-3sg

ka
also

äkki
suddenly

täiesti
totally

üles
up

keera-ta
turn-inf

ja
and

siis
then

on
be.3sg

kriis
crisis

küll
indeed

käes.
due

‘Academician Kapitsa has found that although the growth curve of population
increases, the rise of it is inclined, it can also suddenly turn completely straight
up and then the crisis is indeed here.’

The PV vastu kajama also had more meanings in the dataset that are given in
the EED47. While the EED only suggests one meaning for this PV, the annotators
identified more. The EED meaning of vastu kajama is ‘to sound like an echo’.
Four sentences expressing this meaning were evaluated as having an average
(non-)literalness score of 1.33. The other 11 sentences were assessed as having
a score of 4.0, and expressed relatively non-literal similar meanings ‘to get a
response’ (as in example (44)) or ‘to appear’ (as in example (45)).

(44) USA-∅
USA-gen

kaitseministri-∅
Minister of Defence-gen

sõna-d
word-pl

on
be.3pl

kaja-nud
echo-pst.ptcp

vastu
back

kogu
entire

maailma-s.
world-ine

‘The words of the United States Secretary of Defence have echoed back all over
the world.’

46http://www.eki.ee/dict/ekss/index.cgi?Q=üles+keerama (accessed 10.11.2018).
47http://www.eki.ee/dict/ekss/index.cgi?Q=vastu+kajama (accessed 10.11.2018).
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(45) Ta
s/he

kaja-b
echo-3sg

vastu
back

sajandivahetuse-∅
turn of the century-gen

kultuurilise-∅
cultural-gen

kuldajastu-∅
golden age-gen

muusika-s,
music-ine

arhitektuuri-s,
architecture-ine

kirjanduse-s
literature-ine

ja
and

maalikunsti-s.
painting-ine
Lit. ‘She/he echoes back in the music, architecture, literature and painting of the
cultural golden age during the turn of the century.’
‘His influence can be found in the music, architecture, literature and painting of
the cultural golden age during the turn of the century.’

Six PVs had a difference of 3.33 between the maximum and minimum rat-
ings – ette kandma ‘to report/to serve’, kõrvale tõrjuma ‘to displace/push aside’,
maha ajama ‘to drive/push/shave off/remove’, maha võtma ‘to take down’, välja
kurnama ‘to wear out/filter’ and välja riputama ‘to hang out’. The PVs kõrvale
tõrjuma,maha võtma and välja kurnama, according to Figure 9, have at least three
meanings. For example, while kõrvale tõrjuma has been assigned two meanings
in the EED48, the annotators identified three meanings – the meaning ‘to ward
off’ is more literal than are the others, the least literal is ‘to supplant’, and the one
that is slightly more literal than that is the meaning ‘to knock out a team’. The
EED grouped the second and third meanings into one. It is important to note that
the most literal meanings appeared in only one sentence, while other meanings
occurred numerous times.

The scores for the PVs ette kandma ‘to report/to serve’, maha ajama ‘to
drive/push/shave off/remove’, välja riputama ‘to hang out’ were more evenly
distributed amongst the sentences. This means that different meanings appeared
equally often or they were similar to each other. For example, the PVmaha ajama
appeared in 15 sentences. The (non-)literalness ratings varied from 1.33 to 4.67.
The EED49 presents four meanings for this PV, two of which are slang terms.
The first meaning is somewhat general and expresses ‘to knock/push something
downwards’, in which the particle maha expresses the direction. This meaning
was considered the most literal by the annotators, and six sentences expressing
this meaning were evaluated with an average degree of 1.33. One sentence (see
example (46)) expressed a similar meaning, but the annotators determined it to be
slightly more non-literal (with a score of 2.0). The reason might have been that
the bus driver’s activity was not physical but verbal, and the annotators sensed a
difference. The meaning remains literal at the binary level.

(46) Bussijuht
Bus driver

aja-s
drive-pst.3sg

sõitja-d
passenger-pl

bussi-st
bus-ela

maha
off

ja
and

käski-s
command-pst.3sg

astu-ma
step-sup

haka-ta.
start-inf

‘The bus driver kicked the passengers out of the bus and ordered them to start
walking.’

48http://www.eki.ee/dict/ekss/index.cgi?Q=kõrvale+tõrjuma (accessed 10.11.2018).
49http://www.eki.ee/dict/ekss/index.cgi?Q=maha+ajama (accessed 10.11.2018).
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The secondmeaning of the PVmahaajama in theEED is ‘to remove something
from somewhere’ and it was evaluated as having a score of 4.33 (four sentences).
Nevertheless, for the three sentences that expressed the removal of a piece of
clothing, the average was evaluated as 3.67. Hence, the annotators thought that
‘to remove a piece of clothing’ was a more literal meaning than was ‘to remove
hair or a beard’. One sentence (see example (47)) expressed a meaning that the
EED labelled as ‘characteristic of oral speech or slang’ – ‘to talk (and finish[ing]
it)’, and the average (non-)literalness score for this meaning was 4.67.

(47) Mu-lle
I-all

meeldi-b
like-3sg

väikelinna-∅
borough-gen

lihtne
simple

elu,
life

kus
where

kõik
all

kõik-i
all-pl.prt

tunne-vad
know-3pl

ning
and

hommikuti
in the mornings

poe-s
shop-ine

pika-d
long-pl

jutu-d
talk-pl

maha
off

ae-ta-kse.
drive-imps-pr

Lit. ‘I like the simple life of the small town, where everybody knows everybody
and long conversations are driven off in the shop in the mornings.’
‘I like the simple life of the small town, where everybody knows everybody and
long conversations are held in the shop in the mornings.’

Figure 10 illustrates the average (non-)literalness ratings across the PVs with
high variations (2.33–3). The first eight PVs had a variation of 3.0 – they
were eemale tõukama ‘to push away/scare off/repel’, ette võtma ‘to undertake/set
out/embark upon’, järele vaatama ‘to watch someone/check or investigate’, juurde
lõikama ‘to cut/add (land)’, maha minema ‘to get off’, üle uhtuma ‘to flush/wash’,
üles peksma ‘to beat/wake up somebody’ and vastu särama ‘to shine/reflect’. Ac-
cording to the distribution of the average (non-)literalness ratings, it can be inferred
that the PVs juurde lõikama and üles peksma had one meaning that was more fre-
quent than others, one meaning that was fully non-literal and one that, compared
to the other meanings, was relatively literal. Nonetheless, juurde lõikama had
two meanings that were evaluated as having an average score of 4.0 – ‘to add
land to somebody or for something’ and ‘to cut pieces of cloth for sewing’. The
fully non-literal meaning was ‘to gain something’ and the most literal was ‘to
add something by cutting’. The most frequent meaning of üles peksma was ‘to
beat up’, the fully non-literal was ‘to wake up somebody’ and the most literal was
‘to beat upwards’. Hence, the distribution of the average (non-)literalness scores
may imply how many different meanings the PV had, but this is not a rule. The
most difficult task in the automatic detection of (non-)literalness is distinguishing
among the meanings of the same PVs with similar degrees of (non-)literalness.

The scores were more equally distributed for other PVs. For example, the PV
ette võtma ‘to undertake/set out/embark upon’ was a constituent of 12 sentences.
Six sentences expressed the meaning ‘to embark upon something’ with a (non-
)literalness rating of 4.33, one sentence expressed the meaning ‘to take charge
up front’ with a rating of 3.33, and three sentences expressed the meaning ‘to
lift something in front’. Two sentences with (non-)literalness scores of 3.0 (see
example (48)) and 3.67 (see example (49)) could express the meanings ‘to embark
upon something’ or ‘to lift something in front’. As the annotators interpreted
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Figure 10: (Non-)literalness scores across the PVs with high variations in the
ratings.
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the sentences based on their own opinions, it is not possible to verify the exact
meaning that they evaluated.

(48) Supp
soup

ja
and

praad
main course

on
be.3pl

söö-dud,
eat-pst.ptcp

nüüd
now

võta-me
take-1pl

ette
ahead

magustoidu-∅.
dessert-gen

Lit. ‘The soup and the main course have been eaten, now we take ahead the
dessert.’
‘The soup and the main course have been eaten, now we eat dessert.’

(49) Nüüd
Now

tule-b
must-3sg

võt-ta
take-inf

ette
ahead

kuuma-d
hot-pl

kartuli-d,
potato-pl,

lisa-da
add-inf

ne-i-le
they-pl-all

tripsuke
a little

või-d
butter-prt

ja
and

kast-a
dip-inf

kartuliampsu-∅
mouthful of potato-prt

enne
before

suhupanemis-t
putting in mouth-prt

sibulasoolvee-∅
onion brine-gen

sisse
inside

Lit. ‘Now you must take ahead hot potatoes, add a little butter to them and dip a
mouthful of potato into the onion brine before putting in mouth.’
‘Now take hot potatoes, add a little butter to them and dip a mouthful of potato
into the onion brine before eating.’

Even though the average scores were distributed evenly, not all of themeanings
of the PV were represented. For example, the PV järele vaatama has three
meanings in the EED. The first one, ‘to watch someone leaving/passing/going’
was included in five sentences, and was evaluated as having a (non-)literalness
score of 1.0. The second meaning ‘to check or investigate’ was assessed as having
a score of 4.0, and it appeared in seven sentences. The third meaning (which is
labelled as infrequent in the EED), ‘to look after’ was not present in the dataset.

The difference between the minimum and maximum (non-)literalness ratings
was 2.67 for the following nine PVs – külge jääma ‘to stick/get used’, läbi vaatama
‘to look through/examine’, maha käima ‘to go down/run down/go/degenerate’,
mööda käima ‘to bypass’, üles soojenema ‘to warm up’, ümber tõmbama ‘to
put something around somebody or something/encircle’, välja ilmuma ‘to de-
bouch/emerge/appear unexpectedly’, vastu põrutama ‘to snap back at somebody’
and vastu rääkima ‘to talk back/dispute’. Most of the meanings in the dataset ten-
ded to be more non-literal than literal. For example, läbi vaatama was assigned
three different average scores. The most literal meaning was ‘to watch through
someone’ (one sentence, with an average score of 1.0). The second meaning
was to ‘to examine luggage’ with an average (non-)literalness score of 2.0 (two
sentences). The rest of the sentences (9) received a score of 3.67, and the mean-
ing was ‘to look through’ – the objects could be animate (such as a patient) or
inanimate (such as a document).

The most frequent meanings were not always non-literal. For example, the
EED provides two meanings for mööda käima50 – ‘to move by’ and ‘to head by’.

50http://www.eki.ee/dict/ekss/index.cgi?Q=mööda+käima (accessed 10.11.2018).
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The subject of the first meaning is something that moves (for example, a human or
a car), while the subject of the second meaning is usually something that does not
move itself (such as a road or a bus line). Both meanings were evaluated as being
more literal than non-literal, while one sentence (see example (50)) was assigned
a (non-)literalness degree of 3.67. The meaning of the PV in the sentence is
figurative, and could be interpreted as ‘to ignore’.

(50) See
this

arengutee
development path

on
be-3sg

üks
one

ne-i-st
they-pl-ela

rikkus-te-st,
wealth-pl-ela

mille-st
what-ela

innuka-d
eager-pl

progressi-∅
progress-gen

eest
for

võitleja-d
fighter-pl

tuimalt
rigidly

mööda
by

käi-vad
walk-3pl

Lit. ‘This development pathway is one of those wealth that the eager fighters for
the progress rigidly walk by.’
‘This development pathway is one of those benefits that the eager fighters for the
progress rigidly ignore.’

The variation in the average (non-)literalness scores was 2.33 for five PVs –
edasi jõudma ‘to get ahead/come out on top’, ette valmistama ‘to prepare’, juurde
tõmbama ‘to engage’, kaasa tooma ‘to bring something or someone/cause some-
thing’ and üle kaaluma ‘to weigh again’. Edasi jõudma has two meanings in the
EED51 – ‘to move on (spatially or in time)’ and ‘to progress’. Both meanings
appeared in the dataset, with the second meaning being more frequent. In ad-
dition, the PV juurde tõmbama ‘to engage’ has one meaning in the EED52, but
the annotators identified three meanings. Based on the nature of the activity, the
meaning of ‘pulling’ was evaluated as being more literal than was the meaning of
‘engaging’. The third meaning of the PV was not clear, but it seemed to be influ-
enced by the unusual animacy of the subject and object. While the distributions
of the average (non-)literalness scores for the PVs ette valmistama ‘to prepare’
and kaasa tooma ‘to bring something or someone/cause something’ reflected the
multiple meanings of these PVs (these are also suggested in the EED), the high
variation for üle kaaluma ‘to weigh again’ might seem surprising. In fact, the
EED53 gives only one meaning for this PV – ‘to scale something again (to check
for something)’. This meaning was assessed as having a degree of 2.0 for two
sentences. A score of 4.33 was assigned to evaluate the sentence that expressed
the meaning ‘to reconsider something’. As one of the meanings of kaaluma is ‘to
consider’, this interpretation is not surprising.

Figure 11 shows 32 PVs with moderate variations in the average
(non-)literalness ratings for the relevant sentences. The difference between the
minimum and maximum (non-)literalness scores for these PVs was 1–2.

The PVs ette lugema ‘to read out/recite’, ette tegema ‘to do beforehand’,
välja jääma ‘to stay out’, välja pääsema and vastu kostma ‘to reply’ were rated
as having a difference in the maximum and minimum ratings of 2.0. All the
meanings of the PVs ette lugema and ette tegema were considered to be more

51http://www.eki.ee/dict/ekss/index.cgi?Q=edasi+jõudma (accessed 10.11.2018).
52http://www.eki.ee/dict/ekss/index.cgi?Q=juurde+tõmbama (accessed 10.11.2018).
53http://www.eki.ee/dict/ekss/index.cgi?Q=üle+kaaluma (accessed 10.11.2018).
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Figure 11: (Non-)literalness scores across PVs with moderate variations in their
ratings.
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non-literal than literal. Both PVs have multiple meanings in the EED54
,
55 and

in the dataset. The average scores for literalness reflect that the meanings had
different degrees of compositionality. Although välja jääma has one meaning in
the EED56 – ‘to leave out’ – the annotators did not evaluate all 13 sentences in
the same way. Most of these sentences (10) received an average (non-)literalness
score of 3.0, and the more specific meaning of the PV in these sentences was ‘to be
excluded’ (as in example (51)). The remaining three sentences received an average
(non-)literalness rating of 1.0, and the meaning of the PV in these sentences was
‘to stay outside’ (as in example (52)).

(51) On
be.3sg

kuul-da
hear-inf

nurina-t,
grumble-prt

et
that

mõne-d
some-pl

olulise-d
important-pl

nime-d
name-pl

on
be.3pl

välja
out

jää-nud
stay-pst.ptcp.

‘There has been a complaint that some important names have been left out.’

(52) Kraaniosa
part of the tap

ja
and

toru
pipe

pann-a-kse
put-imps-prs

karpraua-∅
channel iron-gen

sisse,
inside

välja
out

jää-b
stay-3sg

ainult
only

nupp.
button

Lit. ‘The tap and pipe will be put inside the channel iron, only the button will
stay out.’
‘The tap and pipe will be put inside the channel iron, only the button will be
outside.’

Unlike the PVs in the same group, most of the meanings of the PVs välja
pääsema and vastu kostma ‘to reply’ were literal. For example, the meaning of
välja pääsema in the EED57 is ‘to get out of somewhere’. The annotators identified
different degrees of (non-)literalness for this PV based on the meaning of the verb,
but the meaning of the PV was the same in general.

The difference was 1.67 for the following nine PVs – esile tükkima ‘to
jut/dominate’, kinni pidama ‘to stick to/slow down/detain’, kokku kuhjama ‘to
stack up’, kokku monteerima ‘to assemble/edit video’, peale käima, peale tungima,
sisse taguma ‘to beat in(to)’, üles seadma and välja rändama. The most frequent
meanings of the PVs kokku monteerima and välja rändamawere literal. Both PVs
have one meaning in the EED58

,
59 and all the sentences expressed these meanings.

The variation was created by the use of figurative language (for example, ‘cars are
emigrating’ versus ‘eels are emigrating’).

Based on the average (non-)literalness ratings, it is possible that the PVs
esile tükkima ‘to jut/dominate’, kinni pidama ‘to stick to/slow down/detain’, kokku

54http://www.eki.ee/dict/ekss/index.cgi?Q=ette+lugema (accessed 10.11.2018).
55http://www.eki.ee/dict/ekss/index.cgi?Q=ette+tegema (accessed 10.11.2018).
56http://www.eki.ee/dict/ekss/index.cgi?Q=välja+jääma (accessed 10.11.2018).
57http://www.eki.ee/dict/ekss/index.cgi?Q=välja+pääsema (accessed 10.11.2018).
58http://www.eki.ee/dict/ekss/index.cgi?Q=kokku+monteerima (accessed 10.11.2018).
59http://www.eki.ee/dict/ekss/index.cgi?Q=välja+rändama (accessed 10.11.2018).
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kuhjama ‘to stack up’, peale käima, peale tungima, sisse taguma ‘to beat in(to)’
and üles seadma had two or more non-literal meanings. All these PVs, except
for kokku kuhjama, have more than one meaning in the EED. For example, all
three meanings that the EED suggests for üles seadma60 were present in the
dataset. According to the annotators, the fully non-literalmeaning (with an average
(non-)literalness score of 5.0) was ‘to pose (something)’ (two sentences). The
meaning ‘to nominate a candidate’ (four sentences) was considered to be slightly
more literal, with an average (non-)literalness rating of 4.33. The meaning ‘to
install/set up something’ (with an average score of 3.33) appeared in six sentences.
One sentence (see example (53)) expressed the same meaning, but was assigned a
score of 4.33. The difference here might have been due to the fact that the objects
and the place for the activity were unusual, and the annotators indicated this in
their ratings. The compositionality degrees of (non-)literalness varied slightly
for kokku kuhjama ‘to stack up’, depending on the abstractness of the object (for
example ‘material’ versus ‘a pile of dollars’).

The difference between the minimum and maximum average (non-)literalness
ratings for the sentences with the following eight PVs – kokku ajama ‘to herd
together/gather’, kokku kasvama ‘to grow together’, kokku saama ‘to meet’, läbi
kuluma ‘to wear out’, lahti pääsema ‘to break loose/get free’, tagasi tulema ‘to
come back’, üle libisema ‘to gloss/pass over’ and välja pilduma ‘to throw some-
thing out of somewhere’ – was 1.33. While the average (non-)literalness scores
were distributed equally amongst the sentences for PVs such as kokku ajama,
kokku kasvama, lahti pääsema, tagasi tulema and välja pilduma, there were some
PVs that had one frequent meaning and few infrequent meanings with different
degrees of (non-)literalness. For example, the most frequent meaning of kokku
saama – ‘to meet’ – received a (non-)literalness rating of 4.0 and appeared in
six sentences. The similar meaning also appeared in one more sentence (see
example (54)), but one annotator identified it as being more non-literal than the
others because it expressed the possibility that disabled people could use com-
puters. Anothermeaning – ‘to gather’ – occurred in four sentences (with an average
(non-)literalness rating of 4.0) and ‘to get dirty’ in one sentence (with a
(non-)literalness rate of 3.33).

(53) Esmajärjekorra-s
first priority-ine

on
be-3sg

kava-s
plan-ine

internetti-∅
Internet-ill

üles
up

sea-da
set-inf

sisukorra-d
table of contents-pl

ja
and

numbri-te
issue-pl.gen

kokkuvõtte-d.
summary-pl

Lit. ‘The first priority is to set up the tables of contents and summaries of the
issues to the web.’
‘The first priority is to upload the tables of contents and summaries of the issues
to the web.’

(54) Keskuse-s
centre-ine

saa-vad
get-3pl

kokku
together

puude-ga
disability-com

inimese-d
human-pl

ja
and

arvuti-d.
computer-pl

Lit. ‘Disabled people and computers get together in the centre.’
‘Disabled people can learn to use computers in the centre.’

60http://www.eki.ee/dict/ekss/index.cgi?Q=üles+seadma (accessed 10.11.2018).
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ThePV üle libisema occurred 13 times andmainly expressed the samemeaning
given in the EED61 – ‘to pass over (not to delve into something)’. The annotators
assigned the 11 sentences containing this PV a (non-)literalness degree of 4.67.
The slightlymore literal meaning of üle libisema received a (non-)literalness rating
of 4.0 (see example (55)), and the meaning as expressed in example (56) obtained
a (non-)literalness rating of 3.33.

(55) Hollandlase-∅
Dutchman-gen

Pier
Pier

Sienema-∅
Sienema-gen

loo-st
story-ela

ükskõikse-∅
indifferent-gen

eestlase-∅
Estonian-gen

silma-d
eye-pl

hommikusöögilaua-s
breakfast table-ine

aga
however

üle
over

ei
neg

libise-∅.
slip-conneg

‘The eyes of indifferent Estonian at the breakfast table do not slip over the article
about the Dutchman Pier Sienema.’

(56) Mõne-d
some-pl

pea-d
head-pl

lõika-d
cut-2sg

ära,
off

aga
but

ega
nor

ka
also

nende-lt,
they-pl.abl

kelle-st
who-ela

vikat
scythe

üle
over

libise-s,
slide-pst.3sg

erilist-∅
particular

koostöö-d
cooperation-prt

loo-ta
hope-inf

ole-∅.
be-conneg

‘Some heads you cut off, but you cannot expect much cooperation from the ones
the scythe slid over.’

All meanings of the PVs tagasi tulema ‘to come back’ and välja pilduma
were considered to be somewhat more literal than non-literal. While the EED
provides multiple meanings for tagasi tulema62, there is only one meaning for
välja pilduma63 – ‘to throw something out of somewhere’. However, the annot-
ators noticed a difference in the meanings of this PV. For example, the average
compositionality score for the sentence in example (57) was 0, but the average
score for the sentence in example (58) was 1.33. The difference of scores appeared
because the sentence in example (58) did not specify the location from which the
trolling spoon was thrown.

(57) Kui
when

hakka-d
start-2sg

autoakna-st
car window-ela

rämpsu-∅
garbage-prt

välja
out

pildu-ma,
throw-sup

siis
then

kujuta-∅ ette,
imagine-imp

mis
what

tunne
feeling

on
be.3sg

kraavi-st
trench-ela

sodi-∅
trash-part

korja-ta
pick up-inf

‘When you start throwing garbage out of the car window, imagine the feeling of
picking it up from the trench.’

(58) Koshura
Koshura

pillu-b
throw-3sg

käe-ga
hand-com

landi-∅
trolling spoon-gen

välja
out

ja
and

keri-b
scroll-3sg

tamiili-∅
fishing line-gen

kohvipurgi-le
coffee can-all

tagasi
back

‘Koshura throws the trolling spoon with his hand and scrolls the fishing line back
to the coffee can.’

61http://www.eki.ee/dict/ekss/index.cgi?Q=üle+libisema (accessed 10.11.2018).
62http://www.eki.ee/dict/ekss/index.cgi?Q=tagasi+tulema (accessed 10.11.2018).
63http://www.eki.ee/dict/ekss/index.cgi?Q=välja+pilduma (accessed 10.11.2018).
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The difference for the sentences containing the PVs alla jääma ‘to be run
over/be conquered/loose’, järele laskma ‘to loosen’, kokku sättima ‘to set/put
together’, lahti voltima ‘to unfold/ unwrap’, peale langema ‘to attack’, ülemängima
‘to overplay/outplay’, üle pakkuma ‘to exaggerate’, üles kloppima ‘to fix/beat/fluff’,
ümber sündima ‘to be reborn’ and välja hüüdma ‘to cry/shout out’ was 1.0. Some
PVs have only one meaning in the EED (such as alla jääma, järele laskma, kokku
sättima, lahti voltima, peale langema, ümber sündima), but the annotators sensed
slightly different degrees of (non-)literalness in their meanings. For example,
the meaning of lahti voltima64 is literally ‘to unfold something’. The annotators
interpreted it slightly differently if the sentences described ‘unfolding a letter’ or
‘unwrapping the battery’. PVs such as üle mängima, üle pakkuma, üles kloppima
and välja hüüdma have multiple meanings suggested in the EED (‘to cry/shout
out’, ‘to announce’), and at least two of them were represented in the dataset.
For these PVs, the annotators suggested more meanings than were presented in
the EED. For example, the meanings of üle mängima65 are ‘to overplay’ and ‘to
outplay’. Although the sentences containing the PV üle mängima expressed these
meanings in general, the annotators specified more narrow meanings within these
two (broad) meanings.

Twenty-five PVs with low variation are illustrated in Figure 12. Most of
the PVs had one most frequent meaning and one or two meanings that occurred
less frequently. For example, the EED provides two meanings for the PV üle
pingutama66 – ‘to overreach’ and ‘to overdo’. The annotators evaluated the first
meaning as having a score of 3.33 (three sentences) and second as having a score
of 4.0 (ten sentences).

Üle andma appeared in 13 sentences that expressed the meaning given in the
EED67 – ‘to give/hand over something to someone’. The slight difference in the
degrees of (non-)literalness was due to the object – the meaning of the PV is more
literal if the object ismore concrete, such as ‘gift’ or ‘picture’ versus ‘investigation’.
Based on the average (non-)literalness scores, the annotators noted at least three
to seven meanings of vastu võtma ‘to accept/welcome/admit’ presented in the
EED68. All the meanings of vastu võtma were evaluated as being more non-literal
than literal.

In some cases, the average scores for (non-)literalness were distributed more
equally among sentences containing the PV. For example, the PV vastu hakkama
appeared in 16 sentences. Two meanings of this PV are presented in the EED –
‘to resist’ and ‘to detest’. The annotators have clearly differentiated between these
two meanings and evaluated the first one as having an average (non-)literalness of
3.67 (eleven sentences) and the second as having a score of 4.33 (five sentences).
Based on the distribution of the meanings across sentences, it may be the case that
the meaning ‘to resist’ is more common. However, the automatic discrimination
between these two meanings is most likely an extremely challenging task. The
PV üle võtma has two meanings – ‘to take over the possession of something’

64http://www.eki.ee/dict/ekss/index.cgi?Q=lahti+voltima (accessed 10.11.2018).
65http://www.eki.ee/dict/ekss/index.cgi?Q=üle+mängima (accessed 10.11.2018).
66http://www.eki.ee/dict/ekss/index.cgi?Q=üle+pingutama (accessed 10.11.2018).
67http://www.eki.ee/dict/ekss/index.cgi?Q=üle+andma (accessed 10.11.2018).
68http://www.eki.ee/dict/ekss/index.cgi?Q=vastu+võtma (accessed 10.11.2018).
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Figure 12: (Non-)literalness scores across the PVs with low variations in the
ratings.
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and ‘to take over something by imitating it’. The (non-)literalness scores of these
meanings were 4.0 and 4.33, respectively (both were represented by six sentences).

These examples suggest that there might be a slight difference in the degrees
of (non-)literalness of the different meanings of the same PV. These differences
might not play a role in communication amongst humans who speak the same
language. Moreover, when the meanings are translated in the same way into
another language, the degrees of (non-)literalness do not make a difference. In
some cases, different translations are needed and the degrees of (non-)literalness
might be useful.

Figure 13 shows 56 PVs that appeared in sentences that the annotators evalu-
ated as having the same average (non-)literalness score. It is important to note that
the number of sentences for each PV was not equal and that the order of the PVs
reflects the number of sentences. For example, the PVs üles kasvama ‘to grow up’
and välja kuulutama ‘to announce’ appeared in 13 sentences, while välja kostma
‘to be heard’ and välja saagima ‘to saw out’ only appeared in one sentence.

Only one PV was considered to be fully literal – all five sentences containing
läbi sadama ‘to leak when raining’ received a (non-)literalness evaluation of 0.0.
Nevertheless, as mentioned in Section 4.3.3, some of the sentences containing this
PV were omitted because the annotators did not agree. The meanings of the PVs
üles lugema ‘to list’, ette nägema ‘to foresee/stipulate/see ahead’, üle trumpama
‘to have the best of/circumvent’, alla laadima ‘to download’, ette heitma ‘to
reproach/blame’, alla käima, kaasa sündima, alt minema ‘to fail or to be deceived’,
kokku kõlksuma ‘to match’, välja suitsetama, vastu raiuma ‘to object/to dispute’,
maha jahtuma ‘to cool down’, kokku kiskuma, ära tegema ‘to win somebody/finish
doing something’ and välja saagima ‘to saw out’ were evaluated as being fully
non-literal. While most of these PVs had at least one (non-literal) meaning in
the EED, välja saagima had one literal meaning. However, example (59) shows
that the sentence containing this PV was fully non-literal. Other sentences that
expressed more literal meanings caused disagreement among annotators and were
omitted from the dataset.

(59) Vahetevahel
sometimes

sae-b
saw-3sg

Jaan
Jaan

Alavere
Alavere

viiuli-st
violin-ela

välja
out

mõne-∅
some-gen

idamaise-∅
Eastern-gen

soolo-∅.
solo-gen

Lit. ‘Jaan Alavere sometimes saws an Eastern solo out from the violin.’
‘Jaan Alavere sometimes plays an Eastern solo on the violin.’

It might be suggested that the PVs in Figure 13 have only one meaning, but
this is not necessarily so. Some of the meanings of these PVs led to disagreement
amongst the annotators, or were not selected for the evaluation at all (see Section
4.3.3). However, in some cases, single meaning of the PV given in the EED
was what annotators actually evaluated. For example, the sole meaning of the
PV üles kasvama that annotators assessed as having a (non-)literalness score of
2.0 for all 13 sentences corresponded to the meaning in the EED – ‘to grow
up’. The PV välja kuulutama appeared in 13 sentences and has one meaning ‘to
announce (and sometimes establish) something’ in theEED– it received an average
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Figure 13: (Non-)literalness scores across PVs with no variations in their ratings.
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(non-)literalness rating of 3.33 from the annotators. The meaning of üles lugema
is ‘to list’, and all 12 sentences expressing this meaning were evaluated as having
a (non-)literalness score of 5.0. The sole meaning of the PV välja heitma is ‘to
expel’, and all sentences containing this PV received an average (non-)literalness
rating of 4.0.

Some PVs are highly polysemous (and frequent), but only one of their mean-
ings was represented in the dataset. For example, ette nägema was the third most
frequent PV in the dataset, and it has four meanings in the EED69. Nonetheless,
all 11 sentences containing this PV were assigned the same average score (5.0).
When considering these sentences, at least two different meanings were present –
‘to anticipate’ and ‘to designate’, which are both clearly non-literal. This is a
good example of how a PV can have several meanings that have the same degree
of (non-)literalness. Differentiating amongst meanings of the same PV that share
their degrees of compositionality definitely poses an additional challenge for the
NLP models.

In general, the PV usages in the dataset could be divided as follows: a) PVs
that have only one meaning (although they are not necessarily monosemous), b)
PVs with several meanings that have varying degrees of compositionality, and
c) PVs that have multiple meanings with the same, or very similar degrees of
compositionality.

In summary, most of the PVs in this dataset had several meanings with varying
degrees of compositionality. This finding illustrates that the traditional descrip-
tions of Estonian have presented somewhat generic divisions of Estonian PVs
(described in Section 2.4) based on the authors’ personal opinions. Rätsep (1978),
for example, used himself as informant. At the same time, Estonian is lacking a
systematic analysis of polysemy and of the idiomaticity of Estonian PVswhereby a
thorough overview of the semantics of PVs could be presented. Nevertheless, the
current corpus-based study emphasises what was proposed previously by Muis-
chnek (2006: 12) and Veismann and Sahkai (2016: 272), namely that semantic
compositionality is a scalar property of PVs (and other MWEs).

It was shown earlier that there is no (statistically significant) correlation
between the frequency of the PV and its components and the degree of composi-
tionality assessed by human annotators (see Section 4.2.5). In order to determine
whether frequency had an impact on the assessments of the literalness of the PVs,
the effect of frequency on the compositionality judgements was revisited. Table 3
provides information about how PV, verb and adverb frequencies correlated with
the (non-)literalness ratings across different frequency classes of the PVs. The
correlations are expressed by the ρ values. The table presents also p-values to
state the statistical significance of each correlation.

The most frequent PV occurred 35,929 times and the least frequent sixteen
times70. PVs that occurred more than 1,000 times were considered to be frequent,
and PVs that occurred less than 100 times were considered to be infrequent.

It is clear that, regardless of the frequency class of the PV, the (non-)literalness
rating correlated somewhat weakly with the frequency of the PV and its compon-
ents. Therefore, the frequency of the PV, adverb and particle did not influence the

69http://www.eki.ee/dict/ekss/index.cgi?Q=ette+nägema (accessed 10.11.2018).
70The frequencies were calculated based on the newspaper subcorpora of ERC.
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Table 3: Effect of frequency on the (non-)literalness ratings. ρ = Spearman’s rank
correlation coefficient, p = corresponding p-value.

set of PVs PV adverb verb
ρ p ρ p ρ p

all 0.07 0.10 0.00 0.96 0.06 0.19
without frequent 0.08 0.15 0.04 0.53 0.08 0.16
without infrequent 0.07 0.16 –0.02 0.65 0.04 0.45

without frequent and infrequent 0.10 0.17 0.02 0.75 0.07 0.33
frequent 0.09 0.23 –0.09 0.20 –0.04 0.62
infrequent 0.01 0.93 0.07 0.53 0.01 0.34

literalness ratings of the PVs. However, as the correlations were not statistically
significant at the p = 0.05 level or based on (non-)literalness ratings, it cannot be
claimed that frequency does or does not influence the compositionality ratings of
Estonian PVs in general.

4.3.5 Summary of the literalness ratings
The literalness ratings for Estonian PVswere initially necessary in order to develop
a classifier to predict the literal versus the non-literal usage of Estonian PVs. The
averaged literalness ratings were applied to determine the values of the target class
of the classifier suggested in Chapter 6.

Three annotators with linguistic backgrounds evaluated 1,838 sentences on
a six-point scale. The evaluation of the annotations showed that the ratings for
1,481 sentences could be used for further research because they did not cause
substantial disagreement amongst the annotators. The analysis of the excluded
sentences suggested that the main reasons for disagreement were the polysemy of
the components, insufficient context being provided within the sentences, and the
subjectivity of the task.

The overview of the PVs suggested that 144 evaluated PVs had several mean-
ings, often with different degrees of compositionality. This finding has important
implications because it suggests that, instead of the binary division of PVs, the
semantic compositionality should be treated as a scalar property of the PVs in
order to provide a comprehensive description of the formation of the meaning of
Estonian PVs. In addition, no statistically significant correlation between human
judgement and frequency was found.
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4.4 Comparison of the compositionality and literalness
ratings

This section compares the compositionality ratings (see Section 4.2) and the
(non-)literalness ratings (see Section 4.3). The datasets were intended to collect
annotations about the degree of compositionality of Estonian PVs. The funda-
mental differences in the datasets are discussed in the following section.

One of the main differences between the datasets was that the compositionality
dataset had one score per PV regardless of the number of meanings of the PV,
while the (non-)literalness ratings took the polysemy of the PVs into account.
Accordingly, the (non-)literalness ratings were assigned based on the context (the
sentences) in which the PVs appeared. Thus, the particular meaning of the PV that
was evaluated was generally clear. However, the compositionality scores did not
indicate the particular meaning of the PV, but provided a general score for the PV.
However, it was assumed that the annotators assessed the predominant (frequent)
meanings of the PVs. Overall, the differences resulted in a situation in which
some PVs had a different number of scores. For example, the PV kinni minema
‘to close/go to prison’ had one compositionality score, but three (non-)literalness
ratings.

The second difference was the scale of measurement according to which the
degree of compositionality was evaluated. The compositionality ratings were as-
signed on a scale from 1–5 (from fully non-compositional to fully compositional),
but the (non-)literalness ratings were assessed using a scale from 0–5 (from fully
compositional to fully non-compositional).

The third difference was the way in which the annotations were collected. The
compositionality ratings were crowdsourced, and the aim was to obtain as many
evaluations as possible. The backgrounds of the annotators are not known. The
(non-)literalness scoreswere assigned by three annotatorswho all had backgrounds
in linguistics. Furthermore, the annotators had more time to understand the task
and could ask questions during the annotation process. They also had the option
of changing their judgements before submitting their scores.

The differences were mainly due to the different aims of the datasets. The
compositionality rating was created to evaluate the DSM models that provided
vector representations of words. It was thus crucial to collect one rating per word,
and the use of an even-numbered scale was not required. The literalness scores
were collected for the binary classification of the literal versus the non-literal
usage of PVs. In this regard, an even-numbered scale proved useful. In addition,
it was necessary to identify the different meanings of PVs, as the classification of
the PVs was context-based. In summary, the datasets were distinct because the
ratings were created for different purposes (see Sections 4.2.1 and 4.3.1).

Distinctions among datasets imply that theremight be differences in the ratings
of the degrees of compositionality of the PVs. In order to determine the range of
differences, the degree of compositionality of the same PVs in the two datasets was
compared by examining the PVs that received similar assessments in both datasets.
An overview of these PVs is presented in Table 4. PVs with a high degree of
compositionality had a (non-)literalness rating of 0–1 and a compositionality rating
of 4–5; a moderate degree of compositionality is reflected in a (non-)literalness
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rating of 2–3 and a compositionality rating of 3. PVs with low degrees of
compositionality received a (non-)literalness rating of 4–5 and a compositionality
rating of 1–2.

Table 4: PVs with similar compositionality degrees in both datasets.

PVs with high compositionality degree
edasi jõudma ‘to get ahead/come out on top’; eemale tõukama ‘to push away/scare
off/repel’; ette andma ‘to put something in front of somebody/feed/specify’;
ette jõudma ‘to get ahead/outstrip/outdistance’; ette sattuma ‘to run across or
meet somebody or something on the way’; juurde tulema ‘to approach/accrue’;
järele kihutama ‘to chase’; järele vahtima ‘to stare after somebody’; kokku mon-
teerima ‘to assemble/edit video’; kokku taguma ‘to hit something together/put
something together in a hurry’; kokku valguma ‘to join/melt together’; lahti
siduma ‘to untie/unbind’; lahti voltima ‘to unfold/ unwrap’; läbi laskma ‘to let
through/pretermit’; läbi tuhnima ‘to ransack/scour’; läbi tungima ‘to penetrate/go
right through’; läbi uurima ‘to explore/go through something’; läbi vaatama ‘to
look through/examine’; maha minema ‘to get off’; maha põlema ‘to burn down’;
maha suruma ‘to suppress/bottle up/allay’; maha tõmbama ‘to cross off/out/pull
down’; mööda käima ‘to bypass’; sisse kallama ‘to pour in/drink up’; sisse kut-
suma ‘to invite in’, ; sisse torkama ‘to stick in’; sisse vaatama ‘to look inside/visit
something for a moment’; tagant tõukama ‘to push from behind/boost’; tagasi
minema ‘to go back’; tagasi tulema ‘to come back’; tagasi vaatama ‘to look back’;
välja ajama ‘to send off/out’; välja ilmuma ‘to debouch/emerge/appear unexpec-
tedly’; välja jääma ‘to stay out’; välja paiskama ‘to throw something out from
somewhere/blurt out something’; välja pilduma ‘to throw something out from
somewhere’; välja pistma ‘to stick out’; välja pääsema ‘to get out of somewhere’;
välja rändama ‘to emigrate’; välja sulama ‘to melt out of something’; üle tooma
‘to carry something/adapt/change the location of something’; ümber paigutama ‘to
relocate’
PVs with moderate compositionality degree
ette kandma ‘to report/to serve’; ette küsima ‘to ask in advance’; läbi kaaluma
‘to weigh up/consider’; maha kõmmutama ‘to shoot dead’; maha käima ‘to go
down/run down/go/degenerate’; peale tungima ‘to invade’; välja kuulutama ‘to
announce’; välja registreerima ‘to check/sign out’; üles kasvama ‘to grow up’; üles
peksma ‘to beat/wake up somebody’; üles seadma ‘to set up’; üles soojenema ‘to
warm up’; ümber kehastuma ‘to incarnate’; ümber mõtlema ‘to change mind’
PVs with low compositionality degree
kinni maksma ‘to pay/stump up’; läbi viima ‘to conduct/pass through’; taga ki-
hutama ‘to encourage/chase’; vahele kukkuma ‘to fall between/get caught’; vastu
põrutama ‘to snap back at somebody’; vastu raiuma ‘to object/to dispute’; välja
nägema ‘to appear to your eyes/see outside’; üles kloppima ‘to fix/beat/fluff’

Sixty-four of the 157 PVs were evaluated as having a similar degree of com-
positionality in both datasets. It is important to note that most PVs had multiple
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(non-)literalness scores, but only one is reflected in the comparison. While the
meanings of the PVs were not determined in the compositionality dataset, it can
be assumed that the meanings reflected by the degrees of compositionality of the
PVs in Table 4 were the most predominant. For example, the annotators of the
(non-)literalness dataset identified two readings for the PV eemale tõukama ‘to
push away/scare off/repel’. Onemeaning (‘to push away’) was assigned an average
score of 0 (fully compositional), while the second meaning (‘to scare off’) was
assigned a score of 3.0 (more non-compositional than compositional). According
to the compositionality ratings, it was the most compositional PV in the dataset.
Hence, the predominant meaning of eemale tõukama is fully compositional inter-
pretation of ‘to push away’. The PV maha suruma ‘to suppress/bottle up/allay’
received four (non-)literalness ratings – three of them pointed to the meanings be-
ing more non-compositional than compositional. One meaning (‘to press down’,
down expressing direction) is fully compositional. The compositionality rating for
maha surumawas 3.5, indicating that the annotators did not think that the meaning
was fully compositional, but that it was considered to be more compositional than
non-compositional. Hence, it can be assumed that the compositional meaning of
maha suruma was not as predominant as it was for eemale tõukama.

The PVs with moderate degrees of compositionality were often PVs with
multiple meanings in the EED and (non-)literalness ratings. For example, ette
kandma ‘to report/to serve’ has three meanings in the EED71, the annotators of the
(non-)literalness dataset identified four, and it received a compositionality rating of
3.3. Maha käima ‘to go down/run down/go/degenerate’ has three meanings in the
EED72, and received two (non-)literalness ratings and a compositionality rating
of 2.5. Hence, it can be assumed that none of these meanings was predominant.
However, not all PVs with moderate compositionality have several meanings. For
example, the (non-)literalness score for the PV välja registreerima was 3.33, and
the compositionality rating was 3.3. With one meaning in the EED73 and one
(non-)literalness rating, it can be claimed that some PVs fall in the middle of the
compositionality scale.

The PVs with low degrees of compositionality have meanings that are not
the sum of the meaning of their components. It can be speculated that these
PVs have one fully non-compositional meaning. For example, vastu raiuma
has one meaning in the EED74, and was assigned one (non-)literalness rating,
indicating that the meaning ‘to object/to dispute’ is fully non-compositional. The
PV välja nägema has two meanings in the EED75 – ‘to appear to your eyes’ and
‘to see outside’ – and it received two (non-)literalness scores (0.33 and 5) but,
according to the compositionality rating of 1.9, the non-compositional meaning
was predominant. Furthermore, 13 of the 14 sentences containing välja nägema
in the (non-)literalness dataset conveyed the non-compositional meaning of this
PV.

Overall, the compositionality and (non-)literalness ratings both contained in-

71http://www.eki.ee/dict/ekss/index.cgi?Q=ette+kandma (accessed 10.11.2018).
72http://www.eki.ee/dict/ekss/index.cgi?Q=maha+käima (accessed 10.11.2018).
73http://www.eki.ee/dict/ekss/index.cgi?Q=välja+registreerima (accessed 10.11.2018).
74http://www.eki.ee/dict/ekss/index.cgi?Q=vastu+raiuma (accessed 10.11.2018).
75http://www.eki.ee/dict/ekss/index.cgi?Q=välja+nägema (accessed 10.11.2018).
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formation about the degree of compositionality of Estonian PVs. As the purposes
of the datasets were not the same, they were created differently. Hence, the
datasets are not fully comparable. Nevertheless, 64 PVs had similar degrees of
compositionality in both datasets. As a result, the approximate position of these
PVs on a scale from compositional to non-compositional can be claimed with a
higher degree of confidence than can the other PVs.

4.5 Abstractness/concreteness ratings for Estonian
In this section, the dataset of abstractness/concreteness ratings for Estonian lem-
mas76 is described. The purpose and creation of this dataset are explained in the
first subsection. The overview of the content is presented in the second section.

4.5.1 Purpose and creation
Turney et al. (2011) hypothesised that the metaphorical or literal usage of a
word was predictable from the degree of abstractness of its context. Therefore,
it has been discussed that the abstractness of the surrounding words helps to
predict whether the meaning of an expression is compositional (literal) or non-
compositional (non-literal) (e.g. Tsvetkov et al. 2014). In order to study the
influence of the abstractness of context in the usage of Estonian PVs, a dataset of
abstractness/concreteness ratings for Estonian lemmas was required.

Estonian abstractness/concreteness ratingswere created following themethods
of Köper and Schulte im Walde (2016a), who presented a collection of 350,000
lemmatised German words rated according to four psycholinguistic affective at-
tributes. Although they had several affective ratings for German previously, they
used an algorithm from Turney and Littman (2003) and word representations to
create large-scale abstractness ratings for German in order to increase the num-
ber of available training instances. As Köper and Schulte im Walde (2016a)
demonstrated in their paper, the automatically created ratings correlated highly
with human ratings. The authors translated the English abstractness ratings from
Brysbaert et al. (2014) to create the dataset. The ratings for 37,058 English words
and 2,896 two-word expressions were obtained from over 4,000 participants by
means of a norming study using Internet crowdsourcing for the data collection.
The authorsmade a distinction between experience-basedmeaning acquisition and
language-based meaning acquisition, and stated that experiences must not be lim-
ited to the visual modality. They used a five-point rating scale on which 1 denoted
an abstract, language-based meaning and 5 denoted a concrete, experience-based
meaning. (Brysbaert et al. 2014)

The English-Estonian MT dictionary77 was used to translate the words from
English to Estonian for the Estonian dataset. After the missing translations and
two-word expressions were removed, the list contained abstractness/concreteness
ratings for 24,891 words. The word embeddings for words from a 170-million
token corpus were calculated; based on the word similarity, 243,674 Estonian

76The dataset is freely accessible athttps://github.com/eleriaedmaa/compositionality.
77http://www.eki.ee/dict/ies/index.cgi (accessed 13.03.2017).
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lemmas received abstractness ratings on a scale [0, 10]78 ranging from abstract to
concrete.

The final version of the dataset is at the time of writing the largest resource for
Estonian that contains information about the abstractness/concreteness of Estonian
lemmas.

4.5.2 Analysis of the abstractness ratings
Of the 243,674 lemmas represented in the abstractness/concreteness dataset, ap-
proximately 75% are nouns, 9% are adjectives, 5% are numerals, 4% are verbs,
1% are adverbs79. The rest of the lemmas are abbreviations and other POS. Table
5 shows the 10 most concrete nouns, adjectives, verbs and adverbs, as well as their
abstractness/concreteness ratings.

Table 5: Overview of the most concrete lemmas.

noun rating adjective rating
reklaamtahvel ‘billboard’ 9.90 250grammine ‘50-gram’ 8.98
küpsisepakk ‘pack of cookies’ 9.85 päikesekuivatatud ‘sun-dried’ 8.92
auto ‘car’ 9.80 sissetehtud ‘conserved’ 8.66
videomagnetofon ‘video tape recorder’ 9.66 25kilone ‘25-kilogram’ 8.65
apelsin ‘orange’ 9.57 koduküpsetatud ‘home-baked’ 8.62
jääkaru ‘polar bear’ 9.52 kurvasilmne ‘sad-eyed’ 8.56
tomat ‘tomato’ 9.51 leelisevaba ‘alkali-free’ 8.52
päevalilleseeme ‘sunflower seed’ 9.48 nööbitav ‘buttoned’ 8.49
baarilett ‘bar counter’ 9.47 üheksakorruseline ‘nine-storey’ 8.45
banaan ‘banana’ 9.44 kaheksakilone ‘eight-kilo’ 8.44

verb rating adverb rating
ribastama ‘to cut into strips’ 8.69 praetult ‘fried’ 8.29
röstima ‘to toast’ 8.62 pakitult ‘wrapped’ 8.28
riisuma ‘to rake’ 8.51 jaapanipäraselt ‘Japanese-styled’ 8.27
idanema ‘to sprout’ 8.44 kooritult ‘peeled’ 8.20
kärbatama ‘to wither’ 8.40 lebavalt ‘reposed’ 8.01
sülitama ‘to spit’ 8.28 jahtunult ‘cooled down’ 7.89
paneerima ‘to flour’ 8.21 kalligraafiliselt ‘calligraphically’ 7.84
suitsetama ‘to smoke’ 8.12 prantsuspäraselt ‘French-styled’ 7.81
raseerima ‘to shave’ 8.10 lõigatult ‘cutted’ 7.78
viilutama ‘to slice’ 8.08 hiinapäraselt ‘Chinese-styled’ 7.76

The most concrete lemmas are nouns, with an average abstractness of more
than nine. The most concrete nouns are reklaamtahvel, küpsisepakk and auto.

78The explanation of this assignment of rating scores for each word and how the scores were
rescaled numerically within [0, 10] was provided by Köper and Schulte im Walde (2016a).

79The statistics are based on the analysis provided by the Vabamorf morphological analyser.
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Most of the concrete adjectives express a very specific numeral value, such as
250grammine, 25kilone and üheksakorruseline. Concrete verbs also express spe-
cific actions, such as ribastama, riisuma and raseerima. It is interesting that
many of them are connected somehow to cooking. The most concrete adverbs are
praetult and pakitult, expressing extremely definite forms.

Table 6 presents the most abstract nouns, adjectives, verbs and adverbs in the
dataset. The most abstract lemma is selliseltwith a score of 0.00, but its synonyms
niimoodi, niiviisi and nõnda also have ratings indicating highly abstract meanings.
Most of the abstract verbs are relatively idiosyncratic, such as tunduma, eeldama,
lootma and eelistama, expressing the subject’s feelings and opinions. The most
abstract nouns mainly express human qualities that are not generally measurable,
such as ausus, aatelisus and headus. The abstract adjectives also express highly
subjective concepts – examples include jõukohane, otstarbekas and ülioluline.

Table 6: Overview of the most abstract lemmas.

noun rating adjective rating
lõplikkus ‘finiteness’ 0.47 jõukohane ‘feasible’ 0.65
ausus ‘honesty 0.47 esmatähtis ‘overriding’ 0.65
ratsionaalsus ‘rationality 0.49 otstarbekas ‘expedient’ 0.67
omakasupüüdmatus ‘selflessness’ 0.50 väheusutav ‘incredible’ 0.71
jumalikkus ‘divinity’ 0.50 väljendamatu ‘inexpressible 0.71
aatelisus ‘idealism’ 0.60 kantilik ‘Kantian’ 0.72
headus ‘goodness’ 0.60 ebareaalne ‘unrealistic’ 0.73
usutavus ‘believability’ 0.60 ülioluline ‘crucial’ 0.74
igavikulisus ‘perpetuity’ 0.61 ontoloogiline ‘ontological’ 0.74
püüd ‘endeavor’ 0.64 mõistusevastane ‘irrational’ 0.76

verb rating adverb rating
välistama ‘to exclude’ 0.69 selliselt ‘like that’ 0.00
arvestama ‘to take into account’ 0.80 niimoodi ‘like that’ 0.10
võima ‘can, may’ 0.85 niiviisi ‘like that’ 0.25
usaldama ‘to trust’ 0.86 lõpmatult ‘infinitely’ 0.31
vihjama ‘to hint’ 0.91 nõnda ‘so, thus’ 0.35
tunduma ‘to feel’ 0.92 ometi ‘yet’ 0.35
eeldama ‘to assume’ 0.93 seepärast ‘therefore’ 0.36
lootma ‘to hope’ 0.96 küllalt ‘enough’ 0.38
eelistama ‘to prefer’ 0.96 seetõttu ‘therefore’ 0.40
sundima ‘to force’ 0.97 paraku ‘unfortunately’ 0.41

The overview of the most concrete and abstract lemmas allows to assume that
the quality of the dataset is not particularly low. However, the evaluation of the
dataset is challenging at present because Estonian lacks a similar resource for
affective ratings. Nevertheless, it is possible to highlight some aspects that should
be taken into account prior to using it in any other research.

The dataset includes polysemous lemmas, and sense disambiguation is not
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employed. This means that the dataset does not include information evaluating
the sense of the polysemous words. For example, the dataset does not indicate
which meaning of the highly polysemous verb saama to get/receive/have’ is eval-
uated. In addition, information about the POS is not provided; thus, homonymous
lemmas are not identifiable. For example, the lemma või ‘butter/or/so’ has an
abstractness/concreteness rating of 6.27, but it is not possible to detect which POS
or meaning the rating represents.

Although the resource has its drawbacks, it still meets the general conditions
suggested by Brysbaert et al. (2014) – concrete words refer to things and actions
one can experience directly through one of the five senses (smell, taste, touch,
hearing or sight), while abstract words refer to meanings that can be defined by
other words. All the other words fall between these two extremes.

To conclude, these data must be interpreted with caution because the evalu-
ation of the abstractness/concreteness ratings is not provided due to the lack of
resources and competence. The aim of the dataset was to obtain relatively valid
abstractness/concreteness ratings in order to use them for the classification task in-
troduced in Chapter 6. The appropriate gold standard of abstractness/concreteness
ratings should be based on human judgements, andmust be preceded by exhaustive
study of psycholinguistic and memory research. It is hoped that such a resource
of affective ratings for Estonian will be created in the near future.
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5 DETECTING THE COMPOSITIONALITY OF PARTICLE
VERBS

In this chapter, the experiment for detecting the compositionality of Estonian PVs
by applying DSMs is described80. The theoretical background to the distributional
semantics, semantic similarity and applied methods was provided in Section 3.2.

The approach of detecting the degree of compositionality of PVs bymeasuring
the similarity between the PV and its components was adopted from Bott and
Schulte im Walde (2014), who hypothesised that the similar context of a PV and
its base verb implied a similarity in their meanings. Thus, the similarity scoremust
indicate which PVs are more compositional than others. The approach itself is not
new and has been used to detect, for example, English phrasal verbs (McCarthy
et al. 2003) and noun compounds (Reddy et al. 2011b). The verbal component of
the compositional PV is considered to be a substantial and meaningful component
of the PV (Erelt et al. 1993), and the particle adds a connotation (for example,
perfectivity or state). This definition implies that the compositionality of the PV
can be detected by measuring the similarity between the verb and PV.

The experiments introduced in this section are a continuation of the pilot study
to detect the degree of compositionality of theEstonian PVs usingword embedding
models (Aedmaa 2017)81. The comparison of the results from the previous
research and of the current study are presented in Section 5.4.3. The multi-
sense embedding models were not used for the task previously and are somewhat
experimental. However, the sense representations were suggested previously in
the compositionality studies on other languages (e.g. Reddy et al. 2011a; Kober
et al. 2017; Köper and Schulte im Walde 2017b). This work shares the main idea
of these studies, which was to determine the intended meaning of the linguistic
unit and apply it in order to detect the compositionality. The results of employing
multi-sense embeddings for compositionality predictions of Estonian PVs are
discussed in comparison to previous studies in Section 5.5.3.

The structure of the chapter takes the form of six sections. The first Sec-
tion 5.1 provides information about the applied models and describes how these
models were evaluated. Section 5.2 provides an introductory comparison of the
compositionality predictions of the word and multi-sense embedding models. The
primary results are presented, and the effect of frequency on the models trained
with default settings is discussed. The impact of parameters on the quality of pre-
dictions is explored in Section 5.3. The results of the best word and multi-sense
embedding models are then analysed in Sections 5.4 and 5.5, respectively. The
detection of the degrees of compositionality of the PVs via the use of DSMs is
discussed and conclusions are drawn in Section 5.6.

80All the trained embeddings are publicly available at https://github.com/eleriaedmaa/
embeddings.

81A brief overview of the results of this study is provided in Section 2.4.1.
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5.1 Experimental setup and evaluation
In the following experiments, the degree of compositionality of the Estonian PVs
was determined by the similarity between the PVs and their base verbs. The
similarity is expressed by the value of the CS (see Section 3.2.2), which reflects
the similarity between two vectors that were created using word2vec (see Section
3.2.2.1) or SenseGram (see Section 3.2.2.2). The similarities between vectors
were retrieved using Gensim.

All the models were trained82 on lemmatised etTenTen corpus introduced in
Section 4.1. As the components of the PVs did not always appear in the same order
adjacent to each other, the corpus was modified prior to training the embeddings.
Specifically, the POS information was used to detect the co-occurrence of an
adverb and a verb in the same clause. If they were not adjacent to each other, the
position of the adverb was changed to precede a verb. In the sentences in which
the verb was followed by an adverb, the order of the PV components was changed
in such a way that an adverb would precede a verb. After all the components of
the potential PVs were placed in the same order (side by side), the adverbs and
verbs were concatenated using an underscore. Therefore, the format of the PVs
is ‘adverb_verb’ in the input corpora files. Overall, the goal of reordering the
PV components was to be able to calculate the embeddings for as many PVs as
possible. The PVs were treated as single units, and the vector of a verb did not
include the context of the PV and represents the meaning it possesses individually.

As mentioned previously (see Sections 3.2.2.1 and 3.2.2.2), word2vec was
applied to train models for word vectors, and SenseGram for multi-sense embed-
dings. Word2vec and SenseGram can both use two architectures, namely CBOW
and Skip-gram. In addition, a set of parameters was used for configuration prior
to the training of these models. Despite the fact that there are general recom-
mendations concerning how the parameters should be set, this depends largely
on the data and on the task. Hence, how the parameters influenced the quality
of the models predicting the compositionality of Estonian PVs is unknown. Ac-
cordingly, after the evaluation of the default models is presented in Section 5.2),
the influence of the parameters on the results is examined in Section 5.3). The
parameter configurations for the default models are as follows: 300 dimensions, a
window size of 10, a minimum-count threshold of 10, and 5 iterations.

The evaluation of the models was conducted by comparing the results to
the human-annotated datasets. The comparison is expressed by the value of
Spearman’s rank correlation coefficient (ρ). The machine-created rankings of the
PVs were based on the CS values between the PVs and their verbs. A higher
CS value indicates a greater degree of compositionality. In addition, for each
correlation, probability value (p-value, p) is given.

Sense embeddings imply that one linguistic unit may have multiple vector
representations. For the assessment, the PVs were ranked based on the CS value
between the sense vectors of the PVs and the base verbs. In the event of having
multiple senses, themost probable (first) sense vector was taken into account. This
choicewasmotivated by the fact that, when collecting the human annotations of PV

82This work was carried out in part in the High Performance Computing Center of the University
of Tartu.
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compositionality, it was expected that they would evaluate the most predominant
meaning. Thus, it was presumed that the ranking containing the most probable
meanings of PVs would correlate best with the human judgements. The analysis
of the results is presented in Section 5.5, in which some examples showing how
this choice could influence the results are discussed.

The human-annotated ranking (PVComp) was based on the compositionality
ratings described in detail in Section 4.2. The PVs were ranked according to
the average compositionality scores allocated by human annotators. The second
ranking (PVLit) was according to the (non-)literalness ratings described in Section
4.3. The PVs were ranked based on the medians of the average literalness scores.
The average literalness scores for the different meanings of the same PV were
combined in order to avoid, preference for one meaning while still giving more
weight to themore frequentmeaning. In fact, as the sentences for the PVLit dataset
were extracted automatically, it is highly likely that the more frequent meanings
were represented in more sentences. Hence, without proving that predominant
meanings are always more frequent than are others, this was anticipated when
creating the datasets and rankings used for the evaluation of the computational
models.

The highly compositional PVs were given a high score in the PVComp dataset,
but a low score in the PVLit dataset. As the PVComp dataset was created in order
to evaluate the distributional models, it contained ratings for 157 PVs. These
are the PVs that did not cause difficulties for the human annotators (see Section
4.2.6). The PVLit ranking was extracted from the (non-)literalness ratings dataset
(see Section 4.3). The goal was to obtain median (non-)literalness scores for the
same 157 PVs that formed part of the PVComp dataset. However, as some PVs
caused disagreement amongst the annotators (see Section 4.3.3), only 133 PVs
were given scores. Therefore, the assessment was conducted on the PVComp
ranking of 157 PVs and the PVLit ranking of 133 PVs. The correlation between
the two rankings was ρ = –0.50 which was statistically significant (p < 0.05).
The negative correlation was caused by the difference in the scales, as explained
above.

5.2 An introductory evaluation of the compositionality
predictions

In this section, an overview of the compositionality predictions of the models
trained to learn word and multi-sense embeddings with default settings is presen-
ted. The goal is to present a preliminary analysis of the models, and to compare
the results of the CBOW and Skip-gram models. Table 7 presents correlations (ρ)
between the human-annotated rankings and the predictions of the models. Both
CBOW and Skip-gram were trained to learn word and multi-sense embeddings
with the following default parameter configurations – 300 dimensions, a window
size of 5, a minimum-count threshold of 10 and 5 iterations.

The correlation coefficients suggest that both word embedding models had a
similar correlation (ρ = 0.16) to that of the PVComp. The correlation with the
Skip-gram model’s predictions was statistically significant (p < 0.05), but the
correlation with the CBOW model predictions was not. The predictions of both
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Table 7: Results for the models trained with default settings, ρ – Spearman’s rank
correlation coefficient, p – p-value.

word embeddings

model dimensions window minimum- iterations PVComp PVLit
count ρ p ρ p

CBOW 300 5 10 5 0.16 0.05 –0.42 <0.05
Skip-gram 0.16 <0.05 –0.39 <0.05

multi-sense embeddings

model dimensions window minimum- iterations PVComp PVLit
count ρ p ρ p

CBOW 300 5 10 5 0.13 0.10 –0.26 <0.05
Skip-gram 0.06 0.47 –0.17 0.05

word embedding models correlated moderately and statistically significantly with
the PVLit. The CBOW model predictions had a marginally stronger correlation
(ρ = –0.42).

The predictions of the multi-sense embedding models correlated weakly with
the human-annotated rankings, as opposed to the predictions of the word embed-
ding models. The correlations with the PVComp dataset were relatively weak, and
were statistically not significant at the p = 0.05 level. In fact, the predictions of
the Skip-gram model did not correlate statistically significantly with the human-
annotated rankings. Hence, the best predictions were provided by the CBOW
model (ρ = –0.26), and were statistically significant (p < 0.05). In addition,
Wilcoxon signed-rank test83 (Rey and Neuhäuser 2011) shows that the differences
between all models are statistically significant at the p = 0.05 level.

The effect of frequency on human compositionality judgements was analysed
in Sections 4.2 and 4.3. No significant correlation between PV frequency and
human compositionality judgements was detected. In the following section, the
influence of the PV frequency on both word and multi-sense embedding models’
compositionality predictions is studied. Figure 14 shows the correlations between
PV frequency and the compositionality predictions of the word and multi-sense
models.

In Figure 14, it can be seen that, in comparison to the word embedding
models, multi-sense embeddings produced higher CS values – the range of values
produced by the word embedding models was from 0.13 to 0.84, while the range
of values produced by the multi-sense embedding models was from –0.08 to 0.99.
The range of CS scores was particularly broad for the multi-sense embedding
model that used the CBOW architecture. Thus, it can be assumed that this model
predicted better the set of PVs (or their most probable meanings) that were more
compositional than others.

83Wilcoxon signed-rank test is used from now on to determine whether the results for different
word and multi-sense embedding models are statistically different from each other.
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In comparison to the Skip-gram models, the predictions of the CBOWmodels
correlated weakly with the PV frequency. The effect of frequency was the weakest
for the CBOW word embedding model (ρ = –0.15) and the strongest for the
Skip-gram multi-sense embedding model (ρ = –0.42). The CBOW multi-sense
embeddingmodel correlated slightlymore stronglywith the frequency (ρ= –0.18)
than did the CBOW word embedding model. In comparison to the Skip-gram
multi-sense embedding model (ρ = –0.40), the association between frequency
and the predictions of the Skip-gram word embedding model was slightly weaker.
The predictions of all the models correlated significantly with the PV frequency
(p < 0.05). All the correlation coefficient values were negative, indicating that
the CS value decreases as the PV frequency increases. Therefore, the models,
particularly the Skip-gram models, tended to evaluate the infrequent PVs as being
more compositional than the frequent ones.
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Figure 14: The correlation between the frequency and compositionality predic-
tions of the word and multi-sense embedding models.

Overall, the preliminary results suggested that the word and multi-sense em-
bedding models trained using the CBOW architecture provided slightly better
compositionality predictions than did the Skip-gram architecture. As the differ-
ences betweenmodels are statistically significant, it is thus important what settings
are used for training embeddings. The CBOWmodels were influenced less by the
PV frequency. Nevertheless, the primary results suggested that the CS values of
the word and multi-sense embeddings could be used to predict the degree of com-
positionality of the PVs, but the results must be improved. Therefore, additional
experiments need to be conducted in order to develop a model that provides the
best possible results for predicting the compositionality of Estonian PVs. These
experiments are described in the following sections of this chapter. The influence
of the PV frequency on the compositionality predictions is also studied in Sec-
tions 5.4.2 and 5.5.2 by investigating the correlation between PV frequency and
the system compositionality predictions across different frequency ranges.
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5.3 Impact of parameters on compositionality predictions
In order to study the influence of the parameters, the word and multi-sense embed-
ding models were trained using various parameter configurations. Word2vec was
used for the word embedding models. The SenseGram models used the output
(word embeddings) of the word2vec models to train multi-sense embeddings. In
other words, the models trained with word2vec and SenseGram used the same
parameter settings. The parameters under investigation were described in Section
3.2.2.1, including the number of dimensions, the size of the context window, the
minimum-count threshold and the number of training iterations.

5.3.1 Impact of the number of dimensions
In this section, the impact of the number of dimensions on the prediction quality
of the word and multi-sense embeddings is analysed. Based on the general recom-
mendations (see Section 3.2.2.1), it was hypothesised that the compositionality
predictions of models trained with a higher vector dimensionality would have a
stronger correlation with the human-annotated rankings than would the models
trained with lower dimensionality. While the default models had a vector size of
300, CBOW and Skip-gram models with dimensions of 150 and 450 were trained
for learning word and multi-sense embeddings. Table 8 shows the results of the
word embedding models. The ρ values indicate a correlation between human-
annotated rankings and the compositionality predictions of the models trained
with various dimensionality values.

Table 8: The influence of the number of dimensions on word embedding models,
ρ – Spearman’s rank correlation coefficient, p – p-value.

model dimensions PVComp PVLit
ρ p ρ p

CBOW
150 0.17 <0.05 –0.44 <0.05
300 0.16 0.05 –0.42 <0.05
450 0.17 0.05 –0.43 <0.05

Skip-gram
150 0.13 0.10 –0.38 <0.05
300 0.16 <0.05 –0.39 <0.05
450 0.15 0.07 –0.39 <0.05

The correlation values demonstrate that the number of vector dimensions had
a slight impact on the results of the models. However, the Wilcoxon signed-rank
test indicates that the differences between all the possible pairs of models are
statistically significant at the p = 0.05 level. Therefore, it can be concluded that
the number of dimensions influenced the results of word embedding models.

The correlations between the CBOW model’s predictions and the PVComp
were similarly weak despite the number of dimensions. The only statistically
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significant (p< 0.05) correlation was between the predictions of the CBOWmodel
trained with 150 dimensions and the PVComp. The predictions of the CBOW
models had moderate correlations with the PVLit ranking, and the correlations
were also statistically significant (p< 0.05). Minimum changes in the correlation
coefficient values indicate that the best results were obtained when the CBOW
model was trained with 150 dimensions.

Both human-annotated rankings had slightly weaker correlations with the
Skip-grammodel’s predictions than they did with the CBOWmodel’s predictions.
Nonetheless, the number of dimensions did not influence the results to a significant
extent. The predictions of the Skip-gram model trained with a default value of
dimensions (300) correlatedwith the PVComp statistically significantly (p< 0.05).
In comparison to the PVLit, the Skip-gram models trained with 300 and 450
dimensions had the same results. Therefore, there was no reason to train the
model with 450 dimensions instead of 300, but training with 150 dimensions
might have produced less accurate predictions.

Regardless of the model used, the compositionality predictions correlated bet-
ter with the PVLit ranking than they did with the PVComp. The correlations
between the compositionality predictions and the PVLit were statistically signi-
ficant (p< 0.05). The CBOWmodel for word embeddings should be trained with
a vector size of 150 and the Skip-gram model with at least size 300, whereas other
parameters maintained their default values.

Table 9 shows the results of the CBOW and Skip-gram models trained to
learn multi-sense embeddings. The ρ values indicate the correlations between the
human-annotated rankings and the compositionality predictions of themulti-sense
embedding models trained with 150, 300 and 450 dimensions.

Table 9: The influence of the number of dimensions on the multi-sense embedding
models, ρ – Spearman’s rank correlation coefficient, p – p-value.

model dimensions PVComp PVLit
ρ p ρ p

CBOW
150 0.10 0.21 –0.33 <0.05
300 0.13 0.10 –0.26 <0.05
450 0.11 0.19 –0.30 <0.05

Skip-gram
150 0.05 0.54 –0.20 <0.05
300 0.06 0.47 –0.17 0.05
450 0.04 0.61 –0.18 0.05

The predictions of the CBOW model trained with the smallest number of
dimensions correlatedwith the human-annotated rankings better than did any other
model (ρ= –0.33). While the correlationswith the PVCompwere somewhat weak
and statistically not significant at the p= 0.05 level, the predictions correlatedmore
strongly and statistically significantly (p < 0.05) with the PVLit. However, the
difference between the CBOWmodels was not statistically significant (p < 0.05).
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The predictions of the Skip-gram models also had weak and statistically non-
significant correlations with the PVComp ranking at the p = 0.05 level regardless
of the number of dimensions of the models. In addition, the relationship to the
PVLit dataset was weaker than was that of the CBOW models. The Skip-gram
model trained with 150 dimensions obtained the strongest correlation (ρ= –0.20),
which was not as strong as was the correlation between the 150-dimensional
CBOWmodel and the PVLit. Wilcoxon’s signed-rank test indicated that the Skip-
gram multi-sense embedding models differed significantly from each other at the
p = 0.05 level.

In summary, the size of the vector had aweak impact on the results. TheCBOW
model for learning word and multi-sense embeddings should be trained with 150
dimensions as opposed to dimensions of 300 or 450. However, the number of
dimensions has insignificant impact on the multi-sense embeddings trained with
CBOW. The Skip-gram model obtained the best results when it was trained with
around 300 dimensions for learning word embeddings, and 150 dimensions for
learning multi-sense embeddings. Overall, to obtain the best predictions, the word
and multi-sense embeddings models should be trained using CBOW architecture
and 150 dimensions. Therefore, the assumption that a higher dimensionality
implied better results was inaccurate.

5.3.2 Impact of the window size
The influence of the window size on the quality of word and multi-sense em-
beddings is examined in this section. Based on the suggestions of word2vec’s
authors, it was expected that the default setting (window size of 5) worked best
for the CBOW model, but should be increased up to 10 for the Skip-gram model
(see Section 3.2.2.1). In addition to the default model with a window size of 5,
both the CBOW and the Skip-gram models were trained with window sizes of 10
and 15. Table 10 shows the correlations (ρ) between the predictions of the word
embedding models trained with various window sizes of 5, 10 and 15 and the
human-annotated rankings.

Table 10: The influence of the window size on word embedding models, ρ –
Spearman’s rank correlation coefficient, p – p-value.

model window size PVComp PVLit
ρ p ρ p

CBOW
5 0.16 0.05 –0.42 <0.05
10 0.17 <0.05 –0.44 <0.05
15 0.17 <0.05 –0.46 <0.05

Skip-gram
5 0.16 <0.05 –0.39 <0.05
10 0.15 0.06 –0.39 <0.05
15 0.15 0.07 –0.38 <0.05
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The correlation values indicate that the window size influenced slightly the
results of the models. However, the Wilcoxon signed-rank test between all the
model pairs indicates that the models differed statistically significantly from each
other at the p = 0.05 level. The CBOW model-based rankings had a relatively
weak correlationwith the PVComp ranking, but the correlations formodels trained
with a window size of 10 and 15 were statistically significant (p < 0.05). The
strongest correlation (ρ = –0.46) was found between PVLit and the predictions
of the CBOW model that was trained with a window size of 15. Although the
differences in the correlation of the values of models trained with various window
size values were not significant, a larger window ensured better results.

The predictions of the Skip-gram models had somewhat weaker correlations
with human-annotated rankings than did the predictions of the CBOWmodels. A
model trained with a window size of 10 or 15 did not achieve better results than did
a model trained with a window size of 5. Therefore, smaller window sizes resulted
in stronger correlations. In summary, relatively small changes in the correlation
coefficient values indicated that the window size did not have a remarkable impact
on the results; however, the Skip-gram model should be trained with a window
size of 5 or 10, but not with a window size of 15.

Table 11 presents the results of the multi-sense embedding models trained
with window sizes of 5 (default), 10 and 15. The ρ values indicate the correlation
between the human-annotated rankings and the predictions of the multi-sense
embedding models trained with various window sizes.

Table 11: The influence of the window size on multi-sense embedding models,
ρ – Spearman’s rank correlation coefficient, p – p-value.

model window size PVComp PVLit
ρ p ρ p

CBOW
5 0.13 0.10 –0.26 <0.05
10 0.14 0.08 –0.29 <0.05
15 0.15 0.07 –0.35 <0.05

Skip-gram
5 0.06 0.47 –0.17 0.05
10 0.06 0.47 –0.16 0.07
15 0.03 0.75 –0.16 0.07

The context window influenced the results of the CBOWmodels – as the win-
dow size increased, so did the strength of the correlations. Therefore, the model
trained with a window size of 15 produced the best predictions. However, the
Wilcoxon signed-rank test indicates that while all the other models differed signi-
ficantly (p < 0.05) from each other, no statistically significant difference between
the CBOW models trained with windows sizes of 10 and 15 was detected. The
correlations between the predictions and the PVComp were weak and statistically
not significant at the p = 0.05 level, but the predictions correlated significantly
(p < 0.05) with the PVLit ranking. In fact, the model trained with a window size
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of 15 obtained the strongest correlation with the PVLit in comparison to any other
multi-sense embedding model introduces thus far.

The Skip-gram models produced predictions that had weaker correlations
with the human-annotated rankings than did the CBOWmodels. The correlations
between the predictions of the Skip-gram models and the human-annotated rank-
ings were weak and statistically not significant at the p = 0.05 level. The impact
of the window size on the results was marginal, although models trained with a
window size of 5 obtained the strongest correlations.

The impact of the context window depended on whether the CBOW or the
Skip-gram was used – the results of the CBOW models were influenced more by
the window size value than were the predictions of the Skip-gram model. The
CBOW models should be trained with large window size, while the Skip-gram
models predicted the compositionality more accurately when a narrow context was
used. This finding was contrary to the earlier assumption that the CBOW model
would prefer narrower context than would the Skip-gram architecture. However,
the predictions weremore accurate when themodels were trained using the CBOW
architecture instead of the Skip-gram algorithm. For the best results, the models
should be trained with a window size of 15 rather than 5 or 10. However,
no statistically significant difference between the CBOW multi-sense embedding
models trained with window sizes of 10 and 15 was detected.

5.3.3 Impact of the minimum-count threshold
Theminimum-count threshold indicates the frequency of thewords that were taken
into account when training the embeddings. As some of the PVs in the study were
relatively infrequent, it was expected that, in order to obtain embeddings for all
the PVs, the threshold should be lower than the default setting (10) – at least down
to 5. Nonetheless, the quality of the embeddings did not necessarily improve
when the word-count threshold was low. This section explores how the minimum
threshold of word count influenced the compositionality predictions of the word
and multi-sense embedding models.

In addition to a minimum-count threshold of 10, both the CBOW and the
Skip-gram models were trained with thresholds of 5 and 15. Table 12 shows the
results of the word embedding models. The ρ values indicate the correlations
between the human-annotated rankings and the compositionality predictions of
models trained with various thresholds of word count.

The influence of the minimum-count threshold on the results was marginal.
The predictions of the CBOWmodel correlated weakly with the PVComp, and the
correlations were not statistically significant at the p= 0.05 level. The correlations
with the PVLit were the same for all the models regardless of the minimum-
count threshold value. However, the correlations (ρ = –0.42) were statistically
significant (p < 0.05). The minimum-count threshold value did not influence
the quality of the predictions of the CBOW model. Furthermore, the Wilcoxon
signed-rank test indicates that the differences between the CBOW models trained
with different minimum-count thresholds were not statistically significant at the
p = 0.05 level.
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Table 12: The influence of the minimum-count threshold on the word embedding
models, ρ – Spearman’s rank correlation coefficient, p – p-value.

model minimum-count PVComp PVLit
ρ p ρ p

CBOW
5 0.15 0.07 –0.42 <0.05
10 0.16 0.05 –0.42 <0.05
15 0.15 0.07 –0.42 <0.05

Skip-gram
5 0.13 0.11 –0.37 <0.05
10 0.16 <0.05 –0.39 <0.05
15 0.13 0.12 –0.39 <0.05

For the Skip-gram models, the strongest correlation with the PVComp was
obtained by the model trained with a word-count threshold of 10. In comparison
to the PVLit, the model trained with a frequency count of at least 10 obtained the
best predictions, and a higher threshold did not help to improve the results. As
the correlations between the prediction and both human-annotated rankings were
only statistically significant (p < 0.05) for the Skip-gram model trained with a
frequency count of 10, it may be concluded that this is the most suitable value for
training the Skip-gram model.

The minimum-count threshold value for both models should not be lower than
10. At the same time, the frequencies of the target PVs and the verbs need to be
taken into account. For example, themodels trainedwith thresholds of 5, 10 and 15
did not provide embeddings for one, three and five PVs, respectively. Therefore, in
order to obtain predictions for each PV, the threshold should be 4 because this was
the frequency of the most infrequent PV in the dataset. Overall, the word-count
threshold had a very weak impact on the results, but the differences between the
Skip-gram models trained with various thresholds are statistically significant.

The results of the multi-sense embedding models are presented in Table 13.
The ρ values express the correlations between the human-annotated rankings and
the predictions of the models trained with minimum-count thresholds of 5, 10 and
15.

The minimum-count threshold impacted slightly on the predictions of the
multi-sense embedding models. The predictions of the CBOW model correlated
weakly with the PVLit ranking, and the correlations were not significant at the
p = 0.05 level unless the model was trained with a minimum-count threshold of 5.
The correlations between the predictions of the CBOWmodel and the PVLit were
moderate and statistically significant (p < 0.05). The model with a minimum-
count threshold of 5 obtained the strongest correlation. However, the differences
between the CBOW models are not statistically significant at the p = 0.05 level.

The predictions of the Skip-grammodels correlated evenmoreweaklywith the
human-annotated rankings, and the relationships were not statistically significant.
However, the model trained with a threshold of 10 obtained slightly better results
than did the models trained with thresholds of 5 and 15. Nevertheless, the impact
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Table 13: The influence of the minimum-count threshold on the multi-sense
embedding models, ρ – Spearman’s rank correlation coefficient, p – p-value.

model minimum-count PVComp PVLit
ρ p ρ p

CBOW
5 0.17 <0.05 –0.32 <0.05
10 0.13 0.10 –0.26 <0.05
15 0.09 0.26 –0.30 <0.05

Skip-gram
5 0.03 0.74 –0.16 0.07
10 0.06 0.47 –0.17 0.05
15 0.03 0.71 –0.17 0.08

of the word-count threshold on the predictions was marginal.
In summary, the minimum-count threshold had a very weak impact on the

results, particularly on the predictions of the word embedding models. The
CBOW models trained to learn word embeddings achieved better results than did
the other models. Taking slight differences in the results into account, the word
embeddings should be trained using a CBOW model with a default threshold of
10, and the multi-sense embeddings should be trained using a CBOWmodel with
a threshold of 5. However, Wilcoxon’s test has confirmed that the minimum-count
threshold does not have a significant impact on the CBOW models. In order to
obtain embeddings for all the PVs, it was necessary to set the word-count threshold
at less than 5.

5.3.4 Impact of the number of iterations
The impact of the number of the training iterations on the quality of the word
and multi-sense embeddings is studied in this section. Based on the suggestions
of word2vec’s authors, it was suggested that the default setting (five iterations)
should be increased to obtain better results (see Section 3.2.2.1). In addition to
models with the default parameter configurations trained using five iterations, the
CBOW and Skip-gram models were trained with 10 and 20 iterations.

Table 14 presents the results of the word embedding models. The ρ values
indicate the correlation between the human-annotated rankings and the predictions
of the models trained with various numbers of iterations. The number of the
training iterations had an impact on the predictions – in comparison with the
PVCompandPVLit rankings, theCBOWmodel trainedwith 20 iterations achieved
the best results. In comparison with any other introducedmodel, the predictions of
this model correlated more strongly with both of the human-annotated rankings.
Hence, when the settings of the other parameters retain their default values, the
CBOW models should be trained with 20 iterations. However, the Wilcoxon
signed-rank test shows that the difference between the CBOW models trained
with 10 and 20 iterations was not statistically significant at the p = 0.05 level.
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Table 14: The influence of the number of iterations on the word embedding
models, ρ – Spearman’s rank correlation coefficient, p – p-value.

model number of iterations PVComp PVLit
ρ p ρ p

CBOW
5 0.16 0.05 –0.42 <0.05
10 0.17 <0.05 –0.44 <0.05
20 0.19 <0.05 –0.46 <0.05

Skip-gram
5 0.16 <0.05 –0.39 <0.05
10 0.15 0.06 –0.42 <0.05
20 0.18 <0.05 –0.39 <0.05

The results of the Skip-gram models were slightly poorer compared to the
results of the CBOW models. The predictions of the model trained with 20
iterations achieved the strongest correlation with the PVComp but, in comparison
to the PVLit, the best results were obtained by the model trained with 10 iterations.
While the differences in the results were not considerable, the Skip-gram models
should be also trained with a greater number of iterations than the default of 5. In
addition, there are statistically significant differences between all the Skip-gram
models.

The results of the same models trained to learn multi-sense embeddings are
shown in Table 15. The ρ values express the correlation between the human-
annotated rankings and the predictions of the models trained with 5, 10 and 20
iterations.

Table 15: The influence of the number of iterations on the multi-sense embedding
models, ρ – Spearman’s rank correlation coefficient, p – p-value.

model number of iterations PVComp PVLit
ρ p ρ p

CBOW
5 0.13 0.10 –0.26 <0.05
10 0.14 0.09 –0.31 <0.05
20 0.17 <0.05 –0.34 <0.05

Skip-gram
5 0.06 0.47 –0.17 0.05
10 0.06 0.45 –0.22 <0.05
20 0.05 0.54 –0.21 <0.05

The number of iterations influenced the results of the multi-sense embedding
models somewhat. The difference in training the CBOW model with 5 and 20
iterations was notable. In addition, the model trained with 20 iterations worked
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better than did the model trained with 10 iterations. The statistically significant
impact of the number of iterationswas confirmed also by theWilcoxon signed-rank
test – the difference between the CBOW models trained with 5 and 20 iterations
was statistically significant at the p = 0.05 level.

The correlations of the models with the PVComp were not statistically signi-
ficant at the p = 0.05 level unless the model was trained with 20 iterations – the
correlation of ρ = 0.17 was statistically significant (p < 0.05). The same result
was achieved by the CBOW model trained with a minimum-count threshold of 5.
In comparison to all the introduced models, the correlation between the predic-
tions of this model and the PVLit was not the strongest (the strongest correlation
(ρ = –0.35) was achieved by the model trained with a window size of 15) but,
taking the correlation coefficient values and both human-annotated rankings into
account, it can be concluded that this model was slightly better than was any other
system.

The predictions of the Skip-gram models had a weaker correlation with the
PVComp and PVLit rankings than did those of the CBOW models. The correl-
ations with the PVComp were not statistically significant at the p = 0.05 level.
In comparison to the PVLit, the best predictions were made by the model trained
with 10 iterations (ρ = –0.22). Nevertheless, compared to the results of the
best CBOW model, the Skip-gram models performed significantly worse. How-
ever, differences between Skip-gram models trained with various iterations were
statistically significant.

In summary, the number of iterations has a statistically significant impact on
the results. For training word and multi-sense embeddings, the predictions of the
models trained with CBOW architecture and 20 iterations were the best. This
finding is consistent with the assumption that the models should be trained using
more iterations than the default 5. The word embedding models performed better
in a general sense. The CBOW model trained with 20 iterations obtained the
overall best results of all the models. In order to improve the results of the word
and multi-sense embeddings, some additional experiments were conducted, as
explained in the next section.

5.3.5 Towards higher-quality embeddings
The previous sections illustrated that the parameters had a relatively low impact
on the results. However, changing the values of parameters in comparison with
the default models can result in better predictions. For example, the models
trained with 20 iterations outperformed the models that were trained with 5 iter-
ations in terms of results. Therefore, some further experiments were conducted
in order to determine the best parameter settings for the task of predicting the
compositionality of Estonian PVs.

The goal of the additional experiments was to improve the performance of the
word and multi-sense embedding models suggested above in line with the results
of previous experiments and earlier work. All of the results of the additional
experiments using word embedding models are presented in Table 16, and the
evaluation of the multi-sense embedding models is presented in Table 17.
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Table 16: Results of the additional word embedding models, ρ – Spearman’s rank
correlation coefficient, p – p-value.

model dimensions window min iterations PVComp PVLit
count ρ p ρ p

CBOW

150 15 10 20 0.15 0.06 –0.45 <0.05
5 0.18 <0.05 –0.44 <0.05

100 5 10 20 0.16 <0.05 –0.44 <0.05
750 0.15 0.06 –0.43 <0.05

300
15

10 20
0.16 <0.05 –0.46 <0.05

30 0.15 0.07 –0.42 <0.05
1 0.15 0.06 –0.35 <0.05

300 5 2 20 0.16 0.05 –0.43 <0.05

Previous experiments (see Sections 5.3.1–5.3.4) demonstrated that the models
trained with the CBOW architecture obtained better results than did the models
trained using Skip-gram. In comparison to the human-annotated rankings, the
best results were achieved by the word embedding model trained with default
parameters (300 dimensions, a window size of 5 and a minimum-count frequency
of 10), but with 20 iterations instead of the default 5. The predictions of the best
model (see Table 14) correlated less strongly with the PVComp (ρ = 0.19) than
they did with the PVLit (ρ= –0.46). The same correlation with the PVLit was also
obtained by the CBOW model trained with 300 dimensions, a minimum-count
threshold of 10 and 10 iterations, but with a window size of 15 (see Table 10). In
addition, although the model trained with 150 dimensions did not obtain results
that were as good as those obtained by the best models, it worked better than did
the models trained with a greater number of dimensions. The results of the main
experiments were adopted in order to train the additional word embeddingmodels,
as described in the following section.

The CBOW model was trained with 150 dimensions, a window size of 15
and 20 iterations. The only studied parameter that retained its default value was
the minimum-count threshold (10). The correlation coefficient values reported in
Table 16 demonstrate that using these settings for training word embeddings did
not result in better predictions than those of the model trained with 20 iterations
(see Table 14). Therefore, using the best parameter configurations of the main
experiment did not help to improve the overall best results of the word embedding
model.

The CBOW model was also trained with 150 dimensions and 20 iterations
because, when trained with 5 iterations, the model obtained better results than
when trained with a greater number of dimensions (see Table 8). The results
in Table 16 indicate that the CBOW model trained with 150 dimensions and 20
iterations did not provide better predictions than did those obtained from the best
word embeddingmodel in the main experiment (see Table 14). Therefore, training
the CBOWmodel with 150 dimensions (instead of 300) did not improve the overall
best result.
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The CBOWmodel was also trained with a window size of 15 and 20 iterations
because the same model trained with 5 iterations produced better predictions than
did the models trained with a more restricted context size (see Table 10). The
results in Table 16 suggest that training the model with a window size of 15 and
20 iterations did not produce better results than did the same model trained with
a window size of 5. Therefore, it can be assumed that, when the model is trained
with 20 iterations, the other values of the studied parameters should retain their
default values. However, in order to verify this claim, some further parameter
configurations were examined.

Earlier experiments demonstrated that, as the number of dimensions increased,
the results of the CBOWmodels improved. Therefore, the CBOWmodel was also
trained with 100 dimensions and 20 iterations. The results demonstrated that
training the word embeddings with a vector dimensionality of 100 did not provide
better predictions than did training the model with 150 dimensions. Therefore,
training the model with a lower dimensionality than 150 is not considered.

Cordeiro et al. (2016a) tested different DSMs for their predictions of the
compositionality of nominal compounds, and claimed that word2vec models per-
formed better when trained with a higher number of dimensions rather than with
a low vector dimensionality. The sanity checks by Cordeiro (2017) showed that
the best predictions were made by the models trained with a dimensionality of
between 750 and 1,000. In order to determine whether a significantly higher
dimensionality number led to better embeddings for the detection of the compos-
itionality of Estonian PVs, the CBOW model was trained with 750 dimensions,
a window size of 5, a minimum-count threshold of 10 and 20 iterations. The ρ
indicates that increasing the dimensionality to 750 did not improve the results.
The correlations with the PVComp dataset were not statistically significant at the
p = 0.05 level. In comparison to the PVLit, the CBOWmodel performed less well
than when trained with 100, 150 or 300 dimensions (see Table 14). In addition,
the results re-emphasise that the number of dimensions had a marginal impact on
the predictions of compositionality. Therefore, the additional experiments con-
firmed the earlier observations (see Section 5.3.1) that the impact of the amount
of dimensionality on the results was insignificant.

Earlier experiments demonstrated that a low window size value was not better
than was a high value for training word embeddings with CBOW (see Section
5.3.2). The analysis by Cordeiro et al. (2016a) proposed that a window size of 1
was better than were higher values (4 and 8). Therefore, additional experiments
were conducted. The CBOW model was trained with window sizes of 1 and 30,
while the other parameters were as follows: 300 dimensions, a minimum-count
frequency of 10 and 20 iterations.

The ρ values in Table 16 indicate that the model trained with a window size of
30 produced poorer compositionality predictions than did the same model trained
with a window size of 15. Therefore, the window size for the CBOW model
should not be as high as 30. At the same time, based on the results of the model
trained with a window size of 1, the context should not be so narrow that only
one word from either side of the target word is taken into account. Therefore, the
window size for the CBOWmodel should be somewhere between 5 and 15. There
was not a significant difference regardless of whether the model was trained with
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a window size of 5 or 15 but, based on the results, a window size of 5 worked
slightly better when the model was trained with 20 iterations and 300 dimensions.

The default configuration for the minimum-count threshold is often 0, 1 or
5. It has been argued that using a minimum-count threshold as high as 50 does
not improve the results (Cordeiro 2017). Although the predictions of the models
trained with a minimum-count thresholds of 5, 10 and 15 were the same (see Table
12), when the model was trained with word-count threshold of 5 or higher, this
did not provide predictions for all the PVs because the most infrequent PV in our
dataset appeared four times. Therefore, in order to determine whether a threshold
lower than 5 was better for the compositionality prediction, the CBOWmodel was
trained with a threshold of 2 and 20 iterations.

As the correlation coefficient value presented in Table 16 indicates, the model
trained with a minimum-count threshold of 2 did not obtain better results than did
the models trained with a threshold of 10 (see Table 14). The correlation values
between the predictions and the PVComp rating (ρ = 0.16) and the PVLit rating
(ρ = 0.43) were comparable with results of the models trained with minimum-
count thresholds of 5, 10 and 15, and 5 iterations. Nevertheless, the minimum-
count threshold did not have a strong impact on the results. This finding was not
unexpected because the results of the models trained with 5 iterations indicated
that the lower threshold did not ensure better predictions (see Section 5.3.3).
However, the threshold should be such that the model provides predictions for
most of the infrequent PVs.

Compared to the default settings of the models, the best model in the main
experiments differed in the number of iterations (20 instead of 5). Therefore,
all the additional models were trained with 20 iterations. Based on the results
in Table 14, it could be assumed that the results would be even better when the
model was trained with a greater number of iterations. However, as the results did
not improve significantly when the model was trained with 20 iterations instead
of with 5, it is assumed that the improvement would not be substantial; therefore,
no additional models were trained. Furthermore, increasing the iteration number
would also require longer training time. The findings of Cordeiro (2017), who
concluded that using 15 iterations instead of 100 for word2vec models yielded
better results, supported this decision.

In the multi-sense embedding models in the main experiment, the highest
statistically significant correlations (ρ = 0.17) in comparison with the PVComp
were obtained by the CBOW models trained with a minimum-count threshold of
5 (see Table 13) and 20 iterations (see Table 15). The predictions of the model
trained with a window size of 15 had the strongest correlation with the PVLit (see
Table 11). In addition, the results demonstrated that 150 dimensions were more
suitable for training multi-sense embeddings than were dimensions of 300 or 450
(see Table 9). These findings were adjusted to train the additional models in order
to improve the overall results of the multi-sense embedding models.

Similarly to the additional experiments for training word embeddings, the
CBOW model was trained with different combinations of the best parameter con-
figurations. Therefore, the first additional model was trained with 150 dimensions,
a window size of 15, a minimum-count threshold of 5 and 20 iterations. Table
17 shows that the predictions of this CBOW model correlated more strongly with
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the PVLit (ρ= –0.36) than did the best multi-sense embedding model introduced
earlier (ρ = –0.34, see Table 15). However, the predictions of this model cor-
related with the PVComp less strongly (ρ = 0.14) than did the predictions of the
best model (ρ = 0.17). Therefore, combining all of the best parameter settings
of the main experiments did not improve the results significantly. The CBOW
models that were trained with 150 dimensions, a window size of 15, minimum-
count thresholds of 5 and 10, and 20 iterations did not achieve better results than
did the best multi-sense embedding models in the main experiment (see Table
15). Nonetheless, training a model with 150 dimensions, a window size of 5,
a minimum-count threshold of 5 and 20 iterations increased the quality of the
predictions in comparison to both human-annotated rankings – with the PVComp
ρ = 0.20 and with the PVLit ρ = –0.37. In comparison to the best word embed-
ding model, the correlation with the PVComp was even stronger (see Table 14).
It is interesting that the same model trained with a minimum-count threshold of
10 produced noticeably poorer predictions.

Table 17: Results of the additionalmulti-sense embeddingmodels, ρ – Spearman’s
rank correlation coefficient, p – p-value.

model dimensions window min iterations PVComp PVLit
count ρ p ρ p

CBOW

150
15 5

20

0.14 0.08 –0.36 <0.05
10 0.17 <0.05 –0.32 <0.05

5 5 0.20 <0.05 –0.37 <0.05
10 0.13 0.12 –0.30 <0.05

100 5 10 20 0.12 0.10 –0.28 <0.05
750 0.19 0.06 –0.34 <0.05

300
1

10 20
0.07 0.39 –0.24 <0.05

15 0.17 <0.05 –0.29 <0.05
30 0.12 0.15 –0.32 <0.05

300 5 5 20 0.21 <0.05 –0.31 <0.05
2 0.17 0.04 –0.36 <0.05

When themodels were trainedwith 5 iterations, using 150 dimensions resulted
in better predictions than did using 300 or 450 dimensions. However, the model
trained with 150 dimensions and 20 iterations did not obtain better results than
did the same model trained with 300 dimensions. In order to determine whether
changing the number of dimensions improved the results, one model was trained
with 100 dimensions and another with 750 dimensions. It can be seen in Table
17 that the results of the model trained with 100 dimensions were worse than
were the results of the same model trained with 150 dimensions. Therefore, the
CBOW model for learning multi-sense embeddings should not be trained with a
dimensionality lower than 300.
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Training the CBOW model with 750 dimensions and 20 iterations produced
similar results as did training the same model with 300 dimensions (see Table 15).
However, the correlation with the PVComp dataset was stronger but statistically
insignificant at the p = 0.05 level. The correlation with the PVLit was the same
as that obtained by the best model. Nonetheless, as the correlation between the
predictions and the PVComp was not significant, it cannot be concluded that
using 750 dimensions is better than is using 300 dimensions. These results
imply that the gold standard influences the results and that the architecture thereof
must be well thought out. As a reminder, the main goal of the datasets was
not the evaluation of the multi-sense embeddings. The experiment assessing the
multi-sense embeddingmodels using different (non-)literalness scores for different
meanings is described and discussed in Section 5.5.3.

When the multi-sense embedding models were trained with 5 iterations, the
best results were obtained by the CBOW model trained with a window size of 15
(see Table 11). Therefore, the CBOW model was also trained with a window size
of 15 and 20 iterations. However, the results of thismodelwere not better thanwere
the results of themodel trained with a window size of 5 and 20 iterations (see Table
15). In order to determine how the results of the multi-sense embedding models
changed when very narrow or relatively wide contexts were applied, the CBOW
models were trained with window sizes of 1 and 30. The correlation coefficient
values suggested that using a narrow context was not reasonable when training
multi-sense embeddings because suchmodels produced predictions that correlated
much more weakly with the human-annotated rankings than did the predictions
of the model trained with a window size of 5 (see Table 15). Moreover, the model
trained with a wider context did not perform better than did the model trained
with a window size of 5. Therefore, when training a model with 20 iterations, the
window size should not be smaller than 5, but it should not be greater than 10.

The results of training models with 5 iterations suggested that the best pre-
dictions were made when the word-count threshold of the CBOW model was 5.
Therefore, the CBOW model was trained with a word-count threshold of 5 and
20 iterations. In addition, in order to obtain predictions for all the PVs and to
determine how a minimum-count threshold of less than 5 influenced the results,
the CBOWmodels were trained with thresholds of 2 and 5. The predictions of the
model trained with a threshold of 5 correlated more strongly with the PVComp
(ρ = 0.21) than did the predictions of any other word or multi-sense embedding
model that was introduced. The correlation between the predictions of this model
and the PVLit was not comparable with the best results. Training the model with
a threshold of 2 did not help to improve the results. Therefore, regardless of the
number of dimensions, the optimal minimum-count threshold for the multi-sense
embedding model trained with CBOW is 5.

As with the word embedding models, the running time for multi-sense em-
bedding models increases as the number of iterations increases. Therefore, no
additional models with a greater number of iterations than 20 were trained.

In summary, the predictions of the additional word embedding models did not
outperform the results of the best model in the main experiment. The best word
embedding model was trained with CBOW architecture, a window size value of
5, a minimum-count threshold of 10 and 20 iterations. The correlation between
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the predictions of this model and the PVComp is (ρ = 0.19) was significantly
lower than was the correlation between the predictions and the PVLit (ρ= –0.46).
Running additional experiments to train multi-sense embeddings helped to obtain
better results than those of the best multi-sense embedding model in the main
experiment. The overall strongest correlation with the PVComp (ρ = 0.21) was
achieved by the predictions of the model trained with 300 dimensions, a window
size of 5, a word-county threshold of 5 and 20 iterations. The best predictions in
comparison with the PVLit (ρ = –0.37) were made by the model using the same
setting except for the number of dimensions, which was set to 300. These results
suggest that the outcome depends on the human-annotated gold standard used for
the evaluation of the results. As the datasets were not developed for the assessment
of the multi-sense embedding models, the results need to be interpreted with care.

5.3.6 Summary of the impact of the parameters on the
predictions

The comparison of the compositionality predictions and the human-annotated
datasets revealed that the studied parameters had a statistically significant impact
on the results of the models. Of the parameters studied, the number of iterations
has the strongest impact on the results, while the models, especially the ones
trained with the CBOW architecture, were least influenced by the minimum-count
threshold.

The experiments suggested that, for the compositionality predictions, the
CBOW architecture is better than is Skip-gram. The difference between the
architectures was more significant when looking at the multi-sense embedding
models. In addition, the predictions of the multi-sense embedding models seemed
to be influenced more strongly by the parameter values than were the word em-
bedding models. The results of the additional multi-sense embedding models
suggested that combining different values of the parameters can result in better
predictions than can using default settings. For example, training a model with a
minimum-count threshold of 5 and 20 iterations resulted in better predictions than
when using default values of 10 and 5, respectively. Also, the difference between
these models was statistically significant.

To obtain more substantial conclusions, more word and multi-sense embed-
ding models with various parameter configurations would need to be trained and
compared. However, as there were several aspects in addition to training paramet-
ers that influenced the work of the models described, the results of the best word
and multi-sense embedding models are described, analysed and discussed in the
next sections.

5.4 Compositionality predictions using word embeddings
The results of the models introduced in the previous section demonstrated that
word embedding models achieved better results than did the multi-sense embed-
ding models in comparison to the human-annotated datasets. In this section,
the results of the best word embedding model are analysed, and the association
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between frequency and the compositionality predictions of the word embedding
model is explored.

5.4.1 Analysis of the results of the best word embedding model
In this section, an overview and analysis of the results of the best word embedding
model are presented. Section 5.3 showed that the best word embedding model was
the CBOW model trained with 300 dimensions, a window size of 5, a minimum-
count threshold of 10 and 20 iterations. The predictions of this model correlated
statistically significantly (p< 0.05) with both the human-annotated rankings – the
correlation with the PVComp was ρ = 0.19 and the correlation with the PVLit
was ρ = –0.46.

Table 18 lists the 10 most compositional PVs according to the CS value of
the model and presents their frequency, their average compositionality ratings
(PVComp) and median (non-)literalness rating (PVLit).

Table 18: The ten most compositional PVs according to the best word embedding
model.

CS PV frequency PVComp PVLit

0.841 läbi ‘through’ vaatama ‘to look’ 10,440 3.7 3.67‘to look through/examine’

0.768 maha ‘down’ rahunema ‘to calm’ 1,369 2.8 1.33‘to calm down’

0.758 ette ‘in advance’ valmistuma ‘to prepare’ 555 3.7 3.33‘to prepare’

0.744 vastu ‘against’ küsima ‘to ask’ 794 3.9 3.33‘to ask in return’

0.740 maha ‘down’ müüma ‘to sell’ 7,781 2.5 NA‘to sell off’

0.730 edasi ‘forward’ müüma ‘to sell’ 1,224 4.2 NA‘to sell on’

0.727 välja ‘out’ loosima ‘to draw lots’ 1,907 3.5 NA‘to raffle off’

0.727 üle ‘down’ küsima ‘to ask’ 1,296 2.8 NA‘to ask again’

0.726 kokku ‘together’ koguma ‘to gather’ 3,908 4.1 NA‘to gather’

0.709 tagasi ‘back’ minema ‘to go’ 10,769 4.6 1.33‘to go back’

The CS values indicated that the most compositional PV was läbi vaatama
‘to look through/examine’. The PVComp evaluators evaluated the PVComp as
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being more compositional than non-compositional, but the PVLit annotators eval-
uated it as being relatively non-compositional. The PVLit score reflects the
(non-)literalness of the meaning ‘to examine’ because sentences with the reading
‘to look through something’ were evaluated as being more compositional (with a
score of 2). As there weremore sentences that expressed themeaning ‘to examine’,
it can be assumed that this meaning was more frequent and thus predominant.

None of the most compositional PVs was among the ten most compositional
PVs according to the degree of compositionality assigned by the human annotators.
However, maha rahunema ‘to calm down’ and tagasi minema ‘to go back’ had
relatively low scores in the PVLit, indicating high compositionality. It can be
seen that half of the PVs did not have a rating in the PVLit. This means that the
sentences with these PVs caused inconsistency among the annotators, and that the
compositionality of these PVs was difficult to assess.

It is interesting that both PVs containing the verbmüüma ‘to sell’ were amongst
themost compositional PVs. The annotators of the literalness ratings did not agree
about the compositionality of these PVs. The annotators of the PVComp found
the PVmaha müüma ‘to sell off’ to be much more non-compositional than the PV
edasi müüma ‘to sell on’. The model’s predictions for these PVs were very similar.
However, the meanings of these PVs are related closely to the meaning of the verb
müüma therefore, it is not surprising that the model found the contexts of these
PVs to be similar to the context of the verb. Of the 10 most compositional PVs, the
CS value of the PVmaha müüma differed most from the average compositionality
score suggested by the human annotators.

Table 19 shows the 10 least compositional PVs according to the CS values of
the PV and the verb. The frequency, average compositionality rating (PVComp)
and median (non-)literalness rating (PVLit) are also presented.

The least compositional PV, according to the CS values provided by themodel,
was ette heitma ‘to reproach/blame’. This PV was also evaluated as being fully
non-compositional by the annotators of the PVLit. The annotators of the PVComp
found the compositionality of this PV to be in the middle of the scale ranging from
fully non-compositional to compositional.

Other PVs (such as ette nägema ‘to foresee/stipulate/see ahead’, vastu rai-
uma ‘to object/to dispute’, ette kandma ‘to report/to serve’ and üles kloppima ‘to
fix/beat/fluff’) were also evaluated as being fully non-compositional by the annot-
ators of the PVLit dataset. The average compositionality ratings for these PVs
were around 3. Thus, it can be assumed that the annotators were of the opinion that
the PVs had multiple meanings, with some being more compositional than others.
For example, the meaning ‘to see ahead’ of the PV ette nägema was considered to
be more compositional than was the meaning ‘to foresee’.

Both groups of human annotators agreed about the compositionality of the
PV üles kloppima which was considered to be one of the most non-compositional
PV according to the PVComp rating. The PVs vastu raiuma and läbi viima
‘to conduct/pass through’ were also among the ten most non-compositional PVs
according to both compositionality ratings. The PV alla tingima ‘to bargain/beat
down’ was evaluated as being more compositional than non-compositional by the
human annotators. However, the automatic predictions for this PV indicated that it
would be non-compositional. The discrepancy might have been caused by the fact
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Table 19: The ten least compositional PVs according to the best word embedding
model.

CS PV frequency PVComp PVLit

0.113 ette ‘forward’ heitma ‘to throw’ 4,274 2.8 5.0‘to reproach/blame’

0.122 vastu ‘against’ pidama ‘to hold/keep’ 12,340 3.2 4.33‘to withstand’

0.132 ette ‘forward’ nägema ‘to see’ 30,012 3.5 5.0‘to foresee/stipulate/see ahead’

0.192 alla ‘down’ tingima ‘to bargain/haggle’ 62 4.1 2.0‘to bargain/beat down’

0.207 vastu ‘against’ raiuma ‘to chop’ 30 2.4 5.0‘to object/dispute’

0.209 ette ‘forward’ kandma ‘to carry’ 2,812 3.3 5.0‘to report/serve’

0.218 kinni ‘to’ pidama ‘to hold/keep’ 13,211 4.2 4.0‘to stick to/slow down/detain’

0.239 läbi ‘through’ viima ‘to carry’ 29,804 2.4 4.67‘to conduct/pass through’

0.243 esile ‘forth’ tükkima ‘to intrude’ 53 3.5 3.67‘to jut/dominate’

0.257 üles ‘up’ kloppima ‘to fluff’ 33 2.0 5.0‘to fix/beat/fluff’

that the verb tingima ‘to bargain/haggle’ can appear independently in a context
that does not concern merchandising, which is usually the context of this PV.

Some PVs that the model predicted would be the most compositional and the
most non-compositional were evaluated as being ambiguous and some were not.
Most of the compositional PVs were not considered ambiguous; three PVs have
two meanings and one PV (tagasi minema) ‘to go back’ has three meanings in the
EED. While the two most non-compositional PVs ette heitma ‘to reproach/blame’
and vastu pidama ‘to withstand’ are not polysemous according to the EED, the
PV ette nägema ‘to foresee/stipulate/see ahead’ has four meanings and the PV
kinni pidama ‘to stick to/slow down/detain’ has six. Thus, it could be assumed
that non-ambiguous PVs tend to have higher CS scores than do ambiguous PVs.
In order to determine whether there was a correlation between the CS value and
ambiguity, the number of senses presented by the EED for the PVs, adverbs and
verbs were compared. The Pearson’s correlation coefficient value (r = –0.18)
indicated that, as the number of senses increased, the CS value decreased. In
addition, the PVs with non-ambiguous verbs tended to have higher CS values
(r = –0.21). The correlations between the number of senses (of PVs and verbs)
and the CS values were statistically significant at the p = 0.05 level. The cor-
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relation between the number of senses of the adverbs and the CS values was
0.15, indicating that the PVs with ambiguous particles obtained higher CS values.
This correlation was not statistically significant. Therefore, it can be claimed that
ambiguous PVs with ambiguous verbs tended to have lower CS values and were
therefore more likely to be evaluated as being more non-compositional than were
non-ambiguous PVs.

The predictions of the word embedding models were evaluated across PVs
regardless of the number of meanings they may have. The compositionality
ratings were collected in the same way for polysemous and non-ambiguous PVs.
In order to determine how well the word embeddings worked for non-ambiguous
PVs, the correlation between the predictions of the model and the PVComp ratings
of the 82 PVs that have only one meaning (according to the EED) was calculated.
The correlation coefficient value of ρ= 0.21 indicated that the results were slightly
better than they were when the ambiguous PVs were included (ρ = 0.19), but the
correlation was not significant at the p = 0.05 level.

The same predictions that were compared to the PVLit were the median
compositionality ratings of the PVs. In this case, the correlation between the
non-ambiguous PVs and the compositionality predictions was ρ = –0.51, which
is statistically significant (p < 0.05). Therefore, the model performed slightly
better when predicting the compositionality of non-ambiguous PV than it did
when predicting polysemous PVs84.

Overall, the word embedding models could predict the compositionality of
Estonian PVs despite their ambiguity. However, it is evident that the models
worked better for non-ambiguous PVs, as they provided only one representation
per word. The predictions of the word embedding models were influenced by the
ambiguity of the PVs because the models tended to assign lower CS values to
ambiguous PVs than to non-ambiguous ones. Another possible influence on the
results – frequency – is studied in the next section.

5.4.2 Effect of frequency on the word embeddings
In this section, the association between frequency and the compositionality predic-
tions of the word embedding model is examined. In addition, the predictions are
compared to the human annotations across different PV frequency sets to explore
whether the compositionality of frequent PVs was more challenging to predict or
not. The latter question was motivated by previous work (e.g. Bott and Schulte im
Walde 2014; Cordeiro 2017) in which it was hypothesised that it would be challen-
ging to predict the compositionality of MWEs with high frequency. For the first
goal, the correlation between PV frequency and the CS value was calculated. In

84Note that the overall results of the experiments are slightly different when the evaluation is
of non-ambiguous PVs. Of the models introduced, the best results were obtained by the CBOW
model trained with 300 dimensions, a window size of 15, a minimum-count threshold of 10 and
20 iterations. The predictions of this model correlated more strongly with the PVComp (ρ = 0.24)
and with the PVLit (ρ = –0.59). Thus, it is evident that the word embedding models performed
better when predicting the compositionality of non-ambiguous PVs. However, polysemous PVs
are unquestionably more challenging for the automatic processing than are non-ambiguous ones;
therefore, they were not excluded from this study.
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order to determine whether the frequency influenced the quality of the predictions,
correlations between PV frequency and CS values across different frequency sets
were studied based on the results of the best word embedding model (CBOW
architecture, 200 dimensions, a window size of 5, a word-count threshold of 10
and 20 iterations). Table 20 presents the correlation coefficient values for system
predictions, human-annotated datasets and PV frequency across the frequency
ranges of PVs.

The first insight into the effect of frequency on the compositionality predictions
(see Section 5.2) proposed that the frequent PVs would tend to receive lower CS
values than would the infrequent ones. The frequency information presented in
Tables 18 and 19 indicates a similar claim. Four PVs with a frequency higher
than 10,000 were amongst the 10 most non-compositional PVs, while two of the
10 most compositional PVs had frequencies greater than 10,000. However, there
were no infrequent PVs (with a frequency of less than 100) amongst the 10 most
compositional PVs, but there were four amongst the 10 most non-compositional
PVs. This allows us to hypothesise that very frequent PVs tended to receive low
CS scores, while frequency did not have as strong an impact on the CS scores of
infrequent PVs.

Figure 15 shows the effect of frequency on the compositionality predictions of
themodel for the 50most frequent and infrequent PVs. It can be seen that therewas
a negative correlation between the CS values and frequency for the frequent PVs
and a positive correlation for infrequent PVs. Therefore, the most frequent PVs
and the most infrequent PVs tended to have low CS values. The correlations were
statistically significant (p< 0.05) for both frequency ranges. At the same time, the
correlation between frequency and compositionality predictions of the PVs with
moderate frequencywas veryweak (ρ= 0.05), andwas not statistically significant.
Therefore, frequency influenced the predictions of frequent and infrequent PVs,
but not the predictions of PVs with moderate frequency.
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Figure 15: Correlations between frequency and compositionality predictions for
the 50 most frequent and infrequent PVs.
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The best model trained for word embeddings differed from the default CBOW
model only in terms of the number of iterations. The default CBOW model was
trained with 5 iterations, while the best model had 20 iterations. The overall
correlation between frequency and the CS values of the best model was relatively
weak (ρ = –0.10), and was not statistically significant at the p = 0.05 level.
Compared to the default CBOW model (ρ = –0.15), the association between
frequency and compositionality predictions was weaker. Therefore, the number
of iterations decreased the effect of frequency on the system’s compositionality
predictions.

The effect of frequency on the compositionality predictions of the system
depended on the frequency class of the PVs. In addition, the quality of the pre-
dictions depended on the frequency of the PVs. It can be seen in Table 20 that the
predictions of the model correlated better with the compositionality scores of PVs
that were very frequent or infrequent than with the PVs with moderate frequency.
For example, the compositionality scores for the PVs with moderate frequency in
the PVComp had no correlation with the compositionality predictions, while the
infrequent PVs had a correlation of ρ= 0.30. The correlation of ρ= 0.24 between
frequent PVs and the predictions was also stronger compared to the overall correl-
ation, but it was not statistically significant. Therefore, based on the PVComp, it
can be concluded that the prediction of the compositionality of infrequent PVs is
less challenging than is the prediction of the compositionality of PVs with greater
frequency.

Table 20: Predictions of the best word embedding model for different frequency
sets of the PVs.

set of PVs PVComp PVLit PV frequency
(frequency) ρ p ρ p ρ p

all (13–42,441) 0.19 <0.05 –0.46 <0.05 –0.10 0.21
without frequent

(13–1,369) 0.14 0.17 –0.37 <0.05 0.18 0.08

without infrequent
(202–42,441) 0.13 0.21 –0.45 <0.05 –0.29 <0.05

without frequent
and infrequent
(202–1,369)

–0.03 0.82 –0.30 <0.05 0.05 0.74

frequent
(1,439–42,441) 0.24 0.09 –0.54 <0.05 –0.42 <0.05

infrequent (13–188) 0.30 <0.05 –0.45 <0.05 0.37 <0.05

The evaluation of the predictions based on the PVLit scores shows that the
predictionsweremost accurate for frequent PVs, but the predictions also correlated
well with the compositionality scores for infrequent PVs and were statistically
significant at the p = 0.05 level. Therefore, the word embedding models predicted
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the compositionality of PVs with high and low frequency better than they did the
PVs with moderate frequency.

In summary, the frequency of a PV had a moderate impact on the compos-
itionality predictions of the best word embedding model. Frequency influenced
the predictions of infrequent and frequent PVs. The model tended to assign a
low compositionality score to frequent and infrequent PVs, whereas the com-
positionality of the PVs with moderate frequency was not influenced strongly by
the frequency. At the same time, the compositionality predictions for infrequent
and frequent PVs tended to be better than were the predictions for the PVs with
moderate frequency. These main findings are compared to the results of previous
research in the next section.

5.4.3 Comparison with previous research
In this section, the main results of the experiments with word embedding models
are compared to previous work using DSMs to predict the compositionality of
MWEs.

The first DSM model predicting the compositionality of Estonian PVs was
introduced by Aedmaa (2017). The PVComp dataset was used for the evaluation,
but the embeddings were trained on different (smaller) corpora using different
parameter configurations. The CBOW model was trained with 200 dimensions
and with a window size of 10. Therefore, the results are not fully comparable.
However, the correlations between the predictions and the human-annotated scores
for all the PVs (ρ= 0.27) were stronger than the best model in this study achieved
in comparison to the PVComp, but weaker in comparison to the PVLit.

It has been argued previously that the compositionality of frequent Estonian
PVs is more difficult to predict than is the compositionality of infrequent PVs (Ae-
dmaa 2017). The same was found regarding German PVs by Bott and Schulte im
Walde (2014), who explored the role of the frequency of PVs and their base verbs
in compositionality predictions. Due to issues with data sparsity, these authors
argued that the compositionality of high frequency verbs was easier to predict than
was that of low-frequency verbs. However, the results showed that, in addition to
low-frequency PVs, the compositionality of frequent PVs was also challenging to
predict. Cordeiro (2017), who compared different DSMs to predict the composi-
tionality of English, French and Portuguese MWEs, was not able to demonstrate
whether the compositionality of frequent expressions was easier to predict than
was that of less frequent MWEs. In contrast to earlier findings, however, the
results of the current work propose that the compositionality of frequent and in-
frequent PVs is easier to predict than is the compositionality of PVs with moderate
frequency.

In addition, Cordeiro (2017) demonstrated that the compositionality predic-
tions correlated well with the frequency of the compounds in the corpus. The cor-
relation between the word2vec CBOWmodel and compound frequency (ρ= 0.50)
signifies that the frequent MWEs tend to obtain higher CS values. The results of
this thesis suggest that the positive correlation between frequency and composi-
tionality predictions only appears amongst infrequent PVs. Therefore, the results
of the previous research and of this study are partly similar.
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In summary, the results of the word embeddingmodels predicting the compos-
itionality of Estonian PVs are not completely comparable with any of the previous
studies. However, the comparison to similar work suggests that the predictions of
the word embedding models are affected by frequency, but that the task and other
aspects mitigate the extent of the frequency effect.

5.5 Compositionality predictions using multi-sense
embeddings

Applying multi-sense embedding models to predict the compositionality of Esto-
nian PVs was more experimental than was using the word embeddings. Therefore,
no separate dataset for the evaluation of the multi-sense embedding models was
created. However, this section analyses the results of the multi-sense embedding
models, investigates the effect of frequency on the results and outlines the chal-
lenges of using multi-sense embedding models to predict the compositionality of
PVs.

5.5.1 Analysis of the results of the best multi-sense embedding
model

In this section, an overview and an analysis of the results of the best multi-sense
embedding model are presented. While the overall highest correlation with the
PVLit was obtained by the best word embedding model, the predictions of the
multi-sense embedding model trained with 300 dimensions, a window size of 5, a
minimum-count threshold of 5 and 20 iterations correlated betterwith the PVComp
than did any other suggested model. The correlation between the predictions of
this model and the PVComp was ρ = 0.21 and the correlation with the PVLit was
ρ = –0.31. Table 21 introduces the most compositional PVs according to the CS
value of the model and presents their frequency, their average compositionality
ratings (PVComp) and their median (non-)literalness rating (PVLit).

CS values indicate that the most compositional PVs were vastu kajama ‘to
sound like an echo’, välja loosima ‘to raffle off’ and lahti voltima ‘to unfold/
unwrap’. These PVs were not evaluated as being fully compositional by the
PVComp evaluators, but rather as more compositional than non-compositional.
While the PV välja loosima caused disagreement amongst the PVLit annotators,
the score of 0.33 for lahti voltima indicates that the annotators evaluated it as also
being compositional. On the other hand, the PV vastu kajama was evaluated as
being relatively non-compositional.

The PVComp scores indicate that most of the compositional PVs were annot-
ated as being rather compositional as opposed to being non-compositional by the
annotators. The scores for the PVLit were more mixed. The biggest difference
between the predictions and the human judgements was for the PVs alla laadima
‘to download’ and välja saagima ‘to saw out’, which the annotators annotated
as being fully non-compositional. This might have been because the meaning
of the PV alla laadima is relatively specific, but the verb laadima has several
meanings – ‘to load’ and ‘to charge’. The PV välja saagima was rated as being
fully non-compositional because there was only one sentence that did not cause
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Table 21: The ten most compositional PVs according to the best multi-sense
embedding model.

CS PV frequency PVComp PVLit

0.973 vastu ‘against’ kajama ‘to echo’ 107 3.0 4.0‘to echo back’

0.972 välja ‘out’ loosima ‘to draw lots’ 1,907 3.5 NA‘to raffle off’

0.964 lahti ‘open’ voltima ‘to fold’ 67 4.3 0.33‘to unfold’

0.959 läbi ‘through’ kaaluma ‘to weigh’ 429 2.7 3.67‘to consider’

0.956 alla ‘down’ laadima ‘to load’ 3,221 3.0 5.0‘to download’

0.955 välja ‘out’ saagima ‘to saw’ 76 4.4 5.0‘to saw out’

0.954 üles ‘up’ tursuma ‘to bloat’ 14 4.1 NA‘to swell up’

0.940 ümber ‘around’ reastuma ‘to align’ 40 3.6 NA‘to change a lane’

0.937 välja ‘out’ tahuma ‘to hew’ 40 3.7 NA‘to hew out’

0.937 maha ‘down’ minema ‘to go’ 1,739 3.5 2.67‘to get off’

disagreement amongst the annotators, and it happened to be a sentence conveying
a non-literal meaning.

The 10 least compositional PVs according to the CS values for the PV and the
verb are shown in Table 22. The frequencies, average compositionality ratings
(PVComp) and median (non-)literalness ratings (PVLit) are also presented. The
most non-compositional PVs according to the CS value provided by the model
were läbi viima ‘to conduct/pass through’ and ette heitma ‘to reproach/blame’.
The annotators of the PVLit ranking evaluated these two PVs as having low
compositionality. The average compositionality scores (PVComp) show that the
compositionality of läbi viima was somewhat more non-compositional than com-
positional, and the score for ette heitma suggested that the PV was neither fully
compositional nor non-compositional, but had moderate compositionality. This
was likely due to the fact that the PV’s meaning of ‘to conduct’ is more non-
compositional than is the meaning ‘to pass through’.

While the PVLit scores for other PVs indicated that the PVs were relatively
non-compositional, the scores for alla tingima ‘to bargain/beat down’ and välja
ilmuma ‘to debouch/emerge/appear unexpectedly’ suggested that the PVs were
compositional. The PVs were evaluated as being more non-compositional than
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compositional by the annotators of the PVComp. As both PVs have only onemean-
ing but the verb has more, this might explain why the scores differed. For example,
the model predicted that the PV alla tingima would be non-compositional, prob-
ably because the context of the PVwas different from the context in which the verb
tingima in meaning ‘to bargain/haggle’ appeared. The contexts of alla tingima and
tingima were presumably similar. As the evaluation was conducted on the most
probable meanings, the result was apparently influenced by this. Therefore, the
evaluation of the multi-sense embedding model was conducted using meanings
other than the most probable ones.

Table 22: The ten least compositional PVs according to the best multi-sense
embedding model.

CS PV frequency PVComp PVLit

–0.023 läbi ‘through’ viima ‘to carry’ 29,804 2.4 4.67‘to conduct/pass through’

–0.007 ette ‘forward’ heitma ‘to throw’ 4,274 2.8 5.0‘to reproach/blame’

0.020 kinni ‘to’ pidama ‘to hold/keep’ 13,211 4.2 4.0‘to stick to/slow down/detain’

0.024 ette ‘forward’ kandma ‘to carry’ 2,812 3.3 5.0‘to report/to serve’

0.028 ette ‘forward’ valmistama ‘to prepare’ 14,692 3.9 3.67‘to prepare’

0.052 alla ‘down’ tingima ‘to bargain/haggle’ 62 4.1 2.0‘to bargain/beat down’

0.092 välja ‘out’ ilmuma ‘to appear’ 3,117 3.8 2.0‘to appear unexpectedly/emerge’

0.135 kaasa ‘along’ tooma ‘to bring’ 24,971 4.1 4.33‘to bring along/imply’

0.147 ühte ‘together’ hoidma ‘to keep’ 131 2.9 4.33‘to stick together’

0.153 ette ‘forward’ nägema ‘to see’ 30,012 3.5 5.0‘to foresee/stipulate/see ahead’

More precisely, the best multi-sense embedding model was evaluated once
more in comparison to the PVLit dataset. Unlike the main evaluation, instead of
calculating the median literalness scores for each PV, the average (non-)literalness
scores assigned by the annotators for each meaning were used (the ones that
represented each PV in the (non-)literalness dataset (Aedmaa 2018). In addi-
tion, the intended meanings suggested by SenseGram’s WSD mechanism were
applied in place of the most probable meanings of the PV and verb. Therefore,
the meanings of the PV and verb were detected for each sentence via the WSD
mechanism, and the CS values were calculated for the vectors of the intended
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meanings. Sentences containing the same meanings of the same PV, the aver-
age literalness score and the CS value were merged. As a result, the average
(non-)literalness and CS scores for 438 meanings were calculated and the rank-
ings based on these scores were compared. The comparison of literalness and
the CS scores suggested a weaker correlation between the rankings (ρ = –0.29)
than the same model obtained in the original evaluation (ρ = –0.34). While the
differences in the results were not significant, the evaluation method described
was unreasonably complicated and costly. However, a specially designed dataset
must be created for a better evaluation of multi-sense embedding models in the
future.

Amongst the 10 least compositional PVs, there were seven that were also the
10 least compositional according to the results of the best word embedding model
(see Table 19). At the same time, there were only two PVs that were the most
compositional according to the best word and multi-sense embedding models.
The similarities could have been caused by the fact that the word embeddings
were applied to train the multi-sense embeddings. However, compared to the
results of other introduced models, the same PVs tended to obtain the lowest
CS values across the models trained with different architectures and parameter
configurations. For example, the PVs ette kandma ‘to report/to serve’, ette nägema
‘to foresee/stipulate/see ahead’, ette valmistama ‘to prepare’, kinni pidama ‘to stick
to/slow down/detain’ and läbi viima ‘to conduct/pass through’ were also amongst
the 10 least compositional PVs according to the predictions of the Skip-gram
model trained with the default settings (300 dimensions, a window size of 5, a
minimum-count threshold of 5 and 5 iterations).

In summary, multi-sense embedding models can be used for detecting the
compositionality of Estonian PVs. However, the multi-sense embedding models
do not provide as good predictions as word embedding models. The second, but
more sophisticated evaluation of the model, showed that the further research of
usingmulti-sense embeddings for predicting the compositionality of Estonian PVs
is needed. The reasons for the modest performance of the multi-sense embeddings
for the compositionality detection task are further discussed in Section 5.5.3. The
association between frequency and the predictions of multi-sense embedding
model is studied in the next section.

5.5.2 Effect of frequency on the multi-sense embeddings
The association between frequency and the predictions of the multi-sense embed-
ding models is explored in this section. For this task, the correlation between
the frequency of the PV and the CS value was calculated. As with the word
embedding models, the compositionality predictions were compared to the hu-
man annotations across different PV frequency sets to determine how well the
model predicted the compositionality of PVs with various frequencies. The best
multi-sense embedding model studied here was the one trained with CBOW ar-
chitecture, 300 dimensions, a window size of 5, a minimum-count threshold of
5 and 20 iterations. Table 23 presents the correlation coefficient values for the
system’s predictions, the human-annotated datasets and the PV frequency across
the frequency ranges of the PVs.
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The first insight into the effect of frequency on the compositionality predic-
tions of multi-sense embedding models demonstrated (see Section 5.2) that, in
comparison to Skip-gram, the frequency correlation was weaker in the CBOW’s
predictions. As the best word embeddingmodel also used the CBOWarchitecture,
it can be assumed that the effect of frequency was similar for the best multi-sense
embedding model. The frequency information presented in Tables 21 and 22
suggests that frequent PVs tended to have low CS values. At the same time, low
compositionality was also assigned to the infrequent PVs. However, based on the
findings of the word embedding models introduced earlier, it can be hypothesised
that the multi-sense embedding models’ compositionality predictions for frequent
PVs were also influenced more by the frequency than by the compositionality
predictions for infrequent PVs.

Figure 16 illustrates the effect of frequency on the compositionality predictions
using the multi-sense embedding model for the 50 most frequent and infrequent
PVs. It can be seen that the correlation between frequency and the CS values was
negative for the frequent PVs, while there is no correlation for the infrequent PVs.
The results in Table 23 show that the correlation between the frequency and CS
values for the frequent PVs (ρ = –0.38) was much stronger for the frequent PVs
than it was for the infrequent PVs (ρ= 0.07). The correlation for the frequent PVs
was statistically significant; thus, it can be concluded that the CS values for the
frequent PVs tended to be low. Therefore, the model predicted that the frequent
PVs would be non-compositional. This finding is the same as that of the best word
embedding model (see Section 5.4.2). There were some infrequent PVs with low
CS values, but there were more infrequent PVs with high CS values.
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Figure 16: Correlation between frequency and compositionality predictions for
the 50 most frequent and infrequent PVs.

The overall correlation between frequency and the CS values produced by
the best model (ρ = –0.26) was moderate. As it was statistically significant, it
can be claimed that, as the frequency increased, the CS values of the multi-sense

144



embedding model tended to decrease. As mentioned previously, this tendency
was particularly strong for frequent PVs.

The quality of the compositionality predictions varied across the frequency
sets of the PVs. In Table 23, it can be seen that the predictions for the frequent
(particularly for the infrequent PVs) were better than were the predictions for
the PVs with moderate frequency. For example, the correlation between the
predictions of infrequent PVs and the PVCompwas much stronger (ρ= 0.33) than
was the correlation between the PVs with moderate frequency and the PVComp
(ρ = 0.06). Similarly, in comparison to the PVLit dataset, the predictions for
frequent and infrequent PVs were better than they were for PVs with moderate
frequency. It can be thus concluded that the systems predicted the compositionality
of infrequent and frequent PVs well. The multi-sense embedding model predicted
the scores for infrequent PVs particularly well, while the frequency was associated
weakly with the predictions of infrequent PVs.

Table 23: Predictions of the best multi-sense embedding model for different
frequency sets of PVs.

set of PVs PVComp PVLit PV frequency
(frequency) ρ p ρ p ρ p

all (13–42,441) 0.21 <0.05 –0.31 <0.05 –0.26 <0.05
without frequent

(13–1,369) 0.19 0.05 –0.26 <0.05 –0.02 0.82

without infrequent
(202–42,441) 0.16 0.11 –0.30 <0.05 –0.35 <0.05

without frequent
and infrequent
(202–1,369)

0.06 0.69 –0.18 0.24 0.02 0.91

frequent
(1,439–42,441) 0.18 0.20 –0.32 <0.05 –0.38 <0.05

infrequent (13–188) 0.33 <0.05 –0.35 <0.05 0.07 0.61

To conclude, in comparison to the best word embedding model, the effect of
frequency on the results of multi-sense embedding was similar. As concluded
in Section 5.4.2, the frequency was clearly associated with the predictions of the
frequent PVs. The compositionality of frequent and infrequent PVs was predicted
more accurately than was the compositionality of PVs with moderate frequency.

5.5.3 Discussion of using multi-sense embeddings for the
compositionality predictions

The motivation for using multi-sense embeddings was to take the word polysemy
into account; thus obtaining compositionality predictions that were more accurate.
As the results of the word andmulti-sense embeddings demonstrated (see Sections
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5.2 and 5.3), multi-sense embeddings performed more poorly than did word
embeddings in which there was one vector for each word regardless of the real
number of meanings that this word might have. This section analyses two main
reasons for the poor performance of the multi-sense embeddings.

The first reason for the modest performance of the multi-sense embeddings
when predicting compositionality was the quality of distinguishing the different
senses of words. The SenseGram worked relatively well when differentiating
the meanings of nouns. For example, using pre-trained models for English85
demonstrates how the SenseGram is able to distinguish between the two main
meanings of the word ‘mouse’ (although the SenseGram suggests more meanings
for this word). The word sense disambiguation (WSD) mechanism revealed that
the word ‘mouse’ in the sentence ‘It was believed that a mother eating a mouse
would help heal the babywhowas ill’86 is ‘a small rodent’, while the ‘mouse’ in the
sentence ‘The mouse turns backwards and forwards and left and right movements
of the hand into equivalent electronic signals that, in turn, are used to move the
pointer’87 refers to ‘a device to move the cursor on a computer screen’. Similarly,
based on the multi-sense embeddings trained for Estonian in the current research,
SenseGram’s suggested two meanings for the Estonian word hiir ‘mouse’. The
WSDmechanism detected correctly that the first meaning was used in the sentence
Hiir on väike loom, kes armastab juustu ‘A mouse is a small animal that loves
cheese’ and the second meaning in the sentence Seda juhtmevaba hiirt on mugav
kasutada ‘This wireless mouse is comfortable to use’.

Verbs were suggested as being the most difficult POS for WSD problems (e.g.
Cabezudo et al. 2015). Therefore, the multi-sense embeddings for verbs might not
support high-quality compositionality predictions. For example, the model pro-
duced only one meaning for ambiguous verbs such as ajama ‘to drive/run’, käima
‘to go/walk’ and minema ‘to go’. However, the distinct meanings of some verbs
were relatively clear based on their nearest neighbours. For example, SenseGram
provided five meanings for the verb mängima – the most likely meaning is ‘to
play an instrument’, the second most likely meaning expresses ‘to play a game
or sport’, the third meaning indicates ‘to play in a cinema or theatre’, the fourth
meaning is ‘to have fun’ and the fifth expresses ‘to play a (ball) sport’. On the other
hand, the nearest neighbours of some verbs do not provide information to indicate
clearly which meanings are intended. For example, the differences between the
two meanings of the verb võtma ‘to take’ could not be clarified by considering
the nearest neighbours of the senses. Similarly, the meanings of the PVs were not
presented well. In addition, there were cases in which the sentences expressed
exactly the same meaning of the PV, but the system evaluated them as expressing
different meanings. For example, examples (60) and (61) containing the PV üle
pakkuma both express the meaning ‘to exaggerate’, but the SenseGram suggested
that the PV had different meanings. Furthermore, the exact meanings identified
by the SenseGram could not be clarified based on the nearest neighbours of the
PV.

85The pre-trained models for English, German, and Russian are downloadable at http://
ltdata1.informatik.uni-hamburg.de/sensegram/ (accessed 21.11.2018).

86https://en.wikipedia.org/wiki/Mouse (accessed 21.11.2018).
87https://en.wikipedia.org/wiki/Computer_mouse (accessed 21.11.2018).
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(60) Nüganen
Nüganen

ei
neg

paku-∅
offer-conneg

üle
over

liigutus-te-ga
movement-pl-com

Lit. ‘Nüganen does not offer over with movements.’
‘Nüganen does not exaggerate with his movements.’

(61) Nüüdse-ks
current-trl

on
be.3sg

selgu-nud,
appear-pst.ptcp

et
that

see
this

hirm
fear

ol-i
be-pst.3sg

üle
over

paku-tud.
offer-pst.ptcp

Lit. ‘It is clear now, that the fear was over offered.’
‘It is clear now, that the fear was exaggerated.’

The number of PV senses the SenseGram suggested did not correlate with the
number of senses presented in the EED. Approximately 40% of the PVs had the
same number of senses in the EED as suggested by the SenseGram. However,
most of these PVs were those that had one meaning in the dictionary. Therefore,
the SenseGram did not provide more meanings for the PVs that had a high number
of meanings in the EED. For example, läbi laskma ‘to let through/pretermit’, vastu
võtma ‘to accept/welcome/admit’ and kinni pidama ‘to stick to/slow down/detain’
have eight, seven, and six meanings, respectively, in the EED, but the best multi-
sense embedding model produced one, two and three meanings for these PVs,
respectively. Similarly, välja kuulutama ‘to announce’, which has one meaning in
the EED, was given six meanings by the model. However, the PV frequency did
not have an impact on the number of senses the SenseGram model produced.

The second reason for the poor performance of the multi-sense embeddings
might have been the fact that the human-annotated datasets that were used were
not designed to evaluate the compositionality predictions of the multi-sense em-
beddings. More specifically, the PVComp did not differentiate among the senses –
each PV had one score that was compared to the CS score for themost likely senses
of the PV and the verb vector. Therefore, the comparison of the rankings was
based on the assumption that both scores reflected the degree of compositionality
of the most predominant meaning; hence, they were comparable. Therefore, the
comparison between the predictions and the PVComp was tentative.

When comparing the predictions for the 48 PVs that the best multi-sense
model provided one meaning and the PVs that have also one meaning in the EED
with the compositionality scores, the correlation is ρ = 0.18. It is not higher
than was the correlation between the PVComp and the predictions for all the PVs
(ρ = 0.21), and it was not statistically significant at the p = 0.05 level either.
Of the 75 ambiguous PVs (the PVs that have more than one meaning in the
EED), the multi-sense embedding model provided more than one meaning for 31
PVs. The predictions for those (ambiguous) PVs correlated more weakly with the
PVComp (ρ = 0.08) than did the predictions for non-ambiguous PVs (ρ = 0.18).
However, the correlation is not statistically significant. In conclusion, the multi-
sense embedding model predicted the compositionality of non-ambiguous PVs
substantially better than it did the compositionality of ambiguous ones.

The PVLit distinguished among the meanings of the PVs, and was thus more
suitable for the evaluation of the predictions of the multi-sense embeddingmodels.
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However, one value was used for the efficient evaluation – the CS value for
the most likely senses of the PV and verb was compared to the median of the
(non-)literalness scores for the PV. This approach made the evaluation of each
model straightforward, but also limited. The additional evaluation of the multi-
sense embedding model (see Section 5.5.1) proposed that the results of the multi-
sense embedding model were not better when relying on the WSD mechanism
of the SenseGram; however, the evaluation was probably more precise. In future
research, a gold standard designed to evaluate the predictions of the multi-sense
embedding models should be created and employed.

Some work has been done in terms of applying multi-sense embeddings in
compositionality studies. For example, Cheng and Kartsaklis (2015) proposed a
successful deep compositional distributional model in which syntax-aware, multi-
sense word vectors were applied to detect paraphrasing. Kober et al. (2017)
investigated whether the disambiguation of word senses was strictly necessary,
or whether the meanings of a word (in context) could be disambiguated through
composition alone. The performance of single-vector and multi-sense vector
models were evaluated using a phrase similarity task. The authors found that
single-sense vector models performed as well or better than did multi-sense vector
models. These results provide a general background to the studies of multi-sense
embeddings to explore compositionality, but are not comparable to the results of
the current study.

However, some studies in which multi-sense embeddings have been used to
predict compositionality ofMWEs have been conducted. For example, Salehi et al.
(2015) used among other vector-space models a multi-sense skip-gram model for
the first attempt to predict the compositionality of English and German MWEs
(that is, English and German noun compounds and English verb particles) with
embeddings. They found that single word embeddings are empirically slightly su-
perior to multi-sense embeddings. However, with the dataset containing English
verb particles, the multi-sense skip-gram model obtained correlation of r = 0.51.
The result is not directly comparable with our observations, but offers an overview
of how well multi-sense embeddings work for predicting the compositionality of
English MWEs. In addition, among other tasks, Köper and Schulte im Walde
(2017a) explored multi-sense representations for the prediction of the composi-
tionality of PVs and the literal versus the non-literal usage of PVs. The overall
best result of the compositionality predictions improved when the multi-sense
embeddings were applied. The correlation between the predictions of the best
model and the human-annotated dataset was ρ = 0.32. Therefore, the overall
results of the compositionality predictions for Estonian and German PVs were
similar. However, it is important to note that the experimental setup in the present
study differed substantially that of Köper and Schulte im Walde (2017a). For
example, they only applied multi-sense learning to their target words. Although
multi-sense embeddings were not used to detect the literal versus the non-literal
usage of Estonian PVs, the literalness dataset was used to assess the predictions
of multi-sense embedding models. A similar dataset for German PVs (Köper and
Schulte im Walde 2016b) was used by Köper and Schulte im Walde (2017a) to
assess multi-sense embeddings used to predict the literal versus the non-literal
usage of German PVs. In order to use the literalness ratings for the evaluation of
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the models for Estonian, the intended meaning was identified using SenseGram’s
WSD mechanism. For the German PVs, the intended meanings were selected
by computing a CS value between a verb vector and the vector of all the context
words in the sentence. The most similar multi-sense embedding was then selected
for the prediction. This approach could be used as an alternative evaluation of the
compositionality predictions of Estonian PVs in the future.

In general, the need to distinguish between word senses in DSMs has been
noted. The results did not show that the multi-sense embedding models worked
better than dud the word embedding models for the detection of compositionality,
but further research is definitely necessary. To point out one important direction,
the evaluation of such models for predicting the compositionality of Estonian PVs
must be revised based on the issues discussed earlier in this section.

5.6 Summary and discussion of detecting the
compositionality of particle verbs

This section discusses the main results when using DSMs to predict the composi-
tionality of Estonian PVs. In addition, the impact of the human compositionality
ratings on the results are discussed, and the work of the models used for predicting
the compositionality of ambiguous and non-ambiguous PVs is compared.

Like other MWEs, PVs form a continuum from fully compositional units to
fully non-compositional ones based on their degrees of compositionality. In order
to model the compositionality of PVs, the semantic similarity between the PV
and its base verb was measured using vector representations trained with DSMs.
Two kinds of DSMs were utilised to predict the compositionality of PVs – DSMs
that learnt one representation per word and DSMs that were able to learn mul-
tiple representations per word. Word embeddings were trained using word2vec,
and these word representations were applied to train multi-sense embeddings via
SenseGram.

The impact of four parameters – the number of dimensions, the window size,
the minimum-count threshold and the number of iterations – on the composi-
tionality predictions of word and multi-sense embeddings was investigated. The
influence of the window size and iterations were stronger than was the impact of
the number of dimensions and the minimum threshold of word count. In compar-
ison with word embedding models, the multi-sense embedding models are less
influenced by the change of parameter values. The comparison of different mod-
els revealed that the difference between the models trained with default parameter
settings and the best word and multi-sense embedding models was statistically
significant. Thus, some guidelines concerning how to improve the quality of
embeddings were provided.

For the word and multi-sense embeddings, two word2vec architectures –
CBOW and Skip-gram – were trained and compared. The CBOW models per-
formed slightly better for training the word embeddings than did the Skip-gram
models. For themulti-sense embeddings, the difference in the predictions between
CBOW and Skip-gram architectures were significant. Therefore, depending on
the parameter configurations, the Skip-gram architecture might be as good as the
CBOW model for training word embeddings, but the CBOW architecture should
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be preferred when training multi-sense embeddings. In addition, the frequency of
the PVs influenced the predictions of the Skip-gram models more than it did the
predictions of the CBOW models.

The best results – the highest correlation with the human compositionality
judgements – were achieved by the word embedding model using the CBOW ar-
chitecture and trained with 300 dimensions, with a window size of 5, a minimum-
count threshold of 10 and 20 iterations. The multi-sense embedding model trained
with the same parameters, except for the word-count threshold of 5, provided the
best predictions of all the multi-sense embedding models that were introduced.
Therefore, somewhat surprisingly, the multi-sense embeddings did not outper-
form the predictions of the word embedding models. However, it is important
to bear in mind that the predictions of this model correlated more strongly with
the compositionality ratings (PVComp) than did those of any other model. Nev-
ertheless, there are number of clear reasons for the modest performance of the
multi-sense embedding models. Most importantly, the human-annotated datasets
were not designed to evaluate multi-sense embedding models; thus, the evaluation
was somewhat tentative. Therefore, studies of the use of multi-sense embeddings
in compositionality studies must continue in the future.

Both the word embedding and the multi-sense embedding models predicted
the compositionality of frequent and infrequent PVs much more accurately than
they did the compositionality of PVs with moderate frequency. As it was expected
that the vectors of frequent PVs would be more representative because more data
are associated with them, the result for frequent PVs was not surprising. The
frequent PVs tend to be more polysemous; therefore, it could be expected that
the compositionality of these PVs would be more difficult to predict than would
the compositionality of other PVs. The frequent PVs studied and their verbal
components were indeed more polysemous than were the other PVs and their base
verbs88, but the predictions were good for both sets of PVs. However, of the 50
frequent and infrequent PVs, 33 and 18 were ambiguous, respectively, and the
predictions for frequent and infrequent PVs were similarly good; thus, it can be
assumed that the compositionality of frequent PVs was predicted well due to the
representative vectors, and the compositionality of infrequent PVs was predicted
well because they were often non-ambiguous. This conclusion is illustrated well
by the fact that the multi-sense embedding model’s predictions of infrequent,
non-ambiguous PVs correlated with the PVLit much more strongly (ρ = –0.52)
than did the predictions of infrequent, ambiguous PVs (ρ = –0.17). At the same
time, the word embedding model’s predictions of frequent PVs were more similar
regardless of the number of senses the PVs had – the correlation between the
predictions and the PVComp for ambiguous PVs was ρ = 0.22, and ρ = 0.30 for
non-ambiguous PVs.

The predictions for frequent and infrequent PVs correlated moderately with
the frequency of the PVs. The most frequent and most infrequent PVs tended
to be assigned lower CS scores than did the slightly more infrequent/frequent
ones. The multi-sense embedding model’s predictions of infrequent PVs had a

88Average number of senses among frequent PVs is 2.4 and the average number of senses of
infrequent PVs is 1.5; the average number of verbs of frequent PVs is 8.1, average number of verbs
of infrequent PVs is 4.24.
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weak correlation with frequency, but the predictions were still relatively good.
Hence, it can be said that the quality of the predictions for infrequent PVs was not
influenced by the frequency. However, the PVs with moderate frequency were not
influenced by the frequency, and were not predicted as well as were the infrequent
and frequent PVs. There were 23 ambiguous PVs and 27 non-ambiguous PVswith
moderate frequency – the models predicted the compositionality of the ambiguous
PVs better than they did the compositionality of non-ambiguous PVs. However,
as there was an almost equal number of ambiguous and non-ambiguous PVs, the
overall quality of the predictions was not high. Moreover, it can be assumed that
the vectors were not as representative as were the vectors of the frequent PVs;
therefore, the quality of the predictions suffered. Furthermore, when dividing the
PVs with moderate frequency into two categories – frequent and infrequent ones –
the predictions of frequent PVs correlated better with the human judgements than
did the predictions of infrequent PVs. To conclude, the vector representations of
PVs with moderate frequency were not good enough and could not compensate
for the difference between the predictions of ambiguous and non-ambiguous PVs.

The compositionality predictions of the DSMs trained to learn word andmulti-
sense embeddingswere evaluated against two human-annotated rankings. The first
was based on the averaged compositionality scores of PVs (see Section 4.2), while
the other ranking was based on the averaged literalness scores for the PVmeanings
(described in Section 4.3). The compositionality ratings were collected in order
to evaluate the results of the word embedding models. However, the predictions
of the word embedding models did not correlate strongly with the human com-
positionality judgements – the highest correlation that the best word embedding
models attained was ρ = 0.19. The most probable reason for the relatively low
correlation was that both ambiguous and non-ambiguous PVs were included in the
study, but the predictions and human-annotated datasets only included one score
for a PV regardless of the number of senses it might have. However, the correlation
between the predictions and the compositionality scores did not improve signific-
antly when only the compositionality of the non-ambiguous PVs was predicted.
The correlation between the predictions and the compositionality scores for the
non-ambiguous PVs was ρ = 0.21. At the same time, the correlation amongst the
non-ambiguous PVs was ρ = 0.16. None of these correlations was statistically
significant. The best multi-sense embedding models achieved similar, but slightly
weaker correlations with the compositionality ratings – ρ= 0.21. The most likely
senses that the model would predict were used for the evaluation. However, the
difference between the predictions for ambiguous and non-ambiguous PVs was
not significant for the multi-sense embedding models – the correlation between
the predictions for non-ambiguous PVs and compositionality scores was weak
(ρ = 0.18), and almost non-existent (ρ = 0.08) for ambiguous PVs.

Another human-annotated dataset containing literalness (compositionality)
scores for PVs was originally designed for the task of classifying the literal versus
the non-literal usage of Estonian PVs. However, the scores distinguished amongst
different meanings of the PVs, and could therefore have been more suitable for
the evaluation of the multi-sense embedding models. However, the predictions of
both models correlated better with these scores. The best word embedding model
obtained a correlation of ρ = –0.46, and the best multi-sense embedding model
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obtained a correlation of ρ= –0.35. However, the evaluation was conducted based
on one score for each PV,whichwas an average literalness score assigned to one PV
by the human annotators. The reason for such an evaluation was that the detection
of the intendedmeanings of each sentencewas complicated and the result would be
dependent on the quality of the WSDmechanism of SenseGram, while the quality
of its use for Estonian data was unknown. Compared to the literalness dataset, the
word embedding model predicted the non-ambiguous words significantly better
(ρ = –0.51) than it did ambiguous ones (ρ = –0.39); the difference was not as
substantial for the multi-sense embedding model (ρ = –0.34 versus ρ = –0.31).

The study of word and multi-sense embeddings for predicting the composi-
tionality of Estonian PVs confirmed the complexity of the task of compositionality
detection. The predictions of the word embedding models correlated relatively
well with the compositionality scores, but the results depended on the frequency
of the PVs and their ambiguity. In addition, the evaluation of the multi-sense em-
bedding models was poor, probably because they were evaluated against human
judgements that were not collected for the assessment of such models. Therefore,
the evaluation of the multi-sense embedding models could be improved by using
different methods and resources.
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6 DETECTING THE LITERAL AND NON-LITERAL USAGE
OF PARTICLE VERBS

This section describes the experiments on the identification of PVs via automatic
detection of the literal versus the non-literal usage of Estonian PVs. A theoretical
overview of supervised learning and the methods applied is presented in Section
3.3.

Previous research on the automatic detection of non-literal language usage
has mainly been undertaken in English and German. While general indicat-
ors for identifying non-literal languages have been studied extensively, there is
little work on language-specific directions. For example, Tsvetkov and Wintner
(2014) studied language-independent features such as abstractness and imageab-
ility, semantic categories from WordNet and vector space word representations to
detect metaphors in English, Spanish, Farsi and Russian. Köper and Schulte im
Walde (2016b) distinguished between the literal and non-literal usage of German
PVs using standard features such as affective ratings and unigrams combined
with PV-specific information. The present study combines standard, PV- and
language-specific features in order to detect the non-literal meanings of Estonian
PVs.

Aedmaa et al. (2018) described the first experiment for the automatic detection
of the non-literal usage of Estonian PVs. The basicmodel was adapted fromKöper
and Schulte im Walde (2016b) and was constructed including language-specific
features. Compared to the earlier study, the present research is more exhaustive
in terms of the description of the automatic detection of the literal versus the non-
literal usage of Estonian PVs. This research analyses the impact of the features
on the results, and introduces frequency as predictive of non-literal language.

This chapter is organised in the followingway. In Section 6.1, the experimental
setup and evaluation are described. This is followed by an overview of the features
suggested being useful for the detection of the literal versus the non-literal usage
of Estonian PVs in Section 6.2. The results of the experiments and the usefulness
of each feature are analysed in Section 6.3. Section 6.4 studies frequency as a
predictor of the (non-)literal usage of Estonian PVs. The results are discussed and
conclusions drawn in Section 6.5.

6.1 Experimental setup and evaluation
The aim of the experiments was to develop a classifier that could predict the literal
versus the non-literal usage of Estonian PVs. The model was trained on a dataset
that included (non-)literalness ratings for 184 Estonian PVs in 1,481 sentences (see
Section 4.3). The selection of PVs and sentences is described in the same section.
Based on the averaged (non-)literalness ratings, the sentences were divided into
two categories, namely literal and non-literal. Literal sentences are sentences
with an average (non-)literalness score of 0–2.33, and non-literal sentences have
a score of 2.67–5. The classifier predicted the class of the sentences using a set
of features discussed in Section 6.2.

Although there aremanymachine learningmodels, the random forest classifier
was utilised because this method has been proven to work well for linguistic data.
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For example, the random forest classifier has been applied successfully to the
detection of the compositionality of German PVs (e.g. Köper and Schulte im
Walde 2016b). The random forest learning method is described in Section 3.3.1.

Waikato Environment for Knowledge Analysis (Weka89) software (Frank et al.
2016) was used for the machine learning algorithms. As it contains tools for
data preparation, classification, regression, clustering, association rules mining,
and visualisation, some data pre-processing was also conducted using Weka.
Specifically, the missing values were addressed using the NumericCleaner filter90.

The evaluation of the models was conducted using 10-fold cross-validation
(see Section 3.3.3). The values for the overall classification accuracy and the F1
scores for each model are presented. The F1 score is a widely used measure in
machine learning, and expresses the harmonic mean of recall and precision (see
Section 3.4.3). The F1 scores for non-literal (F1 n-lit) and literal (F1 lit) classes are
provided. The results are compared to themajority baseline. Themajority baseline
was calculated by applying the Zero Rule method, which predicts the non-literal
class as the result of all predictions (simply because it has more observations than
does the literal class). Weka class ZeroR91 was applied to determine the majority
baseline value.

6.2 Features
This section introduces a set of features that were suggested to detect the lit-
eral versus the non-literal usage of Estonian PVs. The values of these features
were annotated for all 1,481 sentences that were classified based on the average
(non-)literalness ratings described in Section 4.3. Annotated sentences formed
the dataset of (non-)literal ratings for Estonian PVs (Aedmaa 2018). Some of
the features were adopted from previous studies of the automatic prediction of
metaphorical and literal language usage, mainly from Turney et al. (2011) and
Köper and Schulte im Walde (2016b). Other features were motivated by the spe-
cific features of the Estonian language. The introduced features were applied later
(see Section 6.3) in different combinations to develop the best classifier for the
automatic detection of the literal versus the non-literal usage of Estonian PVs.

6.2.1 Abstractness ratings
In this section, four abstractness features – the average abstractness ratings of all
words, the average abstractness ratings of all nouns (excluding proper nouns), the
abstractness ratings of the subjects and the abstractness ratings of the objects – are
introduced. The abstractness and concreteness ratings have been used in previous
work on the detection of non-literal language usage. The present research is based
on the hypothesis that the degree of abstractness of the context influences the

89https://www.cs.waikato.ac.nz/~ml/weka/index.html (accessed 02.03.2017).
90http://weka.sourceforge.net/doc.dev/weka/filters/unsupervised/

attribute/NumericCleaner.html (accessed 02.05.2018).
91http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/ZeroR.html

(accessed 24.10.2018).
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literalness of the word. The selection of abstractness features in this work was
largely motivated by two studies. Turney et al. (2011) presented an algorithm to
classify a word sense as metaphorical or literal in a given context, and Köper and
Schulte im Walde (2016b) distinguished between the literal and the non-literal
usage of German PVs.

Unlike previous studies, the average abstractness ratings for all words are
included as one of the features. This decision was motivated by the fact that there
are no reports on this feature in the related research, but it represents adequately
the aforementioned hypothesis that the usage of a word depends on the degree
of abstractness of other words in the context (see Section 4.5). In addition,
Köper and Schulte im Walde (2016b) reported that features such as the average
abstractness rating of proper names/verbs/adjectives/adverbs added few or no
additional information to their dataset. Thus, it was decided to create one instead
of four features, including words with different POS. This feature indicates the
average abstractness rating of all lemmas for each sentence that can be found in
the dataset of abstractness/concreteness ratings.

The average abstractness rating of all the nouns was adopted from Turney
et al. (2011), whose targets were adjective-noun combinations and verbs. In their
experiment, the abstractness of the nouns had the largest weight in predicting
whether the target verb was used metaphorically or not. Moreover, according to
the information obtained, the abstractness of the nouns was one of the most salient
features for distinguishing between the literal and the non-literal usage of German
PVs. Overall, features that depended on nouns, such as the common nouns in the
context, and nouns marking a subject and an object were more useful than were
the features that contained information about other POS. (Köper and Schulte im
Walde 2016b) Accordingly, the abstractness ratings for subjects and objects as
potentially helpful features for predicting the literal versus the non-literal usage of
Estonian PVs were also studied.

Apart from the evidence provided in previous work, the impact of the degree
of abstractness of the surrounding words is also presumable when examining Es-
tonian data. For example, examples (62)–(65) illustrate that literal sentences (see
examples (62) and (64)) includemore concrete words than do non-literal sentences
(see examples (63) and (65)). According to the abstractness/concreteness dataset
(see Section 4.5), the words sõber ‘friend’ (with an abstractness score of 5.9) and
koer ‘dog’ (with an abstractness score of 8.5) are much more concrete than are
the words surm ‘death’ (with an abstractness score of 4.2) and viha ‘anger’ (with
an abstractness score of 1.7).

(62) Sõber
friend

jooks-is
run-pst.3sg

mu-lle
I-all

järele.
after

‘A friend ran after me.’

(63) Surm
death

jooks-is
run-pst.3sg

ta-lle
he-all

järele.
after

Lit. ‘The death ran after him.’
‘Death was following him.’
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(64) Mees
man

suru-s
push-pst.3sg

koera-∅
dog-gen

maha.
down

‘The man pushed the dog down.’

(65) Mees
man

suru-s
push-pst.3sg

viha-∅
anger-gen

maha.
down

Lit. ‘The man pushed his anger down.’
‘The man suppressed his anger.’

Related research and evidence from the data led to the assumption that the
abstractness of the context of PVs could help to predict the literal versus the non-
literal usage of Estonian PVs. Four abstractness features proposed in this section
are included in the feature space, and their impact is studied in depth in Section
6.3.

6.2.2 Cases of subject and object
Estonian distinguishes between ‘total’ subjects in the nominative case and ‘par-
tial’ subjects in the partitive case. Partial subjects are not in subject-predicate
agreement (Erelt et al. 1993). For example, the subjects külaline ‘guest’ and naine
‘woman’ are in the nominative case in examples (66) and (68). The subjects are
in the partitive case in examples (67) and (69). It was observed that subject case
assignment might correlate with (non-)literal readings. For example, the meaning
of the PV juurde tulema is non-literal in example (67), but literal in example (66).

(66) Külaline
guest

tule-b
come-3sg

juurde.
by

Lit. ‘The guest is coming by.’
‘The guest is approaching.’

(67) Külalis-i
guest-pl.prt

tule-b
come-3sg

juurde.
by

Lit. ‘The number of guests is coming by.’
‘The number of guests is increasing.’

(68) Naine
woman

lähe-b
go-3sg

peatuse-s
stop-ine

maha.
off

Lit. ‘The woman goes off at the stop.’
‘The woman gets off at the stop.’

(69) Vett-∅
water-prt

ei
neg

läi-nud
go-pst.ptcp

maha.
down

Lit. ‘Water did not go down.’
‘Water did not fall down.’
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Similarly, a ‘total’ object in Estonian receives the nominative or genitive case,
and a ‘partial’ object receives the partitive case. For example, the object in
example (70) is in the genitive case (supi), but the object in example (71) is in the
partitive case (mida). There is a difference in the meaning of the PV ette võtma in
these sentences – the meaning of the PV is more literal in example (70) than it is
in example (71). These kinds of examples found in the text corpora are evidence
that the object case might influence the literal versus the non-literal usage of PVs.

(70) Tüdruk
girl

võt-tis
take-pst.3sg

ette
front

supi-∅.
soup-gen

‘The girl took the soup in front of her.’

(71) Mi-da
what-prt

koos
together

ette
ahead

võt-ta?
take-inf

Lit. ‘What should we take ahead together?’
‘What should we do together?’

The impact of the subject/object case on the (non-)literal meaning has not
been examined in theoretical linguistics. Therefore, it is not possible to provide
further evidence regarding the associations between the subject/object case and
the formation of a PV’s meaning. Nevertheless, the first study of the automatic
detection of the literal versus the non-literal usage of Estonian PVs demonstrated
that the subject case contained information that was useful for the task (Aedmaa
et al. 2018). Both features are thus included in the current, more exhaustive study,
which tests whether the case distribution predicts (non-)literal language usage.
The impact of the case features is analysed in Sections 6.3.4.5 and 6.3.4.6.

6.2.3 Subject and object animacy
When nouns or verbs are used metaphorically, either semantic or syntactic prin-
ciples are often violated. For example, the verb ‘to eat’ requires an animate subject
and an edible direct object; thus, the sentence ‘Tom ate the apple’ is semantically
acceptable, but the sentence ‘The desktop printer ate the paper’ is not. The usage
of the verb ‘to eat’ is literal in the first sentence and non-literal in the second
sentence. (Glucksberg et al. 2001)

Similarly, the meaning of the PV can determine the animacy of its subject(s)
and object(s). For example, if the PV meaning requires an animate subject but
the subject is inanimate, the meaning of the sentence might become non-literal.
For example, the PV in examples (72) and (73) is the same (sisse kutsuma ‘to
invite in’), but the subject sõber ‘friend’ is animate and the sentence is literal in
the first sentence, while the subjectmaja ‘house’ in example (73) is inanimate and
the sentence is non-literal. Similarly, the subject naine ‘woman’ in example (74)
is animate and the sentence is literal, while the subject välimus ‘appearance’ in
example (75) is inanimate and the sentence is non-literal.
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(72) Sõber
friend

kutsu-s
invite-pst.3sg

mu-∅
I-gen

sisse.
inside

‘The friend invited me in.’

(73) Maja
house

ei
neg

kutsu-∅
invite-conneg

sisse.
inside

Lit. ‘The house does not invite in.’
‘The house doesn’t look inviting.’

(74) Naine
woman

tõuka-s
push-pst.3sg

mehe-∅
man-gen

eemale.
away

‘A woman pushed a man away.’

(75) Poe-∅
shop-gen

välimus
appearance

tõuka-s
push-pst.3sg

mehe-∅
man-gen

eemale.
away

Lit. ‘The appearance of the shop pushed the man away.’
‘The appearance of the shop made the man go away.’

The impact of object animacy on the meaning of the PVs is less intuitive.
However, some evidence for the significance of object animacy can be found in
the Estonian language. Firstly, the literal meaning of the PV läbi põletama is
‘to fuse something’ and the object is expected to be inanimate. The non-literal
meaning of the PV is similar to the verb läbi põlema ‘to burn out’, and requires
an animate object. For example, the object in example (76) is inanimate and the
meaning of the PV is literal, while the object in example (77) is animate and the
meaning of the PV is non-literal.

(76) Mees
man

põleta-s
burn-pst.3sg

kaitsme-∅
fuse-gen

läbi.
out

Lit. ‘The man burned the fuse out.’
‘The man burned the fuse.’

(77) Mees
man

põleta-s
burn-pst.3sg

enese-∅
himself-gen

läbi.
out

Lit. ‘The man burned himself out.’
‘The man had a burnout.’

Based on examples (76) and (77), one can assume that the abstractness scores
already indicate the (non-)literal usage of the PV – the inanimate words in the
literal sentence are concrete, and the animate words in the non-literal sentences
are abstract. Nevertheless, as in examples (72) and (73), the subject of the
literal sentence can represent a more abstract (and animate) word than can the
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concrete inanimate subject of the non-literal sentence. Thus, it is argued that the
abstractness ratings are also insufficient to express the animacy of the words.

The association between subject/object animacy and (non-)literalness has not
been examined in depth previously. Nevertheless, there is sufficient evidence in the
data to indicate that the subject and object animacy provide useful information for
predicting the literal versus the non-literal usage of Estonian PVs. Furthermore,
the first experiment to predict the (non-)literalness of Estonian PVs (see Aedmaa
et al. 2018) suggested that the animacy of the subject and object deserved thorough
research as classification features for predicting a PV’s (non-)literal language
usage. The impact of the animacy features is broken down in Sections 6.3.4.7 and
6.3.4.8.

6.2.4 Case government
Case government is a phenomenon in which the lexical meaning of the base
verb affects the grammatical form of the argument, for example, the predicate
determines the case of the argument (Erelt et al. 1993). Thus, the case of the
argument depends on the meaning of the PV. For example, in example (78), the
PV läbi minema ‘to go through’ is literal and requires an argument that answers
the question ‘from where?’. Hence, the argument has to be in the elative case. In
example (79), the PV has the non-literal meaning ‘to succeed’ and does not require
any additional arguments. Similarly, the meaning of the PV järele vaatama differs
in examples (80) and (81). The meaning of the PV ‘to follow somebody with
one’s eyes’ requires an argument in the allative case in example (80). The PV
argument is in the elative case, suggesting that the PV is used in the sense of ‘to
look something up’ in example (81). Moreover, the degree of (non-)literalness of
the different meanings of the same PV vary.

(78) Ta
s/he

läk-s
go-pst.3sg

metsa-st
forest-ela

läbi.
through

‘S/he went through the forest.’

(79) Mu-∅
I-gen

ettepanek
proposal

läk-s
go-pst.3sg

läbi.
through

Lit. ‘My proposal went through.’
‘My proposal was successful.’

(80) Ta
s/he

vaata-s
look-pst.3sg

ema-le
mother-all

järele.
after

Lit. ‘S/he looked after mother.’
‘Her/his eyes followed mother.’

(81) Ta
s/he

vaata-s
look-pst.3sg

arvuti-st
computer-ela

järele.
after

Lit. ‘S/he looked after from the computer.’
‘S/he looked the information up on the computer.’
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Aedmaa et al. (2018) proposed that the case argument provided information to
predict the literal versus the non-literal usage of Estonian PVs; hence, the feature
has been analysed in depth in the current study. The impact of case government on
the classification task is described in Section 6.3.4.9. There are fourteen cases92
in Estonian; thus, the argument is one of those cases or does not appear at all.
Note that, as the cases of the subject and object are distinct features, only the cases
of other types of arguments, such as adverbials and modifiers, are annotated as
values of this feature.

6.3 Results for the classification of literal and non-literal
usage

This section provides an overview of the results of the automatic classification of
the literal versus the non-literal usage of PVs as follows: First, the feature selection
experiments are carried out to ascertain which features are automatically selected
as the most relevant. In the second section, we describe how each studied feature
operates independently of the effect of any other feature is described. The results
of the feature combinations with different sizes are then provided. The impact of
each feature is analysed in ablation study with a focus on the sentences classified
incorrectly by the models. The overall classification accuracy and f-scores (F1)
for both classes (literal and non-literal) are presented for each model.

6.3.1 Results for the feature selection
The results of attribute selection are presented in this section. The goal of attribute
selection was explained previously in Section 3.3.2. As relatively few features
were studied in this thesis, automatic attribute selection could have been avoided.
However, as one of the purposes of the feature selection process is a better under-
standing of the data and features (Chandrashekar and Sahin 2014), the attribute
selection can provide an appropriate introduction to the following analysis. The
attribute selection was implemented using three different techniques for the feature
selection available via Weka – a correlation-based approach, Information Gain,
and a learner-based feature selection.

6.3.1.1 Correlation-based feature selection
Correlations refer to the Pearson correlation coefficient between each attribute
and the output (literal and non-literal usage). A correlation is high when the
value is close to 1 or –1, and low when it is close to 0. A choice of attributes
can be made based on the correlation value. The correlation was calculated using
Weka’s CfsSubsetEval93 technique, which requires the use of the Greedy Stepwise
search method. The CfsSubsetEval evaluates the work of a subset of features by

92Nominative, genitive, partitive, illative, inessive, elative, allative, adessive, ablative, translat-
ive, terminative, essive, abessive, comitative.

93http://weka.sourceforge.net/doc.dev/weka/attributeSelection/
CfsSubsetEval.html (accessed 10.05.2018).
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considering the individual predictive ability of each feature, together with the
degree of redundancy amongst them. The correlation feature selection (CFS) is
based on the hypothesis that a good feature set contains features that are correlated
significantly with the output class, yet uncorrelated with each other (Hall 1998).
10-fold cross-validation was implemented, and the results of the experiment are
shown in Table 24.

Table 24: Results for the correlation-based feature selection.

number of folds feature
0 particle
10 verb
10 unigrams
0 the average abstractness of words
5 the average abstractness of nouns
0 subject abstractness
3 object abstractness
0 subject case
0 object case
0 subject animacy
0 object animacy
0 case government

CFS revealed four features that appeared at least in one fold in the best subset
of features, namely the verb, the unigram, the average abstractness of the nouns
and the object’s abstractness. Verbs and unigrams were among the best features
in all 10 folds, the average abstractness of nouns in five folds, and the object
abstractness in three folds. It can therefore be assumed that verbs and unigrams
did not correlate well with each other, but they correlated well with the predictable
class – the literal versus the non-literal usage of PVs.

6.3.1.2 Information Gain
Another method of selecting features is to calculate the information gain (entropy)
for each attribute in relation to the class. A value of 0 indicates no information
and 1 indicates maximum information. The attributes that contributed more
information had a higher information gain value, while the attributes with a lower
score did not add as much information. Weka’s InfoGainAttributeEval94 class
was employed using the Ranker search method. This approach evaluates the
worth of the features by measuring the information gain with regard to the class
(the literalness of the sentences). The results of the 10-fold cross-validation are
presented in Table 25.

94http://weka.sourceforge.net/doc.dev/weka/attributeSelection/
InfoGainAttributeEval.html (accessed 11.11.2017).
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Table 25: Results for the information gain.

average merit feature
0.093 +− 0.003 particle
0.367 +− 0.007 verb
0.164 +− 0.006 unigrams
0.034 +− 0.003 the average abstractness of words
0.069 +− 0.006 the average abstractness of nouns
0.007 +− 0.003 subject abstractness
0.015 +− 0.002 object abstractness
0.001 +− 0.000 subject case
0.003 +− 0.001 object case
0.003 +− 0.001 subject animacy
0.001 +− 0.000 object animacy
0.032 +− 0.002 case government

The results of the information gain are in accordance with the results of the
correlation-based feature selection (described in Section 6.3.1.1) – the verb and
unigram features contributed more information than did the other features. In
addition, compared to the other features, the particle and the average abstractness
of the nouns contributed more information than the other features.

6.3.1.3 Learner-based feature selection
The third feature selection technique used was a learner-based one. As the random
forest classifier was implemented for the classification task, the same method was
used to evaluate the dataset with different subsets of attributes. The WrapperSub-
setEval95 technique in Weka was adopted, and the BestFirst96 search method97
was applied. The results of the 10-fold cross-validation that was used to estimate
the accuracy of the learning scheme for the set of features if presented in Table
26.

The learner-based feature selection technique indicated 10 features that ap-
peared in at least one fold in the best subset of features. Particles, verbs, unigrams,
subject animacy and object animacy constituted to the best subset of features in
all 10 folds. The average abstractness of the nouns and case government were
included in the best subset in nine folds, the subject abstractness and subject case
in three folds, and the object case in one fold. According to the learner-based
feature selection, the average abstractness of words and object abstractness are not
relevant for detecting the literal versus the non-literal usage of Estonian PVs.

95http://weka.sourceforge.net/doc.dev/weka/attributeSelection/
WrapperSubsetEval.html (accessed 11.11.2017).

96http://weka.sourceforge.net/doc.dev/weka/attributeSelection/BestFirst.
html (accessed 11.11.2017).

97The GreedyStepwise search method was also tested – the results were the same.
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Table 26: Results for the learner-based feature selection.

number of folds feature
10 particle
10 verb
10 unigrams
0 the average abstractness of words
9 the average abstractness of nouns
3 subject abstractness
0 object abstractness
3 subject case
1 object case
10 subject animacy
10 object animacy
9 case government

6.3.1.4 Summary of the feature selection results
The aim of the feature selection was to test different feature selection techniques
and ascertain the features that automatic feature selection methods select as the
most relevant ones.

Both filter methods – the correlation-based feature selection and the inform-
ation gain – chose the verb and unigram as the most relevant features. The
correlation-based method also selected the average abstractness of the nouns and
object abstractness as somewhat relevant features. The information gain sug-
gested that the particle and the average abstractness of nouns contributed more
information than did the other features (except for verbs and unigrams).

The wrapper method – a learner-based feature selection – chose more features
than did the filtermethods. According to thismethod, themost relevant features are
particle, verb, unigrams, subject animacy, object animacy, average abstractness
of nouns and case government. The average abstractness of words and object
abstractness was not selected once and are therefore not relevant for detecting
literal vs. non-literal usage of Estonian PVs.

In summary, all the feature selection methods highlighted the most relevant
features for the dataset, and provided information that was useful for a better
understanding of the data. Feature selection should be used whenever the feature
set is large and the aim is to identify the most useful features within a short
period. The results of the feature selection are not adopted directly for the current
research because the aim was to inspect the impact of the studied features on the
classification results. However, the results of the feature selection are visited in
comparison with the classification results of the features and their combinations
in the following sections.
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6.3.2 Results for the independent features
The aim of the classification experiments was to determine the best combination
of features in order to distinguish between the literal versus the non-literal usage
of Estonian PVs. The first phase aimed to determine how well the studied features
worked independently of information obtained from other features. The results of
these experiments are presented in this section.

Table 27 shows how well the studied features performed individually. Three
different settings are presented for the unigrams. The first represents a setting in
which all the unigrams (1,518 unique lemmas) were independent features. The
second setting reveals the results for the unigrams’ features when only unigrams
with a frequency greater than 5were taken into account. After running experiments
with various settings, the unigram feature that considered only those unigramswith
aminimum-count threshold of 6 provided the best results. The threshold is optimal
because only a few unigramswere omitted. For the third result, the unigram feature
was implemented as one feature instead of considering every unigram to be with
a frequency of more than 5 as an independent feature98. The unigram feature was
implemented as the output of a random forest classifier when the result was either
a literal or a non-literal sentence. This also helped to counter the data sparseness.
In NLP, data sparsity is a term referring to the phenomenon of not having sufficient
data to model language accurately. This means that accurate observations about
the distribution and pattern of language cannot be made because of insufficient
data. (Allison et al. 2006) The same setting is referred to hereafter whenever
discussing the unigram feature.

The unigram feature received the highest overall accuracy of 82.8% over
a baseline of 74.0%. It classified the greatest number of non-literal sentences
correctly, with an f-score of 89.3. The base verb predicted the highest number of
literal sentences correctly, achieving an F1 score of 59.4. The case government
and abstractness of the object also outperformed the majority baseline. However,
the f-score for non-literal usage was higher than the baseline (85.1) for the unigram
and base verb features. All the features, except for the subject case, object case,
subject animacy and object animacy, exceeded the majority baseline for literal
sentences. Of the abstractness features, the abstractness rating of the object gave
the best results. For the literal usage, the highest f-score was for the average
abstractness of nouns.

In comparison with the feature selection described in 6.3.1, the results are not
surprising because feature selection results indicated that verb and unigram are
more useful features than others. However, based on the feature selection, it could
have been assumed that particle, average abstractness of nouns, subject animacy
and object animacy perform better than the rest of the features. However, the
correlation-based feature selection (see Section 6.3.1.1) indicated that the average
abstractness of nouns and object abstractness are more relevant features than other
abstractness features. As an independent feature, the object abstractness achieved
greater f-score for non-literal usage than did any other abstractness feature. The
average abstractness of nouns obtains higher f-score for literal usage than any
other feature (except verb and unigram).

98Hence the singular form ‘unigram’.
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Table 27: Classification results for independent features.

feature type size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.0
1 particle 1 74.0 84.6 17.6
2 base verb 1 82.0 88.4 59.4
3 unigram 1,518 81.2 88.6 46.3
3 unigram, f>5 406 82.8 89.3 56.0
3 unigram, f>5 1 82.8 89.3 56.0
4 the average abstractness of words 1 69.0 80.4 26.3
5 the average abstractness of nouns 1 68.7 79.9 30.0
6 rating of the PV subject 1 72.4 83.4 17.7
7 rating of the PV object 1 74.3 84.9 15.2
8 subject case 1 74.0 85.1 0.0
9 object case 1 74.0 85.1 0.0
10 subject animacy 1 74.0 85.1 0.0
11 object animacy 1 74.0 85.1 0.0
12 case government 1 74.1 84.9 9.9

Overall, these results suggest that the base verb and unigram features are the
best single performing features for predicting the literal versus non-literal usage
of PVs. Considering that multiple features can have a similarly important effect
on the results of the models, the need for further testing with combinations of
features is self-explanatory. The next section introduces the results of the models
in which information from multiple features was combined.

6.3.3 Results of the combinations of features
The most substantial results of the models combining information from several
features are presented in this section. The aim was to examine the role of each
studied feature in predicting the correct class of literal and non-literal sentences.
In order to determine the importance of each feature, the results of the models are
reported according to their feature space size; that is, the number of features used
in the model. The aim of the first section is to determine whether the single best-
performing features – the unigram and base verb – worked in combination better
than did any other 2-feature combinations. Therefore, all the models containing
a maximum of two features were compared. The development of the best model
continued by combining the twomost salient featureswith other suggested features.
Accordingly, the best random forest classifier predicting the literal versus the non-
literal usage of Estonian PVs is suggested in this section.

165



6.3.3.1 Fundamental features
As demonstrated previously (see Section 6.3.2), the best individual features for
classifying the literal versus the non-literal usage of PVs are the base verbs and
the unigram feature. The goal of this section is to ascertain whether these two
features provide better predictions together than any other 2-feature combinations
do. Table 28 presents the results of the best models using a maximum of two
features.

Table 28: Results for the best 2-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–2 2 85.8 90.7 69.7
1, 3 2 83.3 89.6 56.9
2, 3 2 84.7 90.3 64.1
2, 10 2 83.2 89.0 64.2
2, 12 2 84.3 89.8 66.0
3, 7 2 83.1 89.4 58.2

The model merging the best individual features – the base verb (2) and uni-
gram (3) – obtained an accuracy of 84.7%. Therefore, the combination of these
two features worked better than the features did separately. However, the best pre-
dictions were made by the combination of the particle (1) and verb – the overall
accuracy was 85.8%, the f-score for non-literal sentences was 90.7, and 69.7 for
literal sentences. Compared to the verb alone, the particle added information that
increased the F1 for literal usage by more than 10 points. These results demon-
strate that information about the PV components is sufficient to classify a high
number of literal and non-literal sentences correctly. Therefore, this setup forms
an essential combination for the study, and these features are included in all the
studied combinations introduced from this point onwards99.

From the results of other combinations, it can be seen that the second-best
F1 lit score (66.0) was obtained by the combination of verb and case government
(12). Thus, it can be assumed that information about the case government is
particularly useful for predicting literal sentences. At the same time, the unigram
feature seemed to contribute less to predicting the literal usage.

Taken together, these results suggest that using only the information about
particles and verbs – the components of the PVs – results in a high number
of correctly classified sentences. The influence of the particle and verb on the
classification results is discussed further in Section 6.3.4.2.

99All models without one or both of these two features were also trained, and the results
reinforced the importance of particle and verb information.
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6.3.3.2 Results for the combinations of all features
This section explores themodels containing all the possible feature sets of different
sizes. In order to determine how the models with various feature set sizes perform,
the results of the best-performing models for each feature set size from 3 to 12 are
presented. All the suggested models used information about the particle and the
verb.

Table 29 presents the results of the best 3-feature classifiers. The accuracy
of the essential combination (1–2, particle and verb) was 85.8% (see Table 28).
The accuracy of this model increased when adding the average abstractness of
nouns (5), subject animacy (10), object animacy (11) or case government (12)
to the feature set. The F1 n-lit of the combination of fundamental features was
90.7 which increased only when the particle and verb were combined with the
object animacy (91.2) or case government (91.1). The highest F1 score for literal
usage (72.6) was achieved by the combination of the particle, verb and average
abstractness of nouns (1–2, 5). This score outperformed the result of the particle-
verb combination by 2.9 points. In combination with the particle and verb, the
unigram feature (3), average abstractness of words (4), subject case (8) and object
case (9) did not improve the overall best result.

Table 29: Results for the best 3-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–3 3 84.5 89.8 67.8
1–2, 4 3 83.7 88.9 68.7
1–2, 5 3 86.0 90.6 72.6
1–2, 6 3 85.4 90.2 70.8
1–2, 7 3 85.6 90.4 70.4
1–2, 8 3 85.1 90.3 68.6
1–2, 9 3 84.3 89.7 67.7
1–2, 10 3 85.9 90.7 70.9
1–2, 11 3 86.6 91.2 72.0
1–2, 12 3 86.4 91.1 71.5

Of the models with feature size 3, the highest overall accuracy and F1 for
non-literal usage were achieved when the fundamental features were combined
with object animacy (11). The most successful 3-feature model predicting the
literal usage was the one in which the particle, verb and average abstractness of
nouns were combined. These findings, while preliminary, suggest that, in addition
to the particle and verb, the average abstractness of nouns and object animacy are
the most relevant features for predicting the literal versus the non-literal usage of
Estonian PVs.

167



Table 30 shows the results of the best 4-feature classifiers. The highest overall
accuracy (87.0%) was obtained by the combination of the particle, verb, average
abstractness of nouns and subject animacy (1–2, 5, 10). Compared to the best 3-
feature combination, the accuracy was 0.4% higher. The same setup also obtained
the highest f-scores – the F1 for predicting non-literal usage was 91.3, and 74.0
for literal usage. This outcome was a little surprising because the best 3-feature
classifier (see Table 29) included the object animacy (11) instead of the subject
animacy (10). Thus, it can be hypothesised that the average abstractness of
nouns provided information that combined better with information about subject
animacy, not object animacy. Furthermore, when the average abstractness of
nouns was added to the best 3-feature combination (1–2, 11), the overall accuracy
did not change, but the f-score for non-literal usage decreased and increased for
literal usage.

Table 30: Results for the best 4-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–4 4 83.9 89.1 68.8
1–3, 5 4 86.0 90.6 72.6
1–2, 4–5 4 86.8 91.2 73.7
1–3, 6 4 85.3 90.1 71.0
1–2, 5–6 4 86.3 90.8 73.0
1–3, 7 4 84.6 89.7 69.2
1–2, 5, 7 4 85.6 90.3 71.5
1–3, 8 4 85.2 90.3 69.0
1–2, 5, 8 4 86.5 90.9 73.5
1–3, 9 4 83.4 89.0 66.4
1–2, 5, 9 4 86.4 90.9 73.1
1–2, 8–9 4 84.3 89.6 68.1
1–3, 10 4 86.0 90.7 71.5
1–2, 5, 10 4 87.0 91.3 74.0
1–3, 11 4 85.6 90.5 70.0
1–2, 5, 11 4 86.6 91.0 73.6
1–2, 10–11 4 86.4 91.0 72.5
1–3, 12 4 85.8 90.6 70.8
1–2, 5, 12 4 86.7 91.1 73.6

The animacy features and the average abstractness of nouns seemed to be
the features that contributed more to the classification of the literal versus the
non-literal usage of the PVs. The comparison with the best 3-feature classifiers
indicated that using four features instead of three improved the results. This out-
come also added certainty to the notion that, in combination with the fundamental
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features, the average abstractness of nouns was a more influential feature than
were the other suggested features.

The correlation-based feature selection (see Section 6.3.1.1) suggested that
four features (the verb, the unigram, the average abstractness of the nouns and
the object’s abstractness were the only relevant features for the task. However,
the accuracy of the model combining these four features was 82.8%, which is
not comparable to the accuracy of the best 4-feature combination. Therefore, the
correlation-based feature selection could be not sufficient to ascertain the best
classifier for detecting the literal versus the non-literal usage of PVs.

The best results of the 5-feature classifiers are presented in Table 31. The best
5-feature model is not surprising when considering the results of the best 4-feature
classifier. The combination of the fundamental features, average abstractness of
nouns, subject animacy and case government (1–2, 5, 10, 12) produced 0.9%
greater accuracy (87.9%) than did the best 4-feature combination. The same setup
also obtained the best f-scores – 91.0 for non-literal and 75.4 for literal usage.

Table 31: Results for the best 5-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–5 5 86.2 90.8 72.3
1–3, 5–6 5 86.2 90.7 72.6
1–2, 4–6 5 86.7 91.2 72.9
1–2, 5–7 5 86.1 90.7 72.0
1–3, 5, 8 5 87.1 91.4 74.4
1–2, 4–5, 9 5 85.8 90.5 71.1
1–2, 5–6, 9 5 86.2 90.8 72.1
1–3, 5, 9 5 85.4 90.2 71.2
1–2, 5, 8–9 5 86.6 91.0 73.4
1–3, 5, 10 5 87.8 91.9 75.2
1–2, 4–5, 10 5 86.6 91.1 72.8
1–2, 4–5, 11 5 86.8 91.2 73.3
1–2, 5, 7, 11 5 86.4 90.9 72.7
1–2, 5, 8, 11 5 87.2 91.5 74.8
1–2, 5, 10–11 5 87.8 91.9 75.4
1–2, 5–6, 12 5 86.6 91.0 73.1
1–2, 5, 7, 12 5 86.2 90.8 72.5
1–2, 5, 8, 12 5 87.5 91.6 75.2
1–2, 5, 9, 12 5 87.1 91.4 74.2
1–2, 5, 10, 12 5 87.9 92.0 75.4

The improvement for the non-literal usage was 0.7 and 1.4 for literal usage
compared to the best 4-feature model. The increase in scores was produced by
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information from the case government feature. Hence, it is possible to suggest that
information about case government is important for predicting the literal versus
the non-literal usage of PVs with a high degree of accuracy. Another 5-feature
model obtained the same f-score for literal usage as the best one. Compared to the
latter, this model included the object animacy feature instead of case government.
This result demonstrates that both animacy features are good predictors of the
literal usage of PVs.

The results of the best 6-feature models are shown in Table 32. The best-
performing model 1–2, 5, 10–12 combined features that were previously demon-
strated to provide more useful information than did other features – the average
abstractness of nouns, subject animacy, object animacy and case government.
This combination of features worked better than did the best 5-feature classifier –
the accuracy increased by 0.5%, the f-score for non-literal usage by 0.3 points,
and the f-score for literal usage by 0.9 points.

Table 32: Results for the best 6-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–6 6 86.4 91.0 72.2
1–2, 4–7 6 86.0 90.7 71.0
1–3, 5–6, 8 6 87.4 91.6 74.9
1–2, 4–6, 9 6 86.4 91.0 72.1
1–3, 5–6, 9 6 85.8 90.5 71.4
1–3, 5, 8–9 6 86.4 90.9 72.8
1–3, 5–6, 10 6 87.6 91.8 74.8
1–3, 5, 8, 11 6 87.0 91.3 74.3
1–3, 5, 10–11 6 87.8 91.9 75.3
1–2, 4–5, 10, 12 6 87.9 92.0 75.2
1–2, 5, 7, 10, 12 6 87.4 91.7 74.0
1–2, 5–6, 8, 12 6 87.5 91.7 74.5
1–2, 5, 8, 10, 12 6 87.7 91.9 74.9
1–2, 5, 9–10, 12 6 88.3 92.3 75.9
1–2, 5, 10–12 6 88.4 92.3 76.3
1–3, 5, 10, 12 6 87.7 91.8 75.1

The classifier using features 1–2, 5, 9–10, 12 obtained the same f-score for
non-literal usage (92.3) as did the best model. The former included the object
animacy instead of the object case. An implication of this is the possibility that,
in comparison to the object animacy, the object case does not provide information
that is as good for predicting literal usage. The results also indicate that the object
case might be another useful feature to improve the prediction quality.

The classification results of the bestmodelswith feature set size 7 are presented
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in Table 33. The best 7-feature model 1–2, 5, 8–10, 12 performed better than
did the best 6-feature combination. The best combination obtained accuracy of
88.7%, an f-sore for non-literal usage of 92.5 and an f-score for literal usage of
76.6. Compared to the features that belonged to the best 6-feature classifier, the
best 7-feature set included the subject and object cases, but excluded the object
animacy. Therefore, it is possible that, when the case information is provided, the
object animacy does not add any new information to the classification.

Table 33: Results for the best 7-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–7 7 86.2 90.9 71.5
1–2, 4–8 7 86.1 90.9 70.9
1–6, 8 7 86.6 91.2 72.3
1–6, 9 7 85.9 90.6 71.3
1–3, 5–6, 8–9 7 86.4 90.9 72.5
1–5, 7, 10 7 86.8 91.3 72.6
1–3, 5–6, 8, 10 7 87.6 91.8 74.8
1–3, 5–6, 8, 11 7 87.0 91.4 73.8
1–3, 5, 8, 10–11 7 88.1 92.1 75.7
1–2, 4–5, 9–10, 12 7 87.8 92.0 74.6
1–2, 4–5, 10–12 7 88.1 92.2 75.2
1–3, 5, 9–10, 12 7 88.0 92.1 75.3
1–3, 5, 10–12 7 88.5 92.3 76.5
1–3, 5–6, 10, 12 7 88.0 92.1 75.3
1–2, 5–6, 10–12 7 88.1 92.1 75.6
1–2, 5, 7, 10–12 7 87.6 91.8 74.2
1–2, 5, 8, 10–12 7 88.5 92.4 76.6
1–2, 5, 8–10, 12 7 88.7 92.5 76.6

The combination 1–2, 5, 8, 10–12 obtained the same f-score for literal usage
as did the best 7-feature classifier. The setup contained the average abstractness
of nouns, subject case, subject and object animacy, and case government. In other
words, the object animacy feature was included instead of the object case. This
agreeswith the earlier observation, which showed that the object animacy provided
information that was more useful than was the object case for the prediction of
literal sentences. Furthermore, it is possible that the object case and object
animacy contained contradictory information that, when combined, decreased the
number of correct predictions of literal sentences.

The claim that object case and object animacy contain contradictory informa-
tion is supported by the results of the best 8-feature classifiers suggested in Table
34. The model 1–2, 5, 8–12 combined both of these features. While the overall
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accuracy (88.1%) and the f-score for non-literal usage (92.2) were the highest
amongst all the 8-feature classifiers, the F1 lit (76.0) was not. The models without
the object case feature – 1–3, 5, 8, 10–12 – obtained the highest f-score (76.1) of
all the 8-feature classifiers.

Table 34: Results for the best 8-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–8 8 86.2 90.9 72.0
1–2, 4–9 8 84.9 90.0 69.2
1–5, 7–9 8 85.6 90.4 70.5
1–6, 8–9 8 86.2 90.9 71.8
1–7, 9 8 86.2 90.8 72.0
1–6, 8, 10 8 86.9 91.3 73.2
1–6, 8, 11 8 86.8 91.3 73.0
1–3, 5, 8–11 8 87.5 91.7 75.0
1–2, 4–6, 10–12 8 87.6 91.8 74.6
1–3, 5–6, 10–12 8 87.8 91.9 75.2
1–2, 4–5, 7, 10–12 8 87.0 91.5 73.0
1–2, 4–5, 8, 10–12 8 88.0 92.0 75.5
1–2, 5, 7, 9–12 8 87.4 91.7 74.2
1–2, 5–6, 8, 10–12 8 87.6 91.8 74.7
1–3, 5, 8–10, 12 8 87.4 91.7 74.6
1–3, 5, 8, 10–12 8 88.1 92.2 76.1
1–2, 5, 8–12 8 88.2 92.2 76.0

Compared to the best 7-feature classifier, the overall highest accuracy for
the best 8-feature model was 0.5% lower. While the comparison of the 7- and
8-feature combinations may show that it is not advisable to combine more than
seven features in order to obtain the best predictions, the results of the 9-feature
models shown in Table 35 demonstrate that this is not a valid conclusion.

More specifically, the best 9-feature classifier predicted the literal versus the
non-literal usage better than did the best 8-feature combination. In fact, the best
9-feature combination 1–3, 5, 8–12 obtained the same accuracy and f-score for
non-literal usage as did the best 7-feature combination. The f-score for literal usage
was slightly higher (76.8) for the model that combined the unigram feature, the
average abstractness of nouns, the subject case, the object case, subject animacy,
object animacy and case government in comparison to the samemodel without the
unigram and object animacy features. This finding indicates that object animacy
provided useful information for predicting literal usage.
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Table 35: Results for the best 9-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–9 9 85.4 90.4 69.8
1–2, 4–10 9 86.2 90.9 71.7
1–5, 7–10 9 86.5 91.1 72.1
1–6, 8–10 9 86.8 91.3 72.9
1–6, 8–9, 11 9 86.3 90.9 71.8
1–8, 11 9 87.0 91.5 73.2
1–5, 8–11 9 87.0 91.4 73.3
1–7, 10–11 9 87.1 91.5 73.2
1–2, 4–5, 7–8, 10–12 9 87.2 91.6 73.6
1–3, 5, 8–12 9 88.7 92.5 76.8
1–3, 5–6, 8, 10–12 9 88.0 92.0 75.5
1–5, 8, 10–12 9 87.8 91.9 74.7

Table 36 shows the results of the best 10-feature classifiers. The results are not
as good as those produced by the best 9-feature classifiers – the overall accuracy
was 88.3%, F1 n-lit was 92.3 and F1 lit was 75.7. The best 10-feature classifier
included all the features except for the average abstractness of words and the object
abstractness. The comparison with the 9-feature models demonstrates that subject
abstractness mainly undermined the predictions of the literal usage of PVs – the
difference between the F1 lit scores of the best 9- and 10-feature combinations was
1.1 points. Hence, adding information about the abstractness of words, subject
and object did not improve the results.

Table 36: Results for the best 10-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–10 10 86.4 91.0 72.0
1–6, 8–11 10 87.1 91.5 73.4
1–7, 9–11 10 86.4 91.0 71.9
1–8, 10–11 10 86.8 91.3 72.5
1–9, 11 10 85.8 90.6 70.6
1–3, 5–6, 8–12 10 88.3 92.3 75.7
1–5, 7–8, 10–12 10 87.6 91.8 74.2
1–5, 8–12 10 87.6 91.9 74.4
1–7, 10–12 10 87.1 91.5 73.1
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This claim is supported by the results of the best 11-feature classifiers, and the
model that included all 12 features. The scores for these setups, presented in Table
37, demonstrate that combining 11 or 12 features did not result in predictions that
were as good as those provided by the models in which the average abstractness
of words, abstractness of subject and object were not presented. Of the 11-
feature classifiers, the combination that included any feature other than the object
case obtained the greatest accuracy (87.6%). This result was better than the one
obtained by the model including all the suggested features – the accuracy of the
latter was 87.4%, the F1 n-lit was 91.7 and the F1 lit was 73.6. Compared to the
best models, the difference in total accuracy was 1.3%.

Table 37: Results for the best 11- and 12-feature classifiers.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–11 11 86.2 90.9 71.2
1–2, 4–12 11 87.2 91.6 73.3
1–3, 5–12 11 87.2 91.6 73.5
1–4, 6–12 11 86.5 91.1 72.0
1–5, 7–12 11 87.1 91.5 72.9
1–6, 8–12 11 86.8 91.3 72.5
1–7, 9–12 11 87.2 91.6 73.3
1–8, 10–12 11 87.6 91.8 74.0
1–9, 11–12 11 86.3 91.0 71.4
1–10, 12 11 87.0 91.4 72.6
1–12 12 87.4 91.7 73.6

The results of all the possible 11-feature combinations suggest that the exclu-
sion of features such as case government (12), the average abstractness of nouns
(5) and subject animacy (10) resulted in less accuracy than did the removal of other
features. Thus, it can be hypothesised that these features are the most influential
for the classification task. At the same time, as mentioned previously, the abstract-
ness features – the average abstractness of words (4), the subject abstractness (6)
and the object abstractness (7) – could be suggested as being irrelevant in terms of
the classification task. The impact of all the features on the classification results
is discussed in Section 6.3.4.

The results in this section suggest that the best model combined information
from nine features. The overall accuracy of this setup was 88.7%; the f-score for
non-literal sentences was 92.5 and the f-score for literal sentences was 76.8. The
classifier outperformed a relatively high majority baseline accuracy of 74.0%. A
very similar result was also suggested by the learner-based feature selection (see
Section 6.3.1.3). The only difference is the subject abstractness that was suggested
by the feature selection but does not belong to the best model. Therefore, the
results of the classification task show that the learner-based feature selection was
successful indicating the relevance of the features.
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In order to see how significant the differences amongst the best models across
feature set sizes are, the statistical significance of the results of the best models
is explored. Table 38 introduces the statistical significance of the differences in
the performances of the best-performing combinations across feature set sizes.
The statistical significance was calculated using the χ2 test. The ‘+’ indicates a
highly statistically significant (p <0.001) difference, and the ‘*’ indicates a stat-
istically significant (p<0.05) difference. The differences that were not statistically
significant are marked with ‘-’.

Table 38: Statistical significance of the differences in the performances of the best
models.

acc 0 1 2 3 4 5 6 7 8 9 10 11 12
0 baseline 74.0%
1 3 82.8% +
2 1–2 85.8% + *
3 1–2, 11 86.6% + + -
4 1–2, 5, 10 87.0% + + - -
5 1–2, 5, 10, 12 87.9% + + - - -
6 1–2, 5, 10–12 88.4% + + * - - -
7 1–2, 5, 8–10, 12 88.7% + + * - - - -
8 1–3, 5, 9–12 88.2% + + - - - - - -
9 1–3, 5, 8–12 88.7% + + * - - - - - -
10 1–3, 5–6, 8–12 88.3% + + * - - - - - - -
11 1–8, 10–12 87.6% + + - - - - - - - - -
12 1–12 87.4% + + - - - - - - - - - -

All the best combinations, regardless of the feature set size, outperformed
the majority baseline, and the differences in performance were statistically highly
significant. The differences between the results of the best independent feature (the
unigram) and the results of other combinations (that had more than one feature)
were also statistically significant. Therefore, the classification of the literal versus
the non-literal usage of PVs should be conducted by including more than one
feature.

As the combination of fundamental features (particles and verbs) produced a
relatively high accuracy rate (85.8%), the differences between the combination’s
results and the results of combinations with a greater number of features are not
considered significant. However, four combinations outperformed this result with
a statistically significant difference at the p = 0.05 level. Therefore, it can be
assumed that the particles and verbs provided predictions that could be improved
by adding context features. In this particular case, combining these features with
up to eight other features resulted in predictions that were significantly improved.
Hence, for the successful automatic detection of Estonian PVs, it is crucial to
take information about context abstractness, the cases of the subject and object,
subject animacy, object animacy and case government into account. However, the
results of the combinations with three and more features did not alter to the extent
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that the differences in the performances of the best models would be statistically
significant.

To conclude, the best model detected the literal versus the non-literal usage
of Estonian PVs at 88.7% accuracy. This proposed model combined information
concerning nine features – the particle, verb, unigram, the average abstractness
of nouns, the subject case, the object case, subject animacy, object animacy and
case government. Prior to a further discussion of the features presented in Section
6.3.4, the results are compared to the outcome of the attribute selection – the
automatic selection of the features that are most relevant to the problem.

6.3.4 Analysis of the impact of the features
This section concerns the effect of the studied features on the results. The focus is
on the features that constituted the best classifier, but insight into the features that
did not belong to the best model is also presented.

Based on the results presented earlier (see Section 6.3.3.2), the 9-featuremodel
was proposed as the best classifier for detecting the literal versus the non-literal
usage of Estonian PVs. The model classified literal sentences correctly with an
f-score of 76.8, and non-literal sentences with an f-score of 92.5; the overall
accuracy was 88.7 over a baseline of 74.0. It is clear that all nine features – the
particle, verb, unigram, the average abstractness of nouns, subject case, object
case, subject animacy, object animacy and case government – affected the results
and contributed information that was relevant for the classification task. However,
as the model combining only verb and particle reaches accuracy 85.8%, then
it might be suspected that it is overfitted model100, i.e. model works well on
training data because it memorizes the most likely class for given PV and context
information is rarely used. The best way to examinewhether themodel is overfitted
or not is to test it on new data. Considering that it is costly, further (and more
sophisticated) evaluation could also verify whether themodel is overtrained or not.
However, 57% of the PVs appear only in literal or only in non-literal sentences.
Therefore, it is inevitable that a high amount of sentences are correctly classified
only based on the information of particle and verb. When looking at PVs that
appear at least once in literal and at least once in non-literal sentence, the model
combining particle and verb does not outperform amajority baseline (both 65.3%),
but the accuracy for the 9-feature model is 5% higher. Although it does not prove
that the model is not overfitted, the result indicates that the majority of information
comes from the PV itself, but context features provide information that leads to
more precise predictions. For exhaustive conclusions, the models should be tested
on unseen data.

A set of 8-feature models was trained in order to determine the impact of each
feature. One of the nine features was omitted from each model. The results are
compared to the outcome of the best model. Table 39 shows the results of these
models.

100Inmachine learningmodels are often over- or underfitted. Building amodel that is too complex
for the amount of available information is called overfitting, and choosing too simple model is called
underfitting. Overfitted model works well on the training set but it is not able to generalize to new
data. Underfitted model works also poorly on the training set. (Müller and Guido 2016)

176



Table 39: Impact of the features on the predictions.

features size accuracy % F1
n-lit lit

majority baseline 0 74.0 85.1 0.00
1–3, 5, 8–12 9 88.7 92.5 76.8
without particle 8 84.9 90.0 69.2
without verb 8 83.0 88.7 65.6
without unigram 8 88.2 92.2 76.0
without average abstractness of nouns 8 86.4 91.0 72.8
without subject case 8 87.4 91.7 74.3
without object case 8 88.2 92.2 76.1
without subject animacy 8 87.3 91.6 74.5
without object animacy 8 87.4 91.7 74.6
without case government 8 87.5 91.7 75.0

The models in which fundamental features – particles or verbs – were not
present, unquestionably, obtained theworst results. Without the particle, themodel
attained an accuracy of 84.9%; without the verb, the accuracy was 83.0%. The
latter is comparable to the result that the unigram feature achieved independently
(82.8%, see Table 27). This outcome reinforces the choice of the particle and verb
as the most influential features.

Of the other features, the impact of the average abstractness of nouns was the
strongest. This feature increased the accuracy by 2.3%, the f-score for non-literal
usage from 91.0 to 92.5 and the f-score for literal usage from 72.8 to 76.8. Hence,
the aforementioned assumption concerning the average abstractness of nouns as
being one of the most important features for the task (see Section 6.3.3.2) is
confirmed.

The accuracy of the models without the subject case (8), subject animacy (10),
object animacy (11) or case government (12) was 1.2–1.4% lower than that of the
best model. Therefore, their impact could be labelled as moderate. The impact
of the unigram (3) and object case (9) were the weakest on the results of the best
model – they added 0.5% to the accuracy. Overall, these features are considered
to be relevant to the classification of literal versus non-literal sentences. The
further analysis of the effect of these features on the results is provided in Sections
6.3.4.2–6.3.4.9.

The accuracy of the best model indicated that 11.3% of the sentences were
classified incorrectly. This means that, of the 1,481 sentences, 1,313 were classi-
fied accurately and 168 were classified inaccurately by the best system. As there
were many more non-literal sentences in the dataset, it is reasonable to suggest
that it would be more difficult to identify literal sentences than it would be to
identify non-literal usage. The F1 score also confirmed this – the F1 for non-
literal usage was 92.5 and 76.8 for literal usage. Of the 168 incorrectly classified
sentences, 107 were literal and 61 were non-literal. Table 40 shows the 73 PVs
that appeared in the sentences thatwere classified inaccurately by the best classifier.
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The values in the column ‘sentences’ show the number of sentences that received
an incorrect classification.

Table 40: Overview of the PVs in sentences that were classified incorrectly.

sentences PVs

7 välja riputama ‘to hang out’
6 lahti siduma ‘to untie/unbind’, läbi tulema ‘to come through’, sisse kallama ‘to

pour in/drink up’
5 ette võtma ‘to undertake/set out/embark upon’, läbi laskma ‘to let

through/pretermit’, tagasi minema ‘to go back’, välja pistma ‘to stick out’
4 eemale tõukama ‘to push away/scare off/repel’, ette andma ‘to put something in

front of somebody/feed/specify’, läbi vaatama ‘to look through/examine’, välja
ajama ‘to send off/out’, välja minema ‘to go out’, üles võtma ‘to take something
up/start something (song, conversation)/record’

3 läbi lendama ‘to fly through/fail’, läbi põletama ‘to fuse something/to burn
something out’, maha tõmbama ‘to cross off/out/pull down’, sisse vaatama ‘to
look inside/visit something for a moment’, vastu rääkima ‘to talk back/dispute’,
välja paiskama ‘to throw something from somewhere/blurt out’, välja võtma ‘to
take out’, üle uhtuma ‘to flush/wash’, üles keerama ‘to wind up/provoke’, üles
lööma ‘to dress up/toss (upward)’, üles soojenema ‘to warm up’

2 edasi jõudma ‘to get ahead/come out on top’, ette sattuma ‘to run across or
meet somebody or something on the way’, ette vaatama ‘to foresee/look ahead’,
juurde tõmbama ‘to engage’, kokku monteerima ‘to assemble/edit video’, kokku
valguma ‘to join/melt together’, kõrvale tõrjuma ‘to displace/push aside’, läbi
valgustama ‘to x-ray/dissert’,maha käima ‘to go down/run down/go/degenerate’,
maha minema ‘to get off’, maha võtma ‘to take down’, otsa panema ‘to add’,
sisse kutsuma ‘to invite in’, vahele pistma ‘to interlard a conversation with/stick
between something’, vastu kajama ‘to sound like an echo’, välja jääma ‘to stay
out’, välja tulema ‘to get out (of)/turn up/come up with’, üle kaaluma ‘to weigh
again’

1 ette kandma ‘to report/to serve’, ette valmistama ‘to prepare’, juurde lõikama
‘to cut/add (land)’, juurde tulema ‘to approach/accrue’, kaasa tooma ‘to bring
something or someone/cause something’, kinni minema ‘to close/go to prison’,
kokku kuhjama ‘to stack up’, külge jääma ‘to stick/get used’, läbi tungima ‘to
penetrate/go right through’, läbi viima ‘to conduct/pass through’,maha ajama ‘to
drive/push/shave off/remove’,maha suruma ‘to suppress/bottle up/allay’,mööda
käima ‘to bypass’, sisse laskma ‘to let somebody in’, sisse taguma ‘to beat in(to)’,
tagant tõukama ‘to push from behind/boost’, tagasi põrkama ‘to bounce back’,
tagasi vaatama ‘to look back’, vahele kukkuma ‘to fall between/get caught’, vastu
kostma ‘to reply’, vastu põrutama ‘to snap back at somebody’, vastu särama
‘to shine/reflect’, välja ilmuma ‘to debouch/emerge/appear unexpectedly’, välja
kurnama ‘to wear out/filter’, välja nägema ‘to appear to your eyes/see outside’,
välja sülgama ‘to spit out’, üle käima ‘to go/walk over’, üle tooma ‘to carry
something/adapt/change the location of something’, üles peksma ‘to beat/wake
up somebody’, ümber tõmbama ‘to put something around somebody or some-
thing/encircle’
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The most ‘difficult’ PV for the classifier was välja riputama ‘to hang out’,
which was represented in 12 sentences – eight literal and four non-literal. The
classifier misclassified four literal and three non-literal sentences. Six sentences
containing the PVs lahti siduma ‘to untie/unbind’, läbi tulema ‘to come through’
and sisse kallama ‘to pour in/drink up’ received incorrect predictions. Three literal
and three non-literal sentences containing the PVs lahti siduma and sisse kallama
received false predictions, while the class of only one non-literal sentence was
predicted correctly. Of the five non-literal sentences containing the PV läbi tulema,
two were predicted correctly, while all three literal sentences received incorrect
predictions. While most of the PVs had more correctly classified sentences
than they did incorrectly classified ones, there were some PVs that were more
complicated. For example, of the seven sentences containing the PV läbi laskma
‘to let through/pretermit’, five were classified inaccurately, the class of all three
sentences containing the PV üle uhtuma ‘to flush/wash’ was inaccurate, and four of
the eight sentences containing the PV välja minema ‘to go out’ received incorrect
predictions. The reasons for false predictions of some of these PVs are discussed
in the following sections where the results of the classification task are analysed.

Firstly, three studied features that did not contribute to improve the prediction
accuracy in combination with other features – the average abstractness of nouns,
subject abstractness and object abstractness – are analysed as irrelevant features
in Section 6.3.4.1. Each salient feature – the particle, verb, unigram, average
abstractness of nouns, subject case, object case, subject animacy, object animacy
and case government are then examined. Each feature is explored and their
(dis)advantages highlighted. In addition, the misclassified sentences are discussed
in the qualitative analysis. As the PVs that only appeared with their literal or non-
literal meanings were (with one exception) classified correctly, the focus is only
on the PVs that had at least one non-literal and one literal meaning in the dataset.
Although the reasons for some sentences being misclassified were not always
obvious, the main obstacles to the automatic prediction of the literal versus the
non-literal usage of Estonian PVs are highlighted.

6.3.4.1 Irrelevant features
The results of the classification task and feature selection suggested that some of
the studied features are irrelevant for detecting the literal versus the non-literal
usage of PVs. While the feature selection (see Section 6.3.1) stressed two of them,
namely the average abstractness of words and object abstractness, the results of
the classification task (see Section 6.3) demonstrated that the subject abstractness
was also not a relevant feature, as it was not part of the best classifier.

Figures 17, 18 and 19 illustrate the average abstractness scores of words,
subjects and objects for the PVs that appeared at least once with a literal and
once with a non-literal meaning. Most of these PVs (except for järele vaatama
‘to watch someone/check or investigate’, kaasa tooma ‘to bring something or
someone/cause something’ and taga kihutama ‘to encourage/chase’) had at least
one incorrectly predicted sentence. In addition, the PV sisse taguma ‘to beat
in(to)’, which only had a non-literal meaning, was added because of having one
inaccurately predicted sentence. Missing plots indicate that it was not possible to
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find values for the subject and/or object. The reason was mainly that the sentences
were lacking a subject and/or an object. In a few cases, no abstractness score for
the subject/object was available in the abstractness/concreteness dataset.

The average abstractness score for words tended to be less than 5.0 for
most of the sentences. It is thus likely that, in order to be a good feature for
distinguishing between literal and non-literal usage, the literal sentences would
have a higher score (the context is more concrete) than would the non-literal
sentences (the context is more abstract). In some cases, the average abstractness
of words differentiated well between the literal and non-literal meanings. For
example, ette sattuma ‘to run across or meet somebody or something on the
way’, juurde lõikama ‘to cut/add (land)’, kaasa tõmbama ‘to persuade to join/pull
along’, kokku kuhjama ‘to stack up’, kõrvale tõrjuma ‘to displace/push aside’,
läbi tungima ‘to penetrate/go right through’, läbi lendama ‘to fly through/fail’,
välja ilmuma ‘to debouch/emerge/appear unexpectedly’, välja paiskama ‘to throw
something from somewhere/blurt out’, välja nägema ‘to appear to your eyes/see
outside’ and üles soojenema ‘to warm up’ had higher average scores for literal
usage than they did for non-literal usage. However, in most of the cases, the
feature could not distinguish between literal and non-literal PV usage. In fact, the
medians of literal usage were even lower for some PVs than they were for those
with for non-literal usage. For example, the words in the literal sentences with the
PVs ette valmistama ‘to prepare’, ette kandma ‘to report/to serve’, ette vaatama
‘to foresee/look ahead’, juurde tõmbama ‘to engage’, kokku valguma ‘to join/melt
together’, läbi tulema ‘to come through’, läbi laskma ‘to let through/pretermit’
and so forth are more abstract than are the words in the non-literal sentences.
Surprisingly, for the PV taga kihutama ‘to encourage/chase’, which appeared only
in correctly predicted sentences, the average abstractness of the words did not
distinguish between literal and non-literal meanings. As mentioned previously
(see Section 6.2.1), it is particularly difficult to assess the abstractness of words
that are not nouns. This leads to a situation in whichmany words receivedmedium
scores (not indicating strong abstractness/concreteness) and, despite the literalness
of the sentences, the average scores became very similar to each other. Therefore,
the average abstractness of all the words in the sentence did not provide helpful
information to distinguish between PV meanings.

It seems possible that the poor performance of the average abstractness of
words was due to the automatic creation of the dataset of abstractness/concreteness
ratings. As stated previously (see Section 4.5), different POS and meanings were
not identified in the dataset; thus, the abstractness scores might not be accurate.
However, this result reflected the findings of Köper and Schulte imWalde (2016b),
who found that the features relying on adverbs, adjectives and verbs did not
provide additional information for distinguishing between the literal and the non-
literal usage of German PVs. Therefore, the poor performance of the average
abstractness of words cannot have been caused entirely by the method used to
create the dataset

The abstractness of the subject was usually greater for literal sentences
and lower for non-literal sentences – in Figures 17, 18 and 19 it can be seen
that subjects tended to be less abstract for literal sentences than they were for
non-literal sentences; examples include kaasa tõmbama ‘to persuade to join/pull
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Figure 17: The average abstractness of words, subjects and objects of PVs with the
particles edasi ‘forward’, eemale ‘away’, ette ‘ahead’, juurde ‘by’, järele ‘after’,
kaasa ‘along’, kinni ‘to’, kokku ‘together’, kõrvale ‘aside’, külge ‘to’ and lahti
‘open’.
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Figure 18: The average abstractness of words, subjects and objects across PVs
with the particles läbi ‘through’, maha ‘down/off’, mööda ‘along’, otsa ‘out’, sisse
‘in’, taga ‘behind’, tagant ‘from behind’, tagasi ‘back’ and vahele ‘between’.
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Figure 19: The average abstractness of words, subjects and objects across PVs
with the particles vastu ‘against’, välja ‘out’, üle ‘over’, üles ‘up’ and ümber
‘around’.
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along’, kokku kuhjama ‘to stack up’, läbi viima ‘to conduct/pass through’, taga
kihutama ‘to encourage/chase’, tagasi põrkama ‘to bounce back’ and so on. More
specifically, as can be seen from example (82), a relatively concrete subject (peitel
‘chisel’, with a score of 8.03) led to correct automatic prediction. In fact, all
three literal sentences containing the PV tagasi põrkama had concrete subjects,
but one was still predicted incorrectly by the best model. This occurred because
the subject’s abstractness was not taken into account, and the context (the average
abstractness of nouns) was very low. Accordingly, the subject abstractness feature
can work very well in some cases, but not for many PVs.

(82) Peitel
chisel

põrka-b
bounce-3sg

tuhmi-∅
dull-gen

kolksu-ga
clatter-com

tagasi.
back

‘The chisel bounces back with a dull clatter.’

One reason that subject abstractness is not a good feature is illustrated by the
sentences in examples (83) and (84). Pronouns mark subjects quite frequently in
the sentences, but the abstractness scores for the pronouns were low. For example,
the abstractness score for the word mina ‘I’ was 1.91, and 3.27 for tema ‘s/he’
3.27. Thus, when the subject in literal sentences was a pronoun, it might have led
to an incorrect prediction.

(83) Siis
then

haara-b
grab-3sg

ta
s/he

raami-∅
frame-gen

sisse
inside

aseta-tud
placed

võrgu-∅,
net-gen

kurna-b
filter-3sg

olluse-∅
substance-gen

välja,
out

aseta-b
put-3sg

selle-∅
this-gen

pappaluse-le
cardboard stand-all

ning
and

tupsuta-b
swab-3sg

svammi-ga
sponge-com

kuiva-ks.
dry-trl

‘Then she grabs the net placed inside the frame, filters out the substance, puts it
on the cardboard and swabs it with the sponge.’

(84) Päeva-l,
day-ade

kui
when

ärka-si-n,
wake up-pst-1sg

teg-i-n
do-pst-1sg

end-∅
myself-prt

korda-∅,
order-prt

õhtu-l
evening-ade

läk-si-n
go-pst-1sg

välja
out

või
or

kelle-legi
someone-all

külla-∅.
village-ill

‘During the day, after I woke up, I cleaned myself up, in the evening I went out
or visited somebody.’

The impact of the third irrelevant feature – the abstractness of the object –
was not obvious (see Section 6.2.1), and the results of the classification proved that
object abstractness did not help to differentiate between literal and non-literal PV
usage. As can be seen in Figures 17, 18 and 19, there were quite a few sentences
in which the PV did not have an object abstractness score, such as ette sattuma
‘to run across or meet somebody or something on the way’, kinni minema ‘to
close/go to prison’, läbi tungima ‘to penetrate/go right through’, tagasi vaatama
‘to look back’, vastu särama ‘to shine/reflect’ and välja tulema ‘to get out (of)/turn
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up/come up with’. Therefore, the object abstractness did not provide information
for many sentences, and thus could not have altered the results significantly.

A few PVs exhibited a considerable differences in the abstractness of the
object in literal and non-literal sentences – the best examples are juurde lõikama
‘to cut/add (land)’, kokku monteerima ‘to assemble/edit video’, kokku kuhjama
‘to stack up’, maha võtma ‘to take down’, otsa panema ‘to add’, välja sülgama
‘to spit out’ and üle kaaluma ‘to weigh again’. It is interesting that the sentences
including these PVs that had high object abstractness scores were frequently
classified incorrectly. For example, välja sülgama appeared in one literal sentence
and in five non-literal sentences. The object abstractness of the literal sentencewas
8.26, which is higher than was the abstractness of the object in other (non-literal)
sentences. Nonetheless, the prediction for this sentence was incorrect.

The finding that subject and object abstractness were not relevant for the task is
contrary to the findings in Köper and Schulte im Walde (2016b), which suggested
that the noun-based abstractness features worked well for distinguishing between
the literal and the non-literal usage of German PVs. However, these features were
not among the three best features that these authors explored.

Taken together, the average abstractness of words, the subject abstractness and
the object abstractness are three suggested features that do not belong to the best
classifier. The reasons for the poor results for these features are as follows – the
automatic quality of the abstractness/concreteness dataset, the difficulty of evaluat-
ing words that are not nouns (such as adverbs, adjectives, verbs and pronouns) and
insufficient information about the features (for example, many sentences lacked
an object).

6.3.4.2 Particles and verbs
The results of the classification task (see Section 6.3) demonstrated that particles
and verbs formed the best 2-feature combination, which was called a fundamental
combination. As the verb carries the main meaning of the PV, it has a stronger
impact on the results than do any other features, including the particle. This
section provides an overview of the impact of the particle and verb features on the
results of classifying the literal versus the non-literal usage of PVs. The impact
of particle and verb features on the results is discussed.

The best suggestedmodel classifies 1,313 sentences correctly. The samemodel
without the particle information predicted the class of 1,258 sentences correctly;
without the verb information, themodel classified 1,229 instances correctly. When
both features were excluded, the model classified 1,116 sentences correctly. The
accuracy of the latter model was 1.4% higher than the majority baseline (74.0%).
Therefore, both features contributed to improving the classification results.

Figure 20 illustrates the distribution of literal and non-literal usage across
particles. Most of the particles appeared in literal as well as in non-literal sen-
tences, and were not helpful for the task. The particles that only appeared in non-
literal sentences – esile ‘forth’, alt ‘from under’, ühte ‘together’, ära ‘away/out/off’
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and ligi ‘near’ – were predicted correctly by the best model101. As an example,
the same model without particle information failed to classify one non-literal sen-
tence containing the PV ära võtma ‘to take away’. The reason was that the average
abstractness score of the nouns (8.31) indicated that the sentence was literal.
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Figure 20: Distribution of literal and non-literal usage across particles.

In some cases, the particle provided information that resulted in a correct
prediction despite the fact that the values of other features indicated the opposite.
For example, the sentence in example (85) had a high average abstractness score
(7.89), which indicates that the sentence is literal. The unigram feature also clas-
sified the sentences as being literal. However, when the particle information was
included, the model made the correct prediction when classifying the sentences
as non-literal.

(85) Pealtnäha
seemingly

tundu-b
seem-3sg

keeruline
complicated

laul-da,
sing-inf

mööda
along

lava-∅
stage-prt

ringi
around

tantsi-da
dance-inf

ning
and

samas
at the same time

võt-ta
take-inf

välja
out

keerulis-i
complicated-pl.prt

noot-e
note-pl.prt

viiuli-l.
violin-ade

Lit. ‘It seems complicated to sing, dance and take out difficult notes on the violin
at the same time.’
‘It seems complicated to sing, dance and play difficult pieces on the violin at the
same time.’

101It is important to bear in mind that this finding cannot be generalised by saying that these
particles can only occur in PVs with non-literal meanings because all these particles appeared in
one PV (except for ära, which was a component of two PVs).
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At the same time, information about the particle was not always sufficient
for the model to classify the sentence correctly. For example, the example (86)
was evaluated as being literal by the annotators, but the model classified it as
non-literal regardless of whether information about the particle was included or
not.

(86) Kuidas
how

ne-i-d
they-pl-prt

juurde
by

tõmma-ta,
pull-inf

see
this

kogemus
experience

on
be.3sg

ta-l
s/he-ade

filigraanne.
filigrane

‘How to pull them by, s/he has filigrane experience.’
‘She knows well how to engage them.’

There were also sentences in which the particle information led to incorrect
predictions. For example, the class of example (87) was predicted correctly as
being non-literal by the model that did not use information about the particle. The
best model (which included particle features) predicted that the sentences would
be literal. The incorrect prediction was most likely because this sentence has
similar feature values to literal sentences containing the same PV (see example
(88)).

(87) Bayern
Bayern

ja
and

ManU
ManU

tõrju-si-d
repulse-pst-3pl

FC
FC

Barcelona-∅
Barcelona-gen

alagrupiturniiri-l
subgroup tournament-ade

kõrvale.
aside

Lit. ‘Bayern and Man Utd repulsed FC Barcelona aside at the group stage.’
‘Bayern and Man Utd eliminated FC Barcelona at the group stage.’

(88) Tema
he

hüppa-s
jump-pst.3sg

ette,
ahead

vehki-s
wave-pst.3sg

kä-te-ga
hand-pl-com

ja
and

tõrju-s
repulse-pst.3sg

mu-∅
I-gen

raja-lt
track-abl

kõrva-le
aside

pehme-le
soft-all

lume-le.
snow-all

Lit. ‘He jumped forward, waved with his hands and repulsed me aside from the
track onto the soft snow.’
‘He jumped forward, waved his hands and pushed me off the track onto the soft
snow.’

The distribution of literal and non-literal usage across verbs is illustrated in
Figure 21. The verbs on the left appeared more frequently than did the verbs
on the right. Fifty-six verbs appeared in literal and non-literal sentences, 49
only appeared in non-literal sentences and 15 only appeared in literal sentences.
Therefore, more than half of the verbs only appear in one kind of sentence, which
was why the models including information about the verb predicted significantly
more sentences correctly than did the models that excluded information about the
verb.
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Figure 21: Distribution of literal and non-literal usage across verbs.

Some frequent verbs, such as lugema ‘to read’ and hakkama ‘to start’ only
appeared in non-literal sentences. However, they were components of only two
or three PVs; thus, the interpretation that these verbs only appeared in PVs with
non-literal meanings is not conclusive. Nonetheless, the verb is a strong indicator
of the literal versus the non-literal usage of PVs.

Information about the verb was often not sufficient when the verb appeared
once in a literal sentence and more than twice in a non-literal sentence. For
example, one literal and nine non-literal sentences contained the verb kuhjama
‘to heap up’. Even though the average abstractness of nouns and other features
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indicated that a sentence was more literal than were other sentences containing
this verb, the model classified the literal sentence as being non-literal. The
misclassificationwas for the same reason, which is that literal sentences containing
the verbs kukkuma ‘to fall’, valmistama ‘to prepare’ and kurnama ‘to filter’ and
non-literal sentences containing the verbs kostma ‘to sound’ and sattuma ‘to come
upon’ occurred.

Nevertheless, there were verbs that appeared in both literal and non-literal
sentences, and which were classified correctly. In these cases, it can be assumed
that the verb provided useful information, but the correct prediction was made in
combination with other features. For example, there were nine literal and four
non-literal sentences containing the verb vahtima ‘to stare’ in the dataset. The
model that used information about the verb predicted the class of all these sen-
tences correctly, but the same model without the verb feature did not. Therefore,
information about the verb not only contributed to differentiating the verbs that
appeared exclusively in literal or in non-literal sentences, but also identified the
verbs that could occur in both literal and non-literal sentences.

In summary, particles alone do notworkwell for predicting the (non-)literalness
of the PVs because most of the particles were components of the PVs that had
both literal and non-literal meanings. Verbs provide information that is central
to the correct prediction of the literal versus the non-literal usage of the PVs.
As demonstrated previously (see Section 6.3.3.1), when using only information
about the verb, 82% of sentences were predicted correctly. Particle and verb
features combined predicted around 86.0% of the sentences correctly. The model
containing particle and verb information often misclassified sentences containing
verbs that were mainly used in non-literal meanings; these were used with a literal
meaning, or vice versa, in one or two sentences. As a result, a further study in
which the training data contain equal amounts of literal and non-literal sentences
is needed.

In addition, in the event of having literal and non-literal sentences with similar
feature values, the model tended to classify literal sentences as being non-literal
and non-literal sentences as being literal. In order to avoid this, more data should
be analysed.

6.3.4.3 Unigram feature
The best independent feature for classifying sentences according to the literalness
of the PV was the unigram, with a frequency greater than 5 (see Section 6.3.2).
The earlier analysis proposed that the impact of the unigram feature was relatively
weak compared to the other features (see Table 39), but it still contributed to
achieve the best results for the classification task (see Section 6.3.3.2). This
section explains how this feature helped to distinguish literal from non-literal PV
usage. Some instances in which the feature failed to lead to a correct prediction
are also provided.

In terms of correctly classified sentences, the best classifier (that included the
unigram feature) correctly classified seven sentencesmore than did the samemodel
without information about the unigram. For example, the sentences presented in
examples (89)–(90) were predicted incorrectly by the model with a feature set that
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did not include the unigram feature, but were predicted accurately by the model
that included information about the unigram. With regard to a sentence (89)
that was assessed as being non-literal by the human annotators and based on the
unigram feature, the best model predicted its class correctly. Example (90) was
evaluated as being literal by the human annotators, and the unigram feature also
predicted that it would be literal. Therefore, the best model produced the correct
prediction with the help of the unigram feature.

(89) Kui
when

Anvar
Anvar

me-i-d
we-pl-prt

Eesti-sse
Estonia-ill

kutsu-s,
invite-pst.3sg

siis
then

vaata-si-n
look-pst-1sg

kaardi-lt
map-abl

järele,
after

et
that

aa,
oh

selline
such

koht
place

siis.
then

Lit. ‘When Anvar invited us to Estonia, then I looked after from the map and
thought, ‘Oh that place’.’
‘When Anvar invited us to Estonia, then I looked it up on the map and thought,
‘Oh that place’.’

(90) Kas
whether

siit
from here

lähe-b
go-3sg

tee
road

välja
out

muuseumi-∅
museum-gen

eeskotta-∅
lobby-ill

või
or

sisse
inside

hauakambri-sse?
tomb-ill

Lit. ‘Does this path from here go out to the museum lobby or into the tomb?’
‘Does this path go to the museum lobby or the tomb?’

However, information about the unigram was not always sufficient for the
model to achieve the correct prediction. For example, the sentence in example
(91) was evaluated as being non-literal by the annotators and based on the uni-
gram feature. Nevertheless, the model misinterpreted the data and classified this
sentence as literal. The sentence in example (92) was classified as literal by the
annotators and based on the unigram feature. The model still predicted that the
sentences would be non-literal. Therefore, the values of the other features had a
stronger influence, thus causing the model to make an incorrect prediction. For
example, the example (91) has a relatively concrete context because it contains
concrete nouns such as litt ‘litas’, dollar and euro, which indicate that it would be
a literal sentence. As the average abstractness of nouns was more influential than
was the unigram feature, the incorrect prediction was inevitable.

(91) Leedu
Lithuania

kavatse-b
plan-3sg

sidu-da
bind-inf

liti-∅
litas-gen

lahti
loose

dollari-st
dollar-ela

ning
and

sidu-da
bind-inf

selle-∅
this-gen

ümber
over

euro-ga.
euro-com

Lit. ‘Lithuania plans to bind the litas loose from the dollar and over bind it with
the euro’
‘Lithuania plans to unpeg the litas from the dollar and peg it to the euro.’
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(92) Kui
If

me
we

palgi-∅
log-gen

sealt
from there

läbi
through

lase-me,
let-1pl,

siis
then

lauamaterjali-∅
lumber-prt

müü-a
sell-inf

on
be.3sg

juba
already

palju
more

keerulise-m
complicated-comp

kui
than

palki-∅.
log-prt

‘If we let logs through it, then the lumber would be more difficult to sell than the
logs.’

The unigram feature helped to predict the correct class of one (see example
(93)) for three literal sentences containing the PV vastu särama ‘to shine/reflect’.
The best model classified one literal sentence containing this PV incorrectly,
but predicted the class of two of them correctly. The correct prediction of the
sentence in example (93) mainly occurred because the unigram feature predicted
that it would be literal – the values of the other features were more characteristic
of non-literal usage or did not distinguish between literal and non-literal usage
at all; for example, the verb särama ‘to shine’ and the adverb vastu ‘against’ can
appear in non-literal and in literal sentences.

(93) Kilomeetri-te
kilometer-pl.gen

kaupa
by

sära-vad
shine-3pl

kõrbeliiva-lt
sand of desert-abl

vastu
back

kõikvõimaliku-d
various-pl

ilutule-d.
lampion-pl

Lit. ‘Kilometers of various lampions are shining back from the desert sand.’
‘Kilometers of various lampions are shining from the desert sand.’

In fact, some sentences were predicted incorrectly because the unigram feature
provided information that caused the model to produce an inaccurate outcome.
An incorrect prediction may have been caused solely by the unigram feature
or the unigram in combination with other features. For example, the unigram
feature predicted that the sentence in example (94) would be non-literal, while the
annotators evaluated it as being literal.

(94) Alumise-le
lower-all

korruse-le
floor-all

on
be.3sg

lõiga-tud
cut-pst.ptcp

rida
row

akna-i-d
window-pl-prt

juurde
by

ja
and

see
this

muuda-b
change-3sg

endise-∅
former-gen

riietehoiu-∅
cloakroom-gen

hubase-ks
cosy-trl

baariruumi-ks.
barroom-trl

Lit. ‘An additional row of windows has been cut for the ground floor and it
changes the former cloakroom into cosy barroom.’
‘A row of windows has been added to the ground floor and it changes the former
cloakroom into cosy barroom.’

Overall, the unigram feature was part of the best model, but it did not have a
remarkable impact on the results. There were some sentences that were predicted
correctly solely because of information about the unigram, but the unigram feature
did not often combine well with other features to produce more correct predictions
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6.3.4.4 Average abstractness of nouns
Previous observations (see Table 39) allowed the claim that, after particles and
verbs, the average abstractness of nouns was the most influential feature when
classifying the literal versus the non-literal usage of Estonian PVs. Details regard-
ing how this feature helps to distinguish between the literal versus the non-literal
usage of PVs are presented in this section. In addition, a few examples illustrating
how and why the feature failed to make correct predictions are included.

In fact, themodel without the average abstractness of nouns correctly predicted
33 sentences fewer than did the best classifier. Therefore, the average abstractness
of nouns contributed significantly to the differentiation between literal and non-
literal usages. For example, while the combination of features without the average
abstractness of nouns predicts three non-literal and four literal sentences con-
taining the PV ette andma ‘to put something in front of somebody/feed/specify’
incorrectly, the best model predicted one non-literal and three literal sentences
incorrectly. The problematic non-literal sentence had a high average abstractness
rating for nouns (7.33), and one literal sentence had a relatively low score (3.97).
The other two incorrect literal sentences had high scores but, despite this, the
outcome was incorrect.

Figures 22, 23 and 24 show 75 PVs that appeared with literal and with non-
literal meanings in the dataset. Most of these PVs occurred at least once in
incorrectly classified sentences (PV that are not labelled with an asterisk (*)). In
addition, although the PV sisse taguma ‘to beat in(to)’ only appeared in non-literal
sentences, it is included in Figure 23 because one of the sentences containing this
PV was classified inaccurately.

It can thus be suggested that the nouns in the literal sentences were more
concrete (with a higher abstractness score) than were those in the non-literal
sentences. Examples are the three PVs that had literal and non-literal meanings,
but no incorrectly classified sentences – järele vaatama ‘to watch someone/check
or investigate’, kaasa tõmbama ‘to persuade to join/pull along’ and taga kihutama
‘to encourage/chase’. The medians of the average abstractness of nouns were
higher for the literal usage than they were for non-literal usage, indicating that
the nouns in the literal sentences were more concrete than were the nouns in the
non-literal sentences. This was also the case for many other PVs. For example, the
correctly classified literal sentences containing the PV tagasi minema ‘to go back’
had average abstractness scores of 6.48, 7.31, 6.56, 5.97, 6.28 and 7.41, which
means that the nouns in these sentences were more concrete than were those in
the inaccurately classified literal sentences (4.24, 2.81).

It is clear that none of the features produced perfect outcomes. For many
PVs, the average abstractness of nouns in the literal and non-literal sentences
was too similar, or there were some outliers that caused incorrect predictions.
For example, Figure 22shows that there was one non-literal sentence with the PV
eemale tõukama ‘to push away/scare off/repel’ that contained many more concrete
nouns than any other non-literal sentence. This sentence was the only incorrectly
predicted non-literal sentence containing this PV; thus, it can be suggested that the
reason was the significantly high abstractness score of the nouns within it (7.31).
The same was also the case for one non-literal sentence containing the PV maha
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Figure 22: The average abstractness of nouns across PVs containing the particles
edasi ‘forward’, eemale ‘away’, ette ‘ahead’, juurde ‘by’, järele ‘after’, kaasa
‘along’, kinni ‘to’, kokku ‘together’, kõrvale ‘aside’, külge ‘to’ and lahti ‘open’.
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Figure 23: The average abstractness of nouns across PVs containing the particles
läbi ‘through’,maha ‘down/off’,mööda ‘along’, otsa ‘out’, sisse ‘in’, taga ‘behind’,
tagant ‘from behind’, tagasi ‘back’ and vahele ‘through’.
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Figure 24: The average abstractness of nouns across PVs containing the particles
vastu ‘against’, välja ‘out’, üle ‘over’, üles ‘up’ and ümber ‘around’.

195



minema ‘to get off’, which had an extremely concrete context (9.31, see example
(95)). Despite the fact that other features indicated non-literal usage, the model’s
prediction was not accurate.

(95) Kuuse-d
spruce-pl

lähe-vad
go-3pl

kõik
all

maha.
down

Lit. ‘All spruces will go down.’
‘All spruces will be cut down.’

Moreover, the following two sentences (see examples (96) and (97)) had a
high average abstractness score for nouns (6.60 and 7.40, respectively), but this
did not guarantee a correct prediction – the model predicted that these two literal
sentences would be non-literal. It is therefore likely that the values of other
features led to an incorrect result for these kinds of sentences.

(96) Hea
good

küll,
enough

et
that

minu-∅
I-gen

kabineti-s
office-ine

ja
and

tööaja-l,
working time-ade

kuid
but

nad
they

oleks
be-cond

või-nud
might-pst-ptcp

vähemalt
at least

ukse-∅
door-gen

sulge-da
close-inf

ja
and

sildi-∅
sign-gen

välja
out

riputa-da,
hang-inf

et
that

toimu-b
take place-3sg

nõupidamine
meeting

‘It’s alright to have meetings in my office during working hours, but they should
have at least closed the door and hung out the sign that a meeting was taking
place.’

(97) Kord
once

võtt-is
take-pst.3sg

ta
s/he

Kaju-l
Kaju-ade

nati-st
scruff-ela

kinni
to

ja
and

riputa-s
hang-pst.3sg

tolle-∅
that-gen

üle
over

viienda-∅
fifth-gen

korruse-∅
floor-gen

rõduääre-∅
edge of the balcony-gen

välja.
out

‘Once he took Kaju and hung him over the fifth-floor balcony.’

It is correct to say that, the average abstractness of the nouns alone rarely res-
ulted in a correct prediction when the other features did not support the distinction
between literal and non-literal language usage. For example, the feature values of
the sentences containing the PV vastu põrutama ‘to snap back at somebody’ were
very similar. Although one literal sentence (see example (98)) containing this PV
had a higher average abstractness of nouns than did the others (this can also be
seen in Figure 23), the other features did not support the distinction at all, and the
model made an incorrect prediction.

(98) Kui
when

lõunaslaavlane
South Slav

eestlas-t
Estonian-prt

küünarnuki-ga
elbow-com

lõ-i,
hit-pst.3sg

põruta-s
knock-pst.3sg

meie-∅
we-gen

mees
man

kartmatult
fearlessly

vastu.
back

‘When South Slav hit Estonian with an elbow, our man hit back fearlessly.’

196



Having concrete nouns in the sentence did not necessarily imply that the
class of the sentence was predicted correctly. For example, one literal sentence
containing the PV läbi tulema ‘to come through’ had a high average abstractness of
nouns (7.98), but the sentence was still classified incorrectly as being non-literal.
In fact, of the eight sentences containing läbi tulema, two correctly classified
non-literal sentences had high average abstractness scores (7.85 and 7.22). Figure
23 shows that both the literal and the non-literal sentences containing this PV had
relatively high abstractness scores, and they were similar to each other.

The similarity in abstractness scores for nouns in literal and in non-literal
sentences was very common amongst the PVs in incorrectly classified sentences.
This is noticeable when looking at the abstractness scores for sentences containing
the PV sisse vaatama ‘to look inside/visit something for a moment’, for example
(see Figure 23). Of the eight sentences (six literal and two non-literal), three sen-
tences (one literal and two non-literal) were classified incorrectly by the classifier.
The average abstractness of the nouns in literal sentences varied from 2.24 to 8.48,
and the scores for non-literal sentences ranged between 4.72 and 6.51. Hence,
the scores for the literal and the non-literal sentences did not help to distinguish
between literal and non-literal usage.

There were even some PVs in literal sentences with more abstract nouns
than non-literal ones, such as juurde tõmbama ‘to engage’, läbi laskma ‘to let
through/pretermit’ and välja võtma ‘to take out’. However, not all the sentences
containing these kinds of PVs were predicted falsely, and the weight of the other
features was also important. For example, for the PV juurde tõmbama, both literal
sentences received false predictions – while one had a very low abstractness score
(1.67) and the misprediction was obvious, the other sentence had a higher average
abstractness score than did any other literal sentence containing this PV (5.85).
These observations suggest that, as the score was still similar to the scores for the
non-literal sentences (that were all predicted correctly) and the other features did
not add sufficiently strong evidence for the computer to classify the sentence as
literal, an incorrect prediction occurred.

In addition, as the sentence in example (99) suggests, literal sentences do not
always include concrete nouns – the abstractness score forHolland was 6.57, 5.72
for turniir, 1.48 for jõud and 2.84 for konkurent. As all the other sentences with
these PVs were non-literal, it is understandable that the automatic prediction of
this sentence would be erroneous

Hence, when the abstractness scores for literal and non-literal sentences were
similar, the predictions were similar because there were insufficient data to train
the computer to make a different prediction. As the concrete nouns did not always
appear in the literal sentences or abstract nouns in non-literal sentences, incorrect
predictions were inevitable.

(99) Hollandi-∅
Dutch-gen

turniiri-l
tournament-ade

suru-s
press-pst.3sg

ta
s/he

lausa
straight

jõu-ga
strength-com

kõik
all

konkurendi-d
competitor-pl

maha.
down

‘In the tournament in the Netherlands, he pushed all the competitors down using
pure force.’
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Taken together, even when the average abstractness of the nouns provided
appropriate information to support a correct classification, the machine clearly
did not make a correct prediction because a) there were insufficient similar data
(sufficient sentences with the same classification and score), and b) the values of
other features suggested a different classification. Nevertheless, there were many
sentences in which the average abstractness of the nouns worked well and helped
to distinguish between the literal and the non-literal usage of PVs.

6.3.4.5 Subject case
The results of the classification task and the observations about the impact of the
subject case on the results of the classification of the literal versus the non-literal
usage of PVs (see Table 39) demonstrated that the subject case had a moderate
impact on the results. In this section, the influence of the subject case is discussed
and illustrated using some examples from the data.

The distribution of the subject case across all the literal and non-literal sen-
tences is illustrated in Figure 25, and in the sentences that the model classified
correctly in Figure 26. Of the 385 literal sentences, 27.0% lacked a subject. Most
of the sentences (72.2%) had the subject in nominative case, and 0.8% had the
subject in partitive case. The distribution was very similar for the non-literal
sentences – of 1,096 sentences, 29.7% had no subject, and the subject was in the
nominative case in 69.7% of the sentences and in the partitive case in 0.6% of
the sentences. Therefore, the usefulness of subject case was not obvious in all the
sentences.
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Figure 25: Distribution of the subject
case across all the sentences.
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Figure 26: Distribution of the subject
case across the correctly classified sen-
tences.
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Approximately 70% of both the literal and non-literal correctly classified
sentences had the subject in the nominative case, and around 1% had the subject
in the partitive case. The biggest difference was in the number of sentences
without a subject – 26.6% of the literal and 30.1% of the non-literal sentences did
not have a subject. Although the difference in the number of sentences without
a subject was 3.5%, the subject case did not seem to identify many literal and
non-literal sentences.

However, the best model classifies 18 more sentences correctly than did the
same classifier that did not include information about the subject case. For
example, the best combination did not predict the class for one literal sentence
containing the PV ette kandma ‘to report/to serve’ with the subject in nominative
case, while the model without the subject case feature predicted another literal
sentence (with subject in nominative case) incorrectly as well as one non-literal
sentence without a subject. In fact, it is not clear why one literal sentence received
a false prediction while other did not because the values of the other features in
these sentences were very similar. The only difference was in the value of the
average abstractness of nouns – 6.39 for inaccurately predicted sentences and 6.83
for correctly predicted one.

For some PVs, the subject case clearly helped to distinguish between literal
and non-literal usage. For example, with the help of the information provided
by the subject case, the following sentences received a correct prediction (see
examples (100–101)). The subject in example (100) is in the nominative case, and
the sentence itself was evaluated as being literal. The subject in example (101)
is in the partitive case, and the meaning of the PV is non-literal. It can thus be
assumed that this difference ensured the correct prediction.

(100) Üks
One

minu-st
I-ela

veidi
a little

vane-m
old-comp

poiss
boy

tul-i
come-pst.3sg

juurde
by

ja
and

ütle-s
say-pst.3sg

venna-le,
brother-all

mis
what

vahi-d
gaze-2sg

siin.
here

Lit. ‘One boy, who was a little bit older than me, came by and told my brother
what he was staring here.’
‘One boy, who was a little bit older than me, approached and asked my brother
what he was staring at.’

(101) Ega
Nor

ma
I

teleka-st
TV-ela

saate-i-d
telecast-pl-prt

eriti
in particular

ei
neg

vaata-gi,
watch-conneg.cl

jälgi-n
observe-1sg

ainult,
only

kas
whether

uus-i
new-pl.prt

kanale-i-d
channel-pl-prt

on
be.3pl

juurde
by

tul-nud
come-pst.ptcp

Lit. ‘I do not watch much telecasts from TV, I just observe whether any new
channels have come by.’
‘I do not watch TV much, I just check whether any new channels have been
added.’

However, as some non-literal sentences containing the PV juurde tulema ‘to
approach/accrue’ had the subject in nominative case while some literal sentences
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had the subject in the partitive case, the subject case did not predict them all
correctly. For example, despite the nominative subject, the literal sentence (see
example (102)) received an incorrect prediction even when the information about
the subject case was provided.

(102) Aeg-ajalt
now and then

tul-i
come-pst.3sg

Tõnis
Tõnis

juurde,
by

ütle-s:
say-pst.3sg

“Vaata-∅
look-imp

se-da
this-prt

pilti-∅,
picture-prt

kas
do

sa
you

märka-d
notice-2sg

seal
there

sellis-t
this kind-prt

veidra-t
weird-prt

ja
and

põneva-t
exciting-prt

detaili-∅?”.
detail-prt

Lit. ‘Every now and then Tõnis came by and said, “Look at this picture, do you
notice there this kind of weird and exciting detail?”’
‘Every now and then Tõnis came to me and said, “Look at this picture, do you
notice there this kind of weird and exciting detail?”’

In some sentences, the subject case provided information that helped the
model to make a correct prediction, but did not distinguish between literal and
non-literal usage. For example, the model that included all the features from the
best-feature set, except for the subject case, predicts the sentences in examples
(103–104) incorrectly as being non-literal. When the subject case was included,
these sentences received correct predictions. As both sentences were evaluated
as being literal, the subject case did not help to distinguish between literal and
non-literal usage but, in combination with another feature, it provided evidence
that these sentences weremore literal than they were non-literal. For these kinds of
sentences, it is very difficult to say why two sentences were predicted as being non-
literal when all the other sentences with järele vahtima ‘to stare after somebody’
were predicted to be literal.

(103) Jah,
Yes

ega
nor

nee-d
this-pl

inimese-d
human-pl

vahti-si-d
stare-pst-3pl

ju
of course

päris
quite

pikka-∅
long-prt

aega-∅
time-prt

järele,
after

kui
when

autorooli-s
driving wheel-ine

naine
woman

ol-i.
be-pst.3sg

Lit. ‘Yes, these people stared quite a long time after, when a woman was driving
a car.’
‘Yes, these people were staring quite a long time, when a woman was driving a
car.’

(104) Siis
Then

on,
be.3sg

mi-da
what-prt

mees-te-l
man-pl-ade

daami-∅
lady-gen

möödu-des
pass by-ger

pea-d
head-prt

pööra-tes
turn-ger

järele
after

vahti-da.
stare-inf

Lit. ‘Then there is something for men to turn heads to and stare after when a lady
passes by.’
‘Then there is something for men to look at when a lady passes by.’
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In summary, while the distribution of the subject case across the literal and
non-literal sentences did not provide evidence that the subject case distinguished
between literal and non-literal PV usage successfully in all cases, it still had a
moderate influence on the results.

6.3.4.6 Object case
The results of the classification task and the observations about the impact of the
object case on the results of the classification of the literal versus the non-literal
usage of PVs (see Table 39) demonstrated that the object case had a relatively
weak effect on the results. The influence of the object case is comparable to the
impact of the unigram feature. This feature is still part of the model, and this
section describes how the object case contributed to the differentiation between
the literal and the non-literal usage of PVs. In addition, some examples showing
why the feature did not work well are provided.

The best model predicted seven more sentences correctly than did the combin-
ation of the same features without the information about the object case. For ex-
ample, in the sentences containing the PV ette võtma ‘to undertake/set out/embark
upon’, the object case contributed to predicting the correct class of one non-literal
sentence that had a partial object. While other features helped to predict the class
of other non-literal sentences with objects in the partitive case correctly, it was
necessary to have information about the object case of this sentence in order to
make a correct prediction.

Figure 27 illustrates the distribution of the case of object across all sentences.
The object is in genitive case in 14.0% of literal sentences and in 12.1% of non-
literal sentences. 16.9% of literal sentences and 15.2% of non-literal sentences
have object in nominative case. The percentage of sentences without the object
is also similar – 51.7% of literal and 49.2% of non-literal sentences do not have
an object. The biggest difference is in sentences with partial object – 17.4% of
literal and 23.5% of non-literal have object in partitive case. Even though there
are differences in the case of objects between literal and non-literal usage, it is
still possible to suggest that the object case does not affect many sentences.

Figure 28 shows the distribution of the object case across all the sentences.
The object was in the genitive case in 14.0% of the literal sentences and in 12.1%
of the non-literal sentences – 16.9% of the literal sentences and 15.2% of the non-
literal sentences had objects in the nominative case. The percentage of sentences
without an object was also quite equal – 51.7% of the literal and 49.2% of the non-
literal sentences did not have an object. The biggest difference was in sentences
with a partial object – 17.4% of the literal and 23.5% of the non-literal sentences
had objects in the partitive case. Even though there were differences in the object
case between literal and non-literal usage, it is still possible to suggest that the
object case did not affect many sentences.
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Figure 27: Distribution of the object
case across all the sentences.
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Figure 28: Distribution of the object
case of object across the correctly clas-
sified sentences.

Although there were no obvious differences between the object case in the
literal and in the non-literal sentences, there were still some sentences in which
the object case contributed to differentiating between literal and non-literal usage.
For example, the following literal sentence (see example (105)) did not have an
object, while all the other sentences containing this PV were non-literal and had
partial objects. Hence, the lack of an object was useful for predicting the correct
class of this sentence.

(105) Veel
more

ebameeldiva-m
unpleasant-comp

ol-i
be-pst.3sg

see,
this

et
that

tiheda-∅
dense-gen

liikluse-ga
traffic-com

tänava-l
street-ade

sõit-is
drive-pst.3sg

vilkuri-te-ga
flashing light-pl-com

auto
car

kihuta-des
speed-ger

mu-l
I-ade

taga
behind

nagu
like

suure-l
great-ade

kurjategija-l.
criminal-ade

‘More unpleasant was that, at the busy street, the car with flashing lights sped up
behind me like I was some great criminal.’

In some cases, the literal and non-literal sentences had objects in different
cases, but this information was not sufficient to lead to a correct prediction. For
example, two sentences containing üle uhtuma ‘to flush/wash’ were literal (see
example (106)), and one sentence was non-literal (see example (107)). Literal
sentences had objects in the nominative case and non-literal sentences had them
in the genitive case. The model mispredicted all three sentences, and the reason
might have been that the values of other features were too similar to each other and
the impact of the object case was insufficient to generate the correct prediction.
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(106) Uhu-∅
wash-imp

puhastatud
cleaned

kala
fish

pealt
off

ja
and

seest
from in

vee-ga
water-com

üle.
over

‘Wash the cleaned fish inside and out.’

(107) Natalja
Natalja

mäleta-b
remember.-3sg

aga
yet

teistsugus-t
different-prt

Jezhovi-∅
Jezhov-prt

–
–

hella-∅
tender-prt

isa-∅,
father-prt

kes
who

uhtu-s
wash-pst.3sg

tütre-∅
daughter-gen

kinki-de-ga
gift-pl-com

üle
over

ning
and

mängi-s
play-pst.3sg

tema-ga
s/he-com

õhtuti.
in the evenings

Lit. ‘Natalja remembers a different Jezhov – gentle father, who washed his
daughter with many gifts and played with her in the evenings.’
‘Natalja remembers a different Jezhov – gentle father, who gave many gifts to his
daughter and played with her in the evenings.’

In addition, there were cases in which the object case did not distinguish
between literal and non-literal usage. For example, the PV läbi valgustama
‘to x-ray/dissert’ appeared in four correctly predicted literal and two incorrectly
predicted non-literal sentences. Three sentences had objects in the nominative
case and three sentences in the partitive case – one non-literal sentence had a
partial object (see example (108)), while another had a total object (see example
(109)). These sentences convey the same meaning and, as the object case was
different, it is possible to suggest that the object case did not distinguish between
the literal and the non-literal usage of läbi valgustama.

(108) Festivali-∅
festival-gen

idee
concept

ol-i
be-pst.3sg

läbi
through

valgusta-da
light-inf

erineva-te
different-pl.gen

maa-de
country-pl.gen

rahvusvähemus-te
national minority-pl.gen

probleeme-∅.
problem-pl.prt

Lit. ‘The concept of the festival was to X-ray the problems of national minorities
of different countries.’
‘The concept of the festival was to deal with the problems of national minorities
of different countries.’

(109) Etenduse-∅
play-gen

käigus
in the process of

valgusta-ta-kse
light-imps-pr

läbi
through

ka
also

kareda-ks
harsh-trl

kulunud
ablated

idee-d.
idea-pl

Lit. ‘The play also X-rays worn-out ideas.’
‘The play also deals with worn-out ideas.’

The analysis of this section shows that the object case predicted the correct
class of relatively few sentences. However, the distribution of the case object across
correctly predicted instances demonstrates that the objects in the partitive case
helped to identify different meanings of the PVs. Overall, there were sentences
that received the correct prediction solely because of the object case and sentences
in which the object case operated in combination with other features.
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6.3.4.7 Subject animacy
The results of the classification task and the examination of the impact of subject
animacy on predicting the literal versus the non-literal usage of PVs (see Table
39) suggested that subject animacy had a moderate influence on the results. This
section describes how the subject animacy helped to distinguish between the
literal and non-literal usage of PVs in more detail. In some of the sentences, the
subject animacy failed to predict the correct classification. These instances are
also discussed.

The information about the subject animacy helped in the correct prediction of
20 more sentences than did the feature set that did not include the subject animacy
feature. For example, the best model predicts the class of one literal sentence
containing the PV üle tooma ‘to carry something/adapt/change the location of
something’ incorrectly. The model that did not use the subject animacy feature
predicted the same literal sentence (and a non-literal sentence) incorrectly. This
means that the information about the non-literal sentence having no subject (and
therefore no subject animacy) helped to predict the correct class of this sentence.

Figure 29 shows the distribution of subject animacy across all the sentences.
The subject could be animate, inanimate or absent. There were slight differences
between the literal and non-literal sentences. The biggest difference was in the
number of sentences with an animate subject – 51.7% of the literal sentences
and 44.9% of the non-literal sentences had an animate subject, while 21.3% of
the literal and 25.4% of the non-literal sentences had inanimate subjects, and the
remainder of the sentences did not have a subject.

Figure 30 shows the distribution of subject animacy across the correctly pre-
dicted sentences. The differences between the literal and non-literal sentences
were more substantial – 52.5% of the literal sentences and 44.8% of the non-
literal sentences had animate subjects, 20.9% of the literal and 25.1% of the
non-literal sentences had inanimate subjects and the remainder of the sentences
did not have a subject.

The comparison of the distributions of subject animacy across all the sen-
tences and across the correctly classified sentences indicated subject animacy was
somewhat helpful for distinguishing between literal and non-literal PV usage. For
example, of the three literal and three non-literal sentences containing the PV üles
soojenema ‘to warm up’, one non-literal and two literal sentences received a false
prediction. The correctly predicted non-literal sentences had animate subjects
and the literal sentence had an inanimate subject. Hence, the reason that the
non-literal sentences with inanimate subjects (see example (110)) and the literal
sentence with an animate subject (as in example (111)) received erroneous pre-
dictions was the value of the subject animacy. The second literal sentence had an
inanimate subject; hence, it was probably classified incorrectly due to having a
similar average abstractness of nouns as the non-literal sentences.

(110) Nüüd
now

on
be.3sg

sõprussuhte-d
friendship-pl

üles
up

soojene-nud.
warm up-pst.ptcp

Lit. ‘The friendship has warmed up now.’
‘The friendship has been restored now.’
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(111) Lume-le
snow-all

visatud
thrown

ahven
perch

külmu-b
freeze-3sg

kiiresti,
quickly

kuid
but

visa-∅
tough-gen

hinge-ga
spirit-com

elukas
creature

hakka-b
start-3sg

üles
up

soojene-des
warm up-ger

kohe
immediately

liiguta-ma.
move-sup

‘The perch thrown on the snow freezes quickly, but when warming up, the tough-
spirited creature starts moving immediately.’
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Figure 29: Distribution of subject an-
imacy across all the sentences.
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Figure 30: Distribution of subject anim-
acy across the correctly classified sen-
tences.

For some PVs, two meanings (literal and non-literal) were differentiated ap-
propriately by the subject animacy. For example, the PV kaasa tooma has a
literal meaning ‘to bring something or someone’ and a non-literal meaning ‘to
cause something’. The literal sentences have animate subjects, and the non-literal
sentences have inanimate objects. The classifier assigned the correct class to all
the sentences except for one literal one (see example (112)). In this sentence, dif-
ferentiation was based on the subject’s animacy, which did not provide sufficient
information; thus, the automatic prediction was false. The reason might have been
the relatively low average abstractness of the nouns.

(112) Keegi
someone

ei
neg

ol-nud
be-pst.ptcp

tema-∅
s/he-gen

tead-a
know-inf

varem
before

Bentley-st
Bentley-ela

Eesti-sse
Estonia-ill

kiitus-t
commendation-prt

kaasa
along

too-nud.
bring-pst.ptcp

Lit. ‘As far as he knew, nobody from Estonia had brought a commendation from
Bentley with them before.’
‘As far as he knew, nobody from Estonia had been awarded a commendation
from Bentley before.’
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Although the subject case may be able to distinguish between literal and non-
literal meanings, the classifier did not necessarily make a correct prediction. For
example, all five of the correctly predicted non-literal sentences containing the PV
välja sülgama ‘to spit out’ had an inanimate subject (as in example (113)), but the
inaccurately classified literal sentences had an animate one (see example (114)).
Of the other features, only the object case supported the distinction between literal
and non-literal usage. Nonetheless, these two features did not convey sufficient
information and the classifier produced an incorrect prediction.

(113) Kaia
Kaia

Kanepi
Kanepi

on
be.3sg

pikk
tall

ja
and

sihvakas
slim

tüdruk,
girl

kelle-∅
who-gen

kohta
about

interneti-∅
Internet-gen

otsingusüsteemi-d
search engine-pl

sülga-vad
spit-3pl

välja
out

iga-s
every-ine

keele-s
language-ine

fakt-e
fact-pl.prt

Lit. ‘Kaia Kanepi is a tall and slim girl, about whom the Internet search engines
spit out facts in every language.’
‘Kaia Kanepi is a tall and slim girl, about whom the Internet search engines give
out facts in every language.’

(114) Sellise-∅
this kind-gen

hulga-∅
amount-gen

veini-de
wine-pl-gen

hindamine
evaluation

osutu-s
turn out-pst.3sg

tõsise-ks
serious-trl

katsumuse-ks
challenge-trl

ka
also

kogenud
experienced

degustaatori-te-le,
wine taster-pl-all

ehkki
although

nad
they

maitstud
tasted

veini-d
wine-pl

välja
out

sülga-si-d
spit-pst-3pl

‘Although they spat out the wines they tasted, it was a serious challenge even for
experienced wine tasters to evaluate so many wines.’

In summary, the distribution of subject animacy across the correctly classified
sentences indicated slight differences between literal and non-literal sentences.
The analysis of the results demonstrated that there were sentences that were only
predicted correctly because of the information about subject animacy. In some
cases, the value of the subject animacy did not lead to correct predictions because
information about the animacy was not supported by the values of other features.

6.3.4.8 Object animacy
The results of the classification task and the considerations of the impact of the
object animacy on the predictions of the literal versus the non-literal usage of
PVs (see Table 39) demonstrated that object animacy had a moderate influence on
the results. This section describes how the object animacy helped to distinguish
between literal and non-literal usages of PVs in more detail. In addition, some
examples showing how and why the feature failed are provided.

The best model predicted 18 more sentences correctly than did the model
with the same feature set excluding information about the object animacy. For
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example, the non-literal sentence containing the PV tagant tõukama ‘to push
from behind/boost’ (that the model that did not use information about the object
animacy was unable to classify correctly) was predicted correctly by the best
model. Hence, object animacy contributed useful information for the correct
classification of both literal and non-literal sentences.

Figure 31 shows the distribution of object animacy across all the sentences.
The object could be animate, or inanimate or non-existent. There were very few
differences between the literal and non-literal sentences – 51.7% of the literal
sentences and 45.0% of the non-literal sentences did not have an object, 37.9% of
the literal and 39.1% of the non-literal sentences had inanimate objects and the
remainder of the sentences had animate objects.

Figure 32 shows the distribution of object animacy across the correctly pre-
dicted sentences. The differences between literal and non-literal sentences were
greater – 56.1% of the literal sentences and 49.5% of the non-literal sentences did
not have an object, 33.1% of the literal and 38.7% of the non-literal sentences had
inanimate objects and the remainder of the sentences had animate objects.
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Figure 31: Distribution of object anim-
acy across all the sentences.
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Figure 32: Distribution of object anim-
acy across the correctly classified sen-
tences.

The distributions of object animacy across all the sentences and across the
correctly classified sentences indicated that, although the feature did not work
perfectly, it was somewhat helpful for distinguishing between literal and non-
literal usage. For example, object animacy distinguished literal from non-literal
sentences containing the PV kaasa tõmbama ‘to persuade to join/pull along’. In
addition to the high average abstractness of the nouns in the literal sentences, the
differences in the object animacy values in the literal and non-literal sentences also
supported the correct prediction of all the sentences containing this PV. Of the 11
sentences, all three literal sentences contained inanimate objects (as in example
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(115)), meaning that this information helped to distinguish literal from non-literal
usage. However, as two non-literal sentences also had inanimate objects (as in
example (116)), other features also provided information that supported the correct
predictions.

(115) Põhjaminev
foundering

suur
big

laev
ship

tõmba-b
pull-3sg

tema-ga
s/he-com

külgneva-∅
adjacent-gen

väikese-∅
little-gen

laeva-∅
ship-gen

nagunii
anyway

kaasa.
along

‘Big foundering ship pulls the adjoining little ship along anyway.’

(116) Kunsti-∅
art-gen

kõrval
beside

tõmma-ta-kse
pull-imps-pr

kaasa
along

uus-i
new-pl.prt

ala-sid,
field-pl.prt

eelkõige
foremost

disaini-∅
design-prt

ja
and

arhitektuuri-∅
architecture-prt

‘Besides art, new areas, in particular design and architecture, are dragged along.’
Lit. ‘Besides art, new areas, especially design and architecture, are involved.’

In fact, there were sentences in which object animacy provided information
that was useful for making correct predictions, but this was insufficient when other
features did not support the same prediction. For example, of the 10 sentences
containing the PV maha käima ‘to go down/run down/go/degenerate’, two are
literal (as in example (117)) and eight non-literal (as in example (118)). Themodel
classified the literal ones incorrectly despite the fact that they had different object
animacy values from those of the non-literal sentences. Hence, the object animacy
differentiated between literal and non-literal usage, but this information was not
sufficient for the model to predict all the sentences correctly. These sentences also
had different object case values from those of the non-literal sentences, but all the
other features indicated more non-literal than literal usage – this led to incorrect
predictions.

(117) Mina
I

ise
myself

käi-si-n
go-pst-1sg

eile
yesterday

näiteks
for instance

kümme
ten

kilomeetri-t
kilometre-prt

kindlasti
certainly

maha.
down

Lit. ‘I myself, for example, definitely walked down ten kilometres yesterday.’
‘I myself, for example, definitely walked ten kilometres yesterday.’

(118) Aga
but

kui
if

saa-n
can-1sg

ainult
only

seitse
seven

tundi-∅
hour-prt

maga-da,
sleep-inf

siis
then

hakka-n
start-1sg

maha
down

käi-ma
go-sup

‘But if I can only sleep for seven hours, my energy level goes down.’
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Moreover, information about the object animacywas insufficient for predicting
the class of two literal sentences containing the PV vahele pistma ‘to interlard a
conversation with/stick between something’. Five non-literal sentences containing
this PV did not have objects (as in example (119)), unlike the literal ones that had
inanimate objects (as in example (120)). The fact that the objects in the literal
sentences had different object animacy values than did those in the non-literal
ones, this did not lead to the correct prediction of the literal sentences.

(119) Baaridaam
barmaid

Hilka
Hilka

pista-b
tuck-3sg

rõõmsalt
cheerfully

vahele,
between

et
that

Tea
Tea

ja
and

Raido
Raido

käekäigu-∅
hand movement-gen

vastu
for

tunne-vad
feel-3pl

suur-t
great-prt

huvi-∅
interest-prt

ka
also

tema
s/he-gen

teismelise-d
teenage-pl

lapse-d.
child-pl

‘Barmaid Hilda says cheerfully that her teenage children are greatly interested
how Tea and Raido are doing.’

(120) Pista-∅
tuck-imp

juustukang
cheese straw

ja
and

singitükk
piece of ham

vahele.
between

‘Tuck the cheese straw and piece of ham in between.’

In addition, the information about the object animacy did not always dis-
tinguish between literal and non-literal usage. For example, the model did not
differentiate between literal and non-literal usage for sentences containing the PV
ette valmistama ‘to prepare’. There was one literal sentence (see example (121))
and eight non-literal sentences (as in example (122)) with inanimate objects, and
the model failed to predict the correct class of the literal sentence because the
value of the object animacy was the same for both types of sentences.

(121) Ol-i-d
be-pst-3pl

tegusa-d
active-pl

inimese-d,
people-pl

kes
who

valmista-si-d
prepare-pst-3pl

ette
in advance

polstri-d,
upholstery-pl

kus
where

ülemnõukogu-∅
supreme council-gen

esimehe-l
chairman-ade

ol-i
be-pst.3sg

hää
good

hõlju-da.
float-inf

‘Active people prepared the upholsteries, where it was good for the chairman of
the supreme council to float.’

(122) Eesti-∅
Estonia-gen

Hoiupank
savings bank

valmista-b
prepare-3sg

ette
in advance

oma-∅
own-gen

vara-∅
assets-gen

kindlustamise-∅
insurance-gen

tellimus-t.
order-prt

‘Estonian Savings Bank prepares the order of insurance for its assets.’

The analysis presented in this section suggests that, although the incorporation
of object animacy in the study was less intuitive than was the inclusion of subject
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animacy (see Section 6.2.3), the extent of the impact of these features was similar.
Object animacy had a moderate impact, which means that there were sentences
that were predicted correctly solely because of information provided by the subject
animacy, as well as in combination with other features.

6.3.4.9 Case government
The results of the classification task and the observations about the impact of
case government on predicting the literal versus the non-literal usage of PVs
(see Table 39) demonstrated that case government had a moderate influence on
the results. This section describes how this feature assisted in the distinction
between the literal and non-literal usage of PVs. Furthermore, some examples
are provided in order to explain why and how the feature failed to make a correct
prediction. With the help of case government, the model was able to predict 17
more sentences correctly than did the model without the case government feature.
For example, the model was able to assign the correct class to one of two sentences
containing the PV välja ilmuma ‘to debouch/emerge/appear unexpectedly’, while
the combination without the information about the argument case led to incorrect
predictions.

The distribution of the argument case across the literal and non-literal usages
in all the sentences is illustrated in Figure 33. Most of the sentences did not have
any case government. The most common argument cases were the elative and
allative. Comitative, inessive, translative, adessive and essive cases only appeared
non-literal sentences. The latter appeared only once.
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Figure 33: Distribution of the argument cases across all the sentences.
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The distribution of the argument case across the literal and non-literal usages
in correctly predicted sentences is illustrated in Figure 34. Most of the correctly
classified sentences did not have case government. While the elative case was
the most common in all the sentences, the allative was the most common in the
correctly predicted sentences. This means that it was easier to predict the class of
sentences with the allative case than it was of those with the elative case.
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Figure 34: Distribution of the argument cases across the correctly classified
sentences.

For some PVs, the difference between the literal and the non-literal meaning
was very clear in terms of case government. For example, the PV järele vaatama
‘to watch someone/check or investigate’ appeared in 12 sentences – five of them
were literal and seven were non-literal. The arguments in the literal sentences
were all in the allative case (as in example (123)), while the arguments in the
non-literal cases varied; for example, the argument in the sentence in example
(124) is in the elative case.

(123) Ma
I

sõit-si-n
drive-pst-1sg

jalgratta-ga
bicycle-com

politseijaoskonna-st
police station-ela

mööda
past

ja
and

üks
one

politseinik
police officer

vaata-s
look-pst.3sg

mu-lle
I-all

pika-∅
long-gen

pilgu-ga
look-com

järele.
after

Lit. ‘I cycled past the police station and one police officer looked after me with
a long look.’
‘I cycled past the police station and one police officer followed me with his eyes.’

211



(124) Arvuti-st
computer-ela

saa-b
can-3sg

kohe
now

järele
after

vaada-ta,
look-inf

kes
who

tolle-st
that-ela

ringkonna-st
region-ela

riigikokku-∅
riigikogu-ill

pääse-si-d.
get through-pst-3pl

Lit. ‘It is possible to look after those from that region who got through to
Riigikogu from the computer.’
‘It is possible to look up those from that region who were elected to Riigikogu
on the computer.’

Case government definitely helped to distinguish between the literal and non-
literal usage in the PVs but, as with any other feature, it required supplementary
information from other features. For example, the combination that did not include
the case government feature (1–3, 5, 8–11) was able to classify one literal sentence
in four sentences containing the PV ümber tõmbama ‘to put something around
somebody or something/encircle’ correctly. The same combination with the case
government feature classified three literal sentences correctly. Although the value
of the case government was different for the non-literal sentence, other features did
not provide sufficient information for the machine to make a correct prediction.

Case government can also (in combination with other features) lead to erro-
neous predictions. For example, of the 10 sentences containing maha minema
‘to get off’, two were classified incorrectly. While the reason for the faulty clas-
sification of the non-literal sentence might have been the concrete context (see
Section 6.3.4.4), the misclassification of the literal sentence (see example (125))
might have been caused by the value of the case government. In fact, the elative
argument appeared in both literal and non-literal sentences, but not in any other
literal sentences containing this PV.

(125) Läk-si-me
go-pst-1pl

auto-st
car-ela

maha
down

ja
and

kohe
immediately

tul-i
come-pst.3sg

punase-s
red-ine

ülikonna-s
suit-ine

mees.
man

Lit. ‘We just went down from the car when the man in the red suit came.’
‘We just got out of the car when the man in the red suit came.’

Overall, as the effect of the case government on the results was moderate, there
were sentences that were only predicted correctly because of the information it
provided. However, some sentences that the case government classified correctly
received incorrect predictions from the best model because the values of the other
features did not combine well with information about the case government.

6.3.4.10 Summary of the impact of the studied features on the
classification

This analysis of the effect of the studied features suggested that nine of the twelve
studied features contributed to achieving the highest accuracy when predicting
the literal versus the non-literal usage of Estonian PVs. Three features that could
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not provide useful information to improve the results – the average abstractness
of words, subject and object abstractness – and were thus deemed irrelevant for
the task. The poor effect of these features was due to a combination of reasons –
the quality of the dataset of abstractness/concreteness ratings, the difficulty of
evaluating the abstractness of words that were not nouns, and the lack of sentences
in which an object was present

Information about a particle and a verb in a sentence is key to the successful
prediction of the literal versus the non-literal usage of Estonian PVs. There
were still more features that helped to improve the quality of the classifications.
Amongst the remainder of the relevant features studied, the average abstractness
of the nouns had the strongest impact on the results. The influence of the subject
case, animacy features and case government was stronger than was the impact of
the unigram and object case features. Nevertheless, all these features provided
information that helped in the correct prediction of sentences that other features
did not.

In fact, depending on the size of the impact, there were sentences that were
only classified correctly because of the information provided by one feature. How-
ever, some of the sentences were labelled correctly because the information of the
feature combined well with the predictions resulting from other features. In addi-
tion, there were sentences that are classified incorrectly due to the contradictory
information provided by other features, and the more influential features led to a
false conclusion. However, the reasons for the false predictions remain vague.

6.3.5 Summary of the classification of literal and non-literal
usage

The experiments demonstrated that the main predictive features for distinguishing
between the literal and non-literal usage of Estonian PVs were the components of
the PVs – the particle and the verb. This essential combination of features detected
85.8% of the sentences successfully, while the verb alone predicted 82.0% of the
sentences correctly. Although the unigram feature was the best single feature and
predicted more non-literal sentences (F1 n-lit 89.3) than did the verb (F1 n-lit
88.4), the verb obtained a higher f-score for literal sentences (56.0 versus 59.4).
Therefore, as there were fewer literal sentences in the dataset, the detection thereof
was more challenging than was predicting the class of the non-literal sentences.

Of the 12 features studied – the particle, verb, unigram, the average abstract-
ness of words, the average abstractness of nouns, subject abstractness, object
abstractness, subject case, object case, subject animacy, object animacy and case
government – nine contributed to achieving an accuracy rate of 88.7%. Whereas
the improvement in the classification accuracy was not even 3.0% compared to
the accuracy that the particle and the verb achieved, the features were important
for improving the predictions of the correct class of both the non-literal and (more
importantly) the literal sentences. In fact, the average abstractness of nouns,
subject case, object case, subject animacy, object animacy and case government
combined provided such a wealth of information that the f-score for literal usage
increased up to 76.8. Briefly, this study suggests that the automatic classification
of Estonian PVs benefits not only from standard features such as information about
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particles, verbs and context abstractness, but also from language-specific features
such as case information.

The analysis indicates that the results could be improved by creating a human-
judgement based abstractness/concreteness dataset in which different meanings
and the POS of words are identified. In addition, the possible and useful predictive
features are not limited to the ones introduced in this study. For example, affective
ratings other than abstractness scores, WordNet categories, clusters, vector-space
word representations and so on have been used to train a classifier on samples
of other languages (e.g. Shutova et al. 2013; Tsvetkov et al. 2014; Köper and
Schulte im Walde 2016b). None of these features is argued further in this thesis
but, as the interaction between frequency and compositionality has been discussed
previously in this study (see Sections 4.2.4, 4.3.4 and 5.4.2) as well as by other
authors (e.g. McCarthy et al. 2003; Bott and Schulte im Walde 2014), frequency
as a predictor variable of the literal versus the non-literal usage of PVs is examined
in the next section.

6.4 Frequency as a feature for detecting (non-)literalness
A considerable amount of literature has studied the correlation between frequency
and the compositionality of MWEs. This was motivated by the results of the
automatic extraction of MWEs in which the co-occurrence frequency worked well
for some MWEs, such as German PVs (Krenn and Evert 2001). Therefore, some
frequency-based AMs, such as PMI have been applied to predict the composi-
tionality of PVs (e.g. Fazly and Stevenson 2006; Gurrutxaga and Alegria 2013).
In recent studies, it has been demonstrated that AMs should not be used as es-
timators of compositionality. For example, Köper and Schulte im Walde (2016b)
concluded that local mutual information (LMI) was not a successful predictor of
the non-literal usage of German PVs, and Cordeiro (2017) demonstrated that PMI
did not correlate with compositionality scores and should not be used as an estim-
ator of compositionality. The results presented byAedmaa (2016, 2017) suggested
that the AMs studied (t-score, MI, X2, log-likelihood and minimum sensitivity)
should not be used to predict the degree of compositionality of Estonian PVs.

The effect of frequency on the compositionality of MWEs was also studied
separately from the AMs. McCarthy et al. (2003) detected the compositionality of
English phrasal verbs, and concluded that the frequency of the verb and particle
did not have a significant relationship with compositionality judgements. The
study of the compositionality assessments of German PVs (Bott and Schulte im
Walde 2014) demonstrated that frequency determined the predictions. In fact,
their model worked well for predicting the compositionality of PVs with medium
frequency, but did not succeed in predicting the compositionality of infrequent
and frequent PVs. Cordeiro (2017) explored the hypothesis that idiomatic MWEs
should occur more frequently than should compositional ones in general human
communication. As a result, it was proposed that frequent compounds were
assigned higher compositionality scores. In summary, frequency has an impact
on compositionality.

As noted previously (see Sections 4.2.5 and 4.3.4), frequency is associated
weakly with the compositionality judgements assigned by humans. However,
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due to the statistically non-significant correlations between frequency and com-
positionality scores, it cannot be stated that frequency does not influence the
compositionality of PVs at all. Accordingly, the effect of frequency on the com-
positionality of Estonian PVs requires further investigation. This section discusses
frequency as a predictor of the compositionality of PVs. Three features – the fre-
quency of adverbs, the frequency of verbs and the frequency of PVs – were added
to the best-performing feature sets of the main experiment. How the frequency
feature combined with other features and whether they were able to improve the
overall best results is explored.

6.4.1 Results for the frequency features
Each frequency feature (adverb, verb and PV frequencies) were studied as separate
features. Information about the frequency was added to feature sets combining
various numbers of features from the main experiment. The aim was not only
to improve the results of the overall best-feature set, but also to analyse how
information about the frequency combined with the information provided by other
features. Therefore, the frequency features were not only added to the best-
performing model; all the possible combinations of features were also trained and
assessed.

Table 41 shows the best models using information about frequency. The best-
performing model for each feature set size is presented for each frequency feature.
In addition, some well-performing and interesting combinations are suggested.
The information in the brackets shows the values for the accuracy and for f-scores
of the combinations without the frequency features.

The results in Table 41 reveal that the best frequency feature was the frequency
of the PV. However, in comparison to the features in the main experiment, the
PV frequency did not attain greater overall accuracy than did the unigram feature
(82.8%, see Table 27). At the same time, the f-score for literal usage was higher
than was the score for the verb – 59.4 versus 62.8. It is therefore likely that PV
frequency contributed to improving the overall best result.

The best-performing 2-feature model of the main experiment combined the
particle and the verb (accuracy of 85.8%; see Table 28). When one of these
foundational features was combined with information about the frequency, the
results were similar. However, when the particle was combined with the PV
frequency, an accuracy rate of 85.9% was obtained. This result is slightly better
than that of the combination of the particle and verb. It allows us to hypothesise
that PV frequency adds a similar amount of useful information to the task as does
the verb.

While the results of the models with one and two features indicate that the
frequency of the PV could possibly be used instead of the verb, further experiments
demonstrated that, in combination with the other features, the PV frequency did
not work as well as the verb. For example, the accuracy of the best 3-feature
combination in the main experiment – the particle, verb and object animacy (1–2,
11) – was 86.6% (see Table 29), but the accuracy of the PV frequency combined
with the particle and object animacy was 86.0%. The main drawback of using
information about the frequency instead of the particle or the verb is the quality
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Table 41: Results across the combinations containing frequency features. ∆%
and ∆F1 indicate the absolute difference in percentage points (accuracy) and F1
points between the models with and without frequency features.

features size accuracy n-lit lit
% ∆% F1 ∆F1 F1 ∆F1

majority baseline 0 74.0 85.1 0.00
particle freq 1 74.0 84.6 17.6

+ 2 2 85.8 +3.8 90.7 +2.3 69.7 +10.3
+ 2, 11 3 86.4 +3.7 91.0 +2.3 71.6 +9.4
+ 1–2, 5 4 85.8 –0.2 90.4 –0.2 72.3 –0.3
+ 1–2, 11 4 86.5 –0.1 91.1 –0.1 71.8 –0.2
+ 1–2, 5, 10 5 87.3 +0.3 91.6 +0.3 74.4 +0.4
+ 1–2, 5, 10, 12 6 88.3 +0.4 92.2 +0.2 76.0 +0.6
+ 1–2, 5, 10–12 7 88.4 0.0 92.3 0.0 76.5 +0.2
+ 1–2, 5, 8, 10–12 8 88.6 +0.1 92.4 +0.0 76.8 +0.2
+ 1–3, 5–6, 10–12 9 88.4 +0.1 92.3 +0.1 76.4 +0.2
+ 1–3, 5, 8–12 10 88.5 –0.2 92.4 –0.1 76.3 –0.5
+ 1–3, 5–6, 8–12 11 88.3 0.0 92.2 –0.1 75.8 +0.1

verb freq 1 81.9 88.4 59.3
+ 1 2 85.7 +11.7 90.7 +6.1 69.5 +51.9
+ 1, 11 3 86.5 +8.6 91.1 +5.1 71.9 +25.0
+ 1–2, 5 4 85.8 –0.2 90.9 +0.3 72.4 –0.2
+ 1–2, 11 4 86.6 0.0 91.2 0.0 72.0 0.0
+ 1–2, 5, 10 5 87.6 +0.6 91.8 +0.5 74.7 +0.7
+ 1–2, 5, 10, 12 6 88.3 +0.4 92.2 +0.2 76.4 +1.0
+ 1–2, 5, 10–12 7 88.3 –0.1 92.3 0.0 76.2 –0.1
+ 1–2, 5, 8, 10–12 8 88.3 –0.2 92.3 –0.1 76.3 –0.3
+ 1–3, 5–6, 10–12 9 88.4 +0.1 92.3 +0.1 76.4 +0.2
+ 1–3, 5, 8–12 10 88.1 –0.6 92.1 –0.4 75.9 –0.8

PV freq 1 82.7 88.7 62.8
+ 1 2 85.9 +11.9 90.8 +6.2 69.9 +52.3
+ 2, 11 3 86.4 +3.7 91.0 +2.3 71.6 +9.4
+ 1–2, 5 4 85.8 –0.2 90.5 –0.1 72.3 –0.3
+ 1–2, 11 4 86.6 0.0 91.2 0.0 72.0 0.0
+ 1–2, 5, 10 5 87.3 +0.3 91.6 +0.3 74.4 +0.4
+ 1–2, 5, 10, 12 6 88.3 +0.4 92.2 +0.2 76.2 +0.8
+ 1–2, 5, 10–12 7 88.4 0.0 92.3 0.0 76.3 0.0
+ 1–2, 5, 8, 10–12 8 88.9 +0.4 92.6 +0.2 77.4 +0.8
+ 1–3, 5, 8, 10–12 9 88.3 0.0 92.2 0.0 76.1 +0.1

particle freq, PV freq 2 85.8 90.7 69.6
+ 1–2, 5–6, 8, 10–12 10 88.3 +0.7 92.2 +0.4 76.0 +1.3
+ 1–2, 5–6, 8–12 11 88.3 0.0 92.3 0.0 75.7 +0.1

verb freq, PV freq 2 85.7 90.7 69.5
+ 1–2, 5, 8, 10–12 9 88.7 +0.2 92.5 +0.1 76.9 +0.3
+ 1–3, 5, 8–12 11 88.3 –0.4 92.3 –0.2 75.9 –0.9

particle freq, verb freq, PV freq 3 86.0 90.8 69.9
+ 1–3, 5, 8–12 12 88.6 –0.1 92.4 –0.1 76.8 0.0
+ 1–3, 5–6, 8–12 13 88.3 0.0 92.3 0.0 76.0 +0.3
+ 1–6, 8–12 14 87.8 +1.0 91.9 +0.6 74.8 +2.3
+ 1–12 15 86.8 –0.6 91.3 –0.4 72.5 –1.1
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of the prediction of literal sentences – none of the 3-feature combinations with
frequency features achieved the results of the best 3-feature combination in the
main experiment (an accuracy rate of 86.6%).

The results did not improve when adding one of the frequency features to
the best-performing 3-feature combinations (1–2, 11 and 1–2, 5). Furthermore,
the frequency of the particle decreased accuracy and f-scores. In addition, none
of the 4-feature combinations achieved accuracy ratings and f-cores that were as
high as those of the best 4-feature models with the original features (see Table
30). With or without the frequency features, the 4-feature combinations with the
average abstractness of nouns (5) still predicted the literal usage of PVs better
than did the combinations including the object animacy (11). On the other hand,
when information about the frequency was available, the best f-scores for non-
literal usage were achieved by the combinations that included object animacy.
The greatest accuracy (86.6%) was achieved by the combinations including the
verb frequency or the PV frequency combined with the particle, verb and object
animacy.

The results of the best 5-feature combination with at least one frequency
feature were worse than were the results of the best-performing 5-feature model
in the main experiment (1–2, 5, 10, 12, see Table 31). However, as the best
combinations included features such as the average abstractness of nouns, subject
animacy and case government, it can be confirmed that these features were more
influential than were the unigram, subject case, object case and object animacy
features. Of the frequency features, in combination with other features, the verb
frequency provided more useful information than did the particle frequency or the
PV frequency.

The best 6-feature combination in the main experiment (1–2, 5, 10–12, ac-
curacy of 88.4%, see Table 32) classified non-literal sentences correctly with an
f-score of 92.3, and literal sentences with an f-score of 76.3. These results were
very similar to those obtained by the best 6-feature combinations that included in-
formation about frequency. It is interesting that all the frequency features worked
similarly in combination with the particle, verb, average abstractness of nouns,
subject animacy and case government. In comparison to the other frequency fea-
tures, the verb frequency provides knowledge that is better for predicting literal
usage.

The best 7-feature model in the main experiment (1–2, 5, 8–10, 12) achieved
an accuracy level of 88.7% (see Table 33). This result was not improved upon
by any of the 7-feature combinations that included information about frequency.
The best combination combined the particle frequency, particle, verb, average
abstractness of nouns, subject and object animacy and case government. The
results of the 8-feature combinations suggest that, if the particle frequency is
replaced by the PV frequency, and the object animacy replaced by the object case
in this combination, the accuracy of 88.9% is achieved. Compared to the best
model in the main experiment (1–3, 5, 8–12), the accuracy was 0.2% higher. This
setup classified non-literal sentences correctly with an f-score of 92.6, and literal
sentences with an f-score of 77.4. Therefore, using the PV frequency instead of
the unigram and object case (that is, a model containing features such as the PV
frequency, particle (1), verb (2), the average abstractness of nouns (5), subject
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case (8), subject animacy (10), object animacy (11) and case government (12))
resulted in the highest number of correctly predicted sentences. The results of
this model compared to the results of the best model in the main experiments are
discussed in Section 6.3.4.

The best-performing model in the main study (1–3, 5, 8–12) included nine
features and achieved an accuracy level of 88.7% (see Table 35). The same
result was obtained by the best nine-feature model containing information about
the frequency. The results of the combination of the verb frequency and PV
frequency + 1–2, 5, 8, 10–12 obtained the same accuracy and f-score for non-
literal usage (92.5), which shows that the unigram feature and the object case
could be replaced by the verb and PV frequencies to obtain the same results. This
finding is not surprising because, as concluded in Section 6.3.3.2, the unigram
feature and the object case were the less influential components of the best model
in the main experiment.

Compared to the best 10-feature combination in the main study (see Table
36), the best 10-feature combination included the particle frequency, excluded
the subject abstractness, and achieved slightly better results. Hence, the particle
frequency provided more useful information than did the subject abstractness.
Although subject abstractness was concluded to be irrelevant for the task of
predicting the literal versus the non-literal usage of Estonian PVs (see Section
6.3.4), such a finding is not remarkable. The best 11-feature combinations obtained
slightly lower scores than did the best 10-feature combination, but higher scores
than did the best 11-feature combination in the main experiment (1–8, 10–12, see
Table 37).

The results of the 12-feature models revealed that replacing the average ab-
stractness ofwords, subject abstractness and object abstractnesswith the frequency
features in the 12-feature model combining the original 12 features provided an
improvement of 1.2% in accuracy, 0.7 points in the f-score for non-literal us-
age, and 3.2 points in the f-score for literal usage. Therefore, the frequency
features worked better than did the irrelevant abstractness features (see Section
6.3.4). However, the combination (frequency features + 1–3, 5, 8–12) did not
work quite as well as did the same feature set without the frequency features. This
result indicated that, in combination with these features in the main experiment,
the frequency features did not contribute to improving the quality of predicting
the literal versus the non-literal usage of the PVs. The best 13- and 14-feature
combinations included all the frequency features and achieved accuracy levels of
88.3% and 87.8%, respectively. Combining all the features resulted in an even
lower degree of accuracy (86.8%) than did incorporating only the 12 features in
the main experiment (87.4%).

Overall, the PV frequency helped to achieve the overall best results in the
experiments. The effect of other frequency features was not as clear, but they
could replace the irrelevant features (see Section 6.3.4.1) in some combinations.
The analysis of the performance of the frequency features is presented in the
following sections.
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6.4.2 Analysis of the impact of the frequency features on
predictions

The results described in the previous section showed that the overall classification
results could be improved with the help of the PV frequency. The impact of
PV frequency was studied via a comparison with the best model in the main
experiment. As the role of the particle and verb frequency on the results is not clear,
this section also examines the contribution of other frequency features. Therefore,
the selection of all features in order to determine the role of the frequency features
in comparison to the features in the main experiment is conducted first. Each
feature is then analysed briefly. The third part of this section explores the influence
of PV frequency on the best results.

The experiments for the feature selection for the main experiment were suc-
cessful (see Section 6.3.1); thus, the 10-fold cross-validation of attribute selection
using a learning scheme for all of the features was implemented. The aim was to
determine how the frequency features performed in comparison to other features,
particularly features with a low impact (unigram and object case). The experi-
ment was motivated by the findings that frequency features provided information
that was more influential than was the information provided by irrelevant or less
influential features. The results of the attribute selection are presented in Table
42.

Table 42: Results for the learner-based feature selection for 15 features.

number of folds attribute
10 particle
10 verb
7 unigrams
0 the average abstractness of words
9 the average abstractness of nouns
3 subject abstractness
1 object abstractness
4 subject case
2 object case
10 subject animacy
10 object animacy
10 case government
5 particle frequency
4 verb frequency
6 PV frequency

The best-performing combination in the main experiment had an accuracy
rate of 88.7%, and included features such as the particle, verb, unigram, average
abstractness of nouns, subject case, object case, subject animacy, object animacy
and case government. The best-performing combination of experiments with
frequency features received an accuracy rate of 88.9%. The latter combined
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information provided by eight features – compared to the best model in main
experiment, it excluded the unigram feature and object case, and included the
PV frequency. The results of the attribute selection suggest that six features that
the combinations shared were selected in a high number of folds – particle, verb,
subject animacy, object animacy and case government in 10 folds, and the average
abstractness of nouns in nine folds. The subject case, which was also a constituent
of both combinations, was selected in four folds. The unigram feature and object
case, which formed part of the best combination in the main experiment, were
selected in seven and two folds, respectively. The PV frequency that replaced
these two features in the overall best-performing combination was selected in
six folds. All the other features were selected less often – particle frequency in
five folds, verb frequency in four folds, subject abstractness in three folds, object
abstractness in one fold and the average abstractness of words was not selected at
all.

The results of the attribute selection confirmed that the PV frequency per-
formed better than did the other frequency features. As the unigram feature did
not form part of the model that produced the best overall result, it is surprising that
the feature selection selected it in seven folds. On the other hand, the subject case
that also provided useful information for the task was selected in four folds, which
was less than the particle frequency. In general, features that did not form part of
the best model were selected in a lower number of folds. Therefore, the automatic
attribute selection supports the results described earlier in Section 6.4.1. It can
be concluded that frequency predicted the compositionality of PVs, but that the
particle, verb and PV frequency did not have the same impact.

Compared to the other frequency features, the frequency of the particle
obtained the lowest accuracy and F1 scores independently. This indicates that
particle frequency had less of an impact on the prediction of the literal and non-
literal usage of PVs than did other frequency features. Furthermore, the frequency
of the particle was not part of the combination that achieved the best results. The
best combination that included the particle frequency obtained an accuracy rating
of 88.6%, which was lower than that obtained by the best combination in the
main study. Although the frequency of the particle could not improve on the best
result, it could be used instead of some other features in certain combinations.
For example, the accuracy of the combination 1–3, 5, 8, 10–12 was 88.1%, while
the f-score for non-literal usage was 92.2 and 76.1 for literal usage. The same
combination using the particle frequency instead of the unigram feature achieved
an accuracy rating of 88.6%, with the f-scores for non-literal usage 92.4 and 76.8
for literal usage. The difference between the f-scores for literal usage provides
evidence that the frequency of the particle is a better feature than is the unigram
for predicting the literal usage of the PVs.

The verb frequency received an independent accuracy rating of 81.9%, which
is higher than the frequency of the particle and lower than the frequency of the
PV. The results of the 2-feature combinations demonstrated that the combination
of verb frequency and particle worked almost as well as did the particle and verb
combination. Nonetheless, the best 2-feature combinations in conjunction with
other frequency features performed better than did the one including the verb
frequency. In the 3-, 4- and 5-feature combinations, verb frequency was one of the

220



components of the combinations with the best results, particularly when predicting
the class of literal sentences. However, the overall best-feature set did not contain
the verb frequency. In fact, the best combination of features that included the
verb frequency obtained an accuracy rating of 88.7%. This result is the same as
the best combination of features in the main experiment obtained. In fact, the
results of the 9-feature combinations suggest that, together with the PV frequency,
verb frequency could replace features such as the unigram and object case in the
best-performing combination in the main task. Nevertheless, the result of this
combination was not as good as without the verb frequency.

The PV frequency obtained the best results amongst the three suggested
frequency features, with an accuracy level of 82.7%. It correctly classified non-
literal sentences with an f-score of 88.7, and literal sentences with an f-score of
62.8. Compared to the unigram feature (82.8% and 89.3), the accuracy and the
f-score for non-literal usage were not as high, but PV frequency outperformed the
f-score for literal usage obtained by the verb (59.4). Therefore, of the frequency
features studied, the PV frequency was the best for predicting literal usage. In
addition, in combination with the particle, verb, average abstractness of nouns,
subject case, subject animacy, object animacy and case government, PV frequency
obtained an accuracy rating of 88.9%, which was the greatest degree of accuracy
amongst all models. Accordingly, the PV frequency alone can replace the unigram
feature and the object case, and attain better results.

Compared to the best model in the main experiment (the 9-feature classifier),
the overall best model (the 8-feature model) did not obtain statistically signific-
antly (p< 0.05) better results. However, the 8-feature classifier outperformed the
baseline and all the other combinations of the studied features. It also required
information from fewer features. In fact, the 8-feature classifier predicted three
more sentences accurately than did the 9-feature classifier. Not all the incorrectly
and correctly predicted sentences were the same. There were sentences that one
classifier predicted correctly, but which the other predicted incorrectly. Specific-
ally, the 8-feature classifier predicted 25 sentences accurately that the 9-feature
classifier did not, and the 9-feature model classified 22 sentences correctly that
8-feature model did not. The discrepancies were caused by the fact that the 8-
feature classifier excluded the unigram feature and object case, and included the
PV frequency. Hence, there were sentences that were only predicted correctly due
to the information provided by the PV frequency102.

The distribution of the PV frequency across all the literal and non-literal sen-
tences can be seen in Figure 35. Although the outliers are not visible in the figure,
the PVs with the highest frequency appeared more than 30,000 times in the corpus
in both literal and non-literal sentences. The PVs with the lowest frequency – 16 –
also occurred in literal and non-literal sentences. The frequency of the PVs in lit-
eral sentences tended to be lower than it was in non-literal sentences. Accordingly,
non-compositional PVs tended to occur more frequently than did compositional
ones.

102The models classified most of the sentences correctly because they shared the majority of
features. Therefore, the influence of these common features on the 8-feature classifier was similar
to the influence on the 9-feature classifier. The analysis of these features in the 9-feature classifier
can be found in Section 6.3.4.
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Figure 36 shows the distribution of the PV frequency across the literal and
non-literal sentences that were classified correctly by the 8-feature model. As
with all the sentences, the PVs in literal sentences were less frequent than were
the PVs in non-literal sentences. However, it is apparent that the literal sentences
containing highly frequent PVs (with a frequency of more than 1,200) were not
predicted correctly. Thus, it was challenging for the classifier to predict the correct
class of these literal sentences. This observation indicates that one of the reasons
for the incorrect prediction of literal sentences was the high frequency of the PVs.
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Figure 35: Distribution of PV fre-
quency across all the sentences.
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Figure 36: Distribution of PV fre-
quency across the correctly classified
sentences.

In some cases, the PV frequency differentiated between the literal and non-
literal usages of PVs relatively well. For example, there were frequent PVs
that only appeared in correctly classified non-literal sentences, such as vastu
võtma ‘to accept/welcome/admit’ (with a frequency of 35,929), ette nägema ‘to
foresee/stipulate/see ahead’ (with a frequency of 28,477) and välja andma ‘to give
out’ (with a frequency of 19,743). In addition, there were infrequent PVs that only
appeared only in correctly classified literal sentences, such as järele vahtima ‘to
stare after somebody’ (with a frequency of 23), lahti voltima ‘to unfold/ unwrap’
(with a frequency of 28) and alla tingima ‘to bargain/beat down’ (with a frequency
of 55).
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The literal and non-literal usage was not identifiable via PV frequency in sen-
tences that contained different meanings of the same PV. In order to determine
which sentences benefitted most from the information about PV frequency, the
sentences that the 8-feature model classified correctly were compared to the sen-
tences that were classified incorrectly by the 9-feature model and the 8-feature
model without information about the PV frequency (that is, 1–2, 5, 8, 10–12).
This collation revealed sentences that were mainly classified accurately due to
information about the PV frequency.

For example, the models without PV frequency wrongly predicted the class
of the four sentences containing the PV eemale tõukama ‘to push away/scare
off/repel’. One of them received the correct prediction from the 8-feature model
because of its relatively low frequency (221), which indicated that the sentences
were literal. Compared to the other two literal sentences that were classified
inaccurately despite the information about the PV frequency, the nouns in the
correctly classified sentenceweremore abstract on average. The correct prediction
was made because the PV frequency indicated that the PV would be literal, and
it combined well with the average abstractness of the nouns, suggesting that the
sentence would also be literal. Similarly, correct predictions were made for other
sentences that were classified incorrectly by the models without information about
the PV frequency. For example, one literal sentence containing the PV kokku
monteerima ‘to assemble/edit video’ had similar feature values to a non-literal
sentence. The PV frequency contributed to the making of a correct prediction, but
only because the average abstractness of the literal sentence was slightly higher
(4.4) than it was for the non-literal sentence (3.6). Other feature values were the
same for these sentences.

Furthermore, there were two literal sentences containing the PV ette andma
‘to put something in front of somebody/feed/specify’ that had similar feature
values. One of them was classified correctly without information about the PV
frequency, while the other was not. The argument case was the only difference in
their feature values. After adding information about the PV frequency, the correct
prediction was made. Similarly, the sentence containing the PV läbi vaatama ‘to
look through/examine’ was predicted correctly because the information about the
PV frequency worked well in combination with information about object animacy
and case government.

Nevertheless, there were cases in which the PV frequency was not sufficiently
useful to lead to a correct prediction. For example, an incorrectly classified
literal sentence containing the PV välja pistma ‘to stick out’ had similar feature
values to a different, yet correctly predicted literal sentence. The difference was
in the average abstractness of the nouns (the correctly predicted sentence had a
lower score (6.92) than did the incorrectly predicted one (7.5)) and in subject
animacy (the correctly predicted sentences had an animate subject, while the
incorrectly predicted sentence had an inanimate subject). While the relatively low
PV frequency and the high average abstractness of nouns indicated a high degree
of literalness for the inaccurately predicted sentence, the sentence still received an
incorrect classification, probably because of the inanimate subject.

Overall, similarly to other features analysed in Section 6.3.4, the frequency
features did not distinguish perfectly between literal and non-literal usage. Non-
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etheless, the evaluation of the models and the attribute selection demonstrated that
all the frequency features performed better than did the irrelevant features in the
main experiment. PV frequency was a better predictor of literal versus non-literal
usage than were particle and verb frequencies. In fact, the PV frequency improved
the overall classification accuracy of literal versus non-literal usages, meaning
that there were sentences that the model only predicted accurately due to the PV
frequency input.

6.4.3 Summary of the use of frequency to predict
(non-)literalness

Previous research on the effect of frequency on the compositionality of MWEs
encouraged the study of whether information about frequency would be useful
for predicting the literal versus the non-literal usage of Estonian PVs. Therefore,
three frequency features – the particle, verb and PV frequency – were included in
the feature set, and their influences on the results were studied.

The particle and verb frequencies contributed to the classification of the Es-
tonian PVs according to their usage. However, the overall best results in the main
experiment did not improve following the addition of these features. On the other
hand, particle and verb frequency features could be used as replacements for fea-
tures such as unigrams or the object case in order to achieve the same results as
the best-performing feature combinations in the main experiment.

The results of the experiments and attribute selection suggested that all the
frequency features performed better than did the irrelevant features in the main
experiment. The best frequency feature was PV frequency, which provided in-
formation that led to an improvement in the overall best result. In fact, after
omitting the features that had a low impact on the best result in the main experi-
ment – the unigram feature and the object case – the model subsequently produced
a slightly higher number of correct predictions than did the best model in the main
experiment. Thus, the overall best model combined eight features – the particle,
verb, average abstractness of nouns, subject case, subject and object animacy, case
government and PV frequency – and classified 88.9% of the sentences correctly.
Non-literal sentences were classified correctly with an f-score of 92.6, and literal
sentences with an f-score of 77.4.

In addition to achieving better results than those of the best-performing model
in the main experiment, the model using the PV frequency feature combined fewer
features. As information about the frequency is relatively easy to extract from
the data compared to the linguistic information, this factor can be crucial when
preparing data for detecting the literal versus the non-literal usage of Estonian
PVs. A further discussion of this topic is presented in Section 6.5 as part of the
discussion of the results of detecting the non-literal usage of PVs.

6.5 Summary and discussion of detecting the literal and
non-literal usage of particle verbs

In this section, the classification of the literal versus the non-literal usage of
Estonian PVs is finalised. In addition, a brief discussion about overfitting models
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is provided. Moreover, the results are analysed from the data acquisition point of
view, as the labelled data are a prerequisite for supervised learning. Therefore,
in addition to determining the predictive features for the task, it is important to
investigate the challenges to obtain properly labelled data.

The goal of the classification task was to develop a classifier that predicted the
correct class of literal and non-literal sentences. The classes of the sentences were
created based on the (non-)literalness ratings submitted by three human annotators
who evaluated the meanings of the PVs in the selected sentences. A set of
features that could predict the target class (literal versus non-literal sentences) was
introduced, and the evaluationwas performed on all possible feature combinations,
examining the impact of each suggested feature.

The set of studied features contained attributes that were used previously for
the detection of the non-literal usage ofMWEs, aswell as features that had not been
applied to similar tasks previously. More specifically, the effect of the following 12
features was studied in the main experiment – the particle, verb, unigram feature,
average abstractness of words and nouns, abstractness, case and animacy of PV
subject and object and case government (the case of the PV argument, except for
the subject and object). In addition, the influence of three frequency features was
explored. The 1,481 sentences that were assigned (non-)literalness ratings and all
the features studied now constitute a freely available dataset of (non-)literalness
ratings for Estonian PVs (see Aedmaa 2018).

The study demonstrated that, of the 12 suggested features, nine were relevant
for the task. The average abstractness of words, subject and object abstractness
scores did not provide such information that, in combination with other features,
improved the overall classification prediction. While context abstractness is pro-
posed to be helpful for predicting the (non-)literal usage of MWEs, the results
might have been affected by the quality of the abstractness/concreteness dataset.

Some relevant features influenced the results more than did others. The most
influential features were the particle and verb – these components of the PV
assisted in the correct classification of almost 86.0% of all the sentences. Other
features contribute less, but still helped to improve the classification results. In
combination with the particle and verb, the average abstractness of nouns had a
stronger impact on the results than did other features. Those that were moderately
effective included the subject case, subject animacy, object animacy and case
government. The impact of the unigram feature and the object case was weak. The
information provided by the latter feature could easily be replaced by information
about the PV frequency in order to produce amore accurate classifier. In fact, as the
information about the PV frequency was a useful feature for classifying Estonian
PVs according to literal versus non-literal usage, it was concluded that frequency
had an impact on the compositionality of PVs. Other frequency features – particle
and verb frequency – were not irrelevant for the task, but they did not provide
information that improved the overall accuracy of the classifications.

The current research on the automatic detection of the literal versus the non-
literal usage of Estonian PVs is a continuation and extension of work described by
Aedmaa et al. (2018). The slight revision of the dataset caused slight differences
in results, but the general conclusions remain the same – while the particle-verb
information classified the majority of sentences correctly, the context abstractness,
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case and animacy information contributed to improving the results. The overall
best accuracy proposed in the previous study was 87.9%, which is 1% lower than
was the accuracy of the best model introduced in this study. However, the previous
authors did not analyse the effect of frequency on the results.

As other previous research on the automatic detection of (non-)literal language
usage was not carried out on Estonian, a full comparison of the results is not
possible. Nevertheless, there has been some research on the automatic detection
of the non-literal usage of MWEs in other languages. Therefore, the general
results of those studies are compared to the outcome of the current research.

The approach of the present task is most closely related to the study by Köper
and Schulte im Walde (2016b), which distinguished between the literal and the
non-literal usage of German PVs. These authors demonstrated that affective
ratings (including contextual abstractness) could improve the overall performance
of the classifier, and noted that the features concerning nouns were more useful
than were those involving other POS. This matches the findings of this study to
some degree. While the average abstractness of nouns provided useful information
for classifying the literal versus the non-literal usage of Estonian PVs, the subject
and object abstractness (which are also noun-based features) were concluded to
be irrelevant for the task. The usefulness of the abstractness scores for non-
literal language usage detection was demonstrated previously by Turney et al.
(2011), who detected the literal and metaphorical usage of English adjective-noun
expressions, and by Tsvetkov et al. (2014), who carried out metaphor detection in
the English, Spanish, Farsi and Russian languages.

In addition to the abstractness ratings, the current study shares another feature
with Köper and Schulte imWalde (2016b) – unigrams. While the unigram feature
attained higher accuracy independently than did any other studied feature, it had no
remarkable impact on the results in combination with other features, particularly
when information about the PV frequencywas available. However, when detecting
the literal versus the non-literal usage of German PVs, the unigram feature worked
well in combination with other features, including abstractness.

The present research revealed that literal (compositional) PVs occurred less
frequently than did non-literal (idiomatic) ones. This result contradicts that sug-
gested by Cordeiro (2017), who demonstrated that idiomatic MWEs did not occur
more often than did compositional MWEs. However, those results are not fully
comparable with ours because their dataset was balanced and they studied com-
pound nouns. Nonetheless, the results indicate that frequency has an impact on
the compositionality of MWEs.

Whereas supervised learning requires labelled data, the concern was not only
to determine the predictive features for the task, but also to acquire annotated data.
Therefore, the results of the classification task described earlier are discussed from
the point of view of data preparation. As explained previously, annotated data
are a prerequisite for supervised machine learning. High-quality labelled data are
costly – they may require human resources, money, time and tools, for example.
In the following section, the results of the classification task are discussed from
the point of view of data annotation. Following a general overview of how the
data were prepared for the classification task, the (available) tools and datasets
that could be used for less expensive labelled data are discussed.
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The preparation of the dataset for classifying the literal versus the non-literal
usage of Estonian PVs (Aedmaa 2018) began with the creation of the dataset
of (non-)literalness ratings of Estonian PVs. The formulation of this resource
was described in detail in Section 4.3. As the aim of the task was to build a
classifier that predicted the correct class (literal or non-literal) of the sentences,
the values of the target classes were derived via human annotation. The values
of other features – the particle, verb, unigram feature, abstractness, case, animacy
and frequency features – were acquired after the evaluation of the annotation was
conducted. The annotation of the features was designed to be as automatic as
possible.

After the sentences were assessed according to the literalness of the PVs, it
was clear that information about the lemmas of the sentences in the dataset was
crucial for all the features. Therefore, the first phase in the data preparation was
to lemmatise all the sentences. This provided the necessary information for the
particle, verb and unigram features. The information for the abstractness ratings
was derived from automatically created abstractness/concreteness datasets, as in-
troduced in Section 4.5. The abstractness of nouns also required POS tagging of
the features concerning subjects and objects (that is, subject and object abstract-
ness, and case animacy) for the syntactic analysis. The animacy of the subject
and object were annotated manually after the subject and object were detected
automatically. The annotation of the case government features benefitted from
dependency parsing to detect the arguments. In addition, the sentences containing
multiple arguments were assessed manually to determine the one that was taken
into account in the annotation.

A fair number of useful NLP tools for Estonian was available for the annota-
tion. Most of the tools are available through the Python EstNLTK module103
(Orasmaa et al. 2016). For example, it includes the Estonian morphological ana-
lyser Vabamorf104 that can be used to extract information about the POS and cases.
As Vabamorf is highly accurate (99%) (Kaalep 1997; Kaalep and Vaino 2001), it
is particularly useful for automatic data annotation. The morphological analyser
provided input for the morphological disambiguation in the Estonian Constraint
Grammar (CG) parser (Müürisep 2000) that helped to detect subjects, objects and
other arguments. The parser also employs rules that determine clause boundaries,
surface syntactic analysis and dependency relations (Muischnek et al. 2017). Also,
the CG parser has a special module for identifying PVs that works with a high
degree of precision and recall (both at 97.4%) (Muischnek et al. 2013). Therefore,
the morphological analyser and the parser were useful tools for the automatic
extraction of the information necessary for the annotation. These tools provided
information about lemmas, clause boundaries, POS, cases and dependencies.

It is important to note that, as the sentences in this dataset were selected
manually in order to collect (non-)literalness ratings from human annotators,
automatic PV discovery was not applied here. However, it is very important to
be able to discover PVs in textual data in which the sentences containing PVs
alternate with those without PVs. In addition, as the results of the classification
task demonstrated, particles and verbs classified more than 85% of sentences

103https://github.com/estnltk (accessed 29.05.2018).
104https://github.com/Filosoft/vabamorf (accessed 29.05.2018).
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correctly. Therefore, the successful automatic discovery of PVs is important for
the annotation of the data in order to detect the literalness of the PVs. Based
on the previous work on the automatic detection of PVs described in Section
2.4.3, the automatic discovery of PVs could be carried out successfully using
AMs. Furthermore, while the methods for statistical approaches to the automatic
discovery of PVs are still at the research stage, the model for discovering PVs in
the rule-based parser could be used prior the identification of PVs.

It is clear that, with the help of the existing tools, the lemmatisation, detection
of clause boundaries, POS tagging and parsing are not problematic aspects of data
labelling. The biggest challenges concern the abstractness and animacy features,
which require a special dataset containing information about Estonian lemmas.
The automatically created abstractness/concreteness dataset provides useful in-
formation, but the quality thereof is unknown. At the same time, the average
abstractness of nouns is one of the most influential features for good classification
results. It is thus important to create a dataset containing abstractness/concreteness
ratings for Estonian lemmas in which the POS and the meanings of the lemmas
are identifiable.

Other challenging features that are also important for the classification task are
those concerning animacy. As there are no existing datasets containing informa-
tion about the animacy of Estonian lemmas, developing such resources and other
tools is necessary. For example, automatic animacy classification has reached
accuracy levels of more than 90% (e.g. Orasan and Evans 2001) and several bin-
ary (e.g. Moore et al. 2013), as well multi-class animacy datasets (e.g. Bos et al.
2017) have been created. These findings are encouraging with regard to creating a
tool for the automatic classification of animacy or animacy-annotated datasets for
Estonian. Until these resources become available, the data need to be annotated
manually.

While information about the PV arguments and their cases is provided by the
parser, there is a problem with the case government feature. More specifically,
when the PV has multiple adverbials in different cases, which case in which
argument should be used for the annotation is not automatically detectable. This
does not involve the majority of sentences, and could thus be performed manually.

Taking the results of the classification task into account, in order to train
the overall best classifier, it is important to annotate the values of the following
features – the particle, verb, average abstractness of nouns, subject case, subject
animacy, object animacy, case government and PV frequency. With the help of the
tools developed previously, the necessary information for most of the features can
be acquired easily and automatically at present. The most problematic features
from the point of view of automatic data labelling are the animacy features, as
there are no resources available for Estonian that would guarantee the automatic
annotation of these features. Some other features can be obtained automatically.

In general, the classification of the literal versus the non-literal usage of
Estonian PVs suggested that certain contextual (abstractness), grammatical (cases,
animacy) and statistic (frequency) features contribute to the detection of whether a
PV was used with a literal or a non-literal meaning. Whereas the use of frequency
and context abstractness was not surprising for the task of detecting non-literal
language usage, the impact of information about the case is definitely a novel
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finding. However, as data are crucial for computational research in linguistics, the
use of these features can be somewhat limited. More specifically, the current study
showed that, while many useful tools are already available for data acquisition,
there is still a need for some resources that provide information about animacy
and abstractness.
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7 CONCLUSION
The present thesis used computational methods for the detection of Estonian PVs.
DSMs were trained to learn word and multi-sense embeddings that were used to
predict the compositionality of PVs. A supervised classifier was developed to
predict the literal versus the non-literal usage of PVs. The compositionality of
Estonian PVs was explored based on a representative selection of Estonian PVs
containing various particles and verbs with diverse frequencies. Special attention
was paid to the association between frequency and compositionality by studying
distinct aspects, such as how the frequency of PVs and of their components
affected human compositionality judgements and the compositionality predictions
of models, as well as how well information about frequency predicted the literal
versus non-literal usage of PVs.

The contributions of the thesis are both theoretical and practical. On the
theoretical side, the compositionality of the PVs has been discussed and analysed
in depth. The difficulty of the phenomena was illustrated via numerous examples
from corpora. The human compositionality judgements were analysed and com-
pared to claims from earlier computational and theoretical research. For example,
the analysis of compositionality judgements suggested that the explanation for
the formation of a PV’s meaning provided in the literature thus far is limited to
qualitative approaches. More specifically, the human judgements illustrated well
that a binary classification of Estonian PVs is insufficient, as compositionality
occurs along a continuum.

The main practical contributions are the computational models that were de-
veloped: the DSMs that predicted the compositionality of the PVs using both word
and multi-sense embeddings, and the supervised classifier predicting the literal
versus the non-literal usage of PVs. With this being the first exhaustive computa-
tional study exploring the compositionality of Estonian MWEs, the application of
the models was described in such a way that provides general guidelines for future
research, not only on the compositionality of MWEs, but also for other areas of
linguistics that could employ the same methods. In addition, the proposed model
for predicting the non-literal usage of PVs achieved high levels of accuracy, and
could thus be employed for downstream applications, for example, machine trans-
lation. Furthermore, three novel datasets for Estonian were created, analysed and
made publicly available for research.

The three main goals of the thesis were: 1) To detect the compositionality of
Estonian PVs automatically, 2) to introduce and applymethods that arewidely used
for different tasks inNLP, and 3) to provide outcomes (including resources) that are
encouraging and helpful for future computational studies of the compositionality
of a wide range of MWEs and other phenomena. In order to accomplish the goals,
the following research questions were proposed:

1. To what extent do human annotators agree with each other when evaluating
the compositionality of PVs? What are the main reasons for disagreement?

2. How well do DSMs predict the compositionality of Estonian PVs? Which
training parameters and other aspects influence the quality of word and
multi-sense embeddings for detecting the degree of compositionality?
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3. Which (linguistic) features predict the usage of compositional versus non-
compositional PVs? How well are the values of these features acquirable
automatically?

4. How does frequency affect the compositionality of Estonian PVs? How are
human judgements of PV compositionality and automatic compositionality
predictions associated with frequency?

5. Are widely adopted and successful computational methods suitable for
detecting the compositionality of Estonian PVs? What are the drawbacks
and benefits of these methods?

The answers to these questions are summarised as the main conclusions
provided in the next section. The main results of this thesis are compared to
the studies of the compositionality of MWEs in Section 7.2. The chapter con-
cludes with Section 7.3, in which the main drawbacks of the current research are
discussed and suggestions for future work are provided.

7.1 Main conclusions
In this thesis, the compositionality of Estonian PVs was studied by applying
computationalmethods –DSMs trained to learnword andmulti-sense embeddings
to predict the compositionality of PVs, and a supervised classifier was developed
to predict the literal versus the non-literal usage of PVs. These approaches were
selected based on the results of previous studies of MWE processing, general
tendencies in the field of NLP, and the applicability to Estonian data. This section
presents the main conclusions of the study.

The evaluation of models generally involves comparing the predictions to the
datasets (gold standards) that contain information provided by humans. Accord-
ingly, two datasets contained human judgements of Estonian PV compositionality
were created. Although both datasets contain information about the composition-
ality of Estonian PVs, themethods used to collect the compositionality judgements
were dissimilar. The first dataset – compositionality ratings – was collected via
crowdsourcing with the aim of obtaining one compositionality score per PV and
ignoring the potential ambiguity of the PVs. Having one score per PV allowed us
to compare the ratings with the compositionality predictions of word embedding
models because they also produce one score per PV. The second dataset – literal-
ness ratings – contained the compositionality scores for PV meanings because the
PVs were evaluated based on a given context (a sentence). The dataset was mainly
created for modelling the non-literal usage of PVs, which inspired the name of the
dataset.

The assessments of the annotations of the datasets demonstrated that the
compositionality of some PVs and their meanings were more difficult to assess
thanwere other PVs and theirmeanings. Themain reason for the disagreementwas
the ambiguity of the PVs and their components, particularly particles. However,
the standard deviation among the compositionality ratings suggested that less
than 10% of the PVs caused substantial disagreement amongst the annotators.
The inter-annotator agreement on the literalness ratings implied a fair degree of

231



agreement for all six categories (κ = 0.36, α = 0.68) and substantial agreement
at the binary (literal versus non-literal) level (κ = 0.71, α = 0.71). Thus, taking
the difficulty and subjectivity of the task into account, it can be concluded that the
annotators agreed sufficiently with each other in terms of their evaluations of the
compositionality of Estonian PVs.

The automatic detection of PV compositionality was carried out using DSMs
trained to learn word and multi-sense representations. Word embedding models
are widely used for performing different NLP tasks, including MWE processing.
Multi-sense representations are used less often, particularly for compositionality
prediction, and further and more exhaustive studies are therefore needed. Both
types of embeddings were applied to the same task – to predict the composition-
ality of Estonian PVs – and proved to be suitable for the task. The comparison of
the word and multi-sense embedding models suggested that word representations
were preferable for the task, but the evaluation of the multi-sense embedding mod-
els was carried out on the data that was not created for this purpose. Nevertheless,
the quality of the predictions can be concluded as being fair, as the best predictions
correlated rather weakly (with compositionality ratings ρ = 0.21, with literalness
ratings ρ = 0.46) with the human-annotated ratings. The quality of the predic-
tions did not vary significantly across the training parameter configurations that
were studied. namely the number of dimensions, window size, minimum-count
threshold and the number of iterations. The latter had the strongest impact on the
results.

The algorithms employed, the types of the embeddings, the evaluation datasets,
and frequency affected the results more than other parameters that were studied.
The comparison of the two word2vec architectures studied – CBOW and Skip-
gram – revealed that the best predictions were provided by the word embedding
model using the CBOW architecture and compared to the dataset containing
literalness scores. While it is difficult to explain why the CBOWmodel performed
better than did the Skip-gram model, there are clear reasons for the differences
in other situations. For example, the human-annotated datasets were not created
for the same task and did not employ identical methods; therefore, there may
have been a difference in the quality of these datasets. The models using multi-
sense embeddings provided significantly less accurate predictions than did the
word embedding models because the gold standards were not created for the
assessment of the multi-sense embedding models. Therefore, the research on
multi-sense embeddings needs to be continued via the application of revised
evaluation methods. However, both types of models used in the current study
predicted the compositionality of frequent and infrequent PVs more accurately
than they did the PVs with moderate frequency. There were two main reasons for
this – the compositionality of the frequent PVs was predicted well because the
vectors of the frequent PVs were more representative, and the compositionality
of the infrequent PVs was easier to predict because they were less ambiguous.
The vectors of PVs with moderate frequency were not sufficiently representative
to compensate for the poor quality of the predictions of ambiguous PVs.

The thesis investigated a set of features that, based on the previous theoretical
and computational research, could predict the non-literal usage of the PVs, but
which had not been applied to such a task previously. The goal of detecting the
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(non-)literalness of Estonian PVs was to develop a supervised classifier to predict
the class of sentences in which PVs are used either with their literal or non-
literal meanings. The sentences were divided into two sets based on the average
literalness scores assigned by human annotators on a 6-point scale. Twelve features
that could be divided according to standard, language-independent and language-
specific features were introduced. The result of the token-based classification
suggested that, of the standard features – the PV components, unigrams and
abstractness of the context – information about the particles and verbs was crucial
for predicting the compositionality of the PVs. Of the abstractness features, only
the average abstractness of the surrounding nouns had an impact that helped
to improve the overall classification accuracy in combination with information
about the particles and verbs. The unigram feature was the most successful for
the task when information about the other features was not available. Of the
language-specific case features, the subject case and case government were more
influential than was the object case. In addition, information about the language-
independent features, subject and object animacy, was sufficiently useful for the
system to predict the class of the sentences with a degree of accuracy of almost
89%. The analysis of the frequency features demonstrated that PV frequency
provided such a wealth of information that unigrams and the object case were not
necessary for predicting the class of literal versus non-literal PVs in the absence
of information about when information about the PV frequency was available.

The successful automatic classification of literal and non-literal sentences is
possible when relevant features are annotated in the training data. Some of the
features, such as unigrams and frequency, are relatively easy to acquire automat-
ically, but there are features that are more costly to annotate. As morphological
analysers and parsers are available for Estonian, information about the lemmas,
cases and syntactic roles can be obtained easily. At the same time, the automatic
acquisition of information about animacy is currently problematic because no ap-
propriate resources are available. In addition, the dataset containing information
about abstractness was created automatically for the current study and has not
been evaluated. In brief, there are some open issues concerning data acquisition
for the future. Overall, the annotation for the detection of the compositionality
(literalness) of Estonian PVs is mainly obtainable automatically from the textual
data; therefore, the use of supervised learning is much less expensive than is
manual annotation.

In general, both the computational methods discussed are suitable for detect-
ing the compositionality of Estonian PVs, but both approaches also have some
drawbacks and benefits that need to be considered. For example, the DSMs
do not require anything other than a large, lemmatised text corpus and a high-
performance computer; therefore, this method is definitely a less costly method
than is supervised learning. However, while the processing of the DSMs is prac-
tical, it is not clear whether DSMs can really address deeper semantic questions
(Lenci 2008). Hence, the analysis of the results of the DSMs is somewhat superfi-
cial and conjectural. As expected, supervised classifiers were more accurate than
were DSMs. While the acquisition of the labelled training data necessary for su-
pervised learning can be expensive, this study showed that most of the annotations
could be done automatically fro Estonian. Hence, the cost of using supervised
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learning could be decreased considerably. In addition, the detailed analysis of the
results of the classifier provided a deeper understanding of the compositionality
of Estonian PVs than did the analysis of the results of the DSMs. For example,
a set of language-specific features was suggested to predict the non-literal us-
age of Estonian PVs. However, it is important to note that the generalisation
power for unseen PVs of the supervised model remained unexplored in the current
study. Therefore, this should be definitely addressed in future work. Overall,
both methods had their drawbacks and benefits – while supervised learning was
more expensive, the DSMs were less accurate. An experiment combining these
methods would be another potential direction for future research.

The effect of frequency on the compositionality of Estonian PVs was studied
from different perspectives. The study included PVs with different frequencies,
which allowed for the investigation of the degree of which the compositionality
predictions depended on the frequency of the PVs. No statistically significant
association between the human compositionality judgements and frequency of the
PVs and their components was found. However, the compositionality predictions
of DSMs were associated with frequency – the predictions of the frequent and
infrequent PVs correlated with frequency in such a way that the models tended
to predict that the most frequent and infrequent PVs would be less compositional
than would the PVs with moderate frequency. In addition, information about the
PV frequency is helpful to increase the classification accuracy of the literal versus
non-literal usage of Estonian PVs. Therefore, the compositionality predictions
of the computational models were affected by frequency, but the influence on
the human judgements needs to be investigated further. Ways for increasing the
accuracy of compositionality predictions for PVs with moderate frequencies also
need to be addressed in the future.

In general, the results of the thesis are definitely novel from the perspective
of the automatic processing of Estonian MWEs, specifically PVs. In addition,
they provided corpus-based findings that extend the description of Estonian PV
compositionality provided previously in the literature. The comparison to the
related work presented in the next section demonstrates the importance of the
results for the wider community.

7.2 Comparison of the results and other studies of the
compositionality of MWEs

Although it focused solely on PVs, this dissertation is the first large-scale com-
putational study of the compositionality of Estonian MWEs. Therefore, any
comparison with previous work is somewhat constrained. However, the results
of the first experiments for detecting the compositionality of Estonian PVs and
for predicting the literal versus the non-literal usage of Estonian PVs have been
published in peer-reviewed publications (see the overview in Section 2.4.3). The
main conclusions of the current study are not only comparable to the work done
on the compositionality of Estonian PVs, but also to the research conducted on the
MWEs in other languages. The aim of the comparison is to determine if and how
the automatic processing of Estonian PVs differs from the treatment of similar
phenomena in other languages when applying the same methods.
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The first study exploring the compositionality of Estonian PVs (Aedmaa 2017)
argued that the compositionality predictions correlated weakly, but statistically
significantly, with the human compositionality judgements. This analysis sug-
gested that the compositionality of frequent PVs was more difficult to predict
than was that of other PVs. This finding is in line with the conclusions of Bott
and Schulte im Walde (2014), who found that the compositionality of infrequent
and frequent German PV was more challenging to predict using word embed-
ding models than was the compositionality of other PVs due to data sparseness
and the high degree of ambiguity of frequent PVs. As the overall correlation
between the compositionality predictions of German PVs and human judgements
was moderate but statistically significant, the word embedding models generally
function similarly for Estonian and German PVs. Nevertheless, both word and
multi-sense embedding models predicted the compositionality of frequent and
infrequent Estonian PVs with greater accuracy than they did the compositionality
of PVs with moderate frequency. This result may have differed from that proposed
by Aedmaa (2017) because a bigger corpus and different parameter configurations
were used in the current study – Cordeiro (2017: 86) proposed that the corpus
size affected the quality of DSM representations strongly. While the success of
the DSM predictions depended on the frequency of Estonian and German PVs,
Cordeiro (2017) demonstrated a generally weak correlation between frequency
and the difficulty of predicting the compositionality of nominal compounds in
English, French and Portuguese, but there are also models that have predicted the
compositionality of frequent compounds with significant accuracy. In brief, the
results of the effect of frequency on the DSMs’ compositionality predictions are
inconclusive, and require further investigation.

No statistically significant correlation between human compositionality judge-
ments and (PV, particle and verb) frequency was detected in this study. This find-
ing is consistent with that of McCarthy et al. (2003), who studied English phrasal
verbs and claimed there was no significant relationship between compositionality
judgements and the frequency of the components of phrasal verbs. Bott et al.
(2016) observed a slight variation in German PV compositionality ratings and
frequency bands, indicating that frequency did not affect human judgements to a
significant degree. Cordeiro (2017) hypothesised that there should be a negative
correlation between the compositionality score and the frequency of the com-
pound. However, he found that frequent English and French compounds were
evaluated as being more compositional than were the less frequent ones. There
was a significant correlation between the compositionality ratings of Portuguese
compounds and frequency. Therefore, the association between frequency and
human compositionality judgements is not generally strong, but can depend on
the type of the MWE and the language in question. In addition, the results may
vary according to the methods used for the collection of judgements.

The inter-rater agreement on the compositionality and literalness ratings of
Estonian PVs was assessed as being relatively good. The compositionality ratings
were crowdsourced, and the agreement was assessed using standard deviation.
After removing PVs that were difficult to evaluate (almost one third of the PVs
evaluated) and outlier annotators, about 10% of the PVs were reported as having
high standard deviation values, indicating high levels of disagreement amongst the
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annotators. The main reason for disagreement was the ambiguity of the particles.
Reddy et al. (2011b) suggested a similar number of English compound nouns
that caused disagreement amongst the annotators; they hypothesised that the main
reason for the differences was the ambiguity of the compounds. Cordeiro et al.
(2016b), who discussed the quality of human compositionality judgements with
English, French and PortugueseMWEs, stated that the proportion of high standard
deviation compounds was between 14% and 19% after filtering (removing outlier
annotators and annotations). The comparison revealed that regardless of the type,
or language of the MWEs, the annotators did not agree about the compositionality
of some MWEs. Bott et al. (2016), who collected compositionality ratings for
German PVs, reported that the high average standard deviation per rating (1.82
on a 6-point scale) reflected the difficulty of the annotation task. Therefore, the
evaluations of the crowdsourced dataset suggest similar conclusions – the task
might be challenging due to the ambiguity of the MWEs.

Perfect agreement was also not achieved when the annotations were provided
by experts and evaluated via kappa coefficients. When assessing the agree-
ment for Estonian PVs literalness ratings, the agreement (after filtering) for six
categories was κ = 0.43 and κ = 0.71 for two categories. Similar inter-rater
agreement was also found amongst the annotators of German PV literalness –
κ = 0.35 for six categories and κ = 0.70 for two categories. Comparable results
were also found in the assessments of other MWEs. For example, three experts
who evaluated Basque noun-verb expressions as being idioms, collocations or
free combinations, achieved moderate agreement (κ = 0.58) (Gurrutxaga and
Alegria 2013). Farahmand et al. (2015), who collected annotations for 1,048 Eng-
lish noun-noun compounds to be assessed based on their (non-)compositionality
and (non-)conventionalisation. They also found moderate agreement for non-
compositionality (κ = 0.62). Hence, regardless of the number of annotators and
their proficiency, the compositionality (literalness) of MWEs is difficult to evalu-
ate. The reasons for the disagreement are universal – the subjectivity of the task
and the ambiguity of the MWEs and their components.

There is relatively little research on the use of multi-sense embeddings for
detecting the compositionality of MWEs. The results of the current study are
thus truly comparable only to the study detecting the compositionality of German
PVs. Köper and Schulte im Walde (2017b) found that multi-sense embeddings
resulted in better predictions than did word embedding models, but the correla-
tion between human compositionality judgements and themodel’s predictions was
still relatively weak. We found that the multi-sense embeddings did not provide
better compositionality predictions for Estonian PVs than did the word embed-
ding models. Therefore, in contrast to Köper and Schulte im Walde (2017b), the
superiority of multi-sense embeddings in comparison to word embedding could
not be stated categorically. Li and Jurafsky (2015), who found that multi-sense
embeddings often performed as well as did word embeddings with high dimen-
sionality, discussed the usefulness of multi-sense embeddings for NLP in general.
They suggested testing embeddings in real NLP applications rather than via simple
human-matching tasks. The application of multi-sense embeddings is an on-going
research topic in NLP, and the current study emphasised why and howmulti-sense
embeddings should receive attention in future work on MWE compositionality.

236



Four parameters – the number of dimensions, window size, the minimum-
count threshold and the number of iterations – did not have a strong impact on the
predictions of Estonian PV’s compositionality according tomodels trained to learn
word and multi-sense embeddings. The most influential parameter investigated
was the number of iterations – models trained with more iterations provided
slightly better predictions than did the models trained with fewer iterations. No
models were trained with a greater number of iterations than 20 because, based on
related research (e.g. Cordeiro 2017), it was assumed that more iterations would
not yield significantly better results. Furthermore, the training time increases with
the number of iterations (this is particularly important when training multi-sense
embeddings). Cordeiro (2017) also investigated the impact of other features. He
confirmed an earlier suggestion by Lapesa and Evert (2017) that the appropriate
choice of window size was task-specific, and added that the choice of the DSM
may also have an effect on the window size. He suggested that the models trained
with a greater rather than with a lower number of dimensions might make the
best predictions, and that a low word-count threshold might lead to better results
for compositionality prediction tasks as opposed to a high threshold. Bott and
Schulte im Walde (2014) demonstrated that a window size of 5 is better than 1,
2, 10 or 20 for predicting the compositionality of German PVs. This finding is
in line with the findings of the current study because it was found that, despite
small differences, a window size of 5 was more appropriate than was a size of 1 or
30. Overall, related research can provide some general guidelines for parameter
configurations, but specific values depend on the task, DSMs and other aspects.
Further research is needed in order to predict the compositionality of MWEs in
Estonian and other languages.

This thesis confirms the main conclusions of the first study of the automatic
detection of the literal versus the non-literal usage of Estonian PVs introduced
by (Aedmaa et al. 2018). Both studies showed that the most predictive features
for the task were the particle, the verb, the average abstractness of the nouns,
the subject case, the subject animacy, the object animacy and case government.
As a novel feature, PV frequency was introduced in this study. Therefore, in
addition to the standard features that are used to predict the (non-)literalness
of MWEs in other languages, some novel features were introduced and their
usefulness was proven. Specifically, the case features (the case of subject, the
case of object and the case government) were introduced and the subject case
and case government were found to be useful for the detection of the (non-)literal
usage of PVs. In addition, the animacy features were suggested and included in
the best model. The usefulness of the abstractness of nouns for classifying literal
and non-literal PVs was not surprising because abstractness has been used for
(non-)literalness detection in English previously (e.g. Turney et al. 2011; Klebanov
et al. 2015). The abstractness of nouns was also one of the most salient features
for predicting the (non-)literalness of German PVs (Köper and Schulte im Walde
2016b). While unigrams worked well for German, the unigram feature was only
successful independently for Estonian, and not in combination with other features.
However, the suggested models for detecting the literal versus the non-literal usage
of Estonian and German PVs shared some features (such as abstractness ratings)
and obtained similar results – the model for German attained 86.8% (baseline
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64.9%) accuracy, while the model for Estonian achieved 88.9% (baseline 74.0%)
accuracy. There are no studies of other languages that apply the subject case,
object case, case government, subject animacy or object animacy as features for
predicting the non-literal usage of MWEs.

Overall, the differences from the previous research on the compositionality of
PVs (and other MWEs) emphasise the importance and necessity of conducting
studies of specific MWE types in different languages. The similarities to related
research demonstrate that the results were not random or specific to Estonian
PVs. In addition, the comparison to other studies pointed out some aspects of
Estonian PV compositionality that were not discussed here or which need further
investigation. The drawbacks of the current study and possible directions for
future work are presented in the next section.

7.3 Future work
This section discusses the shortcomings of the research presented in this thesis,
and introduces some ideas for future work.

Firstly, the role the meaning of the particle in the meaning of the PV was
not studied in this thesis. However, the semantics of particles has been explored
thoroughly from a cognitive linguistics perspective (e.g. Veismann 2009). There-
fore, future computational research on PV compositionality could benefit from
earlier (theoretical) studies of verbal particles. For example, information about
the semantic classes or prototypical usage of Estonian adverbs could be employed
to improve the accuracy of the automatic compositionality predictions. In order
to improve the quality of compositionality predictions, the semantics of particles
should also be studied computationally. With some exceptions (e.g. Cook and
Stevenson 2006; Köper and im Walde 2016), not much work has been done on
the semantics of particles in other languages. Nevertheless, Bhatia et al. (2018)
have proposed an approach to identify the senses of particles using WordNet
(an existing lexical resource) for the classification of compositional versus non-
compositional VPCs. Following a similar method requires us to investigate the
suitability of the Estonian WordNet105 for the task. Hence, future research should
focus on modelling the semantics of particles.

One of the main concerns of the work presented in this thesis is the assessment
of the compositionality predictions of distributional models. Firstly, it has been
stated that there are no standardised extrinsic evaluation methods for evaluating
word vectors; therefore, they are often assessed using computationally inexpens-
ive and rapid word similarity. This approach has multiple flaws, such as the
subjectivity of the task, a low correlation with extrinsic evaluations, the absence
of statistical significance, the inability to account for polysemy and so on. It has
been suggested that the word vector models should be compared based on how
well they can perform on a downstreamNLP task until a better solution is available
(Faruqui et al. 2016). Therefore, a model using compositionality predictions for
Estonian PVs to detect the transparency of their meanings in the text should be
created and applied to improve the performance of other tasks, such as machine

105https://www.cl.ut.ee/ressursid/teksaurus/ (accessed 10.12.2018).
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translation. The assessment of the machine translation could then demonstrate
whether the quality of the compositionality predictions is sufficiently high so to
improve the accuracy of machine translation.

The inability to account for polysemy – one of the problems with word em-
beddings – has been addressed in this thesis by using multi-sense embeddings
for compositionality predictions. However, the predictions were not evaluated
against well-designed human judgements; therefore, further research on multi-
sense embeddings requires an appropriate dataset containing human judgements.
For example, a dataset similar to the Stanford contextual word similarity dataset
(Huang et al. 2012) could be created for Estonian PVs. The dataset should con-
tain human judgements about the compositionality of PVs in specific contexts.
For example, how successfully the verb alone could replace the PV in the same
context could be assessed – when the PV could be replaced with the verb fully
while the meaning of the context remains the same, the PV’s meaning is fully
compositional. The creation of such a dataset would no doubt be expensive, and
requires exhaustive prior research.

Another problematic aspect of the evaluation of multi-sense embeddings was
that the most probable meanings were used and compared to the median score
of the human ratings. Therefore, the full advantage of learning multiple senses
for verbs and PVs was not taken into account. Applying SenseGram’s WSD
mechanism to determine intended meanings did not help to improve the results.
As the assessment of the tool was not possible, it was not clear whether the
results did not improve because of the poor quality of the disambiguation tool or
the of multi-sense embeddings. Any future work on PV compositionality would
thus benefit from a WSD system that can not only succeed if disambiguating the
meanings of verbs, but also of PVs. The development and evaluation of a WSD
system require a large, semantically annotated corpus in which the meanings
of PVs are also labelled. At present, the semantically disambiguated corpus
of Estonian (Kahusk 2011) contains 500,000 words. Furthermore, the Estonian
WordNet has been under development for years. Nonetheless, no recent work
on developing a WSD tool for Estonian has been published; therefore, a model
performingWSD for PVs is an open issue for the future. Still, the work on a WSD
system for PVs might benefit from the features that were useful for classifying the
literal versus the non-literal usage of PVs.

This work focused on the identification of Estonian PVs. The studied PVs
were selected from amongst the PVs that were previously discovered (detected)
automatically from the text corpora using statistical AMs (Aedmaa 2014). The
list combined the PVs that were discovered by at least one studied AM. Therefore,
additional experiments are needed in order to determine whether combining the
results of multiple AMs is a more useful approach than is using other tools and
methods, such as parser (Muischnek et al. 2013). Further research on automatic
PV processing should focus on binding automatic discovery and identification to
model both tasks.

There are several ways to continue the work using the same methods applied
here. For example, in addition to word2vec, there are numerous other types of
algorithms for learning word embeddings, such as PPMI (Levy and Goldberg
2014), GloVe (Pennington et al. 2014), lexvec (Salle et al. 2016) and so on,
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which could be trained to make compositionality predictions. A recent study by
Wendlandt et al. (2018) demonstrated that the stability of different algorithms
varied, and that multiple factors contributed to the stability of word embeddings,
such as the domain, POS, vocabulary size and so on. The impact of these factors on
compositionality prediction should be considered and investigated using Estonian
data. For example, the Estonian Reference Corpus 2017 (Kallas and Koppel 2018)
containing 1.1 billion words has been published, word and multi-sense embedding
models could be retrained using a larger corpus, and the impact of the corpus size
on the results could be studied.

In addition, several features have been proposed in the literature with regard to
non-literal language usage and metaphor detection that could be tested for detect-
ing the literal versus the non-literal usage of Estonian PVs. For example, among
other features, Tsvetkov et al. (2014) used vector-space word representation to de-
velop an English metaphor detection system, and Do Dinh and Gurevych (2016)
introduced supervised metaphor detection combining neural network architec-
ture with word embeddings. Employing previously trained word and multi-sense
embeddings or combining them with neural networks for predicting the compos-
itionality (literalness) of Estonian PVs could be one possible direction for future
research.

The methods used for predicting the compositionality of Estonian PVs have
been used widely and successfully not only in compositionality studies, but also
for other NLP tasks. However, new approaches and techniques have been proposed
in the interim, and could also be applied to Estonian. For example, Hashimoto and
Tsuruoka (2016) demonstrated an adaptive, joint learning method for composi-
tional and non-compositional phrase embeddings. Their method addressed the
problems of learning solely compositional embeddings, such as data sparsity, and
achieved state-of-the-art results in the compositionality detection task of verb-
object pairs. Therefore, this suggests further work on other phrases in other
languages, such as Estonian PVs. Gong et al. (2017) suggested a simple test for
the compositionality of a word and phrase using the local linguistic context. As
they did not use any external resources and employed only word vectors, their
approach could be replicated to detect not only the compositionality of PVs, but
also of other MWEs.

In summary, the automatic processing of MWEs is acknowledged as being a
challenging task, mainly because of their semantic (non-)compositionality. The
methods introduced in this thesis are merely a few of the approaches that have been
proposed in the literature during years of intense research. There are several ways
to continue the research on Estonian PVs (and other MWEs), such as modelling
the semantics of particles, developing resources for a more solid assessment of the
compositionality predictions of multi-sense embedding models, employing new
methods such as neural networks, and many more.
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8 SUMMARY IN ESTONIAN

Eesti keele ühendverbide automaattuvastus lingvistiliste
ja statistiliste meetoditega

Siinne töö keskendub eesti keele üht tüüpi püsiühendite – ühendverbide – auto-
maatsele tuvastamisele. Püsiühendite automaattöötlus on keeruline just seetõttu,
et püsiühendid koosnevad rohkem kui ühest sõnast ning sõnaühendi tähendus po-
le tihtipeale komponentide tähenduste summa, vaid sõnade koosesinemisel tekib
uus tähendus (Sag jt 2002). Püsiühendile on pakutud palju erinevaid definitsioone
lähtuvalt uurimisobjektist ja -meetodist. Valiku eri definitsioonidest on esitanud
näiteks Constant jt (2017). Selles töös lähtun põhimõttest, et püsiühenditel on kaks
või enam komponenti ning nende semantiline kompositsionaalsus on skalaarne.
See tähendab, et püsiühendeid ei ole otstarbekas tähenduse moodustumise jär-
gi jagada kaheks: kompositsionaalseteks (tähendus on komponentide summa) ja
mitte-kompositsionaalseteks (sõnaühend omandab uue tähenduse). Püsiühendid
saab hoopis asetada skaalale, mille ühes otsas on ühendid, mille tähendus on sel-
gelt selle komponentide tähenduse summa, ja teises otsas ühendid, mille tähendus
pole üldse tuletatav selle komponentide tähendustest (Bannard jt 2003). Samast
arusaamast on lähtunud paljud arvutilingvistilised erinevate keelte püsiühendeid
käsitlevad uurimused, mis tagab võimaluse selle töö tulemusi nendega võrrelda.

Püsiühenditeks liigitatakse paljusid eri omadustega konstruktsioone. Constant
jt (2017) tõid välja, et püsiühenditena on uuritud näiteks idioome, verbi ja partikli
ning mitmesuguseid verbist ja noomeni(te)st koosnevaid ühendeid, mitmesõnalisi
nimesid ja termineid jne. Loetelu näitab, et püsiühendeid on mitmesuguseid ning
kõigi ühendite korraga uurimine väga keeruline. Seetõttu on leitud, et tõhusam
on eri püsiühendeid eraldi käsitleda. Sellest kõigest tingituna vaadeldakse siinses
töös vaid eesti keele ühendverbide automaatset tuvastamist. Ühendverbid koosne-
vad afiksaaladverbist ja verbist, on eesti keeles sagedased ja produktiivsed ning
nende tähenduse kompositsionaalsus varieerub. Lisaks sellele, et püsiühendite au-
tomaatne tuvastamine on üleüldiselt komplitseeritud, lisavad ülesandele keerukust
ka näiteks asjaolud, et afiksaaladverbid on tihti homonüümsed kaassõnadega ning
ühendverbide komponentide järjestus ja kaugus ei ole kindlaks määratud.

Eesti keele ühendverbid on olnud nii deskriptiivsete kui ka arvutilingvis-
tiliste uurimuste keskmes. Ühendverbi käsitlemist eesti keele alastes varajastes
uurimustes tutvustas Huno Rätsep (1978), kes muuhulgas esitas ka ise põhjaliku
ühendverbide kirjelduse. Rätsep jagas ühendverbid nende tähenduse moodustu-
mise alusel kaheks: korrapärasteks (ehk kompositsionaalseteks) ja ainukordseteks
(ehk mittekompositsionaalseteks). Sellist jaotust on hiljem korratud näiteks eesti
keele grammatikas (Erelt jt 2013) ja eesti keele süntaksi tervikkäsitluses (Erelt
jt 2017). Ühendverbide uurimist läbi ajaloo on vaadelnud ka Kadri Muischnek,
kes uuris teiste verbi püsiühendite seas ühendverbe nii lingvistilisest kui ka ar-
vutilingvistilisest vaatenurgast. Muischnek tõi välja, et püsiühendid moodustavad
sellise jada, mille ühes otsas on ühendid, millele saab tähenduse omistada ainult
tervikuna, ja teises otsas kollokatiivsed ühendid. (Muischnek 2006: 12) Läbi pro-
soodia prisma vaatlesid ühendverbe Ann Veismann ja Heete Sahkai (2016), kes
kirjeldasid semantilist ainukordsust skalaarse tunnusena. Eri arvutuslikke mee-
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todeid on ühendverbide automaatsel tuvastamisel rakendanud Heiki-Jaan Kaalep
ja Kadri Muischnek (2002; 2006; 2008). Kristel Uiboaed (2010) tuvastas ühend-
verbe eesti murretest, kasutades statistilisi meetodeid. Sarnaselt on eesti keele
ühendverbe tuvastanud töö autor (Aedmaa 2014), kes on avaldanud ka ainsad ees-
ti keele ühendverbide kompositsionaalsuse automaatse tuvastamise kohta ilmunud
uurimused (Aedmaa 2016; 2017; Aedmaa jt 2018).

Püsiühendeid on uuritud mõistagi ka teistes keeltes, kuid enamik töid kesken-
dub inglise keelele. Samas on eesti keele seisukohalt oluline, et ka saksa keele
ühendverbide automaatsele tuvastamisele on rohkelt tähelepanu pööratud, sest
paljud eesti keele ühendverbid on kasutusele võetud just saksa keele eeskujul
(Hasselblatt 1990, viidatud Erelt jt 2017 järgi). Näiteks on saksa keele ühend-
verbide kompositsionaalsuse tuvastamisel rakendatud klasterdamist (Kühner ja
Schulte im Walde 2010), distributiivse semantika mudeleid (Bott ja Schulte im
Walde 2014; Köper ja Schulte im Walde 2017a) ja klassifitseerimist (Köper ja
Schulte imWalde 2016b) jms. Siinse töö meetodite valik põhinebki suuresti teiste
keelte püsiühendite tuvastamist käsitlevatel uurimustel ja keeletehnoloogia põhi-
suundadel.

Kui varasemad meetodid kasutasid püsiühendite tuvastamiseks eelkõige sõna-
de koosesinemist (näiteks sõnadevahelise seose tugevusemõõdikud), siis hiljemon
fookus jäänud püsiühendite kompositsionaalsusele ja selle tuvastamisele. Edukas
kompositsionaalsuse automaattuvastus tagab, et lisaks püsiühendi enda leidmisele
tekstist, suudab arvuti eristada ka püsiühendi eri tähendusi. Selles töös rakenda-
takse kompositsionaalsuse tuvastamiseks masinõpet ehk algoritme, mis teevad
andmete põhjal otsuseid. Kõige üldisemalt jagatakse need algoritmid kaheks –
juhendamata ja juhendatud õppimine –, kuid eristatakse ka näiteks stiimulõpet
või pooljuhendatud algoritme. Juhendamata ja juhendatud masinõppe suurim eri-
nevus on märgendatud või märgendamata andmete kasutamine. Nimelt suudavad
juhendamata algoritmid märgendamata või klassifitseerimata andmestikust tuvas-
tada uusi struktuure. Juhendatud algoritmid kasutavad aga märgendatud andmeid
ja ette on antud ka probleem, mille kohta andmestiku põhjal uusi järeldusi te-
hakse. See tähendab, et juhendatud õppimine vajab eelnevat tööd andmestikuga,
näiteks märgendussüsteemi väljatöötamist ja mingi hulga teksti märgendamist.
Seega on juhendatud algoritmide kasutamine tihtipeale kallim ehk nõuab rohkem
aega ja teisi ressursse. Siinses töösmääratakse juhendamata distributiivse semanti-
ka mudelitega ühendverbide kompositsionaalsust ning juhendatud klassifitseerija
treenitakse, selleks et eristada ühendverbide kompositsionaalset ja mittekompo-
sitsionaalset tähendust lausetes.

Distributiivse semantika mudelite (distributional semantic models) (ka vek-
torruumi, semantilise ruumi, sõnaruumimudelite) alus on distributiivse semantika
hüpotees, mille järgi kirjeldab sõna tema kontekst: statistiline sõnade jaotus (distri-
butsioon) kontekstis (tekstis) on see, mis kujundab sõnade tähenduse (Firth 1957).
Seega on üldine arusaam, et sarnase tähendusega sõnad esinevad sarnases konteks-
tis (Lenci 2008). Distributiivse semantika hüpotees on semantikas aluseks tervele
hulgale statistilistele meetoditele, mida üldnimetusena kutsutakse distributiivse-
teks meetoditeks. Distributiivset semantikat üldiselt rakendatakse loomulike keele
automaattöötluse ülesannete lahendamiseks, näiteks sõnatähenduste ühestamine
(Schütze 1998) ja teksti segmenteerimine (Choi 2001), aga ka kognitiivteadu-
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ses inimkäitumise modelleerimiseks (nt Landauer ja Dumais 1997; McDonald ja
Brew (2004))106.

Distributiivse semantika mudelite populaarsus on põhjendatav sellega, et need
töötavad ainult distributiivse statistika põhjal. Seetõttu eeldab seesuguste mudelite
kasutamine üksnes suurt tekstihulka ja sarnasust saabmõõta lisaks sõnadele ka näi-
teks fraaside või dokumentide vahel. Üldine sõna semantilise sarnasuse mudelite
tööpõhimõte on järgmine: sõnade distributiivne info ehk esinemissagedus teis-
te elementide suhtes kogutakse kokku mitmedimensionaalse ruumi vektoritena.
Uuemat tüüpi distributiivse semantika mudelite tööpõhimõte on suuresti mõjuta-
tud neurovõrkude keelemudelitest (neural network language models). Seesugused
mudelid ennustavad tõenäosust modelleerides konteksti põhjal sõnajada järgmist
sõna. Seesuguste sõnade vektoresituste (word embeddings) abil saabmõõta sõnade
vahelist tähenduslikku sarnasust, mis väljendub geomeetrilise kaugusena vektor-
ruumis sõnu esitavate vektorite vahel. Vektoritevahelist kaugust saab mõõta eri
mõõdikutega, siinses töös väljendatakse sarnasust koosinuskauguse abil. Kui koo-
sinuskauguse väärtus on 1, siis vektoritega esitatud sõnad on väga sarnased, kui
väärtus on –1, siis väga erinevad. Selleks et järjestada eesti keele ühendverbid
nende kompositsionaalsuse järgi, leitakse koosinuskaugus ühendverbi vektori ja
verbi vektori vahel, põhinedes eeldusel, mida rakendati saksa keele ühendverbide
kompositsionaalsuse tuvastamisel: ühendverbi kompositsionaalsus oleneb sellest,
kui sarnased on verbi ja ühendverbi tervikuna esinemise kontekstid (Bott ja Sc-
hulte imWalde 2014). Kui üldjuhul on vektorruumi mudelid võimelised koostama
ühe vektori sõna kohta, vaatamata sellele, kas sõna on mitmetähenduslik või mit-
te, siis on arendatud ka selliseid mudeleid, mis eristavad sõnade tähendusi ja
toodavad tähendusvektoreid (multi-sense embeddings). Siinses töös rakendatak-
se kompositsionaalsuse määramiseks mõlemat tüüpi vektoreid: sõnavektorid on
saadud word2vec (Mikolov jt 2013a) tööriistaga ning tähendusvektorid SenseG-
rami (Pelevina jt 2016) kasutades. Seda, kuidas distributiivse semantika mudelid
vektoreid õpivad, on võimalik mitme parameetri abil muuta. Siinses töös võr-
reldakse, kuidas tulemused erinevad, kui muuta treeningmeetodit, vektorruumi
dimensioonide arvu, kontekstiakna suurust, kaasatavate sõnade miinimumsage-
dust ja treeningiteratsioonide arvu.

Sõna- ja tähendusvektorid leitakse eesti keele veebikorpusest 2013107. Mudeli-
te tööd hinnatakse kahe inimmärgenduse põhjal loodud andmestiku abil. Esimene
neist koguti ühisloome abil ning see sisaldab iga uurimusse kaasatud ühendverbi
kohta ühte kompositsionaalsuse hinnet. See arv on inimeste antud kompositsio-
naalsuse hinnangute aritmeetiline keskmine. Igale ühendverbile koguti viie palli
skaalal vähemalt kümne inimese hinnang. Ei uuritud inimese lingvistilist tausta
ega seda, missuguse ühendverbi tähendust ta määratles. Sellist ressurssi oli vaja
vektoresituste hindamiseks, mis niisamuti ei erista eri tähendusi. Teine andmestik,
mida mudelite töö hindamiseks kasutati, sisaldab tähenduste kompositsionaalsuse
hinnanguid. Kuna see info eraldati andmehulgast, mida märgendati klassifitseeri-
ja treenimiseks, siis selle täpsem kirjeldus esitatakse järgmises lõigus. Lõplikest
andmestikest (ehk nendest, mida kasutati mudelite hindamiseks) jäetakse välja

106Väga põhjalikult on distributiivse semantika eri mudelite rakendusvõimalustest kirjutanud
Turney ja Pantel (2010).

107http://www.keeleveeb.ee/dict/corpus/ettenten/about.html (Vaadatud 09.01.2019)
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need ühendverbid, mille kompositsionaalsust oli ühel või teisel põhjusel keerukas
kindlaks määrata. Ühendverbid reastatakse nii inimeste antud kompositsionaalsu-
se hinnangute kui ka mudelite leitud vektoritevahelise koosinuskauguse väärtuse
järgi. Järjestuste sarnasust väljendatakse Spearmani korrelatsioonikordajaga.

Selleks et tuvastada, kas lauses on ühendverbi kasutatud kompositsionaalses
või mittekompositsionaalses tähenduses, viiakse läbi binaarne klassifitseerimine.
Klassifitseerija ise põhineb juhumetsa algoritmil, mis omakorda koosneb paljudest
otsustuspuudest. Otsustuspuu on vahend, mis meenutab puu struktuuri ja mida,
nagu nimigi ütleb, kasutatakse otsuste tegemiseks. Muuhulgas on otsustuspuud
kasulikud andmete klassifitseerimiseks, kus mingid üksused määratakse (andmes-
tikus märgendatud) tunnuste järgi kategooriatesse. Siinses töös klassifitseeritakse
lauseid, mis ühendverbide tähenduse moodustumise alusel on andmestikus mär-
gendatud kui kompositsionaalsed või mittekompositsionaalsed. Märgendus põhi-
neb kolme eksperdi hinnangutel, kes hindasid kuue palli skaalal ühendverbide
kompositsionaalsust 1838 lauses. Binaarseks jaotuseks arvutati iga lause hinne-
te aritmeetiline keskmine ning selle põhjal klassifitseeriti laused. Andmestikku
jäid ainult laused, mille kõik hinded kuulusid samasse binaarsesse klassi. Neid
hindeid kasutatakse ka distributiivse semantika mudelite hindamiseks. Klassifit-
seerija arendamiseks märgendati andmestikus ka (lingvistilisi) tunnuseid, mille
kasulikkust ühendverbide tähenduse tuvastamisel hinnatakse ja mida omavahel
kombineeritakse. Selgitatakse välja, missugust informatsiooni on vaja, et arenda-
da võimalikult hästi töötav klassifitseerija.

Tööl on neli põhieesmärki: a) eesti keele ühendverbide kompositsionaalsuse
automaattuvastus; b) teiste keelte püsiühendite automaattöötluses väga laialt ja
edukalt kasutatud meetodite tutvustamine ja rakendamine eesti keele peal; c) tule-
muste kirjeldamine sel viisil, et need julgustaksid tutvustatud meetodeid rohkem
keeleteaduslikes uurimustes rohkem kasutama; d) uute ressursside loomine, et
need oleksid rakendatavad ka muudel eesmärkidel peale püsiühendite automaat-
töötluse. Nende eesmärkideni jõutakse, vastates järgmistele uurimisküsimustele:

1. Mil määral sarnanevad inimeste hinnangud ühendverbide kompositsionaal-
suse hindamisel? Mis on peamised lahkarvamuste põhjused?

2. Kui hästi töötavad distributiivse semantika mudelid eesti keele ühendver-
bide kompositsionaalsuse tuvastamisel? Mis parameetrid ja teised asjaolud
mõjutavad sõna- ja tähendusvektorite kvaliteeti?

3. Mis (lingvistilised) tunnused viitavad sellele, kas ühendverbi tähendus lau-
ses on kompositsionaalne või mittekompositsionaalne? Kui hästi on need
tunnused automaatselt märgendatavad?

4. Mis on sageduse mõju eesti keele ühendverbide kompositsionaalsusele?
Kuidas mõjutab sagedus inimeste ja mudelite ühendverbide kompositsio-
naalsuse hinnanguid?

5. Kas varem edukad olnud arvutuslikud meetodid sobivad eesti keele ühend-
verbide kompositsionaalsuse tuvastamiseks? Mis on kasutatud meetodite
head ja halvad küljed?
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Arvutuslike meetodite kvaliteedi mõistmiseks kasutatakse tihtipeale inimeste
antud hinnanguid või märgendusi sisaldavaid andmestikke ehk kuldstandardeid.
See on otstarbekas, sest üldine eesmärk on, et arvutid oleksid võimelised töötle-
ma keelt inimese võimetele lähedase täpsusega. Tähenduse mõistmine on arvutite
jaoks keerukas. Sõnade mitmetähenduslikkuse tõttu ei ole see ka alati ühesugune
inimeste seas. Selleks et uurida, mil määral inimesed nõustuvad üksteisega eesti
keele ühendverbide kompositsionaalsuse hindamisel, viiakse läbi ka andmestike
evalveerimine. See näitab, et osa ühendverbide ja nende eri tähenduste komposit-
sionaalsust on keerulisem hinnata kui teiste ühendverbide ja tähenduste kompo-
sitsionaalsust. Peamine põhjus on ühendverbide ja nende komponentide mitme-
tähenduslikkus, eriti afiksaaladverbide puhul. Üldiselt aga on inimeste komposit-
sionaalsuse hinnangud sarnased, sest vähem kui 10% ühendverbidest põhjustas
olulisi lahkarvamusi nende märgendajate seas, kes hindasid ühendverbide kom-
positsionaalsust võimalikke tähendusi eristamata. Fleissi kappa koefitsiendi108
väärtus näitab nende kolme eksperdi seas, kes hindasid ühendverbide eri tähen-
dusi, et kuue palli skaalal on ühtivus mõõdukas ja binaarselt (kompositsionaalne–
mittekompositsionaalne) tugev. Seega vaatamata ülesande raskusele olid inimeste
hinnangud ühendverbide kompositsionaalsusele sarnased.

Ühendverbide kompositsionaalsuse automaattuvastus distributiivse semantika
mudelitega näitab, et nii sõna- kui ka tähendusvektorid sobivad kompositsionaal-
suse tuvastamiseks. Sõna- ja tähendusvektorite omavaheline võrdlus viitab sellele,
et mudelid, mis õpivad sõnavektoreid, tuvastavad kompositsionaalsust paremini
kui tähendusvektorite mudelid. Samas tuleb nentida, et tähendusvektorite töö hin-
damine on siin uurimuses tinglik, sest kumbki kuldstandarditest ei olnud selleks
loodud, vaid kohandatud üldpildi saamiseks. Nimelt on tähendusvektoreid kom-
positsionaalsuse tuvastamiseks rakendanud mõnel harval korral. Seetõttu vajab
sobiva kuldstandardi väljatöötamine põhjalikku uurimistööd, mis sellesse töös-
se ei mahtunud. Kindlasti aitaks sobiva kuldstandardi ja tähendusvektorite hin-
damismeetodi arengule kaasa hästi töötav automaatne sõnatähenduste ühestaja,
mida ei ole loodud eesti keele jaoks. Siiski saab öelda, et automaatselt tuvas-
tatud ühendverbide kompositsionaalsuse ja inimhinnangute vahel on keskmise
tugevusega korrelatsioon. Treeningmeetodil, vektorruumi dimensioonide arvul,
kontekstiakna suurusel, kaasatavate sõnade miinimumsagedusel ja treeningite-
ratsioonide arvul ehk mudelite treeningparameetritel ei ole tulemustele tugevat
mõju. Siiski kahest treeningmeetodist – pidevast järjestikuste sõnade esinemis-
sagedusest (continuous bag-of-words, CBOW) ja pidevast skip-grammi mudelist
(continuous skip-gram) – on ühendverbide kompositsionaalsuse mudeldamisel
edukam esimene. Kahe treeningmeetodi põhiline erinevus on, et järjestikuste sõ-
nade esinemissageduse mudelis ennustatakse sõna konteksti põhjal, skip-grammi
mudelis aga konteksti sõna põhjal. Teistest uuritud parameetritest on iteratsioonil
tugevaim mõju: suurem iteratsioonide arv tähendab paremaid tulemusi. Samas,
kuna treeningaeg pikeneb iteratsioonide arvu suurenedes, pole tulemuste erinevus
nii suur, et väga palju iteratsioone kasutada. Selle töö tulemused näitavad, et 20
iteratsiooni on parem kui viis või kümme.

Lausete klassifitseerimine nendes esineva ühendverbi tähenduse järgi kompo-

108Statistiline mõõdik, mida kasutatakse märgendajatevahelise ühtivuse hindamiseks (vt Fleiss
1971).
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sitsionaalseteks või mittekompositsionaalseteks näitas, et lisaks ühendverbi kom-
ponentidele on lausetes ka teisi tunnuseid, mis aitavad tõsta klassifitseerija kvali-
teeti. Töös tutvustatakse 12 tunnust: ühendverbi komponendid ehk afiksaaladverb
ja verb, unigrammid, neli abstraktsusega seotud tunnust, subjekti ja objekti kään-
ded, subjekti ja objekti elusus ning ühendverbi ja käändsõna (mis ei ole subjekt
ega objekt) vaheline rektsiooniseos. Seitset tunnust võib nimetada standardseks
ehk selliseks, mida on kasutatud teiste keelte püsiühendite idiomaatilise tähenduse
tuvastamiseks. Ühendverbi komponendid ise sisaldavad nii palju informatsiooni,
et klassifitseerija töötab 85%-lise täpsusega. Unigrammid ehk kõik lausetes si-
salduvad sõnad aga ei lisa nii palju kasulikku infot, et täpsus paraneks. Neljast
uuritud abstraktsuse tunnusest – kõikide lauses esinevate sõnade keskmine abst-
raktsus, lauses esinevate nimisõnade keskmine abstraktsus, subjekti abstraktsus ja
objekti abstraktsus –, osutus kasulikus ainult nimisõnade abstraktsus. Ka subjekti
ja objekti elusus, mida pole varem kompositsionaalsust puudutavates uuringutes
rakendatud, aitab õigesti klassifitseerida rohkem lauseid kui süsteem ilma selle
infota. Teised uuritud tunnused on seesugused, mis lähtuvad pigem eesti keele
spetsiifikast. Kusjuures nendest kolmest on subjekti kääne ning ühendverbi ja
käändsõna vaheline rektsiooniseos ühendverbide klassifitseerimisel mõjusamad
tunnused kui objekti kääne. Lisaks tutvustatakse kolme sagedusega seotud tun-
nust – ühendverbi, afiksaaladverbi ja verbi sagedusi – ja selgub, et kombineerituna
teiste tunnustega on kasulik ainult ühendverbi sagedus. Kõige parema tulemuse
annabki klassifitseerija, kus on kombineeritud info ühendverbi komponentide, ni-
misõnade abstraktsuse, subjekti käände, subjekti ja objekti elususe, rektsiooni ja
ühendverbi sageduse kohta. Selline süsteem klassifitseerib lauseid täpsusega 89%,
mis tähendab, et parimate tulemuste jaoks on oluline ka lingvistiliste tunnuste ra-
kendamine.

Kvaliteetse klassifitseerija saab luua vaid siis, kui on valitud head tunnused.
Tihtipeale on seesuguste mudelite arendamisel vaatluse all sadu tunnuseid ja see-
tõttu on oluline, et andmete märgendamine oleks automaatne. Kuigi siinses töös
pole vaatluse all palju tunnuseid, on olemas tööriistu, mis märgendamist auto-
matiseerivad. Näiteks unigramme ja sagedust on suhteliselt lihtne märgendada,
sest tekst on vaja vaid lemmatiseerida. Lemmatiseerimine on võimalik tänu mor-
foloogilisele analüsaatorile, mis lisaks aitab tuvastada ka sõnaliigid ja käänded.
Samamoodi on eesti keele jaoks olemas süntaktiline analüsaator, mis teksti par-
sib ehk annab informatsiooni süntaktiliste rollide kohta. Keerulisemad tunnused
on näiteks subjekti ja objekti elusus, mis pole praegu automaatselt märgendata-
vad, sest puudub ressurss, millest seda infot omandada. Info konteksti abstraktsuse
kohta on kättesaadav andmestikust, mis loodi automaatselt siinse töö jaoks. See si-
saldab eesti keele lemmade abstraktsuse hindeid, kuid pole ise evalveeritud. Seega
on abstraktsuse info küll automaatselt kättesaadav, kuid edaspidi on vajalik selle
ressursi hindamine või uue andmestiku loomine. Kokkuvõttes on mõni tunnus,
mis pole automaatselt märgendatav, kuid siiski enamik vajalikust märgendusest
on olemasolevate tööriistadega automaatselt omandatav.

Lisaks sagedusega seotud tunnustele lausete ühendverbide tähenduse järgi
klassifitseerimisel uuritakse töös sageduse mõju kompositsionaalsusele veel mit-
mes aspektis. Näiteks ei leita statistiliselt olulist seost ühendverbide, afiksaalad-
verbide ja verbide sageduste ning inimeste antud kompositsionaalsuse hinnangute
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vahel. Samas mõjutab sagedus distributiivse semantika mudelite tulemusi – väga
sagedaste ja väga harvade ühendverbide kompositsionaalsust suudavad mudelid
paremini ennustada kui keskmise sagedusega ühendverbide kompositsionaalsust.
Samas pole kompositsionaalsus lineaarses seoses ühendverbide sagedusega, vaid
mudelid kipuvad väga sagedased ja harvad ühendverbid määrama vähem kompo-
sitsionaalsemaks kui teised ühendverbid. Seega saab öelda, et arvutuslikud mee-
todid on kompositsionaalsuse määramisel sagedusest mõjutatud, kuid sageduse
mõju inimeste hinnangutele vajab täiendavaid uurimusi. Niisamuti vajab kesk-
mise sagedusega ühendverbide kompositsionaalsuse automaattuvastuse kvaliteet
parandamist.

Uurimusest selgub, et ühendverbide kompositsionaalsuse määramine on nii
juhendamata kui juhendatudmasinõppemeetoditega võimalik. Samas onmõlemal
tutvustatud meetodil nii häid kui ka halbu külgi, mida tuleb nende rakendamise
eel arvesse võtta. Näiteks ei vaja distributiivse semantika mudelid muud kui suurt
tekstihulka ja suure jõudlusega arvutit. Seetõttu on meetod odavam kui juhenda-
tud klassifitseerimine. Siinses töös selgus sama, mida on varem ka kirjanduses
mainitud (nt Lenci 2008): tihtipeale pole distributiivsete meetodite tulemused sel-
gesti analüüsitavad ning keerukamad semantikat puudutavad küsimused jäävad
vastuseta. Seega isegi kui tulemused on head, on tulemuste analüüs pinnapealne
ja oletuslik. Lisaks kõigele ei suuda distributiivse semantika mudelid saavutada
ühendverbide kompositsionaalsuse määramisel sama häid tulemusi kui klassi-
fitseerimine. Juhendatud meetodid on küll kallimad, sest nõuavad märgendatud
andmeid, kuid nagu siinne töö näitab, siis tihtipeale on juba olemasolevaid res-
sursse kasutades võimalik nende hinda vähendada. Tulemuste detailne analüüs
aitab sügavuti mõista, mis tunnused mõjutavad ühendverbide kompositsionaalsust
ning niiviisi on tulemused kasulikud kompositsionaalsuse lingvistiliseks kirjelda-
miseks. Kokkuvõttes on mõlemal rakendatud meetodil nii häid kui halbu külgi:
klassifitseerimine on täpsem ja distributiivse semantika mudelite rakendamine
odavam.

Töö tulemused näitavad, et tulevikus võiks tutvustatud meetodeid nii ühend-
verbide kui ka teiste eesti keele püsiühendite kompositsionaalsuse tuvastamiseks
kombineerida. Ka on palju teisi uurimisviise ja -vahendeid, mida sama ülesande
lahendamiseks rakendada saaks. Näiteks on word2veci kõrval ka teisi sõnavekto-
rite treenimise vahendeid (GloVe, PPMI jne). Samamoodi on võimalik kasutada
veel suuremat tekstikorpust kui siinses töös kasutatud eesti keele veebikorpus, sest
2018. aastal loodi 1,1 miljardi sõna suurune eesti keele ühendkorpus 2017 (Kallas
ja Koppel 2018). Lisaks sellele jäi siinses töös uurimata afiksaaladverbide täht-
sus ühendverbide kompositsionaalsuse moodustumisel. Selleks võiks rakendada
näiteks informatsiooni adverbide semantiliste rühmade või prototüüpse kasutuse
kohta. Ka on oluline luua tulevikus andmestik, mille põhieesmärk on hinnata
tähendusvektorite tööd püsiühendite kompositsionaalsuse määramisel. Töö oluli-
sust laiemas keeletehnoloogilises plaanis aitaks välja selgitada siinse töö mudelite
integreerimine mõnesse tootesse või teenusesse eesmärgiga selle kvaliteeti paran-
dada.

Kokkuvõttes rakendati töös kahte masinõppe meetodit, mida ei ole eesti kee-
le püsiühendite tuvastamiseks varem kasutatud. Uurimuse tulemused on tähtsad
kompositsionaalsuse arvutuslikuks modelleerimiseks ja täiendavad ka varasemat
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ühendverbide kompositsionaalsuse kohta avaldatud kirjandust. Olulised on ka töö
käigus loodud ressursid: ühendverbide ja nende tähenduse kompositsionaalsuse
hinnangud, eesti keele lemmade abstraktsuse/konkreetsuse hinnangud ning sõna-
ja tähendusvektorid. Neid saab edaspidi kasutada ka teistes uurimustes, mis käsit-
levad muud peale püsiühendite tuvastamise.
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