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Chapter 1

Introduction

1.1 Background

In 1972, E. M. Alfsen and E. G. E�ros introduced in their fundamental
article �Structure in real Banach spaces� the notion of an M -ideal as follows.
Suppose that L is a real Banach space and L∗ is the dual space of L. It is
said that a subspace K of L is an M-summand of L if there is a subspace
H ⊂ L such that K ⊕H = L and, for all k ∈ K, h ∈ H,

‖k + h‖ = max{‖k‖ , ‖h‖}.

Similarly, a subspace N of L∗ is an L-summand of L∗ if there is a subspace
M with N ⊕M = L∗ and, for all p ∈ N , q ∈M,

‖p+ q‖ = ‖p‖+ ‖q‖ . (1.1)

A closed subspace K of L is said to be an M-ideal if its annihilator K⊥ (see
De�nition 2.2) is an L-summand in L∗.

The letter �M � in the notion of anM -ideal comes from the word �maximum�
and is referring to the norm of L ([23, p. v]). The word �ideal� seems
to be inspired by the connection between M -ideals and algebraic ideals: in
C∗-algebras, the M -ideals coincide with the closed two-sided ideals (see, for
example, [23, Theorem V.4.4]).

E. M. Alfsen and E. G. E�ros introduced M -ideals as an analog and gen-
eralization of algebraic ideals. Their approach was designed to encompass
structure theories for C∗-algebras, ordered Banach spaces, L1-preduals, and
spaces of a�ne functions on compact convex sets. However, the M -structure
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theory was de�ned solely in terms of norms of Banach spaces, providing a
wide range of applicability.

The theory of M -ideals has been widely used for studying the geometry
of Banach spaces. It has turned out that K being an M -ideal in L has a
strong impact on spaces K and L. Namely, there are a number of important
properties shared by M -ideals but not by arbitrary subspaces. For example,
for every linear functional de�ned on anM -ideal, there exists a unique norm-
preserving extension to the whole space. In general, this holds for arbitrary
subspaces of L only in the case when L∗ is strictly convex (see [57] and [14]).

In 1993, in the paper [15], G. Godefroy, N. J. Kalton, and P. D. Saphar
introduced the notion of an ideal (see De�nition 2.3) and related it with
M -ideals. M -ideals form a subclass of u-ideals (see De�nition 5.1) which
were introduced by P. G. Casazza and N. J. Kalton earlier in 1990 (see
[8]). The M - and u-ideals are ideals satisfying di�erent norm conditions.
Nowadays M -ideals are usually de�ned based on the concept of an ideal (see
De�nition 2.4).

The approach in [15] inspired J. C. Cabello and E. Nieto (see [4]) to consider
a weaker form of the norm condition (1.1), that is, the M(r, s)-inequality

‖p+ q‖ ≥ r ‖p‖+ s ‖q‖ ∀p ∈ N , ∀q ∈M,

where r, s ∈ (0, 1]. They introduced and studied the notion of an ideal satis-
fying the M(r, s)-inequality, we call it an M(r, s)-ideal (see De�nition 3.1).
Note that if r = s = 1, then M(r, s)-ideals coincide with M -ideals.

In [4], [5], [7], Cabello, Nieto, and Oja studied whether properties holding
for M -ideals carry over to the more general M(r, s)-ideals. For example, it
turned out that M -ideals, and more generally M(1, s)-ideals, (see [4]) have
property U (see De�nition 3.4) and therefore they also have the unique ideal
property (see De�nition 3.3). However, e.g., for r 6= 1, M(r, 1)-ideals of
compact operators K(X) need not have property U (see [7, Example 4.5]).
Also the 3-ball property (see De�nition 2.5) does not hold for M(r, s)-ideals
in general (see [7, Lemma 2.2]), but according to Alfsen and E�ros, being an
M -ideal is equivalent to the 3-ball property (see Theorem 2.6). In [7], one can
�nd several examples ofM(r, s)-ideals which are notM -ideals. M(r, s)-ideals
have been studied, e.g., in [4], [5], [21], [7], [18], [22], [19], [52], [20].

Over the 40 years, the theory of M -ideals has been well studied. There is
also a thorough monograph about M -ideals by P. Harmand, D. Werner, and
W. Werner (see [23]) that grew out of the Berlin school of E. Behrends. The
studies of u-ideals and ideals in general have been carried out among others
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by P. G. Casazza, G. Godefroy, K. John, N. J. Kalton, Å. Lima, V. Lima,
E. Oja, P. D. Saphar, D. Werner. A recent uni�ed approach regarding the
ideals is the concept of an (a,B, c)-ideal (see, for example, [49]) which enables
to study the M -, M(r, s)-, u-, and other types of ideals simultaneously.

The �rst example of an M-ideal of compact operators origins from 1950.
Namely, J. Dixmier showed in [11] that for every Hilbert space H, K(H) is
an M -ideal in L(H). From the beginning of the M -ideal theory, the prob-
lem of identifying for which Banach spaces X and Y the space of compact
operators K(X, Y ) is an M -ideal in the space of all bounded linear opera-
tors L(X, Y ), has attracted a number of authors. The question is of interest
because the existence of M -ideals gives information about the dual space
L(X, Y )∗. Not less important is the connection between M -ideals and the
theory of approximation properties where even today there are famous un-
solved questions which have been open for decades. Regarding Dixmier's
result, describing M -ideals of compact operators can also be viewed as a
study of the question of how far one can move away from Hilbert spaces
without ruining the property of K(X, Y ) being an M -ideal in L(X, Y ) ([23,
p. 289]).

The question, for which Banach spaces X and Y the space of compact op-
erators K(X, Y ) is an M -ideal in the space of all bounded linear operators
L(X, Y ), in a general formulation, is also a central question in this thesis.
We study this question in terms of M -, M(r, s)-, and u-ideals.

1.2 Summary of the thesis

The starting point of the investigations in this thesis is the following result
by E. Oja. It allows to produce, departing from Banach spaces X such that
K(X) is an M -ideal in L(X), new classes of M -ideals of compact operators.

Corollary 2.29 ([45, Corollary 9]). If K(X) and K(Y ) areM-ideals in L(X)
and L(Y ) respectively, then K(X, Y ) is an M-ideal in L(X, Y ).

The extension of Corollary 2.29 from M -ideals to M(r, s)-ideals presents
di�culties since the main techniques from the theory of M -ideals involving
the 3-ball property do not work in this more general case. For instance, in
[23, p. 301], Corollary 2.29 is proven using the 3-ball property.

The objectives of this thesis is to investigate whether a similar result is valid
for M(r, s)-ideals, how the parameters r and s are a�ected by forming new
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M(r, s)-ideals, and to study u-ideals of compact operators using the method-
ology developed for M(r, s)-ideals. The thesis consists of �ve chapters.

Chapter 1 introduces the background of the problem and the basic notation
used throughout this thesis.

The aim of Chapter 2 is to give, based on the schematic original proof in [45],
a detailed proof of Corollary 2.29. In Section 2.1, we introduce the notion of
anM -ideal through the concept of an ideal, and look at some classical exam-
ples of M -ideals of compact operators. Section 2.2 is dedicated to properties
(M) and (M∗) which have turned out to be the key structure conditions on
X, in order to K(X) appear as an M -ideal in L(X). In Section 2.3, the
basic background results on approximating the identity operator by compact
operators in operator topologies are presented with detailed proofs.

Johnson's lemma, introduced in Section 2.4, guarantees us the existence of
an ideal projection whenever there exists a special kind of net of compact
operators. As preliminary results, some descriptions of M -ideals of compact
operators are regarded in Section 2.5. Corollary 2.29, the main result of
Chapter 2, is proved in Section 2.6.

In Chapter 3, we extend and develop the results and methods used in Chap-
ter 2, for M -ideals, to the case of M(r, s)-ideals. In Section 3.1, we de�ne
M(r, s)-ideals. Following [54], the notion of the Johnson projection is in-
troduced in Section 3.3. Properties M(r, s) and M∗(r, s) for M(r, s)-ideals
are analogs of properties (M) and (M∗) for M -ideals and are discussed in
Sections 3.4 and 3.5. The main result of Chapter 3 is Corollary 3.22, in
Section 3.6, which extends Corollary 2.29 from M -ideals to M(r, s)-ideals.

Corollary 3.22. Let X and Y be Banach spaces. Assume that K(X) is an
M(r1, s1)-ideal in L(X) with r1 + s1/2 > 1 and K(Y ) is an M(r2, s2)-ideal
in L(Y ) with r2 + s2/2 > 1. Then K(X, Y ) is an M(r2

1r2, s
2
1s2)- and an

M(r1r
2
2, s1s

2
2)-ideal in L(X, Y ).

Chapter 3 is inspired by [45], [49], [54] and is based on [19].

The parameters r2
1r2 and s2

1s2, or r1r
2
2 and s1s

2
2 seem to be not optimal. In

Chapter 4, we propose a di�erent approach which will improve the parameters
to r1r2 and s1s2 (see Theorem 4.18 for the case when X or Y is separable
and Theorem 4.26 for the general non-separable case).

The key concepts of the new approach are �the ideal projection preserving
elementary functionals� (introduced in Section 4.2) and �property M∗(r, s)
for operators� (see Section 4.4). An important tool, we are basing on, is
the Feder�Saphar description of the dual space of K(X, Y ) (see Section 4.1)
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which holds whenever X∗∗ or Y ∗ has the Radon�Nikodým property. The
reader may notice that this hypothesis is often present also implicitly (as can
be seen, e.g., from Proposition 4.21).

Sections 4.2, 4.3, and 4.4 contain necessary auxiliary results regarding the
ideal projection preserving elementary functionals and property M∗(r, s) for
operators which lead, relying on a vector-valued version of Simons's inequal-
ity (see Lemma 4.14), to the main results in the case when one of the spaces
X or Y is separable (see Theorems 4.16 and 4.18) in Section 4.5.

In Section 4.6, we prove that M(r, s)-ideals of compact operators K(X, Y )
are separably determined for distinct spaces X and Y (see Theorem 4.20;
the result seems to be new even for M -ideals). Theorem 4.20 allows us
to conclude some results concerning general structure of Banach spaces in
Section 4.9.

The fact that M(r, s)-ideals of compact operators are separably determined
together with Theorem 4.16 lead to the main result of the chapter (Theo-
rem 4.23) asserting that M∗(r1, s1)-property of X and M∗(r2, s2)-property
of Y imply that K(X, Y ) is an M(r1r2, s1s2)-ideal in L(X, Y ), and to Theo-
rem 4.26 which improves Corollary 3.22.

Theorem 4.26. Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1]
satisfy r1+s1/2 > 1 and r2+s2/2 > 1. If K(X) is anM(r1, s1)-ideal in L(X)
and K(Y ) is an M(r2, s2)-ideal in L(Y ), then K(X, Y ) is an M(r1r2, s1s2)-
ideal in L(X, Y ).

Section 4.8 provides corollaries, which complete and improve some well-
known result on M -ideals, from Theorems 4.16, 4.20, and 4.20.

Chapter 4 is inspired by [36], [47], [49] and is based on [20].

In Chapter 5, we apply the methodology developed in Chapter 4 to the case
of u-ideals. Relying on [34] and [49] we prove that u-ideals are also separably
determined. However, it turns out that the property of creating new u-ideals
of compact operators behaves somewhat di�erently from the case of M - and
M(r, s)-ideals (see Section 5.4). The chapter is based on [26].

1.3 Notation

Our notation is standard. Throughout the thesis we consider Banach spaces
X and Y over the �eld K = R or C if not stated otherwise. The identity
operator, the closed unit ball, and the unit sphere of a Banach space X are

13
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denoted by IX , BX , and SX , respectively. For a set A ⊂ X, its norm closure
is denoted by A, its linear span by spanA, and its convex hull by convA.

The closures with respect to other topologies are marked such as A
w∗

, for
example.

We denote by L(X, Y ) the Banach space of all continuous linear operators
from a Banach space X to a Banach space Y and by K(X, Y ) its subspace
of compact operators. We write K(X) and L(X) instead of K(X,X) and
L(X,X), respectively. The notation I(X) stands for span(K(X) ∪ IX). For
an operator T : X → Y , we denote

kerT = {x ∈ X : Tx = 0}

the kernel of T , and
ranT = {Tx ∈ Y : x ∈ X}

the range of T . The restriction of T to a subset K ⊂ X will be denoted by
T |K .

Let L be a subspace of L(X, Y ), and let x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗. Then
the functional x∗∗ ⊗ y∗ ∈ L∗ is de�ned by (x∗∗ ⊗ y∗)(T ) = x∗∗(T ∗y∗) for any
T ∈ L. Note that ‖x∗∗⊗y∗‖ = ‖x∗∗‖‖y∗‖ whenever L contains the �nite-rank
operators. By A ⊗ B, where A ⊂ X∗∗ and B ⊂ Y ∗, we mean the set of all
x∗∗ ⊗ y∗ such that x∗∗ ∈ A and y∗ ∈ B. Thus A⊗B ⊂ L(X, Y )∗.

The canonical projection πX : X∗∗∗ −→ X∗∗∗ is de�ned by

πX = jX∗(jX)∗,

where jX : X −→ X∗∗ and

(jXx)(x∗) = x∗(x), x∗ ∈ X∗, x ∈ X.

Recall that a net (Kα) ⊂ K(X) is a compact approximation of the identity
(CAI ) provided Kα −→ IX strongly (that is, Kαx −→ x for all x ∈ X). If
additionally K∗α −→ IX∗ strongly, then (Kα) is called a shrinking CAI . If X
has a CAI such that the convergence is uniform on compact subsets, then X
is said to have the compact approximation property (CAP), and in the case
of a shrinking CAI, X∗ is said to have the CAP with conjugate operators . If
(Kα) is a CAI and, moreover, ‖Kα‖ ≤ λ for some λ ≥ 1 and for all α, then
(Kα) is called a bounded CAI (BCAI ) and a shrinking BCAI , respectively.
In this case X is said to have the BCAP and X∗ is said to have the BCAP
with conjugate operators . In the special case, when λ = 1, (Kα) is called a
metric CAI (MCAI ) and a shrinking MCAI , respectively; and X is said to
have the MCAP and X∗ is said to have the MCAP with conjugate operators .

14



We assume that the reader is familiar with well-known basic notions and
theorems from the theory of Banach spaces and topological vector spaces
(such as a dual space, separability, the Hausdor� theorem, the Hahn�Banach
theorem, the bipolar theorem, etc.), and we shall use them without proper
references.

15





Chapter 2

M-ideals

The aim of the chapter is to prove in details that K(X, Y ) is an M-
ideal in L(X, Y ) as soon as K(X) and K(Y ) are, respectively, M-ideals in
L(X) and L(Y ). The result allows to produce, departing from Banach
spaces X such that K(X) is anM-ideal in L(X), new classes ofM-ideals
of compact operators and is, together with the methodology used here,
the starting point for the theory developed for M(r, s)-ideals later in
Chapter 3. The current chapter relies on the original proof scheme of
[45].

2.1 De�nition and examples

In this section we introduce the notion of an M -ideal through the concept
of an ideal, and look at some classical examples of M -ideals of compact
operators.

De�nition 2.1. Operator P ∈ L(X) is a projection on X if P 2 = P.

Note that if P 6= 0, then ‖P‖ ≥ 1.

De�nition 2.2. Let K be a subset of a normed space L, then

{f ∈ L∗ : f |K = 0}

is called the annihilator of K and is denoted by K⊥.

The annihilator K⊥ is a closed subspace of L∗.

17
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De�nition 2.3. A closed subspace K 6= {0} of a Banach space L is said to be
an ideal in L if there exists a norm one projection P on L∗ with ker P = K⊥.
Such a projection P is called an ideal projection.

An ideal projection has the minimal positive projection norm. We emphasize
that an ideal projection might not exist even if we allowed ‖P‖ > 1. It
follows from the fact that not every closed subspace of a Banach space can
be complemented (see, for example, [38, Theorem 3.2.20]).

De�nition 2.4. A closed subspace K ⊂ L is said to be an M-ideal in L if
K is an ideal in L with respect to some ideal projection P such that

‖f‖ = ‖Pf‖+ ‖f − Pf‖ ∀f ∈ L∗. (2.1)

Due to the triangular inequality, the inequality �≤� always holds. Thus, the
important part in (2.1) is the inequality �≥�.

The notion was �rst introduced and studied by E. M. Alfsen and E. G. E�ros
in 1972 (see [1]). The de�nition above is given using the dual space L∗.
However, due to Theorem 2.6, discovered in [1], one can avoid the dual space
by relying on the 3-ball property.

De�nition 2.5. Let L be a Banach space and K 6= {0} be a closed subspace
of L. If for all k1, k2, k3 ∈ BK, all l ∈ BL, and all ε > 0 there exists k ∈ K
satisfying

‖l + ki − k‖ ≤ 1 + ε (i = 1, 2, 3),

then K has the 3-ball property in L.

The following fundamental theorem is due to Alfsen and E�ros [1].

Theorem 2.6 ([1] or [23, Theorem I.2.2]). Let K be a closed subspace of a
Banach space L, then K is an M-ideal in L if and only if K has the 3-ball
property in L.

The following facts are veri�ed in [23] relying on Theorem 2.6.

Example 2.7 ([23, Example VI.4.1]). Let X be a Banach space, then
K(X, c0) is an M -ideal in L(X, c0).

Example 2.8 ([23, Example VI.4.1]). Let 1 < p ≤ q <∞. Then K(`p, `q) is
an M -ideal in L(`p, `q).

18



2.2 Properties (M) and (M ∗)

Properties (M) and (M∗) have turned out to be the key factors for describing
M -ideals of compact operators (see Theorem 2.27). Next, we will give the
de�nitions of these properties and describe them in connection with relatively
compact nets and bounded linear operators.

De�nition 2.9. A net (xα) ⊂ X is said to converge weakly to x ∈ X if

x∗(xα) −→
α

x∗(x) ∀x∗ ∈ X∗.

The weak convergence of (xα) to x is denoted by xα
w−→ x or w-limα xα = x.

Note that a weakly convergent net does not have to be bounded, even though
every weakly convergent sequence is.

De�nition 2.10. A Banach space X has property (M) if

lim sup
α
‖u+ xα‖ ≤ lim sup

α
‖v + xα‖ ,

whenever u, v ∈ X satisfy ‖u‖ ≤ ‖v‖, and (xα) ⊂ X is a bounded net
converging weakly to null in X.

In [45], the symbol (sM) is used for the de�nition above, however, the con-
temporary notation is (M) (see, for example, [23, De�nition VI.4.12]), and
the original version of property (M) by N. J. Kalton (see [31]) is the sequen-
tial version of property (M). Similar remark holds also for property (M∗)
(see De�nition 2.12).

De�nition 2.11. A net (x∗α) ⊂ X∗ converges weak∗ to x∗ ∈ X∗ if

x∗α(x) −→
α

x∗(x) ∀x ∈ X.

We denote this convergence by x∗α
w∗
−→ x∗ or w∗-limα x

∗
α = x∗. As in the case

of the weak convergence, a net which converges weak∗ does not need to be
bounded.

De�nition 2.12. A Banach space X has property (M∗) if

lim sup
α
‖u∗ + x∗α‖ ≤ lim sup

α
‖v∗ + x∗α‖ ,

whenever u∗, v∗ ∈ X∗ satisfy ‖u∗‖ ≤ ‖v∗‖, and (x∗α) ⊂ X∗ is a bounded net
converging weak∗ to null in X∗.
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It is a simple and well-known result that if a Banach space X has prop-
erty (M∗), then it has property (M) (see, for example, [31, Proposition 2.3]
and [45, Proposition 2] or [23, Proposition VI.4.15]). The converse usually
does not hold, one of such examples is the sequence space `1. Also, if X has
property (M∗), then X is an M -ideal in X∗∗ with respect to the canonical
projection (see [31, Proposition 2.3] and [45, Proposition 2], or [23, Proposi-
tion VI.4.15]).

Lemma 2.13 ([23, Lemma VI.4.13]). Let X be a Banach space.
1. The following conditions are equivalent.

(a) X has property (M).

(b) If (uα), (vα) ⊂ X are relatively compact nets with ‖uα‖ ≤ ‖vα‖ for
every α, then

lim sup
α
‖uα + xα‖ ≤ lim sup

α
‖vα + xα‖,

whenever (xα) ⊂ X is a bounded net converging weakly to null in X.

2. The following conditions are equivalent.

(a∗) X has property (M∗).

(b∗) If (u∗α), (v∗α) ⊂ X∗ are relatively compact nets with ‖u∗α‖ ≤ ‖v∗α‖ for
every α, then

lim sup
α
‖u∗α + x∗α‖ ≤ lim sup

α
‖v∗α + x∗α‖ ,

whenever (x∗α) ⊂ X∗ is a bounded net converging weak∗ to null in X∗.

Proof. Implications (b) ⇒ (a) and (b∗) ⇒ (a∗) are trivial. We will show
the implication (a) ⇒ (b). (The implication (a∗) ⇒ (b∗) can be proved
analogously.)

If the conclusion were false, then by passing to subnets, we would have

lim
α
‖uα + xα‖ > lim

α
‖vα + xα‖ .

Suitable subnets (uβ) ⊂ (uα) and (vβ) ⊂ (vα) converge to u, v ∈ X, respec-
tively. Thus ‖u‖ ≤ ‖v‖ and we have

lim
β
‖u+ xβ‖ = lim

α
‖uα + xα‖ > lim

α
‖vα + xα‖ = lim

β
‖v + xβ‖

which contradicts property (M).
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Lemma 2.14 ([45, Lemma 4]). 1. Let X and Y be Banach spaces with
property (M). If nets (vα) ⊂ X and (uα) ⊂ Y are relatively compact with
‖uα‖ ≤ ‖vα‖ for every α, and (xα) ⊂ X is a bounded net converging weakly
to null in X, then

lim sup
α
‖uα + Txα‖ ≤ lim sup

α
‖vα + xα‖

for any T ∈ BL(X,Y ).

2. Let X and Y be Banach spaces with property (M∗). If nets (u∗α) ⊂ X∗

and (v∗α) ⊂ Y ∗ are relatively compact with ‖u∗α‖ ≤ ‖v∗α‖ for every α, and
(y∗α) ⊂ Y ∗ is a bounded net converging weak∗ to null in X∗, then

lim sup
α
‖u∗α + T ∗y∗α‖ ≤ lim sup

α
‖v∗α + y∗α‖

for any T ∈ BL(X,Y ).

Proof. 1. Suppose �rst that ‖T‖ = 1. Fix ε > 0. Then there exists x ∈ BX

such that
‖Tx‖ ≥ (1− ε) ‖T‖ = 1− ε.

For every index α, let us de�ne v̄α = ‖vα‖ x. Thus

‖v̄α‖ ≤ ‖vα‖

and

‖(1− ε)uα‖ = (1− ε) ‖uα‖ ≤ ‖Tx‖ ‖vα‖ =
∥∥∥T (‖vα‖ x)

∥∥∥= ‖T v̄α‖ .

The nets (v̄α) ⊂ X, (T v̄α) ⊂ Y , and ((1− ε)uα) ⊂ Y are relatively compact
and (Txα) is a bounded net converging weakly to null in Y . (A bounded
linear operator transfers a bounded set to a bounded set and a weakly null
net to a weakly null net.) We have

lim sup
α
‖(1− ε)uα + Txα‖ ≤ lim sup

α
‖T v̄α + Txα‖

≤ lim sup
α
‖T‖ ‖v̄α + xα‖

= lim sup
α
‖v̄α + xα‖

≤ lim sup
α
‖vα + xα‖
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due to Lemma 2.13 and thus,

lim sup
α
‖uα + Txα‖ = lim sup

α
‖(1− ε)uα + Txα + ε uα‖

≤ lim sup
α
‖(1− ε)uα + Txα‖+ lim sup

α
‖ε uα‖

≤ lim sup
α
‖vα + xα‖+ ε lim sup

α
‖uα‖ .

Letting ε −→ 0 we obtain

lim sup
α
‖uα + Txα‖ ≤ lim sup

α
‖vα + xα‖ . (2.2)

Now suppose that 0 ≤ ‖T‖ < 1. If T = 0, let us choose T ∈ L(X, Y ) so
that

∥∥T∥∥ = 1 (it is always possible to choose such an operator for non-trivial
spaces X and Y ). If T 6= 0, let us de�ne T = T

‖T‖ . We can represent Txα by
a convex combination of Txα and −Txα as follows

Txα = λT xα + (1− λ) (−T xα)

where λ = 1+‖T‖
2
∈ (0, 1). The convexity of the functional ‖uα + t T xα‖,

t ∈ [−1, 1], allows us to estimate

‖uα + Txα‖ =
∥∥uα + λT xα + (1− λ) (−T xα)

∥∥
≤ max

{∥∥uα + Txα
∥∥ ,∥∥−uα + Txα

∥∥}.
Thus,

lim sup
α
‖uα + Txα‖ ≤ lim sup

α
max

{∥∥uα + Txα
∥∥ ,∥∥−uα + Txα

∥∥}
= max

{
lim sup

α

∥∥uα + Txα
∥∥ , lim sup

α

∥∥−uα + Txα
∥∥},

and since inequality (2.2) holds for T , we have

lim sup
α
‖uα + Txα‖ ≤ lim sup

α
‖vα + xα‖ .

2. The following proof is analogous to part 1. Suppose that ‖T‖ = 1, then
‖T ∗‖ = 1. Fix ε > 0. There exists y∗ ∈ BY ∗ such that

‖T ∗y∗‖ ≥ (1− ε) ‖T ∗‖ = 1− ε.
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For every index α, let us de�ne v̄∗α = ‖v∗α‖ y∗. Then

‖v̄∗α‖ ≤ ‖v∗α‖

and
‖(1− ε)u∗α‖ ≤ ‖T ∗v̄∗α‖ .

The nets (v̄∗α) ⊂ Y ∗, (T ∗v̄∗α) ⊂ X∗, and ((1 − ε)u∗α) ⊂ X∗ are relatively
compact and (T ∗y∗α) is a bounded net converging weak∗ to null in X∗. (The
dual operator of a bounded linear operator maps a weak∗ null net into a
weak∗ null net.) Due to Lemma 2.13

lim sup
α
‖(1− ε)u∗α + T ∗y∗α‖ ≤ lim sup

α
‖T ∗v̄∗α + T ∗y∗α‖

≤ lim sup
α
‖T ∗‖ ‖v̄∗α + y∗α‖

≤ lim sup
α
‖v∗α + y∗α‖

and letting ε −→ 0 we obtain

lim sup
α
‖u∗α + T ∗y∗α‖ ≤ lim sup

α
‖v∗α + y∗α‖ . (2.3)

In the case when T = 0, choose T
∗ ∈ L(Y ∗, X∗) such that ‖T ∗‖ = 1, and in

the case when 0 < ‖T‖ < 1, let T
∗

= T ∗

‖T ∗‖ . We represent T ∗y∗α by a convex

combination of T
∗
y∗α and −T ∗y∗α as follows

T ∗y∗α = λT
∗
y∗α + (1− λ) (−T ∗ y∗α)

where λ = 1+‖T ∗‖
2
∈ (0, 1). The functional ‖u∗α+tT

∗
y∗α‖, t ∈ [−1, 1], is convex

and thus,

‖u∗α + T ∗y∗α‖ = ‖u∗α + λT
∗
y∗α + (1− λ) (−T ∗y∗α)‖

≤ max
{
‖u∗α + T

∗
y∗α‖, ‖ − u∗α + T

∗
y∗α‖
}
.

Inequality (2.3) holds for T
∗
and hence

lim sup
α
‖u∗α + T ∗y∗α‖ ≤ lim sup

α
max

{
‖u∗α + T

∗
y∗α‖, ‖ − u∗α + T

∗
y∗α‖
}

= max
{

lim sup
α
‖u∗α + T

∗
y∗α‖, lim sup

α
‖ − u∗α + T

∗
y∗α‖
}

≤ max
{

lim sup
α
‖v∗α + y∗α‖ , lim sup

α
‖v∗α + y∗α‖

}
= lim sup

α
‖v∗α + y∗α‖ .
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2.3 Convergence of operators

Besides properties (M) and (M∗), we also need a special type of net of com-
pact operators which converges in the strong operator topology for describing
M -ideals of compact operators (see Theorem 2.27). Let us recall now the ba-
sic notions concerning convergence of operators and give some preliminary
results regarding it.

De�nition 2.15. A net (Kα) ⊂ L(X, Y ) converges to an operator K ∈
L(X, Y ) in the strong operator topology if

Kαx −→
α

Kx ∀x ∈ X.

Such a convergence is also called the pointwise convergence.

De�nition 2.16. A net (Kα) ⊂ L(X, Y ) converges to an operator K ∈
L(X, Y ) in the weak operator topology if

y∗(Kαx) −→
α

y∗(Kx) ∀x ∈ X, ∀y∗ ∈ Y ∗.

It is a well-known classical fact that in L(X, Y ) the closure of a convex
set in the strong operator topology equals its closure in the weak operator
topology (see, for example, [12, VI.1.5]). (Sometimes the result is referred to
as a generalization of the Mazur theorem (compare, for example, with [38,
Theorem 2.5.16])). By passing to convex combinations, this allows to consider
a net converging in the weak operator topology as a pointwise converging net.

Lemma 2.17. Let X be a Banach space and let a net (Kα)α∈A ⊂ BL(X) be
such that

K∗αx
∗ −→

α
x∗ ∀x∗ ∈ X∗.

Then there exists a net (K̄ᾱ), K̄ᾱ ∈ conv(Kα)α�γ, γ ∈ A, for which

K̄ᾱx −→̄
α

x ∀x ∈ X.

Proof. Since

K∗αx
∗ −→

α
x∗ ∀x∗ ∈ X∗ ⇒ (K∗αx

∗)x −→
α

x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X

⇔ x∗(Kαx) −→
α

x∗(x) ∀x∗ ∈ X∗, ∀x ∈ X,

we have Kα −→α IX in the weak operator topology, i.e., for an arbitrary γ ∈
A, we have IX ∈ conv(Kα)α�γ in the weak operator topology. The closures
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of a convex set in the strong and the weak operator topologies coincide, thus,
we conclude that (for an arbitrary γ ∈ A) IX ∈ conv(Kα)α�γ in the strong
operator topology.

Let B be some base of neighbourhoods for IX in the strong operator topology.
Then for every γ ∈ A and U ∈ B, there exists K̄(γ,U) ∈ conv(Kα)α�γ such
that K̄(γ,U) ∈ U . Let us de�ne a partial ordering on the set

Ā = {(γ, U) : γ ∈ A, U ∈ B}

as follows: if ᾱ1 = (γ1, U1), ᾱ2 = (γ2, U2) ∈ Ā, then

ᾱ1 � ᾱ2 ⇐⇒ γ1 � γ2 and U1 ⊂ U2.

Thus Ā is a directed set and the net (K̄ᾱ)ᾱ∈Ā ⊂ BL(X) converges to IX in
the strong operator topology.

Remark 2.18. Since K̄ᾱ ∈ conv(Kα)α�γ, γ ∈ A, and K∗αx
∗ −→ x∗ for all

x∗ ∈ X∗, also K̄∗ᾱx∗ −→ x∗ for all x∗ ∈ X∗. Thus, by denoting A := Ā and
Kα := K̄ᾱ, we may assume without loss of generality that Kαx −→ x for
every x ∈ X whenever K∗αx

∗ −→ x∗ for all x∗ ∈ X∗.

Of course, in addition to the convergences in the strong and the weak operator
topologies, there is also the convergence in the norm topology of L(X), i.e.,

lim
α
Kα = K.

Recall that in general the convergence in the norm topology does not follow
from the pointwise convergence. However, Lemma 2.19 below shows how
to construct a net which converges in the norm topology from a pointwise
converging net.

Lemma 2.19. Let X and Y be Banach spaces.
1. Let (Kα) ⊂ BL(X) be a net such that

K∗αx
∗ −→

α
x∗ ∀x∗ ∈ X∗.

Then
lim
α
SKα = S ∀S ∈ K(X, Y ).

2. Let (Kα) ⊂ BL(X) be a net such that

Kαx −→
α

x ∀x ∈ X.

Then
lim
α
KαS = S ∀S ∈ K(Y,X).

25

7



Proof. 1. Fix ε > 0. We have to show that

∃α0 (‖S − SKα‖ ≤ ε ∀α � α0).

For an arbitrary α, we have

‖S − SKα‖ = ‖S∗ −K∗αS∗‖
= ‖(IX∗ −K∗α)S∗‖
= sup

y∗∈BY ∗
‖(IX∗ −K∗α)S∗y∗‖

= sup
x∗∈U
‖x∗ −K∗αx∗‖

where U = S∗(BY ∗). By the Schauder theorem (see, e.g., [38, Theorem
3.4.15]), we know that S∗ is compact and thus the set U is relatively compact.
Hence, due to the Hausdor� theorem, there exist n ∈ N and x∗1, ..., x

∗
n ∈ U

such that

∀x∗ ∈ U ∃i ∈ {1, . . . , n} ‖x∗ − x∗i ‖ <
ε

3
.

Let x∗ ∈ U , then for every α

‖x∗ −K∗αx∗‖ = ‖x∗ − x∗i + x∗i −K∗αx∗i +K∗αx
∗
i −K∗αx∗‖

≤ ‖x∗ − x∗i ‖+ ‖x∗i −K∗αx∗i ‖+ ‖K∗αx∗i −K∗αx∗‖
≤ ε

3
+ ‖x∗i −K∗αx∗i ‖+ ‖K∗α‖ ‖x∗i − x∗‖

≤ 2ε

3
+ ‖x∗i −K∗αx∗i ‖ .

Since K∗αx
∗
i −→

α
x∗i for all i = 1, . . . , n, there exists α0 such that for α � α0

we have
‖K∗αx∗i − x∗i ‖ ≤

ε

3
∀i = 1, . . . , n

and thus,
‖S − SKα‖ = sup

x∗∈U
‖x∗ −K∗αx∗‖

≤ 2ε

3
+ max

1≤i≤n
‖x∗i −K∗αx∗i ‖

≤ 2ε

3
+
ε

3
= ε ∀α � α0.

2. Fix ε > 0. Similarly to the �rst part, we have to show that

∃α0 (‖S −KαS‖ ≤ ε ∀α � α0).
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For an arbitrary index α, we have

‖S −KαS‖ = ‖(IX −Kα)S‖
= sup

y∈BY

‖(IX −Kα)Sy‖

= sup
x∈U
‖x−Kαx‖

where U = S(BY ). Since U is relatively compact, we can continue as above
and �nd α0 such that

‖S −KαS‖ = sup
x∈U
‖x−Kαx‖ ≤ ε ∀α � α0.

Remark 2.20. Note that, by passing to a subnet, we can replace the assump-
tion ‖Kα‖ ≤ 1 in Lemma 2.19 with the assumption lim sup ‖Kα‖ < ∞ and
the proof still holds.

2.4 Ideal projection and Johnson's lemma

An important well-known property of an ideal projection is that the range
space of an ideal projection can be regarded as a dual space of the ideal.

Lemma 2.21. Let L be a Banach space and let K be an ideal in L. Let
P : L∗ −→ L∗ be the corresponding ideal projection. Then Φ : K∗ −→ ranP ,
de�ned by

Φg = Pf, g ∈ K∗,

where f ∈ L∗ is any extension of g, is an isometric isomorphism such that
Φ(f |K) = Pf for all f ∈ L∗.

Proof. If f1, f2 ∈ L∗ are some extensions of g, then Pf1 = Pf2 since f1−f2 ∈
K⊥ = kerP and thus the de�nition of Φ is correct.

Note that Φ is linear. Indeed, let α ∈ K, g1, g2 ∈ K∗ and f1, f2 ∈ L∗ be their
extensions, respectively. If f ∈ L(X, Y )∗ is an extension of g1 + αg2, then
f − (f1 + αf2) ∈ kerP and

Φ(g1 + α g2) = Pf = P (f1 + α f2) = Pf1 + αPf2 = Φg1 + αΦg2.

If f ∈ L∗, then Φ(f |K) = Pf and it is clear that Φ is a surjection.
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It remains to prove that Φ is isometric. Let g ∈ K∗ and let f ∈ L∗ be a
norm-preserving extension of g. Then

‖Φg‖ = ‖Pf‖ ≤ ‖P‖ ‖f‖ = ‖g‖ ,

and, on the other hand,

‖Φg‖ = ‖Pf‖ ≥ ‖g‖

since Pf is an extension of g. Thus Φ is an isometric isomorphism.

Remark 2.22. If K is an M -ideal in L and P is the corresponding M -ideal
projection, then

ranP = {f ∈ L∗ : ‖f‖ = ‖f |K‖}
(see, e.g., [23, Proposition I.1.12]).

As it was stated earlier, an ideal projection need not exist. However, as we
can see from Johnson's lemma, i.e, Lemma 2.23 below, the existence of a
special kind of a net of compact operators always guarantees the existence
of an ideal projection.

Lemma 2.23. Let X and Y be Banach spaces with K(X, Y ) 6= {0}.
1. Let (Kα) ⊂ BK(X) be a net such that

K∗αx
∗ −→

α
x∗ ∀x∗ ∈ X∗.

If the net (Kα) converges weak∗ in K(X)∗∗, then P : L(X, Y )∗ −→ L(X, Y )∗,
where

(Pf)(T ) = lim
α
f(TKα), f ∈ L(X, Y )∗, T ∈ L(X, Y ),

is a projection with ‖P‖ = 1 and kerP = K(X, Y )⊥.

2. Let (Kα) ⊂ BK(X) be a net such that

Kαx −→
α

x ∀x ∈ X.

If the net (Kα) converges weak∗ in K(X)∗∗, then P : L(Y,X)∗ −→ L(Y,X)∗,
where

(Pf)(T ) = lim
α
f(KαT ), f ∈ L(Y,X)∗, T ∈ L(Y,X),

is a projection with ‖P‖ = 1 and kerP = K(Y,X)⊥.

Remark 2.24. By the Banach�Alaoglu theorem (see, e.g., [38, Theorem
2.6.18]), we can extract from every net (Kα) ⊂ BK(X) a subnet so that
the subnet converges weak∗ in K(X)∗∗. Thus, the condition �if the net (Kα)
converges weak∗ in K(X)∗∗� is not really a restriction.

28



Lemma 2.23 is essentially the same as a result by J. Johnson (see [28, proof
of Lemma 1]). We will prove Lemma 2.23 for the sake of completeness.

Proof of Lemma 2.23. 1. Fix f ∈ L(X, Y )∗ and T ∈ L(X, Y ). For the cor-
rectness of the de�nition of P , we have to show that the limit limα f(TKα)
exists. Let us de�ne T ∈ L(K(X),L(X, Y )) by

TS = TS, S ∈ K(X).

The limit
lim
α

(T∗f)(Kα) = lim
α
f(TKα) = lim

α
f(TKα)

exists because T∗f ∈ K(X)∗ and the net (Kα) converges weak∗.

Clearly P is linear, and ‖P‖ ≤ 1 since

|(Pf)(T )| = | lim
α
f(TKα)| = lim

α
|f(TKα)| ≤ lim sup

α
‖f‖ ‖T‖ ‖Kα‖ ≤ ‖f‖ ‖T‖ .

If T ∈ K(X, Y ), then Lemma 2.19 implies that limα TKα = T and thus,

f(T ) = f(lim
α
TKα) = lim

α
f(TKα) = (Pf)(T ).

Since f − Pf ∈ K(X, Y )⊥, we conclude that kerP ⊂ K(X, Y )⊥. We have
K(X, Y )⊥ ⊂ kerP because TKα ∈ K(X, Y ) and for all f ∈ K(X, Y )⊥

(Pf)(T ) = lim
α
f(TKα) = lim

α
0 = 0.

Thus, kerP = K(X, Y )⊥, and f − Pf ∈ kerP for all f ∈ L(X, Y )∗ proving
that P = P 2.

Note that if P = 0, then K(X, Y )⊥ = kerP = L(X, Y )∗ which contradicts
K(X, Y ) 6= {0}. Hence P 6= 0.

2. The proof uses the operator T ∈ L(K(X),L(Y,X)) de�ned by

TS = ST, S ∈ K(X),

and is symmetric to the proof above.

Remark 2.25. Due to Remark 2.18, we can replace

K∗αx
∗ −→

α
x∗ ∀x∗ ∈ X∗

in Lemma 2.23, part 1, and the assumption

Kαx −→
α

x ∀x ∈ X

in Lemma 2.23, part 2, with the assumption that (Kα) is a shrinking MCAI
of X.
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2.5 Descriptions of M-ideals of compact oper-

ators

As preliminary results, we will next look at some criteria for compact opera-
tors to appear as anM -ideal in the corresponding space of all bounded linear
operators. The results are needed for showing, in Section 2.6, that M -ideals
of compact operators create new M -ideals of compact operators.

The following result is immediate from [43, Corollary 2.3]. We present a
self-contained proof for completeness.

Proposition 2.26 ([43, Corollary 2.3] or [45, Proposition 7]). Let X and Y
be Banach spaces.
1. If there exists a shrinking MCAI (Kα) of X such that

lim sup
α
‖S + T (IX −Kα)‖ ≤ 1 ∀S ∈ BK(X,Y ), ∀T ∈ BL(X,Y ), (2.4)

then K(X, Y ) is an M-ideal in L(X, Y ).

2. If there exists an MCAI (Kα) of X such that

lim sup
α
‖S + (IX −Kα)T‖ ≤ 1 ∀S ∈ BK(Y,X), ∀T ∈ BL(Y,X), (2.5)

then K(Y,X) is an M-ideal in L(Y,X).

Proof. Without loss of generality we may assume that the net (Kα) converges
weak∗ in K(X)∗∗ (see Remark 2.24).

1. Let P be the projection on L(X, Y )∗ from Lemma 2.23, part 1. Then
K(X, Y ) is an ideal in L(X, Y ) with respect to P and it remains to prove
that

‖Pf‖+ ‖f − Pf‖ ≤ ‖f‖ ∀f ∈ L(X, Y )∗.

Fix f ∈ L(X, Y )∗ and ε > 0. Recall that ‖Pf‖ = ‖Pf |K(X,Y )‖ by
Lemma 2.21. Now, there exist S ∈ BK(X,Y ) and T ∈ BL(X,Y ) such that

‖Pf |K(X,Y )‖+ ‖f − Pf‖ − ε ≤ (Pf)(S) + (f − Pf)(T )

= (Pf)(S) + f(T )− (Pf)(T ).

Thus, based on the de�nition of the projection P and Lemma 2.19, we have

‖Pf‖+ ‖f − Pf‖ − ε ≤ lim
α
f(SKα) + f(T )− lim

α
f(TKα)

= f(lim
α
SKα) + f(T )− lim

α
f(TKα)

= lim
α
f(S + T − TKα) ≤ lim sup

α
‖f‖ = ‖f‖.

30



Letting ε −→ 0 we obtain

‖Pf‖+ ‖f − Pf‖ ≤ ‖f‖.

2. Let P be the projection on L(Y,X)∗ from Lemma 2.23, part 2. Then
K(Y,X) is an ideal in L(Y,X) with respect to P and the inequality

‖Pf‖+ ‖f − Pf‖ ≤ ‖f‖ ∀f ∈ L(Y,X)∗

is veri�ed verbatim to the �rst part.

Theorem 2.27 ([45, Theorem 5]). Let X be a Banach space. The following
are equivalent.

(a) K(X) is an M-ideal in L(X).

(b) X has property (M) and there exists a shrinking MCAI (Kα) of X such
that

lim sup
β

lim sup
α
‖Kβ + IX −Kα‖ ≤ 1.

(c) X has property (M∗) and there exists a shrinking MCAI (Kα) of X
such that

lim sup
α
‖Kβ + IX −Kα‖ ≤ 1 ∀β. (2.6)

(d) K(X) is an M-ideal in I(X).

The equivalence (a) ⇔ (d) in Theorem 2.27 was �rst proved for separable
case by N. J. Kalton in [31, Theorem 2.6].

Proof of Theorem 2.27. (a)⇒(d) is obvious by the 3-ball property (see The-
orem 2.6).

(d)⇒(c). Relying on a strong version of the principle of local re�exivity, due
to E. Behrends (see [3, Theorem 3.2]), it is proved in [58, Proposition 2.3]
that there exists (Kα) ⊂ K(X), lim supα ‖Kα‖ ≤ 1, such that

f(Kα) −→
α

f(IX) ∀f ∈ ranP,

where P is the M -ideal projection, and

lim sup
α
‖S + IX −Kα‖ ≤ 1 ∀S ∈ BK(X). (2.7)

31



From Remark 2.22, it is clear that x∗∗ ⊗ x∗ ∈ ranP for all x∗∗ ∈ X∗∗ and
x∗ ∈ X∗. Thus

x∗∗(K∗αx
∗) −→

α
x∗∗(IX∗x∗) ∀x∗∗ ∈ X∗∗, ∀x∗ ∈ X∗,

that is, K∗α −→ IX∗ in the weak operator topology. By applying a convex
combinations argument (see the proof of Lemma 2.17 and Remark 2.18), we
may assume that (Kα) is a shrinking CAI, and after norming the operators
Kα, we may assume that (Kα) is also an MCAI, in particular, (2.6) holds.

For showing thatX has property (M∗), �x u∗, v∗ ∈ X∗ satisfying ‖u∗‖ < ‖v∗‖
and a bounded net (x∗ν) ⊂ X∗ converging weak∗ to null in X∗. Then

lim
ν
‖K∗αx∗ν‖ = 0 ∀α.

Choose v ∈ X such that v∗(v) = 1 and ‖u∗‖ < 1
‖v‖ . De�ne a �nite-rank

operator S on X by Sx = u∗(x)v, x ∈ X. Then S ∈ BK(X), u∗ = S∗v∗, and
limν ‖S∗x∗ν‖ = 0. We can estimate

lim sup
ν
‖u∗ + x∗ν‖ = lim sup

ν
‖S∗v∗ + (IX −Kα)∗x∗ν‖

≤ lim sup
ν
‖S∗v∗ + S∗x∗ν + (IX −Kα)∗x∗ν‖

≤ ‖S∗ + (IX −Kα)∗‖ lim sup
ν
‖v∗ + x∗ν‖+ ‖(IX −Kα)∗v∗‖

and, thus,

lim sup
ν
‖u∗ + x∗ν‖

≤ lim sup
α
‖S∗ + (IX −Kα)∗‖ lim sup

ν
‖v∗ + x∗ν‖

+ lim sup
α
‖(IX −Kα)∗v∗‖

≤ lim sup
ν
‖v∗ + x∗ν‖

because of inequality (2.7) and K∗αv
∗ −→ v∗.

Now, if ‖u∗‖ ≤ ‖v∗‖, then ‖u∗‖ < ‖tv∗‖ for all t > 1 and

lim sup
ν
‖u∗ + x∗ν‖ ≤ lim sup

ν
‖tv∗ + x∗ν‖

≤ lim sup
ν
‖v∗ + x∗ν‖+ (t− 1) ‖v∗‖ .

The required inequality follows from letting t −→ 1.
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(c)⇒(b). Recall that property (M) follows from property (M∗) (see Sec-
tion 2.2).

(b)⇒(a). By Proposition 2.26, taking also into account that limα SKα = S
(see Lemma 2.19), it is su�cient to prove that for all S ∈ BK(X) and T ∈
BL(X)

lim sup
β

lim sup
α
‖SKβ + T − TKα‖ ≤ 1

since
lim sup

α
‖S + T − TKα‖ ≤ lim sup

β
‖S − SKβ‖

+ lim sup
β

lim sup
α
‖SKβ + T − TKα‖

= lim sup
β

lim sup
α
‖SKβ + T − TKα‖ .

Fix β. By de�ning ε(α,n) = 1
n
and K(α,n) = Kα for every α, n ∈ N, and

replacing (Kα) by the net (K(α,n)), which we denote also by (Kα), we may
assume without loss of generality that, for the net (Kα), there exists a net
(εα), εα > 0, such that εα −→ 0. Let us choose (xα) ⊂ BX so that

‖SKβxα + T (IX −Kα)xα‖ ≥ ‖SKβ + T (IX −Kα)‖ − εα.

Then
lim sup

α
‖SKβxα + T (IX −Kα)xα‖

≤ lim sup
α
‖SKβ + T (IX −Kα)‖‖xα‖

≤ lim sup
α

(‖SKβxα + T (IX −Kα)xα‖+ εα)

= lim sup
α
‖SKβxα + T (IX −Kα)xα‖+ lim sup

α
εα

= lim sup
α
‖SKβxα + T (IX −Kα)xα‖,

and hence,

lim sup
α
‖SKβ + T − TKα‖ = lim sup

α
‖SKβxα + (T − TKα)xα‖ .

Note that (SKβxα)α ⊂ X and (Kβxα)α ⊂ X are relatively compact nets
satisfying ‖SKβxα‖ ≤ ‖Kβxα‖ for all α, and ((IX − Kα)xα) is a bounded
net converging weakly to null in X. Since X has property (M), we have by
Lemma 2.14

lim sup
α
‖SKβxα + T (IX −Kα)xα‖ ≤ lim sup

α
‖Kβxα + (IX −Kα)xα‖

≤ lim sup
α
‖Kβ + IX −Kα‖
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and thus,

lim sup
β

lim sup
α
‖SKβ + T − TKα‖ ≤ lim sup

β
lim sup

α
‖Kβ + IX −Kα‖ ≤ 1.

2.6 M-ideals of compact operators creating

new M-ideals

We will prove that K(X, Y ) is an M -ideal in L(X, Y ) as soon as K(X) and
K(Y ) are, respectively,M -ideals in L(X) and L(Y ) (see Corollary 2.29). The
result allows to produce, departing from Banach spaces X such that K(X)
is an M -ideal in L(X), new classes of M -ideals of compact operators.

Theorem 2.28 ([45, Theorem 8]). Let X be a Banach space such that K(X)
is an M-ideal in L(X). Then K(X, Y ) is an M-ideal in L(X, Y ) for every
Banach space Y having property (M), and K(Y,X) is an M-ideal in L(Y,X)
for every Banach space Y having property (M∗).

Proof. FromK(X) being anM -ideal in L(X), it follows thatX has properties
(M) and (M∗), and there exists a shrinking MCAI (Kα) of X such that

lim sup
β

lim sup
α
‖Kβ + IX −Kα‖ ≤ 1 (2.8)

(see Theorem 2.27).

To prove the �rst claim, it is su�cient to show that inequality (2.4), from
Proposition 2.26, holds. Fix S ∈ BK(X,Y ) and T ∈ BL(X,Y ). We have, as in
the proof of Theorem 2.27, (b)⇒(a), that

lim sup
α
‖S + T (IX −Kα)‖ ≤ lim sup

β
lim sup

α
‖SKβ + T (IX −Kα)‖,

and, moreover, we may assume that for every β there exists (xα) ⊂ BX such
that

lim sup
α
‖SKβ + T (IX −Kα)‖ = lim sup

α
‖SKβxα + T (IX −Kα)xα‖.

It remains to prove that

lim sup
β

lim sup
α
‖SKβ + T (IX −Kα)‖ ≤ 1. (2.9)
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The nets (SKβxα)α ⊂ Y , (Kβxα)α ⊂ X are relatively compact, and

‖SKβxα‖ ≤ ‖Kβxα‖ ∀α.

The net ((IX −Kα)xα) is bounded and converges weakly to null in X. Since
spaces X and Y have property (M), based on Lemma 2.14,

lim sup
α
‖SKβxα + T (IX −Kα)xα‖ ≤ lim sup

α
‖Kβxα + (I −Kα)xα‖

≤ lim sup
α
‖Kβ + IX −Kα‖.

This together with inequality (2.8) implies

lim sup
β

lim sup
α
‖SKβ +T (IX −Kα)‖ ≤ lim sup

β
lim sup

α
‖Kβ + IX −Kα‖ ≤ 1.

Hence, inequality (2.9) holds, and thus, we have proved that K(X, Y ) is an
M -ideal in L(X, Y ).

To prove the second claim of the theorem, it is su�cient to prove that inequal-
ity (2.5), from Proposition 2.26, holds. Fix S ∈ BK(Y,X) and T ∈ BL(Y,X).
Based on Lemma 2.19, as in the previous part, we see that inequality (2.5)
holds if

lim sup
β

lim sup
α
‖S∗K∗β + T ∗(IX −Kα)∗‖ ≤ 1. (2.10)

Fix β. Proceeding similarly to the previous proof, we may assume that for
some (x∗α) ⊂ BX∗ ,

lim sup
α
‖S∗K∗β + T ∗(IX −Kα)∗‖ = lim sup

α
‖S∗K∗βx∗α + T ∗(IX −Kα)∗x∗α‖.

Now, the nets (S∗K∗βx
∗
α)α ⊂ Y ∗ and (K∗βx

∗
α)α ⊂ X∗ are relatively compact

because the operators S∗K∗β and K∗β are compact. Moreover,

‖S∗K∗βx∗α‖ ≤ ‖K∗βx∗α‖ ∀α

and ((IX −Kα)∗x∗α) is a bounded net converging weak∗ to null in X∗.

Both the spaces X and Y have property (M∗). Hence, using Lemma 2.14,

lim sup
α
‖S∗K∗βx∗α + T ∗(IX −Kα)∗x∗α‖ ≤ lim sup

α
‖Kβ + IX −Kα‖

which together with inequality (2.8) yields inequality (2.10) as needed.

The main result of this chapter follows directly from Theorems 2.27 and 2.28.
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Corollary 2.29 ([45, Corollary 9]). If K(X) and K(Y ) areM-ideals in L(X)
and L(Y ), respectively, then K(X, Y ) is an M-ideal in L(X, Y ).

Proof. Banach space Y has property (M) by Theorem 2.27. Hence, by The-
orem 2.28, K(X, Y ) is an M -ideal in L(X, Y ).
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Chapter 3

M(r, s)-ideals

Next, we will extend and develop the results and methods used in
Chapter 2, for M-ideals, to the case of M(r, s)-ideals. Namely, we will
prove that K(X, Y ) is an M(r2

1r2, s
2
1s2)-ideal and an M(r1r

2
2, s1s

2
2)-ideal in

L(X, Y ) whenever K(X) is an M(r1, s1)-ideal in L(X) with r1 + s1/2 > 1
and K(Y ) is an M(r2, s2)-ideal in L(Y ) with r2 + s2/2 > 1. The chapter
is motivated by [45], [49], [54] and relies on [19].

3.1 De�nition and examples

Let L be a Banach space.

De�nition 3.1. A closed subspace K ⊂ L is said to be anM(r, s)-ideal in L
if K is an ideal in L with respect to some ideal projection P and there exist
r, s ∈ (0, 1] such that

‖f‖ ≥ r ‖Pf‖+ s ‖f − Pf‖ ∀f ∈ L∗.

In [4] and subsequent works, such a K was called an ideal satisfying the
M(r, s)-inequality in L. The shorter name was �rst used in [19].

In principle, we could also consider the parameters range (r, s) ∈ (0, 1] ×
(0,∞). However, it is clear that K = L if and only if K is an M(r, s)-
ideal in L for some s > 1 (or for all (r, s) ∈ (0, 1] × (0,∞)). Nevertheless,
occasionally (following [21]) we shall consider M(r, s)-ideals also for positive
numbers r ≤ 1 and s, which allows us to obtain some applications to the
general structure of Banach spaces in Chapter 4 (see Section 4.9).
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Note that M -ideals are precisely M(1, 1)-ideals.

From Example 2.8, we know that K(`p) is an M -ideal in L(`p) for p > 1.
One of the closest analogs of `p is the Lorentz sequence space d(v, p).

Let p ≥ 1, and let v = (vn) be a non-increasing sequence of positive numbers
such that v1 = 1, limn vn = 0, and

∑
n vn = ∞. The Banach space of all

sequences of scalars x = (xn) for which

‖x‖ = sup
π

( ∞∑
n=1

vn
∣∣xπ(n)

∣∣p )1/p

<∞,

where π ranges over all the permutations of the natural numbers, is denoted
by d(v, p) and is called a Lorentz sequence space.

Example 3.2 ([7, Example 4.2]). For the Lorentz sequence space d(v, p), p >
1, the space of compact operators K(d(v, p)) is an M(r, s)-ideal in L(d(v, p))
if r, s ∈ (0, 1] satisfy rp + sp ≤ 1.

It is a well-known result of Hennefeld [25] (see, e.g., [23, p. 305]) that for
the Lorentz sequence space d(v, p), p > 1, the space of compact operators
K(d(v, p)) is not an M -ideal in L(d(v, p)). That K(d(v, p)) is indeed an
M(r, s)-ideal will be proved in Section 3.3.

For additional examples of M(r, s)-ideals which are not M -ideals, see, e.g.,
[4], [5], or [7].

3.2 M(r, s)-ideals of compact operators and the

ideal projection

One of the di�erences betweenM -ideals andM(r, s)-ideals is that in the case
ofM(r, s)-ideals the corresponding ideal projection need not be unique. (For
the uniqueness of the ideal projection ofM -ideals, see [23, Proposition I.1.2].)

De�nition 3.3 (see [36]). A closed subspace K of a Banach space L has the
unique ideal property if K is an ideal in L and there exists precisely one ideal
projection, that is, a unique norm one projection P on L∗ with kerP = K⊥.

An obvious example of subspaces having the unique ideal property is pre-
sented by ideals having Phelps's property U .
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De�nition 3.4 (see [53]). A closed subspace K of a Banach space L is said to
have property U in L if every g ∈ K∗ has a unique norm-preserving extension
f ∈ L∗.

Ideals with property U have been studied, e.g., in [25], [41], [42], [43], [46],
[51], [54].

Cabello and Nieto showed in the paper [4] that M(1, s)-ideals have property
U and therefore they also have the unique ideal property. However, e.g., for
r 6= 1, M(r, 1)-ideals of compact operators K(X) need not have property U
in L(X) even if X∗ has the Radon�Nikodým property (see [7, Example 4.5]).

3.3 Johnson projection

The result captured in Lemma 2.23 has given a motivation to the following
de�nition (see also Remark 2.25).

De�nition 3.5. Let L be a closed subspace of L(X, Y ) containing K(X, Y ).
Suppose that (Kα) is a shrinking MCAI of X (respectively, of Y ). Then an
ideal projection P on L∗ such that

(Pf)(T ) = lim
α
f(TKα), f ∈ L∗, T ∈ L

(respectively,

(Pf)(T ) = lim
α
f(KαT ), f ∈ L∗, T ∈ L)

is called the Johnson projection.

This is essentially the same concept as in [39] and [54].

The following result extends Proposition 2.26 to M(r, s)-ideals.

Proposition 3.6. Let X and Y be Banach spaces and let r, s ∈ (0, 1]. Then
K(X, Y ) is an M(r, s)-ideal in L(X, Y ) with respect to some Johnson pro-
jection whenever there is a shrinking MCAI (Kα) of Y (respectively, of X)
with

lim sup
α
‖rS + s(T −KαT )‖ ≤ 1

(respectively,
lim sup

α
‖rS + s(T − TKα)‖ ≤ 1)

for any S ∈ BK(X,Y ) and T ∈ BL(X,Y ).
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Proof. Let (Kα) be a shrinking MCAI of Y (the proof is almost verbatim with
obvious changes if we assume that (Kα) is a shrinking MCAI of X). Then,
relying on Lemma 2.23 and Remark 2.24, we can assume that K(X, Y ) is an
ideal in L(X, Y ) with respect to the Johnson projection P corresponding to
(Kα).

Let us �x f ∈ L(X, Y )∗ and ε > 0. According to Lemma 2.21, ‖Pf‖ =
‖f |K(X,Y )‖ and thus, there exist S ∈ BK(X,Y ) and T ∈ BL(X,Y ) such that

r‖Pf‖+ s‖f − Pf‖ − ε ≤ rf(S) + s(f − Pf)(T ).

Hence, by de�nition of P , we have

r‖Pf‖+ s‖f − Pf‖ − ε ≤ rf(S) + sf(T )− s lim
α
f(KαT )

= lim
α
f(rS + s(T −KαT ))

≤ ‖f‖ lim sup
α
‖rS + s(T −KαT )‖

≤ ‖f‖

whenever lim supα ‖rS + s(T −KαT )‖ ≤ 1.

Note that due to the proof above, we can reformulate Proposition 3.6 for
the case when Y has an MCAI without the shrinkingness assumption (see
Corollary 3.7 below).

Corollary 3.7. Let X and Y be Banach spaces and let r, s ∈ (0, 1]. Then
K(X, Y ) is an M(r, s)-ideal in L(X, Y ) whenever there is an MCAI (Kα) of
Y with

lim sup
α
‖rS + s(T −KαT )‖ ≤ 1

for any S ∈ BK(X,Y ) and T ∈ BL(X,Y ).

Remark 3.8. Based on [7, Theorem 3.1], whenever we assume that X = Y
and r + s/2 > 1, also the converse of Proposition 3.6 holds: if K(X) is an
M(r, s)-ideal in L(X), then X admits a shrinking MCAI (Kα) such that

lim sup
α
‖rS + s(T − TKα)‖ ≤ 1

for any S ∈ BK(X) and T ∈ BL(X).

Next, relying on Corollary 3.7, we will prove Example 3.2.
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Proof of Example 3.2. Let us denote the canonical coordinate projection by
Pn : d(v, p) −→ d(v, p) where

Pn(x1, x2, . . . ) = (x1, . . . , xn, 0, 0, . . . ), (xk) ∈ d(v, p).

For every n ∈ N, we have Pn ∈ K(d(v, p)), ‖Pn‖ = 1, and Pnx −→ x for all
x ∈ d(v, p). Hence,∥∥rPnx+ s(Id(v,p) − Pn)y

∥∥p ≤ ‖Pn(rx)‖p +
∥∥(Id(v,p) − Pn)(sy)

∥∥p
≤ rp ‖Pn‖p ‖x‖p + sp

∥∥(Id(v,p) − Pn)
∥∥p ‖y‖p

≤ rp + sp

whenever ‖x‖ , ‖y‖ ≤ 1. Relying on Lemma 2.19, we have

lim sup
n

∥∥rS + s(Id(v,p) − Pn)T
∥∥

≤ lim sup
n

[
‖rS − rPnS‖+

∥∥rPnS + s(Id(v,p) − Pn)T
∥∥ ]

≤ lim sup
n

sup
‖z‖≤1

∥∥rPnSz + s(Id(v,p) − Pn)Tz
∥∥

≤ lim sup
n

sup
‖x‖,‖y‖≤1

∥∥rPnx+ s(Id(v,p) − Pn)y
∥∥

for every S ∈ BK(d(v,p)) and T ∈ BL(d(v,p)). Thus,

lim sup
n

∥∥rS + sT (Id(v,p) − Pn)
∥∥ ≤ 1

for every S ∈ BK(d(v,p)) and T ∈ BL(d(v,p)) whenever rp + sp ≤ 1, which
proves, due to Corollary 3.7, that K(d(v, p)) is an M(r, s)-ideal in L(d(v, p))
if rp + sp ≤ 1.

3.4 Properties M(r, s) and M ∗(r, s)

Analogously to properties (M) and (M∗) for M -ideals, Cabello and Nieto
introduced properties M(r, s) and M∗(r, s) for M(r, s)-ideals (see [6]).

De�nition 3.9. Let r, s ∈ (0, 1]. A Banach space X has property M(r, s) if

lim sup
ν
‖ru+ sxν‖ ≤ lim sup

ν
‖v + xν‖,

whenever u, v ∈ X satisfy ‖u‖ ≤ ‖v‖, and (xν) ⊂ X is a bounded net
converging weakly to null in X.
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De�nition 3.10. Let r, s ∈ (0, 1]. A Banach space X has property M∗(r, s)
if

lim sup
ν
‖ru∗ + sx∗ν‖ ≤ lim sup

ν
‖v∗ + x∗ν‖,

whenever u∗, v∗ ∈ X∗ satisfy ‖u∗‖ ≤ ‖v∗‖, and (x∗ν) ⊂ X∗ is a bounded net
converging weak∗ to null in X∗.

PropertiesM(1, 1) andM∗(1, 1) clearly coincide with their prototypical prop-
erties (M) and (M∗). A much more general version of property (M∗), namely
property M∗(a,B, c), was introduced and studied in [49] (see also [48]). It
can be easily seen that propertyM∗(s, {−s}, r) is precisely propertyM∗(r, s).

Analogously to properties (M) and (M∗) (see Section 2.2), one can prove
that property M∗(r, s) implies property M(r, s).

Lemma 3.11. 1. Let X and Y be Banach spaces with properties M(r1, s1)
and M(r2, s2), respectively. If (uα) ⊂ X and (vα) ⊂ Y are relatively compact
nets with ‖vα‖ ≤ ‖uα‖ for every α, and (xα) is a bounded net converging
weakly to null in X, then

lim sup
α
‖r1r2vα + s1s2Txα‖ ≤ lim sup

α
‖uα + xα‖

for any T ∈ BL(X,Y ).

2. Let X and Y be Banach spaces with properties M∗(r1, s1) and M∗(r2, s2),
respectively. If (v∗α) ⊂ X∗ and (u∗α) ⊂ Y ∗ are relatively compact nets with
‖v∗α‖ ≤ ‖u∗α‖ for every α, and (y∗α) is a bounded net converging weak∗ to null
in Y ∗, then

lim sup
α
‖r1r2v

∗
α + s1s2T

∗y∗α‖ ≤ lim sup
α
‖u∗α + y∗α‖

for any T ∈ BL(X,Y ).

Proof. We only give a proof of the �rst half of the lemma; the other half is
a matter of similarity. We �rst do the case ‖T‖ = 1. Suppose that, contrary
to our claim,

lim
α
‖r1r2vα + s1s2Txα‖ > lim

α
‖uα + xα‖

for some relatively compact nets (uα) ⊂ X and (vα) ⊂ Y with ‖vα‖ ≤
‖uα‖ for every α, and for some bounded weakly null net (xα) ⊂ X. By
passing to subnets, we may assume that uα −→ u in X and vα −→ v in Y .
Consequently,

lim
α
‖r1r2v + s1s2Txα‖ > lim

α
‖u+ xα‖.

42



For any ε, choose x ∈ BX so that (1 + ε)‖Tx‖ > 1. Note that (Txα) is a
bounded weakly null net in Y . Applying property M(r2, s2) we have

lim
α
‖r1r2v + s1s2Txα‖ ≤ lim sup

α

∥∥∥r1(1 + ε)‖v‖Tx+ s1Txα

∥∥∥
≤ lim sup

α

∥∥∥r1‖v‖x+ s1xα

∥∥∥+ ε‖v‖,

and applying property M(r1, s1) we have

lim sup
α

∥∥∥r1‖v‖x+ s1xα

∥∥∥ ≤ lim
α
‖u+ xα‖.

This leads to
lim
α
‖r1r2v + s1s2Txα‖ ≤ lim

α
‖u+ xα‖

which is a contradiction.

The general case follows now by writing T ∈ BL(X,Y ) in the form T = λT ′ +
(1−λ)T ′′ for some λ ∈ [0, 1] and T ′, T ′′ with ‖T ′‖ = ‖T ′′‖ = 1 (see the proof
of Lemma 2.14).

Remark 3.12. In the special case of r1 = s1 = r2 = s2 = 1, Lemma 3.11
reduces to Lemma 2.14.

3.5 Descriptions of M(r, s)-ideals of compact

operators

The following lemma (inspired by [45, Theorem 5, (d)⇒(e)]) shows how to
ful�ll the lim sup assumptions of Proposition 3.6.

Lemma 3.13. 1. Let X and Y be Banach spaces with properties M(r1, s1)
and M(r2, s2), respectively. If there exists a shrinking MCAI (Kα) of X such
that

lim sup
β

lim sup
α
‖r̃Kβ + s̃(IX −Kα)‖ ≤ 1

for some r̃, s̃ ≥ 0, then

lim sup
α
‖rS + s(T − TKα)‖ ≤ 1

for any S ∈ BK(X,Y ) and T ∈ BL(X,Y ), where r = r1r2r̃ and s = s1s2s̃.
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2. Let X and Y be Banach spaces with properties M∗(r1, s1) and M∗(r2, s2),
respectively. If there exists an MCAI (Kα) of Y such that

lim sup
β

lim sup
α
‖r̃Kβ + s̃(IY −Kα)‖ ≤ 1

for some r̃, s̃ ≥ 0, then

lim sup
α
‖rS + s(T −KαT )‖ ≤ 1

for any S ∈ BK(X,Y ) and T ∈ BL(X,Y ), where r = r1r2r̃ and s = s1s2s̃.

Proof. 1. Assume that (Kα) is a shrinking MCAI of X. Fix S ∈ BK(X,Y ) and
T ∈ BL(X,Y ). Since SKα −→ S (see Lemma 2.19),

lim sup
α
‖rS + s(T − TKα)‖ ≤ lim sup

β
lim sup

α
‖rSKβ + s(T − TKα)‖.

Fix β. Proceeding similarly to the proof of Theorem 2.27, (b)⇒(a), we may
assume that there exists (xα) ⊂ BX such that

lim sup
α
‖rSKβ + s(T − TKα)‖ = lim sup

α
‖rSKβxα + s(T − TKα)xα‖.

Note that (SKβxα)α ⊂ Y and (Kβxα)α ⊂ X are relatively compact nets with
‖SKβxα‖ ≤ ‖Kβxα‖ for any α, and ((IX −Kα)xα) is a bounded weakly null
net in X. Hence, by Lemma 3.11,

lim sup
α
‖rSKβxα + s(T − TKα)xα‖ ≤ lim sup

α
‖r̃Kβxα + s̃(IX −Kα)xα‖

≤ lim sup
α
‖r̃Kβ + s̃(IX −Kα)‖ ≤ 1

and the claim follows.

2. Assume now that (Kα) is an MCAI of Y . Fix S ∈ BK(X,Y ) and T ∈
BL(X,Y ). Since KαS −→ S (see Lemma 2.19),

lim sup
α
‖rS + s(T −KαT )‖ ≤ lim sup

β
lim sup

α
‖rKβS + s(T −KαT )‖

= lim sup
β

lim sup
α
‖rS∗K∗β + s(T ∗ − T ∗K∗α)‖.

Fix β. Analogously to the proof of the �rst part, we may assume that there
is a net (y∗α) ⊂ BY ∗ such that

lim sup
α
‖rS∗K∗β + s(T ∗ − T ∗K∗α)‖ = lim sup

α
‖rS∗K∗βy∗α + s(T ∗ − T ∗K∗α)y∗α‖.
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Note that (S∗K∗βy
∗
α)α ⊂ X∗ and (K∗βy

∗
α)α ⊂ Y ∗ are relatively compact nets

with ‖S∗K∗βy∗α‖ ≤ ‖K∗βy∗α‖ for any α, and ((IY −Kα)∗y∗α) is a bounded net
converging weak∗ to null in Y ∗. Hence, by Lemma 3.11,

lim sup
α
‖rS∗K∗βy∗α + s(T ∗ − T ∗K∗α)y∗α‖ ≤ lim sup

α
‖r̃K∗βy∗α + s̃(IY −Kα)∗y∗α‖

≤ lim sup
α
‖r̃K∗β + s̃(IY −Kα)∗‖ ≤ 1

and the claim follows.

For proving that M(r, s)-ideals create new M(r, s)-ideals, we shall need, as
auxiliary results, the following two lemmas together with their corollaries.

Lemma 3.14 ([49, Corollary 4.4]). Let X be a Banach space. If r, s ∈ (0, 1]
satisfy r + s/2 > 1, then the following assertions are equivalent.

1◦ K(X) is an M(r, s)-ideal in I(X).

2◦ X has an MCAI and property M∗(r, s).

Lemma 3.15 ([7, Theorem 3.1]). Let X be a Banach space and let L ⊂ L(X)
be a closed subspace containing I(X). If r, s ∈ (0, 1] satisfy r+s/2 > 1, then
the following assertions are equivalent.

1◦ K(X) is an M(r, s)-ideal in L.

2◦ There exists a shrinking MCAI (Kα) of X such that

lim sup
α
‖rSKα + s(T − TKα)‖ ≤ 1 ∀S, T ∈ BL. (3.1)

Corollary 3.16. Let X be a Banach space and let r, s ∈ (0, 1] satisfy
r + s/2 > 1. If K(X) is an M(r, s)-ideal in I(X), then X has property
M∗(r, s) and there is a shrinking MCAI (Kα) of X with

lim sup
α
‖rS + s(IX −Kα)‖ ≤ 1 ∀S ∈ BK(X). (3.2)

Proof. By Lemma 3.14, X has property M∗(r, s). By Lemma 3.15, there
exists a shrinking MCAI (Kα) satisfying (3.1) with T = IX .

Corollary 3.17. Let X be a Banach space and let r, s ∈ (0, 1] satisfy r +
s/2 > 1. If K(X) is an M(r, s)-ideal in L(X), then K(X) is an M(r, s)-ideal
in I(X).

Proof. Based on Lemma 3.15, X has a shrinking MCAI (Kα) such that in-
equality (3.1) holds with L = L(X). Hence, it also holds with L = I(X).
Therefore, by Lemma 3.15, K(X) is an M(r, s)-ideal in I(X).
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3.6 M(r, s)-ideals of compact operators creat-

ing new M(r, s)-ideals

The M -ideal prototype (that is the case when r1 = s1 = r2 = s2 = 1) of the
following Theorems 3.18 and 3.19 is Theorem 2.28.

Theorem 3.18. Let X and Y be Banach spaces and let r1, s1, r2, s2 ∈ (0, 1].
Assume that K(X) is an M(r1, s1)-ideal in I(X) with r1 + s1/2 > 1, and Y
has property M(r2, s2). Then K(X, Y ) is an M(r2

1r2, s
2
1s2)-ideal in L(X, Y ).

Proof. By Corollary 3.16, X has property M∗(r1, s1), recall that this implies
property M(r, s), and there is a shrinking MCAI (Kα) of X with

lim sup
α
‖r1Kβ + s1(IX −Kα)‖ ≤ 1 ∀β.

By the �rst part of Lemma 3.13,

lim sup
α
‖r2

1r2S + s2
1s2(T − TKα)‖ ≤ 1

for any S ∈ BK(X,Y ) and T ∈ BL(X,Y ). The claim now follows from Proposi-
tion 3.6.

Theorem 3.19. Let X and Y be Banach spaces and let r1, s1, r2, s2 ∈ (0, 1].
Assume that X has property M∗(r1, s1) and K(Y ) is an M(r2, s2)-ideal in
I(Y ) with r2+s2/2 > 1. Then K(X, Y ) is anM(r1r

2
2, s1s

2
2)-ideal in L(X, Y ).

Proof. The proof is analogous to the previous one. By Corollary 3.16, Y has
property M∗(r2, s2) and there is a shrinking MCAI (Kα) of Y with

lim sup
α
‖r1Kβ + s1(IY −Kα)‖ ≤ 1 ∀β,

when we take S = Kβ. By the second part of Lemma 3.13,

lim sup
α
‖r2

1r2S + s2
1s2(T −KαT )‖ ≤ 1

for any S ∈ BK(X,Y ) and T ∈ BL(X,Y ). The claim now follows from Proposi-
tion 3.6.

Recall that M(1, 1)-ideals are just M -ideals. Hence, the following Corol-
lary 3.20 is immediate from Theorems 3.18 and 3.19 by Corollary 3.17.
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Corollary 3.20. Let X be a Banach space such that K(X) is an M-ideal in
L(X) and let r, s ∈ (0, 1]. Then K(X, Y ) is an M(r, s)-ideal in L(X, Y ) for
all Banach spaces Y with property M(r, s), and K(Y,X) is an M(r, s)-ideal
in L(Y,X) for all Banach spaces Y with property M∗(r, s).

Gathering the assumptions of Theorems 3.18 and 3.19 together and using
Lemma 3.14 yield our main result in Chapter 3.

Theorem 3.21. Let X and Y be Banach spaces and let r1, s1, r2, s2 ∈ (0, 1].
Assume that K(X) is an M(r1, s1)-ideal in I(X) with r1 + s1/2 > 1 and
K(Y ) is an M(r2, s2)-ideal in I(Y ) with r2 + s2/2 > 1. Then K(X, Y ) is an
M(r2

1r2, s
2
1s2)- and an M(r1r

2
2, s1s

2
2)-ideal in L(X, Y ).

Using Corollary 3.17, this immediately implies:

Corollary 3.22. Let X and Y be Banach spaces and let r1, s1, r2, s2 ∈ (0, 1].
Assume that K(X) is an M(r1, s1)-ideal in L(X) with r1 + s1/2 > 1 and
K(Y ) is an M(r2, s2)-ideal in L(Y ) with r2 + s2/2 > 1. Then K(X, Y ) is an
M(r2

1r2, s
2
1s2)- and an M(r1r

2
2, s1s

2
2)-ideal in L(X, Y ).

Corollary 3.22 extends Corollary 2.29 from M -ideals to M(r, s)-ideals.

The following is immediate from Corollary 3.17 and Theorem 3.21.

Corollary 3.23. Let r, s ∈ (0, 1] satisfy r+ s/2 > 1. If K(X) is an M(r, s)-
ideal in L(X), then K(X) is anM(r, s)-ideal in I(X). If K(X) is anM(r, s)-
ideal in I(X), then K(X) is an M(r3, s3)-ideal in L(X)

In the special case of r = s = 1, Corollary 3.23 reduces to Kalton's theorem
(the equality (a)⇔(d) in Theorem 2.27): K(X) is an M -ideal in L(X) if and
only if K(X) is anM -ideal in I(X). The following problem remains unsolved
in this thesis.

Problem 3.24. Can Corollary 3.23 be improved to yield the desirable result:
K(X) is an M(r, s)-ideal in L(X) if and only if K(X) is an M(r, s)-ideal in
I(X)?
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Chapter 4

Improved parameters of

M(r, s)-ideals

In Chapter 3, we proved that K(X, Y ) is an M(r2
1r2, s

2
1s2)- and

anM(r1r
2
2, s1s

2
2)-ideal in L(X, Y ) whenever K(X) and K(Y ) areM(r1, s1)-

and M(r2, s2)-ideals in L(X) and L(Y ), respectively, with r1 + s1/2 > 1
and r2 + s2/2 > 1. The parameters r2

1r2 and s2
1s2, or r1r

2
2 and s1s

2
2 seem

to be not optimal. In this chapter, we propose a di�erent approach
that improves the parameters to r1r2 and s1s2. The key concepts
of the new approach are �the ideal projection preserving elementary
functionals� and �property M∗(r, s) for operators�. An important tool,
we are basing on, is the Feder�Saphar description of the dual space
of K(X, Y ) which holds whenever X∗∗ or Y ∗ has the Radon�Nikodým
property. The chapter relies on [20].

4.1 The Feder�Saphar description of K(X, Y )∗

The Feder�Saphar theorem, in [13], is formulated in the terminology of tensor
products. Here we introduce some basic notation of it, for de�nitions and
the theory in general, see, for example, [17] or [55].

Let X and Y be Banach spaces. Denote by X⊗̂Y the projective tensor
product of X and Y , and by ‖.‖π the projective norm on it. If u ∈ X⊗̂Y ,
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then there is a representation (see, e.g., [17], [56], or [55])

u =
∞∑
n=1

xn ⊗ yn, xn ∈ X, yn ∈ Y,

with
∑∞

n=1 ‖xn‖ ‖yn‖ <∞.

Let Z be another Banach space and let T ∈ L(Y, Z). One de�nes

Tu =
∞∑
n=1

xn ⊗ Tyn, u =
∞∑
n=1

xn ⊗ yn ∈ X⊗̂Y.

Then Tu ∈ X⊗̂Z and ‖Tu‖π ≤ ‖T‖ ‖u‖π. For every u ∈ X⊗̂X∗, u =∑∞
n=1 xn ⊗ x∗n, we denote

traceu =
∞∑
n=1

x∗n(xn).

The functional u 7−→ traceu is well de�ned, linear, and of norm less than or
equal to 1.

De�nition 4.1. The dual space X∗ has the Radon�Nikodým property if from
the separability of a subspace Z of X it follows that also Z∗ is separable.

Theorem 4.2 ([13, Theorem 1]). Let X and Y be Banach spaces. If X∗∗

or Y ∗ has the Radon�Nikodým property, then V : Y ∗⊗̂X∗∗ −→ K(X, Y )∗

de�ned by

(V u)(S) = trace(S∗u), u ∈ Y ∗⊗̂X∗∗, S ∈ K(X, Y ),

is a quotient map such that

∀f ∈ K(X, Y )∗ ∃u ∈ Y ∗⊗̂X∗∗, f = V u ∧ ‖f‖ = ‖u‖π.

A useful conclusion of the Feder�Saphar theorem is the following result, also
named as the Feder�Saphar theorem, which was observed, e.g., in [16] and
[43].

Theorem 4.3. Let X and Y be Banach spaces, and let L be a closed sub-
space of L(X, Y ) containing K(X, Y ). If X∗∗ or Y ∗ has the Radon�Nikodým
property, then

K(X, Y )∗ = span{x∗∗ ⊗ y∗|K(X,Y ) : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ ∈ L∗}.



Proof. Let V : Y ∗⊗̂X∗∗ −→ K(X, Y )∗ be de�ned as in Theorem 4.2. Note
that V (y∗⊗x∗∗) = x∗∗⊗y∗|K(X,Y ) for every x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗, x∗∗⊗y∗ ∈
L∗. Indeed,

(V (y∗ ⊗ x∗∗))(S) = trace(S∗(y∗ ⊗ x∗∗)) = x∗∗(S∗y∗) = (x∗∗ ⊗ y∗)(S)

for every S ∈ K(X, Y ).

Since V is a bounded linear surjection,

K(X, Y )∗ = V (Y ∗⊗̂X∗∗)

= V
(

span{y∗ ⊗ x∗∗ : y∗ ∈ Y ∗, x∗∗ ∈ X∗∗}
)

⊂ span
{
V (y∗ ⊗ x∗∗) : y∗ ∈ Y ∗, x∗∗ ∈ X∗∗

}
= span{x∗∗ ⊗ y∗|K(X,Y ) : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ ∈ L∗}.

Thus,

K(X, Y )∗ = span{x∗∗ ⊗ y∗|K(X,Y ) : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ ∈ L∗}.

4.2 Ideal projection preserving elementary

functionals

Let L be a closed subspace of L(X, Y ) containing K := K(X, Y ). Assume
that K is an ideal in L with respect to an ideal projection P.

De�nition 4.4. If P (x∗∗ ⊗ y∗) = x∗∗ ⊗ y∗ for all x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗,
then we say that P preserves elementary functionals.

Example 4.5. The Johnson projection is an ideal projection preserving el-
ementary functionals.

Proof. By Lemma 2.23, the Johnson projection is an ideal projection. Let
us denote it by P . Consider any x∗∗ ⊗ y∗ ∈ L∗, and let T ∈ L. If (Kα) is a
shrinking MCAI of X, then

(P (x∗∗ ⊗ y∗))(T ) = lim
α

(x∗∗ ⊗ y∗)(TKα)

= lim
α
x∗∗(K∗αT

∗y∗) = x∗∗(T ∗y∗)

= (x∗∗ ⊗ y∗)(T ).
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If, respectively, (Kα) is a shrinking MCAI of Y , then

(P (x∗∗ ⊗ y∗))(T ) = lim
α

(x∗∗ ⊗ y∗)(KαT )

= lim
α
x∗∗(T ∗K∗αy

∗) = x∗∗(T ∗y∗)

= (x∗∗ ⊗ y∗)(T ).

In contrast with the Johnson projection, an ideal projection preserving el-
ementary functionals may also be de�ned departing from a (generally) un-
bounded net of compact operators, as the following example shows.

Example 4.6 (see [35, Theorem 5.1] and [36, proof of Theorem 4.6]). Let
X and Y be Banach spaces such that X∗∗ or Y ∗ has the Radon�Nikodým
property. Let L be a closed subspace of L(X, Y ) containing K := K(X, Y ).
If X∗ or Y ∗ has the CAP with conjugate operators, then K is an ideal in L
with respect to an ideal projection preserving elementary functionals.

Proof. Suppose �rst that X∗ has the CAP with conjugate operators. Let a
net (Kα) ⊂ K be such that K∗α −→ I∗X uniformly on compact subsets of X∗.

According to Theorem 4.2, for any g ∈ K∗, there exists u =
∑∞

n=1 y
∗
n⊗ x∗∗n ∈

Y ∗⊗̂X∗∗ such that

g(S) =
∞∑
n=1

x∗∗n (S∗y∗n) ∀S ∈ K

and ‖g‖ = ‖u‖π. Without loss of generality we may assume that∑∞
n=1 ‖x∗∗n ‖ <∞ and ‖y∗n‖ −→ 0. Let T ∈ L. Then TKα ∈ K and

|trace(T ∗u)− g(TKα)| =

∣∣∣∣∣
∞∑
n=1

[
x∗∗n (T ∗y∗n)− x∗∗n (K∗αT

∗y∗n)
]∣∣∣∣∣

≤ sup
n
‖(IX∗ −K∗α)(T ∗y∗n)‖

∞∑
n=1

‖x∗∗n ‖ .

We have
sup
n
‖(IX∗ −K∗α)(T ∗y∗n)‖ −→

α
0

because {0, T ∗y∗1, T ∗y∗2, . . . } is a compact subset of X∗. As a result, we can
conclude that

lim
α
|trace(T ∗u)− g(TKα)| = 0 ∀T ∈ L.
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Let us de�ne P : L∗ −→ L∗ by

(Pf)(T ) = lim
α
f(TKα) = trace(T ∗u), f ∈ L∗, T ∈ L,

where u ∈ Y ∗⊗̂X∗∗ corresponds to f |K ∈ K∗ due to the Feder�Saphar theo-
rem.

Clearly P is well-de�ned and linear, and since

‖trace(T ∗u)‖ ≤ ‖T ∗u‖π ≤ ‖T
∗‖ ‖u‖π = ‖T‖ ‖f |K‖ ≤ ‖T‖ ‖f‖

for every T ∈ L, we have ‖P‖ ≤ 1.

Recall that limSKα = S for every S ∈ K (see Lemma 2.19 and Remark 2.20)
providing

f(S) = f(lim
α
SKα) = lim

α
f(SKα) = (Pf)(S) ∀f ∈ L∗.

Thus, f − Pf ∈ K⊥ and we conclude that kerP ⊂ K⊥. The operator P is
a projection if K⊥ ⊂ kerP. The latter holds since TKα ∈ K and for f ∈ K⊥
we have

(Pf)(T ) = lim
α
f(TKα) = lim

α
0 = 0.

Projection P preserves elementary functionals since

(P (x∗∗ ⊗ y∗))(T ) = lim
α
x∗∗(K∗αT

∗y∗) = x∗∗(T ∗u∗) = (x∗∗ ⊗ y∗)(T )

for all T ∈ L, x∗∗ ∈ X∗∗, and y∗ ∈ Y ∗.

The case when Y ∗ has the CAP with conjugate operators is analogous to the
previous case.

Let a net (Kα) ⊂ K be such that K∗α −→ I∗Y uniformly on compact subsets of
Y ∗. As in the previous part, for any g ∈ K∗, there exists u =

∑∞
n=1 y

∗
n ⊗ x∗∗n

with
∑∞

n=1 ‖x∗∗n ‖ <∞ and ‖y∗n‖ −→ 0 such that

g(S) =
∞∑
n=1

x∗∗n (S∗y∗n) ∀S ∈ K

and ‖g‖ = ‖u‖π. Let T ∈ L. Then KαT ∈ K and

|trace(T ∗u)− g(KαT )| =

∣∣∣∣∣
∞∑
n=1

[
x∗∗n (T ∗y∗n)− x∗∗n (T ∗K∗αy

∗
n)
]∣∣∣∣∣

≤ sup
n
‖(IY ∗ −K∗α)(y∗n)‖

∞∑
n=1

‖x∗∗n ‖ ‖T ∗‖ .
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Since {0, y∗1, y∗2, . . . } is compact, we have

sup
n
‖(IY ∗ −K∗α)(y∗n)‖ −→

α
0

providing
lim
α
|trace(T ∗u)− g(KαT )| = 0 ∀T ∈ L.

De�ning P : L∗ −→ L∗ by

(Pf)(T ) = lim
α
f(KαT ) = trace(T ∗u), f ∈ L∗, T ∈ L,

where u ∈ Y ∗⊗̂X∗∗ corresponds to f |K ∈ K∗ due to the Feder�Saphar theo-
rem, we can conclude the proof as in the previous part.

In the sequel, we shall need the fact that in many important cases, the ideal
of compact operators enjoys the unique ideal property with respect to ideal
projections preserving elementary functionals.

Proposition 4.7. Let X and Y be Banach spaces. Let L be a closed subspace
of L(X, Y ) containing K := K(X, Y ). If X∗∗ or Y ∗ has the Radon�Nikodým
property, then for K in L there is at most one ideal projection preserving
elementary functionals.

Proof. Let Q and P be ideal projections on L∗ preserving elementary func-
tionals with kerQ = kerP = K⊥. Let Φ : K∗ −→ ranQ and Ψ : K∗ −→ ranP
be the corresponding isometric isomorphisms such that Pf = Φ(f |K) and
Qf = Ψ(f |K), where f ∈ L∗ (see Lemma 2.21). Therefore, we need to prove
that

Φg = Ψg ∀g ∈ K∗.

The desired equality is immediate from the fact that

K∗ = span{(x∗∗ ⊗ y∗)|K : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ ∈ L∗}

(see Theorem 4.3) and the equality

Φ((x∗∗ ⊗ y∗)|K) = P (x∗∗ ⊗ y∗) = x∗∗ ⊗ y∗ = Q(x∗∗ ⊗ y∗) = Ψ((x∗∗ ⊗ y∗)|K)

which holds for all x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗.

De�nition 4.8. The dual weak operator topology on L(X, Y ) is de�ned by
the functionals A 7−→ x∗∗(A∗y∗), y∗ ∈ Y ∗, x∗∗ ∈ X∗∗.
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Clearly the dual weak operator topology is not weaker than the weak operator
topology which is de�ned by the functionals A 7−→ y∗(Ax), y∗ ∈ Y ∗, x ∈ X.
However, under the assumption of the Radon�Nikodým property, we obtain
from convergence in the dual weak operator topology, the convergence in the
weak topology induced by the projection preserving elementary functionals.

Proposition 4.9. Let X and Y be Banach spaces, and suppose that X∗∗ or
Y ∗ has the Radon�Nikodým property. Let L be a closed subspace of L(X, Y )
containing K := K(X, Y ), and suppose that K is an ideal in L with respect to
an ideal projection P preserving elementary functionals. If for an operator
T ∈ L there exists a bounded net (Tα) ⊂ L such that Tα −→ T in the dual
weak operator topology, then

(Pf)(Tα) −−→
α

(Pf)(T ) ∀f ∈ L∗.

Proof. As in the previous proof, we shall apply the fact that span{(x∗∗ ⊗
y∗)|K : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ ∈ L∗} is dense in K∗ (see Theo-
rem 4.3). Using the associated isomorphism Φ : K∗ −→ ranP satisfying
Φ(f |K) = Pf, f ∈ L∗ (see Lemma 2.21), and that P preserves the elemen-
tary functionals, we get that span{x∗∗ ⊗ y∗ : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗} ⊂ ranP is
dense in ranP ⊂ L∗.

Every A ∈ L can be viewed as an element of (ranP )∗ with the same norm,
de�ning

〈A, h〉 = h(A), h ∈ ranP.

Since the net (Tα) is bounded and for all x∗∗ ∈ X∗∗, y∗ ∈ Y ∗,

〈Tα, x∗∗ ⊗ y∗〉 = (x∗∗ ⊗ y∗)(Tα)

= x∗∗(T ∗αy
∗) −−→

α
x∗∗(T ∗y∗)

= 〈T, x∗∗ ⊗ y∗〉,

we have 〈Tα, h〉 −→α 〈T, h〉 for all h ∈ ranP. This means that (Pf)(Tα) −→α

(Pf)(T ) for all f ∈ L∗.

Proposition 4.9 extends Lemma 1.2 of [54] from the case of the Johnson
projection (involving the shrinking MCAI assumptions for X or Y ) to an
arbitrary ideal projection preserving elementary functionals.



4.3 M(r, s)-ideals of compact operators and

the ideal projection preserving elementary

functionals

We shall apply Proposition 4.9 to deduce the following criteria for M(r, s)-
ideals of compact operators with respect to the ideal projection preserving
elementary functionals. The result will be needed in Section 4.6.

Theorem 4.10. Let X and Y be Banach spaces, and suppose that X∗∗ or
Y ∗ has the Radon�Nikodým property. Let L be a closed subspace of L(X, Y )
containing K := K(X, Y ), and suppose that K is an ideal in L with respect
to an ideal projection P preserving elementary functionals. Let r ≤ 1 and s
be positive numbers. If for every operator T ∈ SL there exists a bounded net
(Tα) ⊂ K such that Tα −→ T in the dual weak operator topology, then the
following assertions are equivalent.

(a) K is an M(r, s)-ideal in L with respect to P .

(b) For every ε > 0, S ∈ BK, T ∈ BL, and every index α (in the corre-
sponding net (Tα)), there exists

K ∈ conv{Tβ : β ≥ α}

such that
‖rS + s(T −K)‖ ≤ 1 + ε.

(c) For every S ∈ SK and T ∈ SL, there exists a net (Kν) ⊂ K such that
Kν −→ T in the dual weak operator topology and

lim sup
ν
‖rS + s(T −Kν)‖ ≤ 1.

Proof. (a)⇒ (b). This implication follows from a general M(r, s)-inequality
criterion (see [21, Proposition, (a) ⇒ (b)]. If the conclusion is false, then
there are ε > 0, S ∈ BK, T ∈ BL, and α such that for C := conv{Tβ : β ≥ α},
we have

sC ∩B(rS + sT, 1 + ε) = ∅,
where B(rS+sT, 1+ε) is the open ball with center rS+sT and radius 1+ε.
By the Hahn�Banach theorem, there exists f ∈ SL∗ such that

Re f(rS + sT )− (1 + ε) = inf{Re f(U) : U ∈ B(rS + sT, 1 + ε)}
≥ sRe f(K) = sRePf(K) ∀K ∈ C,

56



because C ⊂ K and f − Pf ∈ kerP = K⊥. Hence,

1 + ε ≤ Re f(rS + sT )− sRePf(K)

= rRePf(S) + sRe(f − Pf)(T ) + sRePf(T −K)

≤ 1 + sRePf(T −K) ∀K ∈ C.

Since Pf(T ) = limα Pf(Tα) (see Proposition 4.9), this implies that ε ≤ 0, a
contradiction.

(b)⇒ (c). Consider the set of all pairs ν = (ε, α), where ε > 0 and where (Tα)
corresponds to T , directed in the natural way, and chooseKν ∈ conv{Tβ : β ≥
α} from condition (b).

(c) ⇒ (a). Let us �x f ∈ L∗ and ε > 0. Recalling that ‖Pf‖ = ‖f |K‖ (see
Lemma 2.21), we choose S ∈ SK and T ∈ SL so that

r‖Pf‖+ s‖f − Pf‖ − ε ≤ rf(S) + s(f − Pf)(T ).

Let (Kν) be given by (c). By passing to a subnet, we may assume that (Kν)
is bounded. By Proposition 4.9, (Pf)(T ) = limν(Pf)(Kν) = limν f(Kν),
because Kν ∈ K and Pf − f ∈ kerP = K⊥. It follows that

r‖Pf‖+ s‖f − Pf‖ − ε ≤ rf(S) + sf(T )− s lim
ν
f(Kν)

= lim
ν
f(rS + s(T −Kν))

≤ ‖f‖ lim sup
ν
‖rS + s(T −Kν)‖

≤ ‖f‖.

Historically, for M -ideals, conditions similar to (b) and (c) of Theorem 4.10
were �rst considered in [37, Proposition 2.8], [58, Theorem 3.1 and Remark],
and [47, proof of Theorem 2].

4.4 Property M ∗(r, s) for operators

In [32, Section 6], an operator version of property (M) was introduced and
studied (see also [27] and [29] for applications of this property). We need to
extend its (M∗) prototype as follows.
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De�nition 4.11. Let X and Y be Banach spaces, and let r, s ∈ (0, 1]. We
say that an operator T ∈ BL(X,Y ) has property M∗(r, s) if

lim sup
ν
‖rx∗ + sT ∗y∗ν‖ ≤ lim sup

ν
‖y∗ + y∗ν‖,

whenever x∗ ∈ X∗, y∗ ∈ Y ∗ satisfy ‖x∗‖ ≤ ‖y∗‖, and (y∗ν) ⊂ Y ∗ is a bounded
net converging weak∗ to null in Y ∗.

If Y is separable, then T ∈ BL(X,Y ) has propertyM∗(r, s) if and only if T has
the sequential version of property M∗(r, s) (i.e., the nets (y∗ν) being replaced
with the weak∗ null sequences (y∗n)). This can be easily checked using the
fact that the bounded subsets of Y ∗ are weak∗ metrizable.

Clearly, an operator T has property (M∗) if and only if T has property
M∗(1, 1), and a Banach space X has property M∗(r, s) if and only if its
identity operator IX has property M∗(r, s). A much more general notion,
namely an operator having propertyM∗(a,B, c), was introduced and studied
in [49] (see also [48]). As in the case of spaces, propertyM∗(r, s) for operators
is precisely property M∗(s, {−s}, r).

PropertiesM∗(r, s) for spaces and operators are related similarly to the (M∗)
case (see Lemma 2.14 part 2).

Proposition 4.12. Let X and Y be Banach spaces, and let r1, s1, r2, s2 ∈
(0, 1]. If X has propertyM∗(r1, s1) and Y has propertyM∗(r2, s2), then every
T ∈ BL(X,Y ) has property M

∗(r1r2, s1s2).

Proof. Take x∗ ∈ X∗, y∗ ∈ Y ∗ satisfying ‖x∗‖ ≤ ‖y∗‖, and let u∗α = x∗ and
v∗α = y∗ for every α in Lemma 3.11 part 2.

Proposition 4.13. Let X and Y be Banach spaces, and let r, s ∈ (0, 1]. Let
L be a closed subspace of L(X, Y ) containing K := K(X, Y ). If an operator
T ∈ BL has property M∗(r, s) and there is a net (Tα) ⊂ K such that T ∗α −→
T ∗ strongly, then

lim sup
α
|f(rS + s(T − Tα))| ≤ 1

for all S ∈ BK and f ∈ BX∗∗ ⊗BY ∗
weak∗ ⊂ L∗.

Proof. Let f = w∗- limx∗∗ν ⊗ y∗ν , i.e., x
∗∗
ν (A∗y∗ν) −→ f(A), A ∈ L, with

x∗∗ν ∈ BX∗∗ , y∗ν ∈ BY ∗ . By passing to a subnet, we may assume that (y∗ν)
converges weak∗ to some y∗ ∈ BY ∗ . Property M∗(r, s) implies that

lim sup
ν
‖rS∗y∗ + sT ∗y∗ν − sT ∗y∗‖ ≤ lim sup

ν
‖y∗ν‖ ≤ 1.
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Hence, for any �xed α,

|f(rS + s(T − Tα))| = lim
ν
|x∗∗ν ((rS + s(T − Tα))∗y∗ν)|

≤ lim sup
ν
‖(rS + s(T − Tα))∗y∗ν‖

≤ lim sup
ν

(
‖rS∗y∗ν − rS∗y∗‖

+ ‖rS∗y∗ + sT ∗y∗ν − sT ∗y∗‖

+ ‖sT ∗y∗ − sT ∗αy∗‖+ ‖sT ∗αy∗ν − sT ∗αy∗‖
)

≤ 1 + ‖sT ∗y∗ − sT ∗αy∗‖,

which implies

lim sup
α
|f(rS + s(T − Tα))| ≤ 1.

In the sequential case in Proposition 4.13, one may go further, by applying the
following vector-valued version of Simons's inequality due to [33], to obtain
a similar norm condition: see Lemma 4.15 below.

Lemma 4.14 (see [33, Corollary 4] and its proof). Let X and Y be Banach
spaces. Let L be a closed subspace of L(X, Y ) and let (An) be a bounded
sequence in L. If

lim sup
n

Re f(An) ≤ λ

for some λ ≥ 0 and for all f ∈ SX ⊗ SY ∗
weak∗ ⊂ L∗, then there exists Bn ∈

conv{An, An+1, . . . } such that

lim sup
n
‖Bn‖ ≤ λ.

Lemma 4.15. Let X and Y be Banach spaces, and let r, s ∈ (0, 1]. Let L
be a closed subspace of L(X, Y ) containing K := K(X, Y ). If T ∈ BL has
property M∗(r, s) and there is a sequence (Tn) ⊂ K such that T ∗n −→ T ∗

strongly, then for all S ∈ BK there exists Sn ∈ conv{Tn, Tn+1, . . . } such that

lim sup
n
‖rS + s(T − Sn)‖ ≤ 1.
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4.5 Improved parameters of M(r, s)-ideals for

the separable case

The next theorem is one of our main results. As we shall see in Section 4.8,
in the M -ideal case, its Corollary 4.28 complements [32, Theorem 6.3], and
its Corollaries 4.29 and 4.31 improve the dual version of [32, Theorem 6.3;
see p. 171] and [27, Theorem 2.4].

Theorem 4.16. Let X and Y be Banach spaces. Suppose that X∗∗ or Y ∗

has the Radon�Nikodým property and that X or Y has a shrinking compact
approximating sequence. Let L be a closed subspace of L(X, Y ) containing
K := K(X, Y ) and let r, s ∈ (0, 1]. If every T ∈ SL has property M∗(r, s),
then K is an M(r, s)-ideal in L with respect to an ideal projection preserving
elementary functionals.

Remark 4.17. The assumptions enforce X∗ (and X) or Y ∗ (and Y ) to be
separable. In the latter case, Y ∗ automatically has the Radon�Nikodým
property and, as was mentioned before, property M∗(r, s) for operators is
equivalent to its sequential version (see Section 4.4).

Proof of Theorem 4.16. By Example 4.6, K is an ideal in L with respect to
an ideal projection P preserving elementary functionals.

For every operator T ∈ SL, let us de�ne Tn = TKn (respectively, Tn = KnT )
if (Kn) is the shrinking compact approximating sequence of X (respectively,
of Y ). Then clearly T ∗n −→ T ∗ strongly. Let S ∈ SK. By Lemma 4.15, there
exists Sn ∈ conv{Tn, Tn+1, . . . } such that

lim sup
n
‖rS + s(T − Sn)‖ ≤ 1.

Since also S∗n −→ T ∗ strongly, by Theorem 4.10, (c)⇒ (a), K is an M(r, s)-
ideal in L with respect to P .

Now, using Theorem 4.16 and Proposition 4.12, we can prove the desired
improvement of Corollary 3.22 for the case if one of the Banach spaces X or
Y is separable.

Theorem 4.18. Let X and Y be Banach spaces such that X or Y is separa-
ble. Let r1, s1, r2, s2 ∈ (0, 1] satisfy r1 + s1/2 > 1 and r2 + s2/2 > 1. If K(X)
is an M(r1, s1)-ideal in L(X) and K(Y ) is an M(r2, s2)-ideal in L(Y ), then
K(X, Y ) is an M(r1r2, s1s2)-ideal in L(X, Y ).
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Proof. If r + s/2 > 1 and K(X) is an M(r, s)-ideal in L(X), then, by [7,
Lemma 2.3 and Proposition 2.1], X∗ = span(w∗- sexpBX∗) (i.e., the weak∗

strongly exposed points of BX∗ span a norm dense subspace of X∗) and X∗

has the Radon�Nikodým property. Therefore, by [7, Proposition 3.2] and
[49, Theorem 4.1, 1◦ ⇒ 2◦], X has the MCAP and propertyM∗(r, s). Hence,
in our case, both X and Y have the MCAP, X has property M∗(r1, s1),
and Y has property M∗(r2, s2). From Proposition 4.12 we get that every
T ∈ BL(X,Y ) has property M∗(r1r2, s1s2).

We can now apply Theorem 4.16 to show that K(X, Y ) is an M(r1r2, s1s2)-
ideal in L(X, Y ). Indeed, as we saw above, Y ∗ has the Radon�Nikodým
property. If, e.g., X is separable, since X has the MCAP, X clearly has a
metric compact approximating sequence (Kn)∞n=1. Then (Kn)∞n=1 is shrinking
because X∗ = span(w∗- sexpBX∗) (this fact is well-known and can be easily
checked).

The proof of Theorem 4.18 clearly shows that if Theorem 4.16 held true
also in the non-separable case (i.e., with the assumption �X or Y has a
shrinking compact approximating sequence� being replaced by �X∗ or Y ∗

has the BCAP with conjugate operators�), then in Theorem 4.18 the sepa-
rability assumption (�X or Y is separable�) could be dropped. However, we
do not know whether the non-separable case of Theorem 4.16 is true. Nev-
ertheless, in Section 4.7, we shall establish the general non-separable case of
Theorem 4.18 (see Theorem 4.23) using di�erent methods.

4.6 M(r, s)-ideals of compact operators are sep-

arably determined

It is well-known that M -ideals of compact operators are separably deter-
mined [47]: if a Banach space X has the MCAP and K(E) is an M-ideal
in L(E) for all separable closed subspaces E of X having the MCAP, then
K(X) is an M-ideal in L(X). This theorem and its proof have served as a
prototype to obtain similar results on certain general approximations of the
identity [49] (see also [48]) and ideals of compact operators having Phelps's
uniqueness property U [54]. The next result shows that M(r, s)-ideals of
compact operators are also separably determined. For its proof, we shall
develop ideas from [47] and [49, proofs of Lemmas 3.2 and 4.2] but (following
an idea in [54, proofs of Theorems 2.2 and 2.3]) there are no precise ε-nets
of certain compact subsets. One inconvenience to be overcome is that in
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the M(r, s)-ideal case, unlike the M -ideal and property U cases, the ideal
projection need not be unique.

De�nition 4.19. If a Banach spaceX is anM(r, s)-ideal inX∗∗ with respect
to the canonical ideal projection on X∗∗∗, then we say that X satis�es the
M(r, s)-inequality .

Theorem 4.20. Let X and Y be Banach spaces. Let positive numbers r ≤ 1
and s satisfy r + s > 1, and let %, σ ∈ (0, 1] satisfy % + σ > 1. Suppose
that Y satis�es the M(%, σ)-inequality and has the MCAP. If K(E,F ) is
an M(r, s)-ideal in L(E,F ) with respect to an ideal projection preserving
elementary functionals for all separable closed subspaces E of X and F of Y
such that F has the MCAP, then K(X, Y ) is an M(r, s)-ideal in L(X, Y ).

For proving Theorem 4.20, we shall need the following auxiliary result.

Proposition 4.21 (see [7, Proposition 2.1] and [49, proof of Corollary 1.7]).
Let r, s ∈ (0, 1]. If a Banach space X satis�es the M(r, s)-inequality (in
particular, if X has property M∗(r, s)) for r+s > 1, then X∗ has the Radon�
Nikodým property and every MCAI of X is shrinking.

Proof of Theorem 4.20. We are going to apply Theorem 4.10. Let (Kα) be an
MCAI of Y . By Proposition 4.21, (Kα) is shrinking and Y ∗ has the Radon�
Nikodým property. Further, K(X, Y ) is an ideal in L(X, Y ) with respect to
an ideal projection preserving elementary functionals (see Example 4.6) and
KαT −→ T in the dual weak operator topology for every T ∈ BL(X,Y ).

Assume for contradiction that K(X, Y ) is not an M(r, s)-ideal in L(X, Y ).
Then condition (b) of Theorem 4.10 is not satis�ed: there are ε > 0, S ∈
BK(X,Y ), T ∈ BL(X,Y ), and α0 such that

‖rS + s(T −KT )‖ > 1 + 3ε ∀K ∈ conv{Kα : α ≥ α0}.

We shall de�ne separable closed subspaces E of X and F of Y such that
F has the MCAP, but K(E,F ) cannot be an M(r, s)-ideal in L(E,F ) with
respect to any ideal projection preserving elementary functionals. This will
contradict the assumption and complete the proof.

To begin, let E0 = {0} ⊂ X and F0 = {0} ⊂ Y . Pick x0 ∈ BX such that

‖(rS + s(T −Kα0T ))x0‖ > ‖rS + s(T −Kα0T )‖ − ε > 1 + 2ε.

Denote E1 = E0∪{x0} and F1 = F0∪Kα0(F0)∪S(E1)∪T (E1). Then choose
α1 ≥ α0 such that

‖Kα1y − y‖ < 1 ∀y ∈ F1.
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Also choose a �nite ε/s-net Λ1 in conv{Kα0 , Kα1}, and for every L ∈ Λ1 pick
xL ∈ BX such that

‖(rS + s(T − LT ))xL‖ > ‖rS + s(T − LT )‖ − ε > 1 + 2ε.

Denote
E2 = E1 ∪ {xL : L ∈ Λ1}

and
F2 = F1 ∪Kα0(F1) ∪Kα1(F1) ∪ S(E2) ∪ T (E2).

Continuing similarly, we obtain, for all n ∈ N, an index αn, a �nite ε/s-net
Λn in conv{Kα0 , . . . , Kαn}, a �nite subset {xL : L ∈ Λn} ⊂ BX such that

‖(rS + s(T − LT ))xL‖ > 1 + 2ε, L ∈ Λn,

and �nite subsets En ⊂ X and Fn ⊂ Y such that

En+1 = En ∪ {xL : L ∈ Λn},

Fn+1 = Fn ∪Kα0(Fn) ∪ . . . ∪Kαn(Fn) ∪ S(En+1) ∪ T (En+1),

and
‖Kαny − y‖ <

1

n
∀y ∈ Fn.

Denote E = span
⋃∞
n=1En and F = span

⋃∞
n=1 Fn. It can be easily seen that

S(E) ⊂ F , T (E) ⊂ F , Kαn(F ) ⊂ F for all n ∈ N, and Kαny −→ y for all
y ∈ F . Consider S|E ∈ BK(E,F ), T |E ∈ BL(E,F ), and Kαn|F ∈ BK(F ).

Since Y satis�es the M(%, σ)-inequality, also F does (this fact, which is sim-
ilar to that of the M -embedded spaces (see, e.g., [23, p. 111]), was observed
in [4, Proposition 2.1]). Consequently, as in the beginning of the proof, we
are in position to apply Theorem 4.10 to K(E,F ) in L(E,F ). According to
Theorem 4.10, if K(E,F ) were an M(r, s)-ideal in L(E,F ) with respect to
an ideal projection preserving elementary functionals, then there would exist
K ∈ conv{Kα1 , . . . , Kαn}, for some n ∈ N, such that

‖(rS + s(T −KT ))|E‖ ≤ 1 + ε.

Let L ∈ Λn satisfy ‖K − L‖ < ε/s. Then

1 + 2ε < ‖(rS + s(T − LT ))|E‖
≤ ‖(rS + s(T −KT ))|E‖+ ε

≤ 1 + 2ε,

a contradiction.
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Remark 4.22. From the proof of Theorem 4.20 it is clear that the assump-
tion �Y satis�es the M(%, σ)-inequality with % + σ > 1� can be replaced by
any assumption guaranteeing that Y ∗ has the Radon�Nikodým property and
every MCAI of any closed subspace F of Y is shrinking.

4.7 Improved parameters of M(r, s)-ideals for

the general case

Let us now turn to the promised main results of the present chapter.

Theorem 4.23. Let X and Y be Banach spaces. Assume that Y has the
MCAP. Let r1, s1, r2, s2 ∈ (0, 1] satisfy r1 + s1 > 1 and r2 + s2 > 1. If X
has property M∗(r1, s1) and Y has property M∗(r2, s2), then K(X, Y ) is an
M(r1r2, s1s2)-ideal in L(X, Y ).

Proof. Property M∗(r2, s2) of Y implies that Y satis�es the M(r2, s2)-
inequality (see Proposition 4.21). Let E ⊂ X and F ⊂ Y be separable closed
subspaces, and assume that F has the MCAP. PropertyM∗(r, s) is inherited
by closed subspaces (see [49, p. 2804]). Hence, E has propertyM∗(r1, s1) and
F has property M∗(r2, s2). From Proposition 4.12, we know that then every
T ∈ BL(E,F ) has property M∗(r1r2, s1s2). Since F is separable and has the
MCAP, it has a metric compact approximating sequence which is shrinking,
because F satis�es the M(r2, s2)-inequality (see Proposition 4.21). It follows
that F ∗ is separable. Applying Theorem 4.16, we get that K(E,F ) is an
M(r1r2, s1s2)-ideal in L(E,F ) with respect to an ideal projection preserving
elementary functionals. Hence, according to Theorem 4.20, K(X, Y ) is an
M(r1r2, s1s2)-ideal in L(X, Y ).

A basic theorem of the theory of M -ideals of compact operators asserts that
K(X) is an M-ideal in L(X) if and only if X has property (M∗) and the
MCAP. It was established in [32] for separable X, in [34] for re�exive X,
and extended to arbitrary (non-separable) X in [47]. A self-contained and
�the shortest known proof� (we quote [39] here) is given in [49], another
self-contained proof based on a new structure theorem for Borel probabil-
ity measures can be found in a very recent paper [39]. The above theo-
rem together with Theorem 2.28 immediately yields a more general result:
K(X, Y ) is an M-ideal in L(X, Y ) whenever X and Y have property (M∗),
and Y has the MCAP. A self-contained measure-theoretic proof of this result
is given in [39]. Keeping in mind that property (M∗) is precisely property
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M∗(1, 1), Theorem 4.23 contains the latter result as a special case, yielding
another self-contained proof of it. It would be interesting to study whether
the measure-theoretic approach by Nygaard and Põldvere [39] could be used
to give an alternative proof of Theorem 4.23.

For the M -ideal prototype of the next result, see Theorem 2.28.

Corollary 4.24. Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1]
satisfy r1 + s1 > 1 and r2 + s2/2 > 1. If X has property M∗(r1, s1) and
K(Y ) is an M(r2, s2)-ideal in I(Y ), then K(X, Y ) is an M(r1r2, s1s2)-ideal
in L(X, Y ).

Proof. This is immediate from Theorem 4.23 and Lemma 3.14.

Corollary 4.24 improves Theorem 3.19 from parameters r1r
2
2 and s1s

2
2 to

parameters r1r2 and s1s2.

The next theorem, which is one of the main results of the current chapter, is
also immediate from Theorem 4.23 and Lemma 3.14. It improves parameters
of Theorem 3.21.

Theorem 4.25. Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1]
satisfy r1+s1/2 > 1 and r2+s2/2 > 1. If K(X) is anM(r1, s1)-ideal in I(X)
and K(Y ) is an M(r2, s2)-ideal in I(Y ), then K(X, Y ) is an M(r1r2, s1s2)-
ideal in L(X, Y ).

From Theorem 4.25 and Corollary 3.17 we immediately get the desired ex-
tension of Theorem 4.18 to arbitrary (non-separable) spaces. Let us spell it
out.

Theorem 4.26. Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1]
satisfy r1+s1/2 > 1 and r2+s2/2 > 1. If K(X) is anM(r1, s1)-ideal in L(X)
and K(Y ) is an M(r2, s2)-ideal in L(Y ), then K(X, Y ) is an M(r1r2, s1s2)-
ideal in L(X, Y ).

Remark that Theorem 4.26 extends Corollary 2.29 fromM -ideals toM(r, s)-
ideals and improves Corollary 3.22 in the sense of parameters.

Corollary 4.27. Let X be a Banach space and let r, s ∈ (0, 1] satisfy r +
s/2 > 1. If K(X) is an M(r, s)-ideal in I(X), then K(X) is an M(r2, s2)-
ideal in L(X).

Corollary 4.27 improves Corollary 3.23 where the claim is that K(X) is an
M(r3, s3)-ideal in L(X).
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4.8 Applications to the theory of M-ideals

Next, we will make several corollaries from Theorems 4.16, 4.20, and 4.23
which complete and improve some well-known results on M -ideals.

According to a theorem due to Kalton and Werner [32, Theorem 6.3], if X
is Banach space having an unconditional shrinking compact approximating
sequence and Y is a Banach space such that every T ∈ SL(X,Y ) has property
(M), then K(X, Y ) is an M-ideal in L(X, Y ). The following immediate spe-
cial case of our Theorem 4.16 completes the Kalton�Werner theorem showing
that the unconditionality assumption is super�uous if one assumes that Y ∗

has the Radon�Nikodým property and strengthens property (M) up to (M∗).

Corollary 4.28. Let X and Y be Banach spaces. Suppose that X∗∗ or Y ∗

has the Radon�Nikodým property and that X has a shrinking compact ap-
proximating sequence. If every T ∈ SL(X,Y ) has property (M∗), then K(X, Y )
is an M-ideal in L(X, Y ).

The dual version of the Kalton�Werner theorem states (see [32, p. 171] and
[27, pp. 54�55]): if Y is a Banach space having an unconditional shrinking
compact approximating sequence and X is a Banach space such that every
T ∈ SL(X,Y ) has property (M∗), then K(X, Y ) is an M-ideal in L(X, Y ).
The following immediate special case of Theorem 4.16 improves this theorem
showing that the unconditionality assumption is super�uous.

Corollary 4.29. Let X and Y be Banach spaces. Suppose that Y has a
shrinking compact approximating sequence. If every T ∈ SL(X,Y ) has property
(M∗), then K(X, Y ) is an M-ideal in L(X, Y ).

De�nition 4.30. A Banach space Y has property (wM∗) (introduced by
Lima [34]) if

lim sup
ν
‖y∗ν‖ = lim sup

ν
‖2y∗ − y∗ν‖,

whenever y∗ ∈ Y ∗ and (y∗ν) ⊂ Y ∗ is a bounded net converging weak∗ to y∗ in
Y ∗.

Corollary 4.31 below is an improvement of a theorem due to John and Werner
[27, Theorem 2.4]: its assumption that Y has an unconditional shrinking
compact approximating sequence (which easily implies property (wM∗) of
Y ) will be weakened up to the assumption that Y has property (wM∗),
showing, e.g., that there is no need for a separability requirement of Y ∗.

If Y is separable, then again (due to the weak∗ metrizability of bounded
subsets of Y ∗) the sequential version of (wM∗) is equivalent to property
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(wM∗), and the same concerns the property of Y (introduced by John and
Werner [27]) described in the following.

Corollary 4.31. Let 1 < p < ∞ and 1/p + 1/q = 1. Let Y be a Banach
space having property (wM∗) and let

lim sup
ν

(‖y∗‖q + ‖y∗ν‖q)1/q ≤ lim sup
ν

(
‖y∗ + y∗ν‖q + ‖y∗ − y∗ν‖q

2

)1/q

,

whenever y∗ ∈ Y ∗ and (y∗ν) ⊂ Y ∗ is a bounded net converging weak∗ to null
in Y ∗. Then K(`p, Y ) is an M-ideal in L(`p, Y ).

Proof. Based on Corollary 4.28, it is su�cient to show that every T ∈ SL(`p,Y )

has property (M∗).

Let x∗ ∈ `q and y∗ ∈ Y ∗ be such that ‖x∗‖ ≤ ‖y∗‖, and let (y∗ν) ⊂ Y ∗ be a
bounded net such that y∗ν −→ 0 weak∗. Then for every T ∈ SL(`p,Y ),

lim sup
ν
‖x∗ + T ∗y∗ν‖ = lim sup

ν
(‖x∗‖q + ‖T ∗y∗ν‖q)1/q

≤ lim sup
ν

(‖y∗‖q + ‖y∗ν‖q)1/q

≤ lim sup
ν

(
‖y∗ + y∗ν‖q + ‖y∗ − y∗ν‖q

2

)1/q

.

Since Y has property (wM∗),

lim sup
ν
‖y∗ + y∗ν‖ = lim sup

ν
‖y∗ − y∗ν‖.

Hence,
lim sup

ν
‖x∗ + T ∗y∗ν‖ ≤ lim sup

ν
‖y∗ + y∗ν‖.

It is well-known to be true that if Y has property U in its bidual Y ∗∗, then Y ∗

has the Radon�Nikodým property and every MCAI of any closed subspace
F of Y is shrinking (see [50, Corollary 5] and, e.g., [54, Lemma 2.1]).

From Theorem 4.20, by applying Remark 4.22, we obtain the following re-
sult which shows that M -ideals of compact operators K(X, Y ) are separably
determined not only for X = Y but also for distinct spaces X and Y .

Corollary 4.32. Let X and Y be Banach spaces. Suppose that Y has prop-
erty U in its bidual and has the MCAP. If K(E,F ) is an M-ideal in L(E,F )
for all separable closed subspaces E of X and F of Y such that F has the
MCAP, then K(X, Y ) is an M-ideal in L(X, Y ).
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Proof. This is immediate from Theorem 4.20 and Remark 4.22 because M -
ideals enjoy the unique ideal property, and under the assumptions on E
and F , K(E,F ) is an ideal in L(E,F ) with respect to an ideal projection
preserving elementary functionals (see Example 4.5 or 4.6).

Remark 4.33. The prototype of Corollary 4.32 is [54, Theorem 2.3] asserting
that property U of K(X, Y ) in L(X, Y ) is separably determined.

De�nition 4.34. A Banach space X is said to have the λ-commuting BCAP
(with λ ≥ 1) if X has a CAI (Kα) such that KαKβ = KβKα for all indexes
α and β, and lim sup ‖Kα‖ ≤ λ.

It follows from [52, Theorem 4.4] that X has the MCAP whenever X satis�es
the M(r, s)-inequality and has the λ-commuting BCAP with λ < r + s.
Therefore we can make the following essential remark.

Remark 4.35. The assumption of the MCAP of Y in Theorem 4.23 (and
also in Theorem 4.20) can be replaced by the assumption that Y has the
λ-commuting BCAP with λ < %+ σ (and λ < r2 + s2, respectively).

Both results described in Remark 4.35 are new forM -ideals. Since a corollary
of Theorem 4.23 represents a version of the basic theorem of the theory of
M -ideals of compact operators, let us spell it out as follows.

Corollary 4.36. Let X and Y be Banach spaces having property (M∗). If
Y has the λ-commuting BCAP with λ < 2, then K(X, Y ) is an M-ideal
L(X, Y ).

Remark that the special case of Corollary 4.36 when X = Y is proven in [52,
Corollary 4.10].

4.9 Applications to the general structure of Ba-

nach spaces

Theorem 4.20 allows us to conclude some results concerning the general struc-
ture of Banach spaces.

There exist in�nite-dimensional Banach spacesX and Y for whichK(X, Y ) =
L(X, Y ). This is the case, for instance, when X = `p, Y = `q with p > q
(Pitt's theorem); X = `p, Y = d(w, q) with p > q and w 6∈ `p/(p−q) [44] (other
Pitt's type theorems for Lorentz and Orlicz sequence spaces can be found in
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[2]). A consequence of Theorem 4.20 is that the property K(X, Y ) = L(X, Y )
is also separably determined.

Corollary 4.37. Let X and Y be Banach spaces. Suppose that Y has prop-
erty U in its bidual and has the MCAP. If K(E,F ) = L(E,F ) for all sepa-
rable closed subspaces E of X and F of Y such that F has the MCAP, then
K(X, Y ) = L(X, Y ).

Proof. Apply Remark 4.22 and Theorem 4.20 to any s > 1.

It is a well-known consequence of the Eberlein��mulian theorem that a Ba-
nach space is re�exive whenever all its separable closed subspaces are (for an
alternative easy proof see [21, Corollary 2]). The next corollary shows that
for L(X, Y ) to be re�exive, it su�ces that the separable subspaces of the
form K(E,F ) are re�exive.

Corollary 4.38. Let X and Y be re�exive Banach spaces. Suppose that Y
has the CAP. If K(E,F ) is re�exive for all separable closed subspaces E of
X and F of Y such that F has the CAP, then L(X, Y ) is re�exive.

Proof. It is known (see [9] or [16]) that a re�exive Banach space with the
CAP actually has the MCAP. Since F has the CAP, by [16, Corollary 1.3],
K(E,F )∗∗ = L(E,F ), and by this identi�cation, jK(E,F )(T ) = T , for all
T ∈ K(E,F ). Since K(E,F ) is re�exive, we have K(E,F ) = L(E,F ). By
Corollary 4.37, K(X, Y ) = L(X, Y ). Hence, according to a classical theorem
proved independently by Heinrich [24] and Kalton [30], L(X, Y ) is re�exive.
Alternatively, we have as above, K(X, Y )∗∗ = L(X, Y ) = K(X, Y ), meaning
that K(X, Y ) is re�exive, and also so is L(X, Y ).
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Chapter 5

u-Ideals

Let us apply now the methods developed for M(r, s)-ideals in Chap-
ter 4 to the case of u-ideals. Similarly to M- and M(r, s)-ideals, we will
prove that u-ideals are separably determined. However, the property
of creating new u-ideals of compact operators behaves somewhat dif-
ferently compared with M- and M(r, s)-ideals. This chapter is based
on [26]

5.1 The de�nition

Let us start with introducing the notion.

De�nition 5.1. Let L be a Banach space. A closed subspace K ⊂ L is said
to be a u-ideal in L if K is an ideal in L with respect to some ideal projection
P satisfying

‖IL∗ − 2P‖ = 1.

Equivalently, it can be said that for K⊥ there exists a closed subspaceM⊂
L∗ such that K⊥ ⊕M = L∗ and

‖p+ q‖ = ‖p− q‖

for every p ∈ K⊥, q ∈M.

Note that if K is an M -ideal in L, then K is a u-ideal in L. Indeed, in the
case of M -ideal we have for every p ∈ K⊥ and q ∈M the norm condition

‖p+ q‖ = ‖p‖+ ‖q‖ ,
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but also
‖p− q‖ = ‖p‖+ ‖q‖ .

Thus, u-ideals are a generalization of M -ideals.

The notion of a u-ideal was introduced by P. G. Casazza and N. J. Kalton
in [8]. The letter �u� comes from the word �unconditional� and refers to
the existence of a special kind of unconditionally converging series (see [8,
Theorem 3.8] and [8, Theorem 3.9]).

5.2 u-Ideals and the ideal projection

Let L be a closed subspace of L(X, Y ) containing K := K(X, Y ). If (Kα) is
a shrinking MCAI of X (respectively, a shrinking MCAI of Y ), then due to
Lemma 2.23, K is an ideal in L with respect to the Johnson projection P .

Note that P satis�es the condition ‖IL∗− 2P‖ = 1 whenever we assume that
lim supα ‖IX − 2Kα‖ ≤ 1 (respectively, lim supα ‖IY − 2Kα‖ ≤ 1). Indeed,
let (Kα) be a shrinking MCAI of X (respectively, a shrinking MCAI of Y ),
then for every ε > 0 there exist f ∈ SL∗ and T ∈ SL such that

‖IL∗ − 2P‖ − ε ≤ |f(T )− 2 lim
α
f(TKα)|

= | lim
α
f(T − 2TKα)|

≤ ‖f‖ ‖T‖ lim sup
α
‖IX − 2Kα‖ ≤ 1

(respectively,

‖IL∗ − 2P‖ − ε ≤ |f(T )− 2 lim
α
f(KαT )| ≤ 1).

Thus, we can state that K is a u-ideal in L if there exists a shrinking MCAI
(Kα) either in X or in Y such that lim supα ‖I−2Kα‖ ≤ 1, where I denotes,
respectively, the identity operator of X or of Y . Following [40, proof of
Theorem 1] or [43, Theorem 1.3], we can formulate the result even in more
general terms.

Lemma 5.2 (cf. [40, proof of Theorem 1] or [43, Theorem 1.3]). Let L be a
Banach space and let K be a closed subspace of L. Suppose that (Uα) ⊂ L(L)
is a net with

lim sup
α
‖Uα‖ ≤ 1
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and
ranUα ⊂ K ∀α, lim

α
g(Uαy) = g(y) ∀y ∈ K, ∀g ∈ K∗.

Then there exists a projection P ∈ L(L∗) with ‖P‖ = 1 and kerP = K⊥ such
that

(Pf)(x) = lim
β
f(Uα(β)x), f ∈ L∗, x ∈ L,

for some subnet (Uα(β)) of (Uα). Moreover, if lim supα ‖IL − 2Uα‖ ≤ 1, then
‖IL∗ − 2P‖ ≤ 1.

Remark 5.3. If we assume that lim supα ‖IL − 2Uα‖ ≤ 1, then due to the
estimate

2 ‖Uα‖ ≤ ‖2Uα − IL‖+ 1

we can conclude that lim supα ‖Uα‖ ≤ 1.

Proof of Lemma 5.2. Since lim supα ‖Uα‖ ≤ 1, we may assume without loss
of generality that supα ‖Uα‖ < ∞. By the Banach�Alaoglu theorem (see
Remark 2.25), we can extract from (Uα) a subnet (Uα(β)) which converges
weak∗ in L(L)∗∗.

Fix x ∈ L and f ∈ L∗. Let us de�ne

ϕ(A) = f(Ax), A ∈ L(L).

Clearly ϕ ∈ L(L)∗. Since ranUα(β) ⊂ K for all β, we have

ϕ(Uα(β)) = f(Uα(β)x) = g(Uα(β)x),

where g = f |K. The limit limβ ϕ(Uα(β)) exists because (Uα(β)) converges
weak∗ in L(L)∗∗ and thus, also the limit

lim
β
f(Uα(β)x) = lim

β
ϕ(Uα(β))

exists. If we de�ne

(Pf)(x) = lim
β
f(Uα(β)x), f ∈ L∗, x ∈ L,

then P ∈ L(L∗), and ‖P‖ ≤ 1 since for every f ∈ L∗ and x ∈ L

|(Pf)(x)| = | lim
β
f(Uα(β)x)| ≤ lim sup

β
‖f‖

∥∥Uα(β)

∥∥ ‖x‖ ≤ ‖f‖ ‖x‖ .
We have for every f ∈ L∗ and y ∈ K

(f − Pf)(y) = f(y)− lim
β
g(Uα(β)y) = g(y)− g(y) = 0,
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where g = f |K and thus, f − Pf ∈ K⊥. The operator P is a projection with
kerP = K⊥ if K⊥ ⊂ kerP. The latter holds since ranUα(β) ⊂ K for all β and

(Pf)(x) = lim
β
f(Uα(β)x) = lim

β
0 = 0 ∀x ∈ L

for all f ∈ K⊥.

Let us assume that lim supα ‖IL − 2Uα‖ ≤ 1. Then, in the same way as in
the beginning of this section, for every ε > 0 there exist f ∈ SL∗ and x ∈ SL
such that

‖IL∗ − 2P‖ − ε ≤ |f(x)− 2 lim
β
f(Uα(β)x)| ≤ 1.

Remark 5.4. Johnson's lemma (see Lemma 2.23) is a special case of
Lemma 5.2. Indeed, in the �rst part of Lemma 2.23 we assume the exis-
tence of a net (Kα) ⊂ BK(X) such that

K∗αx
∗ −→ x∗ ∀x∗ ∈ X∗.

Let us de�ne
Uα(A) = AKα, A ∈ L(X, Y ).

Then clearly Uα ∈ L(L(X, Y )) and ranUα ⊂ K(X, Y ) for all α. Since ‖Kα‖ ≤
1 for all α, we have

‖Uα‖ = sup
‖A‖=1

‖Uα(A)‖ = sup
‖A‖=1

‖AKα‖ ≤ sup
‖A‖=1

‖A‖ ‖Kα‖ ≤ 1 ∀α.

Moreover, due to Lemma 2.19, for all S ∈ K(X, Y ) and g ∈ K(X, Y )∗, we
have

lim
α
g(Uα(S)) = lim

α
g(SKα) = g(lim

α
SKα) = g(S).

For the second part of Lemma 2.23, where (Kα) ⊂ BK(Y ) and

Kαy −→ y ∀y ∈ Y,

we de�ne
Uα(A) = KαA, A ∈ L(X, Y ).

Then similarly Uα ∈ L(L(X, Y )), ranUα ⊂ K(X, Y ) and ‖Uα‖ ≤ 1 for all α,
and for all S ∈ K(X, Y ), g ∈ K(X, Y )∗ we have limα g(Uα(S)) = limα g(S).
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Corollary 5.5. Let X and Y be Banach spaces, and let L be a closed subspace
of L(X, Y ) containing K := K(X, Y ). If X∗ has the CAP with conjugate
operators and

lim sup
α
‖IX − 2Kα‖ ≤ 1,

where (Kα) is a shrinking CAI of X, then K is a u-ideal in L.

Proof. Let us de�ne
Uα(A) = AKα, A ∈ L,

where (Kα) is a shrinking CAI of X. Then Uα ∈ L(L), ranUα ⊂ K for all α,
and limα g(UαS) = g(S) for all g ∈ K∗, S ∈ K (see Remark 5.4). We have

‖IL − 2Uα‖ = sup
‖A‖=1

‖(IL − 2Uα)(A)‖

= sup
‖A‖=1

‖A− 2AKα‖

≤ sup
‖A‖=1

‖A‖ ‖IX − 2Kα‖

= ‖IX − 2Kα‖

and thus, lim supα ‖IL − 2Uα‖ ≤ 1. Due to Lemma 5.2, K is a u-ideal in
L.

Corollary 5.6. Let X and Y be Banach spaces, and let L be a closed subspace
of L(X, Y ) containing K := K(X, Y ). If Y has the CAP and

lim sup
α
‖IY − 2Kα‖ ≤ 1,

where (Kα) is a CAI of Y , then K is a u-ideal in L.

Proof. Similarly to the proof of Corollary 5.5, we de�ne

Uα(A) = KαA, A ∈ L,

where (Kα) is a CAI of Y . Then also Uα ∈ L(L), ranUα ⊂ K for all α,
limα g(UαS) = g(S) for all g ∈ K∗, S ∈ K, and

lim sup
α
‖IL − 2Uα‖ ≤ lim sup

α
‖IY − 2Kα‖ ≤ 1.

Due to Lemma 5.2, K is a u-ideal in L.

Corollaries 5.5 and 5.6 are essentially known from [8] (see [8, Theorem 3.9]).
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5.3 u-Ideals and the ideal projection preserving

elementary functionals

We can describe u-ideals of compact operators in terms of ideal projections
preserving elementary functionals and bounded nets converging in the dual
weak operator topology as follows.

Theorem 5.7. Let X and Y be Banach spaces, and suppose that X∗∗ or
Y ∗ has the Radon�Nikodým property. Let L be a closed subspace of L(X, Y )
containing K := K(X, Y ), and suppose that K is an ideal in L with respect to
an ideal projection P preserving elementary functionals. If for every operator
T ∈ SL there exists a bounded net (Tα) ⊂ K such that Tα −→ T in the dual
weak operator topology, then the following assertions are equivalent.

(a) K is a u-ideal in L with respect to P .

(b) For every ε > 0, T ∈ BL, and every index α (in the corresponding net
(Tα)), there exists

K ∈ conv{Tβ : β ≥ α}

such that

‖T − 2K‖ ≤ 1 + ε.

(c) For every T ∈ SL, there exists a net (Kν) ⊂ K such that Kν −→ T in
the dual weak operator topology and

lim sup
ν
‖T − 2Kν‖ ≤ 1.

Theorem 5.7 for u-ideals is analogous to Theorem 4.10 for M(r, s)-ideals.

Proof of Theorem 5.7. (a) ⇒ (b). If the conclusion is false, then there are
ε > 0, T ∈ BL, and α such that for C := conv{Tβ : β ≥ α}, we have

2C ∩B(T, 1 + ε) = ∅,

where B(T, 1 + ε) is the open ball with center T and radius 1 + ε. By the
Hahn�Banach theorem, there exists f ∈ SL∗ such that

Re f(T )− (1 + ε) = inf{Re f(U) : U ∈ B(T, 1 + ε)}
≥ Re 2f(K) ∀K ∈ C.
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Since f − Pf ∈ kerP = K⊥ for every f ∈ L∗, we have

Re 2f(K) = Re 2Pf(K) ∀K ∈ C

because C ⊂ K . Hence, by (a),

1 + ε ≤ Re f(T )− Re 2Pf(K)

= Re(f − 2Pf)(T ) + Re 2Pf(T −K)

≤ 1 + Re 2Pf(T −K) ∀K ∈ C.

Since Pf(T ) = limα Pf(Tα) (see Proposition 4.9), this implies that ε ≤ 0, a
contradiction.

(b)⇒ (c). Consider the set of all pairs ν = (ε, α), where ε > 0 and where (Tα)
corresponds to T , directed in the natural way, and chooseKν ∈ conv{Tβ : β ≥
α} from condition (b).

(c) ⇒ (a). Fix ε > 0. Recall that ‖Pf‖ = ‖f |K‖ where f ∈ L∗ (see
Lemma 2.21). We choose f ∈ SL∗ and T ∈ SL so that

‖IL∗ − 2P‖ − ε ≤ (f − 2Pf)(T ).

Let (Kν) be given by (c). By passing to a subnet, we may assume that (Kν)
is bounded. By Proposition 4.9, (Pf)(T ) = limν(Pf)(Kν) = limν f(Kν)
because Kν ∈ K. It follows that

‖IL∗ − 2P‖ − ε ≤ f(T )− 2 lim
ν
f(Kν)

= lim
ν
f(T − 2Kν)

≤ ‖f‖ lim sup
ν
‖T − 2Kν‖

≤ 1.

Thus, K is a u-ideal in L.

Remark 5.8. Historically condition similar to (c) of Theorem 5.7 were �rst
considered in [49, Theorem 4.1, 5◦].

Corollary 5.9. Let X be a Banach space, and suppose that X∗ or X∗∗ has
the Radon�Nikodým property. Let L be a closed subspace of L(X) containing
K := K(X) and IX , and suppose that K is a u-ideal in L with respect to an
ideal projection P preserving elementary functionals. If X∗ has the BCAP
with conjugate operators, then there exists a shrinking MCAI (Kν) of X such
that lim supν ‖IX − 2Kν‖ ≤ 1.
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Proof. If X∗ has the BCAP with conjugate operators, then, by passing to
convex combinations, we may assume that X has a shrinking BCAI (Sα).
Thus, for every T ∈ SL, we can de�ne a net (TSα) ⊂ K which is bounded
and TSα −→ T in the dual weak operator topology. By Theorem 5.7, (a) ⇒
(c), there exists (Kν) ⊂ K such that Kν −→ IX in the dual weak operator
topology and

lim sup
ν
‖IX − 2Kν‖ ≤ 1.

Since

x∗∗(K∗νx
∗) −→ x∗∗(I∗Xx

∗) = x∗∗(IX∗x∗) ∀x∗∗ ∈ X∗∗, ∀x∗ ∈ X∗,

we have K∗ν −→ IX∗ in the weak operator topology. By the argument of
convex combinations (see the proof of Lemma 2.17), we may assume that

K∗νx
∗ −→ x∗ ∀x∗ ∈ X∗, Kνx −→ x ∀x ∈ X.

It remains to observe that lim sup ‖Kν‖ ≤ 1 (see Remark 5.3).

Remark 5.10. Note that in general from X∗∗ having the Radon�Nikodým
property does not follow that X∗ has the Radon�Nikodým property (see,
e.g., [16, Remark 1.8]) or consider, for example, c0 and c∗∗0 = `∞, which do
not have the Radon�Nikodým property, but c∗0 = `1 has (see, e.g., [10, pp.
218�219]). Thus, the assumptions X∗ having the Radon�Nikodým property
and X∗∗ having the Radon�Nikodým property are independent.

Now, we will see that the assumption �X∗ has the BCAP with conjugate
operators� of Corollary 5.9 is in fact redundant. The next proposition relies
on a method developed in [7] (see [7, Proposition 3.2]), and allows us to give
a necessary and su�cient condition for K(X) being a u-ideal in L(X) (see
Corollary 5.12).

Proposition 5.11. Let X be a Banach space, and suppose that X∗ or X∗∗

has the Radon�Nikodým property. Suppose that K = K(X) is an ideal in L =
L(X) with respect to an ideal projection preserving elementary functionals.
Then there exists a shrinking MCAI (Kα) of X.

Proof. Let P : L∗ −→ L∗ be an ideal projection preserving elementary func-
tionals. Then Pf = Φ(f |K) for every f ∈ L∗ where Φ : K∗ −→ ranP
is the isometric isomorphism (see Lemma 2.21). Let us consider on L the
weak topology induced by the ideal projection, i.e., the topology σ(L, ranP ).
Then, due to the bipolar theorem, BK is σ(L, ranP )-dense in BL and thus,
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there exists a net (Kα) ⊂ BK such that Kα −→ IX in the σ(L, ranP )-
topology. By the Feder�Saphar theorem (see Theorem 4.3),

K∗ = span{x∗∗ ⊗ x∗|K : x∗∗ ∈ X∗∗, x∗ ∈ X∗, x∗∗ ⊗ x∗ ∈ L∗},

and since P preserves elementary functionals, we have Φ(x∗∗⊗x∗|K) = x∗∗⊗x∗
for every x∗∗ ∈ X∗∗, x∗ ∈ X∗. Hence,

Φ(x∗∗ ⊗ x∗|K)(Kα − IX) = x∗∗(K∗α − I∗X)x∗ −→ 0

for every x∗∗ ∈ X∗∗, x∗ ∈ X∗, i.e., K∗α −→ I∗X in the weak operator topology.
By applying the argument of convex combinations (see Lemma 2.17 and
Remark 2.18), we may assume that (Kα) is a shrinking MCAI of X.

We can conclude from Proposition 5.11, Corollary 5.9, and Corollary 5.5 the
following result.

Corollary 5.12. Let X be a Banach space, and suppose that X∗ or X∗∗ has
the Radon�Nikodým property. Then K(X) is a u-ideal in L(X) with respect
to an ideal projection preserving elementary functionals if and only if X has
a shrinking MCAI (Kα) with lim supα ‖IX − 2Kα‖ ≤ 1.

Corollary 5.12 is essentially contained in [49, Corollary 4.5], however, we do
not assume that X∗ = span(w∗- sexpBX∗) as in [49], where w∗- sexpBX∗

denotes the set of all weak∗ strongly exposed points of BX∗ .

5.4 u-Ideals of compact operators creating new

u-ideals

Recall that any Banach space X is an ideal in X∗∗ with respect to the canon-
ical projection.

De�nition 5.13. If X is a u-ideal in X∗∗ with respect to the canonical
projection, then we say that X is a u-ideal.

Theorem 5.14. Let X and Y be Banach spaces. If K(Y ) is a u-ideal in
L(Y ) and Y is a u-ideal, or if K(X) is a u-ideal in L(X) and X is a u-ideal,
then K(X, Y ) is a u-ideal in L(X, Y ).

Proof. Let us assume that K(Y ) is a u-ideal in L(Y ) and Y is a u-ideal, the
proof in the other case is analogous.
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By [49, Corollary 4.5, 1◦◦ ⇒ 3◦], there exists a shrinking MCAI (Kα) of Y
such that

lim sup
α
‖IY − 2Kα‖ ≤ 1.

Thus, K(X, Y ) is an ideal in L(X, Y ) with respect to the Johnson projection
P and (see the beginning of Section 5.2)∥∥IL(X,Y )∗ − 2P

∥∥ = 1.

A separable prototype for Theorem 5.14 is [15, Proposition 8.2].

5.5 Property (wM ∗)

Analogously to property (M∗) concerning M -ideals or property M∗(r, s)
concerning M(r, s)-ideals, there is property (wM∗) for spaces concerning
u-ideals. Let us recall the de�nition of property (wM∗).

De�nition 5.15. A Banach space X has property (wM∗) if

lim sup
ν
‖x∗ν − 2x∗‖ = lim sup

ν
‖x∗ν‖,

whenever x∗ ∈ X∗ and (x∗ν) ⊂ X∗ is a bounded net converging weak∗ to x∗

in X∗.

Property (wM∗) was introduced by Lima in [34]. The letter �w� in the no-
tation (wM∗) comes from the word �weak�. It denotes the fact that property
(wM∗) follows from property (M∗). Indeed, if (x∗ν) ⊂ X∗ is a bounded net
converging weak∗ to x∗ ∈ X∗ in X∗, then x∗ν − x∗

w∗
−→ 0 and for X with

property (M∗) we have

lim sup
ν
‖−x∗ + (x∗ν − x∗)‖ = lim sup

ν
‖x∗ + (x∗ν − x∗)‖

= lim sup
ν
‖x∗ν‖

and
lim sup

ν
‖−x∗ + (x∗ν − x∗)‖ = lim sup

ν
‖x∗ν − 2x∗‖ .

Let us introduce also the operator version of property (wM∗).
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De�nition 5.16. An operator T ∈ BL(X,Y ) has property (wM∗) if

lim sup
ν
‖T ∗(y∗ν − 2y∗)‖ ≤ lim sup

ν
‖y∗ν‖,

whenever y∗ ∈ Y ∗ and (y∗ν) ⊂ Y ∗ is a bounded net converging weak∗ to y∗ in
Y ∗.

We say that T has the sequential version of property (wM∗) if the nets
(y∗ν) ⊂ Y ∗, in the de�nition, are replaced with the sequences (y∗n) ⊂ Y ∗

which converge weak∗ to some y∗ ∈ Y ∗. Analogously to propertyM∗(r, s) for
operators, in the case when Y is separable, T ∈ BL(X,Y ) has property (wM∗)
if and only if it has the sequential version of the property.

Clearly, a Banach space X has property (wM∗) if and only if its identity
operator IX has (wM∗). It is immediate that if either X or Y has property
(wM∗), then every T ∈ BL(X,Y ) has property (wM∗). Indeed, let T ∈ BL(X,Y ),
y∗ ∈ Y ∗, and let (y∗ν) ⊂ Y ∗ be a bounded net converging weak∗ to y∗ in Y ∗.
Then also (T ∗y∗ν) ⊂ X∗ is a bounded net converging weak∗ to T ∗y∗ ∈ X∗.
Now, if X has property (wM∗), then

lim sup
ν
‖T ∗(y∗ν − 2y∗)‖ = lim sup

ν
‖T ∗(y∗ν)‖ ≤ lim sup

ν
‖y∗ν‖ ,

and if Y has property (wM∗), then

lim sup
ν
‖T ∗(y∗ν − 2y∗)‖ ≤ lim sup

ν
‖y∗ν − 2y∗‖ = lim sup

ν
‖y∗ν‖ .

Properties (wM∗) for spaces and for operators are precisely properties
M∗(a,B, c) for spaces and for operators, when a = 1, B = {−2}, and c = 0
(see [49] and/or [48]).

In [34, Corollary 4.4], Lima showed that for re�exive Banach spaces X the
MCAP assumption together with property (wM∗) (for spaces) is equivalent
to K(X) being a u-ideal in L(X). The following theorem proves that for
arbitrary Banach spaces X and Y , the MCAP assumption together with
property (wM∗) for one of the spaces is su�cient for K(X, Y ) being a u-
ideal in L(X, Y ).

Theorem 5.17. Let X and Y be Banach spaces. If X or Y has the MCAP
and property (wM∗), then K(X, Y ) is a u-ideal in L(X, Y ).

Proof. If Y has the MCAP and property (wM∗), then, due to [49, Corol-
lary 4.5, 2◦ ⇒ 3◦], there exists a shrinking MCAI (Kα) of Y such that

lim sup
α
‖IY − 2Kα‖ ≤ 1.
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From Corollary 5.6 follows that K(X, Y ) is a u-ideal in L(X, Y ).

In the case when X has the MCAP and property (wM∗), apply Corollary 5.5.

The following Proposition 5.18 and Theorem 5.20 are inspired by similar
results for M(r, s)-ideals (see Section 4.4).

Proposition 5.18. Let X and Y be Banach spaces. Let L be a closed sub-
space of L(X, Y ) containing K := K(X, Y ). If an operator T ∈ BL has
property (wM∗) and there is a net (Tα) ⊂ K such that T ∗α −→ T ∗ strongly,
then

lim sup
α
|f(T − 2Tα)| ≤ 1

for all f ∈ BX∗∗ ⊗BY ∗
weak* ⊂ L∗.

Proof. Let f = w∗- limx∗∗ν ⊗ y∗ν , i.e., x
∗∗
ν (A∗y∗ν) −→ f(A), A ∈ L, with

x∗∗ν ∈ BX∗∗ , y∗ν ∈ BY ∗ . By passing to a subnet, we may assume that (y∗ν)
converges weak∗ to some y∗ ∈ BY ∗ . From property (wM∗) we get that

lim sup
ν
‖2T ∗y∗ − T ∗y∗ν‖ ≤ lim sup

ν
‖y∗ν‖ ≤ 1.

Hence, for any �xed α,

|f(T − 2Tα)| = lim
ν
|x∗∗ν ((T − 2Tα)∗y∗ν)|

≤ lim sup
ν
‖(T − 2Tα)∗y∗ν‖

≤ lim sup
ν

(
‖2T ∗y∗ − T ∗y∗ν‖

+ 2(‖T ∗αy∗ − T ∗αy∗ν‖

+ ‖T ∗y∗ − T ∗αy∗‖)
)

≤ 1 + 2‖T ∗y∗ − T ∗αy∗‖,

which implies
lim sup

α
|f(T − 2Tα)| ≤ 1.

By applying the vector-valued version of Simons's inequality (see
Lemma 4.14) to a sequential version of Proposition 5.18, we obtain the fol-
lowing result.
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Lemma 5.19. Let X and Y be Banach spaces. Let L be a closed subspace of
L(X, Y ) containing K := K(X, Y ). If T ∈ BL has property (wM∗) and there
is a sequence (Tn) ⊂ K such that T ∗n −→ T ∗ strongly, then for all n ∈ N
there exists Sn ∈ conv{Tn, Tn+1, . . . } such that

lim sup
n
‖T − 2Sn‖ ≤ 1.

The next theorem is analogous to Theorem 4.16 forM(r, s)-ideals. Note that
its assumptions enforce X∗ (and X) or Y ∗ (and Y ) to be separable.

Theorem 5.20. Let X and Y be Banach spaces. Suppose that X∗∗ or Y ∗

has the Radon�Nikodým property and that X or Y has a shrinking compact
approximating sequence. Let L be a closed subspace of L(X, Y ) containing
K := K(X, Y ). If every T ∈ SL has property (wM∗), then K is a u-ideal in
L with respect to an ideal projection preserving elementary functionals.

Proof. Based on Example 4.6 we get that K is an ideal in L with respect to
an ideal projection P preserving elementary functionals.

For every operator T ∈ SL and n ∈ N, let us de�ne Tn = TKn (respectively,
Tn = KnT ) where (Kn) is the shrinking compact approximating sequence of
X (respectively, of Y ). Then clearly T ∗n −→ T ∗ strongly. By Lemma 5.19,
there exists Sn ∈ conv{Tn, Tn+1, . . . } such that

lim sup
n
‖T − 2Sn‖ ≤ 1.

Since also S∗n −→ T ∗ strongly, by Theorem 5.7, (c) ⇒ (a), K is a u-ideal in
L with respect to P .

Corollary 5.21. Let X and Y be Banach spaces. Suppose that X∗∗ or Y ∗

has the Radon�Nikodým property. If X or Y has a shrinking compact approx-
imating sequence and property (wM∗), then K(X, Y ) is a u-ideal in L(X, Y ).

Proof. Since X or Y has property (wM∗), every T ∈ BL(X,Y ) has property
(wM∗) and thus, by Theorem 5.20, K(X, Y ) is a u-ideal in L(X, Y ).

Note that Corollary 5.21 is a separable version of Theorem 5.17. However,
Corollary 5.21 assumes the existence of a shrinking compact approximating
sequence, but in Theorem 5.17 we have the MCAP assumption.
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5.6 u-Ideals of compact operators are separably

determined

Next, we will prove that u-ideals of compact operators are separably deter-
mined. The result is analogous to Theorem 4.20 for M(r, s)-ideals.

Theorem 5.22. Let X and Y be Banach spaces. Let Y have property (wM∗)
and the MCAP. If K(E,F ) is a u-ideal in L(E,F ) with respect to an ideal
projection preserving elementary functionals for all separable closed subspaces
E of X and F of Y such that F has the MCAP, then K(X, Y ) is a u-ideal
in L(X, Y ).

Proof. Let (Kα) be an MCAI of Y . Since Y has property (wM∗), by [34,
Proposition 4.1], (Kα) is shrinking and Y ∗ has the Radon�Nikodým prop-
erty. Also, we know that K(X, Y ) is an ideal in L(X, Y ) with respect to the
Johnson projection and KαT −→ T for all T ∈ SL(X,Y ) in the dual weak
operator topology.

Assume for contradiction that K(X, Y ) is not a u-ideal in L(X, Y ). Then
condition (b) of Theorem 5.7 is not satis�ed: there are ε > 0, T ∈ BL(X,Y ),
and α0 such that

‖T − 2KT‖ > 1 + 3ε ∀K ∈ conv{Kα : α ≥ α0}.

We shall de�ne separable closed subspaces E of X and F of Y such that F
has the MCAP, but K(E,F ) cannot be a u-ideal in L(E,F ) with respect to
an ideal projection preserving elementary functionals. This will contradict
the assumption and complete the proof.

To begin, let E0 = {0} ⊂ X and F0 = {0} ⊂ Y . Pick x0 ∈ BX such that

‖(T − 2Kα0T )x0‖ > ‖T − 2Kα0T )‖ − ε > 1 + 2ε.

Continuing similarly to the proof of Theorem 4.20 (where S = 0), we obtain
for all n ∈ N an index αn, a �nite ε/2-net Λn in conv{Kα0 , . . . , Kαn}, a �nite
subset {xL : L ∈ Λn} ⊂ BX such that

‖(T − 2LT )xL‖ > 1 + 2ε, L ∈ Λn,

and �nite subsets En ⊂ X and Fn ⊂ Y such that

En+1 = En ∪ {xL : L ∈ Λn},

Fn+1 = Fn ∪Kα0(Fn) ∪ . . . ∪Kαn(Fn) ∪ T (En+1),
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and

‖Kαny − y‖ <
1

n
∀y ∈ Fn.

Denote E = span
⋃∞
n=1En and F = span

⋃∞
n=1 Fn. It can be easily seen that

T (E) ⊂ F , Kαn(F ) ⊂ F for all n ∈ N, and Kαny −→ y for all y ∈ F .
Consider T |E ∈ BL(E,F ), and Kαn|F ∈ BK(F ).

It follows from a general fact about property M∗(a,B, c) (see [49, p. 2804])
that if Y has property (wM∗), then also F has it. As in the beginning of
the proof, note that F ∗ has the Radon�Nikodým property. Consequently
we are in position to apply Theorem 5.7 to K(E,F ) in L(E,F ). According
to Theorem 5.7, if K(E,F ) were a u-ideal in L(E,F ) with respect to an
ideal projection preserving elementary functionals, then there would exist
K ∈ conv{Kα1 , . . . , Kαn}, for some n ∈ N, such that

‖(T − 2KT )|E‖ ≤ 1 + ε.

Let L ∈ Λn satisfy ‖K − L‖ < ε/2. Then

1 + 2ε < ‖(T − 2LT ))|E‖
≤ ‖(T − 2KT ))|E‖+ ε

≤ 1 + 2ε,

a contradiction.

Lima showed in [34, Proposition 4.1] that if X is a u-ideal, then X∗ has the
Radon�Nikodým property and X∗ = span(w∗- sexpBX∗). The latter yield
that every MCAI of X is shrinking (cf. the proof of [49, Corollary 1.7]).

From the proof of Theorem 5.22, it is clear that we can replace the assumption
�Y has property (wM∗)� by any assumption guaranteeing that Y ∗ has the
Radon�Nikodým property and every MCAI of any closed subspace of Y is
shrinking. Both are ful�lled if we assume that Y is a u-ideal.

Corollary 5.23. Let X and Y be Banach spaces. Let Y be a u-ideal and
have the MCAP. If K(E,F ) is a u-ideal in L(E,F ) with respect to an ideal
projection preserving elementary functionals for all separable closed subspaces
E of X and F of Y such that F has the MCAP, then K(X, Y ) is a u-ideal
in L(X, Y ).

The following Lemma 5.24 is needed for proving Theorem 5.25 below.
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Lemma 5.24 ([49, Theorem 3.5]). A Banach space X has a shrinking MCAI
(Kα) such that

lim sup
α
‖IX − 2Kα‖ ≤ 1

if and only if X has the MCAP, and for every separable closed subspace E
having the MCAP, there exists a shrinking MCAI (Kn) of E such that

lim sup
n
‖IE − 2Kn‖ ≤ 1.

Theorem 5.25. Let X be a Banach space such that X is a u-ideal. If K(X)
is a u-ideal in L(X) with respect to an ideal projection preserving elementary
functionals, then K(E) is a u-ideal in L(E) for all separable closed subspaces
E of X having the MCAP.

Proof. If X is a u-ideal, then X∗ has the Radon�Nikodým property. By
Corollary 5.12, X∗ has the MCAP with conjugate operators and

lim sup
α
‖IX − 2Kα‖ ≤ 1,

where (Kα) is a shrinking MCAI of X. By Lemma 5.24, every separable
closed subspace E has a shrinking MCAI (Kn) such that lim supn ‖IE −
2Kn‖ ≤ 1. Thus, based on Corollary 5.5, K(E) is a u-ideal in L(E) with
respect to an ideal projection preserving elementary functionals.
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Kompaktsete operaatorite M(r, s)-ideaalid

Kokkuvõte

Käesoleva väitekirja keskne küsimus on järgmine. Milliste Banachi ruumi-
de X ja Y korral kõigi ruumist X ruumi Y tegutsevate kompaktsete ope-
raatorite alamruum K(X, Y ) osutub M -ideaaliks või, veelgi üldisemalt,
M(r, s)-ideaaliks kõigi pidevate lineaarsete operaatorite ruumis L(X, Y )?
See probleem on huvipakkuv näiteks seetõttu, et M -ideaalil või üldisemalt
M(1, s)-ideaalil määratud igal pideval lineaarsel funktsionaalil leidub ühene
normi säilitav jätk kogu ruumile. Teiseks annab M(r, s)-ideaalide struktuuri
olemasolu teavet kaasruumi L(X, Y )∗ ehituse kohta. Sugugi vähetähtis pole
ka kompaktsete operaatoriteM(r, s)-ideaalide teooria seos aproksimatsiooni-
omaduste teooriaga, kus veel tänapäevalgi on aastakümnetevanuseid kuulsaid
lahendamist ootavaid probleeme.

Väitekirja lähtekohaks on järgmine E. Oja tulemus 1993. aastal ilmunud
artiklis, mis on publitseeritud ka P. Harmand, D. Werner ja W. Werner mo-
nograa�as �M -ideals in Banach Spaces and Banach Algebras� [23, lk. 301].
See tulemus näitab, kuidas Banachi ruumidX, mille korralK(X) := K(X,X)
on M -ideaal ruumis L(X) := L(X,X), tekitavad uusi kompaktsete operaa-
torite M -ideaale.

Teoreem ([45]). Olgu X ja Y Banachi ruumid. Kui K(X) ja K(Y ) on M-
ideaalid vastavalt ruumides L(X) ja L(Y ), siis K(X, Y ) on M-ideaal ruumis
L(X, Y ).

Käesolevas väitekirjas uuritakse, kas analoogiline tulemus kehtib ka kompakt-
sete operaatorite M(r, s)-ideaalide korral, milliseks kujunevad sellisel juhul
uute tekkinud M(r, s)-ideaalide parameetrid, ja rakendatakse kompaktsete
operaatorite u-ideaalidele M(r, s)-ideaalide jaoks väitekirjas loodud metoo-
dikat.

Käesolev väitekiri koosneb viiest peatükist. Väitekirja esimene peatükk
sisaldab probleemi tausta tutvustust, väitekirja kokkuvõtet ning üldiste ka-
sutatud tähistuste kirjeldust.

Teises peatükis tõestatakse üksikasjalikult Teoreem tuginedes originaaltões-
tuse skeemile artiklist [45]. Selleks tuuakse sisse M -ideaali mõiste tuginedes
ideaaliprojektori mõistele. Tutvustatakse omadusi (M) ja (M∗), mis on osu-
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tunud võtmeteguriteks kompaktsete operaatorite M -ideaalide kirjeldamisel.
Käsitletakse operaatorite ruumi erinevaid topoloogiaid ja koondumisi nendes
ning tõestatakse Johnsoni lemma, mis garanteerib teatavat tüüpi kompakt-
sete operaatorite pere olemasolul ideaaliprojektori eksisteerimise. Teoreem
järeldatakse kompaktsete operaatorite M -ideaalide kirjeldusest, kus üks
ruumidest on omadusega (M) või (M∗) ja teine ruum rahuldab tingimust, et
K(X) on M -ideaal ruumis L(X).

Kolmandas peatükis üldistatakse M -ideaalide tõestusmetoodikat M(r, s)-
ideaalide jaoks. Tutvustatakse M(r, s)-ideaali mõistet ning tuuakse näi-
teid mõningatestM -ideaalide jaM(r, s)-ideaalide erinevustest. Analoogiliselt
artikli [54] käsitlusele de�neeritakse Johnsoni projektor. KäsitletakseM(r, s)-
ideaalidega seotud omadusi M(r, s) ja M∗(r, s), mis on omaduste (M) ja
(M∗) üldistused. Tuginedes artiklile [49] tõestatakse kolmanda peatüki põhi-
tulemus.

Järeldus 3.22. Olgu X ja Y sellised Banachi ruumid, et K(X) onM(r1, s1)-
ideaal ruumis L(X) ja K(Y ) on M(r2, s2)-ideaal ruumis L(Y ), kus r1 +
s1/2 > 1 ja r2 + s2/2 > 1. Siis K(X, Y ) on nii M(r2

1r2, s
2
1s2)- kui ka

M(r1r
2
2, s1s

2
2)-ideaal ruumis L(X, Y ).

Kolmas peatükk on inspireeritud artiklitest [45], [49], [54] ja tugineb artiklile
[19].

Parameetrid r2
1r2, s2

1s2 ja r1r
2
2, s1s

2
2 järelduses 3.22 tunduvad olevat mitte-

optimaalsed. Seetõttu pakutakse neljandas peatükis välja teistsugune lähe-
nemisviis, mis võimaldab saada paremad parameetrid, nimelt r1r2 ja s1s2.
Seejuures on võtmemõisteteks �elementaarfunktsionaale säilitav ideaalipro-
jektor� ja �operaatorite omadus M∗(r, s)�. Olulisteks töövahenditeks on
Simonsi võrratuse operaatorvariant [33] ja Feder�Saphari kirjeldus [13] kom-
paktsete operaatorite ruumi K(X, Y ) kaasruumile, mis kehtib eeldusel, et
X∗∗ või Y ∗ on Radon�Nikodými omadusega.

Tuginedes elementaarfunktsionaale säilitavaid ideaaliprojektoreid ja operaa-
torite omadust M∗(r, s) puudutavatele tulemustele, tõestatakse, kasutades
Simonsi võrratust, neljanda peatüki põhitulemuse separaabel versioon. Edasi
tõestatakse, et kompaktsete operaatorite M(r, s)-ideaalid on separaablilt
määratud. See võimaldab põhitulemuse separaablilt versioonilt minna edasi
üldisele juhule ning näidata, et kompaktsete operaatorite M(r, s)-ideaalid
tekitavad uusi kompaktsete operaatorite M(r, s)-ideaale järgmisel viisil.

Teoreem 4.26. Olgu X ja Y sellised Banachi ruumid, et K(X) onM(r1, s1)-
ideaal ruumis L(X) ja K(Y ) on M(r2, s2)-ideaal ruumis L(Y ), kus r1 +
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s1/2 > 1 ja r2 + s2/2 > 1. Siis K(X, Y ) on M(r1r2, s1s2)-ideaal ruumis
L(X, Y ).

Neljanda peatüki tulemuste rakendusena on muuhulgas parendatud mõ-
ningaid klassikalisi M -ideaalide teooria tulemusi.

Neljas peatükk on inspireeritud artiklitest [36], [47], [49] ja tugineb artiklile
[20].

Viiendas peatükis rakendatakse M(r, s)-ideaalide jaoks arendatud tõestus-
metoodikat u-ideaalidele, mis on üks M(r, s)-ideaalidest erinev M -ideaalide
üldistus. Osutub, et nii nagu M - ja M(r, s)-ideaalid, on ka u-ideaalid se-
paraablilt määratud, kuid omadus tekitada uusi kompaktsete operaatorite
u-ideaale erineb mõnevõrra M - ja M(r, s)-ideaalide juhust.

Viienda peatüki põhitulemusi sisaldava artikli eelvariant on [26].
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