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Human detection and distance estimation with monocular camera 
using YOLOv3 neural network 
 
Making machines perceive environment better or at least as well as humans would be              
beneficial in lots of domains. Different sensors aid in this, most widely used of which is                
monocular camera. Object detection is a major part of environment perception and its             
accuracy has greatly improved in the last few years thanks to advanced machine learning              
methods called convolutional neural networks (CNN) that are trained on many labelled            
images. Monocular camera image contains two dimensional information, but contains no           
depth information of the scene. On the other hand, depth information of objects is important               
in a lot of areas related to autonomous driving, e.g. working next to an automated machine,                
pedestrian crossing a road in front of an autonomous vehicle, etc. 
This thesis presents an approach to detect humans and to predict their distance from RGB               
camera for off-road autonomous driving. This is done by improving YOLO (You Only Look              
Once) v3[1], ​a state-of-the-art object detection CNN. Outside of this thesis, an off-road scene              
depicting a snowy forest with humans in different body poses was simulated using AirSim              
and Unreal Engine. Data for training YOLOv3 neural network was extracted from there using              
custom scripts. Also, network was modified to not only predict humans and their bounding              
boxes, but also their distance from camera. RMSE of 2.99m for objects with distances up to                
50m was achieved, while maintaining similar detection accuracy to the original network.            
Comparable methods using two neural networks and a LASSO model gave 4.26m (in an              
alternative dataset) and 4.79m (with dataset used is this work) RMSE respectively, showing a              
huge improvement over the baselines. Future work includes experiments with real-world data            
to see if the proposed approach generalizes to other environments. 
 
Keywords: 
Monocular camera, object detection, depth estimation, CNN, off-road, YOLOv3, simulation 
 
CERCS: ​T111 Imaging, image processing 
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Inimeste tuvastamine ning kauguse hindamine kasutades      
kaamerat ning YOLOv3 tehisnärvivõrku 
 
Inimestega vähemalt samal tasemel keskkonnast aru saamine masinate poolt oleks kasulik           
paljudes domeenides. Mitmed erinevad sensored aitavad selle ülesande juures, enim on           
kasutatud kaameraid. Objektide tuvastamine on tähtis osa keskkonnast aru saamisel. Selle           
täpsus on viimasel ajal palju paranenud tänu arenenud masinõppe meetoditele nimega           
konvolutsioonilised närvivõrgud (CNN), mida treenitakse kasutades märgendatud       
kaamerapilte. Monokulaarkaamerapilt sisaldab 2D infot, kuid ei sisalda sügavusinfot. Teisalt,          
sügavusinfo on tähtis näiteks isesõitvate autode domeenis. Inimeste ohutus tuleb tagada           
näiteks töötades autonoomsete masinate läheduses või kui jalakäija ületab teed autonoomse           
sõiduki eest. 
Antud töös uuritakse võimalust, kuidas tuvastada inimesi ning hinnata nende kaugusi           
samaaegselt, kasutades RGB kaamerat, eesmärgiga kasutada seda autonoomseks sõitmiseks         
maastikul. Selleks täiustatakse hetkel parimat objektide tuvastamise konvolutsioonilist        
närvivõrku YOLOv3 (ingl k. You Only Look Once). Selle töö väliselt on            
simulatsioonitarkvaradega AirSim ning Unreal Engine loodud lumine metsamaastik koos         
inimestega erinevates kehapoosides. YOLOv3 närvivõrgu treenimiseks võeti simulatsioonist        
välja vajalikud andmed, kasutades skripte. Lisaks muudeti närvivõrku, et lisaks inimese           
asukohta tuvastavale piirikastile väljastataks ka inimese kauguse ennustus. Antud töö          
tulemuseks on mudel, mille ruutkesmine viga RMSE (ingl k. Root Mean Square Error) on              
2.99m objektidele kuni 50m kaugusel, säilitades samaaegselt originaalse närvivõrgu inimeste          
tuvastamise täpsuse. Võrreldavate meetodite RMSE veaks leiti 4.26m (teist andmestikku          
kasutades) ja 4.79m (selles töös kasutatud andmestikul), mis vastavalt kasutavad kahte           
eraldiseisvat närvivõrku ning LASSO meetodit. See näitab suurt parenemist võrreldes teiste           
meetoditega. Edasisteks eesmärkideks on meetodi treenimine ning testimine päris maailmast          
kogutud andmetega, et näha, kas see üldistub ka sellistele keskkondadele. 
 
Võtmesõnad: 
kaamera, objektide tuvastamine, sügavusinfo ennustamine, kovolutsioonilised      
tehisnärvivõrgud,  YOLOv3, simulatsioon. 
 
CERCS: ​T111 Pilditehnika 
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Acronyms and Abbreviations 
 

Abbreviation Full form 

LiDAR Light Detection and Ranging 

NN Neural Network 

CNN Convolutional Neural Network 

YOLO You Only Look Once 

SSD Single Shot Detector 

bbox Bounding Box 

RMSE Root Mean Square Error 

mAP Mean Average Precision 

COCO Common Objects in Context 

IoU Intersection over Union 
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1. Introduction 
The complexity of tasks performed by robots, and the degree of their autonomy and              
self-learning capabilities, have been steadily increasing. There is an immediate and pressing            
need to ensure that the increasing deployment of robot workers does not bring new safety               
risks for human workers [2]. Machines have taken over the boring monotonous tasks that              
were previously performed by humans. But humans cannot be completely removed from the             
process, at least not yet. When a human is driving, the decisions are based on visual                
information that is received using eyes, and then decision is made to whether accelerate, turn               
or break, how fast to break, etc. Autonomous cars also need a way to be able to see what is                    
around them, to perceive their surrounding. Object detection, mostly done using machine            
learning is used to help autonomous vehicles perceive their surrounding like humans.            
Autonomous vehicles are believed to be the answer for reducing pedestrian fatalities as most              
of such accidents are caused due to human negligence [3]. 
When talking about autonomous driving in urban environment we expect there to be roads,              
side-walks, traffic signs etc. These are all visual clues that can be and are read to aid in                  
autonomous driving. This problem becomes much more complex when moving from urban to             
off-road environment. The visual clues are different, and harder to differentiate. Or as a              
contrast, when we are in middle of desert there are no clues. Machine learning techniques               
need to be trained with examples in order for them to learn, and when provided with a                 
scenario they can predict based on examples they were trained on. 

1.2. Motivation 
Human safety is a crucial part of autonomous driving, and in order to avoid any injuries,                
detecting humans around the vehicle is one of the important aspects of perception in              
autonomous driving. As the computational resources onboard the vehicle are limited, we need             
to make this process not just reliable but fast and not so computationally expensive either.               
Demand for autonomous vehicles in hazardous environments is also increasing, like           
fire-fighting, protest monitoring and control, battlefields, etc. In such environments we have            
to make sure that no harm comes to nearby humans and that they are perfectly safe when                 
around autonomous vehicles. While machine learning models have been developed for urban            
autonomous driving, there is little to no work done in training machine learning models for               
these scenarios. In addition, there are no datasets available with humans in off-road             
environments to train models. Also commonly used range sensors like LiDAR and stereo             
have their issues of sparse data and short range detections, respectively. This work takes a               
step towards solving the problem of human detection and distance estimation using an             
artificial neural network. 
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1.3. Objectives 
Main objective of this work is to detect humans in a forest environment, estimate their               
distance using a monocular camera. This problem is addressed by using a simulation dataset              
where humans, with poses ranging from running to lying down, are in a snowy forest               
environment. The task is to modify an already existing machine learning algorithm, YOLOv3             
to estimate the distances of all the detected humans while maintaining the current level of               
detection performance. 

1.4. Organization of Thesis 
● In current chapter: ​Introduction, motivation, and objectives of this work. 
● Background: ​Literature review of similar work will be presented,         

overviewing traditional and recent state of the art approaches for this problem.            
Also core concepts about object detection and artificial neural networks. 

● Dataset used: This chapter will include list of suitable real-datasets available,           
their shortcomings and limitations and, simulation data that was used. 

● Work done: Detailed discussion of work done during this study,          
preprocessing of data and modifications made in YOLOv3. 

● Results and comparison: In this chapter results of this work are presented.            
Comparison between two networks that were trained on using same          
configuration but on two different datasets. 

● Future work: In this chapter some changes are suggested that can be made             
for better training and generalization of model. 

● Conclusion: In last chapter conclusion of the work with short summary of            
lessons learned is presented. 

 
 
 

  

7 



 

2. Background 

2.1. Milrem robotics and off-road autonomous driving 
Milrem Robotics (MR) is an Estonian defence and civilian industry company with the             
primary focus of manufacturing unmanned ground vehicles (UGVs)[4]. THeMIS is an UGV            
developed by MR that weighs 1450 kg with maximum payload capacity of 750 kg at top                
speed of 20 km/h [5] and its main use case if off-road driving. The autonomy department of                 
MR is working towards bringing off-road autonomous driving to a reality and aid in              
hazardous environments like firefighting, marshes, mapping unsafe mines, etc. One of the            
main focus of this work is human safety and for that detecting humans is an important aspect.                 
This thesis is inspired to work towards a viable solution of detecting humans near the UGV                
and estimating their distances using only monocular camera. THeMIS can be remote            
controlled or autonomous, meaning there can be humans in vicinity that the machine has to               
be aware of and guarantee their safety at all times.  

2.2. Object Detection 
Object detection is computer technology that makes use of computer vision and image             
processing to detect instances of and object in a digital image or a video [6]. With a growing                  
interest in automating the industry and autonomous vehicles, it has become a major area of               
exploration in computer vision. In this thesis object detection has been divided into two types,               
classical methods and state-of-the-art approaches that show much better results than the            
classical ones. 

2.2.1. Classical Methods 
Classical detection methods can be traced back to 1960s, the earliest application being pattern              
recognition systems used for character recognition [7]. They model interaction between           
locations of objects, and their context using manual engineering by defining structural            
relationship between objects [8]. 
Some of the classical methods that are widely used include Haar-like features [9], SIFT [9],               
SURF [9], GLOH [9], [10] and HOG detectors [10]. 

2.2.2. State-of-the-art methods 
Artificial neural networks (explained in section 2.4), are state-of-the-art in object detection            
and that is why are widely used. In 2012, Neural Networks caught attention of researchers               
after ImageNet 2012 results. ImageNet can be called as “Annual Olympics of Computer             
Vision” [11]. ImageNet is a dataset consisting of 3.2 million annotated images and more than               
5000 classes and was released in 2009 and a competition was launched with same name in                
2010 with sole purpose of predicting if an object is present in an image or not (classification)                 
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[12]. In 2012 a team from University of Toronto won with huge margin when compared to                
runners up. Their detection error was only 16.4% while the second in place had 26%               
detection error [13]. The winning team used deep convolutional network to perform the             
detection [13]. Neural networks have been improving ever since and in 2015 for the first time                
classification accuracy of humans was overtaken by a machine [11] (figure 2.1). 

 

 
Figure 2.1.​ ​Results of ImageNet competitions from 2010 to 2016​ [11] 

 
 
Some of the commonly used neural networks for the task of object detection are Faster               
R-CNN [11], SSD [11], RetinaNet [14] and YOLOv3 [11]. The widespread use of these              
networks is due to their well proven performance with object detection tasks. Figure 2.2              
provides a time to precision comparison of them.  

  
Figure 2.2.​ ​Comparison of different object detection networks [11] 
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2.2.4 Detection metric 
Object bounding box predictions into a certain class can be divided into four categories as               
shown in table 2.1. If the prediction human was actually a human, it is TP prediction, if                 
prediction human actually was not a human, it is FP prediction. If not human prediction               
actually was a human, it is FN prediction and lastly if not human prediction was not a human,                  
it is TN prediction [15]. Based on this, other metrics can be formed. 

 
Table-2.1. ​Prediction matrix 

 Prediction: Human Prediction: No Human 

Actual: Human true positive (TP) false negative (FN) 

Actual: No Human false positive (FP) true negative (TN) 
 
Figure 2.3 shows data distribution of all the predictions. Precision is an evaluation metric that               
helps in understanding what proportion of predictions were correct. Similarly recall tells us             
what proportion of actual objects were identified correctly. 

 

 
Figure 2.3.​ ​Precision vs Recall [16] 

 
Mean average precision (mAP) has different definitions. One, used in this work, calculates             
average precisions (APs) over 11 recall values from 0-1.0 with increment of 0.1 (equation              
(1)) and is calculated over entire dataset. Where AP is summed over all the classes. It uses                 
intersection over union (IoU) which is overlap between two bounding boxes for a set              
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threshold (figure 2.4). If IoU value is greater than set threshold (0.5 used) then detection is                
considered correct or true positive. 
 

P  AP (0) AP (0.1) ..... AP (1.0)) A =  1
11 × ( r +  r +  +  r  (1) 

 
 

 
Figure-2.4.​ ​IoU definition 

2.3. Distance Estimation 
In many computer vision applications precise depth values are of crucial importance [17]. In              
recent years this task has gained attention due to industrial demand [17]. Other computer              
vision tasks, such as 3D object detection and tracking, 2D or 3D semantic segmentation and               
SLAM (Simultaneous localization and mapping) can exploit these accurate depth cues, that            
would result in better accuracy in mentioned tasks [17]. 
Next, brief introduction of currently often used sensors or methods that produce distance             
estimations is done. 

2.3.1. LiDAR 
LiDARs (Light detection and ranging) were first used on cars in 2000s and was made famous                
by Stanley [18]. LiDAR is a sensor based on time-of-flight principle and the idea was first                
introduced in 1930s [19]. Figure 2.5 explains working of a LiDAR, and it goes as follows                
[20]. 

1. A signal pulse (laser) is emitted from the sensor and precise time is recorded. 
2. A reflection of that pulse is detected and again precise time is recorded. 
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3. Using the constant speed of light, the delay can be converted into distance             
(slant range) between source (sensor) and detected object. 

4. Knowing the position and orientation of the sensor, the XYZ coordinates of            
the reflective surface can be calculated. 

 

 
Figure 2.5.​ ​Working principle of LiDAR [21] 

 
The output of LiDAR is a sequence of points consisting of three values: distance to surface,                
scanning angle and reflectivity [21]. The reflectivity of a surface depends on its structure,              
material and color. The most commonly used representation of LiDAR data is point cloud              
due to wide range of open source libraries. Figure 2.6 shows point cloud visualization. 
 

 
Figure 2.6. ​Lidar data (point-cloud) collected from vehicle (left), and from a boat (right) 

[20] 
 
3D spinning LiDARs are widely used in autonomous driving these days. They commonly             
have 16, 32, or 64 beams with vertical field-of-view (FoV) of up to 30 degrees and horizontal                 
FoV of 360 degrees [22]. The LiDAR generates a point cloud of its surrounding, but limited                
amount of scan lines results in high sparsity [17]. 
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2.3.2. Stereo Camera 
The human binocular vision perceives depth by using stereo disparity which refers to the              
difference in image location of an object seen by the left and right eyes, resulting from the                 
eyes’ horizontal separation [23]. The brain uses this binocular disparity to extract depth             
information from the two-dimensional retinal images which are known as stereopsis​ ​[23]. 
A ​stereo camera is a type of camera with two or more image sensors. Figure 2.7 shows                 
camera geometry for binocular stereo system. Two cameras with parallel optical axes are             
arranged in a straight line commonly known as ​baseline [24]​. Where ​F​L and ​F​R are the focal                 
lengths of left and right cameras, respectively. And ​P is the point of which depth is being                 
measured. Line F​L​-P is seen as a point in left image but it appears as a line in right image and                     
is called epipolar line [24]. 
 

 
Figure 2.7.​ ​Camera geometry for binocular stereo system[24] 

 
A stereo correspondence algorithm matches pixels from two images and returns displacement            
as disparity, which in proportional to the depth of that pixel [25]. Hence retrieving the third                
dimension that is important in many robotics applications. Stereo correspondence algorithms           
can be grouped into those producing sparse and those giving dense output [25]. Feature based               
methods like growing seed [26] are inspired from human vision studies and consist of              
matching segments or edges between two images, and they result in a sparse output, while               
stereo correspondence, matching pixels from two images produces dense output [25]. Robotic            
applications demand more and more dense output (figure 2.8), where dense map contains             
depth values for almost all real-world coordinates that are in scope of camera [27]. For               
outdoor application, distance estimation for longer ranges is required, and error rate of             
stereo-cameras increase with increase of distance [25]. 
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Figure 2.8.​ ​Top: RGB scene. Middle: sparse depth image. Bottom: dense depth image​ [28] 

2.3.3. Others 
Among other sensors, time-of-flight (ToF) camera can also provide distance information. A            
3D time-of-flight camera works by illuminating the scene using a modulated light source and              
then observing the reflected light [29]. ToF cameras produce a depth image, where each pixel               
is encoded with distance of corresponding point of the captured scene [29]. The distance              
range is limited by power of light beam shot and it is also susceptible to motion blur [29]. 
 
There have also been recent attempts to form a depth image from a monocular image, such                
models tried to predict depth directly from image. [30] introduced structure in learning             
framework, the respective motion of objects and robot are modeled as independent            
transformations - translations and rotations. But we cannot rely on distance values we get              
from a predicted depth image because they are not accurate enough to be usable in this                
application. 

2.3.4. Evaluation metric 
Root mean square error (RMSE) equation (2) tells us how spread out our data is from our                 
mean, where distance​actual ​is ground truth and distance​prediction ​is the predicted distance, and N is               
total number of detections. It is commonly used in regression analysis to verify experimental              
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results. Since distance estimation is a regression problem, RMSE can be used for evaluation              
[31]. 
 

MSE  R =  √ N

∑
N

i=1
(distance − distance )actual prediction

2

             (2) 

 

2.4. Artificial neural networks 
Artificial neural networks are an attempt in simulating the network of neurons similar to              
human brain so that computers can learn and make decisions in a similar manner as humans                
[32]. Following are some concepts for better understanding of neural networks and work             
done in this thesis. 

2.4.1. Machine Learning 
Machine learning (ML) is the study of algorithms and statistical models that can be used by                
computers to effectively perform tasks without programmed instructions, relying on          
examples instead [33].  
 
ML algorithms learn from data. The data needed for learning should contain features and              
ground truths or detection results about those features. In image data, features are the pixels               
of an image. In some cases these features need to be engineered, extracted or modified to                
better suit the needs of training. Training is the process of an ML algorithm, where examples                
(dataset) are used to teach the model. Dataset is often split into training, validation and test                
sets. Training set is the data that is directly fed to ML algorithm as examples. Validation set                 
is used to indicate during training when overfitting might start and also helps in choosing               
what hyperparameters or models produced the most generalizable result. Test data is used to              
generate the final results of proposed algorithm and to measure the accuracy. Overfitting and              
underfitting are phenomenons where either model is unable to generalize on new data or is               
unable to generalize on training set [34].After a model is trained a scoring function is applied                
to evaluate the performance of trained model [35]. This trained model can then perform              
predictions on new unseen data (figure 2.9). 

15 



 

 
Figure 2.9.​ ​Machine learning process [36] 

 

2.4.2 Neural network structure 
Basic building block of a neural network is a neuron (figure 2.10). Each neuron takes a vector                 
input ​x​i​, multiplies it with a weight ​w ​i and adds a bias ​b to it. After that a non-linear activation                    
function ​f is applied to give an output from that neuron [37]. In terms of nervous system,                 
activation function decides whether a neuron will be fired or not, or whether it will be                
activated. Activation function can get any value from +infinity to -infinity, and performs             
certain mathematical operation on it [37]. Deep neural networks are multi-layered structures            
(figure 2.11) where each layers has a fixed number of neurons. The number of neurons in the                 
first layer is equal to size of input vector [37], and that of output layer equals the number of                   
classes. 
 

 
Figure 2.10.​ ​architecture of a single neuron [37], where x is input, w is weight, b is bias, f is 

activation function 
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Figure 2.11.​ ​Three layered neural network with two fully connected layers[39] 

 
 
For object detection, image pixels are used as features while training a network or making a                
prediction. If we use fully connected layers, where every neuron is connected to all the               
neurons in the previous layer then e.g. for a single image of size 32x32x3, a single neuron in                  
the first fully connected layer will have 3072 weights. The number of weights will grow to                
huge numbers just because we have that many pixels in an image [37]. This calls for a better                  
solution that can bypass those huge computations but still give us desired results.  
 
Convolutional Neural Networks (CNN) are type of neural network that also comprise of             
neurons, have weights and biases, activation functions, etc. Convolutional neural networks           
consist of one or more convolutional layers, which apply convolution functions from            
computer vision [38]. Convolutional layers learn to extract useful features (curves, edges,            
shapes, textures) from images, and are location invariant that makes them favored option for              
image detection tasks [37]. Convolutional layer uses convolutional filters of size ​axa ​that are              
moved along the image by fixed size (stride) to output a feature map containing features of                
image. 

2.4.3 Neural network training 

During training process loss refers to the error of the model and shows how well model is                 
improving. If loss is decreasing model training is going well, if it becoming constant means               
model is already trained for set parameters [34]. An activation function (Softmax, ReLU,             
sigmoid, etc) is applied to output of neurons to make them non-linear. There exist different               
optimizer functions (SGD, AdaGrad, Adam, etc) that tune the weights of network using             
gradient descent resulting in reduction of loss and better predictions [39]. ​Data is fed to               
algorithm in form of batches where a batch can have multiple training examples. Training              
over a single batch is known as one iteration cycle and going over the whole dataset once is                  
called epoch [40].  
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2.5. YOLO (You Only Look Once) 
Until 2015, the detection systems were repurposing the classifiers to perform detection,            
meaning they used to look at specific regions of image and make predictions based on every                
region, in a sliding window manner [16]. YOLO formulated object detection as a regression              
problem to spatially separate bounding boxes and associated class probabilities. YOLO is a             
single neural network that predicts bounding boxes and predicted class probabilities directly            
from full image, and in one evaluation [41]. Since this whole detection pipeline consists of a                
single network, it can be optimized end-to-end directly on detection performance [41]. There             
are three YOLO versions, YOLO [41], YOLOv2[42], [43], and YOLOv3 [1]. 

2.5.1. YOLO 
YOLO does not use sliding window approach, searching over regions of image. Instead it              
sees entire image during training and testing and encodes contextual information about            
classes and their appearance. Fast R-CNN [44], a top detection method of that time has better                
accuracy when compared to YOLO but it is considerably slower and has twice the              
background error when compared to YOLO[41] . 

YOLO is a CNN and has 24 convolutional layers and two fully connected layers.              
Initial convolutional layers extract features from image and fully connected layers predict            
class probabilities and bounding box coordinates [41]. 

2.5.2. YOLOv2: 
Moving from YOLO to YOLOv2 there are some major changes (table 2.2) introduced to              
network structure to improve detections[42], [43]. Following are few design changes that            
make YOLOv2 better than YOLO​. 

1. State-of-the-art detection algorithms make use of classifier pre-trained on ImageNet,          
and most classifiers operate on smaller input images of size ​256x256​. YOLOv2 is first              
fine-tuned with classification network at ​448x448 resolution for 10 epochs over whole            
ImageNet dataset [43] making it higher resolution classifier. This gives time to adjust             
filters to work better with higher resolution inputs. And the network is fine-tuned on              
detections, this gives an increase of almost 4% mAP when compared to YOLO [43]. 

2. YOLOv2 uses anchors on convolutional layer to make predictions, unlike YOLO that            
used fully connected layers to predict. Anchor is an initial estimate of size (width,              
height) of a bounding box. YOLOv2’s convolutional layers downsample an image by            
a factor of 32 so by using input image of resolution 416 a feature map of ​13x13 ​is                  
generated​. Switching to convolutional layer with anchors for prediction decreases          
mAP by 0.4, but decreases computation cost by 33% [43]. 

3. Anchors can either be provided randomly, or calculated from the training set using             
different clustering methods. The second option helps in speeding up the training.            
Otherwise the network will have to learn the actual anchors by its own. K-means              
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clustering has proven to be the most effective method when calculating anchors and             
gives the best average IoU [43]. Anchor boxes help in increasing recall. 

4. YOLOv2 predicts detections on ​13x13 feature map which is sufficient for larger            
objects, but we need fine feature maps if we need to detect smaller objects. YOLOv2               
is solving that problem using a passthrough layer. The passthrough layer concatenates            
the higher resolution features with lower resolution features obtained from earlier           
convolutional layer of ​26x26​ resolution [43]. 

5. To make YOLO able to predict equally well on images of different resolutions the              
network changes every few iterations while training making training multi-scale.          
After every 10 batches network choses a new image dimension size. This forces the              
network to learn and predict well across variety of different resolutions [43]. 

 
Table 2.2.​ ​Feature improvements from YOLO to YOLOv2, VOC2007 dataset [43]  

Feature mAP increase from YOLO to YOLOv2 

high resolution classifier 3.7 

convolutional layer detection -0.3 

anchor boxes 0.4 

passthrough layer 1.0 

multi-scale 1.2 

 
Original YOLOv2 implementation is based on Darknet [45], an open source neural network             
framework, written in C and CUDA [46]. YOLOv2 is also known as Darknet-19, and name               
comes from it having 19 convolutional layers. 

2.5.3.YOLOv3 
YOLOv3 adds some incremental changes to YOLOv2 to improve detection [1]. Following is             
a list of changes introduced in standard YOLOv3. 

1. YOLOv3 predicts an objectness score for each bounding box using logistic regression            
and it gets score of 1 if it overlaps ground truth more than any other prediction. 

2. Each bounding box predicts class it may contain using independent logistic classifier. 
3. YOLOv3 predicts boxes at three different scales instead of just one (YOLOv2).            

Feature maps are upsampled and merged with feature maps from previous layers as             
well and new convolutional layers are added to process this feature map and predict.              
K-means is used for clustering to determine bounding box priors (anchors). 9 clusters             
are chosen and divided evenly across 3 scales, making 3 predictions each scale. 

4. It uses Darknet-19, but the addition of residual connections and feature map merging             
make it larger, 53 convolutional layers, and hence it is called Darknet-53 (table 2.4).              
This makes network larger and predictions become slower when compared to           
YOLOv2, but it increases accuracy (table 2.3). 
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Table 2.3.​ ​YOLOv2 vs. v3 [42], [43] 

Model type mAP FPS 

YOLO v2 44.0 40 

YOLO v3 58.0 20 

 
 

Table 2.4.​ ​Darknet-53 layers 

 Type Filters Size/Stride Output 

 Convolutional 32 3 x 3 256 x 256 

 Convolutional 64 3 x 3/2 128 x 128 

 
1 x 

Convolutional 
Convolutional 

Residual 

32 
64 

1 x 1 
3 x 3 

 
 

128 x 128 

 Convolutional 128 3 x 3/2 64 x 64 

 
2 x 

Convolutional 
Convolutional 

Residual 

64 
128 

1 x 1 
3 x 3 

 
 

64 x 64 

 Convolutional 256 3 x 3/2 32 x 32 

 
8 x 

Convolutional 
Convolutional 

Residual 

128 
256 

1 x 1 
3 x 3 

 
 

32 x 32 

 Convolutional 512 3 x 3/2 16 x 16 

 
8 x 

Convolutional 
Convolutional 

Residual 

256 
512 

1 x 1 
3 x 3 

 
 

16 x 16 

 Convolutional 1024 3 x 3/2 8 x 8 

 
4 x 

Convolutional 
Convolutional 

Residual 

512 
1024 

1 x 1 
3 x 3 

 
 

8 x 8 

 Avgpool 
Connected 
Softmax 

 Global 
1000 
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2.6. Combined object detection and distance estimation 
The problem of combined detecting of objects and estimating the distance is not researched              
much to this point, as explained in sec 2.1 and 2.2. One method that is using similar concept                  
as one proposed in this work is DisNet [47]​. It uses a neural network with 3 hidden layers in                   
conjunction with YOLOv3 [47] to predict distance of a detected object from the camera [47].               
A feature vector is made from output of YOLOv3 and is fed to DisNet to predict the distance                  
of the detected object. Figure 2.12 explains working of DisNet with simple block diagram. 
 

 
Figure 2.12.​ ​DisNet based system for object distance estimation, where B​h​, B​w​, B​d​ being 

height, width and diagonal of bounding box, and C​h​, C​w​, C​d​ are average width, height and 
diagonal of class [47] 
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3. Datasets 
As explained in section 2.4, data is needed for training neural networks. Some of the 
available datasets, and the one used in this work are explained in the next sections. 

3.1. Available Datasets 
There are some comprehensive datasets available for object detection, but none for the             
specific task of also predicting the distance of detected object. Though some of these datasets               
provide range information (LiDAR data) as shown in table 3.1, but none of them focuses on                
or provides a good enough data that can be extracted for human detection, and secondly they                
cover urban driving scenarios, city environments, and sunny day. While main focus of this              
work is detection in off-road environment, snowy terrain, forest, which poses unique            
challenges. Hence the idea to make use of simulation data. 
 

Table 3.1.​ ​List of available datasets that are related to human detection [48] 
 

Dataset Vision Lidar Large Scale Seasonal 
Change 

Off-road 

New College Vision and 
Laser Dataset 

Y Y Spatially N N 

Rawseeds Project Y Y No N N 

CMU Visual Localization 
Dataset 

Y N Spatially and 
Temporally 

Y N 

Ford Campus Vision and 
Lidar Dataset 

Y Y Spatially N N 

Alderly Day/Night Dataset Y N Spatially N N 

Nordland Dataset Y N Spatially Y Y 

Malaga Urban Dataset Y Y Spatially N N 

VPRiCE Dataset Y N Spatially N N 

Kitti Dataset Y Y Spatially and 
Temporally 

N N 

Cross Season Dataset Y N Spatially N N 

MIT Stata Centre Dataset Y Y  Spatially and 
Temporally 

Y N 

NCLT Vision and Lidar 
Dataset 

Y Y Spatially and 
Temporally 

Y N 
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3.2. Dataset used 
Simulation dataset used in this work was developed in-house during Nutikas project [49]. It              
was generated from a simulation environment that mimics snowy terrain and forest            
environment. AirSim [50] was used which gives us segmentation and depth images. AirSim             
is based on Unreal Engine [51] and it was populated by humans in different poses, having                
random trajectories. A car with camera was driven around to capture different scenes.             
Camera, segmentation and depth images we provided. Camera image is fed as an input to the                
network, segmentation image is needed to extract tight boundary (bounding box) around            
humans, and depth image is required to get distance of the human. Figure 3.1, 3.2, and 3.3                 
shows camera, segmentation and depth image at one instant. Images provided have ​1280x720             
resolution and whole dataset has 11 different poses (table-3.2) which makes detection            
problem much harder.  
 

 
Figure 3.1.​ ​Final scene image 

 

 
Figure 3.2.​ ​Corresponding segmentation image for figure 3.1 where red color is for human 

class 
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Figure 3.3.​ ​Corresponding depth image for figure 3.1 

 
 
 

Table 3.2.​ ​List of poses in simulation dataset 

No. Human Pose 

1 Standing 

2 Running forward 

3 Running backward 

4 Walking 

5 Crouching 

6 Waving arms 

7 Situps 

8 Lying on ground 

9 Misc. poses (3 poses) 
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4. Work done 
Annotated data is required for training, so provided dataset was preprocessed keeping            
requirements in mind. YOLOv3 is modified to predict distance along with bounding boxes             
and error metric is added to evaluate the model. 

4.1. Data preprocessing 
The detection network implementation used, darknet [52] requires all the training images to             
be in a training folder and each of the image is required to have a corresponding text file with                   
same name and ​.txt extension. Each row of text file refers to one bounding box and is                 
arranged as follows. 
 

Class_id bbox_centre_x bbox_centre_y bbox_width bbox_height 
 
Where bbox refers to bounding box, bbox_centre_x and bbox_centre_y refer to x and y pixel               
coordinates of centre point of bounding box, bbox_width and bbox_height are width and             
height of bounding box in pixels (figure 4.1). All these pixel values are normalized with               
respect to image size. An extra column is added to carry the distance information, so format                
becomes 
 

Class_id bbox_centre_x bbox_centre_y bbox_width bbox_height distance 
 

 
Figure 4.1.​ ​Bounding box annotation params 
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Figure 4.2 shows the general architecture of data preprocessing. Since the class information             
comes from segmentation image, first thing to do is thresholding the segmentation image             
according to human class_id, to get human masks. If thresholding is skipped, we end up with                
incorrect blobs and smaller blobs (larger distances) are not detected, and also get blobs that               
are not human (trees, road, cars, etc). Thresholding is done for red color, since red is the                 
human class. Once that is done, contour detection is applied to get the contours of humans in                 
the masked image. This is followed by convex-hull [53] that helps to calculate border pixels               
for the red blobs or humans. From convex-hull values, it is easy to get the extreme pixel                 
values (left, right, top, and bottom) that perfectly fit the human, those extremes are used to                
calculate the centre of bounding box, width and height, and is normalized using width and               
height of the input image.  

Once bounding boxes are obtained, this information is then fused with depth image to              
get distance information of that bounding box. A cut-off of 30 and 50m distance was used.                
Human bounding boxes that had their distance values more than set threshold were discarded.  
All this information was then stored in an annotation file in ​.txt ​format. This process was                
repeated for all the images in dataset and takes ~2 seconds for one image.  

Although this process for automating data saved a lot of time of manual labeling, it               
had corner cases (~20 %) in current dataset, that it did not cover. Figure 4.4 ​and Figure 4.5                  
show such examples where due to overlap between two humans and having white region              
surrounded by red (human class) can get confused as one contour.  

Figure 4.3 ​has the visualization of bounding box drawn on masked image (the original              
image is depicted in Figure 3.1 and the segmented image in Figure 3.2).  

A dataset consisting of 890 images, with text files is compiled. 
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Figure 4.2.​ ​The general architecture for annotating data in required format. Input images, 

and all the processes/algorithms are shown. 
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Figure 4.3.​ ​The result of thresholding applied to figure 3.1, followed by contours and 

convex-hull and finding extremes. Distance cut-off was applied so any human farther than 50 
meters is not made a bounding box of 

 
 

 
Figure 4.4.​ ​When there is even slight overlap between two humans, they get same contour 

and hence we wind up with one bounding box instead of two 
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Figure 4.5.​ ​shows that if a human is not fully in the frame then it does not get selected as a 

contour, and if there is significant gap between arms or legs it also get a bounding box 

4.1.1. Manual Labeling 

Although automatic labeling pipeline is quick and saved us a lot of time, it did not cover a few cases                    
(figures 4.4 and 4.5). Those remaining images (190) were manually labelled using            
YOLO-Annotation-Tool [54]. It is easy to use bbox labeling tool with user-friendly graphical user              
interface (figure 4.6). It also provides horizontal and vertical markers next to mouse cursor so it                
becomes easy to mark bounding boxes. It saves the pixel coordinates to a text file for each image. The                   
text files with these pixel coordinates were subsequently converted into required training format using              
a custom script. 
 

 
Figure 4.6.​ ​Snippet of the tool used for manual labeling  
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4.2. YOLOv3 modifications 
As explained in section 2.4, YOLOv3 is designed to predict bounding boxes and certainty              
score of predicted object. In this work it is modified to accept an extra training input of                 
distance and also predict it. The following functionalities were added to the YOLOv3 source              
code: 

1. Reading distance information from the annotation file 
2. Normalizing distance values after reading them from the annotation files. This           

yields lower loss and better results 
3. Adding loss function to yolo layer to account for distance losses and adjust             

weights accordingly. YOLOv3 uses squared loss for each bounding box and           
class loss. Another function is added to compute loss for distance squared and             
added to previous loss (equation (3)). 
 

oss bbox  class   L =  2
loss +  2

loss + distance2
loss (3) 

 
Where bbox​loss comprises of all the individual losses for width, height,           
centre_x, and centre_y position of bounding box, as shown in equations           
(4)-(7) 
 

 cale (centre_x  centre_x ) centre_xloss = s *  actual −  predicted  (4) 

 cale (centre_y  centre_y ) centre_yloss = s *  actual −  predicted  (5) 
      cale (width  width ) widthloss = s *  actual −  predicted  (6) 
     cale (height  height ) heightloss = s *  actual −  predicted  (7) 

 
Where ​scale is a constant that can help with how aggressively model weights             
are changed with loss values. Similarly losses for class and distance are shown             
in equations (8) and (9), respectively. 
 

      class_probability  class_probability  classloss =  actual −  predicted  (8) 
 scale (distance  distance ) distanceloss =  *  actual −  predicted  (9) 

 
Where actual class probability is 1.0 and predicted class probability is between            
1.0 and 0.0. This scale parameter in equation (9) was tweaked for different             
values ranging from 1-18 to get better RMSE values for distance evaluation. 

4. Modification of yolo layer (detection layer) to predict distance, and to account            
for distance loss in order to change the weights 

5. More weight was given to distance loss function to achieve better RMSE for             
distance with minor trade-off (~1%) for bounding box mAP 

6. RMSE function was added to get overall distance accuracy of model 
7. Some other minor modifications to help with evaluation with dataset used 

30 



 

5. Results 

5.1.  Training Procedure 
Models were trained using a varying learning rate to get better results quicker. Table 5.1 
shows best combination for given dataset found by observing the loss graph. 
 

Table 5.1.​ ​Learning rates used 

Learning rate Number of iterations 

0.001 0- 2000 

0.0001 2000-5000 

0.00001 5000-10000 

0.000001 10000-18000 

 
 
Two datasets were extracted from provided data by limiting the maximum distance of             
humans to be annotated to 30m (dataset-30) and 50m (dataset-50). 525 training images were              
used, with 175 validation images and 190 test images. Two models were trained using same               
parameters but different datasets. For training on both of these datasets, distance loss was              
multiplied by 12.0, as it showed best results. 
 
Data augmentation was used to increase amount of training data without incurring any extra              
labeling cost​. ​Standard data augmentation techniques like changing saturation (1.5), exposure           
(1.5), hue (0.1), cropping, flipping of images were used. These were already provided in              
darknet implementation. Figure 5.2 and 5.3 show loss variation for training on dataset-30 and              
dataset-50 throughout the training process. The sharp curve in the beginning is due to higher               
learning rate (table 5.1), as loss varies more with higher learning rates. Both trainings were               
terminated before set iterations because loss had become constant. Leaky RELU (rectified            
linear unit) (figure 5.1) was used as activation function, and AdaGrad, a sophisticated             
gradient descent algorithm that can rescale gradients of each parameter [34] was the             
optimizer used. 

 
Figure 5.1.​ ​Leaky RELU activation function [55] 
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Figure 5.2.​ ​Loss variation for training on dataset-30 

 
 

 
Figure 5.3.​ ​Loss variation for training on dataset-50 

 

32 



 

A higher learning rate is used in the beginning to decrease loss and make model converge                
quickly, and we shift to lower learning rates after that so we do not overshoot the minima. If                  
we use smaller learning rate from beginning model will take a lot of time to converge to the                  
minima. 

5.2. Evaluation Metrics 
RMSE is used to get distance accuracy of the model and COCO evaluation metric [56] is                
used for bounding box accuracy, explained in table 5.2. Evaluation results are presented for              
two models as mentioned previously. 
 

 
Table 5.2.​ ​COCO evaluation metric explanation [56] 

Average Precision (AP): 
AP % AP at IoU=.50:.05:.95 ​(primary challenge metric) 
AP​IoU=.50 % AP at IoU=.50 (PASCAL VOC metric) 
AP​IoU=.75 % AP at IoU=.75 (strict metric) 
AP Across Scales: 
AP​small % AP for small objects: area < 32​2 

AP​medium % AP for medium objects: 32​2​ < area < 96​2 

AP​large % AP for large objects: area > 96​2 

Average Recall (AR): 
AR​max=1 % AR given 1 detection per image 
AR​max=10 % AR given 10 detections per image 
AR​max=100 % AR given 100 detections per image 
AR Across Scales: 
AR​small % AR for small objects: area < 32​2 

AR​medium % AR for medium objects: 32​2​ < area < 96​2 

AR​large % AR for large objects: area > 96​2 

 
Human distribution in dataset with respect to area as defined by COCO metric is shown 
(table 5.3). 
 

Table 5.3.​ ​Area distribution of dataset-30 and dataset-50 

Dataset Area distribution 

 
dataset-30 

Small:     0.09 
Medium: 0.715 
Large:     0.19 

 
dataset-50 

Small:     0.37 
Medium: 0.5 
Large:     0.125 

 
As expected we have more smaller humans in 50m cut-off than in 30m. Table 5.4 shows the 
RMSE values of distance for both models for different distances. It shows that model trained 
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on dataset-30 gives quite good results for larger distances as well, while doing pretty good for 
distances under 10m. 
 

Table 5.4.​ ​RMSE values for both models 

Dataset RMSE 
(0-10m) 

RMSE 
(0-20m) 

RMSE 
(0-30m) 

RMSE 
(0-40m) 

RMSE 
(0-50m) 

dataset-30 0.89m 1.71m 1.97m 2.98m 3.21m 

dataset-50 1.4m 1.37m 2.24m 2.63m 2.99m 

 
 
Table 5.5 shows results after evaluating model trained on dataset-30 and dataset-50 on COCO 
metric. The main metric is AP at 0.5 IoU, that shows model performance on detections. There 
is not much drastic difference in these two trainings except AR for small areas that comes 
from dataset-50 having many small examples to train on (table-5.3). 

 
 

Table 5.5.​ ​Detection results 

Metric IoU Area maxDets dataset-30 
values 

dataset-50 
values 

Average Precision (AP) 0.50:0.95 all 100 0.512 0.466 

Average Precision (AP) 0.5 all 100 0.878 0.856 

Average Precision (AP) 0.75 all 100 0.581 0.443 

Average Precision (AP) 0.5:0.95 small 100 0.241 0.368 

Average Precision (AP) 0.5:0.95 medium 100 0.544 0.509 

Average Precision (AP) 0.5:0.95 large 100 0.547 0.571 

Average Recall (AR) 0.5:0.95 all 1 0.343 0.221 

Average Recall (AR) 0.5:0.95 all 10 0.604 0.573 

Average Recall (AR) 0.5:0.95 all 100 0.604 0.575 

Average Recall (AR) 0.5:0.95 small 100 0.378 0.498 

Average Recall (AR) 0.5:0.95 medium 100 0.621 0.614 

Average Recall (AR) 0.5:0.95 large 100 0.650 0.645 

 
 
Prediction result (figure 5.4) and ground truth (figure 5.5) are shown for one of the test 
images in form ​class-distance​. Model was also tested on real world data (figure 5.6). 
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Figure 5.4.​ ​Prediction results 

 
 

 
Figure 5.5.​ ​Ground truth for figure 5.4 
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Figure 5.6.​ ​Real-world image tested on trained model 

5.3. Comparison 
Proposed technique and DisNet [53] both rely on YOLOv3 [53] for detection and are              
estimating distance differently. DisNet does not provide any metric to gauge performance of             
distance estimator, but from result table a distance of 50m showed the result of 54.26m,               
showing an error of 4.26m [53] while we have RMSE of 2.99. Also least absolute shrinkage                
and selection operator (LASSO) model made by Nutikas ​[49] ​uses a feature vector of height,               
width, and area (in pixels) of a bounding box predicted by YOLOv3 and predicts its distance.                
It was trained on dataset-30 and dataset-50 and then tested on same test set. It showed more                 
than 60% RMSE increase (table 5.7) than proposed model. 
 

Table 5.7.​ ​Comparison of distance RMSE with LASSO model 

Dataset RMSE (m) % RMSE increase 

dataset-30 3.28 66.5 

dataset-50 4.79 60.2 
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6. Future Work 
YOLOv3 was trained using only simulation data which was limited in a sense that most               
humans were in similar clothing, physique, skin tone and were all adults. In order to get                
better understanding of behaviour more variance is needed. Even with these limitations, it             
provides proof-of-concept that this approach is viable and could be made generalizable by             
adding real world training data.  

A reasonable next step is to add more and varying simulation data, and then move               
towards real world data for training. The problem with sparse point cloud remains an issue,               
which we plan to solve using various processes. Because the main problem is to be sure that                 
selected point to calculate the distance is actually a point on human body, we can use camera                 
+ lidar fusion, segmentation and torso detection techniques for verification that selected point             
is actually part of human body. Another approach would be to use radio beacons. These emit                
radio signals that can be detected using directional antennas to get position of humans. Rest               
of the pipeline will remain the same.  

One definite improvement is to add more classes to the dataset. 
Another enhancement is to predict motion vectors. This means that also the direction of              
where human is moving is estimated. This can be very helpful when planning vehicle motion.               
If the trajectory of human is known it can help plan better and avoid any undesirable                
outcome. For this some other neural network technique will be required as it is very difficult                
to predict which direction someone is moving by just using single scene image.  

Finally, there are a lot of other neural network architectures and implementations,            
which performance should be evaluated. 
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7. Conclusion 
In this work we have experimented with data from simulation environment containing snowy 
forest, and humans in random poses to cover our use case of off-road autonomous driving, 
and object detection focusing on humans only to ensure the safety of humans around an 
autonomous vehicle. 
We predict human bounding boxes and estimate their distance provided we only have             
monocular camera image available. We trained YOLOv3 on a non-trivial dataset, forest            
environment with snow, populated with humans in different poses (11 in total) varying from              
walking, running, crouching to lying down. 

Our results show that a model trained for object detection can be modified to predict               
distance as well and it behaves similarly well after modification. Training input was modified              
to expect ground-truth value for distance as well. In addition, prediction layer was modified              
to estimate distance and loss function was changed to take into account the distance error. All                
of this was needed to make better predictions. Different loss scales were used to get RMSE                
values down to 1.97, and also different learning rates to see which combination gets us better                
results quickly. We achieved 60% lower RMSE when compared to LASSO. 

All in all, the proposed approach makes it much more convenient for object detection              
and distance estimation task as there is a single network involved. It also reduces the               
estimation time when compared to a solution that required two networks e.g. DisNet. Finally,              
also a large distance estimation error reduction was achieved. 

There are a lot of future work to be done that includes addition more simulation data                
with different environment, people of different ages groups and skin tones, etc. Real-world             
data needs to be added to generalize the model better. Also add another model that could                
predict motion vectors to of humans to help vehicle plan better. 
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