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1 Introduction

1.1 Introduction and overview

An efficient generation of light in an entangled state has become increasingly
important because of perspective applications in quantum optical experiments
like quantum teleportation, quantum computing and quantum key distribu-
tion. The most common source of entangled photon pairs is a spontaneous
parametric down-conversion (SPDC) process in a bulk nonlinear crystal – a
spontaneous decay of pump photons into two due to nonlinear interaction with
matter. However, the process of SPDC is very inefficient and only a small frac-
tion of pump photons are transformed into photon pairs. The aim of this thesis
is to explore the novel idea to enhance the process of SPDC with surface waves
both theoretically and experimentally.

The work begins with an overview of the previous work on the enhance-
ment of SPDC. Next, general background for understanding the thesis will be
given in chapter 2. Firstly, theoretical basics are introduced to establish com-
mon definitions and notations. Secondly, several kinds of surface waves are
briefly described along with possible excitation methods. Finally, the process
of SPDC is reviewed.

In the first original part of the thesis (chapter 3), the idea of the en-
hancement of SPDC with surface waves is introduced (publication I) and the
experimental work towards the realization of the enhanced SPDC is described
(publication II). Theoretical considerations are limited to the calculation of
enhancement factors and phase-matching conditions, no detailed modeling of
SPDC is attempted.

Next, chapter 4, based on publications III and IV, is devoted to the
realistic numerical modeling of SPDC process in structures supporting surface
plasmon polaritons (SPPs), long-range SPPs (LRSPPs) and guided dielectric
waves (GDWs). The aim of this chapter is to assess the suitability of surface
waves for the enhancement of SPDC, compare different types of surface waves
and address main limiting factors of the process. An extra care is taken to
realistically model the interaction of light with very narrow resonances of LD-
SPPs and GDWs. To do that, several extensions for transfer-matrix method
(TMM) were developed: support for second-order nonlinear processes, calcu-
lations with realistic Gaussian beams and the quantum theory of SPDC.

The last original part (chapter 5), based on publication V, focuses on the
new variation of leaky Dyakonov SPPs (LDSPPs) in the context of enhanced
SPDC. The chapter begins with an introduction to methods used to predict the
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existence and to describe the leaky nature of this new kind of waves. The main
advantage of discovered LDSPPs, the built-in excitation method, is studied to
simplify the structure required to enhance SPDC with surface waves.

Through the entire work, the scope is limited to numerical modeling of
the classical parameters of the SPDC like the efficiency of the process. The
quantum properties of the generated light are not studied and are left for
future work.

Finally, the conclusions are made and the results are discussed in the
context of the future work.

1.2 Previous work

A need for a more efficient source of entangled photons than ordinary SPDC
in a bulk has been under interest for several decades. Here the previous work
in the field of enhanced SPDC will be reviewed.

One of the first steps towards enhanced SPDC was reported in 1999 by
P. G. Kwiat, et. al. [1]. By using a two-crystal geometry, the enhancement of
the rate of the generation of polarization-entangled photon pairs by a factor of
ten was experimentally verified. The main limitation of usual type-II phase-
matched SPDC was, that only a small part of the generated photon pairs was
polarization entangled (only along two special directions) [2]. The enhance-
ment of the two-crystal structure results from the fact, that all of the photon
pairs generated are entangled [1]. Although the process of SPDC itself was
not enhanced (only the generation of polarization-entangled states), the work
of P. G. Kwiat, et. al. was one of the first to explore the field of enhanced
SPDC.

Next, the potential of resonant optical cavities was realized for the en-
hancement of SPDC [3–8]. The first proof-of-concept demonstration of the
use of a cavity for a pump laser was conducted in 2000 by M. Oberparleiter,
et. al. [3]. They used resonant enhancement of optical cavities, tuned to
the frequency of the pump beam, to increase the nonlinear interaction with
a nonlinear crystal and experimentally demonstrated an enhancement factor
around 7 (theoretically up to 50) [3]. Alternatively, resonant cavities at the sig-
nal and idler frequencies could be used to increase the correlation time between
conjugate photons while sustaining the rates of the photon pairs [5, 7].

Shortly after, in 2001, a new kind of entangled photon pair source based
on periodically poled lithium niobate (PPLN) waveguides was proposed [9].
They reported huge enhancement, more than four orders of magnitude, in
the rate of the pair generation. Experimentally conversion rate of 10−6 pairs
per pump photon was demonstrated. The effect here is twofold. Firstly,
the periodical reversal of the sign of the second-order susceptibility allows
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quasi-phase-matching (QPM) – especially beneficial in highly nonlinear crys-
tals where phase-matching is not otherwise possible. I.e. it allows using the
highest nonlinear coefficient of lithium niobate otherwise not accessible. Sec-
ondly, the SPDC in waveguides allows the confinement of the pump beam over
the interaction length. In usual SPDC setup, the interaction length is limited
by the transverse walk-off, in the case of the waveguide structure, it is not an
issue, as the signal is generated into a single mode of the waveguide [10].

The field of the enhancement of SPDC in waveguides has since attracted
a lot of attention. Different materials have been explored [11], energy-time en-
tangled photon pair sources have been reported [12], different splitting ratios
and pump wavelengths have been demonstrated [13–15]. Moreover, the gener-
ation of SPDC in nanophotonic waveguides [16] and the heralded single-photon
source for telecom wavelengths have been demonstrated [17]. The use of peri-
odically poled materials and QPM has not been limited only to the waveguides,
the enhanced generation of SPDC in bulk periodically poled potassium titanyl
phosphate was demonstrated in Ref. [18].

More recently, the enhancement of SPDC was theoretically studied in
photonic crystals [19, 20], in negative index materials [21] and in semiconductor
Bragg reflector waveguides [22, 23].

The topic of this thesis, enhancement of SPDC by plasmonic and dielec-
tric modes, is virtually unexplored. The idea of SPP-enhanced SPDC is only
mentioned in two papers by the same group [24, 25]. Their approach is based
on k-space spectroscopy to probe plasmonic enhancement of second-harmonic
[24] and sum-frequency generation [25], however, they also recognize the im-
portance of the reverse process (plasmonically enhanced SPDC). In Ref. [24]
they mention “A striking example would be the inverse process to plasmon
SHG, namely, parametric down-conversion, which could be a source of entan-
gled SP pairs at compact length scales.” and in Ref. [25] “The inverse of the
observed nonlinear interaction – an exotic form of parametric down-conversion
– would act as a source of surface plasmons in the near-field that are quan-
tum correlated with photons in the far-field.”. No work towards plasmonically
enhanced SPDC is attempted in these papers.
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2 Background

2.1 Theoretical basics

In the entire work, bold mathematical symbols represent vector or matrix
values if not denoted otherwise. The position vector in 3D Cartesian coordinate
system is given by r = xx̂ +yŷ+zẑ, where x̂, ŷ and ẑ denote the unit vectors.
Hat symbol represents unit vectors only in the case of symbols x, y and z,
otherwise, hat symbol is used for representing column vectors

M̂ =
[
M+

M−

]
, (2.1)

for compact representation of forward- (M+) and backward-propagating (M−)
components (e.g. incident/transmitted and reflected fields). If x, y or z symbol
is used in the subscript of the vector, then it represents the noted vector
component.

2.1.1 Maxwell equations

Maxwell equations are the base equations for the propagation of electromag-
netic fields. In general form, the macroscopic Maxwell equations are given
by

∇×E (r, t) = −∂B (r, t)
∂t

, (2.2)

∇×H (r, t) = ∂D (r, t)
∂t

+ j (r, t) , (2.3)

∇ ·D (r, t) = ρ (r, t) , (2.4)
∇ ·B (r, t) = 0, (2.5)

where ∇ = ∂
∂x x̂ + ∂

∂y ŷ + ∂
∂z ẑ denotes the Nabla operator, E the electric field,

H the magnetic field, D the electric displacement, B the magnetic induction,
j the free current density, ρ the free charge density and t the time [26]. The
electric displacement and the magnetic induction are usually discussed in terms
of the macroscopic polarization P and magnetization M
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D (r, t) = ε0E (r, t) + P (r, t) , (2.6)
B (r, t) = µ0 [H (r, t) + M (r, t)] , (2.7)

where ε0 and µ0 are the permittivity and the permeability of vacuum, respec-
tively. The macroscopic polarization P and magnetization M describe how
the material behaves under the influence of the electric E and magnetic field
H, respectively. In order to solve Maxwell equations, these material relations,
also known as constitutive relations, must be defined.

2.1.2 Linear medium

2.1.2.1 Wave equation

Maxwell equations defined by Eqs. 2.2 – 2.7 are general. However, to simplify
the algebra often several assumptions are made. In this work, we assume that
in the case of a linear medium:
• The system interacts only with a harmonic monochromatic light with
frequency ω. As a consequence, the time (e−iωt) and the space (E (r))
dependence of the field (electric field given as an example) could be sep-
arated

E (r, t) = E (r) e−iωt + c.c, (2.8)
where c.c. denotes complex conjugate.
• The electric response of materials is linear and materials are not spatially
dispersive

P (r) = ε0χ (ω) E (r) , (2.9)

where χ denote the electric susceptibility tensor. Equivalently from Eq.
2.6

D (r) = ε0ε (ω) E (r) , (2.10)
where ε (ω) = 1 + χ (ω) is dielectric permittivity tensor. In the case of
isotropic medium, the electric susceptibility and dielectric permittivity
tensors reduce to a scalar.
• Materials have no magnetic response (M (r) = 0).
• There are no free currents or charges (j (r, t) = 0 and ρ (r, t) = 0). The
effect of conduction currents is incorporated into constitutive relations.
• Optical medium is piecewise homogeneous. On the boundaries, the tan-
gential components of E (r) and H (r) are continuous.
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In such case, the Maxwell equations reduce to

∇×E (r) = iωµ0H (r) , (2.11)
∇×H (r) = −iωε0ε (ω) E (r) , (2.12)
∇ ·E (r) = 0, (2.13)
∇ ·H (r) = 0. (2.14)

Eqs. 2.11 - 2.14 could be combined to a single wave equation

∇2E (r) + ω2

c2
ε (ω) E (r) = 0, (2.15)

also called Helmholtz equation. One of the simplest solutions of Helmholtz
equation (Eq. 2.15) is an infinite plane wave (or the sum of plane waves)

E (r) = Aeik·r, (2.16)

where A is a amplitude vector, k is a wavevector with condition |k| = ωn (ω) /c
and

n (ω) =
√
ε (ω) (2.17)

is a refractive index.
The refractive index may be complex to account for losses

n (ω) = ñ+ iκ̃, (2.18)

where ñ is the real and κ̃ is the imaginary part, also named to extinction
coefficient, of the refractive index. It also follows, that the wavevector may be
complex.

2.1.2.2 Isotropic medium

In the case of isotropic medium, the dielectric permittivity reduces from a
second rank tensor to a scalar. The consequence of this is the decoupling of
polarizations: two different polarizations appear (both determined only by one
scalar field), that could be solved separately. If the plane of incidence is taken
to be xz-plane, then p-polarized (also called to TM polarization) electrical field
has only x- and z-components and s-polarized (also TE polarization) electrical
field has only y-component.

For example, s-polarized monochromatic electrical field is given by E (r) =
Ey (r) ŷ and from Eq. 2.11 the nonzero components of the magnetic field are
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H (r) = 1
iωµ0

[
∂Ey (r)
∂z

x̂− ∂Ey (r)
∂x

ẑ
]
. (2.19)

It is clear, that the only independent variable here is the Ey (r) , as the mag-
netic field directly follows from it.

Similarly, for p-polarized monochromatic wave, the only independent
variable is Hy (r) and the corresponding electrical field components are given
by

E (r) = −1
iωε0ε (ω)

[
∂Hy (r)
∂z

x̂− ∂Hy (r)
∂x

ẑ
]
. (2.20)

2.1.2.3 Anisotropic medium

In the case of electrically anisotropic mediums, the dielectric permittivity in
Eq. 2.15 is given by a 2-rank tensor

ε =



εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


 (2.21)

instead of a scalar: electric field in one direction can cause polarization in
the other direction [27]. However, not all variables of the dielectric tensor
are independent. It turns out, that it is always possible to select the axes
(principal axes 1, 2, 3) so that the dielectric tensor is diagonalized

ε = Sx (ξ) · Sz (ψ) ·


ε1 0 0
0 ε2 0
0 0 ε3


 · Sz (−ψ) · Sx (−ξ) , (2.22)

where Sx (ξ) and Sz (ψ) are the rotation matrices around the x- and z-axis,
respectively [28]. Now five independent variables remain: three components
of the dielectric tensor (ε1, ε2, ε3) and two angles of rotation of the principal
axes in respect to laboratory frame (ξ, ψ). Often refractive index is preferred
over dielectric permittivity (equivalent), connected in the same way as in the
case of isotropic medium (Eq. 2.17).

Moreover, in the case of uniaxial crystals, only two elements of the
dielectric permittivity tensor are independent

ε =



εo 0 0
0 εo 0
0 0 εe


 , (2.23)
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where εo and εe represent ordinary and extraordinary dielectric permittivities,
respectively and the optical axis (OA) is along the third principal axis. If the
light travels along the OA, the propagation is only influenced by the ordinary
refractive index (dielectric permittivity) of the uniaxial crystal despite the po-
larization. In the case of any other direction of propagation, two different
waves appear that feel the material differently (birefringence): the ordinary
beam (dielectric permittivity εo) and the extraordinary beam (dielectric per-
mittivity between εo and εe). The ordinary and the extraordinary beams are
independent and are the natural choice of the polarization base like p- and
s-polarization in the case of isotropic medium (Sec. 2.1.2.2).

Uniaxial crystals are classified into positive (εe > ε0) and negative (εe <
ε0) crystals and described by the anisotropy parameter

η = εe
εo
− 1. (2.24)

2.1.3 Second-order nonlinear medium

2.1.3.1 Nonlinear wave equation

In the case of nonlinear mediums, it is assumed similarly to Sec. 2.1.2 that
materials have no magnetic response, there are no free currents or charges and
optical mediums are piecewise homogeneous. We also assume, that we are
working with two harmonic monochromatic light beams (also named pump
beams). The time-dependent electrical field is then given by (analogously to
Eq. 2.8)

E (r, t) = E1 (r) e−iω1t + E2 (r) e−iω2t + c.c., (2.25)

where 1 and 2 denote the first and the second beam, respectively. In the case of
second-order nonlinear medium, the macroscopic polarization P (r, t) depends
also on the second power of the electric field

E (r, t)2 = E1 (r)2
e−i2ω1t + c.c.+

E2 (r)2
e−i2ω2t + c.c.+

2E1 (r) E2 (r) e−i(ω1+ω2)t + c.c.+
2E1 (r) E∗2 (r) e−i(ω1−ω2)t + c.c.+
2 (E1 (r) E∗1 (r) + E2 (r) E∗2 (r)) . (2.26)

It is evident, that new frequencies arise in the second-order nonlinear medium
leading to second-harmonic generation (SHG), sum-frequency generation (SFG),
difference-frequency generation (DFG) and optical rectification (OR). In prac-
tice, only one of those processes is concurrently under interest and the others
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are ignored. It allows writing the polarization similar to the linear case (Eq.
2.9)

P (r) = ε0χ (ω) E (r) + PNL (r) , (2.27)

where PNL (r) is addition to ordinary linear polarization and depends on the
process under interest

PNL (r;ω = 2ω1) = ε0χ
(2) : E1 (r) E1 (r) , (SHG) (2.28)

PNL (r;ω = 2ω2) = ε0χ
(2) : E2 (r) E2 (r) , (SHG) (2.29)

PNL (r;ω = ω1 + ω2) = ε0χ
(2) : E1 (r) E2 (r) , (SFG) (2.30)

PNL (r;ω = ω1 − ω2) = ε0χ
(2) : E1 (r) E∗2 (r) (DFG) (2.31)

and ω denotes the newly generated frequency. Through the entire work, the
pump beams are denoted by numbers 1, 2 and the generated beam has no
subscript. The strength of the nonlinear interaction is given by second-order
nonlinear susceptibility tensor χ(2) and : denotes the double product [29]. Note,
that the frequency dispersion of second-order nonlinear susceptibility tensor is
non explicitly stated in this work. Often effective nonlinearity χ(2)

eff is used to
reduce the susceptibility tensor to a scalar by taking into account the polar-
izations of the pump beams so that

χ
(2)
eff ‖E1 (r)‖ ‖E2 (r)‖ · PNL

‖PNL‖
= χ(2) : E1 (r) E2 (r) , (2.32)

where ‖E‖ =
√
|Ex|2 + |Ey|2 + |Ez|2 denotes L2-norm of complex vector.

The polarization defined by Eq. 2.27 leads to the nonlinear wave equa-
tion

∇2E (r) + ω2

c2
ε (ω) E (r) = − ω2

ε0c2
PNL (r) +∇ (∇ ·E (r)) , (2.33)

where the term ∇ (∇ ·E (r)) is often neglected or incorporated into effective
nonlinear polarization.
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2.1.3.2 Non-depleted pump wave approximation

As an example, the wave equations of the DFG are

∇2E1 (r) + ω2
1
c2
ε (ω1) E1 (r) = −ω

2
1
c2
χ(2) : E2 (r) E (r) , (2.34)

∇2E2 (r) + ω2
2
c2
ε (ω2) E2 (r) = −ω

2
2
c2
χ(2) : E1 (r) E∗ (r) , (2.35)

∇2E (r) + ω2

c2
ε (ω) E (r) = −ω

2

c2
χ(2) : E1 (r) E∗2 (r) , (2.36)

where the first two describe pump beams (subscripts 1 and 2) and the last
one describes the DFG beam (no subscript, ω = ω1 − ω2). It is evident,
that these three wave equations are coupled. The generation of the difference-
frequency depletes the first pump beam and amplifies both the second pump
beam and the generated beam. However often, if the nonlinear interaction
is very weak (the usual case), non-depleted pump beam approximation can
be made. Essentially it discards the right-hand sides of Eqs. 2.34 and 2.35
reducing wave equations to ordinary Helmholtz equations. Now pump beams
could be solved independently and the right-hand side of the Eq. 2.36 could
be precalculated.

2.1.3.3 Solution to the nonlinear wave equation

In Sec. 2.1.2.1 we noted that the simplest solution of linear wave equation
(Helmholtz equation) is a simple plane wave. In this section, we find the
solution for the nonlinear wave equation (Eq. 2.33) by using non-depleted
pump wave approximation.

Let’s assume for now, that pump waves are given as a sum of forward-
and backward-propagating plane waves (i.e. incident/transmitted and re-
flected beams)

Ek (r) = E+
k (r) + E−k (r) = A+

k e
ik+

k
·r + A−k eik

−
k
·r, (2.37)

where subscript k ∈ {1, 2} represent the index of the pump wave. In such
case, the nonlinear polarization (Eq. 2.31) of DFG (as an example) could be
expressed also as a forward- and backward-propagating parts as

PNL (r) = ε0χ
(2) : E1 (r) E∗2 (r) = P+

NL (r) + P−NL (r) , (2.38)

P±NL (r) = p±s eik
±
s ·r + p±a eik

±
a ·r, (2.39)
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where k±s = k±1 − k±∗2 and k±a = k±1 + k±∗2 are nonlinear source wavevectors
(denoted by s and a by arbitrary choice). Note that the magnitude of the
nonlinear source wavevectors are not equal to an ordinary expression

∣∣∣k±s|a
∣∣∣ 6=

ωn (ω) /c. The terms p±s|a (subscript s|a means, that the expression holds for
both nonlinear source waves) are the amplitudes of the nonlinear polarization
and are given by

p±s = ε0χ
(2) : A±1 A±∗2 , (2.40)

p±a = ε0χ
(2) : A±1 A∓∗.2 (2.41)

It is evident, that if the amplitudes of pump plane waves A±k are known,
then the calculation of nonlinear polarization given by Eq. 2.38 is straight-
forward. As both, the forward- and backward-propagating waves must satisfy
the nonlinear wave equation, it is convenient to use column vectors introduced
in Sec. 2.1. Then the nonlinear wave equation could be written as

∇2Ê (r) + ω2

c2
ε (ω) Ê (r) = − ω2

ε0c2

[
p̂seik̂s·r + p̂aeik̂a·r

]
. (2.42)

The solution of the nonlinear wave equation is no longer a single plane wave
because of the additional source terms on the right-hand side of Eq. 2.42. The
general solution of Eq. 2.42 consists of a sum of homogeneous (linear wave
equation) and inhomogeneous solutions

Ê (r) = Âeik̂·r̂ + B̂se
ik̂s·r̂ + B̂ae

ik̂a·r̂. (2.43)

The amplitudes of the inhomogeneous waves could be easily found by substi-
tuting Eq. 2.43 into Eq. 2.42

B+
s|a = − ω2

c2ε0

p+
s|a

k2 − k2
s|a
, (2.44)

B−s|a = − ω2

c2ε0

p−s|a
k2 − k2

s|a
eiks|ad. (2.45)

Note, that the additional phase factor eiks|ad for backward-propagating inho-
mogeneous wave is added for compact notation used in Sec. 4.2.3, where d
denotes the thickness of the nonlinear medium. Also note, that the only un-
known of the solution given by Eq. 2.43 is the amplitude of the homogeneous
plane wave Â, like in the case of linear medium.
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The magnetic field follows from the electrical field and is given by

Ĥ (r) = 1
ωµ0

[(
k̂× Ê (r)

)
+
((

k̂s − k̂
)
× B̂s

)
eik̂s·r+

((
k̂a − k̂

)
× B̂a

)
eik̂a·r

]
. (2.46)

The final solution is given by the sum of forward- and backward-propagating
waves E (r) = E+ (r) + E− (r) and H (r) = H+ (r) + H− (r).

2.1.3.4 A simple model for DFG
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Figure 2.1: a) An example of a DFG in a nonlinear crystal with a thickness L and a
second-order susceptibility χ(2). Pump lasers have frequencies ω1 and
ω2 and the generated beam has frequency ω. b) The dependence of
signal buildup curves on the phase mismatch factor ∆k.

As a concrete example, let’s look the generation of DFG in a nonlinear
crystal (see Fig. 2.1a). The medium is linear in semi-infinite half-spaces (z < 0
and z > L) and nonlinear in 0 ≤ z ≤ L. The refractive indices of all mediums
are the same. The pump plane waves are propagating in z-direction (k+

1 = k1ẑ
and k+

2 = k2ẑ) and have only forward-propagating parts

Ek (r) = E+
k (r) = A+

k e
ik+

k
·r. (2.47)

The nonlinear polarization amplitudes follow from Eqs. 2.40 – 2.41 and the
only non-zero component is

p+
s = ε0χ

(2) : A+
1 A+∗

2 . (2.48)
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To solve the nonlinear wave equation (Eq. 2.42) the ansatz given by Eq.
2.43 must be used. The continuity of tangential components of electric and
magnetic fields at the boundary z = 0 allows expressing the amplitude of the
DFG wave in a nonlinear medium

A (z) =
ω2χ

(2)
effA1A2

c2kz
· e

i∆kz − 1
∆k , (2.49)

where χ(2)
eff is the effective nonlinearity, Ak = ‖Ak‖ denotes the amplitude

of the pump waves, kz is the wavevector component along the direction of
propagation of the generated wave, ∆k = k1 − k2 − k is a phase-mismatch
factor.

The effect of phase matching is illustrated in Fig. 2.1b. In the case of
a perfect phase-matching (∆k = 0), the intensity (∝ A (z)2) of the generated
wave increases as ∝ z2. Here we name it as a coherent buildup of the generated
signal. If the phase mismatch is not zero (e.g. due to the refractive index
dispersion), then the buildup of the signal is disrupted by the destructive
interference (see the orange curve in Fig. 2.1b) and no efficient generation
of DFG is possible. If a nonlinear material has losses, then ∆k can have a
significant imaginary component. In such a case, the signal will reach some
limiting amplitude after a characteristic length

δc = 1
2 Im [∆k] (2.50)

of propagation and no further buildup is possible (the green curve in Fig.
2.1b).

By using Poynting law, it is possible to rewrite the Eq. 2.49 also in
terms of powers

P = P1
χ

(2)
eff |A2|2

kz1kz

ω3ω1
c4

L2sinc2
(∆kL

2

)
, (2.51)

where P1 and P are the powers of the pump laser and DFG signal, respec-
tively.

2.1.4 Angular spectrum representation

Angular spectrum representation is a general technique to describe optical
fields in a homogeneous medium and it is especially useful in the case of prop-
agation and focusing of laser beams. Mathematically it is given by
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Figure 2.2: a) The profiles of Gaussian beams with different waist sizes (w0) at
plane z = 0. b) The amplitudes of plane wave components traveling to
different directions of Gaussian beams given in Fig. 2.2a.

E (x, y, z) =
¨ ∞

−∞
E (kx, ky; z = 0) ei(kxx+kyy+kzz)dkxdky, (2.52)

where E (kx, ky; z = 0) = F [E (x, y, 0)] is the Fourier transform of the elec-
trical fields at plane z = 0 and kz =

√
k2 − k2

x − k2
y follows from the fixed

magnitude of the wavevector. The selection of z-axis is arbitrary, however, in
the case of laser beams, it is convenient to use the axis of propagation. The
Eq. 2.52 expresses two important properties. Firstly, in the homogeneous
medium, we only have to know the fields at one plane (E (x, y, 0)) – we can
calculate the fields everywhere by Eq. 2.52. Secondly, the fields are just a sum
of plane waves – under the integration we just have plane waves propagating
to different directions with different amplitudes.

As an example, let’s look the propagation of a Gaussian beam along the
z-axis. For simplicity lets ignore y-axis, so only x- and z-coordinates remain.
The cross sections of Gaussian beams with different waist sizes (w0) are shown
in Fig. 2.2a and Fourier transforms, also Gaussian profiles, are shown in Fig.
2.2b, where the angle ϕ = asin (kx/k) is between the wavevector and the z-
axis. It is evident, that narrow Gaussian beam (w0 = 10µm) has wider angular
spread – the beam requires the inclusion of plane waves traveling also at larger
angles to the z-axis. Also the contrary is true, if the Gaussian beam is taken to
be wider (w0 = 200µm), then the angular spread is respectively narrower.

As an example, angular spectrum representation (Eq. 2.52) is used to
calculate the propagation of 10µm wide Gaussian beam, when only its cross
section at plane z = 0 is known. The field distribution is shown in Fig. 2.3.
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Figure 2.3: A propagation of a Gaussian beam in xz-plane with waist size w0 =
10µm.

2.2 Surface waves

2.2.1 Surface plasmon polaritons (SPPs)

Dielectric

Metal

z

x
εm

εd

β

Figure 2.4: The interface of semi-infinite dielectric (permittivity εd) and metal
(permittivity εm) mediums that support SPP mode with propagation
constant β.

Surface plasmon polaritons (SPPs) are one of the best known surface
waves in the field of optics. They exist only for p-polarization at the boundary
of metal and dielectric and are fundamentally caused by the oscillation of free
conduction charges at the surface of the metal. In the simplest geometry (see
Fig. 2.4a), at the boundary of semi-infinite metal (permittivity Re [εm (ω)] <
0) and dielectric (permittivity Re [εd (ω)] > 0), the dispersion relationship of
SPPs could be expressed as

β = ω

c

√
εd (ω) εm (ω)
εd (ω) + εm (ω) ,

where β = k · x̂ is the propagation constant. [26, 30, 31]
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In order to be a surface wave, the propagation constant must be larger
than the magnitude of the wavevector in the dielectric and in the metal, oth-
erwise, the mode will not be bounded to the surface (i.e the mode is not
exponentially decaying away from the surface). It also means, that it is not
possible to excite SPPs just by shining light to a metal surface, as the propa-
gation constant of SPPs is always larger than the magnitude of the wavevector
of light in the dielectric.
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Figure 2.5: a) Reflection and enhancement curves (λ = 802 nm) of the structure
in the inset. θ is the angle of incidence, the prism has refractive index
np = 2.2 and the permittivities of the metal (dm = 60nm) and the
dielectric are εm = −31.2 + 0.41i and εd = 2.37, respectively. b) The
electrical field distribution of the structure in the inset of Fig. 2.5a in
the case of resonance angle.

To excite SPPs, several different methods have been proposed: excita-
tion with high refractive index coupling prism, with the near fields of fluores-
cent molecules, with properly designed gratings, with tips of fibers and with
electrons [30, 32–36]. Probably the most popular ones are Kretschmann, also
used in this work, and Otto configuration [30, 37].

Kretschmann configuration (see the inset of Fig. 2.5a) consists of a
high refractive index (np (ω)) prism, thin (dm) metal film (usually gold or
silver) and dielectric medium attached to it (can also be air). The structure
is illuminated through the high refractive index prism and SPPs are excited
at the boundary of the metal and the dielectric. In order to excite SPPs, the
tangential wave-vector of the exciting light

kx (θ) = ω

c
np (ω) sin θ

must match the propagation constant of SPPs. It is a usual condition for excit-
ing waveguide modes and corresponds to the conservation of the momentum
[30]. The angle of incidence of the exciting light, which fulfills the phase-
matching condition (kx (θspp) = β), is called the resonance angle of SPPs. In
order to work, Kretschmann configuration requires the metal film to be thin,
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as otherwise, the evanescent field of the total internal reflection (TIR) would
not penetrate through it. If the metal film is too thin, then the SPPs would
be again inefficiently excited due to high leakage losses to the prism. Optimal
thickness for silver and gold is in range 40 – 60 nm.

The excitation of SPPs manifests itself as a sharp minimum in a re-
flection curve (the dependence of the reflection coefficient on the angle of in-
cidence). As an example, the reflection curve is calculated at a wavelength
λ = 802 nm for a prism with refractive index np = 2.2, a thin silver film
(dm = 60nm and εm = −31.2 + 0.41i from Ref. [38]) and a single crystal
alpha quartz (nd = 1.538 from Ref. [39]). The reflection drops to almost
zero at angle θspp ≈ 45.69◦ and corresponds to the case where almost all of
the energy is transferred to SPPs. The field distribution at the resonance
condition is shown in Fig. 2.5b. The surface wave at the boundary of silver
and quartz is clearly visible: the fields have a maximum at the interface and
decay exponentially to both mediums. As SPPs are p-polarized, only x- and z-
components of the electrical fields are non-zero. The strongest field component
is perpendicular to the interface (Ez).

From Fig. 2.5b it is also visible, that the fields of the SPPs are also
greatly enhanced in comparison to the exciting fields. Indeed, as the incident
field amplitude is fixed to 1V/m (given in vacuum), then the field enhance-
ment, in this case, is over 15 times. Field enhancement is one of the most im-
portant properties of resonant waves and has motivated many scientific studies
and applications. Also this thesis relies on the field enhancement properties
of SPPs and the other resonant modes. Two main physical mechanisms are
responsible for the enhanced fields of SPPs. Firstly, the SPP mode is highly
confined near the metal film leading to the field enhancement through the
focusing effect. Secondly, the SPP mode is basically a resonant cavity with
a good quality factor that piles up energy in time, leading to the enhanced
electrical fields.

The topic of plasmonics has been very popular in the recent decades and
many interesting applications have been proposed. One of the main applica-
tions, already commercialized by several companies, is surface plasmon reso-
nance sensor for real-time observation of biomolecular interactions [40, 41]. It
is based on the refractive index changes due to the biomolecular interactions
near a metal film, which results in shifting of the resonance angle of SPPs. An-
other interesting field of plasmonics utilizes the tight confinement beyond the
diffraction limit of the SPP mode to guide the light in subwavelength waveg-
uides in order to miniaturize photonic circuits [42, 43]. A typical example of a
benefiting application is interconnects between a central processing unit and a
memory to increase the bandwidth and to access the true potential of silicon
transistors [44]. Another very interesting field has emerged from a coupling
of SPPs and emitters, inducing substantial changes in the emission properties
like surface plasmon-coupled emission and strong coupling [34, 45, 46].

The field of nonlinear plasmonics is closely related to the topic of this
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thesis [47]. Probably the first work in this field is by H. J. Simon, et. al. where
they report first theoretical and experimental investigation of the second-
harmonic generation with SPPs in silver films [48]. They report enhancement
of SHG of one and a half orders of magnitude due to the excitation of SPPs at
the silver-air interface, where the only source of the second-order susceptibility
is the interface causing the symmetry breaking. The SPP-enhanced SHG from
the interface of silver and nonlinear crystal (alpha quartz) was experimentally
observed a few years later [49]. Since the first publication of SPP-enhanced
SHG the field of nonlinear plasmonics has attracted significant scientific in-
terest and many other nonlinear processes (difference-frequency generation,
third-harmonic generation, four-wave mixing, etc.) have been studied in dif-
ferent geometries supporting SPPs [47]. Only recently, the role of plasmonic
and photonic modes in the enhancement of SHG was studied by momentum-
space spectroscopy [24].

2.2.2 Long-range surface plasmon polaritons (LRSPPs)
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Figure 2.6: a) Reflection and enhancement curves (λ = 802 nm) of the structure
in the inset. θ is the angle of incidence, the prism has refractive index
np = 2.2 and the permittivities of the buffer layer (db = 1µm), metal
(dm = 40nm) and dielectric are εb = εd, εm = −31.2 + 0.41i and εd =
2.37, respectively. b) The electrical field distribution of the structure
in the inset of Fig. 2.6a in the case of resonance angle.

Another type of surface waves is possible in a three-layer structure con-
sisting of dielectric (buffer), thin metal (thickness dm) and dielectric (sub-
strate) layers (inset of Fig. 2.6a without a prism) – long-range surface plasmon
polaritons (LRSPPs). LRSPPs were first predicted by D. Sarid in 1981 (Ref.
[50]) and experimentally detected in 1983 by J. C. Quail, et. al (Ref. [51]). LR-
SPPs are composed of two usual SPP modes excited on both metal-dielectric
interfaces. If the metal layer is thin, then modes on each interface become
coupled. The dispersion relationship could only be expressed implicitly
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e−4βdm = β/εm + kz,b/εb
β/εm − kz,b/εb

· β/εm + kz,d/εd
β/εm − kz,d/εd

, (2.53)

where β is the propagation constant, kz,b and kz,d are the z-components of the
wavevectors in the buffer and dielectric layer, respectively [31, 50, 52, 53].

Due to the coupling of the two SPPs, new modes arise: odd and even
mode. In the case of odd mode, electrical fields of SPPs on each interface
interfere destructively in the metal film and as a result the electrical fields in
the metal decay very fast. Consequently, such kind of modes display very low
losses and propagate further than usual SPPs (up to several millimeters) – it
is also the reason for the naming of LRSPPs. The other, even mode, is usually
ignored, as it has inferior properties: the propagation length is shorter and
the field enhancement is lower. Moreover, LRSPPs are mainly studied/used in
symmetric structures, where the refractive index of the buffer and the substrate
layers are the same because it provides longest propagation distances [54].

To excite LRSPPs, similar schemes as in the case of usual SPPs must be
employed. As an example, LRSPPs are studied in Kretschmann configuration
(inset of Fig. 2.6a). Again, a reflection curve is calculated at a wavelength
λ = 802 nm for a prism with refractive index np = 2.2, buffer layer (db = 1µm
and nb = 1.538), a thin silver film (dm = 40nm and εm = −31.2 + 0.41i [38])
and a single crystal alpha quartz (nd = 1.538). Two minima are visible in Fig.
2.6 corresponding to the odd and to the even mode. The field distribution
of the odd mode is shown in Fig. 2.6b. Indeed, the fields are mainly located
outside of the metal.

The thicknesses of buffer and metal layer selected for the example are
not optimal for a maximum propagation distance nor for a maximum field
enhancement. The general dependency is, that thinner metal layer with ap-
propriately thicker buffer layer provides better performance and also narrower
resonances. As resonances can become very narrow, it becomes essential to
take also into account the limitations arising from realistic laser beams (see
Sec. 2.1.4).

Applications of LRSPPs, in general, are similar to the applications of
ordinary SPPs: sensing, the enhancement of light interaction with matter,
wave-guiding, nonlinear interactions, etc [53, 55–57].

2.2.3 Guided dielectric waves (GDWs)

Both, SPPs and LRSPPs, require metal layer in the structure. As real metals
are always lossy, then also the excitation and the propagation of these modes
are inherently accommodated with losses – often the main limiting factor of
possible applications [58]. For that reason, the scientific focus has again started
to shift towards all-dielectric structures [59–63]. One possible all-dielectric
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Figure 2.7: a) Reflection and enhancement curves (λ = 802 nm) of the structure
in the inset. θ is the angle of incidence, the prism has refractive index
np = 2.2 and the permittivities of the buffer layer (db = 1µm), waveg-
uide (dw = 40nm) and dielectric are εb = εd, εw = 4.84 and εd = 2.37,
respectively. b) The electrical field distribution of the structure in the
inset of Fig. 2.7a in the case of resonance angle.

structure supporting resonant modes is identical to the structure supporting
LRSPPs, except the metal layer is replaced with a waveguiding layer with high
refractive index [59, 64]. In this work, we name resonant modes supported by
such structure to guided dielectric waves (GDWs). GDWs are in general very
similar to LRSPPs. The dispersion relationship for p-polarized GDWs are
also given by Eq. 2.53, however, also s-polarized GDWs are supported by the
structure.

The resonances of GDWs can also become very narrow and the general
dependency to have higher field enhancements is to have a very thin waveguide
layer and an appropriately thick buffer layer. The excitation of p-polarized
GDWs is shown in Fig. 2.7a, where all the parameters are the same as in the
case of LRSPPs, except the metal film is replaced with waveguide layer with
refractive index nw = 2.2. Now the resonances are only visible by enhancement
factor, as the structure contains no lossy materials and all of the light has to
be reflected. In some cases, it is computationally convenient to add very
small losses to the materials to make the resonances visible. Also, the field
distribution is very similar to LRSPPs (see Fig. 2.7b) – fields are enhanced
near the waveguiding layer.

In Ref. [59] it is claimed, that the structure in the inset of Fig. 2.7a
could produce arbitrarily large optical field enhancements only limited by the
fabrication tolerances of the structure. In Sec. 4.3.3 we show, that it is only so
in the limit of infinite plane wave approximation – in the case of realistic light
beams, the maximum enhancement is greatly limited by the narrow resonances
of GDWs.
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2.2.4 Dyakonov SPPs (DSPPs)
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Figure 2.8: a) A interface of a metal (permittivity εm) and an uniaxial anisotropic
crystal with ordinary and extraordinary permittivities εo, εe, respec-
tively. The OA of the uniaxial anisotropic crystal is taken to be in
yz-plane and the angle between the z-axis and the OA is denoted by
ϕ. b) The cross-section of the structure in Fig. 2.8a. The propagation
constant of DSPP mode is denoted by β and the four components are
marked by different colors. [V]

More exotic types of surface waves exist at the boundary of isotropic
and anisotropic mediums. Such kind of surface waves was first theoretically
predicted by Dyakonov in 1988 [65]. As requirements for the appearance of
Dyakonov waves are demanding, the experimental observation was accom-
plished only recently at the interface of KTP crystal and index-matching liquid
[66]. A good review of Dyakonov waves is given in Ref. [67] and several appli-
cations have been proposed in the field of optical switching [68], wave-guiding
[69] and sub-diffraction imaging [70].

Another variation of Dyakonov waves, Dyakonov SPPs (DSPPs), was
found to exist at the interface of a metal and an anisotropic crystal [67, 71, 72].
Here a short overview of DSPPs will be given to introduce the background for
the chapter 5 of the thesis. The structure under the interest is shown in Fig.
2.8a. The dielectric permittivity of the metal half-space (x < 0) is εm and the
uniaxial anisotropic crystal is described by ordinary εo and extraordinary εe
dielectric permittivities. The OA of the anisotropic crystal is fixed to lie in the
yz-plane and the angle between the OA and the z-axis is denoted by ϕ. Note
the different orientation of the xyz-axes in comparison to previous sections:
the orientation of axes are different in this section and in chapter 5 in order
to match the notation used in Ref. [V].

DSPPs, like usual Dyakonov waves, are hybridized – the surface wave
has no single polarization. DSPPs are described by a superposition of TM- and
TE-polarization in the metal and by an ordinary and extraordinary mode in the
anisotropic medium. In other words, a DSPP mode consists of four evanescent
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waves: two in the metal and the other two in the anisotropic medium (see Fig.
2.8b).

Wavevectors of the two evanescent waves in the metal are the same

km = −iqmx̂ + βŷ, (2.54)

where β is the propagation constant of DSPPs (continuous at the interface)
and qm is the decay constant into the metal defined by

qm =
√
β2 − εm. (2.55)

Note, that in this section, all wavevectors are scaled by the vacuum wave num-
ber ω/c as it is in Ref. [V] and also in the original derivation by Dyakonov [65].
Similarly, wavevectors of the ordinary and extraordinary evanescent waves
are

ko = iqox̂ + βŷ, (2.56)
ke = iqex̂ + βŷ, (2.57)

where the decay constants are

qo =
√
β2 − εo, (2.58)

qe =
√
β2 (1 + η cos2 ϕ− εe). (2.59)

The parameter η denotes the degree of anisotropy defined by Eq. 2.24.
Requiring the continuity of the tangential components of electric and

magnetic fields yields the dispersion relationship originally derived by Dyakonov
(Ref. [65])

(qm + qe) (qe + qo) (εmqo + εoqe) = (εe − εm) (εm − εo) qo. (2.60)

This dispersion relationship was first studied in 2008 in the context
of DSPPs and necessary conditions and regimes for the existence of DSPPs
(named to hybridized SPPs) were presented [71]. It has been shown, that
in the case of a positive crystal (εe > εo), the necessary condition for the
existence of DSPPs is

η >
εe
|εm|

. (2.61)
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Figure 2.9: The dependence of the critical angle (ϕc) of DSPPs on the wavelength
and on the different choices of materials. [V]

In the case of silver (λ = 900 nm), the condition given by Eq. 2.61 is fulfilled for
a number of well-known anisotropic crystals: TiO2 (Rutile), YVO4 and KTP
(almost uniaxial crystal with positive birefringence) [38, 73–75]. Moreover,
DSPPs only exists for specific orientations ϕ < ϕc of the OA of the crystal – the
DSPPs disappear if the extraordinary decay constant becomes zero (qe = 0).
The critical angle is approximated by

ϕc w asin
√√√√ ε2

e (εo + |εm|)(
εo (εe + |εm|)2 + ε2

e |εm|
)

(εe − εo)
(2.62)

if −Re [εm] � εe, εo, Im [εm] like in the case of usual metals [V]. The wave-
length dependence of the critical angle for the combination of metals and
anisotropic crystals is shown in Fig. 2.9 [V]. In the case of silver and gold, the
critical angle exists only in the red part of the spectrum – the DSPPs exists
for all the orientations of OA for the blue part of the spectrum. On the other
hand, in the case of aluminum, the orientation of the OA is more important,
as the critical angle exists over the entire visible spectrum.

To excite DSPPs, similar excitation schemes must be used as in the
case of other surface waves. As an example, the excitation of DSPPs in
Kretschmann configuration is shown in Fig. 2.10 at wavelength λ = 802 nm.
The structure consists (the inset of Fig. 2.10a) of high refractive index prism
(np = 2.5), thin silver film (dm = 60nm, εm = −31.2+0.41i) and KTP crystal
(εo = 3.06, εe = 3.40 and ϕ = 40◦). Results are very similar to usual SPPs, the
p-polarized reflection (Fig. 2.10a) displays a minimum, that is accompanied
by field enhancement. Also, the field distribution in Fig. 2.10b is very similar
to the usual SPPs, however, a small hybridization effect is also visible: every
field component is present in the crystal.
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Figure 2.10: a) Reflection and enhancement curves (λ = 802 nm) of the structure
in the inset. θ is the angle of incidence, the prism has refractive index
np = 2.5 and the permittivities of the silver layer (dm = 60nm),
ordinary and extraordinary waves of the crystal are εm = −31.2 +
0.41i, εo = 3.06, εe = 3.40, respectively. The orientation of the OA
is taken to be ϕ = 40◦. b) The electrical field distribution of the
structure in the inset of Fig. 2.10a in the case of resonance angle.

The background presented in this section will be used in chapter 5,
where the properties of DSPPs are studied further to propose a new excitation
scheme for surface waves.

2.3 Spontaneous parametric down-conversion (SPDC)

2.3.1 Introduction

Spontaneous parametric down-conversion (SPDC) was first experimentally ob-
served in 1967 by S. E. Harris, et. al. [76] and theoretically investigated by D.
N. Klyshko [77–79]. A little later, in 1970, first quantum properties of the light
generated by SPDC were experimentally shown by D. C. Burnham and D. L.
Weinberg. They showed that the signal and idler photons appeared simulta-
neously, in pairs, within the capabilities of the measurement setup [80]. Since
then, SPDC has received a considerable interest due to the possible interesting
quantum properties of photon pairs – quantum entanglement. Probably the
most significant are the Bell’s inequality experiments to rule out the hypothesis
of a local hidden variable in quantum mechanics [1, 2, 81].

Usual setup for SPDC is shown in Fig. 2.11. The pump laser (frequency
ωp) is incident on the nonlinear crystal with non-zero second-order suscepti-
bility tensor χ(2) and due to the nonlinear interaction a small fraction of the
pump photons split to two: idler (ωi) and signal (ωs = ωp − ωi) photons (his-
torical naming convention) [82, 83]. In classical nonlinear optics, such process
is not possible as nonlinear polarization for generating signal photons requires
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Figure 2.11: Typical setup for SPDC. The pump laser (frequency ωp) is incident on
the nonlinear crystal with second-order susceptibility χ(2) and thick-
ness L. Due to nonlinear interaction, the pump photons splits into a
signal (ωs) and idler beams (ωi). The signal beam is detected with
the sensor (solid angle Ωv and angular span θv) under the angle of
incidence θ. [IV]

two fields to be present (Eq. 2.31): a pump field and another field at the idler
frequency [29].

Here, however, this nonlinear process takes place only by a participation
of a single pump wave. Evidently, SPDC is a process that could only be
explained by quantum optics. Moreover, SPDC is a direct consequence of
quantum optical vacuum fluctuations (zero photon state |0〉). Instead of having
second field present, required by classical optics, it is replaced by vacuum
fluctuations. The process of SPDC is described as

|N〉p |0〉s |0〉i
χ(2)

→ |N − 1〉p |1〉s |1〉i , (2.63)

where initially there areN photons in the pump mode and zero photons in both
signal and idler mode. Due to the interaction with the nonlinear medium, the
state evolves into |N − 1〉p |1〉s |1〉i . It corresponds to the splitting of a single
pump photon into signal and idler modes.

2.3.2 Phase matching

For an efficient generation of photon pairs in SPDC, the conservation of en-
ergy and momentum must be fulfilled, like in the case of classical nonlinear
processes,

~ωp = ~ωs + ~ωi, (2.64)
kp = ks + ki, (2.65)
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where kp, ks and ki represent the wavevectors (momentums) of the corre-
sponding photons. In an isotropic medium with normal dispersion, it is not
possible to simultaneously fulfill the conditions given by Eqs. 2.64 and 2.65.
As a workaround, birefringent crystals are used, where orthogonal polariza-
tions display different refractive index dispersions. With a careful orientation
of a anisotropic crystal, phase-matching conditions could be met. Most com-
mon nonlinear and birefringent crystals for SPDC experiments are Ba(BO2)2
(BBO) and KH2PO4 (KDP).

In usual SPDC experiment, the splitting of pump photons happens not
only equally (ωs = ωs = ωp/2), but into a wide range of frequencies. The
spiting ratio (ωs/ωi) and the spectral width of the idler and the signal beam
depend on the refractive index dispersion of the birefringent crystal and on
the positioning of the crystal.

2.3.3 Quantum theory of SPDC

The quantum theory of SPDC has been developed by many authors [77, 79, 84–
86]. Here a short overview of the quantum theory mainly based on Ref. [84]
will be given. The formulations are generalized and converted into SI units.
According to this theory, the rate of the transition equals to

Γ = 2π
~2 δ (ωp − ωs − ωi) |〈N, 0, 0|H ′ |ki,ks, N − 1〉|2 , (2.66)

where δ (ω) is the Dirac delta function, 〈N, 0, 0| is the initial state with N
photons in the pump laser mode and no photons in the signal and idler mode,
|ki,ks, N − 1〉 is one of the final states with a single photon both in the signal
mode (denoted by ks) and in the idler mode (denoted by ki). We assume that
only signal photons are detected in the experiment. The nonlinear interaction
Hamiltonian is given by

H ′ =
ˆ

V

dr
ˆ Et

0
PNL · dEt, (2.67)

where V is volume and Et represents the sum of all fields [84].
To obtain the power of the generated SPDC signal, we must integrate

over certain values of ks which fall into a wavelength band ∆λ and into a
solid angle window Ωv (given in vacuum) detectable by a sensor. As vacuum
fluctuations are present in every idler mode ki, the signal is also generated into
a wide range of modes ks = kp−ki. The power of the SPDC signal detectable
by a sensor (in xz-plane) from a specific direction (determined by θ in Fig.
2.11) is
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Ps = ∆λ Ωv
∆θv

~χ2

8π4ε0

ω6
sωpω

2
i

c8
Pp ×

×
ˆ k̄xi+∆kxi

k̄xi−∆kxi

dkx2
L2

kzskzpki
sinc

(∆kL
2

)2
, (2.68)

where ∆θv denotes the angular span of the detector (in vacuum) in xz-plane
(see Fig. 2.11), Pp is the power of the pump beam, L is the length of the
nonlinear crystal, ∆k is the phase mismatch, ε0 is vacuum permittivity and
kxi, kzp, kzs are the components of the corresponding wavevectors to specific
directions.

Eq. 2.68 contains integration over a specific range of wavevectors of
modes representing vacuum fluctuations (kxi). Originally this integral was
over a specific range of generated SPDC modes falling onto the sensor in the
wavelength band ∆λ and over all idler modes. However, it was more convenient
to integrate over the specific range of idler modes (integral over kxi). In other
words, only the specific range (k̄xi −∆kxi...k̄xi + ∆kxi) of vacuum fluctuation
modes will participate in the generation of SPDC for a fixed position of the
sensor. Limits of the integration are given by

k̄xi = kxp −
ω

c
n0 sin (θ) (2.69)

∆kxi =

√
ω2n2

0/c
2 −

(
kxp − k̄xi

)2

2n0
∆θv, (2.70)

where θ determines the position of the sensor, kxp follows from the angle of
the incidence of the pump laser and n0 is the refractive index of out-coupling
medium (see Fig. 2.11b).

From Eq. 2.68 it is clear, that SPDC is linear with respect to the power
of the pump wave. It means, that in the case of SPDC the focusing of the
pump beam has no effect on the efficiency of the process.
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3 SPP-enhanced SPDC (publication I, II)

3.1 Introduction

This chapter begins with a theoretical introduction to SPP-enhanced SPDC.
Firstly, one of the possible structures supporting SPP-enhanced SPDC is intro-
duced and the enhancement factors of SPDC are estimated from the plasmonic
field enhancement factors. Next, phase-matching conditions are reviewed and
different processes for SPP-enhanced SPDC are listed. Note, that the full
modeling of SPP-enhanced SPDC is postponed until chapter 4.

In the second part of this chapter, the experimental work towards the
realization of SPP-enhanced SPDC is reviewed. Firstly, the experimental de-
tails of the fabrication of the structure supporting SPP-enhanced SPDC are
given. Secondly, the custom-made experimental setup is described and the
experimental methods are outlined. Finally, the results of the experimental
work are presented.

3.2 Theory

In a usual SPDC (see Fig. 3.1a) a small fraction of pump photons split di-
rectly to signal and idler photons due to nonlinear interaction with matter.
The idea behind SPP-enhanced SPDC is to split pump photons into signal
and idler plasmons instead of photons [I]. It is possible in a structure similar
to Kretschmann configuration (see Fig. 3.1b), which consists of (from left to
right) a high refractive index prism, thin metal film and nonlinear crystal.
Under the specific angle of incidence of the pump beam (phase-matching con-
dition), it is possible that pump photons split to signal and idler plasmons
instead of photons. As plasmonic modes have enhanced electrical fields and as
SPDC is a nonlinear process, it is evident that also the conversion efficiency
of the pairs of plasmons is enhanced. After short propagation, the signal and
idler plasmons will leak back to the prism as photons.

3.2.1 Enhancements

From the quantum theory of SPDC, it is known that the interaction Hamilto-
nian (Eq. 2.67) of SPDC is linearly proportional to each of the participating
electrical fields (pump, signal, idler). If the pump, signal and idler fields are
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Figure 3.1: a) The typical setup of SPDC where pump photons (ωp) split to signal
(ωs) and idler (ωi) photons due to second-order susceptibility (χ(2))
of the crystal. b) The setup of SPP-enhanced SPDC. The structure
consists of a high refractive index prism, thin metal film (thickness dm)
and nonlinear crystal. The pump beam is incident through the prism
and in the case of perfect phase-matching (kp = βs+βi) splits into two
plasmons (propagation constants βs and βi) instead of photons. The
signal and idler plasmons sequentially outcouple back to the prism as
photons. [I]

correspondingly enhanced by factors ηp, ηs, ηi, then also the rate of the SPDC
signal (Eq. 2.66) will be enhanced by a factor

Υ (ωp, ωs, ωi) = (ηp (ωp) ηs (ωs) ηi (ωi))2
. (3.1)

Alternatively, in terms of classical nonlinear optics, if the pump, signal
and idler fields are enhanced, then the nonlinear polarization for the generation
of signal would be enhanced by a factor ηpηi. As also the field of the generated
signal is enhanced by factor ηs, then the total field enhancement is ηpηsηi. The
corresponding power flow (rate of generated photons) is proportional to the
square of the electrical field amplitude and again the total enhancement factor
of SPDC would be given by Eq. 3.1.

Available enhancement factors were studied by us in Ref. [I] for the
structure (see Fig. 3.1b) consisting of Rutile prism (refractive index np = 2.5),
thin silver film and BBO crystal (refractive indices from Refs. [38, 87]) by
TMM calculations. The enhancement factor dependence of the signal and
idler plasmons (identical) on the wavelength and metal film thickness is shown
in Fig. 3.2a. Enhancement factors up to ≈ 25 are available in the NIR region
of spectrum for dm = 60nm thick silver film.

The dependence of the enhancement factor of SPP-enhanced SPDC (Eq.
3.1) on the pump wavelength is shown in Fig. 3.2b (assuming equal splitting
ωs = ωi = ωp/2). The maximum enhancement factor of SPDC is up to
Υ = 40 · 103 times for p-polarized pump laser at wavelength λp = 540 nm.
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Figure 3.2: a) The enhancement factor (ηs/i) of the signal and idler plasmons
(identical) dependence on the wavelength (λs/i) and metal film thick-
ness (dm). b) The enhancement factor of SPP-enhanced SPDC (Eq.
3.1) dependence on the pump wavelength (assuming equal splitting
ωs = ωi = ωp/2). [I].

Such enhancement could enhance the yield of SPDC from 10−12 up to 10−8.
The optimal thickness of the silver film is reduced to dm = 50nm because of
the pump enhancement factor ηp ≈ 0.5, which is less than one (attenuation
instead of enhancement) because the pump light has to penetrate through the
silver film.

3.2.2 Phase-matching conditions

Another important factor for the efficient generation of SPDC is fulfilling
phase-matching conditions (Eqs. 2.64 and 2.65). In the case of SPP-enhanced
SPDC, phase-matching conditions are given by

ωp = ωs + ωi, (3.2)
kp (ωp, θp) = βs (ωs) + βi (ωi) , (3.3)

where kp = ωpnp (ωp) sin (θp) /c is the tangential component of the pump
wavevector, θp is the angle of incidence of the pump beam inside the prism,
βs and βi are the propagation constants of the signal and idler SPP modes,
respectively [I]. To illustrate the possibility for the phase-matched generation
of the SPP-enhanced SPDC, both sides of Eq. 3.3 are plotted in Fig. 3.3 for
different splitting ratios. It is evident, that indeed perfect phase-matching is
possible by careful tuning of the angle of incidence of the pump beam (denoted
by red circles in Fig. 3.3). Moreover, it is possible to select the splitting ratio
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Figure 3.3: The illustration of the possibility of the perfect phase-matching for
different splitting ratios by tuning the angle of incidence θp. [I]

(ωs/ωi) of pump photons by tuning the angle of incidence θp of the pump
laser.

3.2.3 Processes of SPP-enhanced SPDC

Table 3.1: The list of different processes of SPDC enhancement, where f and p
denote photons and plasmons, respectively.

# Code Process

1 fff f (ωp)→ f (ωi) + f (ωs)
2 pff p (ωp)→ f (ωi) + f (ωs)
3 fpf f (ωp)→ p (ωi) + f (ωs)
4 ffp f (ωp)→ f (ωi) + p (ωs)
5 ppf p (ωp)→ p (ωi) + f (ωs)
6 pfp p (ωp)→ f (ωi) + p (ωs)
7 fpp f (ωp)→ p (ωi) + p (ωs)
8 ppp p (ωp)→ p (ωi) + p (ωs)

So far we have only considered a process, where both idler and signal are
in a enhanced plasmonic mode. All the other variations of enhanced SPDC are
listed in table 3.1, where f and p denote photons and plasmons, respectively.

Process #1 is pure photonic process, where pump photon f (ωp) split to
two other photons due to photonic mode f (ωi) . No plasmonic enhancement of
such process is possible. In processes #2 to #4, however, the enhancement of
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SPDC due to the participating plasmonic mode is possible (Eq. 3.1). For an
example, in the process #3, the pump photon f (ωp) splits due to the enhanced
plasmonic mode p (ωi) (idler) and the signal photon f (ωs) is generated. More-
over, in processes #5 to #7 two participating fields are in plasmonic modes.
Such processes are greatly enhanced according to Eq. 3.1. The most enhanced
process is denoted by “ppp”, where all participating modes are enhanced: the
pump plasmon p (ωp) splits to the signal plasmon p (ωs) due to vacuum fluctu-
ations in the idler mode p (ωi) . Note, that the pump plasmon p (ωp) is created
from the pump photon f (ωp) .

Usually only one of the processes in table 3.1 happen effectively at the
same time due to different phase-matching conditions. In other words, it is pos-
sible to select the process of enhanced SPDC by tuning the angle of incidence
of the pump beam. An exception is the process “ppp”, where all participat-
ing fields are in plasmonic modes and consequently no phase matching by the
tuning of the angle of incidence is possible. For this reason, processes #5 to
#7, where the enhancement by two plasmonic modes are available and phase
matching is possible, are most promising.

This work mainly focuses on the process “fpp”, where pump photons
f (ωp) split to signal plasmons p (ωs) due to vacuum fluctuations in the other
plasmonic mode p (ωi) .

3.3 Experiment

The goal of this section is to give an overview of the experimental realization of
the idea of SPP-enhanced SPDC introduced in Sec. 3.2. For the experimental
work, a structure supporting SPP-enhanced SPDC was fabricated and custom-
made goniometric measurement system was designed and built. To the best
of our knowledge, it is the first experimental work towards SPP-enhanced
SPDC.

3.3.1 Structure

The structure used for the experimental realization of the SPP-enhanced SPDC
is shown in Fig. 3.4. It consists of X-cut single crystal quartz (SiO2) with the
main second-order susceptibility component χxxx = 0.6 pm/V and was se-
lected due to relatively small refractive index [39]. Next, approximately 50 nm
thick silver film was deposited on the quartz crystal and it was subsequently
covered by approximately 10 nm thick aluminium oxide layer. The deposition
was done by AJA International ultra-high vacuum magnetron sputtering sys-
tem at room temperature. The Al2O3-Ag-SiO2 structure was attached to the
high refractive index N-SF11 right angle prism (Endmund Optics, @47-276,
side length 15mm) by index-matching liquid (IML) from Cargille (Series M,
refractive index 1.77).
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Figure 3.4: The structure used for the experimental realization of the SPP-
enhanced SPDC: N-SF11 right angle prism, index-matching liquid
(IML), 10 nm thick aluminium oxide layer, 50 nm thick silver film and
nonlinear X-cut single crystal quartz (from left to right). The struc-
ture is illuminated by a green laser (λp = 532 nm) under the angle
of incidence Ψp outside and θp inside the prism. The generated sig-
nal and idler plasmons are denoted by βs and βi, respectively. After
short propagation, signal and idler plasmons outcouple to the prism as
photons (wavelengths λs and λi, respectively). [II]

3.3.2 Methods

3.3.2.1 Goniometric setup

To measure the structure in Fig. 3.4, a custom-made two-axis goniometric
setup in Fig. 3.5 was built (details in Ref. [II]). It consists of four lasers
(see Fig. 3.5b): violet 402 nm, green 532 nm and two NIR lasers 802 nm and
1064 nm. All lasers were collimated and spectrally filtered (if necessary) and
then aligned by two mirrors to be parallel to the surface of the optical table
and to coincide the axis of the goniometer O. To ease the alignment process,
two pinholes, PH1 and PH2, were installed. The mirrors FM1 to FM4 are flip
mounted for easy switching between the lasers. To control the polarization of
the lasers, the half-wave plate H1 was used for the violet laser and the Fresnel
rhomb FR1 for other wavelengths. A small fraction of light was reflected to
the photodiode D1 by the quartz beamsplitter BS1 for monitoring the laser
power during measurements. Finally, the laser light was cleaned by additional
filters in the position F2.

The goniometer consists of two motorized rotational stages mounted on
top of each other (see Fig. 3.5c) and are controlled from a computer by a
two-axis stepper motor controller.

On the detection side, different filters F3, analyzers A1 and detectors
D2 were used and will be specified shortly.

43



402 nm

802 nm

532 nm

1064 nm

ψp

ψs

Blackout box

2-axis motorized goniometer

sample

�lters,
analyzers,
sensors

sensor arm

FM1

FM2

FM3

FM4

D1

D2

FR1

BS1

PH1

PH2

M1

H1

F1

F2

F3 A1

L1
I1

M2
M3

M4

O

a)

Figure 3.5: The schematic of the goniometric setup (a) and the pictures of the
lasers (b), goniometer with lock-in detection system (c) and N-SF11
prism under illumination of violet laser. [II]

3.3.2.2 Lock-in detection

The signal of SPDC is in general weak and sensitive detection system is re-
quired. In this work, Hamamatsu H6240-02 photomultiplier tube (PMT) was
used. Two main sources of noise limit the minimum detectable signal. Firstly,
as the PMT was not cooled, dark counts around 400 s−1 were present due to
thermionic emission. Secondly, although the goniometric setup is entirely in-
side the blackout box, still considerable amount of background signal was gen-
erated by the interaction of laser with the structure (e.g. the prism). Moreover,
the shot noise from the photon counting fundamentally limits the achievable
signal-to-noise ratio.

To suppress the background noise, lock-in amplification was employed.
The idea is to modulate the detectable signal at a known frequency and to
detect only the signal that is modulated at the same frequency – discarding
all noise at other frequencies. The modulation of the signal is usually achieved
by modulating the laser intensity, however, in this case, the modulation by
rotating analyzer was preferred. As the SPP-enhanced SPDC signal must be
p-polarized and the background noise is unpolarized, then rotating the analyzer
with frequency fr in front of the PMT modulates the detected signal Γ (t) by
Malus’s Law
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Figure 3.6: An example of measured time series for lock-in detection along with
reconstructed signal. The Fourier spectrum of the time series is in the
inset. [II]

Γ (t) = Γbg + Γs cos2 (2πfrt) =
(

Γbg + 1
2Γs

)
+ 1

2Γs cos (2πfmt) , (3.4)

where Γbg is the rate of background counts, Γs is the polarized signal rate
we are interested in, t is time and fm = 2fr is the modulation frequency.
Clearly, the detected time series Γ (t) is modulated by the frequency fm and
the modulation amplitude corresponds to half of the SPP-enhanced SPDC rate
Γs.

In the experiment, a custom-made motorized rotator was used in po-
sition A1 in Fig. 3.5a to rotate the analyzer. The rotation frequency was
fr = 2Hz resulting in the modulation frequency fm = 4Hz. The time series of
the PMT was detected with LabJack U6 in stream mode at the detection rate
40Hz over T = 60 s time period.

The logic of lock-in amplification was conducted in software as a post-
processing step [88, 89]. The signal rate is given by Γs = 2

√
X2 + Y 2, where

X = 1
T

ˆ T

0
dtΓ (t) cos (2πfmt) , (3.5)

Y = 1
T

ˆ T

0
dtΓ (t) sin (2πfmt) . (3.6)

An example of lock-in amplification is shown in Fig. 3.6. The experi-
mental data is indeed modulated with frequency 4Hz (see the Fourier spectrum
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in the inset of Fig. 3.6) and the reconstructed signal by lock-in amplification
clearly follows the noisy experimental data.

3.3.3 Results

The structure in Fig. 3.4 was measured in the custom-built goniometer in
three different configurations. First, the SPP resonances of the structure were
measured at different wavelengths in order to characterize the structure and
to map the angles of the SPP resonances for later use. Secondly, the nonlinear
properties of the structure were verified by plasmonically enhancing SHG.
Finally, the goniometric setup was configured to measure the SPP-enhanced
SPDC by unequal splitting of λp = 532 nm pump laser into λi = 1580 nm idler
and λs = 800 nm signal beams.

3.3.3.1 Reflection curves

b)

a)

Figure 3.7: a) Measured (black crosses) and modeled (solid lines) dependence of
the reflection coefficient (R) on the angle of incidence Ψp of the laser
beam for different wavelengths λ. b) The theoretical enhancement
factor (η) near Ag-SiO2 surface. [II]

The resonances of the structure were measured at two wavelengths:
802 nm and 1064 nm. The laser beams were p-polarized with the Fresnel rhomb
FR1, the additional cleanup filter F2 was not necessary and on the sensor arm,
only the detector D2 was used. In the case of 802 nm laser, photodiode Thor-
labs PM100 with S130A head was used and in the case of the pulsed 1064 nm
laser, Melles Griot 13 PEM 001 with thermopile sensor head was used in-
stead.
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Measured reflection curves (black crosses) are shown in Fig. 3.7a along
with theoretical modeling (solid lines). Sharp plasmonic resonances are clearly
visible as a minimum in the reflection (R) and as a maximum in the theoretical
field enhancement factor (η) in Fig. 3.7b. The modeling of reflection curves
and the calculation of enhancement factors were done by a standard TMM
and the unknown parameters were fitted. An excellent overlap of the exper-
imentally measured and theoretically modeled reflection curves was achieved
(see Fig. 3.7a). The derived thicknesses (d) and complex refractive indices
(n) of the layers of the modeled structure are listed in table 3.2. The refrac-
tive indices of the N-SF11 and SiO2 perfectly match the known values from
www.schott.com and from Ref. [39]. The Al2O3 layer in the model is effective
and also accounts for the losses in the IML layer and consequently the thick-
ness of this layer is also effective. The fitting of the silver layer parameters
revealed, that, indeed, the thickness of the silver layer is close to 50 nm as ex-
pected. The complex refractive index of the silver film match quite well with
the values reported in Ref. [90].

Table 3.2: The thicknesses (d) and complex refractive indices (n) of the layers of
the structure in Fig. 3.4 for different wavelengths. [II]

λ = 802 nm λ = 1064 nm
d (nm) n d (nm) n

N-SF11 1.765 1.754
Al2O3 10.0 1.76 + 0.055i 10.0 1.76 + 0.055i
Ag 52.9 0.146 + 5.80i 50.8 0.204 + 8.07i
SiO2 1.538 1.534

The enhancement factors and the reflection curves were also estimated
for wavelengths 532 nm and 1580 nm by using the refractive index data from
Refs. [39, 90]. In the case of the green laser, the plasmonic resonance is shifted
out of the measurable range of the angle of incidence of the pump beam and no
sharp minimum in the reflection curve is visible. On the other hand, in the case
of wavelength 1580 nm a good quality plasmonic resonance is visible and the
field enhancement around six times is predicted. Overall, the maximum field
enhancement is up to seven times, which is considerably lower than the values
predicted in our previous theoretical calculations in Fig. 3.2a. This difference
is accounted for the different data for the silver refractive index. In Ref. [I],
the silver refractive index data from P. B. Johnson and R. W. Christie [38] was
used, however, in this case, the refractive index of the silver is more similar to
the data measured by A. D. Rakic [90]. Such significant variance of the silver
refractive index on the deposition and measurement process is well known
[91]. It is also concluded, that the quality of the deposited silver film could be
significantly improved by the optimization of the deposition process.
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3.3.3.2 SPP-enhanced SHG

a) b)

Figure 3.8: The experimentally measured (a) and theoretically predicted (b) signal
rates of SPP-enhanced SHG. [II]

Next, the nonlinearities of the structure were tested by plasmonically en-
hancing the SHG. To do that, the pulsed 1064 nm pump laser was p-polarized
by Fresnel rhomb FR1 and was spectrally cleaned by three interference fil-
ters (Semrock FF01-593-LP, BLP01-633R and FF01-715-LP) in the position
F2. After the interaction with the object, the laser was filtered out by two
interference filters (Semrock FF01-535/150-25 and FF03-525/50-25) in the po-
sition F3 and the SHG signal was detected through p-polarized analyzer A1 by
Hamamatsu H6240-02 PMT. The output pulses of the PMT were counted by
LabJack U6 with collection time 1 s at the distance 22.3 cm from the rotational
axis O.

The experimental results are shown in Fig. 3.8a, where the SHG signal
is scanned over the angle of incidence of the pump beam Ψp and over the
angle of the sensor Ψs. In our case, two competing processes of SHG can
happen. Firstly, pure photonic process (2fω → f2ω), where two photons at
the pump frequency produce one photon at twice the frequency. Secondly,
SPP-enhanced SHG (2pω → f2ω), where pump laser excites two plasmons at
the pump frequency, which produce single photon at twice the frequency. The
first, pure photonic process, can take place for every angle of the incidence of
the pump beam (see dashed line in Fig. 3.8a), however, the SPP-enhanced
SHG can only take place at a specific angle of incidence of the pump beam
corresponding to the plasmonic resonance. Indeed, the experimental results in
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Fig. 3.8a display a weak SHG signal at the predicted angles of the sensor and
strongly enhanced SHG signal near the plasmonic angle of the pump beam. It
is a direct evidence, that our structure supports the plasmonic enhancement
of second-order nonlinear processes.

The theoretical calculations in Fig. 3.8 were done by nonlinear TMM
[III], which will be described in Sec. 4.2.3. The match between the experi-
mentally measured and theoretically predicted values is really good.

3.3.3.3 SPP-enhanced SPDC

Figure 3.9: The measured SPDC signal Γs dependence on the angle of incidence
of the pump beam Ψp. The dashed black line shows the general trend
and the shaded region around it corresponds to 95 % confidence interval
resulting from the shot noise. The theoretical enhancement factor of
SPDC is displayed in the second axis. [II]

Finally, the goniometric setup was configured to measure SPP-enhanced
SPDC by unequal splitting of λp = 532 nm pump laser into λi = 1580 nm
idler and λs = 800 nm signal beams. The initial plan was to observe the
equal splitting of 402 nm laser, however, the IML and the N-SF11 prisms were
incompatible with the violet laser – the prism become luminescent (see Fig.
3.5d) and IML was not photostable. As a workaround, an unequal splitting of
the green laser was observed instead. In the experiment, only the signal beam
with wavelength λs = 800 nm was observed due to the spectral sensitivity
restrictions of the sensor.

Two laser cleanup filters (Semrock FF01-535/150-25 and FF03-525/50-
25) were added to the position F2. On the detection side, three interference
filters (one Semrock BLP01-633R and two Semrock FF01-800-12) were em-
ployed to filter out the pump laser and to register only the signal beam. To
boost the signal-to-noise ratio, the lock-in amplification by rotating analyzer
was used (described in Sec. 3.3.2.2). As the generated SPP-enhanced SPDC
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signal originates from the plasmonic mode, then the corresponding angle of
the sensor could be easily precalculated on the basis of the reflection curve
measurements in Fig. 3.7a. The only remaining free parameter is the angle of
incidence of the pump laser that was scanned to select desired splitting ratio.

The results are shown in Fig. 3.9. The measured SPDC signal Γs
dependence on the angle of incidence of the pump beam Ψp is given by blue
solid lines with dots. It is expected to have a single maximum around Ψp ≈
75.8◦ (see the second axis of Fig. 3.9), however, it is not observed in the
experimental results. The dependence of the SPDC signal on the angle of
incidence of the pump laser is smooth and has a decreasing trend. The dashed
black line shows the general trend and the shaded region around it corresponds
to 95 % confidence interval resulting from the shot noise – the noise in our
measurements is bit higher, but still close to the theoretical limitation by shot
noise.

From Fig. 3.9, it is estimated, that the noise of the measurement is
around 400 s−1. It corresponds to a minimum detectable yield of SPDC, cal-
culated from the power of the pump laser and from the quantum efficiency of
the PMT, around 6 · 10−14. As no peak of the signal around the predicted
angle is visible, it is concluded, that the yield of SPP-enhanced SPDC must
be lower than the minimum detectable yield of SPDC of our measurement
system. This, however, contradicts our predictions, that SPP-enhanced SPDC
is enhanced around 200 times (see the second axis of Fig. 3.9) from usual yield
around 10−12.

3.4 Conclusions

In this chapter theoretical introduction to the SPP-enhanced SPDC was given
and a possible experimental realization was described. The modeling in this
chapter was only limited to the calculation of enhancement factors and no full
modeling was attempted. The enhancement factor of SPDC up to 4 · 104 was
predicted in the case of 50 nm thick silver film and phase-matching conditions
were studied to illustrate the possibility of perfect phase-matching.

In the second part, the experimental details were reviewed and the re-
sults were presented. It was shown that the yield of SPP-enhanced SPDC must
be lower than 6 · 10−14. This, however, contradicts our theoretical predictions.
To get insight into the reasons for this discrepancy between the experimental
work and the enhancement calculations, a full modeling of the SPP-enhanced
SPDC is required and will be the topic of the next chapter.
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4 Modeling of enhanced SPDC (publications III, IV)

4.1 Introduction

An idea to enhance SPDC by SPPs was introduced in chapter 3 and the
enhancement up to 4 · 104 were estimated by simple considerations of field
enhancement. However, these simple considerations are only useful for illus-
trating the great potential of SPP-enhanced SPDC. Otherwise, they provide
only very limited insight into the process.

Up to now, we have assumed, that the yield of SPDC is on the or-
der of 10−12. This, however, is the yield of SPDC in the case of 1mm thick
good nonlinear crystal in the case of perfect phase-matching by birefringence.
Assuming the same yield from the modified geometry supporting SPPs (Fig.
3.1b) is not justified, as the materials, participating fields and the geometry
are completely different. Therefore, to calculate the yield of SPP-enhanced
SPDC, more complex methods must be used to fully model the generation
of SPDC in the structure in Fig. 3.1b. Only in this way, it is possible to
predict if the large enhancement of SPPs is overcoming the losses introduced
by the different geometry and to explain the results of the experimental work.
The main factors influencing the generation of SPDC in the SPP-enhanced
structure are:

1. Enhancement
The enhancement calculations presented in Sec. 3.2 are only rough estimates.
The problem of calculating the true field enhancements is twofold.

Firstly, vacuum fluctuations and the enhancement of vacuum fluctua-
tions in plasmonic mode must be correctly accounted. Up to now, it is as-
sumed that all the participating vacuum fluctuations are in plasmonic modes
that are equally enhanced. This, however, might not be true, as the resonances
of surface waves are narrow. To realistically model the enhancements, it must
be taken into account that the vacuum fluctuations are only enhanced in a
narrow angular range supporting plasmons.

Secondly, up to now, only infinite plane waves were considered. This
approximation holds reasonably well in the case of ordinary SPDC geometry
(Fig. 3.1a), however, in the case of structures supporting resonant modes the
enhancement factor starts to depend on the exciting beam properties (e.g.
the waist size of a Gaussian beam). To realistically model the structures
supporting very narrow resonant modes, the plane wave approximation must
be dismissed and realistic beams (e.g. Gaussian beam) must be used.
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2. Out-coupling efficiency
Another factor, irrelevant in the case of ordinary SPDC, is the efficiency of
the out-coupling. In the case of ordinary SPDC, all signal and idler photons
generated inside the nonlinear crystal will be radiated out of the nonlinear
crystal as there is no absorption. However, in the case of SPP-enhanced SPDC,
the signal and idler are in plasmonic mode – they might get absorbed in the
metal. So, high out-coupling efficiency is essential for enhancing SPDC –
otherwise, the effect of the enhancement would be lost by the absorption of
the generated quanta.

3. Phase-matching and coherent buildup
Fulfilling phase-matching conditions are really important for an efficient SPDC
as otherwise, no coherent buildup of a signal can take place. Here, the struc-
tures of ordinary and SPP-enhanced SPDC have a significant difference. In the
case of ordinary SPDC, birefringence must be employed for a perfect phase-
matching and a coherent buildup happens along the z-axis (Fig. 3.1a). Con-
trary, in the case of SPP-enhanced SPDC, a perfect phase-matching is possi-
ble without birefringent materials and a coherent buildup can only take place
along the x-axis (Fig. 3.1b). In addition to different phase-matching require-
ments and different coherent buildup direction, also the losses of SPPs pose
limitations and must be carefully studied.

4. Effective nonlinearity
Another problem with the simple model is taking account the interaction with
a nonlinear crystal. In the case of usual SPDC, all participating fields are
inside nonlinear medium (Fig. 3.1a), however, in the case of SPP-enhanced
SPDC (Fig. 3.1b), only a part of the fields of the plasmonic mode are inside
the nonlinear medium (the metal is taken to be linear). In other words, the
effective nonlinearity is reduced because the fields are only partially inside the
nonlinear medium.

5. Beam width study
Finally, the pump beam width must be considered. The effect here is twofold.
Firstly, the beam width influences the enhancement factors (see point 1) and
secondly, it influences the coherent buildup. As already discussed, the coherent
buildup in the case of SPP-enhanced SPDC is taking place in the x-direction
(see Fig. 3.1b). However, as the coherent buildup can only take place in the
presence of the pump beam, then the beam width also limits the maximum
coherent buildup length – it cannot be longer than the width of the beam. So
there exists a minimal width of the beam from which further reduction in the
beam width will also cause the reduction in the efficiency of the process.

These are the five main factors influencing the generation of SPDC in
resonant structures. To reliably model and to provide insight into the mech-
anisms of the SPP-enhanced SPDC, these factors must be addressed. To do
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that, several extensions were developed for the standard TMM to fully model
the SPDC generation in resonant structures. The new methods were used to
estimate, compare and address the limitations of the generation of SPDC in
three types of resonant structures supporting SPPs, LRSPPs and GDWs (Sec.
4.3).

4.2 Methods

4.2.1 Transfer-matrix method (TMM)

4.2.1.1 Introduction

0 ... i ... N

di

ni(ω)
θ

kxkx

k+

k-

z

x

z z z

Figure 4.1: The schematic of a layered structure modeled by TMM. The layers are
numbered by i ∈ {0 . . . N} and each layer is described by a complex
refractive index ni (ω) and thickness di. The light is incident from the
left at an angle of incidence θ. [III]

One of the main methods to model optical stratified (layered) structures
is the transfer-matrix method (TMM, also standard/usual TMM). TMM is a
fast and accurate method to solve Maxwell equations in layered structures.
The matrix formalism of TMM was first proposed by F. Abeles in Ref. [92]
and several good reviews of the method have been written since the original
publication [93, 94]. Here, also a short review of the method will be presented,
as several extensions were built on top of it.

The schematic of a layered structure is shown in Fig. 4.1. The layers
are numbered from 0 to N and the first and last mediums are taken to be
semi-infinite. The plane of incidence is taken to be xz-plane and in the x- and
y-direction the structure is assumed to be uniform. In the simplest case, if the
optical materials are assumed to be non-magnetic and isotropic, each layer is
described only by its thickness di and its complex refractive index ni (ω) , where
i denotes the index of the layer (see Fig. 4.1). The structure is illuminated by a
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plane wave incident from the leftmost layer at an angle of incidence θ. The goal
of TMM is to calculate the power flows of the reflected and transmitted plane
waves and electrical/magnetic field distributions everywhere in the structure.
Note, that every layer has its separate origin of the z-axis.

We only consider a s-polarized light to introduce the main components
of TMM: the only independent field component is Ey, the other two non-zero
field components Hx and Hz directly follow from the electrical field by Eq.
2.19. In each layer i, the solution of the electrical field is given as a sum of a
forward- and backward-propagating waves

Ey,i = E+
y,i + E−y,i. (4.1)

The forward- and backward-propagating plane waves are defined in usual way
E±y,i = A±y,ie

ik±i ·r, where A±y,i is the complex amplitude and k±i = kxx̂+k±z,iẑ is
the wavevector. All plane waves in the structure have the same x-component
of the wavevector as the incident plane wave kx = ωn0 (ω) sin (θ) /c, because
of the continuity of the tangential components of wavevectors. This is also the
reason, why the solution in a layer (Eq. 4.1) could be represented only as a
sum of two plane waves. The y-component of the wavevector is zero and the
z-component depends on the layer’s refractive index and is given by

k±z,i = ±
√
k2
i − k2

x, (4.2)

where the magnitude of the wavevector is ki =
∣∣k±i

∣∣ = ωni (ω) /c. As the propa-
gation of all plane waves in the x-direction is the same, E±y,i (r) = E±y,i (z) eikxx,
and determined only by the angle of incidence θ, only the z-dependence of the
fields E±y,i (z) is unknown.

4.2.1.2 Matrices

The main components of TMM are the propagation and transfer matrices,
which relate the field amplitudes from the beginning of the layer to the end
and from one layer to the next one, respectively. The propagation of the plane
wave from the beginning of the layer (z = 0) to the end of the same layer
(z = di) is given by a multiplication by a phase factor. In compact matrix
form, where hat symbol denotes column vector (see Eq. 2.1), the propagation
of fields in a single layer is given by

Êy,i (di) = Mi
P · Êy,i (0) , (4.3)

where dot implies matrix multiplication and propagation matrix is given by
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Mi
P =

(
eik

+
z,idi 0
0 eik

−
z,idi

)
. (4.4)

Note, that absorption coefficients are incorporated into complex wavevectors
k̂z,i.

Another component of TMM formalism is the transfer matrix, which
relates the field amplitudes from the end of layer i to the beginning of the next
layer j = i+ 1

Êy,j (0) = Mij
T · Êy,i (di) . (4.5)

The transfer matrix straight-forwardly follows from the continuity of the Ey
and Hx components of the fields and is given by

M ij
T = 1

2




1 + k+
z,i

k+
z,j

1− k+
z,i

k+
z,j

1− k+
z,i

k+
z,j

1 + k+
z,i

k+
z,j


 (4.6)

for s-polarization, currently under interest.
The system matrix, a single matrix describing the propagation and

transfer of fields through the whole structure, is given by a multiplication
of all transfer and propagation matrices

MS =
N−1∏

i=0
Mi

P ·Mij
T . (4.7)

The amplitudes of the main field components in the first and last medium are
then related by

[
E+
y,N (0)

E−y,N (0)

]
= MS ·

[
E+
y,0 (0)

E−y,0 (0)

]
. (4.8)

Usually, the system is illuminated from the leftmost layer by a plane wave with
a known amplitude E+

y,0 (0) = 1 (one is arbitrarily chosen) and no illumination
is incident from the opposite direction E−y,N (0) = 0. The two unknowns in Eq.
4.8, the amplitudes of the reflected (E−y,0 (0)) and transmitted (E+

y,N (0)) plane
waves, can be easily found

E−y,0 (0) = MS [2, 1] /MS [2, 2] (4.9)
E+
y,N (0) = det (MS) /MS [2, 2] . (4.10)
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Eqs. 4.9 and 4.10 solve the system. The field amplitudes in every layer
can now be easily found by transferring and propagating the Êy,0 (0) from the
first layer to every other layer.

4.2.1.3 Power flows and fields

As a final step, the amplitudes in every layer must be converted to the quan-
tities we are really interested in: reflection/transmission coefficients and elec-
tric/magnetic field distributions. The calculation of power flows is straight-
forward by time averaged Poynting vector

〈S〉 = 1
2 Re [E×H∗] (4.11)

and in the case of s-polarization, the z-component is simply given by

Ŝz,i = 1
2ωµ0

Re
[
k+
z,i

] ∣∣∣Êy,i

∣∣∣
2
. (4.12)

The reflection and transmission coefficients could be calculated byR = S−z,0/S
+
z,0

and T = S+
z,N/S

+
z,0, respectively.

The field distribution of the main component inside the layer i can be
found as

Êy,i (r) = Êy,i (0) eik̂i·r (4.13)

and the corresponding magnetic field components are given by Eq. 2.19 and
can be written in a compact form as

Ĥi = 1
ωµ0

(
k̂i × Êi

)
. (4.14)

The total fields are just sums of the forward and backward-propagation
components as in Eq. 4.1.

4.2.2 Transfer-matrix method for realistic waves

One of the limitations of standard TMM is that it only uses infinite plane
waves for calculations. In general, this is a very good approximation of realistic
beams (e.g. a Gaussian laser beam with a waist size w0 = 1mm), however in
the case of resonant structures with very narrow resonances (e.g. LRSPPs and
GDWs) this approximation does not hold.

The reason for this was explained in Sec. 2.1.4: all realistic beams
could be decomposed into plane waves with different propagation directions
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and amplitudes. Plane wave approximation works well until the resonances of
a structure are not narrower than the angular spread of the exciting beam. For
an example, the angular spread (see Fig. 2.2b) of 1mm wide Gaussian beam
is around 0.001◦. Indeed, such beam could be approximated with a plane wave
very well in most cases as we usually do not have a resonance in a structure
that is so narrow. However, this is not so in the case of LRSPPs and GDWs –
the resonances can be even narrower. Using infinite plane waves in such case
would not provide correct results – actually only a part of the realistic beam
interacts with the resonance.

To overcome this limitation of standard TMM and to reliably model
structures with very narrow resonances the standard TMM were extended
to support excitation with realistic beams [III, 95]. The strategy to achieve
it is straight-forward. Firstly, the angular spectrum representation (2.1.4) is
used to decompose the realistic beam into plane wave components. Secondly,
the propagation of each plane wave component is solved separately by the
standard TMM. Finally, the resulting fields are integrated to get the final field
distribution inside the structure.

From the computational point of view, it is convenient to use a fast
Fourier transform (FFT) to calculate the amplitudes of the plane wave com-
ponents of an arbitrary beam profile. For integration, the trapezoidal rule can
be used. It is found, that it is sufficient to use only 50 plane wave components
to represent a common Gaussian beam reasonably well in not too complicated
structure [95].

To calculate reflected and transmitted power flows, the simple formula
Eq. 4.12 does not hold because the calculation of Poynting vector is a nonlinear
operation. Moreover, straight-forwardly calculating Poynting vector (by Eq.
4.11) means the calculation of triple integral: over x-coordinate (see Fig. 4.1)
and the other two over x-components of the wavevectors (one for calculating
electric field and the other for magnetic field). Numerical calculation of such
integral requires a fair amount of computational power. Fortunately, it turns
out that the calculation of the power flows could be simplified [II, 95]: integrals
could be rearranged and one, integration over coordinate, could be solved
analytically. For the s-polarization, the power flow through the window with
size (x0 . . . x1, 0 . . . Ly) is given by

Ps = Ly
2ωµ0

Re [Iks] (4.15)

Iks =
¨ k

−k
dkxdk

′
x k
′
zÊ
∗
0y (k′x) Ê0y (kx)FxFz, (4.16)

where Fx and Fz describe the interference between the plane waves in x- and
z-direction, respectively. Those coefficients are defined by
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Fx (∆k) =
ˆ x1

x0

dx ei∆kx = −i∆k e
i∆kx

∣∣∣
x1

x0
(4.17)

Fz (kz, k′z) = ei(kz−k′z)z, (4.18)

where ∆k = kx − k′x. Calculation of double integral in Eq. (4.15) is readily
doable by numerical methods.

4.2.3 Nonlinear transfer-matrix method (NLTMM)

4.2.3.1 Introduction
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Figure 4.2: The schematic of a layered structure modeled by NLTMM. The layers
are numbered by i ∈ {0 . . . N} and each layer is described by a complex
refractive index ni (ω), thickness di and second-order nonlinearity χ(2)

i .
The light is incident from the left at an angle of incidence θ. [III]

As discussed in Sec. 2.1.3.1, the solution of the nonlinear wave equation
is no longer a simple plane wave, as the generation of nonlinear signal happens
in a nonlinear medium. In the case of non-depleted pump wave approximation,
the solution of nonlinear wave equation is given by a sum of three plane waves
(in each direction) by Eq. 2.43 (see Fig. 4.2): one usual homogeneous solution
(no subscript) and two inhomogeneous solutions (denoted by subscripts “s”
and “a”). It is the general case if both pump waves have both the backward-
and forward-propagating components.

Conveniently, the amplitudes of the three plane waves of the solution
of nonlinear wave equation are not independent/unknown. Actually all the
amplitudes of the inhomogeneous waves B±s|a are constants fixed by Eqs. 2.44
and 2.45 – the only unknowns are the amplitudes of the homogeneous plane
waves A±. Finding these amplitudes means solving the structure.
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In this section, ordinary TMM is extended to calculate the second-order
nonlinear processes. The nonlinear TMM (NLTMM) covered in this section
is general and the method will be further specified in Sec. 4.2.4 to calculate
the generation of SPDC. Like in Sec. 4.2.1, we assume the generated wave
to be s-polarized (the pump beams may also be p-polarized). Again, the task
reduces to finding the z-dependence of the y-component of the electric field,
the magnetic field components directly follow from it by Eq. 2.46. Here only
a short summary of the method will be given, the derivations can be found in
Ref. [III].

4.2.3.2 Matrices

As in Sec. 4.2.1.2, the propagation matrix connects the fields at the beginning
Êy,i (0) and at the end Êy,i (di) of a layer. As materials are nonlinear, the
general solution is no longer a single plane wave, but is given by Eq. 2.43
instead. Still, the connection between Êy,i (0) and Êy,i (di) is easy to find
if the Ây is expressed from Êy,i (0) and substituted into Êy,i (di) [III]. The
resulting expression could be organized into a compact matrix form as in the
case of linear TMM, however now we have an additional nonlinear term N̂i

P

Êy,i (di) = Mi
P · Êy,i (0) + N̂i

P , (4.19)

N̂i
P = B̂sy,i

(
eik̂sz,idi − eik̂z,idi

)
+

B̂ay,i

(
eik̂az,idi − eik̂z,idi

)
. (4.20)

The matrix Mi
P is the same matrix as in the case of linear TMM and is given

by Eq. 4.4.
By implying the continuity of Ey and Hx (calculated by Eq. 2.46) at the

boundary of the layers i and j = i+1 we can derive the transfer matrix, which
relates the electrical fields from the end of the layer Êy,i (di) to the beginning
of the next layer Êy,j (0) . Without explicit derivation, it is again possible to
express the nonlinear contribution as an additional term to the linear transfer
matrix

Êy,j (0) = Mij
T · Êy,i (di) + N̂ij

T , (4.21)

where Mij
T is the usual linear transfer matrix given by Eq. 4.6 and N̂ij

T is
nonlinear contribution given by

N̂ij
T = ĉs,ij + ĉa,ij , (4.22)

where
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c±s,ij = ±1
2k+
z,j

[(
k+
sz,j − k+

z,j

)(
B−sy,j −B+

sy,j

)
+

(
k+
sz,i − k+

z,i

)
·
(
B+
sy,ie

ik+
sz,idi −B−sy,ie−ik

+
sz,idi

)]
(4.23)

and completely analogous expression for c±a,ij .
The final part of NLTMM is to combine nonlinear propagation (Eq.

4.19) and transfer (Eq. 4.21) matrices into a nonlinear system matrix N̂S so
the propagation of the fields through the whole structure is

Êy,N (0) = MS · Êy,0 (0) + N̂S , (4.24)

where MS is usual system matrix given by Eq. 4.7. Again, the nonlinear con-
tribution is just an additional term to linear TMM and is given by a recursive
function

N̂S = f̂(N) (4.25)
f̂(i) = Mi−1,i

T ·
(

Mi
P · f̂ (i− 1) + Ni

P

)
+ Ni−1,i

T (4.26)

with termination condition f̂ (i) = 0̂ if i ≤ 0.
To solve the Eq. 4.24, it is usually assumed (not a requirement), that

the generated field is only due to the nonlinear interaction (i.e. there is no
generated field incident on the structure). In such case, we have additional
equations E+

y,0 (0) = E−y,N (0) = 0, which allows to solve Eq. 4.24 and to ex-
press reflected (E−y,0) and transmitted (E+

y,N ) electrical fields (generated inside
the structure)

E−y,0 = −NS [2, 1] /MS [2, 2] , (4.27)

E+
y,N = NS [1, 1]− NS [2, 1] MS [1, 2]

MS [2, 2] . (4.28)

4.2.3.3 Power flows and fields

The electrical fields inside the layer i can be found by

Êy,i (r) =
[
Êy,i (0) eik̂·r + B̂sy,i

(
eik̂s·r − eik̂·r

)

+B̂ay,i

(
eik̂a·r − eik̂·r

)]
(4.29)

60



and resulting magnetic field components can be calculated by Eq. 2.46. The
total fields can be found by summation of forward- and backward propagating
waves.

As we are usually interested only in the power generated by a nonlinear
crystal sandwiched between the linear mediums, it is possible to use formulas
of standard TMM (Eq. 4.12) .

4.2.3.4 NLTMM for realistic beams

Currently, NLTMM is only considered in the context of infinite plane waves like
standard TMM. However, for similar reasons as in Sec. 4.2.2, it is necessary
to extend NLTMM to realistic beams as well. Fortunately, it is possible to do
it in a similar manner as in the case of standard TMM. However, as in the
case of NLTMM, two input beams are present so that the number of integrals
of angular spectrum representation (Eq. 2.52) is doubled. The plane wave
amplitudes of angular spectrum representation could be readily calculated by
NLTMM.

The calculation of the powers of the generated beam could be done in
the same way as in Sec. 4.2.2 as the formulas to calculate the power (Eqs. 4.15
and 4.16) depend only on Ê0y (kx) . Those dependencies are readily calculable
by NLTMM.

4.2.4 Transfer-matrix method for SPDC

In the context of SPDC, usually pump (“p”), idler (“i”) and signal (“s”) no-
tation is used to represent the participating waves (also used previously in
Sec. 2.3 and in chapter 3). However, from here on we switch to the notation
used in classical nonlinear optics (Sec. 2.1.3), because we model SPDC as a
limiting case of DFG. The pump beam of SPDC is now denoted by subscript
“1”, the second input beam represents the idler beam and the signal has no
subscript.

In this section, we finally arrive to a method to model SPDC in an
arbitrary stratified structure. The general idea is to model SPDC as a limiting
case of DFG: the second input beam of DFG is replaced with a very weak
classical electrical field to replace vacuum fluctuations. Such methodology has
been used before and it has been shown, that in such a way it is possible to
exactly reproduce the results of the quantum theory of SPDC [84].

The vacuum fluctuations are present in every electromagnetic mode. To
extract the electric field intensities associated with every mode, the quantum
theory (Eq. 2.68) of SPDC and the classical theory of DFG (Eq. 2.51) were
compared (Ref. [IV]) and the electric field intensity for the second input beam
(in a vacuum) was found to be
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|A2|2 = ∆λdkx2ω2
Ωv
θv

~
8ε0π4

ω3

c3
. (4.30)

As expected, the electric field intensity of vacuum fluctuation mode (given in
a vacuum) with bandwidth (∆λdkx2) does not depend on the properties of the
nonlinear crystal nor on the wavevector. Note, that the dependence on the
generated frequency ω is due to the phase-matching condition (Eq. 2.64).

The electric field intensity by Eq. 4.30 is given only for a single electro-
magnetic mode with bandwidth ∆λdkx2. However, in the process of SPDC,
many modes of vacuum fluctuations participate in the generation of the signal
detectable by a sensor. It is already assumed on the derivation of the quantum
theory of SPDC (see Sec. 2.3.3), that the wavelength bandwidth ∆λ is small
(signal is detected through a narrow-band filter), so the integration over ∆λ
is not required.

On the other hand, the inclusion of vacuum fluctuation modes propa-
gating to different directions is still required (integral over dkz2 in Eq. 2.68)
as the viewing angle of the sensor θv is wide in comparison to the resonances.
It means, that to include vacuum fluctuations into NLTMM an electric field
intensity given by Eq. 4.30 must be included in every mode in the range
k̄x2 −∆kx2 . . . k̄x2 + ∆kx2 defined by Eqs. 2.69 and 2.70, because all of them
participate in the generation of the signal reaching the detector. In reality, the
situation is, of course, vice versa: the vacuum fluctuations are present in every
mode and some limited amount of signal is collected by the sensor depending
on the size and position of the sensor. Here, however, it is more convenient to
include only these vacuum fluctuation modes that participate in the generation
of the SPDC signal detectable by the sensor.

Computationally, it is convenient to use the functionality derived for
beams with arbitrary profiles (see Secs. 4.2.2 and 4.2.3.4). We can just define
a special kind of beam, that has an intensity of vacuum fluctuations in every
mode in the range k̄x2 − ∆kx2 . . . k̄x2 + ∆kx2 and zero in every other mode.
In such manner, the integration over vacuum fluctuation modes happens au-
tomatically. Special attention must be devoted to the coherence properties
of the fields and taking account, that the vacuum fluctuation modes have an
arbitrary phase relationship.

All of the methods described in this section were implemented in C++
for maximum performance and as an easy to use Python library. The code
is open-source, documented and readily available at github.com/ardiloot/
NonlinearTMM.
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4.3 Results

This section will begin with a review of the results of full modeling of SPP-
enhanced SPDC in the structure that was already introduced in chapter 3.
Next, the results for structures supporting LRSPPs and GDWs will be pre-
sented in a comparative manner.

4.3.1 SPP-enhanced SPDC

4.3.1.1 Model setup

a) b)

z

x dm

P1

Pg
χ(2)

θ1

θ

Ωv

Δθv

θ2

400 600 800 1000 1200 1400
(nm)

0

5

10

15

20

25

30

35

E
n
h
a
n
cm

e
n
t

plane wave
w0 = 0.05 mm

w0 = 0.20 mm

w0 = 0.50 mm

w0 = 1.00 mm

Figure 4.3: a) The structure for the modeling of SPP-enhanced SPDC: high re-
fractive index prism, metal film and nonlinear crystal. The pump laser
(power P1) is incident through the prism at an angle of incidence θ1.
The artificial vacuum fluctuations are incident at an angle θ2 and the
generated SPDC signal (power Pg) is detected at an angle θ by a sen-
sor (solid angle Ωv and angular span ∆θv). b) The dependence of the
field enhancement of SPPs on the wavelength and the waist size of the
exciting Gaussian beam. [IV]

The structure under the investigation is shown in Fig. 4.3a. The re-
fractive index of the prism is taken to be np = 2.2, the refractive index of the
thin (dm = 50nm) silver film is from Ref. [38] and the refractive index of
the nonlinear crystal is taken to be that of single crystal alpha quartz (Ref.
[39]). Single crystal alpha quartz is preferred because of the relatively small
refractive index – around 1.55 in the visible spectral region. The second-order
nonlinear susceptibility of the nonlinear crystal is artificially taken to be

χ(2)
xxx = χ(2)

yyy = χ(2)
zzz = 4.4 pm/V, (4.31)

which is comparable to the nonlinearity of BBO crystal. Such selection of the
second-order susceptibility tensor helps to simplify the comparison of different
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structures, as the effective nonlinearity does not depend on the polarization or
on the field distributions of the participating fields.

The structures are illuminated by a green laser beam with wavelength
λ1 = 532 nm at an angle of incidence θ1 (see Fig. 4.3a). If not further specified,
the laser beam is a Gaussian shaped beam (in xz-plane) with waist size w0 =
1mm, is p-polarized and the power of the beam is P1 = 100mW.

The second input beam (red cone in Fig. 4.3a), representing vacuum
fluctuations, consists of a range of modes kx2 = kx2 − ∆kx2 . . . kx2 + ∆kx2,
where kx2 is connected to the angle θ2 in Fig. 4.3a by

kx2 = ω2
c
np (ω2) sin θ2 (4.32)

and the limiting term ∆kx2 follows from the sensor viewing angle ∆θv by Eq.
2.70.

The angle of incidence of the generated beam is determined by the angle
of incidences of both input beams and is

θ = asin
(
ω1np (ω1) sin θ1 − ω2np (ω2) sin θ2

ωnp (ω)

)
. (4.33)

To be concrete, the solid angle window of the sensor is taken to be Ωv =
7.6 10−5 sr and the angular span in xz-plane to be θv = 0.5◦. In terms of
frequency, we are only looking for the process where pump photons are equally
split.

4.3.1.2 Yield of SPDC

Like in chapter 3, the calculations mainly focus on the “fpp” process in table
3.1, as it displays the highest enhancement and the phase-matching conditions
are easy to fulfill. In this process, the second input beam, representing vacuum
fluctuations, is in the plasmonic mode as is also the generated signal. As the
vacuum fluctuations are fixed to excite plasmon mode, the only remaining free
parameter is the angle of incidence of the pump beam θ1 (the angle of the
generated beam θ follows from it by Eq. 4.33) and we can calculate the yield
of SPDC.

The yield of the SPP-enhanced SPDC is shown in Fig. 4.4a. The black
dashed line corresponds to single plane wave excitation and the colored solid
line corresponds to the realistic Gaussian beam excitation. Two peaks are
present in Fig. 4.4a, the first one (highest, marked by vertical red line) cor-
responds to “fpp” process (see table 3.1) we are mainly interested in. The
other peak corresponds to the alternative process of enhanced SPDC “ppf”,
where the pump beam directly excites plasmons as well, however, the generated
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Figure 4.4: The dependence of the yield (a) and the enhancement factor (b) of
SPP-enhanced SPDC on the angle of incidence of the pump beam θ1.
Also, the reflection curve (c) and the enhancement factor (d) of the
second pump beam is shown. In Fig. 4.4e the dependence of the out-
coupling factor on the angle of incidence of the pump beam is displayed.
[IV]

quanta are in photonic mode instead of plasmonic. Between the peaks, the
process is described by “fpf”, as only the vacuum fluctuations are in plasmonic
mode.

The maximum yield of SPP-enhanced SPDC is only around κ ≈ 9·10−16,
which is small. To address the reasons for a small yield, the five main factors
influencing the generation of SPDC (see Sec. 4.1) will be addressed in the
following sections.

4.3.1.3 Enhancement

By comparing the yield (Fig. 4.4a) to the enhancement factor (Fig. 4.4b)
we see, that the enhancement by plasmonic fields is working as expected –
the enhancement factor Υ and the yield κ have almost identical dependence
on the angle of the pump beam. This is an expected result and proves that
the simple enhancement considerations presented in Sec. 3.2 holds well. The
enhancement factor of SPDC is up to 104, which is slightly smaller than esti-
mated in Sec. 3.2. As mentioned in Sec. 4.1, the two influencing factors are:
enhancement of participating vacuum fluctuation modes and the interaction
of the pump beam with the narrow resonances.

Firstly, let’s consider the possibility that not all of the participating
vacuum fluctuation modes are equally enhanced. To illustrate, the angular
sweep of reflection R and enhancement factor η2 of the second input beam
is calculated in Figs. 4.4c – 4.4d, where colored solid lines represent the cal-
culations by artificial vacuum fluctuations beam and the dashed black lines
correspond to the plane wave calculations. As expected, there is a minimum
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in the reflection curve and a matching maximum in the enhancement factor
near θ2 ≈ 45.4◦ corresponding to the SPP resonance. The second input beam
(artificial vacuum fluctuations) are tuned to this resonance. The shaded ar-
eas in Figs. 4.4c – 4.4d represent the angular span of the artificial vacuum
fluctuations corresponding to the sensor viewing angle ∆θv. Every mode in
this shaded angular span will contribute to the generation of the useful SPDC
signal detected by the sensor. From Fig. 4.4d it is visible, that not all of the
modes of artificial vacuum fluctuations are equally enhanced, as the resonance
of SPPs is narrow. It leads to a reduced enhancement (colored line in Fig.
4.4b) of the second input beam. Such kind of effect was not accounted in the
simple model presented in Sec. 3.2 and is the main reason why the enhance-
ment factor Υ is reduced in Fig. 4.4b. However, in this case, the effect is
small, the enhancement is only reduced around ≈ 3 times as the resonance is
not too narrow.

Secondly, let’s consider the interaction of pump beam with narrow reso-
nances. It is immediately clear, that our default Gaussian beam (w0 = 1mm)
interacts with the resonances in this structure very well – the results of the
yield of SPP-enhanced SPDC in Fig. 4.4a are identical for Gaussian beam
and plane wave excitations. However, it is not the case if the beam width is
reduced. In Fig. 4.3b, the maximum field enhancement of SPPs over the wide
spectral range is calculated and the effect of the finite pump beam waist size is
studied. The Gaussian beam with waist w0 = 1mm interacts with SPPs in this
structure very well – the enhancement factor closely resembles the enhance-
ment with plane wave excitation in the visible spectral region and only slightly
deviates from it in NIR spectral region. On the other hand, if the beam waist
of the Gaussian beam is made narrower (eg. w0 = 0.05mm), only a fraction of
the enhancement factor would be available and it will have a considerable ef-
fect on the enhancement of SPDC. In this case, the difference between infinite
plane wave and Gaussian beam (w0 = 1mm) excitation is small, however, in
the case of LRSPPs and GDWs, where resonances are considerably narrower,
using realistic pump beam has a major effect on results.

Despite the large enhancement, the maximum yield of SPDC is small.
The initial (not enhanced) yield of SPDC is very low (less than 10−20), so the
enhancement of four orders of magnitude is not enough. To understand the
reasons for this low yield of SPDC in this geometry, the remaining four main
factors influencing the SPDC will be studied.

4.3.1.4 Out-coupling efficiency

The next factor influencing the generation of SPDC in the SPP-enhanced
structure is that the generated quanta is in lossy plasmonic mode and only a
fraction of the generated signal outcouples to the prism. The calculated out-
coupling efficiency is shown in Fig. 4.4e. In the case of “fpp” process, denoted
by a vertical red line, the out-coupling efficiency is ηoc ≈ 71%. It is high and
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is not a reason for a low yield of SPDC – only ≈ 29% of the SPDC signal is
lost by the absorption in the metal.

4.3.1.5 Phase-matching and coherent buildup
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Figure 4.5: a) The coherent buildup curves of the SPDC signal. The buildup of
SPP-enhanced SPDC signal is compared to perfect phase-matching
(PM) and not phase-matched generation in an usual SPDC setup. b)
The electrical field z-component of the SPP mode and the z-component
of the nonlinear polarization. c) Dependence of the yield of SPP-
enhanced SPDC on the width of the exciting Gaussian beam. [IV]

In the case of ordinary SPDC, fulfilling the phase-matching conditions
are really important for an efficient generation of the signal. The coherent
buildup curve for the SPP-enhanced SPDC is shown in Fig. 4.5a along with a
comparison to ordinary SPDC buildup in perfectly phase-matched (PM) and
not phase-matched (Non-PM) crystal. Note, that no influence of the field
enhancement nor the effective nonlinearity is accounted for in the coherent
buildup curves. It is visible, that at smaller distances < δc = 64µm, the
signal displays also a quadratic dependence on the distance, as in the case of
perfect phase-matching. However, after ≈ 0.5mm the coherent buildup curve
is almost flat and approaching a constant value. To understand the behavior,
the phase mismatch is calculated by methods described in Ref. [IV] and the
results are presented in table 4.1. It turns out, that in the case of SPP-
enhanced SPDC, the phase is perfectly matched Re [∆k] = 0m−1, explaining
the quadratic dependence at small distances, however, phase mismatch has
also a considerable imaginary component ∆k = 7700im−1, which corresponds
to the losses and leads to the limited coherent buildup length δc = 64µm.

In terms of coherent buildup, the SPP-enhanced SPDC is indeed much
weaker than the perfectly phase-matched generation in a thick nonlinear crys-
tal in a conventional setup, because the coherent buildup is limited to the
distance < δc = 64µm. However, if one takes into account the enhancement of
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four orders of magnitude, then at smaller distances (< δc) the SPP-enhanced
SPDC structure displays a superior yield of SPDC.

Table 4.1: The comparison of different surface waves for the enhancement of
SPDC. Here plus signs (+) denote advantages and minus signs (–)
disadvantages.

SPPs LRSPPs GDWs

Yield of SPDC (κ) 9 · 10−16

(–)
3 · 10−14

(+)
7 · 10−14

(+)

Enhancement (Υ) 104

(++)
103

(+)
500
(–)

Out-coupling (ηoc)
71 %
(+)

68 %
(+)

100 %
(++)

Coherent buildup
distance

∆k = 7700im−1

δc = 64µm
(–)

∆k = 36im−1

δc = 13.9mm
(++)

∆k = 54im−1

δc = 9.2mm
(++)

Effective
nonlinearity (χ(2)

eff )
2.5 pm/V

(+)
0.80 pm/V

(–)
0.44 pm/V

(–)
Yield of SPDC
(w0 = 10 cm)

9 · 10−16

(–)
0.3 · 10−12

(++)
0.08 · 10−12

(+)

4.3.1.6 Effective nonlinearity

Another factor influencing the generation of SPP-enhanced SPDC signal is the
value of effective nonlinearity. The study of the buildup curves revealed that
the effective nonlinearity is approximately half of its maximum value (see table
4.1). It is an expected result, as only a part of the field distribution of SPPs
is in nonlinear medium (metal is taken to be linear).

4.3.1.7 Beam width study

From Sec. 4.3.1.5, it becomes clear that a coherent buildup of the signal is
really important. In the case of ordinary SPDC setup, the beam width does
not influence the coherent buildup, however, in the case of a SPP-enhanced
SPDC, it is an important parameter. Let’s illustrate this by a simple example.
If the beam width is very narrow (e.g. 10µm), it is evident that the coherent
buildup of the signal is also limited to the distance < 10µm. In other words,
the beam width must have some minimal width in order not to destructively
influence the yield of the SPP-enhanced SPDC, as the maximum interaction
length is dictated by the width of the pump beam. The dependence of the
yield of the SPP-enhanced SPDC on the waist size of the Gaussian pump
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beam is shown in Fig. 4.5c. It is evident that the beam waist size w0 = 1mm
is sufficient. However, if the beam is made narrower, the yield reduces.

4.3.1.8 Conclusion

The summary of the results of the modeling of SPP-enhanced SPDC is shown
in table 4.1. The enhancement factor up to four orders of magnitude is readily
available, however, the yield of SPDC is still small in such structure. The
study reveals, that the reason for the low yield is the limited coherent buildup
distance (64µm) and the yield of SPDC is small in comparison to the thick
nonlinear crystal. On the other hand, in the case of miniature sources, the
SPP-enhanced SPDC shows superior performance as the fields are enhanced
and the coherent buildup distance is not yet a problem.

4.3.2 LRSPP-enhanced SPDC
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Figure 4.6: a) The structure for the modeling of LRSPP-enhanced SPDC: high
refractive index prism, buffer layer, metal film and nonlinear crystal.
The pump laser (power P1) is incident through the prism at an angle
of incidence θ1. The artificial vacuum fluctuations are incident at angle
θ2 and the generated SPDC signal (power Pg) is detected at angle θ by
a sensor (solid angle Ωv and angular span ∆θv). b) The dependence
of field enhancement of LRSPPs on the wavelength and the waist size
of the exciting Gaussian beam.[IV]

The main problem limiting the enhancement of SPP-enhanced SPDC
was the short coherent buildup length (see table 4.1). As a possible solution
to increase the coherent buildup length, a structure supporting LRSPPs (Sec.
2.2.2) was considered. The structure under study is shown in Fig. 4.6a with
an extra buffer layer between the prism and the metal film. The refractive
index of the buffer layer is taken to be identical to the nonlinear medium’s
to support symmetric LRSPP modes and the thicknesses of the buffer layer
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and the metal film are fixed at db = 10µm and dm = 10nm, respectively.
Otherwise, the model setup is identical to the case of SPP-enhanced SPDC
(Sec. 4.3.1.1).

A summary of the results is shown in table 4.1. The yield of the LRSPP-
enhanced SPDC (κ ≈ 3 · 10−14) in the case of default Gaussian beam (w0 =
1mm) is significantly higher than in the case of SPP-enhanced SPDC. This,
however, is not connected to the increase in the enhancement factor, as it is
decreased by a factor of ten in comparison to the SPP-enhanced SPDC. It is
controversial, as the LRSPPs are known to display higher enhancement factors
than SPPs.
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Figure 4.7: The angular sweep of the reflection (a) and the enhancement factor
(b) of the second input beam. The buildup curve over the distance is
shown in graph (c) for perfectly phase-matched crystal (PM) and for
LRSPP- and GDW-enhanced SPDC. The electrical field z-component
of the LRSPP mode and the z-component of the nonlinear polarization
(d). [IV]

The reasons here are twofold: only a small part of the participating vac-
uum fluctuations are enhanced and the interaction of the realistic Gaussian
beam (w0 = 1mm) with the very narrow resonances of LRSPPs is weak. The
latter is illustrated in Fig. 4.6b with maximum enhancement factor calcula-
tions. Indeed, in the case of plane wave excitation, the available enhancement
factor is significantly higher than in the case of SPPs (see Fig. 4.3b). However,
in the case of Gaussian beams, these enhancement factors are not realistically
available due to the poor interaction with the very narrow resonances of LR-
SPPs. A similar problem appears also in the case of enhancement of the
participating vacuum fluctuations. The angular sweep of the reflection and
the enhancement factor of the second input beam are shown in Figs. 4.7a and
4.7b. Again, the second input beam is tuned to the resonance (denoted by
red vertical line) and the participating vacuum fluctuations are denoted by
the gray shaded area. It is clearly visible, that the resonance of LRSPP (black
dashed line) is much narrower than the angular span of the vacuum fluctua-
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tions – only a small part of the vacuum fluctuations are enhanced and thus
only a fraction of the enhancement of LRSPPs is available (colored lines).

In terms of out-coupling, the LRSPP-enhanced SPDC works well and
more than two thirds (table 4.1) of the generated signal is outcoupled to the
prism.

The coherent buildup distance is significantly longer in comparison to
the SPP-enhanced SPDC and is up to 13.9mm. It is more than enough to not
to be a limiting factor for SPDC. The coherent buildup curve over the distance
is also shown in Fig. 4.7c, where clear quadratic buildup is visible as in the
case of perfectly phase-matched (PM) crystal.

However, a new limiting factor is arising from the calculation of effective
nonlinearity – it is only 18 % of its maximal value (see table 4.1). Moreover, if
the buffer layer between the prism and the metal film is made nonlinear, then
the effective nonlinearity decreases even further. To understand the origin of
the effect, the z-dependence of the nonlinear polarization and the electric field
of the LRSPP mode is plotted in Fig. 4.7d. It is evident, that the nonlinear
polarization has oscillatory behavior over z-coordinate. It is caused by the
fact, that now the pump wave is not evanescent nor in the buffer layer nor
in the nonlinear crystal (contrary to the case of SPP-enhanced SPDC in Fig.
4.5b). Due to the oscillatory behavior over z-coordinate, the generation of the
plasmonic mode is affected destructively by the interference resulting in the
reduction of the effective nonlinearity.

In the case of SPP-enhanced SPDC, the increase of the beam width did
not provide any additional increase in the yield of SPDC. However, in this case,
the beam width is really important as the coherent buildup distance is large.
Increasing the beam width up to w0 = 10 cm allows longer coherent buildup
and boosts the yield of SPDC up to 0.3 · 10−12, which is already comparable
to the usual SPDC generation form a thick nonlinear crystal.

4.3.3 GDWs-enhanced SPDC

Another very promising type of resonant modes are GDWs (see Sec. 2.2.3).
The structure for the GDW-enhanced SPDC is shown in Fig. 4.8a. It is
very similar to the structure supporting LRSPPs (Fig. 4.6a), only the metal
film is replaced with a dielectric waveguiding layer with refractive index nw =
2.2. Such structure is interesting, as it displays high field enhancement like
LRSPPs, however, it contains no metal layers and thus is completely free of
absorption losses.

The summary of the results is shown in table 4.1. The calculated yield of
SPDC is slightly higher than the yield of LRSPP-enhanced SPDC. Again, this
effect is not caused by the increase of the enhancement, as the enhancement
factor is around two times smaller than in the case of LRSPPs. The field
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Figure 4.8: a) The structure for the modeling of GDW-enhanced SPDC: high re-
fractive index prism, buffer layer, waveguide layer and nonlinear crys-
tal. The pump laser (power P1) is incident through the prism at an
angle of incidence θ1. The artificial vacuum fluctuations are incident
at angle θ2 and the generated SPDC signal (power Pg) is detected at
angle θ by a sensor (solid angle Ωv and angular span ∆θv). b) The
dependence of field enhancement of GDWs on the wavelength and the
waist size of the exciting Gaussian beam. [IV]

enhancement of GDWs is shown in Fig. 4.8b: the plane wave approximation
does not hold again.

One of the benefits of GDWs is the all-dielectric structure, which leads to
100 % out-coupling efficiency, as the absorption of the generated SPDC signal
is not possible. Also, the coherent buildup distance is long and allows to boost
the yield of SPDC up to 0.08 · 10−12.

On the negative side, the effective nonlinearity is only 10 % of its maxi-
mum value due to the oscillatory behavior of nonlinear polarization leading to
destructive interference like in the case of LRSPPs.

4.4 Conclusions

In this chapter the enhancement of SPDC by three different structures sup-
porting resonant surface waves were realistically modeled. In the case of SPP-
enhanced SPDC, it was discovered, that indeed, the enhancement of SPDC by
surface waves really work as expected (up to 104 times), however, the enhance-
ment is only realistically available in the case of miniature sources (propagation
distance up to 64µm). In the case of larger propagation distance, the coher-
ent buildup of the SPDC signal is strongly limited by the losses of the SPP
mode.
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Modeling also explains the results of the experimental work in Sec. 3.3,
where no enhanced SPDC was detected and the upper limit of the yield of the
SPP-enhanced SPDC was estimated to be 6·10−14. It matches the calculations
in table 4.1, as the estimated yield of SPDC is only up to 9 ·10−16 (under opti-
mal conditions) – the estimated yield of SPDC is considerably lower than the
minimum experimentally detectable yield and no detection of SPP-enhanced
SPDC is possible.

Next, the LRSPPs and GDWs were studied in the context of enhanced
SPDC. The main difference in comparison to SPPs is the low propagation
loss. Indeed, the short coherent buildup distance, the main limiting factor in
the case of SPP-enhanced SPDC, is no longer a problem – coherent buildup
happens efficiently for several millimeters and the yield of SPDC up to 0.3 ·
10−12 is achievable. On the negative side, also new limiting factors arise.
Firstly, the enhancement factor is limited by the very narrow resonances of
the LRSPPs and GDWs and secondly, the effective nonlinearity is reduced by
the inefficient interaction with the nonlinear medium.

We see the greatest potential in SPP-enhanced SPDC in order to in-
crease the efficiency of miniature SPDC sources.
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5 Leaky Dyakonov SPPs for SPDC (publication V)

5.1 Introduction

The structure of SPP-enhanced SPDC (see Fig. 4.3a) is the simplest of the
three studied in chapter 4 in the context of the experimental realization. It
consists of a high refractive index prism, thin metal film and a nonlinear crys-
tal. Still, one of the experimental challenges is to fabricate such structure.

One possibility is to take a nonlinear crystal, deposit a metal film on
it and then attach a prism with an IML (realized in Sec. 3.3). However,
the selection of nonlinear crystals are quite limited as a low refractive index
is required – it is only possible to excite SPPs if the refractive index of the
prism is substantially higher than the refractive index of the crystal. Moreover,
commercially available IMLs are limited to the refractive index below 1.8 and
they are often hazardous and difficult to handle. Another problem here is the
photostability of IMLs.

The other possibility to fabricate the structure in Fig. 4.3a is to take a
prism and deposit both a metal and a nonlinear medium on it. In such case, no
use of IMLs are required. The only problem here is the deposition of properly
oriented second-order nonlinear medium on the metal film. The fabrication of
such layers via deposition has been investigated by many research groups with
great progress: large second-order susceptibilities were registered for Si3N4,
ZnO and SiO films [96–99]. However, all of them display very high refractive
index (> 2 in the visible spectral region), which greatly limits the selection of
the prisms.

Alternative setup is studied in this chapter: a new type of surface waves
will be presented that have built-in excitation method and do not require
Kretschmann prism to be excited. We have carefully studied the combina-
tion of SPPs and Dyakonov waves at the interface of a metal and uniax-
ial anisotropic crystal. Surface waves at the interface of the isotropic and
anisotropic crystal have been studied before, however, always an excitation
scheme similar to the Kretschmann configuration has been required. In Ref.
V we showed, that it is not always the case: under special conditions, the
DSPPs at the interface of a metal and anisotropic crystal becomes leaky (LD-
SPPs), which allows exciting DSPPs without any excitation scheme.

This chapter will begin with a short overview of methods that were used
to study LDSPPs. Next, the main results and the possibility to use LDSPPs
for the enhancement of SPDC will be outlined.
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5.2 Methods

5.2.1 Complex root finder

The dispersion relationship of DSPPs (Eq. 2.60) is given in an implicit form
and the task of finding complex propagation constants is not trivial, especially,
if several closely spaced roots exist. Often iterative optimization routines (e.g.
Newton–Raphson method) are employed to find the roots of complex functions,
however, such methods inherently require initial estimates of the zeros and are
unreliable in a sense that some zeros may remain undiscovered [100]. In this
work, a superior method, based on Cauchy’s theorem, is used, which is able
to reliably find all zeros of a complex analytic function without any iterative
optimization.

The method, used in this work, is described in depth in Ref. [101] and
here only a short review is presented. The method relies on Cauchy’s theorem
that in the case of complex analytic function f (z) with complex argument z,
the contour integration around the closed region in the complex plane of z
satisfies the relation

sN = 1
2πi

˛

C

zN
f ′ (z)
f (z) dz =

ν∑

i=1
zNi , (5.1)

where zi (i = 1, 2 . . . ν) are zeros inside the region surrounded by the contour
C and N = 0, 1, . . . is arbitrary number. If N = 0, then the integration

s0 = 1
2πi

˛

C

f ′ (z)
f (z) dz = ν (5.2)

will give the number of zeros ν surrounded by the contour C as a result. Also,
if only one zero is present in the region (ν = 1), then it is possible to determine
the zero z1 just by integration of Eq. 5.1 by taking N = 1

s1 = 1
2πi

˛

C

z
f ′ (z)
f (z) dz = z1. (5.3)

Similarly, if two zeros are present in the region, we have a system of equations

{
s1 = z1 + z2

s2 = z2
1 + z2

2
, (5.4)

which could be combined into polynomial respect to one of the solutions

2z2
1 − 2s1z1 + s2

1 − s2 = 0 (5.5)
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and be easily solved. Similarly, it is possible to compose a polynomial if
the number of zeros inside the contour is higher, however, due to numerical
inaccuracies, the optimal strategy is the following:

1. Evaluate the number of zeros ν = s0 in the initial region. If the number
is small, then continue with step 3. If not, do step 2.

2. Divide the region on the complex plane to four smaller subregions and
recursively do step 1 for each.

3. Evaluate integrals s1 . . . sN and compose a polynomial. Solve the poly-
nomial with standard methods to find zeros z1 . . . zν .

4. (Optional) Use Newton-Raphson method to fine-tune solutions for max-
imum accuracy.

Such method has proven to be reliable and fast to solve any dispersion rela-
tionship given in implicit form. The main requirement of the method is the
knowledge of the first derivative f ′ (z) in addition to the function itself.

5.2.2 Anisotropic TMM

In Sec. 4.2.1 a standard TMM was described for solving electromagnetic fields
in stratified structures, where each layer is described by a thickness and a
complex refractive index. However, a standard TMM is not sufficient to study
DSPPs as Dyakonov waves relay on the anisotropy of a refractive index. For
the inclusion of anisotropic optical mediums, another variation of TMM has
been developed [28, 102–104].

In this work, the formalism developed by I. J. Hodgkinson, et. al. (Ref.
[28]) is used. The main differences in comparison to a standard TMM are the
requirement of full dielectric permittivity tensor for every layer and the cou-
pling of polarizations. Here we only give a general description of the method,
all details are described in Ref. [28].

As already described in Sec. 2.1.2.3, only three components of the dielec-
tric permittivity tensor are truly independent. Together with two rotational
angles of the principal axes in relation to the laboratory axes, the full dielectric
tensor is specified. So four extra parameters are available in comparison to
the isotropic case.

Also, in the case of a standard TMM, two orthogonal polarizations were
totally independent (Sec. 2.1.2.2) and the propagation through the structure
could be solved separately. It is not so in anisotropic mediums, which, in gen-
eral, alter the polarization of the input beam. As a consequence, the solution
in the case of anisotropic mediums consists of four plane wave components:
two orthogonally polarized modes in the forward direction and another two in
the backward direction. Also, the transfer and the propagation matrices are
now with size 4×4. To find the orthogonal polarizations inside the anisotropic

76



crystal, an eigenequation is solved: eigenvectors correspond to the basis fields
of orthogonal modes and eigenvalues are connected to the mode’s effective
refractive indices.

Although the technical details of anisotropic TMM are quite different
(not presented here), the method still essentially uses the same matrix formal-
ism to conveniently transfer fields between layers and propagate fields within
the layer to fully solve electromagnetic fields inside the structure.

The method described in Ref. [28] is implemented in C++ for maximum
performance and is available as an easy to use Python library. The code
is open-source, documented and readily available at github.com/ardiloot/
GeneralTmm.

5.3 Results

5.3.1 Leaky Dyakonov SPPs (LDSPPs)

a) b)

Figure 5.1: The dependence of the propagation constant (a) and the extraordinary
decay factor (b) on the orientation of the OA for several interfaces. [V]

In Ref. [71] DSPPs were studied by solving the dispersion relationship
of the interface of a metal and anisotropic crystal. It was found that DSPPs
exist only for a limited range of the orientation of OA ϕ < ϕc (critical angle
given by Eq. 2.62). Here we study a possibility, that DSPPs become (half)
leaky after critical angle (ϕ > ϕc) instead of experiencing cutoff.

To do that, the properties of DSPPs were also studied by solving the
dispersion relationship (Eq. 2.60) by the method described in Sec. 5.2.1. The
results (only propagation constant β and extraordinary decay constant qe) for
several interfaces are shown in Figs. 5.1a and 5.1b. Vertical colored lines repre-
sent critical angles defined by Eq. 2.62, essentially defined by condition qe = 0.
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Note, that here the similar notation is used as in Sec. 2.2.4: propagation and
decay constants are scaled by the vacuum wave number.

Indeed, solutions exist for Ag-rutile and Ag-KTP interface even after the
critical angle, the real part of the propagation constant remains unchanged and
the imaginary part displays a minimum (see Fig. 5.1a). From Fig. 5.1b it is
clear, that indeed DSPPs become leaky after the critical angle as the decay
constant of the extraordinary wave becomes purely imaginary (corresponds to
propagating wave). Interestingly, the other three waves associated with the
DSPP mode remain evanescent (not shown here).

To sum up, from the analysis of the dispersion relationship of DSPPs
we have found, that after the critical angle, the DSPP mode becomes leaky
instead of experiencing cutoff. Those LDSPPs display very interesting field
properties as only one of the four waves (extraordinary) is leaky, the other
three remain bound to the interface.

5.3.2 LDSPPs in Kretschmann configuration
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θ
out

R T
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Figure 5.2: LDSPPs in Kretschmann configuration: a high refractive index prism,
thin silver film and KTP anisotropic crystal. [V]

The defining property of surface waves is that the fields of the mode
are bounded to the surface. In other words, the fields have maximums at
the interface. A valid question is if it is justified to name LDSPPs to surface
waves, as one of the components of the wave is not bounded to the surface.
To answer this question, LDSPPs were studied in Kretschmann configuration
by anisotropic TMM.

The structure under investigation is shown in Fig. 5.2. It consists
of high refractive index ZnSe prism (np = 2.5), a silver film with thickness
dm = 60nm and KTP crystal as an anisotropic medium [105, 106]. In Fig.
5.3a the reflection Rpp (“pp” means p-polarized excitation and p-polarized
detection) dependence on the angle of incidence θ and on the angle of the OA
ϕ is calculated at wavelength λ = 900 nm. A clear minimum in the reflection
curve is present for every orientation of the OA, corresponding to the excitation
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a) b)

Figure 5.3: The reflection Rpp (a) and transmission Tpe (b) coefficient dependence
on the orientation of the OA ϕ and on the angle of incidence θ for
the structure in Fig. 5.2 at the wavelength 900 nm. The “pp” in the
subscript means p-polarized excitation and p-polarized detection and
similarly “pe” means p-polarized excitation and the detection of ex-
traordinary polarization. [V]

of surface waves, even after the critical angle (ϕc ≈ 60◦). It supports the idea
that the DSPP mode does not experience cutoff after the critical angle.

The transmission coefficient of the extraordinary mode Tpe is displayed
in Fig. 5.3b. At small angles of the OA (ϕ < ϕc) the transmission coefficient is
zero as expected – the DSPP mode is bounded to the interface. However, after
the critical angle (ϕ > ϕc) the structure exhibits extraordinary transmission
up to 40 %, while the transmission of the 60 nm thick silver film is only around
0.5 %. This effect is explained by a fact that the extraordinary component of
LDSPPs is leaky. The incident light is effectively used to excite LDSPPs, which
leak into the anisotropic crystal through the extraordinary component.

In Fig. 5.4a the effect of the orientation of the OA is studied at the
fixed angle of incidence θ = 46.552◦. It is visible that only the extraordinary
component of the mode becomes leaky. Perhaps the most interesting is the
distribution of electrical fields of LDSPPs (ϕ = 66.411◦, black vertical line in
Fig. 5.4a) shown in Fig. 5.4b. The electrical fields of LDSPPs are indeed
bounded to the interface of the metal and the crystal – the fields have a
maximum at the interface and decay with distance from it. Interestingly, the
z-component of the electrical field starts to increase with the distance from the
interface while the x- and y-component decay to zero. Essentially it means,
that the extraordinary component is almost fully s-polarized opposite to the
exciting light.

To sum up, the electrical field distribution of LDSPPs (Fig. 5.4a) shows,
that the main surface wave properties remain even after the critical angle –
the fields have a maximum at the interface and decay with a distance from it.
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a) b)

Figure 5.4: a) The reflection, transmission and absorption coefficients dependence
on the orientation of the OA ϕ at a fixed angle of incidence θ = 46.552◦.
b) The electrical field distribution of LDSPPs at θ = 46.552◦ and
ϕ = 66.411◦ (vertical line in Fig. 5.4a). [V]

In addition to usual surface wave, there is a leaky extraordinary component
inside the anisotropic crystal that in this case is almost fully s-polarized.

5.3.3 Alternative excitation scheme

a) b)
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Figure 5.5: a) The reflection, transmission and absorption coefficients for a fixed
angle of incidence (β = 1.815). b) The electrical field distribution at
β = 1.815 and ϕ = 66.694◦ (vertical line in Fig. 5.5a). [V]

To excite traditional surface waves, there is always need for some kind of
excitation setup (e.g. Kretschmann scheme). Essentially, the task of excitation
setup is to make surface waves leaky and to use it to channel energy into the
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surface mode. In the case of LDSPPs, one component of the mode is already
leaky – it is possible to excite LDSPPs without any excitation scheme. In other
words, we explore the possibility to reverse the extraordinary transmission in
Fig. 5.3b to excite the surface wave.

To study it, we modeled the simple two-layer structure (essentially the
reversed structure in Fig. 5.2 without the prism) in the inset of Fig. 5.5b with
anisotropic TMM. In Fig. 5.5a the reflection, transmission and absorption
coefficients are shown for a fixed angle of incidence (β = 1.815). From the
reflection curve of the extraordinary wave (Ree), it turns out, that it is indeed
possible to directly excite LDSPPs. The reflection curve reaches zero and all
of the energy of the light is transferred to the surface waves and finally, all
of the energy is absorbed. In other words, such kind of very simple two-layer
excitation scheme is also 100 % effective.

The electrical field distribution (ϕ = 66.694◦) is shown in Fig. 5.5b.
Again, the field distribution has the characteristics of the surface wave: fields
have maximums at the interface and decay with a distance from it.

5.3.4 LDSPPs for SPDC

ω
p

ω
s

ω
i

k
p

β
s

β
i

KTP

Ag

Figure 5.6: The schematic of the experiment of LDSPP-enhanced SPDC. [V]

Previously we have shown, that a new kind of surface wave exists at the
interface of a metal and anisotropic crystal – LDSPPs. Moreover, LDSPPs
display interesting properties, one component of the four is leaky that enables
to excite the surface mode without any excitation scheme – the method for
excitation is already built-in. In this section, we explore the possibility to use
LDSPPs for the enhancement of SPDC.

As already discussed in the introduction, one of the main experimental
challenges of SPP-enhanced SPDC is the fabrication of the structure. One
strategy requires the use of IMLs that have limited range of refractive indices
and are not photostable. The other strategy relies on the deposition of prop-
erly oriented nonlinear material on top of the metal film, which is still an
experimental challenge.

One way to overcome the complexities of the fabrication is to use the
LDSPPs, as the excitation method is built-in into LDSPPs, there is no need for
the Kretschmann prism or any other excitation method. The schematic for the
LDSPP-enhanced SPDC is shown in Fig. 5.6. It only consists of anisotropic
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crystal with appropriate nonlinearities (KTP in this case) and a metal layer
(silver in this case). Under the proper angle of incidence of the pump beam, it
is possible that due to nonlinear interaction with the material pump photons
split into two quanta of LDSPPs (denoted by βs and βi). After propagation of
a short distance, the generated signal and idler modes leak back to the crystal
as photons.

a) b)

Figure 5.7: a) The maximum enhancement of the LDSPP mode. b) The enhance-
ment factor of SPDC. [V]

The mechanism of the enhanced SPDC is completely analogous to the
SPP-enhanced SPDC presented in chapter 3. To quantify the possible en-
hancements, field enhancement factors were calculated as in chapter 3 and
are shown in Fig. 5.7 for pump wavelength λ = 540 nm in the case of equal
splitting. The maximum enhancement of the LDSPP mode is around nine
times in the case of proper alignment (Fig. 5.7a). Taking into account that
we are again interested in the “fpp” process then the total enhancement factor
of SPDC becomes around 9000 (shown in Fig. 5.7b). It is however reduced
by the weakening of the pump beam due to the metal surface and the final
enhancement factor of the SPDC in this structure is estimated to be around
Υ ≈ 240 times.

5.4 Conclusions

In this chapter, the dispersion relationship of DSPPs was carefully studied and
half-leaky mode was discovered. The properties of LDSPPs were studied in the
usual Kretschmann configuration with anisotropic TMM and extraordinary
transmission was demonstrated. Next, the half-leaky properties of LDSPPs
were investigated as an alternative excitation method without any coupling
prism. It was demonstrated, that indeed, LDSPPs could be excited by the
leaky component – LDSPPs have built-in excitation method.
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The built-in excitation method was studied to simplify the experimental
realization of the enhanced SPDC by surface waves. It was demonstrated, that
indeed, LDSPPs could be used to enhance SPDC and simplify the experimental
realization – a nonlinear crystal with a high refractive index could be used and
no coupling prism is required.
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Future work

The plasmonic and dielectric structures in chapter 4 were fully modeled for
enhancing SPDC. The obvious future work here is the continuation of the
experimental realization and the verification of the predicted enhancements
of SPDC. In addition, also the optimization of the plasmonic and dielectric
structures for maximally enhanced SPDC was out of the scope of this work.
This work only shows that the optimal structure is somewhere between SPPs
and LRSPPs (or GDWs): SPP-enhanced SPDC displays a high enhancement
factor but low coherent buildup length and vice versa in the case of LRSPP-
and GDW-enhanced SPDC. Also, the reduction in the effective nonlinearity
should be studied further in the case of LRSPPs and GDWs, as by careful
design of the nonlinear layers, a full nonlinearity could be available.

In the case of LDSPPs (chapter 5), the experimental verification of the
predicted results was also out of the scope of this work. Moreover, no full
modeling of the LDSPP-enhanced SPDC was conducted as in chapter 4. It
requires a generalization of the methods developed in Sec. 4.2 for anisotropic
mediums and it is left as a topic for a future study.

Furthermore, only the case of low excitation intensity was considered
in this thesis and the process of SPDC was considered in the framework of
perturbation theory. However, in the case of field enhancement of resonant
modes, higher-order effects may become important already for a moderate
excitation power far less than the atomic field – strong-field effects are already
important for a relatively weak laser excitation [107]. In Ref. [107] a non-
perturbative theory of SPDC is developed for a metal-dielectric interface to
study the strong-field effects. It is predicted, that the process is resonantly
enhanced at the characteristic power of the excitation, typically of the order
of tens of watts per square centimeter. One of the future tasks is to generalize
the non-perturbative theory of SPDC for realistic structures and excitation
conditions like in this study.
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Summary

This thesis is devoted to experimentally and numerically study the possibilities
to enhance the process of spontaneous parametric down-conversion (SPDC),
one of the main sources of entangled photon pairs, by surface waves.

In the first original part of the thesis, the idea of surface plasmon po-
lariton (SPP) enhanced SPDC is introduced. The idea was first explored
theoretically and an enhancement factor of SPDC up to 4 · 104 was estimated
by a simplistic model. Next, the idea of SPP-enhanced SPDC was studied ex-
perimentally in a custom-built goniometric setup, however, no SPP-enhanced
SPDC signal was observed – the yield of SPDC must be lower than 6 ·10−14. It
is concluded, that a full modeling of SPP-enhanced SPDC is required in order
to explain the experimental results.

The second original part of the thesis focuses on the full modeling of
enhanced SPDC. The enhancement was considered by three type of surface
waves: SPPs, long-range SPPs (LRSPPs) and guided dielectric waves (GDWs).
To do that, methods to model SPDC in layered structures were developed as
extensions to the standard transfer-matrix method (TMM). Firstly, an ex-
tension to model second-order nonlinear processes was developed. Secondly,
a standard TMM was extended to include beams with realistic profiles (e.g.
Gaussian) to replace infinite plane wave approximation, which breaks down
for very narrow resonances. And finally, the process of SPDC was modeled as
a limiting case of a classical difference-frequency generation.

In the case of SPP-enhanced SPDC, enhancement factor around 104 was
predicted, however, the effect of enhancement is limited by the short coher-
ent buildup distance (≈ 64µm) – the superior performance of SPP-enhanced
SPDC is only available in miniature devices. To extend the coherent buildup
distance, LRSPPs and GDWs were studied. Indeed, due to lower losses of
both surface waves, the coherent buildup distance was extended up to sev-
eral millimeters, which is comparable to the thicknesses of nonlinear crystals
usually used for SPDC. However, the use of LRSPPs and GDWs also lead to
additional limitations.

Firstly, the resonances of LRSPPs and GDWs are very narrow and the
enhancement of vacuum fluctuation modes are strongly inhibited – only a small
fraction of participating modes are enhanced. Also, the interaction of narrow
resonances with a realistic Gaussian beam (waist size 1mm) is weak. Together
those two factors limit the field enhancement factor bellow 103, which is less
than in the case of SPPs. It is possible to relieve the limitations by increasing
the waist size of the pump beam. It allows enhancing the yield of SPDC up to
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0.3 · 10−12, which is already comparable to a perfectly phase-matched SPDC
from a nonlinear crystal in a conventional setup.

Secondly, the coherent buildup study revealed that only a fraction of the
second-order susceptibility is effectively available due to oscillatory behavior
of nonlinear polarization leading to a destructive interference. This could be
avoided by a careful placement of nonlinear mediums, however, it is not within
the scope of this work.

In the third original part of the thesis, Dyakonov SPPs (DSPPs) were
investigated and conditions for the leaky nature of DSPPs was discovered.
Leaky DSPPs (LDSPPs) have very interesting properties: only one of the
four components of a mode is leaky and it could be used to excite LDSPPs
without any extra coupling prism or similar. LDSPPs with built-in excitation
method were studied to simplify the structure required for the experiments of
SPP-enhanced SPDC.
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Summary in Estonian

Spontaanse parameetrilise allamuundamise võimendamine
pinnaplasmonite ja dielektriliste pinnalainetega

Käesoleva doktoritöö eesmärgiks on spontaanse parameetrilise allamuunda-
mise (edaspidi allamuundamine) võimendamine pinnalainetega, et suurendada
põimitud footonpaaride allika efektiivsust.

Töö esimene põhiosa keskendub allamuundamise võimendamisele pin-
naplasmonitega. Esiteks viidi läbi esialgsed teoreetilised arvutused, arvesta-
des vaid väljavõimendustega, ja ennustati protsessi võimendamist kuni 4 · 104

korda. Järgmiseks katsetati pinnaplasmonitega põimitud footonpaaride allika
võimendamist eksperimentaalselt. Selleks disainiti ja ehitati goniomeetriline
mõõtesüsteem ja viidi läbi esialgsed mõõtmised. Mõõtmiste käigus võimenda-
tud signaali ei registreeritud ja footonpaaride allika maksimaalseks efektiivsu-
seks hinnati 6 · 10−14. Et seletada saadud tulemusi, on vaja läbi viia detailne
allamuundamise modelleerimine.

Töö teise põhiosa eesmärgiks on välja töötada arvutusmeetodid alla-
muundamise võimendamise uurimiseks. Selleks töötati välja mitu laiendust
standardsele ülekandemaatriksi meetodile. Esiteks laiendati ülekandemaatrik-
si meetodit mittelineaarsetele protsessidele. Teiseks lisati funktsionaalsus rea-
listliku kujuga valguskiirte (näiteks Gaussi kiir) kasutamiseks, sest lõpmatu
tasalaine lähendus ei tööta väga kitsaste resonantside korral. Viimasena täien-
dati meetodit, et modelleerida allamuundamist kui vahesageduse genereerimise
piirjuhtu.

Arvutused viidi läbi kolme eri tüüpi pinnalainetega: (tavalised) pinna-
plasmonid (surface plasmon polaritons), pika levikukaugusega pinnaplasmo-
nid (long-range surface plamon polaritons) ja dielektriliste moodidega (guided
dielectric waves). Tavaliste pinnaplasmonitega allamuundamise võimenduste-
guriks hinnati taaskord kuni 104 korda, kuid leiti, et võimenduse avaldumist
takistab lühike koherentse genereerimise pikkus (≈ 64µm) – võimendus aval-
dub reaalselt vaid miniatuurse footonpaaride allika korral. Koherentse generee-
rimise pikkuse suurendamiseks uuriti pika levikukaugusega pinnaplasmoneid
ja dielektrilise moode. Tõepoolest, tänu madalatele kadudele, hinnati mõlema
pinnalaine korral koherentse genereerimise pikkuseks rohkem kui mõned mil-
limeetrid, mis footonpaaride genereerimisele takistusi ei sea, aga esile kerkisid
ka uued võimendamist takistavad tegurid.

87



Esiteks on nii pika levikukaugusega pinnaplasmonid kui ka dielektrilised
moodid väga kitsaste resonantsidega, mistõttu ainult väike osa osalevatest vaa-
kumfluktuatsiooni moodidest on reaalselt võimendatud. Lisaks on nõrgenda-
tud ka laserkiire ja pinnalainete vaheline interaktsioon, sest 1mm läbimõõduga
laserkiire nurkspekter on tunduvalt laiem kui antud pinnalainete resonantsid.
Mõlema teguri koosmõjul väheneb võimendustegur alla tuhande, mis on vä-
hem kui tavaliste pinnaplasmonite korral. Kitsaste resonantside negatiivset
mõju on võimalik vähendada, kui suurendada ergastava laseri kiire laiust. See
võimaldab saavutada allamuundamise efektiivsuseks kuni 0.3 · 10−12.

Teiseks takistavaks teguriks on materjali mittelineaarsuse ebaefektiivne
kasutamine. Arvutused näitavad, et nii pika levikukaugusega pinnaplasmo-
nid kui ka dielektrilised moodid kasutavad vaid väikest osa materjali mitte-
lineaarsusest. See tuleneb mittelineaarse polarisatsiooni ostsileerimisest mit-
telineaarses keskkonnas ja põhjustab genereeritava signaali vähenemist läbi
destruktiivse interferentsi. Töös on välja toodud, et seda on võimalik vältida
mittelineaarsete keskkondade hoolika paigutamisega, kuid täpsed arvutused
pole antud töö teemaks.

Viimane töö põhiosa keskendub Dyakonovi pinnaplasmonite uurimise-
le allamuundamise kontekstis. Peatükk algab Dyakonovi pinnalainete disper-
siooniseose uurimisega ja näidatakse, et teadud tingimustel pole üks neljast
Dyakonovi pinnaplasmonite komponendist enam pinnaga seotud. See huvitav
omadus võimaldab ergastada Dyakonovi pinnaplasmoneid ilma ühegi prisma
või muu ergastusskeemita. Seda uudset ergastusskeemi uuritakse allamuun-
damise võimendamise kontekstis, et lihtsustada nõutud eksperimendiskeemi.
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