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UNBIASED AND n~k-BIASED ESTIMATIONS OF ENTIRE RATIONAL 

FUNCTIONS OF MOMENTS. 

E.Tiit 

1. Introduction 

The construction of unbiased estimators and estimation 

of biases of estimators for several functions of unknown 

theoretical distribution is a great problem in statistics, 

especially in the case, when the given sample is not very 

large. 
This means that the solution of the following general 

problems is needed: 

1° Let К be a  sample of size n, and t (X)  a  statistic. Then 
it is required to find the expression 

Et(X)=Z Aiai (1) 
1*0 

Here Aq is the leading term of the expectation , and 

the term A^ defines the bias of order i, i=1,... . 

2° Let T be a non-random function of theoretical distri­

bution (the parameter). Let К be a sample of size n. It is 

required to construct a family of estimations B^(X), 

1=1,2,..., fulfilling the following conditions 

f - EBt( X ) = 0(n-1), 1=1,2 (2) 

Then B±( X) is a n-i - biased estimation for X .  

We shall consider the special case when t and V are en­

tire rational functions of the sample (correspondingly theo­

retical) moments of the arbitrary finite order. 

Using the fact that for most functions, used in theore­

tical investigations and practical purposes, there exist ap­

proximations in the class of entire rational functions of mo-

ments(received, for instance, ffith the help of Taylor-type ex­

pansions of these functions), the result is rather general. 

It is a well known fact that for a function t  (•) of thee 

retical moments the simplest estimation is the corresponding 

function t(•) of the sample moments, but, in general, the 

estimation t (-) has a considerable bias, especially in the 

case when the order of the moments is large ( >2). 

There exist» a lot of solutions of problems 1° and 2° 
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for special functions of moments, but in most cases some im­

portant restrictions are supposed, for instance: 

1) The parent distribution is known. 

2) The parent distribution belongs to a standard class of 

distributions (for example, to class N(m,<ž)). 

3) The function Г has a special form . 

4) The order of moments is not high ( ̂ 4 ) .  

But there does not exist any general methodology for 

solving Problems 1° and 2° that might be realized in the 

form of standard packages and could be usable for reseach-

ers. 

The aim of the present paper is to solve Problems 1° 

and 2° for the class of entire rational functions of moments. 

All the solutions are analytical, and the formulae.have the 

form,effectively realizable with the help of computer. 

The methodological foundation for all the constructions 

will be based on the concept of the partition of integer, 

see С 23 , the necessary results will be given in Paragraph 

2. Some useful preliminary results are given in [lj. 

2. The partition of an integer 

Let Fl be an integer. Then the vector \T = (vt,УЛ), 

fulfilling the condition 

I>: = к . 1T.eJJ , VC>0, (3) 
1*1 ' 

is said to be a partition of integer ^ ; the components Vi 

are parts of V , and is the number of parts of U". 

For quarranting the uniqueness of the representation 

the parts are assumed to be ordered: 

»I * V;.« , '«•* . (4) 

Notice that the partition is defined by its set of 

parts { , IT»} . For every vector V , having the 

components e^ual to the parts (in arbitrary order) 

there exists sueh a permutation P that P«r = v . Sometimes we 

shall use some partitions V T  , not fulfilling condition ( 4 ) ,  

as well. 

Let denote the set of all different partitions 

V-i = ( , ... f Ул< ) of к , j* i,... , p.(Я); p. (k)- the number 

of different partitions of К is said to be the partition 

function of k. 

Let vr, 6 lT\ wl)"'. Then, evidently, for vr = (Vt:Vx) = 

-fvl V1. V.1 лГ?" ) holds: \iT6 Ü ̂  . Similarily, for 
= V «И-.. I *4 » jj »• • • I 
a iceJJ and ve У we have: 
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\>Г»(у4,...>У<,...>уд,..пУА) , *r 6 tf ^ 

I • К К у -Tlv 
If К. is fixed, we shall use the notation V = U , 

Let У', . If ftt>Ai , then it is sometimes pos­

sible to get the partition 17* by adding together some parts 

of V1 . For every pair of partitions V'^U'2, the coefficient 

8(\г',\?г) equals to the number of different possibilities of 

getting from fr' . 

Example 1 Let k=5, V=(2,1,1,1), \у2=(3,2). Then there 

are 4 different possibilities to get 0"г from y-1 : 

1) VT,1 = ; y-t = XT, * < , 

2) v-/- = V/ - Vr,' ; -v/ = ̂  - \r4 ; 

3) < - w,' * v, 1  ; < = vi + v, ; 

4) = J 

that means, B( V1, V1 )=4. Evidently, B( V1, tf' )=0. 

For every V£ Ü the set tX») is defined in the follow­

ing way: tf(v) = {v': v'elT, ß( V,V') Ф 0 } and for every 

integer А , л £ ft. the set VTA is following: VA= {v: тГб\Г, 

Let VaM = П VT(vr) . From the definitions the following 

simple corollary is deduced. 

Corollary 1 

Let 17 be the set of partitions of integer fl , a < , Ve V. 

Then the following equations hold: 

VT„(v)=M , 

ß (vr,u-) = i . 
3. The univariate moments and their producta 

Let X be a given random variable with distribution P. 

Assume that all theoretical moments, needed in our construc­

tions, exist. Let X be a sample of X with size n, 

Xc(*i»• • • j f P, independent. We shall use following 

notations: 
(Hp = E XP , (5) 

mr = ~Z xf- (5*) 
IH 

Let V be a partition, v= v. VA) „ Then it defines 

uniquely a product of momenta, 

|XC^)= Ц-V;. , (6) 

m.(v) = П mv. a л41 "i-T'—iE X'» . (6*) 
v " l  i - v <  

For every fixed distribution P, sample size n, given 

integers h and к we define the following classes of homoge­

neous polynomials of moments: 



f iMß nT'cC»,j)  , ctv,j)6R } ? (7) 

f v̂k Z; n^ctfr.J) , cCVjpeR}, (7*) 

where the coefficients С (0",j) are independent from the dis­

tribution P and sample size n. 

Let us denote JLCk, 0 0  ') - Vl(k) ,  

Evidently for k1 < kg we have 

Jl(k,k,)  =» *С£сЛ.(^,0. (8) 

Let "fc i € 771 ( ) l, and TС € UL(kc) . Then for finite 

к t=Žr; and t* ti are the entire rational func­

tions of theoretical and, correspondingly, sample moments. 

Let us denote the sets by Yfl and Л: 

t c ernclc),  Ai'.keJf, (g) 

In the paper the problems 1° and 2° will be solved for 

the functions Те Л CM and t £ Hl(fc) . Using the eqaa-

lities (9) and the linearity of expectation, all results, 

proved for the classes УУ1(к)от ,jU.(M,hold for the classes *Ш, 

JJLj otherwise. 

4.. The expectation of the product of sample moments 

Theorem 1. Let mM be a product (6'), Then its expec­

tation can be expressed in the following way: 

E m-(ir) = E ß(*,v') n.*"* F(a') u.(.vr') , (10) 

where A* »  ( a'=a(V) and the function F(x) (*EJ// is defi­

ned in* the following way: 

Г/Х)= Г '  » ¥ x*^ 
1  1а-*к)..Л1-С 

where F(x) can be expressed in the following way: 

Ff*)=£' 
L*0 ' 

Proof The product (6') consists of ft4 terms, having 

the form 

ri*X^ ... (11) 

The value of the expectation of the term (11) depends on the 

number of equations ^ />9 * 'i •"') ̂  between 

the indices. If tу«t j , then instead of product Ktf Ktj 

the term x'V"1 may be written .That means, we have the ex­

pectation of (11) equal to n. * (v7) , where v'« ). 
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The number of terms, having such expectation, equals to 

B(»,V/)n(a-l)...(n.-(/>'-i)) = B('0-,y) ri~V F(a') . Substitution 

of all terms (11) by their expressions gives the formula (10). 

Simple transformation of the formula (10) gives the ex­

pression of coefficients in the form (1); 

Corollary 2 

The expectation of the product of sample moments (61) 

has the following expression: 

E =§' ^ ' (11) 
Whereafc the t>erma j.* and В(и-,1г') are independent 

from the distribution P and sample size я , we have proven 

the result 

Em.(v-) 6 <11') 

5. The expectation of entire rational function of sample 

moments 

Using the connection (9) and the linearity of the ex­

pectation from (11*) follows the accuracy of the formula (1) 

for arbitrary function t(m.) e 7M( k), Hence the formula (1) 

holds for arbitrary function t £ 171 . 
The problem 1° is solved. 

For the practical purposes it is useful to find the 

exact values of some terms of the expectations. Most of them 

may be simply deduced from the formula (11); we shall present 

them in the form of corollaries. 

Corollary 3 

If к is fixed and t 6 , then Ete JJ-(h) . 

From Corollaries 1 and 2 follows the well-known result: 

Corollary 4 

Em(v)= |Uv) + 0(nr'). (12) 

The formula (12) holds evidently for a more general case: 

Corollary 5 

Let t be the entire rational function, t =t (m) ? where 

w is a vector of sample moments. Then 

Et = tl.fi) - 0(a-'), C13) 

where t (p.) la the same function of responding theoretical 

moments. 

For practice it is useful to find the expression of the 

bias of the first order of the estimation m-(ir) for (JL(V'), 

From formula (11) follows 

2 *  7 



Corollary б 

E m.(i7) - U(u-) = rC( f Z ВС17,и-')|и.(\г")-0-5'(^-л) p-O)] +0(п. - г). 

6, Estimation of sample central moments 

One of the most frequently used functions from WO 

is the sample central moment UJ^ ? 

I A 
. (14) 

After transformation of uJ^ , 

we see that all terms in expression (15; respond to parti­

tions of a special type, VCg) = ( fi-g ). 

Substituting the expectations £m.(trt<p), calculated by 

formula (9)> into expression (15) and ordering the result 

by powers of и, „ we get the following 

Corollary 1 

The expectation of the sample central moment is 

following: 

E(vrk) « I  ai z t  I c-n9сI  ß(m3) ,u') +V-VViA (16) 
T=C «-»О Vz6Ug*HLlVt4'' 

where the coefficient is defined in the following 

way 

f  L i  $'° •> 

L НЧ. и а*!Ы. h-i  . ̂  Л.-Ч . 

Prom the Theorem 2 it is simple to get the leading 

term of the bias of the estimator исгц for corresponding 

theoretical central moment ylg = ECx-EX)*" '• 

Corollary 8 

E wvVk. = rv' ̂ z 9 [|U.(v-(g-<)) -0,j-(у +1)И-Cv^))] + 

+ I (- 0 ' С Ü o,5t f- 9) JLL en ft ,x)) • (- о 1-4 0..5-(k-i  t  Pt[>(v( h-i.))-
a»*-

- /UI(V('PL4))3} * OCn"1), 
where ^K.$>2-)Ä *$> 

Analogically, the higher moments and central moments 

of the statistic iv p, can be calculated; it is evident that 

Ы01 e ТПШ) > JZ(Ai). 

7. Estimation of the product p.w) with biaa of riven order к 

After the problem 1° has been theoretically solved in 

paragraph 5, and most useful practical conclusions deduced 

Ь 



in paragraph 6, we shall consider the solution of problem 2°, 

proving the following 

Theorem 2,There exists an estimator Mjfc for the para­

meter X e Jl(h) and given integer k, fulfilling the condition 

EM t~X =0(n.~h ' ' )  ,  l&N. (18) 

Proof bases on the idea of mathematical induction. 

Let us assume that there exists ein estimator , 

fulfilling (18) for , ML.,6TII(hlThen by Corollary 3, 

EM;-| e U ) and hence the difference E M:-t -Z belongs to 

the class 1Д-Ш too; hence it has the following form 

Let us suppose that in the expression only tv-1 first 

terms differ from zero, that means we have 

Ё Mv_, = t  * ŽfrCi £ ̂u-) p(v). (19) 

j=l- vetr 

The next estimator M i will be constructed with the 

help of the first term of the expression (19), where the theo­

retical moments will be replaced by their sample analogues: 

Mi- Mi_,- rCVE^(^)W). (20) 

For calculating the expectation of we use the formulae 

(11) and (12): Ы , <-

E vn.lv)  =  p-W T  ̂  a " ^  ' > 

and get ;a-2 . _ 

E M;- Z*£. -

K-i  
n'LE a 4 2. p-Or') CvCl>v') 
veV5 Ui w'eCr 7 

that means, 
.<-1 It-I 

рь , (21) 

where c A-^cr) =0 and if л IV) < ft then for 

The formula (21) demonstrates that in our assumption 

the connection (18) holds for t ri. as well, whereas the ex­

pression has the form (19). 

For completing the proof notice that from Corollary 4 

it follows that the equation (18) holds in the case k=0; 

then for the estimator Mc may be chosen the correspondent 

function of sample moments Mc - 1 (w.). Theorem 2 is proven. 

3 
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Corollary 10 

Рог p. lv) the estimator 

= m.ort (^(л'--л)Дз.л.))- 'AL 8(v,y')m(v') 

is rv -.biased, 

E - JU.CU-) =0(rc1-). 

Similarily with the help of Corollary 7 the n-2-biased 

estimation of the k-th central moment may be construc-

ted . For this purpose in the equation (17) the theoretical 

moments must be replaced by corresponding sample analogs. 

8. The existence of the unbiased estimator M t* 

The following question is the existence of an unbiased 

estimation = » having the property 

EM„= lim EMfc-t. (22) 

Let ua use the notation 

EM--r=Z rv-'Z.(1М^,1Г), 
y<5V 

For convergence (22) the following series must be 

convergent: 

Ž Z n: j Z ( 2 3 )  

>0 j-i« VüU 

In fact, the series (23) is а linear combination of 

different series (some of them may be constantly 

equal to zero), having the following form: 

|r0
r v 'V<ä L ( <r i ' l U r ) '  >-<;»«'*'- ( 2 4 )  

For the absolute convergence of aeries (23) it ia neces­
sary and sufficient that all series (24) Pi-Jjvst)") 

are absolutely convergent. 

For analysing the convergence of aeries (24) we regard 

the expression of coefficient j ,cr) by previoüs 

ooefficients V) С j. < v , j h-<, v'elJ). 

From (21) we get: 

•  ( 2 5 )  

this means that the coefficient V) ia a linear trans­

formation of previous coefficients, where the coefficients 

Cv'( |j> •! ,0-) of the transformation are independent from the 

index i. 
For investigating the convergence of the series (24) 

10 



let us construct the majorant series 

g-Z ii>, (26) 

where £};,= max I , 

uiä4 

from the convergence of the series 3 the convergence of all 

series (24), and henoe the convergence of series (23) fol­
lows. 

Prom (25) we have, using £.4 3 ,  

(Z^CV' (jtl ,u-)>J) 5 CJ-_, (ß(U + 1 )  t 

where B(K) is the Bell's number, responding to number к , 

see С 2 J ,  

Let us suppose that the sample size h fulfills the 

condition 

n. > ß[M * 4 . (27) 

Then we have the inequality 

Cg£rv^)/С414|rL"L+l) = (ß(M >О/а = С <'I j 

hence the series (25) and (23) are convergent. 

In fact we have proved the following 

Theorem З.Рог the existence of unbiased estimator M <*> 

for parameter Z e JLik) it is sufficient that the sample 

size n- fulfills the condition (27). The estimation Mao may 

be constructed as the sum of convergent series (23) with the 

typical coefficient (25). 

Notice that the existence of estimation depends only on 

the number Fi (premised all EX*', j к exist),but not on the 

values of moments or the concrete form of distribution P. 

If '£ • И 1°"' , then instead of к the value A(v) may 

be used, as it follows from (21). 

Whereas all constants Cv С j v) may be simply calcu­

lated from (11), the exact calculation of estimator Ma» is 

only a technical problem. 

9. Estimation of variance of a function f& Tfl(h) 

Let , then txe. 7)t(.'£0 . Suppose the given dis­

tribution is of order X- A. , then by Corollary 3 £ diCH-k).  
Let us regard the term ( fcf ) ̂ : 

— Г x —1 
(Et)1- =2- ž. u.(v)u.Cu-') I rv>q(v,i)Z ̂ q(v' i )  =  

V«iV vk'lT j-o V " v»» У ' J 

3* 11 



_ -A'* , 
= ž_ . (28) 
U75 с j-C 

where1) 

Гq(0-,4<ä(\r',j4), Of uJ^Cy-w"), v.ir'eff^ w = L:° .. , 
| О , otherwise. 

Prom (28) follows the inclusion (. fc t)xe cIXC^H , conse­

quently <Z)t 6 cil( AA) , and from Theorems 2 and 3 and Corol­

lary 8 follows 

Corollary 11 • Let t e YU ( M . Then <2>t t= and for 

every к there exists statistic £ Tfl. ( 2. h.) , being пГк-

biased estimation of . 

Corollary 12.For sample size n, 

Г1 >|)С2Л)Ч, (29) 

there exists an unbiased estimator for j)t , 

T»= Tfc » 

where the estimator a T ̂  may be constructed step-wise, 

using the formula(19)• 

Let us calculate the leading term of variance of esti­

mation Mv for piv), L = 0,4 } . . .  .  
Theorem 4 The variance of estimator Mk is following 

<2>Мь=П pV {E 0(h."1) , tk = 0^v-).(30) 
u" " i.i 

Proof At first we shall prove the formula (30) for k-0, 

М0*т.Ы, Let us denote ur = ( or, Л̂)ал ) , where V-(4iy..,»»), 

then . Por calculation <b wx(u) we need to calcu­

late the terms ECvwlo-V)1 and СE , using the fact 

( vvUtf-V)1- wv(u>) (. , 

followingly, 

fE(wi(»))*•= flM +P-"4 {Z. ß(vJ,Vj'J и.(ш-')-(Л.Л1-4) |лМ] + 0(п"г) 

1 (31) 

(Б wvitt))*": (Uu?) nv'{-u plv)2! B(»,0-')p(o') -( j- + CK1) 
v'eVe,-.1») 

Without restriction of generality we may suppose all 

parts of partitions to be different, then В (. v,v') = { for 

all V £ (a) (real results may be received as a result 

of adding similar terms). 

' Then we divide the set (v>) into two subsets: 

1) In the article the partitions need not fulfil the condi-
tion(4). 

12 



,»u,,...,VeifrA); • Х.(У,)=л, 

L=<v..,a-<I j-U4,...,A}: £(.\r«)-0,5(V-A>. 

The coefficients B(vr,vj') are evidently following, 

о, Г 1, if vT'eU*, 

(tf| l2, if tf'eV«. 

Prom the definition we get the expression of set V** by 

'OV.tv): 

^»{(»«vO^'eir^c»)}. (32) 

Using the expressions (31) and (32) we have 

ЙМ.М=1Г'{£ 6(V>,U')LL(VR')-LX + CKO« 
w'6Ui.4-i(») vfetrvl(»-) 

-̂ {t P-2.V} П - 4 K41" OCa1). (33) 

The formula(32) is equivalent to the (29). 

Let us regard now the estimator 

M< = V*i( о-) - [ ZI ß(v)xy,)vw(vy) -0,5" (A1-y>)vw(»')J -r 0(гГг), 
vfeI7(») 

И ,Z' m. (v>)~ ̂  Г2- ( A3-- A) m.(w)J + OCnf2") 

ЕМ^=ЕгА(ит)-^ [£2Bt4V'WvU<U(^-A) дЛ^ОС*1) , 

\гУТ<») 

using the first expression from the formula (31) we get 

E м! = H-CviU £ [ juUuri - лхр.Ы] * 0(пГг) ? (34) 

but from the definition of £ M J" it follows that 

( ЕМ,У = lU-Cw-l+DOv1) . (35) 

Substituting the coefficient by n~1 from (34) into the ex­

pression of DM1, we receive the leading term of the variance 

of M1 equal to that of Mq. 

So as all the following estimations differ from M1 only 

by higher terms, the result holds for all k. 

Theorem 4 ia proven . 

Analogically to Theorem 4 it is possible to prove the 

following 

Corollary 13 

Let tc erneut;), I , t-R ti. 
v=4 



Then t&tnC A ,4) , h'ft ki , k^fl k; *nd if given 
distribution P is of order " A , then Et 6cM.(A., i).  

If t is a sample analog t6 a theoretical parameter ̂ t 

then for the existence of the unbiased estimation 7«. for '• 

the fulfilling of the condition 

n, > B(M * [ 
is sufficient; then Tio may be constructed as a result of 

the step-wise process, described in Theorem 2. 

From Corollary 13 it follows that the results described 

in article [9] may be generalized for calculating arbitrary 

moments (central moments) of arbitrary entire rational func­

tion t of sample moments, including unbiased estimation T„ 

of given parameter t (for sample size n , large enough for 

its existence). 

Example 1« We study the products of moments, responding 

to all partitions of numbers 1,,..,5. For the case of uniform 

distribution U(0,2) for all these products the exact values 

and expected biases for sample sizes 5,10 and 20 are calcu­

lated. The modelling experiment consists of trials of 10 900 

(for iv = 10 and 20) and 20 000 (for n = 5) samples; for 

every sample the all products of moments sire computed and 

their average (over trials) is found. The difference between 

the average and exact value gives the empirical bias. The 

results of modelling experiment are given in Table 1. 

Example 2. Here we study the product moment X = p.? and 

calculate for it a series of ГСс-biased estimations for 

^ (i-— 0,1,2,... ), 

Me" , 

EM„-

M, ' M„- £ С3м.«*\,- 3v^?); 

Мл* И,- 9v«.>.wv, -1 м?) , 

Having calculated the expectation of the estimator 

with help of its term of order vC the following estimatcr 

M I is defined, as it follows: 

Mj- Mk- + ), 

M4- M3 - (-I'f w\$ + Ч5ил1.1«<|-И ) ? 

Мц- (-30IAJ-* V4? ), 

etc. 
14 



Modelling experiment for estimation of product of sample moments. 
Table 1 

N Product 
of 

moments 

И 
of 
terms 

Exact 

value 

Theoretical bias Empirical bias Bias of empirical bias N Product 
of 

moments 

И 
of 
terms 

Exact 

value n=5 n=10 n=20 n=5 П=10 n=20 n=5 n=10 tt=20 

1 
m1 

1 1 0 0 0 -0.0035 -0;0022 0.0012 -0.0035 -0;0022 0;0012 

2 m 2  1 1.3333 0 0 0 -0.0055 -0.0039 o;oo26 -0;0055 -0.0039 0;0026 

3 
mi 2 1 0.0667 0.0333 0.0167 0.0596 0;0297 0;0189 '-0;0071 -OiOOyi 0;0022 

4 1 2 0 0 0 -0.0087 -0;0061 0;0048 -0;0087 ~o;oo6i 0;0048 

5 2 1.3333 0.1333 0.0667 0;0333 0.1228 0;0613 0;0372 -o;oio5 -0;0054 о;ооз9 
6 "i 3 1 0.2 0.1 0.05 0И891 0;0953 0.0532 -o;oio9 -0.0047 0.0032 

7 
m4 1 3.2 0 0 0 -0;0149 -0;0097 0;0085 -0.0149 -0.0097 0;0085 

8 m ~m1 2 2 0.24 0.12 0.06 o;2235 0.1122 0;0664 -0.0165 -0;0078 0;0064 

9 m2 2 
2 1 «7778 0;2844 0;1422 0.0711 0;2687 0.1352 0;0770 -0.0157 -0;0070 0;0059 

10 2 m2m M 3 1.3333 0;3591 0;1787 0.0891 0.3431 0.1724 0;0940 -0;0160 -0.0063 0.0049 
11 nrf 4 1 0.4123 0.2032 0.1008 0.3968 0.1977 0.1048 -0.0155 -0.0055 0.0040 

12 m5 1 5.3333 0 Õ 0 -0;0268 -0;0160 0;0148 -0.0268 -0.0160 0.0148 

13 m4mi 2 3.2 0.4267 0.2133 0.1067 o;3994 0.2013 0.1173 -0.0273 -0;0120 0.0106 

14 m3m2 2 2,6667 0.5333 0.2667 0.1333 0.5085 0.2569 0.1425 -0.0248 -0.0098 0.0092 

15 rn^m^- 3 2 0;6240 0;3093 0.1540 0;5990 0.3004 0;1617 -0;C250 -0;0091 0;0077 

16 m^m. 3 1.7778 0;6542 0;3236 0И609 0;6305 0.3157 0.1679 -0.0237 -o;oo69 OiOOJO 

17 mgm^ 4 1.3333 0;7019 0.3424 0И690 0;6792 0.3354 ОИ747 -0.0227 -o;oo7o 0;0057 

18 5 1 0.7280 0.3493 0.1708 0.7066 0.3433 0.1754 -0.0214 -0.0060 0.0048 



For calculation of the unbiased estimation we must find the 

following sums (coefficients by m.' ? and zn3); 

0.= V ir • £ * л 

Ь ш - ±  - ±  - S-
П. Л» tV ... ' 

C,-L+ -L + 4 + 12. • 
v re* л' г." IV» ••• ' 

Notice, that the numerators of terms of series a are the 

Stirling's numbers 3(2,a) of the second order-and series b 

and о are simple functions of series a: 

. A . , 1 I Iх 

a° Ž ~̂ Г" " I-1 («.-D(n-l) ' 

3 , 1 „ t 
^ а, - (Л_М1Ч.0 ,  ̂ (K.k)(A-4), 

and, followingly, 

Ц „ = ( lV"1V^ -3»VM.1.»v\1'-2,'W3)/((n.-l.)( n-0). 

It is simple to oheok that EM <* = jk.' . 

For existence of the estimation (convergence the 

series a, b and o) it is sufficient when n. > 3. 

The modelling experiment consists of series of 10 000 

samples Of size n. =5 'and n=10 from the uniform distribution 

U(0,1). For k=0,1, ...,10 and the rvk-biased esti­

mations, their expected values and averages of series, also 

their variances by the series are calculated. The results 

are given in Table 2 (as all results becamõ constant for 

к = 8,... j« they are not given in table). 

КтятпТя 4. Let us estimate the variance of estimations 

M and Mo. for Т-Ц-f (from Example 3): 

EМе
г - p,'» re' { V 0^\ 

E M 0 - 1  ( 3 H ^ ,  - Ъ ^ )  ,  

(EM0V- vC4 6 fu K." - 6 ц*) - О С* 1b), 

hence AM»" vC1 _ 3 p.,') + 0 • 

И^» (ni'm.f-6*3и.1 i1*«.1*«**<»\^)/((<-«)*•(и.-!)1), 

E^Cv.^c.-tv- { л*Г p-5 * n~'( tffw-l - &h.',)*DK1)]-6vv,ĉ 1̂ >а*-')]+о(*-ч}. 

Whereas EM* » |A? , then (EM»)1-" f±} , and we have 

a>h»= { H-S rv'(9 K-^?- '^И-f) + , 
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Table 2 

The n-k-blased and unbiased estimations of y<t3 in the case of Щ0,1). The true value Is^ =• 0,125« 

n = 5 n = 10 

J, Mk DMk theor.bias bias of Mk DMk theor.biae bias of 
emp. bias emp. bias 

0 0.15343 0.01168 0.02500 0.00343 0.137702 0.005345 0.0125 0.000202 

1 0.130453 0.01125 0.00500 0;000453 0.126429 0.005142 0.00125 0.000179 

2 0.126470 0.0110 0.00100 СГ.000470 0.125300 0.005105 0.000125 0.000175 

3 0.125671 0.01104 0.00020 0.000471 0.125186 0.005098 0.000013 0.000173 

4 0.125511 0.01101 0,00004 0.000471 0.125175 0.005097 0.000001 0.000174 

5 0.125478 0.01100 o.oooooa 0.000470 0.1251V4 0.005096 0 0.000174 

6 0.125472 0.01099 0.000002 0.000470 0.125174 0.005096 0 0.000174 

7 0.12547 0.01099 0 0.000470 0.125174 0.005096 0 0.000174 

oo 0.12547 

I 
0.01099 0 0.000470 0.125174 0.005096 0 0.000174 



s o a s  

we have obM« * yC 1 С9 — 9 fi'i ) * 0(K ) • 

In the case of uniform distribution 11(0,1) the leading 

term of variances DMq and DM a, equals to О.О469 for n. = 5 

and 0.0094 for и. = 10. The result is in good agreement 

with the computational experiment (see Table 2), where the 

sequence of empirical variances DM^ of estimators is al­

most constant. 
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НЕСМЕЩЕННЫЕ И tv-СМЕЩЕННЫЕ ОЦЕНКИ 

ЦЕЛО-РАЦИОНАЛЬНЫХ ФУНКЦИЙ МОМЕНТОВ 

Э.Тийт 

Р е з ю м е  

Для цело-рациональной функции эмпирических моментов -Ь 

строится оценка математического ожидания в виде разложения 

по степеням объема выборки и (см. формулу (I)). В таблице! 

приведены результаты соответствующею моделирующего экспери­

мента. 

Пусть -с цело-рациональная функция теоретических мо­

ментов, притем предполагается, что все необходим теорети­

ческие моменты существуют. Для "с строится оценка Мк со 

смещением порядка пГ*'1, к-1,2, ••• (см. формулу (18)) и 

доказывается, что при достаточно большом объеме выборки ̂  

(см. формулу (27)) существует несмещенная оценка , м-

раиаеиая в виде сходящего рада (22). Доказывается, что дис­

персии оценок Мк (к-О, I, ...) и М,,, имеют равные главные 

члени (см. формулу (30)). В таблице 2 приведены результаты 

медехирупцего эксперимента, иллустрирующие полученные ре­

зультаты. 
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ON THE STABILITY OP k-MEANS CLUSTERING 

IN METRIC SPACES 

K,Pärna 

Summary 

Let P be a probability measure on a separable metric 

space (T,d). Let 4^(P) be the class of all minimizing seta 

for the clustering criterion W(A,P) (see formula (1.1)), and 

let Wk(P)=inf{w(A,P) I |A) =kj (each A* ={a^ ..,a£.} from the 

classЛ£(Р) will be called the optimal k-centre for the 

measure P). Let {fjjbe a sequence of probability measures, 

weakly converging to P, P. In Part I the convergence 

Wk(Pa)—>Wk(P) and some other results are proven, under cer­

tain restrictions on if, P, and {Pn}. These statements serve 

as generalizations of our previous results (see £2], Theorem). 

In Part II the case of separable Hilbert spaces is consid­

ered. Conditions are found to ensure the convergence A^A^P) 

( i n  c e r t a i n  s e n s e ) ,  f o r  a n y  s e q u e n c e  { 2 ^ P n ^ *  

Part I 

1. Introduction 

Consider a separable metric apace (T,d) together with 

a probability measure P on it. Define the clustering crite­

rion by ^ 

W(A,P) = Jin^nlf>(d(x,a1))P(dx), A » (a., а,,.} с т, (1.1) 

where the function (f satisfies the following restrictions: 

1)  

2) if is continuous, 

3) if is nondecreasing, 

4) if (r) =» 0 <=> r=0, 

5) there exists a constant Л, auch that if (2r)4?tif (r), 

r > 0 ( А у-property). 

These restrictions remain in force during the paper. Further, 

let 

Wk(P)=inf { W(A,P) i |A| -k}, (1.2) 

>|*k(P)={AiW(A,P)- Wk(P), |A|=k}. (1.3) 

Definition 1. Any A" = {a^,..., ak| from the class#£(P) 

*) The domain of integration is T everywhere.if not specified. 

5* 
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is said to Ъе an optimal k-centre for the measure P. 

Any optimal k-centre provides the best approximation 

of P by discrete distribution concentrated at к points. Also, 

each A* generates ail optimal partition of T to к exhaustive 

and mutually exclusive regions (clusters) 3*,,,.,3^, satis­

fying 

sj^c [x: *f (d(x,a^)) i f(d(x,aj)), for each i] 

- hence the term 'k-means clustering'. 

In our earlier paper [2J the problem of consistency of 

the criterion's infimum Wk(P) was considered. To be more 

precise, let x^..., хд be a random sample of n independent 

observations on the distribution P. The measure P_, obtained 
n* 

by placing mass 1/n at each of x1,...,xn, is called the em­

pirical measure. In the paper noted above the consistency 

of W. (Pn), i.e., the almost sure convergence 

W Wk(P) (1.4) 

has been proven, under some restrictions on P. Earlier 

Pollard has shown the same for the space Rm £зЗ» 

In this part of the paper the convergence (1.4) will 

be shown to hold for arbitrary sequence {Pnj, provided that 

Pn=)P (weakly). For the case of T=Rm an analogous result 

has been given by Abaya and Wise [l]. 

It is sell known that the topology of the weak conver­

gence is metrizable by Prokhorov metrics IT [б] . Thereby, our 

result can be reformulated in stability terms: small changes 

in P (in the sense of IT ) do not have a significant effect 

on the infimum value Wk(P). It follows that'good' k-centres 

for some measure P' are 'good' for the measure P too, pro­

vided that 1Г(P,P') is small, 

2. The stability theorem for the infimum of W(A.P) 

Let us introduce some restrictions on the probability 

measures P and Pn, =1,2,..., considered as being given on 

the separable metric space T: 

CI) 

C2) for some yQe T the fuhotion f(d(x,yQ)) is uni­

formly integrable with respect to { 

C3) the strong inequalities 

Wn(P) > W2(P) > ... > Wk(P) (2.1) 

hold. 
The following theorem is one of the main assertions of 

this work. 
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Theorem 1« Under the restrictions C1)~C3) the conver­

gence 

VP)» n-~' 
takes place. 

Proof. The proof of this theorem does not make a sig­

nificant difference from the proof of the related theorem 

in our previous work [2] where the particular case of em­

pirical measures PR was considered. Both proofs лаке use of 

the convergence 

W(A,Pn) — W(A,P) (2.2) 

with certain fixed A, |A|=k, and the only difference 1в how 

to ground this convergence. In the case of empirical measu­

res (2.2) follows directly from the strong law of large num­

bers (SLLH). In the general case of {Pn} satisfying 01) and 

02) this convergence is a result of applying the theory of 

weak convergence (Theorem 5.4 from [б] can be exploited). 

To avoid tedious repetitions, we shall not present the 

details of the proof here. Merely, we give some lemmas, serv­

ing as main steps of that proof. These lemmas will be used 

in the further sections. 

Lemma 1. Under the conditions C1)-C3) there exists a 

sphere B(x^I) which contains all the sets from the classes 

(I"n), n ̂  1. 

A similar result holds for the class 

^k(P) = {A: W(A,P) < Wk(P) + £, |A| =kj 

- the class of the '6-optimal k-centres for the measure P'. 

Lemma 2. Let us propose that (P) > Wk(P) and 

j^(d(x,y0))P(dx)< 00 for some yQe T. Then, for each £ , 

0 < £. < .j(P) - Wk(P), there exists a ball B(xQ,M) which 

contains all the sets from the class -#k(P). 

To the spheres B(xQ,M) in these two lemmas the follow­

ing Lemma 3 applies. 

Lemma 3. Under the conditions 01 and 02), for any fixed 

ball B(z, R) С T, the uniform convergence 

sup |w(A,Pn) - W(A,P)| —* 0, n—> — , 

А С B(z,R) 

takes place. 

This lemma can be proven by means of a uniform conver­

gence theorem given by Ranga Rao (see Theorem 3.2 in [4]), 

In a special case when Pn is the empirical measure Lemma 3 

coincides with Lemma 1 from [2]. 

Prom the results given above one useful conclusion can 

21  
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be drawn. 

Corollary 1. Let the conditions C1) - 03) be satisfied 

and let Ац be an optimal k-centre for the measure P . Then 

W(A*,P) —Wk(P), n-»<*>. 

Proof. Due to Lemma 1 all A^ are contained in some 

sphere B(xQ,M), So we have 

| W ( A ^ , P )  -  W k ( P ) |  <  

|w(A^,P) - w(A*,Pn)| + |w(A*,Pn) - Wk(P)|$ 

^ sup |w( A,P) -  W ( A , P n ) |  + j  W k(Pn)- W k ( P ) j .  

AC B(xQM) 

Now it remains to apply Lemma 3 and Theorem 1 to obtain the 

needed result, 

3. The case of empirical measures. 

In this section it will be shown that the restrictions 

01) and 02) are weak enough to include the important case 

of empirical measures Pn, corresponding to the measure P. 

In such a way it becomes clear that Theorem 1 is a direct 

generalization of Theorem in [2] . 

Lemma 4. Let J^(й(х,уо)) P(dx) < 00 for some yQ6 T, 

Then the empirical measures {P_} satisfy (with probability 

1) the conditions 01) and 02). 

Proof. It has been proven by Varadarajan [5] that if 

Pn is the empirical measure corresponding to P, then 

Pn=> P almost surely (a.s.). So 01) is satisfied with proba­

bility 1. To show this for 02) let 

LiT J tf(d(x,yc)) P (dx) (3.1) 

and let 1^ be the same for P, Ij.< 00 . We have to prove 

the uniform integrability of ^(d(x,yQ)), i.e., the rela­

tion 

lim sup I, _ = 0, a.s. (3,2) 

Suppose (controversially) that 

lira sup I j n = M > 0. (3.3) 
» со II ' 

Then two cases are possible; M = 0° or M -c 00 . If M =00 

then (3.3) implies sup = 00 , for each ^ » 0 . 

On the other hand" L,a-> 1л <£>° (a.s.), according to 

SLLN. Hence M = 00 with probability 0. 

Let M < 00 . Due to 1^ I 0 (<*-• °°) there exists a num­
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ber do auch that 

L< -f , ( 3 , 4 )  

On the other hand, from (3.3) it follows that, for any U »0 , 

sup I > M, and thus, for any od > 0 , there exists an 

integer such that 
Г M 
-U,n.t ̂  2 . (3.5) 

Let °^= oi-Q + i, i = 1,2,.., and let be the least 

index with property 

1 > Л 
v  X  ,  i = 1 , 2 , , ( 3 . 6 )  

Then,' in view of simple inequalities 

ki.ni+1»kl+1.nl+1> T > 

it is clear that ni+1 > n^ (i=1,2,...). Furthermore, the 

sequence {n^} can not be bounded. Indeed, if n. = N, for 

every i greater that some iQ, then 

И®!- д. = Ит L: ,N = °. 

i-r oo » 1 1 -»л, 

which contradicts (3,6). Hence n^—» oo , as i—• со . 

How, from the inequalities 

IT , i-> l . 

it follows that 

lim latent > T . 

At the same time, by the SLLN, almost surely 

lj.m 1еЦ)И.£,- у 

which is less than (see formula (3«4)) - a contradic­

tion. Hence the case M < 00 also occurs with probability 0. 

This proves the lemma. 

4. Optimal and £-optlmal partitions. 

In this section the reader's attention is turned to the 

partitions of T rather than k-centres. 
Let J k(T) be the class of all measurable k-partitions 

of the metric space T, 

^k(T)={S:S={31 Sk}, 0*3.ef, .U,S.=T, 3.0 3^=0, i«}. 

Now, let us introduce the functional 

W(A,S,P)=£^ min Jif(d(x,aj) )P(dx), A={a1,... ,ak} ,3<!f^T) (4.1) 
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- the summary measure of the goodness of the approximation 

of the region by means of the best point from the given 

set A, 

Definition 2. Any point а(в^)e T, which minimizes the 

integral (over a) 

W(a,S1,P)= J (d(x,a)) P(dx), 

3i 

is called the centre of the region Si# 

Definition 3. Any set of the form A(S)= 

a(Sk)J with a(S^) being a centre of 3^, is called the 

k-centre of the partition S=|S1,...,3k]. The class of all 

k-centres for the partition 3 will be denoted by cent 3. 

It follows directly from the Definitions 2 and 3 that 

any A(S) is optimal in the sense of W(•,3,P), i.e., for any 

A( |A| -k) and S,3ejfk(T), the inequality 

W(A,S,P) ? W(A(S),S,P) , A(S)e cent S, (4.2) 

holds. Now, putting 

W(S,P)= inf (W(A,S,P) : |A| =k}, (4.3) 

(4.2) implies 

W(S,P)=W(A(5),3,P), (4.4) 

provided that cent S ^ 0. According to (4.1) the latter for­
mula reduceakto 

W(S,P) -Z inf J f(d(x,a)) P(dx). (4.5) 
i-1 a 3i' 

Definition 4. Let A= £a.,,..., ak] с т. Any partition of 

the form 

(A) = {s^(A),..., 3^(A)}, 
where 

S^(A)c 'f (d(x,a^)) i if(d(x,aj )) for all j,j^i}» is 

said to be a generalized Dirichlet partition with respect 

to A. 

If ^ is strictly increasing, the latter definition 

gives us the minimum distance partition (also known as Diri­

chlet or Voronoi partition). 

Prom Definition 4 it is clearly seen that any partition 

3 4 (A) is optimal in the sense of W(A,•,P), i.e., 

W(A,S*(A),P)=inf{w(A,S,P) :S6 f k(T)} . (4.6) 

Also, the formula (1.1) may be rewritten as 

W(A,P)=!L Г J4d(x,a1))P(dx)=W(A,S'? (A),P). (4.7) 

1=1S7 (A) 

Finally, from the relations (1.2) and (4.3) - (4.7) it fol­
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lows that 

W, (P)=inf W(A,P)=inf W(S,P)= inf W(A,S,P) (4.8) 
K A S A,S 

where lAI =k, SeJP^CT). 

Definition 5. Say a k-partition S is optimal with res­

pect to the measure P if 

W(S,P)=Wk(P), 

and £-optimal if 

W(S,P) < wk(p) +£ . 

It is seen from (4.7) and (4.3) that 

W(A,P)=W(A,5^(A) ,P) > Inf W(A,3'f(A),P) = «(S^A),?), 
J AI =k 

and, thereby, the £-optimal!ty of A implies the optimal!ty 

of each S "f (A). 

How we will give the main result of this section. The 

following theorem states that 'good1 partitions can not have 

the regions with arbitrary small P-measure. 
Theorem 2. Let W]£_1 (P) > Wk(P) and /if (d(x,yQ))P(dx)< 00 

for some yQe T. Then for each £ , 0<£<Wk_.j(P) - Wk(P) , 

there exists an oi> 0 such that the inequalities 

P(S±) 1=1 k, 

hold for all £-optimal k-partitions S={S^,..., Sk\. 

Proof.Suppose (controversially) that for some £0, 

0 <£o < Wj£_1 (P)-Wk(P), there exist the £c-optimal parti­

tions SCll>= ..., S^k^}, n=1,2,..., such that for some 

region, say , the inequality 

p(s(^)<a 

holds. The main idea now is to show that combining S^^with 

any other region of we get a (k-1)-partition without 

any significant enlarging of W(S,P). 

Define the (k-1)-partition 

q(n)_f4(n) q(n) q(n) I I q ( П ) t 
ь -p k—? ' - k-1 u b к J • 

Due to the formula (4.5) 

W(S(n),P)-W(S(n),P)«inf I ^(d(x,a)) P(dx)-

-inf $ f(d(x,a))P(dx)-inf J *f(d(x,a) )P(dx) . (4.9) 
a q(n) a 4(n) 

k-1 к 

Рог the possible nonexistence of the optimal centre for the 

region S^\ let us introduce an cT-optimal centre aj(S^n^), 

7 
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satisfying 

/ j(d(x,a? (s£^)))P(dx)< inf i"j(d(x,a))P(dx) + 5" , (4.10) 
o(n) a q(n) 
k-1 sk-1 

with 
x a 
" = 5ЕГ, 
Д= wk-1(P)- wk(p) - £0 >0 . 

It is not too hard to see that the relations (4.9) and (4.10) 

imply 

W(S(n),P)-W(S(n),P)< J f(d(x,aj(s£nl)))P(dx)+cf. (4.11) 
q (n) 6 

Sk 

We now show that there exists a sphere B(xQ,M) which 

contains all ajtS^') , n=1,2,... Let ay(s£n^) be а if -op­

timal centre for S^n^,i=1,...,k, and let centy(S^) = 

=WSi(n)>}J=1- For the inequalities 

W(centg-S(n),S(n',P) < W(S(n),P) + k J 6 

^ Wk(P)+ So + Wk(P) + fo+-^ 

and 

«(centg- S(n),P) < W(centj S(n), S(n),P) 

(the latter follows from (4.6) and (4.7)) the set cent$-S^ 

is an (£0+-^) -optimal k-centre for the measure P. Since 

for any n=1,2,... 

£c+&l< £o + A < Wk-1(P) - wk(p), 

Lemma 2 applies and hence the sphere B(xQ,M) exists 

which contains all the sets cent ̂ , n) 1, including the 

points a y(s£i). 

Let us re trim to (4.11) now. For the triangle inequality 

we have 

/ if(d(x,a^(S^.n])))P(dx)+^< / tf(d(x,x0)+M)P(dx)+ (Г. (4.12) 

3k(n) " Sk
(n> 

As the last integral is finite (see Appendix, Lemma A1), the 

property of the absolute continuity of the Lebesgue integral 

implies that there exists a jT> 0 such that 

J ^f(d(x,x )4*l)P(dx)< Д , (4.13) 
q(n) 
к 

for any region Sk
n^ satisfying 

Р(з£пЪ < j7, (4.14) 

26 



Now, let n Ъе an integer greater than 1/J. Then,by the 

presumption that P()< Vn, the inequality (4.14) is ful­
filled, and the relations (4.11)-(4.13) readily give us 

W(s(n),p) - W(S(n),P) < A . (4.15) 

Consequently, 

w(s(n),p)> W(s(n),p)-&5>w. 1 (P)-  Д = W v(p)+ , f  n) it™ i it 
i.e., the partition 5 is not £0-optimal for P. We 

reached the contradiction. 

This completes the proof of Theorem 2. 

Part II 

Our aim here is to obtain some convergence results for 

{a*} - the sequence of optimal k-centree for pn - provided 

that Fn =* P. Only the case of separable Hilbert spaces will 

be considered. 

5. Some preliminary results. 

It is well known that all real separable Hilbert spaces 

are isometrically isomorphic to th§ real space Ig. we 

take T=Jg at once, and let x=(x^, Xg,...) be a random ele­

ment with values in fig. Assume that X has the distribution 

P of the second order, i.e. 

ZeX2 = E i xll 2 =J"||xl| 2 P(dx) < • (5.1) 

This part of the paper deals with a particular case of 

the clustering criterion W(A,P), namely 

W(A,P) = /min llx-aH!l 2P(dx), A= fa-,...,аЛ c £•,. (5.2) 
1<i<k 1 

Further, let 3=^3^,..., be a Diriohlet partition 

of J?-g, generated by the set A= [a^..., ak} : 

Sj^x« II x-a^ II £ И x-aj jj for all j, ji< i ]• . 

Then it is not difficult to check the relations 

W(A,P) = ZZ / i x-aJI 2 P(dx) = 
i=1 1 

= E И X |2
+^P(Sl)-( laCS^^II 2 - ||а(3±) | 2), (5.3) 

where a(S^)=Eg (X) - the conditional mean of X in the re­

gion S^, In otier words, a(S^) is the centre of S^. 

Also, for arbitrary partition 3=^3^..., Skj of ig 

the formulae 



W(S,P)= J II x-a(S.) i 2 P(dx), 
1=1 3± 1  

к 

W(S,P)=E l|x|| 2 -Ц P(S1) |i a(S. )|| 2 (5.4) 
1=1 1 1 

are valid. 

Now, let us introduce the subapacea 

= I x:x = (x^, •..,x^,0,05 ... )^ С 2-2» 

and £ = |x:x = (0,..., 0 , Xn_1, xn+2'"'^c ^2' 

with corresponding projectors 1Гn and ll : 

^*n
x ~ (xi« • • • i xqiOi «•.) £ ̂ nf 

"(n)x = (°i^n+v *п+2'*'*^ £^(n)' xs ̂2* 

Let Рд and r(n) be the distributions of (random) pro­

jections TnX and correspondingly, that is 

Pn = P V >  (5.5) 

P(n) = P T(n)™1 • (5.6) 

In the following lemma the notation £2 for the vari­

ance of is used. 

Lemma 6. Let P be a probability measure of the second 

order on 12' Then, for any A = { a^,..., ak} С i2> anii for 

any n = 1,2,..., the inequalities 

W(A,P) > W(TnA,Pn) +-*(ir(n)A,P(n)), (5.7) 

W ( P )  <  W.  ( P  )  + f i  6  2  ( 5 . 8 )  
K * n j=n+1 3 

hold. 

Proof. Observing that 

IIуII 2 =llTnyll 2 +li?(n)yll 2 , у a i 2 ,  

from (5.2) it follows that 

W(A,P) = J  m^n[|lTnx-Tf^j. II 2 + ||'ll (n)x~ H(n)aill J p(dx)*(5.9) 

Since the minimum of the sum is never less than the sum 

of the minimums, the right side of (5.9) is no less than the 

sum of two integrals, which is equivalent to (5.7). 

To prove (5.8), note first that it is sufficient to con­

sider the case EX =0, only. Indeed, any quantity in (5.8) 

does not depend on the mean of the distribution P. Thus, for 

any A={a^,..., ak), the simple relations 
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W( '"irnA,P)= / min II x-T^ Il 2 P(dx) = 

= J min II Tx - И аЛ 2 P(dx) +/Z^ X? P(dx) = 
i j =n+1J 

= WCITA.P) + E & * (5.10) 
n n j^+10 . 

hold. By taking into account that 

Wk(P) ̂ W(1Tn A,P) 

and 

Wk<Pn) =,^k »(1Г^,РП), 

we obtain (5.8). 

The proof is completed. 

Prom the inequalities (5.7) and (5.8) it is seen that 

w(a,p)-wk(p) > w(1t(n)a,p(n)) - < (5i1l) 

6. The main lemma. 

Por convenience, let us denote 

I I х  i L  - и г ы  * i 2  - 3 f  J  

Lemma 7. Let P be a probability measure of the aeoond 

order on I 2» Then, for any £ >0 , there exists a number 

n such that any A€ «£k (P) contains at least one point a^^ 

statisfying 

Hll(n)< 2^' ( 6' 1 )  

Proof. First write that, for any £ >0 , any 
A = •[ a1,... , ak| and every n > 1, 

"(,1Г(п)А'Р(п))=1^п IIх""""(в) ai И 2 P(n)(dx) = 

= J m^nll '"'(n)x-T(n)a1 К 2 P(dx) » 

^ 2 £ - p{ minll " (n)x~ ̂(n)ai II2 ̂  2 £} = 

= 2£ • P I min II x-a^ II ^nj Ž V2£ }. (6.2) 

Suppose, controversially, that for some 6 > 0  there 

exists, for every n, em £ -optimal set A={a^,,.., ak} satis­

fying 

IIa^II ^n)> 2 V2£ for every i = 1,..., k. (6.3) 

Observing that under the condition (6.3) the set 

£x : min || x-a^ II (n) >V2£ J contains the other set 
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{x: lxii (n) 4VŠT}, (6.2) implies that 

*(Т(а)А,р(п))> 2 £ • P { II xli (n) ^ i~2£ 1. 

Furthermore, by means of Chebyshev'a inequality, we get 

wdr
(n)a,p(n))>2£.(1- fm ) = 26- mu) • (6.4) 

where X is a random element with distribution P. But P is 

of the second order and thus, for some large N, we have 
CO 

E ||x|| ? , = Yi EX,2 < § , if n> N. (6 .5)  
vnJ j=n+1 3 d 

Let ua fix an nQ> N and let Aq be an £-optimal set satis­

fying (6.3) (with n=nQ). Combining (6.5) with (6.4) we see 

that 

w < V ) V W > £  +  E | | x 1 1  u e ) -  ( 6 - 6 )  

Show now that this inequality contradicts to the £-op­

timal! ty of A0. Indeed, putting AaAQ and n=nQ in (5.11) it 

is seen, by (6.6), that 

W(Aq,P) > Wk(P) + £. 

This proves the Lemma. 

7. The case k»2. 

In this eection it will be shown that in a special case 

when k=2, Lemma 7 can be strenghtened up to the assertion 

that all (both) points of £-optimal 2-centres have a small 

'tail'. In what follows, X is considered as a random element 

of 6 2 with the distribution P. 

Let a(S^) = (a-^S^), a2(S^) , ...) 6 Й-2 
be the coordinate 

-wise presentation of the centre of the set a(S^) = 

= Es.(X). 

'Lemma 8. Let E IIXl| 2 < °° and EX=0. Then, for any £ 

satisfying 0 <£ < (P)-W2(P), there exists a number fb> 0 

such that the inequalities 

a/S2)|* I aj (S,) |< /*|aj.(S2)|, j-1,2,... (7.1) 

hold simultaneously for all £-optimal 2-partitions s = {slts2^ 

СI -1 denotes the absolute value). 

Remark. In this Lemma we assume that W^P) >W2(P). It 

la known, due to Lemma 2 in [2], that this inequality is 

satisfied whenever P is not concentrated at any single point. 

Proof. Let Sa{S.,,S2\ be an £ -optimal partition of 

12 into 2 regions. Then, by the obvious fact that 

a(S1)-P(S1) + a(S2)-P(S2) = EX = 0, 
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we have 

(S1)P(S1)+a^(S2)P(S2)=0, for every j=1,2,... (7.2) 

By Theorem 2 there exists •i-> 0 such that P(S^) ̂  <A- , i=1,2. 

Thus we may write 

Since 

^ , pcsг) < jjj. 

<-.£ * p(31) " 

it suffices to take /3 = (1-=Z )/V to obtain (7.1). 

Lemma 9. Let E flxU 2<°°and. EX=0. Then, for any £9 satis­
fying 0 < tc<W1 (P) - Wg(P), there exist fic> 0 and CQ > 0 such 

that inequalities 

II а1 II (n) ̂  A«ll a2 II (n) + C0lT£~ » n=1,2, . .. (7.3) 

hold simultaneously for all A= { a1, a2} e provided 

that £ 4 Cc . These inequalities remain in force after 
changing the roles of a1 and . 

Proof. Take £ = £c in Theorem 2 and Lemma 8 and let /30 >0 

and "ic > 0 be the corresponding values of /3 and «£ . Let 

A"{a^ ,a2} e iAy(P) and let S = [S^,S2] be a Diriohlet partition 

generated by A. It is clear that A £ Л^(Р) whenever £5£eand, 

according to Lemma 8, 

II a(S^) II ^ II a(Sg) || , n=1,2,... (7.4) 

On the other hand, the formulae (5.3) and (5.4) directly 

imply that 

W(A,P)-VV(S,P)= ̂  p(si^ || a.(Si> - || 2, (7.5) 

Since W(A,P)-W(S,P) < W(A,P)-Wk(P) «£ (due to £-optimality 

of A), we have 

Р(3±) ||a(S1)-a1 II2 4 £ . 
i 

Obserwing that P(S,) > «£•» , i=1,2, one can obtain 

||a(Si)-ai IU fjff , 1=1,2. (7.6) 

By the simple inequalities 

j  lla(Si^ ||(n)- HaJ (n)| 4 ||a(S1)-ai ||(n) < ||a(S±)-ai|| , 

(7.6) implies 

I lla<>si^ H(n)— |ai II (n) ^ ' i=1»2» n=1,2, ... 

Combining this with (7.4) it is easily seen that 

M (n) ^ S 11 a211 (n) + i 

8* 
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Now the substitution С =1/«£,V*7 completes the proof. 
The following Lemma is the main result of this section. 

Lemma 10. Let e ||x|| ̂  < oa f ex=0 and 0 < £c < w, (p) -

- w2(p). Then, for any £ satisfying 0 < £ * £„ , there 

exists a number n such that inequalities 

ii ai II(nj «cvt, i = 1,2, (7.7) 

where 0 depends only on , bold simultaneously for all 

A=|a1 ,a2] € <a|(p). 

Proof. Let us have an £<j , 0 <• £o< W1 (P)-W2(P). By 

Lemma 7, for any £ , including the case when £s£<> , there 

exists a number n such that any A={a^,a2} from <5l|(P) con­

tains at least one point (say a2) satisfying 

II a2 ||(n) 4 2 VT! . (7.8) 

Thus (7s7) is shown to be valid for a2 £ A. To show the same 

for a1, we apply Lemma 9. Prom the inequalities (7.3) and 

(7.8) it is seen that 

II a1 ll(n) 4 /So 21Г2Т + с JT. 
Now it becomes clear that (7.7) holds for both, a2 and , 

with 

C=max{2 fT, 2 f2/b0+ CQ} . 

Thus the proof is completed. 

8. Main results. 

Now nearly everything has been done to formulate some 

theorems concerning the convergence of the Pn-optimal 2-cen-

tres to the P-optimal 2-centre in Hilbert spaces. However, 

the type of convergence is not specified as yet. 

Definition 6. The quantity 

h(A,B)amax{sup inf d(a,b), sup inf d(a,b)) 
a6A bsB bsB aeA 

is called the Hausdorf distance between the sets A and B, 

Definition 7. The quantity 

h(A,A)= inf h(A,B) 
BeA 

is called the Hausdorf distance from the set A to the class 

of sete Л . 

Theorem 3. Let a probability measure P of the second 

order in space i2 be given. Let An=|a^, a2 j, n=1,2,... be 

a minimizing sequence for W(A,P), i.e., W(An,P)—»W2(P).Then 

1) there exists a subsequence such that, for some 

A e d2(P), h(An, ,A) * 0; 

2) h(An, A|(P))-»0, n — . (8.1) 
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Proof. Show first that 1) implies 2). Indeed, if 2)doea 

not hold, then, for some £ >0, there exists e subsequence 
{Aj such that 

h(An, , <A*(P)) > £ , for all n'. (8.2) 

Since {ап>| is a minimizing sequence, it contains, by asser­

tion 1), a further subsequence {An«} which converges to some 

A € Ag(P). Then, clearly, 

h(An„ , 4g(P))—0, n"—с, 

in contradiction to (8.2). Hence 1) implies 2). 

To prove assertion 1), we may assume, as in Lemma 6, 

that the measure P is centered. Let us fix some arbitrary la­

belling of the elements in each A =[a?, а?г(пЯ), and let 
г 1 о I  

B^ja^, a1t...j - the set of the first elements of A^. Our 

aim is to show that B^ is relatively compact in 6-2. Then B1 

will contain a converging (in norm) sequence. 

It is well known ([?], page 52) that a set M from the 

complete separable metric space T (including the case T=£j) 

is relatively compact if, for any сГ> 0, there exists a rela­
tively compact T-net. Obviously, it suffices to regard the 

(Г -s small enough. 

To demonstrate the relative compactness of B^, let us 

fix £0 , 0< £0< W1(P)-W2(P). Then, by Lemma 10, there exists, 

for any б 4 £6 , a positive integer m1 such that the inequa­

lities 

II II (m ) ̂ 0 \[ё~ , 1=1,2, 

with 0 depending1on £0 (and not on £), hold for all £-opti­

mal AQ={a^, a°}* Since W(An,P)—» Wg(P), it is clear that the 

set Ац is £-optimal whenever n exeeds some N=N(£). On the 

other hand, there is a positive integer m2 such that 

IIai H(m2) ^ c VI" > i=112, 
for all n from 1 to N, Let m=max{m1, m2} . Then the inequa­

lities 

II aj ll(m) < 0\ZF ,  1=1,2 ,  

hold for all 6 о , and all n > 1. 

Now we shall indicate a relatively compact 5"-net for 
B1, provided that ? 4 5F0 = С \fTc , Since 

Ila? -Vii = IIa?Il ( m )  , n»1, 
then putting j" = cVfT the set llЩВ1 = {1t*ma!j, 1Tma^,...} c^m 

will serve for a cF-net for B^. The relative compactness of 

!l B- follows from the fact that, by Lemma 2, 1Г B- is a 
ml ' ml 
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bounded subset of the finite-dimensional space <%m. Thus 

is shown to be relatively compact and hence a converging sub­

sequence {а?} С B.|, a?—» a^€ if. (in norm), can be separated. 

Consider the set B, = {a? } now. By the same method as 
f r\1 n" * 

used above, a subsequence jag J, a2—»agStg» can be isola­

ted. Then it becomes clear that the subsequence {A^.j con­

verges, in Hausdorf metrics, to the set A=(a^, a2}, 

h(An« , A)~-0 , ri'—+co. (8.3) 

Finally, show that A 6 ci2(P). Due to the continuity 

property of the mapping A-»W(A,P) (see Appendix, Lemma A2) 

from (8,3) it follows that 

W(An. , P)-W(A,P) , n'— 

At the same time, {Ац«| is a minimizing sequence and thus 

VKA^, ,P)—wk(p). 

Hence W(A,P)=Wk(P) and so A< <^2(P). This proves the theo­

rem. 

Theorem 3 enables us to obtain a further result. 

Theorem 4. Assume that P is a measure of the second 

order in ̂ 2 and the sequence {pn} is such that 

a) pn=£ p, 

b) Hxll ^ is uniformly integrable with respect to Pn, 

n > 1. 

Then, for any sequence {a^} satisfying a^e j(L2(P), 

h(A^, jL2 (P))—-0, n-»~ . (8.4) 

Proof. Due to Corollary 1 we have W(A*,P)—• Wg(P). 

Hence {a^} is a minimizing sequence and the assertion 2) of 

Theorem 3 may be applied to get (8.4). 

Remark. In the case when <^2(P) consists of a single set 

A* the relation (8.4) reduces to the simple convergence 

h(A^, A* ) —• 0. 

If Pn is the empirical measure, then, by Lemma 5, the 

latter theorem is valid with probability 1. Such a result 

may be interpreted as a generalization of the strong law of 

large numbers (SLLN). In our terms, the SLLN asserts the al­

most sure convergence of the sequence of the empirical 1- en­

tree a*=(x^+..•+xn)/n to the population 1-centre a*=EX. 

9. Appendix. 

two auxiliary results will be given here. At first, let 

us define 
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d(x,A) = inf d(x,a). 
aeA 

Lemma A4» If / f(d(x,yQ))P(dx) < » for aome yQ £ T, 

then, for any А с т (АД!) and any R > О, also 

J «f (d(x,A) + R)P(dx) < . 

Proof. Since d(x,A) 4 d(x,a), for all a £ A, the monoto­

ny property of ^ implies that 

/•f (d(x,A) + R)P(dx) 6 / f(d(x,a) + R)P(dx). 

Show the latter integral is finite. Let B=B(a,R), B=T\B. 

Then, for the monotony and A^-property of ^ , we have 

I tf(d(x,a) + R ) P(dx) ̂ f f(2R) P(dx) + i f(2d(x,a) ) P(dx) < 
T В В 

^ * | ( 2R )+  Д  f  f(d(x, a ) ) P(dx). 

Further, let B1={x:d(x,yo) < d(a,yQ)}, Then, by the triangle 

inequality, it is seen that 

J  f  (d(x,a))P(dx) < 
в 

5 J *f(d(x,y0)+d(a,y0))P(dx)+ Jf(d(x,yo)+d(a,yo))P(dx). 

^1 д 8, 
In view of üg-property, the integral over B^ does not ex­

ceed the quantity ,A>f(d(a,yo)) P(B1) < "=> and the other inte­

gral does not exceed the integral X ! <j'(d(x,yo))P(dx), which 

is finite, by our assumption. This proves the lemma. 

In the following lemma the sets A and Ад(п ̂  1) will be 

allowed to be arbitrary subsets of a separable metric space 

T. Let us define 

W(A,P)= / (d(x,A))P(dx) , ACT, A^0. 

It is clearly seen that in the case when IAI= к this defini­

tion reduces to (1.1). 

Lemma A2.If /if (d(x,yo) )P(dx) < °° for some yQ6 T, 

then from h(An,A)—• 0 it follows that 

W(An,P)—• W(A,P). (A. 1) 

Proof. It is an easy exercise to show that for any A 

and В the inequality 

I d(x,A) - d(x,B) Uh(A,B) (A.2) 

holds. Hence, by continuity of >| , the convergence h(A,An)-»0 

implies ^(d(x,A))—>-f(d(x,An)) for any x e T. To get (A. 1) 

we apply Lebesgue's theorem. According to this theorem, it 

suffices to point out an integrable function g(x) which 

majorizes all the functions >f(d (x,An)) for n greater than 

I0  
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some N. Show g(x) may be taken as g(x) = ̂ [d(x,A) + l] , for ex­

ample. Indeed, by h(A,An) —*• 0, h(An,A)< 1 for every 11 larger 

than some N, In view of (A.2), this implies that 

d(x,An) < d(x,A)+1, n» N. 

Furthermore, by monotony of , 

^(d(x,An)) 4 if [d(x,A)+l] m g(x) , n> N, 

i.e., g(x) majorizes all if(d(x,An)) with n large sufficient. 

The integrability of g(x) follows directly from Lemma A1. 

This completes the proof. 
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ОБ УСТОЙЧИВОСТИ МЕТОДА к-СРВДНИХ В МЕТРИЧЕСКИХ 

ПРОСТРАНСТВАХ 

К.Пярна 

р е з ю м е  

Пусть Р, Р (п? 1)-вероятностные меры на сепарабельном 

метрическом пространстве (Т,а). Доказано, что inf W(A,t^)—» 

-•inf w(A,P), где функционал w (•,•) определен в (I.I). В 
а 

пространстве I ̂  доказана и сходимость Р ̂-оптимальных мно­

жеств А*. Статья продолжает работу С2]. 
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A REPRESENTATION OP CLUSTER-ANALYSIS: THE APPROACH 

USING MONOTONIC SYSTEMS 

R.Ääremaa, К.Ääremaa, T.Tamman 

The possibility to construct the specific monotonic 

systems' kernels which will be identical to clusters formed 

by some well-known cluster-methods was demonstrated in [1]. 

The methods chosen for demonstration in [1] have the common 

quality - the result of clustering is based on the ordering 

of the values of similarities between the elements to be 

clustered and is not based on the computed real values of 

similarities. In this paper we set the goal to demonstrate 

the realization of cluster-analysis, where 1) the values of 

similarities will be considered in the process of clustering 

(not only their ordering will be used); 2) no requirements 

about the shape, or number, or degree of intersection of the 

clusters will be postulated. One of the possibilities to 

carry out such a clustering is to construct the monotonic 

systems without restrictions used in [13. In the discussion 

of the problems of clustering we use graph-representation. 

1. Graph-representation and comparison of the subgraphs 

Let X = j x^, Xg,...,xn} be the set of the elements to be 

clustered and S = (), i,j = 1 - the matrix of simi­

larities computed on X, where s^ corresponds to the simi­

larity between the elements x. and x. ; s. . = s ( x . ,  x . ) .  
cj -L ü и 

The pair G = (X,E ) presents the graph, where the ver­

tices are defined by X and the real value s^ defined by 

S, corresponds to the edge (x^x^) of the set of the edges 

= { (xi,x .): i^3» i> 5=1 n ). 

For estimating the mutual connectedness of the vertices 

in the graph, we define a weight function 5Г , which assigns 

to each vertex x.^ a non-negative real value H(xi) - the 

weight of the vertex x^ For example the weight of the 

vertex may be defined as the mean of the mutual simi­

larities between x^ and otner vertices by the formula 

37 
10* 



1Г(х.) = ̂  > в. . (1) 

Let us denote a subgraph of graph G by G', where 

G' = (X',E') and X'£X, E'SES. 

We want to search for the subgraph G = (Х,Ё), which is 

possible to consider to be "the best" among all subgraphs of 

G, taking into consideration the weights of the vertices of 

each subgraph. We cannot inspect the subgraphs and make com­

parisons between them to find "the best", presupposing them 

to be separate graphs. The found subgraph is to rise to the 

fore against the background of the graph G or of some other 

graph which has taken to be the base-graph. 

Let us take the base-graph for the graph G the graph 

G0 = (X,E°), which can be interpreted as a graph, where the 

mutual similarities between n elements to be clustered are 

not made known and we consider each of them to be equal to 

zero. The process of transition from G0 to G is feasible 

by characterizing the edges of G„ using the values of ma­

trix S. To make comparisons between different subgraphs 

G* = (X1,E") of G, we observe the changes of the weights 

of the vertices which arise in Gc after estimating the 

edges by the values of 3. 

Let us use the following criterion: the subgraph G of 

G is "the best", if the minimum change of the weights of 

its vertices has the maximum value, where maximization is 

taken over all subgraphs of G. This subgraph G will be 

called the kernel of the graph G. 

Exanple 1. Let X * tx1,x?,x^.x^,x?,x,^} and the graph 

G = (X,EÖ) is presented in Figure 1, where the edges are 

characterized by the values of similarities and the vertices 

by their weights computed by the formula (1). 

Let us choose two subgraphs 

G1=UXVX2,X3), Ux-pxg), (x^j), (x^)}) and 

^ — ( i» xgf x3, x^} , i (x-^xg ) » (x-jjxj ) , ( x1?x4 ) , ( xgpc^ ) , ( ), (x^c.^) } ) 

for the comparison. Picturing these subgraphs on base-graph 

G0 (Figure 2) we can estimate the changes induced on it. 

We can see that 

min ir(x) = О.32 > 0.25 = min ИХх). 
1 2 

x«G xeG 
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Figure 1 

,0.79 

lKx1 )=0.35 
0.82 

0.40 

0.45 0.91 

0.79 

0.82 

x, 

Figure 2 
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On the basis of the criterion used by us, the subgraph 
1 " 2 
G is "better" than G . It is not difficult to control 

that there does not exist any subgraph of G by which the 

minimal change of the weights of its vertices is greater 

than 0.32. So G1 is the kernel of the graph G in the 

above given sense. 

In general the kernel of the graph depends on the used 

weight function. The weight function must express the degree 

of mutual connectedness of elements to be clustered - thus 

the weight function depends on the measure of the connection 

(similarity function) to be chosen. 

The concept of the kernel of the graph can be modified 

and defined in .such a way that only the edges, which have 

the value equal or greater than the received minimum value 

of changes of the weights of vertices, are considered. In 

such a case the kernel must not be a complete subgraph - it 

can even consist of several disconnected parts. 

Till now we have dealt with the problem of finding 

only one, the most important subgraph - the first kernel. 

The whole process of searching of the kernel can be repeated 

on the subgraph, the elements of which do not belong to the 

first kernel. There are several different possibilities to 

eliminate the influence of the elements of the kernel to the 

whole graph, three of them will be produced below to con­

struct the monotonic systems for clustering. 

The kernel G = (X,E) was found with respect to the 

graph G0 = (X,E°). The graph G can be considered to be an 

independent graph and it is possible to search the kernel of 

this graph with the respect to the base-graph G0 = (X,E°). 

The transition from G0 to G may be realized using the 

values of the mutual similarities between the vertices from 

X. So a recursive process for finding the kernels in the 

kernels can be carried out. 

All the process described above can be modelled using 

the theory of monotonic systems. 

2. Constructing a monotonic system for cluster-analysis 

The pair <W,ir> is called to be the monotonic system 

on the set of elements W, if for any element a e W1, W'£W, 

the weight function 7T(a,iV') satisfies the condition of 

monotony 
lT(a,W") < tT(a,W' ) 
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for any subset W"£W'£=W. 

The set of elements W^W is the kernel of the monot­

onic system < W,ir>, if 

F(W) = mai (min JT(a,W1)). 
W ' = W  a e W '  

There exists an algorithm (see Cl]), which in finite 

number of steps produces the kernel of the monotonic system. 

It is possible to define the concrete monotonic system in 

auch a way that its kernel coincides with the kernel of the 

graph described above. But it is not our aim. We used the 

graph-representation only for demonstration how the kernel 

of the monotonic system constructed for clustering с ал be 

interpreted using the graphs. If the weight function of the 

monotonic system expresses the mutual connectedness (simi­

larity) of the elements, the kernel may be treated to be a 

cluster (see С3 Л). 

Let us now construct a concrete monotonic system for 

clustering the objects X = {x^,Xg . To realize the 

possibility to get intersecting clusters (overlapping clus­

tering) the monotonic system <W,ar> is defined so that the 

set W is a union of two sets X and E, where X is the 

set of the objects and E is the set of the pairs of these 

objects (the ties between the objects) 

E = {(xj^.x.): i/j, i, j = 1,...,n ] , where x^x^eX and 

(х^,х^) = (Xj, x^). Hence, W = XUE. 

The weight of the object х^б X may be defined in 

several ways. It may be equal to the mean of the mutual 

similarities between x^ and other objects x^ € X, x^x.., 

as in the example given above. It may also be equal to the 

root-mean-square of the mutual similarities between xi and 

other objects x^ e X, xj/xj as in [33 and in tjie example 

given below. In general it ia possible to define the weight 

function in a different manner, but in any case it is necess­

ary to observe that the monotony of the system should be 

guaranteed. 

It is easy to prove that the monotony of the system 

< X UE,n > is guaranteed if the weight function 1Г ia de­

fined on any subset W1 = X'U E' for ties as: 

( 2 )  

in other cases 
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and for objects, using natural number p (p/0), as: 

1 

lf(xi,X')=< 

(х.,х5)еЕ-

ap(xi,x;.))p,if Зхд.ех*: (х±,х^)еЕ' 

,0 

( 3 )  

,if Vxj€X':(xi,xj)^E'. 

Let ua note that according to the given function the 

weight of the tie JT( (х^,х.) ,E') can have the value greater 

than 

(xi.xj) 

x.,x. e x - Let us call the tie zero only if both 

to be single in X' if at least x^ or x^ does 

not belong to X1. The single object is such an object which 

has no ties. It is evident that the kernel of this system 

<XUE,ir> has neither any single tie nor any single object. 

Example 2. Let us use the given monotonic system for clus­

tering the data presented by the matrix of similarities S, 

values of which were indicated in Figure 1. We can find the 

first cluster as the kernel of the defined monotonic system, 

where W = {x., ,x2,x3,x4,x5,xg, (x.,^), (ху^),..., (x^g)} and 

the weight function 9Г is defined for ties by (2) and for 

objects by (3) using value p=2. The set W and the weights 

of its elements are presented in Figure 3--

0.57 
0.40 

0.0' 
0.45 

0.91 0.20 
0.33 
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0.91 

Figure 4 

Using the algorithm for finding the kernel, we can es­

timate that the set 

W s XUE = {x.| , X2, X^, (x<pX2 ) , (X-pX^ ) , ( X£^3)} 

is the kernel, its structure is presented in Figure 4. 

3. Constructing the monotonic systems for non-overlapping or 

overlapping clusters 

It is possible to construct the sequence of the monot­

onic systems for searching either non-intersecting or inter­

secting clusters. Let us have the sequence of 1 systems 

<W°,1T> , <w\ir>,..., <W1, 1T>, 
where W1 = XiUE1, i=0,1,...,l, and W° = W, X°5 X B° = E, 

and W* = X^UE1 denotes the kernel of the i-th monotonic 

system. 

To get the non-overlapping clustering, which is made up 

of 1 non-intersecting clusters, the k-th system of the 

sequence of 1 systems is defined eliminating all elements 

(objects and ties) of the found kernel Wk_1 from the 

(k-1)-th system. The elements which will turn into single 

after such a removal are also omitted. So it is possible to 

define the k-th monotonic system, k=1,2,...,l, as 

<Wk, JI>, where Wk = XkU Ek and 

Xk = Xk~1 \ (Xk~1UXk~1), Ek = Ek_1 \Ek_1, 

Xk_1 = {a: (a,b)^Ek for any beXk~1}, 

Sk_1 = {(a,b): a€Xk"1}. 
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The number 1 is defined by X^-1 = 0. 

To get the overlapping clustering of 1 clusters, we 

define the sequence of 1 monotonic systems in which each 

next system is received by omitting either the ties be­

longing to the kernel of the previous system or the ties be­

tween the objects of the found kernel but not omitting the 

objects of the kernel. In any case the elements which become 

single will be omitted too. 

The first of the above mentioned two possibilities to 

receive the k-th monotonic system on the basis of (k-1)-th 

system, к = 1,2,...,1, is produced so: for the k-th mon­

otonic system <Wk,9T >, where Wk = XkU Ek, 

Xk = Xk_1 \xk-\ Ek = Ek~1 \Ek_1, 

Xk~1 = {a: (a,b)*Ek for any beXk"1}. 

The second possibility to receive the k-th monotonic 

system can be presented in such a way: for the k-th mon­

otonic system <Wk,ir> , where Wk = XkUEk, 

Xk = Xk~1 \Xk_1, Ek = Ek_1 \Ek_1, 

£k~1 = {a: (a,b) Ek for any beXk~1}, 

£k~1 = {(a,b): a,b£ Xk~1}. 

Example 3. In the previous example we found the set 

W s w° s X°UI° = {xvx2,x3, (x^x2), (x^3), (x^)} 

to be the kernel of the first monotonic system in the se­

quence of the systems. 

To construct the overlapping clusters, we define the 

next system < W1,It > omitting the ties of the found kernel 

W° from the preliminary system <W°, ir> . There is not any 

element which would become single after such a removal. 

Hence, we received the set W1, which includes the following 

objects: x^, x2, x^, x^, x^, Xg 

and the ties: (x-px^), (x^fx^), (x^^xg), (x^x^), (x2^^), (), 

( x̂ x̂  ) , ( x̂ x̂  ) , ( x̂ ptg ) , ( x̂ xg ) , ( x̂ xg ) t ( x[̂ x£ ) • 

The set W1 with the weights of its elements is pre­

sented in Figure 5. 

It is possible to find the kernel of the system <W1,ir> 

to be the set W1 = lx4,x5,x6, (x^), (x^g), (x^g)} and 

the kernel of the next system < W2, sr > as the set 

W2 = ix^.x^, (xyc^)i, and so on. 
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tr(x4)=0.43 

/5 
%(X5)=0.35 

ЗГ(х3)=0.28 Т(х6)=0.34 

Figure 5 

4. Clustering of objects and attributes, and simultaneous 

clustering of objects and attributes 

The similar methodology which is based on the monotonic 

systems as described for clustering of the objects X can 

be used for clustering of the attributes Y. It is possible 

to construct a monotonic system on the attributes and the 

ties between them. The weight function for the attributes 

may be defined on the basis of the used similarity function 

computed on the attributes and it expresses the mutual con­

nection of the attributes to be clustered. 

The objects and the attributes can be treated to be the 

elements of the same monotonic system or to be the elements 

of two related systems, and so the mutual effect of the 

objects and the attributes can be examined. In a simpler 

case the problem can be raised how to search for these quite 

strongly connected attributes which correspond to some clus­

ter consisting of quite strongly connected objects. To 

solve this problem the monotonic system on the attributes 

and their ties is constructed, where the attributes are pre­

sented only by objects belonging to the observed cluster. 

Such an approach is useful in some kinds of data analysis, 

but in fact it is not simultaneous clustering of objects and 

attributes. 

The simultaneous clustering must reveal the intrinsic 

interaction structure of objects and attributes (show which 

groups of the objects and attributes interact together). 

For the simultaneous clustering of the set of objects and 

attributes Z =X U Y the monotonic system is constructed 
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regarding the objects with their ties and the attributes 

with their ties as elements, equal in rights, of the monot­

onic system and the weight function is defined so that the 

values of the weights of all the elements (objects, ties 

between objects, attributes, ties between attributes) are 

located in the same interval (for example in [o,1]). 

It is necessary to define the weight function so that 

the monotony of the system should be guaranteed. We have 

defined the weight function on the matrix of similarities 3 

between the objects and on the matrix of similarities T be­

tween the attributes. In order to guarantee the monotony of 

the constructed system, the following condition must be sat­

isfied: the removal of any attribute from the set Z may 

give rise to the change of the values of the matrix S only 

in the direction of decreasing and the removal of any object 

from Z may give rise to the change of the values of the 

matrix T only in the direction of decreasing. Hence, the 

similarity functions defined on the objects and on the at­

tributes, which give the values as the matrix S and T 

accordingly, must be in harmony required by this condition. 

Example Д. Let us present the data by the mati 

1 .0 1.0 3.0 5.0 7.0 9.0 

0.5 1.5 1.0 3.0 6.0 5.5 

0.9 0.7 1.8 2.0 4.2 4.0 

2.0 2.0 2.0 1.0 1 .0 2.0 

i characterize the attributes Y = 

and the columns - the objects 

Let the similarity 

Xj be computed using the formula 
m_ 

( k )  

X - { X-| , x2, X̂ , X̂ , X̂  , Xg }« 

between the objects x. and 

13 
( k )  

= 1 - d H 
- ы 

-x.<k>)2)2 

at which x^4^'1 represents the value of the k-th attribute 

of the i-th object after standardizing every single one out 

of m=4 attributes in the interval С 0,1 J. 

We shall regard the simplest case, where the similarity 

t^. between the attributes 

the similar formula as above 

and у. 

tij 
= 1 <5 

k=1 
(у± 

( k )  

is computed 

1 

using 

-y3
(k))2)2 
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at which у Лrepresents the value of the k-th object for 

the i-th attribute standardized in the interval [0,1]. 

The values of the computed matrixes S and T are indi­

cated in Figure 6 as the weights of the ties between the 

objects and between the attributes accordingly. Let us note 

that the computed similarities coincide with the similar­

ities presented in Figure 3. 

0.57 
0.40 

0.10 

0-91 0.45 
20 

0.48 

0.82.  

sKy 2 )=o 

Figure 6 

ir(y4)=0.23 

у4 

The found kernel includes the elements 

x.| .xy.x^x^, (x-^xg j * (x2^3^ • 

У-|.У2>уз> (УТУ2)> (У-рУз). (У3У3) - it is presented in Figure 

7 by help of two graphs. 

Let us use the construction of the monotonic systems 

for clustering objects and attributes allowing to overlap 

the objects between themselves and the attributes between 

themselves in the clusters. 

The constructed system, which includes the elements 

xt ix2>x3>x4»x5i;xg» (x-^xg)> (x-[,Xg), (x2?^)> (x2>xg)> (x-^g)» 

(x^xg), (xjx5), (хфх6), (x^xg), 

у1,у2'5'3'у4' -t-у>у4)» (узу4). (у3у4). 

is presented in Figure 8 using two graphs. 
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0.40 

0.50 

0.47 
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Figure 7 
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The kernel of the corresponding system includes the elements 

x3,x4,x5,x6, (xyc5), (xycg), (x^5), (x^g), (xjX6) and 

У-1.У3.У4. (У>У4). (Уз^4)' 

5. Some aspects of the cluster-analysis using the monotonic 

systems 

In the previous treatment we did not bring forth the 

values of the weights of the elements of the found kernels. 

The minimum of the weights of the elements of the kernel of 

the monotonic system, constructed by omitting the kernel 

already found completely or partially from the previous 

system, is less than the corresponding minimum computed 

for the kernel of the previous system. The minimum of the 

weights of its elements characterizes each found kernel. 

This value may be observed as the value of the level of the 

level-clustering and the whole process of searching the 

clusters can be regarded as constructing stratified clus­

tering (see [2,3]). At that clustering the non-intersecting 

clusters of the level-clustering as the subsets of the ker­

nel, which have no ties between their elements may be found; 

of course each subset itself includes the ties. 

The full treatment presented above may be used for any 

found kernel (cluster) and an independent monotonic system 

may be constructed on the elements of this kernel (cluster). 

Thus, it is possible to find a specific structure of 

clusters with different degrees of connectedness - these 

clusters may be overlapped, and at the same time it is poss­

ible to point out the set of the most strongly connected el­

ements as a cluster in each cluster in turn. Which element^ 

of the cluster are strongly connected, which weakly and 

which are not connected at all may be explained, because аду 

tie belonging to the cluster is characterized by a real 

value of its weight. 

The cluster-analysis carried out using the monotonic 

systems makes possible to simplify the data by giving a 

structure of the elements which are under investigation, 

presenting no requirements about the shape, or number, or 

degree of intersection of the clusters, and to examine the 

received structure more precisely if such a exploration is 

required. 
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ПРЕДСТАВЛЕНИЕ КЛАСТЕРНОГО АНАЛИЗА: 

ПОДХОД НА ОСНОВЕ МОНОТОННЫХ СИСТЕМ 

Р.Ээремаа, К.Ээремаа, Т.Тамман 

р е з ю м е  

Проблема кластериэирования интерпретируется проблемой 

выделения наиболее существенных подграфов графа близости. 

При этом значимость каждого подграфа оценивается на основе 

его сопоставления с некоторым выбираемым базой графом. Опи­

сываемый подход хорошо согласуется с развиваемой авторами 

методикой кластериэирования данных с помощью монотонных сис­

тем, является интерпретацией это:™; методики. В зависимости 

от определения конкретной монотонной системы, т.е. от выбо­

ра элементов системы и весовой функции, получаются системы 

кластериэирования либо объектов, либо признаков, либо объ­

ектов и признаков одновременно. Приводится необходимое ус­

ловие для конструирования систем проведения одновременного 

кластериэирования объектов и признаков. Включение в элемен­

ты системы связей между кластеризируемыми единицами дает 

возможность определить кластеры с учётом существенных свя­

зей, а также конструировать кластеризацию с пересекающимися 

кластерами. 

Весь процесс кластериэирования рассматривается KELK на-

хождение ядер конструированной специальным образом последо­

вательности монотонных систем. В зависимости от определения 

этой последовательности получается либо непересекающаяся 

либо пересекающаяся кластеризация. 11ри этом в пересекающейся 

кластеризации степень пересекаемости определяется данными; 

накладывать какие-либо предварительные требования на степень 

пересекаемости не допускается. Аналогичный кластерный анализ 

можно провести для элементов уже найденных кластеров. 
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DISTRIBUTION APPROXIMATION BY NORMAL MIXTURES 

AND EDGEWORTH EXPANSIONS 

T.Kollo I.Traat J .Vilismäe 

The central limit theorem is the base In constructing 

the approximate interval estimations for statistics in very 

many cases« The estimators are obtained by using the limit 

distributions or different power series for the distribution 

of regarded statistic. During the recent years many Investi­

gators have paid attention to the Edgeworth expansions. Let 

us propose that for a p-dimensional sample X = (X^ ..., X^) 

from a general population with first finite moments sta­

tistic Tn admits the Edgeworth expansion 

F(x) = P(T < x) = ¥ (x) + 1— h(x) (x) + <St-I—), (1) 
n va" I лпг 

where ¥ (x) and 'f (x) are the distribution and density 

functions of N(0,d), d is the limiting variance of T&, and 

h(x) - the function, depending on the first three cumulants 

of Тц (the expansion holds If TQ is the function of sample 

mean or of covariance matrix for example). 

If statistic TQ Is a skewed random variable, it is natu­

ral to use a non symmetric distribution for its approxi­

mation. Hall [l] considered Tn as the sum of independent 

identically distributed random variables with zero mean and 

unit variance and got the approximation for F(x) by^distri­

bution, For fitting the best ^-distribution, the third 

moments of summands were used. The accuracy of the approxi­

mation was the same or even better than using two firat 

terms in the expansion (1). We are interested in approxi­

mating the distribution function F(x) with the mixture of 

normal distributions that permits to treat multivariate and 

univariate statistics by the same method. 

Let a random variable Z be the mixture of X~N 

and Y~N &г) with the distribution function 

F z(x) =/F x(x) + (1 -jГ) Fy(X ) ,  

where 0 ^ с 1. Through the standard normal distribution 

we have 

F 2 (X) */ф( т  ~ £±) + (1 - / )  ф (2) 

TRU Raamcstukoqa 
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The parameters f, fJ-i , ̂  and we find with the help of 

known cumulants = 1» • ••» 4) of random variable Z from 

the system of equations 

ä>i = f - ̂ 2) + K2 ; (3) 

$2 2^ *  i  » (4) 

ae3 = «f(i )(i - 2 f)( 1̂ - k2)3 . (5) 

x4 - 6/(1 - f)(2g£-p(2^p- _f )(нг̂ )4 (6) 

If Z is normal (26^ = X.^ = 0) , then f = 0 or ^ = 1 or 

f-L^ =H-2. If Z is symmetric nonnormal (Э?, = 0,36^ И 0), then 

f - 1/2. If Z is nonsymmetric with ЭГ ̂  = 0, then j^=(3+V5)/6 

or /" = (3 -УЗ'Э/б, In general for у we get from (5) and (6) 

the equation 

(2l6+l6a)f6-(648+48a)/5+(756+56aY4-(432+32a),f3+(126+9a)/-

-(18+a)f+ 1 = 0, (7) 
which has at least two solutions in the interval (0,1), 

а =зез /ж4 . 

The other parameters we find from (3) - (5): 

^ -h2 -b3/t/(1 -/)(1 - 2/)]' ; 

=ae1 + (1 -ГМК, - M-g) ; (8) 

j0.2 =x-1 - h"2^ ' 

&2 =зс2 - (f (1 -f)( f^-1 - Ц- 2)2 . (10) 

The statistic T^ has the cumulants of following order 

2C1= o(n™1/2), ae2= 0(1), x3=o(n"1/2), a?4= o(n~1) 

Then, if n -» и , 

a = 0(п"Ъ -» 0, 

f  — (3 + 0)/6, (1 -/) -»(3 - тГэ)/б 
and 

m-1 - h-2-*o* 

Consequently, the mixture (2) for the statistic Тд also 

converges to the normal distribution. 

In the equations (3) - (6) and in the Edgeworth ex­

pansion we have theoretic population cumulants. In everyday 

data analysis we can use only their empirical estimates. It 

has not been theoretically investigated how this replacement 

influences the accuracy of the approximation of the exact 

distribution function. In this paper we shall look a simple 

example to compare the exactness of different approximations. 

The statistic we shall consider is 

Tn = fn* ( 5 2 - 1), 
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2 where S is the sample variance statistics 

s^l/xi-x)4, x=£zxv . 

The sample is drawn from onedimensional normal popu­

lation N(0,1). Theoretically 

YB= (a - 1)52~xLl » 

which determines the exact distribution F(x) of TQ: 

F(x) = P(Tn< x) = P(Yn< (n-l)(r^f + 1)) . 

We consider the following approximations of F(x)t 

Fjj(x) - asymptotic normal distribution (n->®e) ; 

Fg(x) - Edgeworth expansion (including the term n-1/'2) $ 

Fjj£x) - mixture of normal distributions ; 

Fjj(x), Fg(x), FM(x), ̂ QjC*) - sample estimators of 

Fjj(x), Fg(x), FM(x), correspondingly (FM(x) is estimated In 

two different ways - by FM(x) and FMH(x)). 

The distribution functions Fy(x) and Fg(x) have the 

following form: x tl 

v*> - ihr/ ,* '1** , 

Vх '  • V*> • 6 д ь г -  "г 1  '|Ы. 

where 

k2 = ^4 ~ H-г » 

h - M-6 ™ " 6Р"з + 2P-1 • 

FM(x) is given by the mixture (2), the parameters of 

which j7, p-^, p- g, i are found with the help of the cumu­

lants of statistic Tn from the equations (7) - (10). The ex­

pressions for the cumulants 32.^(1^) are derived using results 

In [ 3] (pp 106, 441 - 442) ! 
*,(Tn) = 0 ; (11) 

a?2 t̂n^ = ^4 " nil ^"2 5 

*3(tn> = ( ̂6 - зк4к2 * 6^з + 2^2> + i <13) 

^4^Tn^ = n F-6 м- г"24 й-5 й- з+ 45 m-4" 276 m-4^-a4-

96jX2jx|+ 426 p-£) + e(l). (14) 

The quantities p. ̂  denote the central moments of the 

population distribution, in our example of the distribution 

N(0,1). For the normal population N(0, we can present 

the equalities (11) - (14) in a much simpler form: 

X.,(TB) = 0 ; (15) 
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x2 t̂n' 1 n6' 

x3<V - ? J > <«> 

*4<V • <18> 

The formulae of sample estimators fN(x), fg(x), fM(x) 

are received from the formulae of P^(x), FE(x), Py(x), if 

the theoretic central moments in them are replaced by 

the sample momente Q 

m, = 1/n 5Z (x. - x)1 . 
1  k=1 K  

The function P^ti) is the sample estimator of FM(x), 

which in this case is determined (instead of the equations 

(11) - (14)) by the equations (15) - (18), where an unbiased 

estimate 52 is used for fi-g. 

The goodness of the approximation is estimated by the 

distances d^j, dE, dy, d^, d^, each of which is de— 

fined as the maximum difference between F(x) and corre­

sponding approximating distribution function over all points 

in ordinary %2-tables [2] , 

The experiment is carried out as follows. For fixed 

sample size n the distances dy, dy, dE are calculated. Then 

К = 1,000 samples are generated from the distribution N(0,1). 

For each sample the values of the functions Fy(x), F^Cx), 

FM(x), Fmjj(x) and the corresponding distances dN, dE, dM, 

dj^ are calculated. From these values the sample means Edw, 

ECTe, EdM, Edjujj and the standard deviations l/DdN, VDdE, , 

tn%, also the minimum values min dg, min dg, min dy, min 

Зщ and the maximum values max dN, max dE, max d^, max d^ 

are found. All this process is repeated for the sample sizes 

n = 25, 50, 100, 201, 401. The results are given in Table 1. 

From the first three rows in Table 1 we can see that 

the theoretical Edgeworth expansion is the best approxi­

mation to the function F(x),•the error of approximation is 

0,0047 when n = 25, and it decreases with the rate 1/n, 

Mixture FM(x) is better than limiting normal approxi­

mation Fjj(x), having smaller approximation errors and con­

verging to F(x) faster than Py(x). Comparing next four rows 

4.-7. with the first ones, we can see that on the average, 

estimators F^Cx), Fy(x), FM(x) and ?MN(x) are much worse 

than corresponding theoretical approximations. The approxi­

mation error decreases slowly and is remarkable («0.02) 
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even while sample size n = 400. It is interesting that all 

observed sample estimators are almost equal in the sense of 

the approximation goodness. The average distances and also 

the standard deviations of the distances (rows 8. - 11.) 

differ only a little from one to another. As the best esti­

mator we can point out the function , but in this case 

we take into account the additional information about the 

population distribution. Prom the last eight rows (12-19) we 

can see the range in which the distances over all 1000 gener­

ated samples vary. It appears that for some samples the 

approximation error of the estimators fjj(x), pE(x), fM(x), 

Fmr(x) can be much larger than in average, especially tor 

small n. 
table 1 

n 
25 i 50 100 201 401 

1. % 0.0389 0.0271 0.0190 0.0134 0.0093 

2. dE 0.0047 0.0022 0.0011 0.0005 0.0003 

3. dM 0.0181 0.0131 0.0057 0.0033 0.0019 

4. BdN 0.0934 0.0618 0.0430 0.0296 0.0209 

5. Edg 0.0885 0.0572 0.0394 0.0262 0.0184 

6. 
0.0912 0.0596 0.0395 0.0277 0.0188 

7. 4Q 0.0691 0.0456 0.0313 0.0210 0.0142 

8. 
0.0523 0.0357 0.0246 0.0172 0.0117 

9.  E 0.0583 0.0407 0.0288 0.0200 0.0135 

10. 0.0595 0.0415 0.0283 0.0202 O.OI36 

11. ̂D<%H 0.0484 0.0311 0.0227 0.0149 0.Ö101 

12. min dN 0.0376 0.0264 0.0186 0.0133 0.0092 

13. min dB 0.0046 0.0015 0.0013 0.0010 0.0004 

14. min <% 0.0090 0.0045 0.0024 0.0014 0.0008 

15. min dMH 0.0135 0.0081 0.0049 0.0028 0.0016 
1b. max dN 0.3261 0.2441 0.1758 0.1304 0.0744 

17. max *E 0.3278 0.2489 0.1778 0.1330 0.0755 
18. max dM 0.3244 0.2256 0.1783 0.1136 0.0751 

19. max 0.2679 0.1665 0.1272 0.0919 O.O631 



Comparison of different approximations shows that 

in the situation where population distribution and its mo­

ments are unknown the asymptotical normal distribution is 

nearly as good as more complicated approximations are. Effect 

from using the higher moments in the approximations can be 

obtained, if the distribution of population is known. It has 

not been investigated how the approximation goodness changes, 

if we juse unbiased estimates of the moments (which have rigor­

ous form). Some information about the optimal value of к has 

been obtained during the experiment. The modelling showed 

that it is not necessary to take к as big as 1000. 

All the values of calculated variables are nearly the same 

for к = 200 already, the tendences and relations between in­

vestigated functions were well remarkable even for к = 100. 
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АППРОКСИМАЦИЯ РАСПРЕДЕЛЕНИЙ С ПОМОЩЬЮ 

НОРМАЛЬНЫХ СМЕСЕЙ И РАЗЛОЖЕНИЙ ЭДДВОРТА 

Т.Колло, И.Траат, Ю.Вилисмяэ 

р е з ю м е  

При помощи статистического моделирования изучается точ­

ность аппроксимации распределения статистики с предельным 

нормальным распределением, разложением Эджворта и смесью 

нормальных распределений. Точность аппроксимации оценивает­

ся и в случае, где распределение генеральной совокупности 

является неизвестным. 



AN ESTIMATE FOR THE VOLUME Of A SET Of POLYGONAL PATTERNS 

P.Mi ккоv 

1.Introduction 

In the present paper we are going to examine the set of 

patterns, which consist of finite straight lines, located in 

the unite square, containing T-type junctions only (fig.l, 

see [1]). 

Fig.1. 

On the set of these patterns we are going to define the 

measure Л . For this measure we shall describe straight 

lines, the parts of which make up the pattern, by using of 

polar coordinates ( see [2]). 9 is the polar angle of the 

normal line drawn from point 0 to the straight line, and 

<} is the length of the normal line (fig.2). 

Fig.2. 
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Q will denote the set of all patterns, Q n  will denote the 

set of patterns, which consist of n (n£.IKl) finite straight 

lines. Therefore 

3 =uo v 

Let us define measure -Л on set Q n  as 

d-Л = d&^dg^ .., d8 d^ n, 

Conventions 11 у 

л (qo) = 1 . 

Such a measure is related to po1 уgonia1 Markov fields (see 

[ 1 ] ) .  

The main result of the present paper is the following 

relation 

oO 

ACQ) Л(2 п) < 0 0  . 

This relation follows from the theorem, proof of which is 

given below: 

Theorem. The following estimate holds true: 

-a'=„> < =" žv)" 

where n >/ 2, С stands for the absolute constant. 

Let Q 3  denote the set of patterns, located in square 

ax a. Then from the definition of measure A and the above 

given results, it follows: 

Corollary. Measure of the set Q a  is finite: 

Л (2 a) = a n> (Q n) < o" . 
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To prove our theorem we divide sets 5^ (n€jM ) into two 

subsets 

where consists of patterns, the total sum of lenghts 

of the finite straight lines satisfies < cn, Q* consists 

of patterns where 1^> cn (value of c^ is given below). 

Then 

Л (Sn) =>(2„) +XCn) • 

To prove the theorem, we shall use special coordinates, 

which give us a new measure yu . Later on we shall demon­

strate that -A</f,so the estimate for //(2n) holds true for 

-Л ( Q n) also. 

We shall evaluate -Л (Ö 1  ) and A(2 4) separately. 
n n 

Z.Evaluation of the measure of Sn 

Let us assume that 1 < с . We shall call the left end 
n n 

of each finite straight line of the pattern the beginning 

and the right end the end, and fix a positive integer к. We 

l( 
divide the square into 2 equal ribbons by vertical lines 

к 
and supply the ribbons with numbers 1,2,...,2 from the 

left to the right. 

Let 2^ be a set of patterns, which satisfy 

the following conditions: 

a) none of the finite straight lines has its beginning 

and end in the same ribbon; 

b) if a finite straight line has its beginning in a 

fixed ribbon, there is not any other finite straight line 

which has its beginning or end on that finite straight line 

in this fixed ribbon; 

c) no finite straight line begins from the lower and 

upper side of the first ribbon. 

Obviously Q 1C e 2c ... С Q kC ...CO 1  

n n n n 

Bn = U °n (n£lN) ( 1 

Let the coordinates of the finite straight lines which 
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begin from the left side of the first ribbon, be (9,p), 

where 0 is the polar angle described above, p is the 

distance of the beginning point of the finite straight line 

from point 0 (fig.3). 

Fig.3. 

We arrange the finite straight lines in consecutive 

order by the growth of coordinate p. We determine the 

coordinate p for a finite straight line which begins in the 

ribbon numbered i as 

p = s. , + 1 . . + l* 1  + x , 
K I-i 1-1 x ' 

where 
к 

£= 1 + 2(i-1)2 , i.e. the perimeter of the part of 

the square which is covered by the first i-1 ribbons minus 1) 

1 ̂ у is the summary length of the finite straight lines 

and the parts of the finite straight lines which are located 

in the first i-1 ribbons; 

1^ equals zero, if the finite straight line under 

observation begins from the lower side of the ribbon. 

Otherwise 1.' is the summary length of the parts of the 

finite straight lines below the finite straight line from 

which begins the finite straight line under observation, 

plus 2 ̂ ; 

x is the distance оf the beginning point of the finite 

straight line from the left side of the ith ribbon, measured 

along the line from which it begins (fig.4a); for the finite 

straight lines which begin -from the upper or lower side of 

the ribbon x is measured along that side (fig.4b). 

Fig.4a. Fig.4b. 
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It is obvious that the coordinates defined as above 

satisfy the inequalities 

о  <  P j <  p 2 <  • • •  <  p n  <  3  +  l n .  

Thus we have determined the beginning points and the 

directions of the finite straight lines. To describe the 

pattern uniquely we must add complementary discreet 

coordinates <j~. to show in every junction point of two finite 

straight • lines which one of them ends. We arrange the 

junction points in consecutive order moving along the 

ribbons from the bottom to the top and moving from ribbon to 

ribbon from the left to the right and supply the junction 

point with coordinate 0 if the lower finite straight line 

ends, and 1 if otherwise. 

Now our pattern is described by the coordinates 

{(6 1 ,  P,J e n ,  p n); dj , where v  

- I 4 e. <ir (i=i,... ,n) 

p,< ... < pn < 3 t ln 

cT equals 0 or 4, 1 <j ̂ s, s . 

Def ining 

df* - dS1dp1...d9ndpn, 

we obtain an upper bound for the measure of 2^ : 

л 

/ч(ап> = zl (•••{"»dp < 

n / 3<r\n (3 + 1 )n C3 + 1- )n 

< 2 {-) nt = , 

where the integration area is determined by (2). 

The estimate obtained above is independent of к and 

because of (1) holds true for Q ̂  also: 

n  ( 3  +  1  ) n  

ytf (ßn) < (3ft) ( 3 ) 

( 2 ) 

Now we shall demonstrate that-A 4ft • The transition Jacobian 

6i 



between coordinates (8^,...,8 r,... , ^ n) and 

C 8l"-" 8n' p1 P n
}  1 3  

J = de t 

 " 
u; kj.t  

det 

J 

ht\n 

"3 6: j '<< 

(—f 
\ 3rj/;(j.-4 

ZiSlV 

о 

zx cm 
эр; 

с 4 ) 

6 -

Here X stands for nyn unit matrix (coordinates 

and 0^- (i^j) are independent) and О stands for 

nxn zero-matrix (coordinates 0. are independent of 

coordinates Pj '• The nxn matrix is lower-trian­

gular matrix with diagonal elements О<$L / 'Sp-L 

( ̂-coordinates о Г the finite straight lines are independent 

of the p-coordinates of the finite straight lines with 

bigger numbers). 

Let us observe the increment ä p of the coordinate p of a 

finite straight line (0 is fixed). Accordingly the increment 

of the coordinate ̂  is c)^ (fig.5). 

As we can see, 

and after (4) 

F ig . 5. 

^2. - cos , so BSi 4 4 ( i =4 • - . . , n), 
эр v э р; 

Tp^ 

which proves that Л 4ft- So the estimates obtained for the 

measure /4 hold true for the measure Л as well. 
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Now let us estimate the measure A() proceeding from 

inequality (3) and give exact values to so far undefined 

constants с . 
n 

1) Assuming that 1 

(3+1 ) r  

лев;) ч< /Ч (2* ) <(3ff) n  <(12ft) n  if = ̂  , ( 5 ) 

as 3+1 4^- Here and below С stands for absolute constants. 

2) Assuming that l<l n<c n, where 

( 6 ) 

(value of0< =<x(n) will be given later), we have 3 + l n<41 n<4n 

and according to the inequalities obtained from the Stirling 

formula 
• 4 

n + i п+х 
с1~~гг < n! < c2^7t ' 

e e 

we come to the conclusion that 

(3 + 1 )n (An*)11 

Ate/,) 4 /<(2,!,) < (3ff)n 
n, - < (3ir)n-^-j— = 

n« n n« t я *d\ 
= (<12ff)n — < (121T*)n < Cnn™ n 

Taking 
o< = ln(3n lnln n) - Inln n 

ln n 
( 7 ) 

we haue 

cnn-(l-<x)n _ c, ,n/ln In n\n 

' \ ln n / • 

So, if c n  is determined by (6) and (7), then 

л(в,) < с
п(1пт1п_п)п. (8) 

3.Evaluation of the measure of 

Here we consider patterns which belong to Q^, i.e. 

total sum of lengths of the finite straight lines of which 

l n^ c n  =n (<Xis determined by (7)). To begin with let us 

supply the finite straight lines with the same coordinates 
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as in p.2. 

Now let us observe the finite straight lines which are 

longer than 

4 £ 1 -4 
2 гг " 2 

Obviously, the number of these lines m must satisfy the 

inequality 

£^(n-m) +tf2m > n*, 

(as f2 is the maximum possible length of a finite straight 

line in unit square). Thus we obtain 

m > 
2 |г2 n 

From now on we assume that at least half of these finite 

straight lines have 

ee[£ ,17]. 
If that does not hold true, 

•п" 
then by turning our square by -£ we can achieve it, 

nevertheless. So the measure of the set of the patterns 

which satisfy this condition cannot be more than twice 

smaller than the measure of . Let HC |l, . . . , nj be the set 

of indexes of these finite straight lines the lenght of 

which is more than 4n* ̂  and 

Obviously, the number of these finite straight lines 

satisfies 

(  9  )  

Let us supply p lines with new coordinates. For that we 

divide the square using vertical lines into ribbons with the 

width л -' 

ut 

•тг iff 
'Every finite straight line of those with 8 £ [ ̂ , ц ] 

intersects both sides of one ribbon at least. Assembling the 

ribbons end to end we obtain one ribbon with the length 
<— 4 _ (x 

Lr412n . Let the coordinates of the finite straight lines 

be : 
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q^- the distance of the left intersection point from 

the lower end of the ribbon; 

г^ - the distance of the right intersection point from 

the lower end of the ribbon. 

Define fA by 

d/4= dq 1dr. 1...dq pdr p. 

The following inequalities hold true: 

0 4< qt< q2< qp< l 

0 4 r^< r^< ...< Гр>$ L , 

and the 2p-dimensional ^4 -measure of this set of finite 

straight lines equals 

/• • •/ndqidri= у 
A , itH (P 

2p 

(p ! ) 

Coordinates (q^,г^) and polar coordinates (8^, ̂  ̂) are 

related by 

/ft* 
®i= 2 + arctan L(r

i~qi) » 

? • =  Г *  ,  

\j 1 + L 2(r.-q i) 2  ' 

Fig.6. 

and the transition Jacobian can be evaluated by 

J = de t 

3 <3: э 

Ъп.1 I)Qfx 

Ъ 0: 5 И (ri- ,да) 
4 i 

So the 2p-dimensiona1A-measure of the set of these 

finite straight lines satisfies the inequality 

3p 
J. . -{П d<?id8i x< L>CA') = ^ 
j »t ;sm (p!) 

If we fix set H and coordinates ^.,8. (i€H), then for the 

coordinates of the rest of the finite straight lines (2) 
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holds true. So the 2(n-p) dimensional measure of the 

corresponding intersection of the set 2^ is not more than 

3ir\n'p (3+ 1  ) n ' p  

2 J (n-p) 1  ' 

and since there are C p  possibilities for locating a set H, 

we have 

/з-ат'р ) l'p 

a(b") < 2cp 2n 

2 / (n-p) ! (p ! ) 2  

= 2P+I(3ir) n - PL 3 P  
T  < 

[(n-p) !] (p ! ) 

(since 3+1 n<2+/2n<5n) 

< cn n 3 ( 4- 0 , ) p  ( 5 п ) П" Р  n !  . < 

[(n-p)!] (p ! ) 

(using Stirling formula) 

1 /ж ~\ n-p 2(n-p) -n n + 4. -3p 
<  cn 3(4-«)p n Ke e n *• e r  

(3+1 ) n _ Pn! 

(n_ p )2(n-p)+4 p3(p+L) 

(here we evaluate all the constants in various powers in 

terms of C n  and substitute the value of p from (9)) 

< C M  n " < C" n 3' 

a 2  - Зек _ 3(4 -ос) _ 

2 (2 2 (2 2 {2 , cx = cx (n ) t 'i, 

we have in case of large values of n 

3(4 -ot) Л 

2 ( 2  2 ( 2  3 

At last, substituting the value о f from (7), we obtain the 

estimation 

^< сп(ттгтг)11 . ( 20 1 

Estimates (B) and (10) together prove the theorem. 
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ОЦЕНКА МЕРЫ МНОЖЕСТВА ПОЛИГОНАЛЬНЫХ МОЗАИКОВ 
П.Мнкков 

Реэ ю м е 

В данной работе рассматривается множество ЯП мозаиков 

на единичном квадрате, состоящих из прямых отрезков и содер­

жащих узлы только типа Т. Множество мозаиков, состоящих 

из п (пеЮ отрезков, обозначается через На множестве 

-5*2 ц, определяется мера а , соответствующая изучаемой в [I] 

марковской мере при нулевом потенциале. Основным результат 

статьи является соотношение 

-> 

которое получается как следствие из следующей оценки меры 

множества Q : 

xcs5n) & (, 
где с абсолютная константа. 
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AH ESTIMATION METHOD FOR COEFFICIENTS OF 

POLYNOMIAL TREND IN TIME SERIES 

V.Joala 

1. Introduction 

A model often used to describe the trend in time se­

ries is the following 

xlt)  =«-„+£ л-Х • u-t ,  t-  >м - CO 
l»i 

Here we ass we that the immeasurable U-t are independently 

and identically distributed uncorrelated random variables 

with zero mean and variance i>" ( E u-t"0 ' £ = g* ; Bu.tus = Ol 

t * 3 ) . The constant is the order of the poly­

nomial trend. 

Usually to estimate coefficients T-»<V , ft the 

least-square method is used, which is the best unbiased li­

near method in fliat case. But there are practical tasks with 

long series (in engineering, physics, scientific experi­

ments, etc.) for which the least-square method works too 

slowly. It is slow because we must compute sums 
m 

xCt)'t" , £.«0,, л. . 
t=i 

To compute them we do multiplications and 

M (rv-ч) addition operations. The method which uses only M 

addition operations instead of that is given below. 

2. The basic ideas 

Let the model (1) hold. We shall partiate the sequence 

of -X(U to the subsequences with the same length 

к» H/p- (assume M - K fi ). In all subsequences we compute 

sums 

•v£ x l t )  , • u) 

IVe shall construct functions f ; (i.- О,.. , к) which make it 

possible to estimate coefficients Q-v by sums 5j 

">/>) ) ь=0,,.. )"" 

The experience with the onc-dincnsionnl case suggests that 

we shoxild use L'unctions in form 
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ö- i" "jr I 9ч -sj - ̂  (a^' , t3) 

where 

R-i. - the functions of coefficients g.'j ; 

- coefficients with values -1,0, 1 ; 

fl ' - a number of sums; 

- function which eliminated the influence of 

coefficients and higher (by i- ). 

'.Estimating coefficients by formula (3) we must add ele­

ments xlt) tt« 1, . . .  ,M only once. 

2» Walsh functions 

3ums in formula (3) can be represented as '..'alsh func­

tions, aee^žj. In Fig. 1 graphical forms of coefficients ^ 

ior 11*0,,.,,3 are given. 

i l-j  
1-  о 

с- i  с 

i 

i 
i  -A 0 

i *3 с 

r. d 

3-4 
i , 

f 4 

i'i 
i , 
г j 

Figure 1. Graphical forms of './alsh functions 

For ,/n.lsh function we shall use the notation V(L)ZK). 

For every n. there exists a family of '.Valsh functions 

WtO,l k) f  V(I,L K),... , W(h-, X-") . To define a function V(i. i K) 

let us suppose that we have a sequence {z^} with Ki* 

elements. ..'e partlate that sequence to the A* subsequences 

with the equal length К and compute sums (j» 1,-.. ,Z*>') 

by formula (2). How we show 'now coefficients 

are found out. 

In W(0,2,^) all j• . To define from 

Wto,V) the first half of g,, j  (here j * I,-., ) will  

be inverted and the second half Will net change (dee Fig. 1).  
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To define W(.i-,V) from 4/U, V) the first and the third 

quarters of qi,J (byj ) from WU,V) will ЪЕ inverted,etc. 

dome V'alsh functions Wfc,)*.) for fixea n. (и = £") are 

given below ( h. = 0 , ,  3) .  

n. =0 W( 0, 1) = 

n. =i vt.0, i) - st'5, 

w o, *•) - Si-S, 

rv=A, W(0,N) = 541г5^»5, 

V / С ^  j j ' 5 ^ - 5 ,  

ww) * .$ц - 53 -

Ц-3 W(0,8) =51»5,*5 6 »5^»51,»5 3 +$,.>5, 

w(l)8) » 5»* s? r $s*Sf ~S,-S} -Si.  - 5, 

w(a,8) * v ,5i' 5> 

W(3,l) =5,-5 t - VWV 5 > _ 5 t  

If we have sequence {t1*} where t-i,.-.and we 

compute sums 5j by formula (2), then 

V(i-A~)  »0  ,  L< wx.  (H)  

Coefficients 0-; are estimated by formula 

a W(L Л") ö.  /  n  .  n )  ;  -л n 
out*—^ , •••) "- k' , l  i  i  1 

where 

а-Дг'-<г'гЗ. <" 
Using property (4) it is easy to see, that vve can choose the 

functions -ft so, that £^*Q-£. Foi> coefficient 3-* we can 

see that 

To attain subsequences with an equal length we cannot 

use some elements of ocCt) or choose 

in long series. 

4. Modified functions 

In the paper [_11 it is shown that variances 2>(a„) will 

be minimized by modifying functions ViC,jO . Therefore we 

must compute more sums Sj (j * 4,... ,',5-p.) than in the 
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case of Walsh functions, but we win in accuracy of esti­

mating and do not lose in computing time. 

In Pig. 2 graphical forms of coefficients modified 

functions for С. - o,, 3 (here p-"= V'j1 ) are given. 

1 * 0  

u- < 

c-i 

L-3 

U 

'Vi  

Vi  

Т=Р 

r  i  

r" i  

i 1 
r '  i  

Г  i  

Figure 2. Graphical forms of modified functions 

In Figure 2. it is shown that for all L (except ) 

to estimate <Xi one third of sums 5j is not used. 

To define modified functions V(C,p-*) we must use the 

same algorithm which was used for Walsh functions (here p-"» 

= 1,5 лЛ ) up to i, = w-i , To define V(«v,p-*) from 

we must partlate all subsequences in p") into three 

parts, not two. The first of them will be inverted the se­

cond will not,be us6d (here ) and the third of them 

will not be changed. 

Modified functions V( i ||v") fgr estimating coefficients 

9.-are given below (rv = e,. • •, 3) . 

rv-0 V(o, И » S, 

v (6,3) = 53-г5хг5, 

V ( 1,3) * 53- 5, 
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п = л, v (_0 ,&") = i>b +5 j-+ s4
+ <• sj_i- 5, 

v u, £,) = 56+53-

v i. !,£>) " ̂е"-5ч-53
+i4 

11=3 V(0,11) =5|i_-S^tSlci-5,tSj»ä?»5^Ss-ti4rS, 

v t ̂ | i ^-) r 5|x* -s|<r 5ic115g " s4~ 5} - bx-jj 

v(l, la-) = -Su.*5„ -5,- 5^ - 56 -Sj *5Л +j, 

V V^i 12.) - S]^ " 5g *• 5}- 4 54 «• 5) " S| 

It is easy to prove that property (4) holds for all 

4Liy) too. Coefficients CLi are estimated by formula 

where p; * Jjtl?-ft;. and ft>. are calculated by formula (5). 

Using property (4) it is easy to see, that we can choose 

.the functions so, that £ CLC = Q-; . j?or coefficients aK we 

can see thai 1 

.i'nen il*4 , coefficients (X, and H« have respectively 

12,550 and 9,4% greater variances than the coefficients esti­

mated by the least-square method. 

i'o attain subsequences with an equal length here, 0ne 

can pass some elements of xlt) 0r choose M- 1,5"- <• Лк , 

<«1,1,..- in long series. 

5. Computation formulae 

n-o ocLt) = a6mt ) t= I,.. ,M 

, л . 

 ̂к |r( xCt)=M 5'. 

h.= < xlt) = a b
+  a,t + a t' ;t- м 

— *1.5" , c ч 
cl4 

a (. 5,) 

- _L /• < ц. с . < _ TT н(м*0 ) 
Oli - ̂  >^Э U-. а. ' 

äpž*«) , к-~£ 
1 u 
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n_=i xLtV= a^at + ü^^+a,. t- i,. . ,и 

= (V"V 51 *0 

_ 1,1 , с . с л - - мчн + 0\ 
сц ' l̂  ""j'̂ 5, ц у ) 

_ i , m(h+rtf»h4) _ mtm+o' 
АС = 7^ C^T* Б5-^5Ч^5Ъ>-ЬХ-' S, - ^ - A, I , 

5«',?«"' >"? >j*'<-<' 
п.=з xir)-ü^a,t<-a^%43t^at , t= <,... ,м 

5-3= ^ (5
;v" -5,c- V 5> ~ V V S3 - 5;) 

— ii ,. „ , M'CM*I) -. 
Я-1. " [Щ5 (ЬцЛ 5t( - ь$- Ь(, - ii" +Si+i. ix3 ( i  / 

a., = —». 0.l
+ 5w-fs,t<-s9-54-ss-sl-s, -

_ - ml(tfch\^m+3) \ 
° - i  4 , 5  "  ̂  i \  I  

t / 
CLc- jq- [ 5(J.*S„+5,0*S3*3j*5T'S t«-Ss-» 5v sv+s, -

_ m(.ht i) - м(м*0(хн«л - мчм»!)1" \ 
- г " u* t лз ч 1 

V"^ ii, ) J r  1-• •• > 1  ̂ • 
t-ij-oif* 

ž. Computer experiments 

The third-order model was used to examine how this me­

thod works. Here 
x Lt)- 0L«ta,t + a^t1 <- ci1t5+ u.t , t-i,... ,M. 

There were three different trend models (coefficients of 

them are given in Table 1.) 

Table 1. 

Simulated trends coefficients 

1 II III : 

CU 50. -1200. 22.505 : 

IX« -6. 170. 0.728 : 

0.1 0.02 -2. 0.0907 : 

Ö.J 0.00004 0.0055 -0.0000739 : 
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Random values U-t are generated by a random number 

generator on Computer POP-11. There were random values u.t 
with the uniform distribution (variances 80900, 800, 8) 

and with the normal distribution (variances 7000, 70, 0.7). 

The error measure was 

2i= too. 
еехдо-х;!*)]1 

where X(t) - generated series, xUt) - estimated trend by 

least-square method, x ) - estimated trend by fast method. 

The length of the series was M=240 and estimation has been 

made 50 times. 

i £ 
M E A N - 5 -  2 -

£.•1 ' 

M A X  *  Z -  f  C "  i , . . .  , 3 0  ,  

In the Tables 2.-5. the computer experiment results are 

given. 

Table 2 

MEAJ'I: Uniform distribution 

: Variance I. : II III : 

: 80000 

: 800 

:  8 

100.53: 100.59 

100.64: 100.67 

100.55: 100.67 

IOO.63 :  
100.75 : 

100.58 

Table 3 

MAX i Uniform distribution 

: Variance I : II. : .III : 

: 80000 

: 800 

: 8 

106.20 :  103.18 :  103.46 :  
102:76 : 103.49 : ЮЗ.18 : 

103.42 : 105.05 : 106.20 : 

Table 

MEAJT: Normal distribution 

: Variance : I : II III : 

: 7000 : 100.49 : 100.44 

: 70 : 100.58 : 100.48 

: 0.7 : 100.50 : 100.67 

100.46 : 

100.65 : 

100.51 : 
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Table 5 
MAX: Normal distribution 

: Variance : I II III : 

: 7000 : 101, 89 101 • 32 101; 96 i 

: 70' : 102 19 103 .22 102; 38 s 

: 0.7 : 102 .08 102 .03 юз. 52 s 

7. Conclusions 

In this paper an estimation method Of coefficients of 

polynomial trend in time series is given. It works much 

faster on computers than the least-square method and experi­

mentally it is shown that in case of accuracy it is approxi­

mately the same as the .least-square method. Therefore this 

method is useful to increase the productivity of computer 

programs, especially in case of long time series or auto­

matic control systems where results must be computed very 

fast. 
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МЕТОД ОЦЕНИВАНИЯ КОЭФФИЦИЕНТОВ ПОЛИНОМИАЛЬНОГО 

ТРЕВДА ВРЕМЕННЫХ РЯДОВ 

В.йоала 

р е з ю м е  

В данной статье приведен метод оценивания коэффициен­

тов полиномиального тренда временных рядов, который на вы­

числительных машинах работает быстрее, чем метод наимень­

ших квадратов. Экспериментально показано, что по точности 

предлогаемый метод сравним с методом наименьших квадратов. 

Этот метод можно применять для повышения производительности 

программ анализа временных рядов на ЭЕМ, особенно, когда 

временные ряды длинные, а также в системах автоматического 

управления, где результаты должны быть вычислен! максималь­

но быстро. 
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