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But I don’t want to go among mad people, Alice remarked.

Oh, you can’t help that, said the Cat: we’re all mad here.
I’m mad. You’re mad.

How do you know I’m mad? said Alice.

You must be, said the Cat, or you wouldn’t have come here.

Lewis Carroll (Alice in Wonderland)



ABSTRACT

All things are difficult before
they are easy

Thomas Fuller

In order to pursue a long and healthy life, efficient intervention strategies are re-
quired to tackle common age-related inflammatory diseases (e.g. cardiovascular
diseases). Though lifestyle factors play an important role in keeping healthy, dis-
ease traits are fundamentally governed by genetic processes. Modern medicine
exploits this knowledge through development of drugs that manipulate disease
progression. As drugs work by targeting gene products, causal genes need to be
identified. The main quality standard for making sure that drugs work as intended
is provided by randomized controlled trials. Unfortunately, these are usually very
time consuming and expensive to carry out, and in some cases might come with
additional considerations like ethics and feasibility. Faster and more robust ap-
proaches could help deliver a breakthrough in tackling disease. Statistical meth-
ods that enable to identify causal gene-trait relationships based on observational
data are very promising in this regard.

In this dissertation, we prioritize causal genes for complex disease-relevant
traits using statistical methods. This is a rapidly evolving field in statistical genet-
ics which has recently been propelled by population sampling in very large scale
by national biobanks. Much of the relevant mathematical theory for causal infer-
ence is yet scattered across different disciplines of science: traditional statistics,
econometrics, genetics, and the theory of causal inference. A major contribution
of this dissertation—next to research contributions published in peer-reviewed
journals—is to harmonize this theory under the same causal framework for the
purposes of gene prioritization. As such, we spend a considerable amount of
effort on introducing concepts and building mathematical structure for causal in-
ference from the ground up. The methodology that we cover is then expanded and
utilized in applied settings on human data.

Robust causal inference necessitates sample sizes in the thousands. As part
of our research contributions, we worked out a likelihood-based causal model
selection approach that allows to prioritize functional genes in smaller samples
(n≈ 500). We applied our method in the analysis of an inflammatory biomarker C-
reactive protein and identified its causal regulatory effect on CD59 expression—
and thus a potential protective effect on healthy cells during immune response. To
widen our reach, we developed an algorithm to identify causal relationships for
arbitrary phenotypic traits among the entire set of genes. Applied on 43 human
traits, we uncovered thousands of novel gene-trait causal links. In a careful analy-
sis of a particularly troublesome genomic region (16p11.2) with many potentially
disease-relevant genes, we could pinpoint causal genes for sexual development
(ASPHD1 and KCTD13). We further set out to explore how much of sex differ-
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ences in traits can be attributed to sex differences in gene expression regulation;
however, power analyses show that larger sample sizes are required to provide
a definite answer to this question. Finally, we show that gene expression-trait
correlations tend not to match up with causal gene-trait relationships, providing
additional proof that correlations should not be used for causal gene prioritization.
We theorize that instead of trait-influencing genes, trait-affected genes could share
a higher overlap with trait-correlated genes.

Statistical methods invariably rely on assumptions and these can be hard to
validate, especially in the context of causality. In our work, we add considerable
conviction to the findings by using multiple orthogonal approaches together with
lab experiments to study the same phenomena, attempting causal reasoning only
after triangulation of evidence. This is crucial to minimize the risk of false pos-
itive results stemming from unverifiable method assumptions that do not hold in
practice. The final verdict of causality needs to be delivered in the lab or by ran-
domized controlled trials. Nevertheless, methods of causal inference hold a lot
of potential in providing promising hypotheses that could be prioritized in fur-
ther studies. The efficiency of computational analyses is key to advancing disease
intervention strategies in unprecedented scale and pace.
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11. Scatter plot of Ẑ-statistics from the EGCUT-based correlation anal-
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1. INTRODUCTION

A goal without a plan is just a wish

Antoine de Saint-Exupéry

One of the major human achievements of the past century has been the dramatic
global rise in average life expectancy which has surged from ~50 to ~80 years in
most developed countries [8,9]. Before 1950s, the increase in life expectancy was
mainly fuelled by decreasing death rates at younger ages while recent advance-
ments have come from decreasing mortality of the elderly (65+ years) [10, 11].
Old age-specific health as measured by disease-free lifespan has improved to-
gether with life expectancy but not equally as fast [8]. A growing concern is the
rising burden at later stages of life due to chronic inflammatory diseases such as
cardiovascular diseases (CVD) or type 2 diabetes (T2D) [11]. While environmen-
tal and lifestyle factors have an important role in the prevention or development of
common diseases, research from twin studies suggests there is also a major herita-
ble component with genetics estimated to contribute roughly half of the variability
of complex traits [12]. Understanding how genetic variation translates to disease
is likely to create unique possibilities for developing efficient clinical interven-
tions to tackle or at least relieve the disease burden at older ages, and improve the
quality of human life. Converting genetic information to medical applications is
thus an attractive prospect in modern medicine.

1.1. Applying genotyping in medical genetics

Sequencing of the first human genome in 2001 [13, 14] and subsequent advance-
ments in the sequencing and genotyping technologies laid a foundation for a rev-
olution in the field of human genetics. International initiatives in the form of
the HapMap Project [15] and the 1000 Genomes Project [16] were taken on by
research communities worldwide to systematically catalogue and provide a ref-
erence for human genetic variation. These resources facilitated genome-wide as-
sociation studies (GWAS) which emerged as powerful tools for uncovering the
genetic basis of complex traits [17]. More than 24,000 associations between
phenotypic traits and genetic variation across the genome from more than 2,500
publications were reported from March 2005 to September 2016 in the GWAS
Catalog, an expertly curated database of published GWAS associations satisfying
quality control criteria [18]. While intervention on disease-associated genetic re-
gions (loci) at a single nucleotide resolution could be theoretically possible with
genome editing techniques, it is currently infeasible for several reasons. First,
the identification of causal loci has proven difficult as close-by genetic regions
tend to share association signals due to genome inheritance patterns [19]. Second,
most common diseases are highly polygenic [20] (possibly omnigenic [21]) and
it would be difficult to modify thousands of genomic loci.
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At the moment, genotyping in clinical setting is mostly useful for diagnosing
monogenic diseases and facilitating cure through gene therapy. It has also been
successfully applied in pharmacogenetics where it is often the case that metabo-
lization of certain drugs is controlled by only a few genes (e.g. Very Important
Pharmacogenes [22]); based on their genotype, patients can be subscribed drugs
that are likely to work well on them and not cause adverse reactions [23]. The
situation is more difficult with polygenic traits, though GWAS have contributed to
genetics-informed personalized and predictive medicine approaches. Especially
popular are polygenic risk scores (PRS) [24] which aggregate the contribution of
many genetic loci toward disease progression and enable disease risk prediction
at an early age. While promising in terms of clinical useability, PRSs are cur-
rently plagued by population-specific biases and inconsistencies of individual risk
estimates [25–28]. Either way, designing novel intervention strategies for most
common diseases is challenging due to polygenicity. Interventions would invari-
ably revolve around elimination of disease risk factors such as reducing stress,
having a healthy diet, exercising regularly, not smoking, etc.—all of which should
be pursued by knowledgeable individuals regardless of their genetic susceptibil-
ity to any disease. This limits the usefulness of genotype-based risk prediction to
informed regular screening of high-risk individuals.

1.2. Identifying intervention candidates for complex diseases

In effect, disease intervention strategies could rather concentrate on downstream
functional consequences of genetic variation. At the same time, it is not enough to
identify genes or gene products that are merely correlated with diseases or quan-
titative traits of interest. While these could sometimes point in the right direction,
associations could also emerge purely due to confounding factors which inde-
pendently affect both the intermediate trait and the final outcome [29–31]. Thus,
the focus should be on finding intermediate traits that causally affect the disease:
gene expression or other molecular traits even further downstream that participate
in biological processes leading to disease development. Doing so could facilitate
intervention by developing drugs that target said traits [32–34].

The preferred standard for causal inference is the randomized controlled trial
(RCT), often utilized in clinical research or pharmacology to test the efficacy of
medical interventions such as new drugs [35]. RCTs work by allocating indi-
viduals into two groups based on intervention strategy—a treatment group that is
subjected to intervention, and a control group that is not—which are subsequently
compared in terms of clinical outcomes. Randomization into groups eliminates
selection bias and confounding, thus enabling causal reasoning [35]. Unfortu-
nately, undertaking RCTs is expensive, time-consuming and in some cases un-
ethical, leading to a narrowness of scope [36]. There is a need for generating
candidate intervention strategies fast and in bulk. This is where bioinformatics
and computational biology enter the fray [37].
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In an effort to understand all the intermediate steps from genetic variation to fi-
nal disease outcome, working with multiple big biological datasets—genome (ge-
netic variations), transcriptome (gene expression levels), proteome (protein abun-
dances), phenome (phenotypic trait values) and other data—is necessary. Such
omics datasets have been increasing at a tremendous pace due to great work
by large national population-based biobank initiatives, including the Estonian
Biobank of the Estonian Genome Centre at the University of Tartu (EGCUT) [38].
To extract novel information out of the data, integration of these datasets and the
use, modification or development of new state-of-the-art statistical methods are
needed [39]. Integrative analysis of omics data constitutes a broad field of study;
in this dissertation, I will concentrate on its subfield—methods facilitating causal
inference. I will introduce both existing approaches and our own developments.
Due to the advanced state of transcriptome studies compared to other intermediate
omics layers between genomics and phenomics, most of the research in this area
has focussed on identifying trait-associated causal genes. This will also be our
focus, though the ideas we cover can be applied to other omics data as well.

1.2.1. Identifying trait-associated causal genes

Teasing out causality based on statistics and computational methods alone is diffi-
cult and invariably rests on several assumptions, some of which are impossible to
verify in practice [40]. Luckily, genotype data provides an anchor for teasing out
causality. As genetic variants are randomly inherited and fixed at birth, there can
be almost no confounding factors to genetic associations (see Subsection 2.2.1 for
some exceptions), and no reverse causation (SNP-trait associations could not be
caused by the trait) [30].

About 90% of disease-associated genetic variants lie outside the coding region
of genes [41]. These variants have no control on the type of protein encoded by
the gene, rather they influence the amount of protein it produces through regu-
lation of its expression levels [42]. Unfortunately, mapping GWAS-significant
variants to functional genes is complicated. It is difficult even to determine causal
variants due to shared association signals, though this can be attempted with fine-
mapping methods (in-depth analysis focused on determining causality in specific
well-defined genomic regions) [43, 44]. A naive approach would link these vari-
ants to causative genes based on closest proximity but it is not always so straight-
forward [45, 46]. Instead, we could hypothesize that understanding the biological
processes leading to complex traits can be aided by overlapping the genetic basis
of gene expression and complex trait variability. As complex trait-associated ge-
netic variants also tend to be involved in gene expression regulation [41, 42, 47],
we can ask whether the same loci underlies both the intermediate and final traits.
While overlap in itself does not mean causality (there are so many associated
variants that overlaps could happen even by chance), there are computational
approaches for gene prioritization based on this premise, termed colocalization
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analyses [48, 49]. Another group of methods designed to identify trait-associated
genes is called transcription-wide association studies (TWAS) [50–52]. These
methods use genotype data to estimate the level of gene expression that is at-
tributable to genetics and then test for its association with complex traits. If fol-
lowed by gene-level fine-mapping, TWAS genes can be prioritized further [53].

Colocalization and TWAS approaches are blind to the strength and direction
of potential causal effects, vulnerable to confounding, and unable to discriminate
causality from pleiotropy [5]. A group of methods designed to overcome these
limitations and formally test for a causal effect between a modifiable exposure
(gene expression) and an outcome (complex disease) is called instrumental vari-
able (IV) analysis, where IV is a variable with a demonstrable causal effect on
the exposure. On the assumption that the IV can influence the outcome only
through the exposure, the exposure has a causal effect on the outcome if and
only if the IV is associated with the outcome. In epidemiology and statistical
genetics, IVs are genetic variants and the IV analysis method is named Mendelian
randomization (MR) after Mendel’s laws of inheritance [30]. Effectively, MR
mimicks the design of RCTs and is thus a natural computational extension to
the preferred standard of causal inference. It has been successfully used to elu-
cidate functional relationships between complex traits and diseases, such as the
causal role of lipids—particularly the detrimental effect of low-density lipopro-
tein cholesterol—on CVD risk [54–56].

1.3. Aims of the dissertation

There are two major goals for this dissertation. First, to provide an overview of the
field of causal inference in statistical genetics with the focus on causal gene dis-
covery. I will attempt to bring together and provide a uniform treatment of related
concepts from traditional statistics, econometrics, genetics, and formal theory of
causality. Popular methods for statistical gene prioritization—both association-
and causality-based—will be introduced and placed in context. While the under-
lying theory of the concepts and methods covered (in chapters 2-6) is known, it is
scattered between several fields of science where related matters are not necessar-
ily approached in the same way. I believe there is great value in integrating similar
research under the same framework, specifically to further understanding. To the
best of my knowledge, this has not been done before in statistics-based causal
gene discovery. The treatment and interpretation of the material presented in this
dissertation is thus entirely my own. I have done my best to approach the topics
in a structured way and from the ground up, ideally to provide a useful teaching
material and resource for the scientists interested in statistical genetics, perhaps
given as a graduate level course in the future.

Second, I will tackle functional genomics in applied settings by tweaking and
utilizing causal inference methods to prioritize candidate genes with a demonstra-
ble causal effect on complex traits and diseases—with the purpose to help bridge
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the gap between pharmaceutical drug discovery and computational approaches
for target identification. I will cover my research and results from Refs. I-V (in
Chapter 7) which have been published in scientific journals and reprinted at the
end of the dissertation. All of the theory covered previously in the dissertation
will serve to make these research contributions understandable and relatable. It
further enables me to be succinct, to the point and purposefully concise in cover-
ing my research results (the full papers are published and easily accessible at the
end of the dissertation).

In particular, the aims of the dissertation are the following:
1. Provide a uniform treatment of gene prioritization methods in the confines

of causality.
2. Develop and exploit causal inference methods to interrogate causal relation-

ships between gene expression and complex traits (Refs. I-V).

(a) Elucidate the cause and effect of gene expression on C-reactive pro-
tein (CRP) in order to explore its functional role in healthy aging and
inflammatory processes (Ref. I).

(b) Identify causal genes mediating sexual development in the 16p11.2
breakpoint (BP) 4 to 5 copy number variable (CNV) region (Ref. II).

(c) Adapt causal inference methodology to detect causal genes for com-
plex traits over the entire transcriptome (Ref. III).

(d) Investigate whether sex-specificity in complex traits can be attributed
to sex-specificity in gene expression regulation, with the focus on un-
covering sex-specific causal genes (Ref. IV).

(e) Show that trait-associated genes tend not to entail causal genes and
instead could overlap more with trait-affected genes (Ref. V).

I start off by introducing the fundamental concepts of biological functioning of
living organisms in Chapter 2 and statistical genetics in Chapter 3. In Chap-
ter 4, I will cover the popular gene prioritization methods discussed above—
fine-mapping, colocalization and TWAS approaches—in more rigorous detail. In
Chapter 5, I will formalize the concept of causality and explore both the chal-
lenges and opportunities within. In Chapter 6, I will introduce different flavours of
MR together with our multivariable MR approach for identifying trait-associated
causal genes (Refs. II, III). Finally, I will discuss our research results in Chapter 7
(Refs. I-V) and underline the importance of triangulation of evidence for making
causal claims.

The dissertation is structured in a way that allows to harmonize related con-
cepts of statistical genetics. Hence, later chapters have abundant references to the
results derived previously.
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2. FUNDAMENTALS OF BIOLOGICAL PRINCIPLES

Speak English! said the Eaglet. I don’t know
the meaning of half those long words, and,
what’s more, I don’t believe you do either!

Lewis Carroll (Alice in Wonderland)

Identifying causal mechanisms in biological systems necessitates basic knowl-
edge about the principles of life and the machinery that keeps it going. After all,
acquiring understanding of the human organism and its functions inevitably needs
to precede any attempt to manipulate disease processes. Only with sufficient in-
formation on the mechanics of disease can pharmaceuticals hope to develop inter-
vention strategies. Domain knowledge is equally important for statistical analyses
that are to help in determining causal relationships. In order to attain the required
level of domain proficiency, I will introduce in this chapter the fundamental con-
cepts of biological functioning of life.

2.1. Cells maintain life using proteins

Cells are the smallest units capable of independent function in any living organ-
ism [57]. A human organism represents a complex coordinated system of trillions
of cells, all responsible for specific tasks to keep it operational [58]. Cells can
be grouped into different types depending on their function (e.g. neutrophils,
basophils, eosonophils and lymphocytes are all types of white blood cells re-
sponsible for various aspects of immune response [1]). Groups of similar cells—
possibly from different but closely related types—that carry out specific functions
are called tissues (e.g. whole blood consisting of red blood cells, white blood cells
and platelets is responsible for transporting vital substances between other tissues
while hypothalamus—a collection of tissues in the brain—coordinates sexual de-
velopment [2]). Each tissue is thus a mixture of different cell types with varying
characteristics. To understand the working mechanisms of cells and tissues, we
need to delve into genetics.

2.1.1. Governed by the central dogma of molecular biology

The function of each cell is encoded in genetic material called the genome. The
latter consists of deoxyribonucleic acid (DNA) molecules (chromosomes) com-
posed of two complementary strands of nucleotides joined together into a double
helix. Each nucleotide in a DNA molecule is composed of one of four different
nucleobases: A – adenine, T – thymine, G – guanine, C – cytosine. These are
the primary building blocks of DNA. The complementary nature of DNA strands
is guaranteed by hydrogen bonds forming only between adenine and thymine, or
guanine and cytosine. As a consequence, both strands taken separately contain
the same biological information—having one reveals the other. Human cells are
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diploid which means that each chromosome comes with a copy, one from each
parent. There are a total of 23 pairs of chromosomes in every human cell: 22
pairs of autosomes and 1 pair of sex chromosomes. An individual set of chro-
mosomes contains approximately 3 billion AT and GC base pairs (bp) stuck onto
each other in sequences [13, 14]. Decoding for the information hidden in these
sequences holds the key to understanding the functioning of life and represents
arguably the greatest challenge in human research.

Each cell in the human organism, irrespective of type, contains the same ge-
netic makeup. The interpretation of this information comes down to the work of
genes—sequences of DNA that encode functional products such as proteins. Dif-
ferent patterns of gene expression—the process of synthesizing gene products—is
the reason why cell types present physiological irregularities [57]. Gene expres-
sion starts with transcription of DNA into ribonucleic acid (RNA). An enzyme
RNA polymerase binds to a specific DNA sequence immediately upstream of the
gene called promoter to initiate transcription. Hydrogen bonds between comple-
mentary nucleobases in the DNA double helix are broken down and one of the
DNA strands is used as a template to create a complementary RNA strand in-
stead: a G, C and A is attached to every C, G and T in the template, respectively,
but thymine is replaced by a less stable nucleobase uracil (U) to pair with A.

If the expressed gene encoded a protein, the newly created RNA molecule
is called messenger RNA (mRNA) and needs to be synthesized into the actual
protein product in a translation event. This process is orchestrated by a macro-
molecule called ribosome that binds to the mRNA strand, locates the starting
sequence and proceeds to attach amino acids onto groups of three adjacent nu-
cleotides (codons) in the strand. The ribosome continues to match nucleotide
triplets with specific amino acids until it reaches a stopping sequence. The chain
of amino acids that is created as a result of translation is exactly what makes up a
protein, or peptide if the chain is short.

In essence, cells need to execute functions to sustain life. These functions
are carried out by gene products. The commands to produce gene products are
encoded in the DNA which crudely serves as a cookbook. Transcription events
create copies of the commands (genes/recipes) which translation events convert to
proteins. Once the genetic information has transferred from DNA through RNA
to making a protein, it cannot be reversed. This principle is captured in the central
dogma of molecular biology (Figure 1).

2.1.2. Proteins’ involvement in disease through gene expression

Proteins are the workhorses of life by having any of myriad of responsibilities
from keeping the structure of cells to transmitting signals between them [57]. To
grasp the magnitude of proteins’ involvement in different functions of the organ-
ism, consider that the human genome has approximately 20,000 protein coding
genes [59]. The number of unique proteins that could circulate in a human or-
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Figure 1: Central dogma of molecular biology. Specific DNA sequences called
protein coding genes are copied into mRNAs which in turn are synthesized into
proteins. This flow of genetic information cannot be reversed. Proteins are re-
sponsible for a vast array of functions in the organism, thus the central dogma
of molecular biology can be characterised by genetic variation leading to down-
stream biological variability.

ganism is even higher because genes can actually be transcribed to produce dif-
ferent RNA sequences—resulting in different proteins—through what is called
alternative splicing. Even this process is regulated by proteins. It is therefore not
surprising that some protein activity can also drive disease progression. Modern
drug-based medicine is built on this premise. Indeed, the majority of approved
drugs on the market today target proteins by manipulating their function in some
way or another deemed counteractive to disease [60].

The first step to drug-based treatment of diseases is identifying proteins that
are involved in disease processes. Pharmaceuticals are constantly in the hunt for
new targets but this can be a slow and expensive undertaking [34]. Bioinformatics
approaches seek to relax these barriers through reliance on computation and statis-
tics instead of manual lab work. Observational data on protein levels is needed for
that purpose. Unfortunately, this data is lacking due to technological limitations
in ascertaining protein abundances [61, 62]. Fortunately, the central dogma of
molecular biology ensures that human biological variability depends on upstream
transcriptomic variability. Furthermore, gene expression measurements are much
more attainable as the similarities between RNA and DNA (Subsection 2.1.1) en-
able to use the same technology developed for DNA sequencing approaches to
sequence RNA as well [62]. Even though variations inside the coding region of
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genes could affect protein structure while not affecting circulating mRNA levels
at the same time, gene expression represents still a good proxy to protein lev-
els as evidenced by the central dogma (Figure 1) [61]. In this dissertation, for
these reasons, we are looking for genes with expression levels causally related
to complex traits to gain insight into disease processes. To facilitate statistical
analysis in this direction—invariably based on observational data from samples
of individuals—we need to introduce the basic vocabulary of genetics with an
emphasis on heredity in living organisms.

2.2. The basics of genetics

More than 99.9% of the genome of any two individuals is estimated to be ex-
actly identical [13]—after all, everyone looks and functions largely the same. The
positions in the genome with bp differences are said to exhibit genetic variation.
If only a single bp is involved, the position is referred to as a single nucleotide
variation (SNV), or single nucleotide polymorphism (SNP) if the substitution is
frequent in a population (at least 1%). Single bp differences of DNA make up
around 90% of all human genetic variations with tens of millions frequent enough
to be considered SNPs [63]. Mutations in the genome can result in bp insertions
or deletions which can cover larger stretches of DNA sequence at a time. If the in-
sertion is a repeat of an existing sequence, it is called a duplication. Variations in
the number of repeats of a DNA sequence, such as due to duplication or deletion
events, are referred to as copy number variations (CNV). The number of bp these
cover could reach into thousands (measured in kilo base pairs (kb), each 1000
bp) or millions (measured in mega base pairs (Mb), each 1000 kb), potentially
resulting in serious consequences to the functioning of the organism.

2.2.1. DNA inheritance patterns

An organism’s DNA is made up of genetic sequences passed down by their par-
ents. DNA inheritance can be characterized by the formation of reproductive cells
(gametes) in the process called meiosis, and the fusion of maternal and pater-
nal gametes during fertilization (Figure 2). During meiosis in diploid germ cells
of parents, a copy is made of each chromosome which is attached to its origi-
nal counterpart, forming a pair of chromatids. The chromatids of homologous
chromosomes can exchange genetic material in a process called crossing over be-
fore dividing into separate gametes, making four haploid cells in total. Finally,
two gametes together with their genetic material, one from each parent, are fused
into a diploid cell from which the new individual develops. The offspring’s DNA
is thus a random combination of the parents’ DNA where the randomness orig-
inates from both chromosomal crossover and selection of gametes to be fused.
The non-deterministic nature of DNA inheritance introduces variability into hu-
man phenotypes, facilitating evolution. It is also the basis for attempting causal
inference with statistical methods (Chapter 6).
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Starting state: homologous (maternal and paternal) chromosome pairs in 
germ cells of a man and a woman

DNA replication: chromosomes are duplicated to form sister chromatid pairs

Chromosomal crossover: non-sister chromatids exchange genetic material

Cell division: homologous chromosomes separate

Gamete formation: sister chromatids separate

Fertilization: random gametes fuse

Figure 2: The formation of offspring DNA involving meiosis in both mother and
father to produce gametes which are subsequently fused during fertilization. This
is a non-deterministic process where the randomness is inherent to crossing over
(recombination of genetic information between non-sister chromatids of homolo-
gous chromosomes) and the determination of gametes to be fused together.

The biological mechanism of reproduction is a closed system but outside influ-
ences could still affect DNA inheritance patterns. For example, people are known
to be more likely to mate with other people within the same geographical region
(giving rise to population stratification [64, 65]) who furthermore have similar
phenotypic characteristics to themselves (a phenomenon called assortative mat-
ing [66]). Population-based samples are not random for these reasons, exhibiting
regularities in geno- and phenotype values (differences between and similarities
within subpopulations) which statistical methods need to account for. Further-
more, there are likely no more than a few crossover events per human chromo-
some (about 1.6 on average) [67]. As a result, parents’ genomes are passed on to
offspring in large chunks with close-by genetic loci likely to be inherited together.
This introduces linkage disequilibrium (LD)—dependence between alleles at dif-
ferent loci in a population—which makes statistical analysis-based interpretation
of genetic underpinnings of complex traits particularly challenging.

2.2.2. Genetic architecture of complex traits

Many different genes can influence the same phenotypic characterizations (traits)
of the human organism (e.g. disease states) [20]. Such polygenic traits cannot
be described by variation in a single genomic region and are deemed complex
as a result. By the omnigenic theory, some traits may even be influenced by
the majority if not all genes in the genome [21]. The reverse also holds—any
one gene can influence multiple seemingly unrelated traits, a phenomenon called
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horizontal pleiotropy. The mechanisms of pleiotropy incorporate instances of a
gene product having various functions (e.g. in separate tissues) or regulating the
expression of several genes but also include alternative splicing [68]. Pleiotropy,
like polygenicity, is ubiquitous among human complex traits [17].

Genes act on traits by synthesizing functional products, a process governed by
the underlying DNA (Subsection 2.1.1). This notion has prompted many studies
to investigate the effect of genetic variation on trait development in genome-wide
analyses. It turns out that the majority (about 90%) of genomic loci associated to
complex traits do not fall into the coding region of genes and thus do not affect
protein structure [41]. Instead, these loci are enriched in regions responsible for
regulation of gene expression levels and thus can affect the amount of protein
produced [42].

A genomic locus that is associated to gene expression levels is called an ex-
pression quantitative trait locus (eQTL). It is referred to as cis-eQTL if it has a
direct effect on the gene, otherwise trans-eQTL. As such, cis-eQTLs have larger
effects on gene expression and tend to be located close to transcription start sites
(TSS) of genes (e.g. within 1 Mb). A good example is a SNP influencing the activ-
ity of a transcription-regulating protein (transcription factor) that either promotes
or suppresses the binding of RNA polymerase to mRNA. Trans-eQTLs tend to be
more distant from respective genes, locating even on different chromosomes. Fol-
lowing the previous example, a SNP that controls the production of a transcription
factor in cis is trans-acting on the gene that this protein affects.

Due to polygenicity, genes across the genome tend to have only tiny individual
effects on the development of complex traits. This makes intervention on disease
complicated. However, there could be a small number of core genes with larger
and more direct effects that other genes are acting upon [21]. This would be in-
dicative of elaborate gene regulatory networks and pathways underlying complex
traits. Indeed, unlinked trait-associated genetic variations often have trans-effects
on the same genes known to play important roles in disease aetiology [69]. Mod-
ulating the activity of a few central genes holds a lot more promise in terms of
disease intervention strategies. Methods of statistical genetics are used to tease
these genes out.
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3. FUNDAMENTALS OF STATISTICAL GENETICS

Give me six hours to chop down a
tree and I will spend the first four
sharpening the axe

Abraham Lincoln

In the modern day and age, statistical analyses are becoming ever important for
scientific discoveries in many disciplines, and epidemiology is no exception. With
tens of thousands of genes and countless number of ways these could interact
with each other or with the environment, teasing out disease-relevant genes with
functional characteristics invariably benefits from the greatly increased speed and
simplicity that computational methods provide for testing hypotheses in bulk. Not
only is the rate of acquiring new knowledge increased with computational anal-
yses, exploiting what we have learned to unravel yet more information works as
an exponential. However, reaching to correct conclusions in all this necessitates
sufficient understanding of the inner-workings of the tools and methods used to
produce the results. To facilitate this understanding, we will first lay the ground-
work in terms of basic and fundamental concepts in statistical genetics; this will
pave the way for grasping the ideas behind more complex methodology introduced
later in the dissertation.

3.1. Genome wide association study

Let Y and Gi, i ∈ {1,2, . . . ,m} =: Im be random variables of a complex trait and
genetic variants (SNPs), respectively. A GWAS is about estimating the effect size
βi of Gi on Y , most often pursued using generalized linear models

g(µ) = β0 +
m

∑
i=1

Giβi,

where µ = E(Y | G1,G2, . . . ,Gm) and g(·) is a link function. An identity link
g(µ)= µ is often used for a quantitative Y and a logit link g(µ)= ln

(
µ(1−µ)−1)

for a binary Y . If Y is a gene expression trait, then the association study is called
an eQTL analysis.

In a finite sample of size n, observations of two SNPs Gi and G j (i 6= j) could
be exactly identical due to LD, resulting in ill-defined effect estimates. Another
problem is that usually n� m and effect estimates are not uniquely defined. A
workaround is to test every SNP Gi independently of other SNPs. As covariates
such as age, sex and genotype principal components (PCs) are often used to de-
crease the variability of Y and reduce residual confounding (due to population
stratification), the following model is used in practice:

g(E(Y | Gi,UUU)) = β0 +Giβi +UUU ′βU , (3.1)
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where UUU = (U1,U2, . . . ,Up)
′ is a random vector of p covariates and βU is a vector

of covariate effects. Though generalized linear models are popular due to com-
putational speed, low memory requirements and ease of use, genotype PCs are
only proxies for population stratification and do not help against cryptic related-
ness [70, 71]. Generalized linear mixed models

g(E(Y | Gi,UUU ,GGG−i)) = β0 +Giβi +UUU ′βU +GGG′−iw, (3.2)

where GGG−i is a random vector of genetic variants without Gi and w ∼ N (0,σ2
wI)

is a vector of corresponding random effects, provide better control for these con-
founding factors and recent methodological advancements have also brought them
into more widespread use [72, 73].

Parameters in GWAS models are estimated from a random sample through
an optimization procedure. For every SNP Gi, the outcome of the operation is
an effect size estimate β̂i and its standard error σ̂i, allowing to test for a null
hypothesis H0 : βi = 0 with a Wald test. This is a general theory and applies
to both of the models specified in equations 3.1 and 3.2 above, irrespective of
whether the outcome Y is quantitative or binary. The differences come in the form
of parameter estimates. Since ordinary linear regression with a quantitative Y is
the most fundamental method and also the most relevant in terms of the research
in this dissertation, we will treat it in slightly more detail in the following.

3.1.1. Ordinary least squares estimator

Consider a GWAS with a quantitative complex trait Y using the linear model 3.1
above. For convenience, let us group all the independent variables together with
the intercept into a single random vector XXX : k×1, such that

Y = β0 +Giβi +UUU ′βU + ε = XXX ′βX + ε, (3.3)

where βX : k× 1 is the corresponding vector of effect sizes and ε denotes for
random fluctuations in the outcome Y not captured by variables in XXX . In terms of
sample realizations within an ordinary linear regression framework, we can write
this model as

y = XβX + ε ,
E(ε | X) = 0

Var(ε | X) = σ
2
ε I

, (3.4)

where y : n×1 is a vector of complex trait observations, X : n×k is a design matrix
and errors ε : n× 1 are assumed to be uncorrelated with conditional mean 0 and
finite variance σ

2
ε . The well-known estimator of βX which minimizes the sum of

squared residuals—the ordinary least squares (OLS) estimator—is the following
linear combination of y:

β̂X = argmin
βX

(y−XβX)
′(y−XβX)

= (X ′X)−1X ′y . (3.5)
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Considering X as fixed is the usual assumption in practice which makes it partic-
ularly easy to find the expected value and variance of β̂X :

E
(
β̂X | X

)
= βX , (3.6)

Var
(
β̂X | X

)
= σ

2
ε (X

′X)−1. (3.7)

The OLS estimator β̂X is thus conditionally unbiased—it is easy to see through
the application of law of iterated expectations (LIE) that it is also unconditionally
unbiased—and according to the Gauss-Markov theorem, it is optimal in the sense
that it has the minimal variance of all other linear unbiased estimators. Though the
variance cannot be calculated exactly if σ

2
ε is unknown, the latter can be estimated

by the sample variance of the residuals as follows:

σ̂
2
ε =

1
n
(y−X β̂X)

′(y−X β̂X). (3.8)

Note that we did not enforce any distributional assumptions on the variables
in model 3.4 to derive the OLS estimator together with its expected value and
variance. However, to facilitate hypothesis testing in finite samples, it is usually
assumed that errors are normally distributed. In that case, β̂X as a linear transfor-
mation of a normally distributed random variable is itself normally distributed:

β̂X | X ∼N
(
βX ,σ

2
ε (X

′X)−1) . (3.9)

Even when the errors are not normally distributed, the relation 3.9 holds asymp-
totically (Subsections 3.2.2 and 5.4.1).

Normality of the parameter estimates makes it straightforward to test for the
null hypothesis H0 : βi = 0 of SNP i ∈ Im using the Wald test. However, the
number of SNPs m to test can be very large, creating a huge multiple testing
burden. Coupled with the observation that individual SNPs tend to have only tiny
effects on the outcome [21], the sample size n needs to be quite large to have any
reasonable chance of rejecting the null hypothesis even if the alternative really
is true (see power calculations in Subsection 6.1.2 below). As a result, GWAS
effect estimates from multiple samples are often combined together to improve
statistical power.

3.1.2. Meta-analysis

While GWAS are usually undertaken by biobanks with population cohort data in
accordance with model 3.4, these efforts are often lead centrally by international
consortia with the purpose of combining together individual effect estimates for
maximal statistical power. This can be done through meta-analysis.

Let β̂ = (β̂1, β̂2, . . . , β̂k)
′ be the effect size estimates of SNP G in k different

studies with standard errors σi for all i ∈ Ik. Each individual estimate is assumed
to fluctuate around the true effect, E

(
β̂i
)
= β∗, the extent of which is specified by
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the within-study variance σ
2
i and potentially—if studies are not directly compa-

rable (e.g. due to ancestry) and thus measure slightly different phenomena—also
by the between-study variance σ

2
τ , such that Var(β̂i) = σ

2
i +σ

2
τ . Effect estimates

can also be correlated with each other if there is sample overlap between stud-
ies. The covariance matrix of the effect size vector, Var(β̂ ) = V , can thus be any
k× k symmetric positive semi-definite matrix. Furthermore, estimates gathered
from published studies of smaller sample sizes can be biased [74]. Considering
all of the above, we have the following model for the relationship between the true
effect β∗ and estimates β̂ :

V−
1
2 β̂ = bias+

(
V−

1
2 1k
)
β∗+ ε,

E(ε) = 0

Var(ε) = I
, (3.10)

where V
1
2 is a matrix satisfying V

1
2 V

1
2 =V (any covariance matrix V can be factor-

ized like that through eigendecomposition) and V−
1
2 is its inverse, 1k is a k-vector

of ones, and bias refers to the small study (publication) bias. Note that model
3.10 belongs to the class of ordinary linear regression models 3.4, thus we can use
the OLS solution 3.5 to provide the true effect β∗ with an unbiased estimate with
variance 3.7 which is optimal since the Gauss-Markov theorem still holds. The
pertinent question remaining is how exactly to construct the covariance matrix V .

We derived model 3.10 in a very general form. Doing so helps to treat simi-
lar subjects in a coordinated manner (see also Section 6.3) but can be overly lax
in some specific cases. For example, GWAS meta-analyses are often based on
independent studies (Vi j = Cov(β̂i, β̂ j) = 0 for i 6= j) not exposed to subjective
inclusion (bias = 0). Under these restrictions, the least squares optimization pro-
cedure on model 3.10 is equivalent to minimizing the sum of inverse variance
(V−1

ii ) weighted (IVW) squares of residuals and the solution conveniently turns
out to be the IVW average of individual effect estimates

β̂IVW =

k
∑

i=1
V−1

ii β̂i

k
∑

i=1
V−1

ii

(3.11)

with accompanying variance

Var
(
β̂IVW

)
=

1
k
∑

i=1
V−1

ii

. (3.12)

Note that the number of studies can be one (k = 1) in which case the results simply
correspond to the estimates of the single cohort.

The meta-analysis can be further simplified if all studies are comparable (e.g.
from the same ancestry) and thus measure the same phenomenon (σ2

τ = 0). In
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this case, the extent of fluctuations of each estimate around the true effect β∗ is
simply characterised by the within-study variance (Vii = Var(β̂i) = σ

2
i ). Validity

of this assumption of effect homogeneity should ideally be ascertained before the
meta-analysis takes place but its plausibility can also be investigated retrospec-
tively. Indeed, since effect estimates β̂i were assumed to be normally distributed
(relation 3.9) and independent (IVW solution 3.11), the sum of squares of k stan-
dardized deviations of the estimates β̂i from the true effect β∗ follows a chi-square
distribution with k degrees of freedom. The true effect remains unknown but can
be replaced by its estimate β̂IVW . Doing so spends one degree of freedom and
leads to a test statistic called Cochran’s Q [75]:

Q =
k

∑
i=1

(
β̂i− β̂IVW

)2

σ2
i

∼ χ
2
k−1. (3.13)

Testing for the hypothesis of no heterogeneity (H0 : σ
2
τ = 0) is equivalent to test-

ing whether Q is significantly different from its expected value k− 1. Excess
values of Q are indicative of Vii = Var(β̂i) = σ

2
i +σ

2
τ being a more plausible de-

composition of the variance of β̂i around β∗. The between-study variance σ
2
τ

can be estimated from this excess, provided it is brought to the same scale with
within-study variances (for details, see the DerSimonian and Laird method [76]).
However, estimates β̂i deviating too much from the expected normal distribution
N (β∗,σ

2
i ) could also be eliminated from the analysis as outliers.

If small study (publication) bias cannot be ruled out then the intercept in model
3.10 could be non-zero and should thus be allowed. The model with the in-
tercept is called Egger regression [74] and provides a bias-free estimate of the
true effect β∗.

3.2. Summary statistics

In GWAS, the meta-analysis is repeated for every SNP Gi, i ∈ Im. The resulting
effect sizes β̂i and variances V̂ar(β̂i) are collectively referred to as GWAS sum-
mary statistics and are usually published together with corresponding Z-scores
Ẑi = β̂i/

√
V̂ar(β̂i). Associations are deemed statistically significant and subject

to further examination if Z-scores are greater than some pre-specified threshold.
Standard practice in GWAS is to assume 106 effective number of (independent)
SNPs and thus require |Ẑi|> |Φ−1(2.5×10−8)|, where Φ is the cumulative distri-
bution function of the standard normal distribution.

Many downstream applications developed for gene prioritization and causal
inference (among others) require only summary statistics as input. This is very
useful because phenotype data is not needed in the process. Summary statistics
can easily be shared—there are less privacy concerns as individuals are not easily
identifiable based on summary statistics. Thus data can be reused across different
research groups, for different analyses and purposes.
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3.2.1. Standardization

To simplify the interpretation of effect estimates and the math involved in these
methods, summary statistics—if not already calculated on standardized data—are
often modified to correspond to variables with zero mean and unit variance. Let
Gs

i = s(Gi−c) be a random variable of a genetic variant that has been shifted and
scaled by scalars c and s, respectively. Denote by β

s
i the effect of Gs

i on Y and by
β

s
0 the new linear regression intercept. Then model 3.3 is

Y = β
s
0 +Gs

i β
s
i +UUUβU + ε

=
(
β

s
0− csβ

s
i
)
+Gi

(
sβ

s
i
)
+UUUβU + ε

= β0 +Giβi +UUUβU + ε.

As βi corresponds to the effect size of the original genotype Gi on Y , we can

express sample estimates β̂
s
i = 1

s β̂i and σ̂
β̂ s

i
= 1

s σ̂
β̂i

. Note that β̂i
σ̂

β̂i
=

β̂ s
i

σ̂
β̂ s

i

, yielding

the same Z-score value Ẑi. It is easy to see that we could have also perturbed Y
(or any element of UUU for that matter) without changing Ẑi. Thus ordinary linear
regression is invariant under shifting and scaling. Standardization of Gi to unit
variance means that 1

s is the standard deviation of Gi. If the original GWAS sample
should not be available to estimate this, reference data from projects such as 1000
Genomes [63], HapMap [77] or UK10K [78] can be used. The standard deviation
of Y could similarly be estimated from publicly available data for many traits.

Though we have so far allowed covariates in the model, it is only possible
if we have individual-level data. The availability of covariate information can
not be assumed in summary statistics-based method development. Thus it is often
assumed that Y was adjusted for covariates prior to association testing with genetic
variants. In simple linear regression with SNP Gi, we can apply the least squares
formula for variance 3.7 together with the maximum likelihood (ML) estimate 3.8
(assuming normal errors) for the residual variance to derive the estimated effect
of standardized Gi on standardized Y :

β̂
s
i = Ẑiσ̂β̂ s

i
= Ẑi

√
1−
(
β̂ s

i
)2

n
=⇒ β̂

s
i = sign

(
Ẑi
)√ Ẑ2

i

n+ Ẑ2
i
. (3.14)

Thus we need not estimate standard deviations of variables to measure the change
of Y in standard deviations per standard deviation change in Gi.

3.2.2. Binary outcome

The results above are derived for linear regression but binary traits are usually
modelled via logistic regression using logit as a link function:

logit(p) = ln
p

1− p
= β0 +Giβi , (3.15)
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such that Y | Gi ∼ B(1, p). In this case, the least squares solution 3.5 does not
apply, in fact logistic regression has no closed form solution. Note however that
Y is a binary variable encoding for the presence of a disease. It is reasonable to
assume that contracting the disease is not a simple on/off process. Instead, a con-
tinuous liability to the disease is assumed underneath and the disease is triggered
if the liability exceeds a certain threshold. We can formalize this concept with a
liability threshold model:

L = β0 +Giβi + ε , (3.16)

where L is a latent random variable for the liability and ε ∼ Logistic(0,1) with a
cumulative distribution function Fε(x) = 1

1+e−x . Using an indicator variable, we
can write Y = 1L>0 and derive

P(Y = 1) = P(β0 +Giβi + ε > 0)

= 1−Fε(−(β0 +Giβi))

=
1

1+ e−(β0+Giβi)
,

which corresponds to the logistic regression model 3.15 (through the same reason-
ing, it would correspond to probit regression if errors ε were normally distributed).
It means we can treat parameter estimates in logistic regression as parameter es-
timates in the liability threshold model 3.16 [79] with the least squares solution
3.5; even normality of the estimator can be assumed to hold asymptotically (Sub-
section 5.4.1). Thus all summary statistics-based solutions can be applied on the
effect estimates of both linear and logistic regression.

In the following, when dealing with parameter estimates from logistic regres-
sion in terms of logarithm of odds ratio (log-OR), we will simply assume to work
on the liability scale, even though transformations between log-OR estimates of
logistic regression and OLS-estimates of linear regression also exist [80]. Thus
we will consider only linear regression models from now on.
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4. ASSOCIATION BASED GENE PRIORITIZATION

Each problem that I solved became
a rule which served afterwards to
solve other problems

René Descartes

Computational analysis-based strategies of prioritizing genes for follow-up stud-
ies as candidates for disease intervention all depend on the concept of GWAS as
the central building block. While GWAS on its own has fallen short in terms of
providing mechanistic understanding of disease processes [46], its basic method-
ology has been extended to answer questions such as which genetic variants in
the genome are functionally disease-relevant (fine-mapping), whether these vari-
ants simultaneously regulate gene expression traits (colocalization), and could we
possibly approximate gene expression based on these variants to uncover putative
disease-relevant genes in association studies with complex traits (TWAS). These
questions do not facilitate answers in terms of causal gene-trait relationships, thus
we will purposefully refrain from using formal causal language in this chapter.
However, answers to these questions should at least get us closer to causal discov-
eries and we will explore that in the following sections.

4.1. Fine-mapping

Statistically significant SNPs from GWAS typically group together into larger ge-
nomic regions due to LD (Figure 3). A simple follow-up strategy for GWAS is to
assume that each of these regions harbours a single causal variant—the one with
the greatest |Ẑi|—and other variants are simply correlated with it. The causal vari-
ant could then be linked to a target gene with a TSS closest to it. This strategy,
while seemingly naive, works surprisingly well at identifying true causal genes—
at least in metabolite studies where experimental knowledge of functional rela-
tionships is abundant [81]. How well this strategy performs in studies of down-
stream complex traits where the association signals are generally much weaker
is less clear and harder to validate. At least based on computational studies inte-
grating eQTL and GWAS variants, the majority of trait-associated putative causal
genes were not closest to GWAS loci [45].

It is also possible for a GWAS locus to harbour multiple causal variants. Let
ξ : m× 1 be a binary causal configuration vector where ξi = 1 indicates that the
i-th SNP is causal. A comprehensive approach to estimating ξ would be to con-
sider every possible combination of SNPs in a GWAS locus, train corresponding
models and choose the one performing best based on some evaluation measure
(e.g. Akaike criterium or coefficient of determination on hold-out data). This is
computationally demanding and can even be infeasible if m is large since there are
2m combinations of SNPs. Furthermore, ξ is thought to be sparse—an assumption
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Figure 3: LocusZoom-derived [82] Manhattan plots depicting strengths of asso-
ciation of genetic variants with age at menarche (top) and INO80E expression
(middle) in the 16p11.2 region (bottom). Each point corresponds to an associa-
tion with a single SNP and is colored based on LD-correlation (r2) with the lead
SNP (black). The red and blue regions correspond to clusters of closely related
GWAS and eQTL hits, respectively.

which general linear models do not necessarily account for [44]. Sparsity can be
enforced by regularized regression but high LD among SNPs can result in a model
which includes only non-causal SNPs [19].

4.1.1. Stepwise conditional analysis

The configuration vector ξ can be estimated by a forward selection heuristic in a
stepwise application of the regression model 3.1—starting from the model with
the most trait-associated SNP which is always assumed to be causal, other SNPs
in the locus are selected based on their association P-values in the presence of
previously selected SNPs. In particular, if we denote by GGG the set of all genotypes
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Gi, then the set of selected SNPs at the i-th iteration is

GGG(i) =


argmax

G j∈GGG
|Ẑ j|, i = 1

GGG(i−1)∪ argmax
G j∈GGG\GGG(i−1)

|Ẑ j|, i > 1
,

where Z-scores Ẑ j of SNPs G j are the original GWAS Z-scores from models with
a single SNP for i = 1 but for i≥ 2—by taking the liberty to treat the set GGG(i−1) of
random variables as a random vector—are calculated from the model below:

Y = Giβi +GGG′(i−1)β(i−1)+ ε. (4.1)

The procedure is stopped once the maximal |Ẑ j| in an iteration does not exceed a
pre-specified threshold. As a result, we have ξ̂i = 1Gi∈GGG∗ , where GGG∗ is the final set
of variables.

Stepwise models can also be implemented for summary statistics. Consider a
random vector of centered and scaled genetic variants GGG = (G1,G2, . . . ,Gm) and
let G : n×m be the corresponding design matrix. The OLS solution 3.5 enables to
express (joint) effect estimates β̂J from the multiple regression model Y =GGGβJ +ε

in terms of (marginal) GWAS effect estimates β̂i from simple linear regression
models Y = Giβi + ε as follows [83]:

β̂J = Σ
−1

β̂M, (4.2)

Var(β̂J) = σ
2
εJ

n−1
Σ
−1, (4.3)

where β̂M = (β̂1, β̂2, . . . , β̂m) and Σ = G′G is the correlation matrix of SNPs. The
latter can be estimated from an external reference panel if the original sample
should be unavailable. Since OLS residuals are uncorrelated with regressors by
design, the ML estimate for the error variance 3.8 in the joint model is

σ̂
2
εJ
=

1
n
(y−Gβ̂J)

′(y−Gβ̂J)

=
1
n
(y′y− β̂

′
J(G

′G)β̂J)

= 1− β̂
′
JΣβ̂J , (4.4)

Thus we can calculate Z-scores in the joint model using only quantities which we
know or have access to. Summary statistics-based stepwise models as described
above have been implemented in GCTA software [84].

Stepwise models belong to the class of greedy algorithms which work by mak-
ing a locally optimal choice at each iteration. Such heuristics are straightforward
to implement and can sometimes work but may miss the global optimum. Fur-
ther, it is not clear what should be the Z-score threshold to keep adding SNPs in
the model. Using a genome-wide threshold may result in a lack of power to detect
secondary signals and true causal variants but relaxing the threshold can induce
unwanted side-effects in terms of inclusion of non-causal SNPs [19].
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4.1.2. Bayesian fine-mapping

Specifically designed for fine-mapping purposes are Bayesian variable selection
methods which work by estimating the posterior probability p(ξ | y,G) of any
causal configuration vector ξ , given that we have observed data (y,G). The spar-
sity of the true ξ can be enforced via prior distribution p(ξ ) and the probabilistic
outcome leads to a natural interpretation of the solution which is advantageous
over competing methods. Making use of the Bayes formula,

p(ξ | y,G) =
p(y | ξ ,G)p(ξ | G)

p(y | G)
∝ p(y | ξ ,G)p(ξ ), (4.5)

where proportionality holds because p(y | G) does not depend on ξ . The prior
p(ξ ) can simply assume each SNP equally likely to be causal and be defined
in terms of the probability to observe any total number of causal SNPs [43, 44]
but may also incorporate additional information in terms of functional or other
annotations to prioritize certain causal variants [85,86]. We do not know the exact
form of the likelihood p(y | ξ ,G) but we can marginalize over parameters β by
assuming normality y | (β ,G) ∼ N (Gβ ,σ2

ε I) in the linear regression model 3.4;
and define β | (ξ ,G) ∼ N (0,Λξ ), where Λξ is a diagonal matrix where the i-th
element on the diagonal is some pre-specified positive value if ξi = 1, otherwise a
small constant close to zero such that Λξ would be invertible. Following chapter
2.3.3 in Bishop [87],

p(y | ξ ,G) =
∫

p(y | β ,G)p(β | ξ ,G)dβ

∝ exp
(
−1

2
y′(σ2

ε I +GΛξ G′)−1y
)
, (4.6)

which corresponds to the probability density function of N (0,σ2
ε I +GΛξ G′).

In order to express likelihood 4.6 in terms of summary statistics, we can use
the Woodbury matrix identity to rewrite the matrix inverse and then make use of
equations 4.4 and 3.5 to express all terms including y as some functions of β̂J .
Doing so, we obtain

p(y | ξ ,G) ∝ exp
(
−1

2
β̂
′
J

(
V−1 +V−1(V−1 +Λ

−1
ξ
)−1V−1

)
β̂J

)
= exp

(
−1

2
β̂
′
J(V +Λξ )

−1
β̂J

)
, (4.7)

where the equality follows after once again applying the Woodbury matrix identity
and V is a shorthand for Var(β̂J) from equation 4.3. The exponent in 4.7 corre-
sponds to the probability density function of N (β̂J ; 0,V +Λξ ) and can be calcu-
lated based on summary statistics alone. Some examples of software where such
summary statistics-based fine-mapping has been implemented include CAVIAR
[43], FINEMAP [44], and PAINTOR [86].
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Knowing the posterior probability of any causal configuration vector makes
it possible to estimate the true ξ as the one with maximal probability. Bayesian
fine-mapping studies usually go a step further and report sets of genetic variants
that contain all the causal variants with some probability. These so-called credible
sets are used to prioritize causal SNPs in follow-up studies.

4.2. Colocalization

Fine-mapping improves the identification of causal SNPs in genomic loci but
these variants could be linked to genes only based on physical proximity to TSS—
unless there was additional data. Since most GWAS-associated loci are found in
gene regulatory regions (Subsection 2.2.2), it is reasonable to assume that gene
expression plays the role of a mediator between the causal variants and complex
traits. Thus integrating knowledge from transcriptomics data should enhance our
chances of teasing out functional genes as complex trait-associated SNPs that are
also associated with gene expression levels (such SNPs are called eQTLs) are
likely to manifest their effects on respective traits through regulation of corre-
sponding genes. However, even if significant loci in the eQTL and GWAS studies
overlap, LD patterns make it difficult to interpret whether the same causal vari-
ant is responsible for both signals (Figure 3). Colocalization analyses have been
devised to answer precisely this question.

Let ξ
(c) : m× 1 be the causal configuration vector of a GWAS locus for the

complex trait of interest. Let ξ
(e) : m×1 be the causal configuration vector of the

same locus in the eQTL study of some gene. Formally, if there is a shared causal
variant in any of the i ∈ Im positions of the locus such that ξ

(c)
i = ξ

(e)
i = 1, then

we have support for a causal interpretation between the gene and complex trait.

4.2.1. Bayesian colocalization

Colocalization can be thought of as an extension of Bayesian fine-mapping to
multiple datasets, thus the underlying theory is very similar and based on identi-
fying the posterior probability of observing a shared causal variant, given both the
eQTL and GWAS data. Since eQTL and GWAS studies are usually performed on
independent samples, we can use the independence property of the joint probabil-
ity and write

p
(

ξ
(c)
i = 1,ξ (e)

i = 1 | D(c),D(e)
)
= p

(
ξ
(c)
i = 1 | D(c)

)
p
(

ξ
(e)
i = 1 | D(e)

)
,

(4.8)
where D(c) = (y,G)(c) and D(e) = (y,G)(e) denote the observed data in GWAS and
eQTL studies, respectively. The probability in 4.8 is called colocalization poste-
rior probability (CLPP). There can be many causal configuration vectors with a 1
in the i-th position, thus we can write

p(ξi = 1 | D) = ∑
ξ :ξi=1

p(ξ | y,G) . (4.9)
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Note that the summands in the equation above are exactly the same as defined in
equation 4.5, thus we can reuse all the theory developed in Subsection 4.1.2 to
calculate the CLPP for any position i in equation 4.8. The software eCAVIAR
[49], a direct generalization of CAVIAR, does exactly that. In this case, the gene
is classified as functional for the complex trait and targeted for additional studies
if any of the variants in the locus achieve a CLPP value greater than some pre-
specified threshold.

We can simplify the analysis above if we assume at most one causal variant
in the eQTL data and at most one causal variant in the GWAS data. Then the
sum in equation 4.9 would have exactly one term and there could be no causal
configurations ξ which could satisfy both ξi = 1 and ξ j = 1 if i 6= j (i.e. these
events would be mutually exclusive). This would enable to calculate the posterior
probability of a shared causal variant in any position of the locus, deciding for a
shared causal variant if the sum

∑
ξ :

m
∑

i=1
ξi=1

p
(

ξ | D(c)
)

p
(

ξ | D(e)
)

exceeds some pre-specified threshold. The simplified approach is implemented in
a popular tool called COLOC [48].

4.2.2. Non-Bayesian colocalization and ties to causality

Colocalization methods do not assign a causal effect size nor provide a formal test
of causality between two traits. By definition, a shared causal variant between
the traits can simply exhibit horizontal pleiotropy or happen as a result of reverse
causation (e.g. the complex trait might have a causal effect on the gene expression
trait, not vice versa as we might expect). However, there is a useful non-Bayesian
alternative to colocalization analysis—based on exploiting the homogeneity of
effect estimates in a locus with a single shared causal variant—which does more
in terms of causality.

Consider a locus with a single causal variant G∗, shared between traits, and
let Gi be a distinct variant with LD-correlation ri∗ > 0. It follows that in an un-
confounded multiple regression model with both of these variants, the true effect
of Gi is 0 (see Subsection 5.2.1 and Subsection 5.3.1 below). Unbiasedness 3.6
of OLS effect estimates enables us to exploit relationship 4.2 between joint and
marginal effects—without loss of generality, assume both variants are centered
and standardized to unit variance—to express the true marginal effect of Gi in
terms of the true marginal effect of G∗ as βi = β∗ri∗. Crucially, this relation holds
for the summary statistics of any trait, thus the ratio of GWAS and eQTL true
marginal effects of different genetic variants Gi are equal (or homogeneous) due

to LD-correlation canceling out, bi =
β
(c)
i

β
(e)
i

= β
(c)
∗ ri∗

β
(e)
∗ ri∗

= b∗. Since b̂i are approximatey
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normal (see 5.13), we can approximate as follows [88]:

d̂i = b̂i︸︷︷︸

=

β̂
(c)
i

β̂
(e)
i

− b̂∗︸︷︷︸

=

β̂
(c)
∗

β̂
(e)
∗

, d̂i ∼N
(

0,Var(d̂i)︸ ︷︷ ︸

=

Var(b̂i)+Var(b̂∗)−2Cov(b̂i, b̂∗)

)
, (4.10)

where the components of Var(d̂i) can be derived using the Delta method (see
Appendix A for the derivation).

Testing for colocalization is equivalent to testing for homogeneity in estimates
d̂i of genetic variants in the locus of interest. Recall that we encountered a similar
problem in Subsection 3.1.2 when testing for the homogeneity of effect estimates
in meta-analysis. Back then we used the Cochran’s Q statistic 3.13 for this pur-
pose but it assumed independent estimates while Cov(d̂i, d̂ j)—each component
of it is of the form Cov(b̂·, b̂·) and can thus be derived using the Delta method
(see Appendix A for details)—can be non-zero. We can nevertheless follow the
same procedure by standardizing d̂i to Z-scores and then taking the squares be-
fore summing together. Doing so results in a test statistic for the heterogeneity in
dependent instruments (HEIDI, where instrument means genetic variant)

THEIDI = ∑
i∈Im\{∗}

d̂2
i

Var(d̂i)
, (4.11)

which follows a generalized chi-squared distribution and does not have a closed
form, but can be approximated by numerical methods [88].

Similarly to Bayesian colocalization methods, using the HEIDI test statistic
4.11 to test for colocalization provides no information about the causal effect size
nor even the direction of it. However, in constructing THEIDI we relied heavily on
quantities b̂i. It turns out that under some assumptions, b̂i is actually an estimate
for a causal effect bi between the two traits. This is a useful observation and we
will treat this in great detail in later chapters.

4.3. Transcriptome-wide association studies

Remember that genome-wide analyses go together with huge multiple testing bur-
dens due to the sheer number of genetic variants. Controlling the type 1 error
(T1E) rate reduces statistical power proportionally to the number of performed
tests, making it hard to detect weaker signals as a consequence. This has down-
stream effects on colocalization analyses since testing for shared causal variants
makes sense only if significant results were found in both GWAS and eQTL stud-
ies. Reducing the multiple testing burden should thus have obvious benefits; the
question remains how to do so in a statistically informed manner. TWAS attempts
it by first aggregating genetic information on the gene level before proceeding
with the association analysis [89]. Since there are two orders of magnitude fewer
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effective number of independent genes than SNPs, this arrangement looks promis-
ing in terms of identifying more functionally relevant genes.

Consider observations y : n×1 of an outcome random variable Y , x : n×1 of
a gene expression random variable X , and G : n×m of a random vector GGG : m×1
of genetic variants. Without loss of generality, let us assume that all variables are
centered and scaled to unit variance (if not, we can always do that). A TWAS can
effectively be thought of as a two-stage regression analysis. In the first stage, gene
expression levels are approximated by a linear combination of genetic variants:

x̂ =
m

∑
i=1

wiG·i = Gw, (4.12)

where w = (w1,w2, . . . ,wm)
′ is a weight vector representing eQTL effect sizes

from any form of (penalized) regression analysis. In the second stage of TWAS,
these approximations are tested for an association with the outcome in a linear
regression model, yielding OLS estimates 3.5 and 3.7 for the effect size and vari-
ance, respectively:

β̂X̂Y = (x̂′x̂)−1x̂′y, (4.13)

Var
(
β̂X̂Y

)
= σ

2
ε (x̂
′x̂)−1. (4.14)

The Wald test can then be used to test for the significance of association between
the gene expression trait X and outcome Y .

Note that TWAS as presented above requires individual-level data (e.g. soft-
ware PrediXcan [50]). However, it is straightforward to extend the procedure to
work on summary statistics. Let β̂M = (β̂1, β̂2, . . . , β̂m)

′ be the vector of (marginal)
GWAS effect sizes of individual genetic variants on the outcome and let Σ = G′G
denote the LD-correlation matrix of respective variants. Plugging equation 4.12
into equations 4.13 and 4.14 leads to a derivation of these formulae based on those
quantities (S-PrediXcan [52]):

β̂X̂Y = (x̂′x̂)−1x̂′y =
w′G′y

w′G′Gw
=

w′β̂M

w′Σw
, (4.15)

Var(β̂X̂Y ) = σ
2
ε (x̂
′x̂)−1 =

σ2
ε

w′G′Gw
=

σ2
ε

nw′Σw
. (4.16)

In order to complete the derivation in terms of the error variance σ
2
ε , note first

that the second stage regression in TWAS can be written as a multiple regression
model Y = G′wβX̂Y + ε . This observation enables us to make use of equation 4.4
to derive the residual variance as follows:

σ̂
2
ε = 1− (wβ̂X̂Y )

′
Σ(wβ̂X̂Y ) = 1− (w′β̂M)2

w′Σw
.

We could also take σ
2
ε ≈ 1 if genetic variants (SNPs) described only a tiny portion

of gene expression variability. Such a simplification allows to test for the sig-
nificance of TWAS effects (i.e. whether the null hypothesis H0 : βX̂Y = 0 holds)
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through a linear combination of GWAS Z-scores ẐM = (Ẑ1, Ẑ2, . . . , Ẑm) as follows:
ẐX̂Y = w′ẐM√

w′Σw
∼ N (0,1) [51]. This result is not only convenient but also works

very much like summary statistics imputation methods [90, 91]. After all, we are
also trying to exploit available information to impute related quantities.

4.3.1. TWAS for implicating causal genes

Note that gene expression approximations 4.12 are simply genetically predicted
values of X , or in other words—genetic risk scores. Since TWAS investigates
the trait-relevance of genetically informed expression, there might be a desire to
consider significant associations as causal relationships, exactly like in GWAS.
However, while the design of TWAS indeed makes reverse causality unlikely—
identifying eQTLs in the first step biases away from this—causality can actually
be claimed only when genetic variants satisfy certain assumptions, e.g. Gi should
have no horizontal pleiotropy in terms of X and Y [92]. Gene co-regulation as a
form of pleiotropy, such as due to sharing or having LD-correlated eQTLs with the
true causal gene, might result in non-causal genes falsely showing up as TWAS
hits. To correct for this bias, gene-level fine-mapping—based on the same theory
as presented in Section 4.1 but focusing on the PIPs and credible sets of genes,
not SNPs—has recently been proposed; however, more work is said to be needed
[53]. Furthermore, the second stage regression in TWAS does not account for
the uncertainty in predictions x̂. Though not without its merits, TWAS can thus
be considered an ad hoc method for identifying causality, or even invalid (see
Subsection 6.2.3 for more details).

For reasons brought above, causal reasoning based on TWAS can be danger-
ous. Somewhat paradoxically however, TWAS greatly resembles MR, a method
of instrumental variables which is specifically designed for identifying causal re-
lationships in genetics. Indeed, if wi in 4.12 were calculated from a multiple
regression model, the TWAS estimator 4.13 would be equal to a two-stage least
squares estimator 5.17, the go-to estimator in MR for implying causality. In order
to understand what is going on, we will properly treat the concept of causality in
the subsequent Chapter 5, followed by an extensive focus on MR in Chapter 6.

41



5. CAUSAL INFERENCE

We do not know a truth without
knowing its cause

Aristotle

We have thus far introduced several approaches through which causal reasoning
is regularly attempted in genetics research. While the methods we have covered
have been used to implicate gene targets in the past [49, 53, 93–95], they are not
formal tests of causality between gene expression and complex traits. In order to
do better, we must first define what we mean by causality.

5.1. Causal relationships

Consider a biological system represented by a set of random variables V and the
following cause-effect relationships between them:

V = fV (parents(V ),εV ) for all V ∈ V,
{εV : V ∈ V} are mutually independent,

(5.1)

where parents(V ) and εV respectively refer to all the causes of V (also called
the effect) included and not included in V , and fV denote for arbitrary functions.
The mutual independence of εV ensures that V entails all the relevant information
for characterising the relationships between the variables in the system. While
feedback loops between variables are possible in reality, we assume acyclicity
to facilitate statistical inference and it makes sense if we treat each variable in
reference to time—loops could not occur in this case and the same phenomenon
at a later time point would simply have to be denoted differently.

Cause-effect (causal) relationships imply a direction of effect whereby one
event (the cause) precedes the other (the effect) [40]. For example, a disease,
once severe enough, leads to a symptom; by the central dogma of molecular biol-
ogy, mRNA molecules injected into a human organism will be translated to more
proteins but added proteins will not be transformed into respective mRNAs (Sub-
section 2.1.1). Put simply, a causal relationship cannot be reversed. This is a re-
quirement mathematical equations do not accommodate for. We could escape this
restriction by using a different notation to describe directionality between vari-
ables (e.g. assigment symbols ":=" or "←" instead of the equality "="). Instead,
a common practice to facilitate causal language is to complement mathematical
equations with graphical models.

5.1.1. Directed acyclic graphs as causal models

Let us represent the presence of a cause-effect relationship between any two vari-
ables in V as a directed edge, and let E be the set of all such edges. The biological
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system 5.1 can then be depicted as a directed acyclic graph (DAG) G = (V,E),
where the inclusion of εV is made redundant due to the assumption that variables
in V can only be related with each other through directed edges in E . The di-
rected edges are represented as arrows in the DAG—the parents of V ∈ V have an
outgoing arrow to V while the latter has incoming arrows from its parents.

The cause-effect relationships in E are also called parent-child relationships.
In similar (kinship) fashion, variables up- and downstream of V are called its an-
cestors and descendants, respectively. A causal relationship from X ∈ V to Y ∈ V
implies a sequence of arrows pointing from X to Y in the DAG. The relationship
is direct if there is a directed edge X →Y in E (i.e. X is a parent and Y is a child),
otherwise it is mediated by other variables and thus indirect (i.e. X is an ancestor
and Y is a descendant). In effect, a DAG is a graphical representation of causal
relationships between random variables in a causal system (an example DAG is
brought in Figure 4a). When referring to a DAG in the following, we mean the
underlying causal system it represents.

5.1.2. Intervention in the causal system

To decipher causal relationships in the (biological) system represented by the
DAG, we need to be able to detect changes to the system due to external events.
This comes down to evaluating the probability to observe any particular state of
variables of the DAG. Since the value of every random variable Vi ∈ V depends
only on its parents’ values, the probability distribution of Vi conditional on the ran-
dom vector VVV (−i) of all other variables in V satisfies local Markov property [96]:

p
(
Vi = vi |VVV (−i) = vvv(−i)

)
= p(Vi = vi | parents(Vi)).

The joint probability distribution of all variables
(
Vi ∈ V : i ∈ I|V|

)
encoded by G,

by applying the chain rule of probability, is thus

p(G) := p
(
V1 = v1,V2 = v2, . . . ,V|V| = v|V|

)
=
|V|

∏
i=1

p(Vi = vi | parents(Vi)) . (5.2)

The probability 5.2 is also called pre-intervention probability [40]. An external
intervention on any of the variables of the DAG (e.g. administration of a drug)
perturbs the DAG and thus affects the rule to calculate the joint probability of the
variables encoded by it.

We define an intervention on a random variable X ∈V as an act which overrides
the effect of all factors affecting the variable and imposes on it a value x, such that
X = fX(parents(X),εX) becomes simply X = x. Following Pearl [97], we denote
the intervention by do(X = x). Since the value of X is artificially fixed, all its
incoming edges (parents) in the corresponding DAG G are removed (Figure 4b).
The probability 5.2 becomes

p(G | do(X = x)) = ∏
Vi∈V
Vi 6=X

p(Vi = vi | parents(Vi)) =
p(G)

p(X = x | parents(X))
(5.3)
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(a) (b) (c)

Figure 4: (a) Causal graph depicting a direct causal effect between X and Y , a
mediator M, and a confounder U . (b) The same graph depicting an external in-
tervention of setting X to a value x (i.e. do(X = x)); the variable X becomes
a collider between the intervention and its parent U . (c) Modified causal graph
where the intervention do(X = x) has forced the value of X to x and thus overrid-
den the effect of U on X ; the post-intervention probability of the variables is to be
calculated from the modified graph.

and is called post-intervention probability [40].
It follows immediately from equation 5.3 that should variable X have no par-

ents, the post-intervention probability p(G | do(X = x)) would be exactly equal
to the conditional probability p(G | X = x). In general, this need not be the case.
To grasp the difference between the two quantities, consider that the latter ex-
amines the probability to observe a particular variable state among instances of
X = x while the former examines it after imposing a universal rule X = x over
the entire sample space. In an example with two binary random variables X and
Y coding for a treatment and a disease, respectively, p(Y = yes | X = yes) rep-
resents the probability to observe a disease among those who got the treatment
but p(Y = yes | do(X = yes)) represents the probability to observe a disease had
everyone got the treatment. It makes sense that the two quantities are equal only if
treatment assignment was not systematically influenced by external factors. Con-
ditional probabilities are associative in nature; to obtain causal effects, we need to
work with post-intervention probabilities.

5.1.3. Intervention’s effect on the outcome—the causal effect

In general, we are not interested in possible changes to the state of variables of
the entire causal system, rather we are interested in quantifying the intervention’s
effect—the causal effect—to a particular variable. To establish causality between
any random variables X and Y , we would need to determine whether different
interventions on X would result in perturbations in Y :

p(Y = y | do(X = x1)) 6= p(Y = y | do(X = x2)) (5.4)

for some values x1,x2 of X and y of Y . Of course, in practice it is not possible
to enforce the value of X over the entire sample space and observe what hap-
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pens. The do-operator is thus a fictional concept. Fortunately, causality can still
be determined in some cases and under some assumptions. We would just need to
express p(Y = y | do(X = x)) in terms of quantities we can calculate from obser-
vational data, such as conditional probabilities of the form p(Y = y | X = x).

Note that we can express the post-intervention probability of Y by marginaliz-
ing over any set of variables VVV ⊆ V \{X ,Y} of the DAG:

p(Y = y | do(X = x)) =
∫

p(Y = y,VVV = vvv | do(X = x))dvvv . (5.5)

We can get rid of the do-operator on the right-hand side of equation 5.5 by taking
VVV = V \ {X ,Y} [40]. In this case, the probability under the integral is simply
p(G | do(X = x)) which was expressed in equation 5.3 using quantities we can
compute from observational data. Formally, for VVV = V \{X ,Y},

p(Y = y | do(X = x)) =
∫ p(Y = y,X = x,VVV = vvv)

p(X = x | parents(X))
dvvv

=
∫ p(Y = y,X = x |VVV = vvv)

p(X = x | parents(X))
p(VVV = vvv)dvvv

= EVVV

[
p(Y = y,X = x |VVV = vvv)
p(X = x | parents(X))

]
. (5.6)

As usual, the expected value EVVV (over variables VVV ) in equation 5.6 reduces to a
sum over the probability space in case of discrete random variables and even in
case of continuous variables can always be estimated using statistical techniques
by enforcing some distributional constraints.

Equation 5.6 is remarkable in the sense that it allows us to estimate the distri-
bution of the complex trait Y on the assumption that we had intervened on X by
artificially setting its value to some x, without actually making said intervention.
Unfortunately, calculating the post-intervention probability of Y using equation
5.6 requires not only complete understanding of the causal relationships between
variables (knowledge of the graph structure), but also that we have measured all
said variables. These requirements are never met in biological settings. Luckily,
it turns out the causal effect is identifiable even when only a sufficient subset of
variables VVV s ⊆ V \{X ,Y} is known and measured.

5.2. Identifiability of the causal effect

Consider again equation 5.5 for calculating the probability p(Y = y | do(X = x)).
In this equation, the joint probability under the integral can be expressed via con-
ditional probability to obtain

p(Y = y | do(X = x)) =
∫

p(Y = y |VVV = vvv,do(X = x))p(VVV = vvv | do(X = x))dvvv.
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Note that we can get rid of both intervention terms do(X = x) under the integral
whenever VVV is such that it is not affected by intervention on X and, given knowl-
edge about it, makes Y also not affected. Any set VVV s ⊆V \{X ,Y} satisfying these
two criteria is called sufficient and enables us to express the post-intervention
probability using familiar quantities [98]:

p(Y = y | do(X = x)) =
∫

p(Y = y |VVV s = vvvs,X = x)p(VVV s = vvvs)dvvvs

= EVVV s

[
p(Y = y |VVV s = vvvs,X = x)

]
. (5.7)

A pertinent question is how to find a sufficient set VVV s which would allow causal
analysis on observational data. To answer this question, we will examine how to
formulate the criteria it has to satisfy based on the graphical model (the DAG).

5.2.1. D-separation

Let us define a path between variables X ,Y ∈ V in a DAG as any sequence of
distinct variables (V1,V2, . . . ,Vp) such that V1 = X , Vp = Y , and Vi+1 is either a
parent or a child of Vi (i.e. we do not care about the directionality of edges in
a path, unless we refer to a causal path where every Vi+1 must be a child of Vi).
Notice that any three consecutive variables Vi,Vi+1,Vi+2 in a path can be related
in the following three ways (see also Figure 4):

(a) Vi→Vi+1→Vi+2 constitutes a chain. Since Vi+2 is a function of Vi+1 which
in turn is a function of Vi, it is clear that Vi ⊥6⊥ Vi+2. However, the Markov
property of the DAG [96] ensures that given knowledge about the value of
Vi+1, the variable Vi provides no extra information, leading to conditional
independence Vi ⊥⊥Vi+2 |Vi+1.

(b) Vi←Vi+1→Vi+2 constitutes a fork where the variable Vi+1 in the middle is
called a confounder. Since Vi and Vi+2 are both functions of Vi+1, it is clear
that Vi ⊥6⊥ Vi+2. However, knowledge about Vi+1 breakes this relationship,
resulting in conditional independence Vi ⊥⊥Vi+2 |Vi+1.

(c) Vi → Vi+1 ← Vi+2 constitutes an inverted fork where the variable Vi+1 in
the middle is called a collider. Since neither Vi nor Vi+2 depend on common
ancestors, it is clear that Vi⊥⊥Vi+2. However, knowledge about the common
child Vi+1 (or any descendant of it) can be used to deduce some information
about the parents, thus Vi ⊥6⊥Vi+2 |Vi+1.

We say that a path between X and Y is blocked if there are colliders on this path.
Blocked paths can be unblocked by conditioning on any of the colliders or their
descendants (point (c) above). Similarly, unblocked paths can be blocked by con-
ditioning on confounders (point (b)) or middle variables in chains (point (a)).
Importantly, conditional independence between variables X and Y in a graph G
requires—provided knowledge about some set of variables VVV which is allowed to
be empty—that all paths between them are blocked. In that case, we say X and Y
are directionally separated or d-separated [99].
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Using the logic laid out above, sufficient sets VVV s ⊆ V \ {X ,Y} for calculat-
ing the post-intervention probability p(Y = y | do(X = x)) in equation 5.7 can
be constructed based on the graphical model by following a so-called back-door
criterion [98]:

(i) No V ∈VVV s is a descendant of X .
(ii) The elements of VVV s block all back-door paths from X to Y , i.e. those with

an arrow pointing to X .
The first rule ensures that all paths between X and Y representing true causa-
tion (composed of chains) are unblocked while the second rule ensures that those
paths representing spurious relationships due to confounding (containing forks)
are blocked. If a sufficient set satisfying these rules can be constructed, then the
causal effect between X and Y can be identified [98]. Moreover, we will see in the
next section that we can use regression to estimate the causal effect.

5.3. Assuming linear causal effects

The causal theory covered above did not enforce any distributional assumptions on
the random variables in the DAG. Equation 5.7 represents thus a general solution
for calculating the causal effect. However, in gene expression studies we are
willing to assume linearity between variables. This makes testing for causality
5.4 equivalent to testing for the difference in average causal effects of X on Y by
a unit increase in X :

E(Y | do(X = x))−E(Y | do(X = x−1)). (5.8)

Thus it is useful to translate causal inference into regression framework.
Linearity in a DAG G = (V,E) means that the value of each variable is de-

termined by a linear combination of its parents’ values. In other words, we can

annotate the edges between variables Vi,Vj ∈ V as Vi
bVi�Vj−−−→Vj ∈ E and write

Vj = bVj + ∑
Vi∈parents(Vj)

Vi ·bVi�Vj + εVj ,

where bVj is the intercept and εVj denotes for all factors affecting Vj other than its
parents in the DAG. That is, bVi�Vj is the direct causal effect of variable Vi on Vj

and corresponds to a change in Vj per unit increase of Vi. In this work, we are
interested in the total effect of an intervention do(X) on an outcome Y , thus we
also need to consider indirect effects through mediators. It is easy to see that the
total causal effect bXY of X on Y is the sum of products of direct effects in causal
paths between X and Y :

bXY = ∑
causal path

between X and Y

∏
edge Vi�Vj
in the path

bVi�Vj . (5.9)
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We can thus write [40]

E(Y | do(X = x)) = E(bXY X + ε | do(X = x)) = bXY x+E(ε),

where ε covers the effects of all parents of Y (see structural equations 5.1) that are
not X . Thus the causal estimand 5.8 is simply the total causal effect bXY .

5.3.1. Regression for estimating linear causal effects

In general, the structural coefficient bXY from the data generating (structural)
model Y = b0 + bXY X + ε need not correspond to the parameter βXY estimated
in a regression analysis of Y on X . To see that, note how the OLS estimator 3.5
approximates the quantity

βXY =
Cov(X ,Y )

Var(X)
=

Cov(X ,bXY X + ε)

Var(X)
= bXY +

Cov(X ,ε)

Var(X)
(5.10)

by assuming E(ε | X) = 0 (model 3.4 assumptions). If in fact E(ε | X) 6= 0 then
X and the error term ε are correlated and βXY 6= bXY . Since ε contains the effects
of all variables other than X that act on Y , dependence Cov(X ,ε) 6= 0 can arise
due to confounders of the X and Y relationship not accounted for in the regression
model, but also due to reverse causation (Subsection 5.2.1).

For example, say we wanted to perform a regression of Y on X but the under-
lying data generating model was reverse causal: X = bY XY + εX , where Y = εY

(assume centered variables for simplicity). The true causal effect of X on Y is
bXY = 0 but the OLS estimate of the regression analysis

β̂XY =
Ĉov(X ,Y )

V̂ar(X)
· V̂ar(Y )

V̂ar(Y )
= b̂Y X

V̂ar(Y )

V̂ar(X)

indicates β̂XY 6= 0 ⇐⇒ b̂Y X 6= 0. It means that ruling out reverse causation with
OLS regression is impossible without domain knowledge. However, say the ef-
fect of Y on X went through a mediator M, such that X = bM�X M + εX , where
M = bY�MY + εM. Accounting for M as a covariate in the regression model re-
sults in the following OLS estimator 3.5:

β̂XY =
V̂ar(M)

b̂Y X V̂ar(Y )︷ ︸︸ ︷
Ĉov(X ,Y )−

b̂M�X V̂ar(M)︷ ︸︸ ︷
Ĉov(X ,M)

b̂Y�MV̂ar(Y )︷ ︸︸ ︷
Ĉov(M,Y )

V̂ar(M)V̂ar(X)−
(
Ĉov(X ,M)

)2 ≈ 0,

where the approximation holds because the total effect 5.9 of Y on X estimated as
part of the first term of the numerator is bY X = bM�X bY�M.

The effect estimand in the regression analysis can become biased also due to
failure to include confounding factors in the model. To illustrate with an example,
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5.4. Method of instrumental variables for linear causal effects
not directly identifiable

The back-door criterion introduced in Section 5.2 gives us sufficient means for
identifying the causal effect. Alas, it cannot always be enforced. For example,
if U in Figure 4a should be unobserved, then the causal effect of X on Y could
not be identified by applying the back-door criterion to observational data. How-
ever, if the direct effect did not exist (bX�Y = 0), the causal effect bXY could be
estimated as the product of bXM and bMY (see equation 5.9), both of which are
identifiable based on the back-door criterion. The procedure of estimating causal
effects through causal paths is referred to as front-door and can be applied to all
causal effects expressible as a combination of individually identified mediating
effects [97]. Similarly to the back-door criterion however, it requires knowledge
of the graph structure which we do not have. When we can assume linear causal
effects (implies monotonicity), a more robust alternative to this assumption is pro-
vided by the method of instrumental variables.
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consider the DAG in Figure 4a, corresponding to the following structural equa-
tions (again assume centered variables for convenience):

U = εU

X =U ·bU�X + εX

M = X ·bX�M + εM

Y =U ·bU�Y +X ·bX�Y +M ·bM�Y + εY

The true causal effect 5.9 of X on Y is bXY = bX�Y + bX�MbM�Y . However, a
regression of Y on X results in

E(Y | X) =
(

E(U | X)bU�Y +bX�Y +bX�MbM�Y︸ ︷︷ ︸
βXY

)
X .

Omitting the confounder U from the regression analysis (i.e. by fitting a model
Y = βXY X + ε) induces a correlation between X and the errors in the regression
model, leading to a biased estimand βXY 6= bXY . However, controlling for U gives

E(Y | X ,U) = bU�YU +(bX�Y +bX�MbM�Y︸ ︷︷ ︸
βXY

)X ,

where the regression estimand βXY is equal to the causal effect bXY .
Note that both reverse causation and confounding represent back-door paths

from the exposure to the outcome of interest. To estimate the causal effect 5.8,
these back-door paths need to be closed (Subsection 5.2.1). OLS regression can be
used to identify linear causal effects by controlling for a sufficient set of variables
VVV s satisfying the back-door criterion (Section 5.2) [40].



Figure 5: A graph depicting the assumptions of the method of instrumental vari-
ables for estimating the causal effect bXY in the presence of unobserved con-
founders U of the exposure (X)-outcome (Y ) relationship. Directed edges depict
causal paths; undirected dashed edges represent any unblocked path; the solid
undirected edge between Z and X represents an unblocked path that is not a causal
path from X . In translation, a valid instrument Z needs to be associated with X
(i.e. βZX 6= 0) and can be associated to Y only through a causal path from X .

Compared to the OLS regression 3.4 which enforces E(ε | X) = 0, the method
of instrumental variables allows to identify the causal effect bXY in the linear
model Y = b0 + bXY X + ε under a different (sometimes more plausible) set of
assumptions. Indeed, consider an additional random variable Z that satisfies the
following criteria [100, 101] (Figure 5):

(relevance) Cov(Z,X) 6= 0, i.e. Z is associated with the exposure X ; in graph-
ical terms, there has to be an unblocked path between them

(exogeneity) E(ε | Z) = 0 =⇒ E(ε) = 0∧Cov(Z,ε) = 0, i.e. Z is unrelated
to the error term ε; since the latter harbours all factors other than
X that affect Y (incl. confounders U), this requirement is usually
replaced by the following graphical assumptions [102–104]:

(exchangeability) Z ⊥⊥U , i.e. Z is independent (d-separated) from U
(exclusion restriction) Z ⊥⊥ Y | (X ,U), i.e. there is no path between Z and

Y that does not go through X

In short, Z needs to be associated with X and can be connected to Y only through
a causal path from X . Any variable Z satisfying the above assumptions—we will
refer to such variables as instruments—can be used to recover the causal effect bXY

between X and Y even in the presence of unobserved confounders between these
variables [100, 101, 105]. Indeed, taking the covariance between the instrument Z
and the outcome Y yields the following causal effect estimand 5.8 (remember that
we still assume linear effects here; see [106] for a more general treatment of this
estimand):

bXY =
Cov(Y,Z)
Cov(X ,Z)

. (5.11)

It is straightforward to estimate the causal effect from a random sample by substi-
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tuting true covariances with corresponding sample estimates as follows:

b̂XY =
Ĉov(Y,Z)

Ĉov(X ,Z)
=

β̂ZY

β̂ZX
=: β̂IV , (5.12)

where β̂IV is called the IV estimator of causal effect between the exposure X and
outcome Y [100, 101, 105] while β̂ZY and β̂ZX are OLS estimates 3.5 from the re-
gressions of Y on Z and X on Z, respectively. Thus a valid instrument permits to
estimate the causal effect as a ratio of two regression coefficients. Importantly, es-
tablishing causality boils down to testing for the instrument-outcome association,
H0 : βZY = 0. The IV analysis can thus be considered a computational extension
to RCTs—often infeasible in practice as discussed in Section 1.2—as a valid in-
strument can be thought to represent an experimenter randomly allocating study
participants into cases and controls.

5.4.1. The IV estimator is consistent and asymptotically normal

Before studying the properties of the IV estimator 5.12, we will assume without
loss of generality that the instrument Z is centered (if not, we can always do that
without changing the values of β̂ZY or β̂ZX as per Subsection 3.2.1) and has finite
variance. Furthermore, we assume to have an independent and identically dis-
tributed random sample (Zi,Xi,Yi) = (zi,xi,yi), i ∈ In, with homoscedastic errors
E(ε2

i | Zi) = σ
2
ε .

First, note how the application of LIE leads to the following properties:

E(Ziεi) = E
(
ZiE(εi | Zi)

)
= 0,

Var(Ziεi) = E
(
Z2

i E(ε2
i | Zi)

)
= σ

2
ε Var(Z).

Making use of these properties and applying the law of large numbers (LLN),
central limit theorem (CLT) and Slutsky’s theorem enables us to show that the IV
estimator 5.12 is consistent and asymptotically normally distributed:

√
n(β̂IV −βIV ) =

(
1
n

n

∑
i=1

ZiXi︸ ︷︷ ︸

P−→

Cov(Z,X)

)−1

d −→

N
(
0,σ2

ε Var(Z)
)

︷ ︸︸ ︷
1√
n

n

∑
i=1

Ziεi
d−−→ N

(
0,

σ2
ε Var(Z)

(Cov(Z,X))2︸ ︷︷ ︸

=

σ2
ε

ρ2
ZX Var(X)

)
,

(5.13)
where ρ

2
ZX denotes for correlation squared between Z and X . Furthermore, all

terms of the asymptotic variance of β̂IV are easily estimable: Var(X) as the sample
variance of X , ρ

2
ZX as the coefficient of determination R2

ZX from the regression of
X on Z, and σ

2
ε as the residual variance:

σ̂
2
ε =

1
n

n

∑
i=1

(yi− β̂IV xi)
2.
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Using these estimates, the hypothesis H0 : bXY = 0 can be tested with a Wald test.

5.4.2. Generalization of IV to multiple instruments

The IV estimator 5.12 is restrictive in the sense that it allows us to use only one
instrument whereas sometimes we might have multiple instrumental variables at
our disposal. It would be reasonable to ask whether we could improve our estimate
of the causal effect by using all the information available to us.

Let ZZZ = (Z1,Z2, . . . ,Zm) be a random vector of instruments and consider again
the method of IV for estimating the causal effect bXY from an exposure X to
an outcome Y . Let βZ : m× 1 be a vector of weights such that ZZZ′βZ is a linear
combination of the instrument vector. Since each Zi, i ∈ Im is an instrument, the
linearity property of covariance ensures that Cov(ZZZ′βZ,ε) = 0. Thus ZZZ′βZ is also
an instrument and can be used to estimate the causal effect with the IV estimator
5.12 whenever βZ is such that Cov(ZZZ′βZ,X) 6= 0. The question remains which
weight vector to use in constructing the linear combination.

As could be expected, a good strategy for instrument selection is to maximize
its strength [101]; doing so simultaneously minimizes the (asymptotic) variance
of the IV estimator (see relation 5.13 above):

β
∗
Z = argmax

βZ

|Cov(ZZZ′βZ,X)|= argmax
βZ

ρ
2
ZZZ′βZ ,X

, (5.14)

where ρ
2
ZZZ′βZ ,X

denotes for correlation squared between ZZZ′βZ and X . Since each
Zi is an instrument, it follows trivially that the best linear combination satisfies
|Cov(ZZZ′β ∗Z ),X)| ≥ |Cov(Zi,X)| 6= 0 and is thus indeed itself an instrument.

The maximisation task 5.14 requires us to find a linear combination of ZZZ that
would explain the most variance in X . In a sample, this is equivalent to minimizing
residual sum of squares in the regression of X on ZZZ. Estimates of optimal weights
in 5.14 are thus conveniently provided by the OLS estimator 3.5:

β̂
∗
Z = argmax

βZ

R2
ZZZ′βZ ,X

= (Z′Z)−1Z′x, (5.15)

where R2
ZZZ′βZ ,X

, Z : n×m and x : n×1 are sample equivalents of ρ
2
ZZZ′βZ ,X

, ZZZ and X ,
respectively. We can use the IV estimator 5.12 to estimate the causal effect:

β̂IV =
(
(Zβ̂

∗
Z )
′x
)−1

(Zβ̂
∗
Z )
′y = (x̂′x)−1x̂′y, (5.16)

where x̂ = Zβ̂
∗
Z are the fitted values of x from the OLS regression model. Since

Z(Z′Z)−1Z′ is idempotent, equation 5.16 further simplifies to

β̂IV =
(

β̂
∗′
Z Z′Zβ̂

∗
Z

)−1
x̂′y

= (x̂′x̂)−1x̂′y =: β̂2SLS . (5.17)
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The resulting estimator β̂2SLS has the form of an OLS estimator 3.5 and is called
two stage least squares (2SLS) because it can be obtained in two regression steps
[100]—the maximization task 5.15 is first solved for the prediction vector x̂ and
this is subsequently used as a regressor in 5.17 to estimate the causal effect.

5.4.3. Generalization of IV to multiple exposures

While the method of instrumental variables is promising for estimating causal
effects, it requires the identification of valid instruments. Finding those may prove
difficult however, particularly due to failure to satisfy the exogeneity assumption
(unverifiable because model errors are unobserved). It might happen though that
even if a potential instrument violates an assumption, it does so due to horizontal
pleiotropy via other measured variables.

Consider a linear model Y = XXX ′bX +ε , where XXX = (X1,X2, . . . ,Xk) is a random
vector of exposures; and let ZZZ : m×1 be a random vector of instruments satisfying
the following criteria: Cov(ZZZ,XXX) is of rank k and E(ε | ZZZ) = 0 [101]. Analogously
to the case with only one exposure, we can use the 2SLS procedure to estimate
the causal effect vector bX .

Let β
∗
ZZZ,Xi

be the vector of weights in 5.14 such that the linear combination
ZZZ′β ∗ZZZ,Xi

has the strongest association to the exposure Xi. Let B∗Z =
(
β
∗
ZZZ,Xi

: i ∈ Ik
)

be the corresponding m× k matrix with β
∗
ZZZ,Xi

in the columns. Estimating this
matrix is straightforward as its every column is an OLS estimate 5.15, thus

B̂∗Z = (Z′Z)−1Z′X ,

where Z : n×m and X : n× k are sample (size n) equivalents of ZZZ and XXX , respec-
tively. Following estimators 5.16 and 5.17,

β̂IV = (X̂ ′X)−1X̂ ′y = (X̂ ′X̂)−1X̂ ′y = β̂2SLS, (5.18)

where X̂ = ZB̂∗Z is an n× k matrix of fitted values of the exposure matrix X from
the first stage regression. Since the IV estimator 5.18 is in the form of the OLS
estimator 3.5, its variance is

Var(β̂2SLS) = σ
2
ε (X̂

′X̂)−1.

In estimating this variance, the error variance σ
2
ε can be approximated using a

maximum likelihood estimator 3.8, though note that the residuals should be found
using the observed values of the exposures (i.e. the design matrix X : n× k) from
the original linear model, not predicted values (X̂ : n× k) from the first-stage re-
gression (TWAS methods in Section 4.3 err against this). Furthermore, X̂ ′X̂ needs
to be of full rank to be invertible for which m ≥ k is necessary—there needs to
be at least as many instruments than exposures. The estimator β̂IV remains con-
sistent and asymptotically normal since LIE, LLN, CLT and Slutsky’s theorem all
generalize to random vectors [101].
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The method of instrumental variables represents a simple yet elegant means
to estimating the causal effect, boasting some nice statistical properties. It does
not require knowledge of all structural relationships between variables like other
causal inference methods exploiting the rules of d-separation (Subsection 5.2.1)
[107–110]. The insensitivity to confounders of the exposure-outcome relation-
ship also makes it robust to the key challenge facing ordinary linear regression.
Consequently, it has become very popular in genetics and related fields where it
is called Mendelian randomization (MR) due to using genetic variants—assumed
to follow the principles of Mendelian inheritance—as instruments.
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6. MENDELIAN RANDOMIZATION

Truth ... is much too complicated to
allow anything but approximations

John von Neumann

The suitability of genetic variants as instruments in MR analyses hinges on the
premise that genetic information passes down from parents to offspring following
a systematic and inherently random process with no outside influences (Subsec-
tion 2.2.1). If true, genetic variants would be safe against confounding and reverse
causation in association studies. However, population stratification and assortative
mating can create differences in allele frequencies between groups of individuals
(Subsection 2.2.1). If the trait distribution should differ between these groups then
the association between genetic variants and respective traits can in fact be con-
founded by these very factors. This is important to keep in mind in MR analyses
(spurious associations of genetic variants with traits could violate the assumptions
for instruments in MR) but it is a general nuisance in genetic association studies
which can be corrected for using statistical techniques [64, 111].

In effect, the usability of genetic variants as instruments is indeed promising.
By extension, MR is theoretically sound and built on solid principles. It can even
be thought of as nature’s randomized trial [112]. However, genetic determinants of
traits to be used as instruments are generally unknown to us and must be estimated
using statistical techniques (Section 4.1). Furthermore, horizontal pleiotropy is
extensive among complex traits and can invalidate the assumptions of instruments.
While MR is not a magic solution to be used carelessly for these reasons, it has
been utilized successfully to implicate reliable findings, such as the causal role of
lipid traits on CVD risk [54].

6.1. Mendelian randomization estimator

Consider random variables G (genetic instrument), X (modifiable exposure such
as gene expression), Y (outcome of interest), and U (confounder of the X-Y rela-
tionship). MR is a method of instrumental variables (see Figure 5 and substitute
Z for G) where the genetic instrument G satisfies the IV assumptions of relevance
and exogeneity (Section 5.4). Thus we can estimate bXY as the ratio of regression
estimates β̂GY and β̂GX from regressions of Y on G and X on G, respectively (see
equation 5.12):

b̂XY =
β̂GY

β̂GX
. (6.1)

It is clear from relation 5.13 that under MR assumptions b̂XY is asymptotically
consistent, converging in probability to bXY as the sample size n grows [101].
However, due to the high cost of gene expression studies, available data with
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complex trait measurements are scarce [88]. Therefore, individual level data in
large sample sizes cannot be assumed. This necessitates the exploration of small
sample properties of b̂XY . As it turns out, the MR estimator 6.1 is biased in finite
samples [113] and exhibits low power [114].

6.1.1. Finite sample bias of the Mendelian randomization estimator

The estimator b̂XY in equation 6.1 is a non-linear function f : (X ,Y ) 7→ X−1Y of
two random variables, thus it is not straightforward to derive its expected value
analytically. However, we can use higher order methods to approximate [113]. A
2nd order Taylor expansion of the estimator around

(
E(β̂GX),E(β̂GY )

)
yields

E(b̂XY )≈
E(β̂GY )

E(β̂GX)
− Cov(β̂GY , β̂GX)(

E(β̂GX)
)2 +

Var(β̂GX)E(β̂GY )(
E(β̂GX)

)3 .

To simplify the expression on the right-hand side, consider once more the as-
sumptions of MR analysis. By the data generating (causal) model, the outcome
is a linear function of the exposure: Y = b0 + bXY X + εXY . The exposure is not
assumed to be exogenous in the model but the instrument is: Cov(G,εXY ) = 0.
The instrument is also assumed to be correlated with the exposure and the linear
relationship implied by this notion can be depicted by an OLS model 3.4 with the
exogeneity assumption enforced: X = β0X +βGX G+ εGX with Cov(G,εGX) = 0,
where βGX 6= 0 but not necessarily due to causality (e.g. confounding can be a
factor, hence the difference in notation compared to the causal model). The out-
come can be expressed in terms of the instrument as Y = β0Y +βGY G+εGY , where
βGY = bXY βGX . This is an OLS model 3.4 as the exogeneity assumption is satis-
fied: Cov(G,εGY ) = Cov(G,εXY + bXY εGX) = 0. Finally, treating the instrument
as fixed and centered, and considering that OLS estimators are unbiased (equa-
tion 3.6) with variance 3.7, we can approximate the final sample bias of the MR
estimator 6.1 as follows:

E(b̂XY )−bXY ≈−
Cov(β̂GY , β̂GX)

β 2
GX

+
Var(β̂GX)bXY

β 2
GX

=−Cov(εGY ,εGX)

β 2
GX nV̂ar(G)

+
σ2

εGX
bXY

β 2
GX nV̂ar(G)

=−
Cov(εXY ,εGX)+σ2

εGX
bXY −σ2

εGX
bXY

β 2
GX nV̂ar(G)

≈−Cov(εGX ,εXY )

nρ2
G,X Var(X)

, (6.2)

where n is the sample size and ρ
2
G,X is squared correlation between the instrument

G and exposure X . Of course, the finite sample bias in the MR effect estimate is
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undesirable. It is worth a closer inspection, when and in which circumstances the
bias manifests or is substantial.

First, note that the covariance Cov(εGX ,εXY ) in the numerator of the bias 6.2
depends on the level of confounding between X and Y , being zero only if there
is no confounding. Thus whenever MR is actually needed, its estimate of causal
effect is never unbiased in a finite sample [105]. We can think of this bias as a
violation of the MR assumption that instruments G are not associated with con-
founders U of the X-Y relationship—even if true, chance correlations in finite
samples can bias the MR causal effect estimate [103]. Theoretically, this bias
can be even greater than the bias of the OLS effect estimate in equation 5.10.
However, this is increasingly unlikely as the sample size n grows since even in
the presence of counfounders, the bias of the MR effect estimate approaches zero
while the bias of the OLS effect estimate does not.

Second, the bias 6.2 is inversely proportional to sample size n and instrument
strength ρ

2
G,X . A weak instrument in a small sample can thus inflate the bias. This

is even more evident if we consider that the F-statistic from the regression of X
on G can be approximated as follows:

FG,X = (n−1)
R2

G,X

1−R2
G,X
≈ nR2

G,X , (6.3)

since for a weak instrument the denominator is approximately equal to 1. Note
that the approximate F-statistic 6.3 can be used to estimate nρ

2
G,X in the denomi-

nator of the bias 6.2. Thus increasing the F-statistic value FG,X for the association
between G and X decreases the bias. Rule of thumb is to have FG,X > 10, though
it would be best if instruments are chosen from an independent sample [103,115].

Finally, note that we derived the bias 6.2 only for a single instrumental vari-
able. With many instruments the bias can be exacerbated [116] even though the
asymptotic variance of the estimator would decrease as evident in relation 5.13.
This can happen due to having to estimate the optimal linear combination instru-
ment in the first stage regression 5.15 of the 2SLS procedure.

6.1.2. Statistical power of Mendelian randomization

Given that individual gene expression studies with complex trait measurements
are usually available in small samples [88], it is prudent to estimate the sample
size required for MR to achieve sufficient power for testing the null hypothesis
H0 : bXY = 0. Power of a statistical test is just the probability to reject the null
hypothesis—observe as extreme or more extreme test statistic values than q α

2
and

q1− α

2
specified by the significance level α—conditional on the true causal effect

being bXY 6= 0. Considering the asymptotic results in 5.13, we have

P

 b̂XY√
Var(b̂XY )

≥ q1− α

2
| bXY

+P

 b̂XY√
Var(b̂XY )

≤ q α

2
| bXY

= Power,
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where q α

2
and q1− α

2
are quantiles of the standard normal distribution. In particular,

we are interested in the smallest sample size n∗ required to reject the null hypoth-
esis on significance level α with probability at least Power. Being conservative
and neglecting the finite sample bias of MR, we can derive n∗ as

n∗ = minn

∣∣∣∣∣1−Φ

q1− α

2
− |bXY |√

Var(b̂XY )

+Φ

q α

2
− |bXY |√

Var(b̂XY )

≥ Power,

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution. Thus n∗ depends on the significance level α , specified Power, true effect
size bXY , and variance of the estimator β̂XY in 5.13, the latter in turn depending on
instrument strength ρ

2
G,X .

To estimate n∗ in realistic scenarios, we need to come up with reasonable val-
ues for instrument strength ρ

2
G,X and true causal effect bXY ; usually α = 0.05 for

a single test and Power = 0.8. Based on whole blood cis-eQTLs of the eQTLGen
Consortium data [69] (https://www.eqtlgen.org/), the mean strength of potential
gene expression instruments is R̄2

G,X = 0.013 (Figure 6a). However, since multi-
ple instruments can be combined to increase the strength (see 5.14) and we prefer
to be conservative in our calculations, we will consider very strong instruments
describing 20% and 30% of the variability of gene expression traits, and strong
causal effects with exposures describing 3% and 5% of outcome variability. Ev-
idently, the required sample size n∗ even for a very strong instrument and causal
effect is approximately 500 for a single test (Figure 6b). Considering there are
tens of thousands of genes and thus a necessity for multiple testing correction in
hypothesis-free analysis, we would need thousands of samples to identify causal
effects even in the best-case scenarios [114].

Considering low statistical power (Figure 6) and the small sample bias 6.2, MR
analysis is feasible only in large samples. It would almost certainly be unfruitful in
individual level data concerning gene expression measurements (for reference, the
Estonian Biobank with more than 200,000 participants has gene expression RNA
sequencing (RNA-seq) data on approximately 500 individuals [1]). Fortunately,
we will see that MR can be performed on summary statistics meta-analyzed to-
gether over many individual cohorts with exposures and outcomes measured in
independent samples.

6.2. Two-sample Mendelian randomization

Remember that the MR estimator 6.1 is a ratio of two regression coefficients. We
know from Subsection 3.1.2 that for both of those we can use published sum-
mary statistics which are the result of meta-analysis of several individual esti-
mates (using equation 3.11) conducted by large international consortia. Further-
more, β̂GY and β̂GX can be calculated from different studies, leading to two-sample
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Figure 6: (a) Distribution of instrument strength R2
G,X based on significant cis-

eQTLs in the eQTLGen Consortium whole blood gene expression data [69]
(https://www.eqtlgen.org/), filtered by R2

G,X ≥ 0.05 to improve readability. Instru-

ment strength was calculated as R2
G,X =

(
β̂

s)2 where β̂
s was estimated based on

equation 3.14 using Z-scores and sample sizes from the eQTLGen data. (b) Min-
imum sample size n∗ required per significance level α (corresponding to 1, 10,
102, 103, and 104 independent tests) to achieve 80% power in different instrument
strength R2

G,X and causal effect R2
X ,Y pairs. Sample size calculations use asymp-

totic consistency and normality of the MR estimator (see 5.13) and are therefore
conservative approximations.

MR [117]. There are obvious benefits to this strategy. First, meta-analyzed sum-
mary statistics leverage information from several cohorts, achieving estimation
precision proportional to the sum of sample sizes of individual studies (consider
that each individual variance 3.7 in equation 3.12 is approximately equal to the
inverse of the sample size if genetic effects are tiny and we assume standardized
variables). Second, if each of the regression coefficients β̂GY and β̂GX have been
calculated on independent samples then Cov(εGX ,εXY ) = 0 in the 2nd order MR
bias approximation 6.2, decreasing the overall bias [116]. This independence can
indeed be assumed in transcriptomics analyses since the biggest gene expression
studies made available in the public domain by the Genotype-Tissue Expression
project (GTEx) [118] and the eQTLGen Consortium [69] have been conducted
independently from large-scale analyses of complex traits, such as those based on
the UK Biobank (UKBB) resource [119, 120]. Thus two-sample MR based on
summary statistics alleviates the problems of low power and finite sample bias of
MR and is therefore widely used in statistical genetics.

In this work, we are predominantly interested in the causal effect of gene ex-
pression X on complex trait Y . For this reason—without loss of generality—we
refer to instruments as eQTLs. Let β̂GiX and β̂GiY be summary statistics from the
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eQTL and GWAS analyses with genetic variants Gi, i ∈ Im, respectively. By the
MR estimator 6.1, the causal effect estimate for each Gi is

β̂IV,i =
β̂GiY

β̂GiX
.

If Gi are indeed valid instruments then the application of LLN and Slutsky’s the-
orem in 5.13 reveals that each estimate β̂IV,i is consistent. The variance of the
two-sample MR estimator can be approximated with the Delta method as follows
(see proof in Appendix A):

Var
(

β̂IV,i

)
≈ Var(β̂GiY )

β 2
GiX

− 2βGiY Cov(β̂GiY , β̂GiX)

β 3
GiX

+
β 2

GiY Var(β̂GiX)

β 4
GiX

=
Var(β̂GiY )

β 2
GiX

+
β 2

GiY Var(β̂GiX)

β 4
GiX

, (6.4)

where Cov(β̂GiY , β̂GiX) = 0 follows from the fact that β̂GiY and β̂GiX were assumed
to be estimated in independent samples. We can estimate the variance 6.4 as

V̂ar(β̂IV,i)≈
V̂ar(β̂GiY )+

(
β̂GiY/ẐGiX

)2

β̂ 2
GiX

, (6.5)

where ẐGi,X is the Z-score from the regression of X on Gi. We have thus all the
necessary machinery for estimating causal effects in the MR framework. How-
ever, it turns out identifying valid instruments is not as straightforward.

6.2.1. A simple fine-mapping strategy for a single instrument MR

Any SNP satisfying the relevance condition (achieving a test statistic value over
some threshold in an eQTL study) could be a potential instrument. Due to LD
there are likely to be many SNPs to choose from and we will not know the true
causal variant(s). This is not in and of itself a problem since the relevance con-
dition of MR does not actually state that instruments should be causally related
to the exposure. Theoretically we could even use all the (correlated) eQTLs as
instruments provided they satisfied MR assumptions, though this could lead to
increased finite sample bias and would not help with statistical power if there
was actually only one causal variant [121]. However, LD patterns can differ be-
tween samples and this poses a problem for two-sample analyses—a non-causal
SNP satisfying the relevance condition in the eQTL study due to LD with the true
causal SNP can exhibit either less or more LD in the GWAS, leading to biased
causal effect estimates and spurious conclusions. Identifying true causal variants
is therefore desirable.

In line with fine-mapping strategies in Section 4.1, the simplest MR approach
is to assume one causal variant and let it be the strongest one with the lowest eQTL
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P-value, a method referred to as summary data-based Mendelian randomization
(SMR) [88]:

β̂SMR =
β̂G∗Y

β̂G∗X
, G∗ = argmax

Gi:i∈Im

|ẐGi,X | . (6.6)

Compared to other potential instruments, choosing the strongest eQTL G∗ is likely
to result in the smallest variance of the two-sample MR estimator in equation
6.5. The variance is not definitively minimized only because it also depends on
GWAS summary statistics and hence sample sizes which can vary between SNPs.
Nevertheless, G∗ is a good candidate for increasing the certainty of the causal
effect estimate. However, one should be aware that the effect size of the strongest
eQTL is likely to be overestimated due to random chance—a phenomenon called
the winner’s curse [122]—which in a two-sample analysis biases the causal effect
estimate β̂SMR towards the null (due to β̂G∗X being in the denominator) [123].

6.2.2. Allowing for multiple instruments

Though the SMR approach is enticing in its simplicity, we know that there can
be many causal variants responsible for trait variability and using them all could
further improve the precision of the causal effect estimate. To prioritize multiple
causal variants, we can use other fine-mapping approaches covered in Section 4.1,
such as stepwise conditional analysis.

Let Gi, i∈ Im be all the identified instruments with corresponding causal effect
estimates β̂IV,i. To combine these into a single estimate, it is straightforward to use
the meta-analysis theory developed in Subsection 3.1.2. If Gi can be assumed to
not be in LD—and we have already covered that it makes sense to select indepen-
dent instruments—then we can apply weighted linear regression on model 3.10 to
estimate the causal effect with the IVW average 3.11 [117]:

β̂IVW =

m
∑

i=1

(
Var(β̂IV,i)

)−1
β̂IV,i

m
∑

i=1

(
Var(β̂IV,i)

)−1
, (6.7)

where Var(β̂IV,i) can be substituted by approximations 6.4 (however, assuming
Var(β̂GiX) = 0 can result in better properties like smaller bias [124]).

For uncorrelated instruments, the IVW estimator 6.7 is asymptotically equiva-
lent to the 2SLS estimator 5.17 [125]. Sometimes LD between instruments can-
not be ruled out however, particularly in gene expression studies where several
cis-acting eQTLs can be close to each other. Discarding correlated instruments
would be an option in this case but not an optimal one. Fortunately, model 3.10
can be generalized to account for LD by allowing for correlations between ef-
fect estimates (these can be found with the Delta method, see Appendix A). Such
method is termed Generalized SMR [126]. Similarly to weighted least squares,
the generalized model can be solved by reducing it to OLS regression.
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6.2.3. TWAS-like polygenic score instruments for causal inference

Instead of combining causal effect estimates into a weighted average, we could
also aggregate individual instruments before applying the simple MR estimator
6.1. Indeed, we know that a linear combination of instruments is also an instru-
ment (Subsection 5.4.2). A PRS of the exposure can thus be used to estimate its
causal effect on the outcome. In fact, the individual level data-based TWAS esti-
mator 4.13 is exactly identical to the IV (and thus MR) estimator 5.16. Therefore,
the summary level data-based TWAS estimator 4.15 with corresponding variance
4.16 can also be used for MR analysis.

As we have shown, TWAS and MR are fundamentally the same. This has
been corroborated by other studies [127]. However, recall that we paradoxically
claimed TWAS to be an ad hoc method for causal inference, invalid even (Sub-
section 4.3.1). Like other PRS-based association approaches, TWAS simply does
not approach the problem of causal inference with the required level of theoreti-
cal soundness and due diligence. For example, TWAS methods [50–52] are not
concerned with instrument assumptions (Section 5.4), the optimal way of com-
bining instruments (Subsection 5.4.2), nor bias from weak instruments (Subsec-
tion 6.1.1). Simply put, invalid instruments combined to a PRS represent an in-
valid instrument [128] and do not enable causal reasoning.

To interpret TWAS results in a causal language, all the theory developed for
MR applies and should be adhered to. In this regard, MR subsumes TWAS and
similar PRS association-based approaches alike. The applicability of causal rea-
soning reduces to avoiding horizontal pleiotropy in the instruments.

6.3. Pleiotropy in Mendelian randomization

To estimate the causal effect bXY of X on Y in a linear model Y = b0 +bXY X + ε

with the MR estimator 6.1, the instrument G needs to satisfy the conditions of
relevance and exogeneity: Cov(G,X) 6= 0 and Cov(G,ε) = 0, respectively (Sec-
tion 5.4). As seen in the previous two subsections, identifying instruments in
terms of satisfying the relevance condition can be performed in a data-driven man-
ner using fine-mapping strategies. However, since errors ε are unobserved, it is not
as straightforward to verify that selected instruments are valid also in terms of sat-
isfying the exogeneity assumption; or equivalently do not affect Y through paths
not consisting X (see Figure 5). Violation of this requirement suggests pleiotropy.
Since pleiotropy is known to be pervasive [41], it represent a serious hazard for
the reliability of MR.

It is clear from the convergence 5.13 that failure to satisfy Cov(G,ε) = 0 in-
troduces a bias to the causal effect estimator 6.1. This bias cannot be partitioned
from the true causal effect. In accordance with the theory of causal inference, a
significant effect b̂XY in an MR analysis for any single SNP G (e.g. consider the
SMR method 6.6) can thus arise due to the following reasons or combinations
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Figure 7: Possible explanations for observing a significant effect in a Mendelian
randomization analysis with a single instrument G.

thereof (Figure 7):
(i) Causality—there is a causal path from the exposure to the outcome.

(ii) Horizontal pleiotropy—G affects the outcome through paths not mediated
by the exposure.

(iii) Linkage—two different SNPs, both in LD with G, are responsible for the
effects on the exposure and outcome.

(iv) Reverse causality—the effect on the exposure is mediated by the outcome
instead, though this is unlikely in gene expression studies where eQTLs are
used as instruments.

Thus if all we have is one instrument, determining causality with standard MR is
impossible without prior knowledge. Note however that using cis-eQTL instru-
ments makes reverse causality unlikely. Furthermore, discriminating linkage from
causality and horizontal pleiotropy—both of which are based on the assumption
of a single causal variant—is possible with colocalization methods introduced in
Section 4.2. The HEIDI test 4.11 in particular has been developed for this pur-
pose and can be used to test for the null hypothesis of a shared causal variant [88].
Hence, combining SMR with colocalization methods provides a ranking of likely
causal genes. This can be sufficient if the goal is simply to prioritize genes for
further analyses. If determination of the true causal effect size is required, more
instruments are needed [129].

6.3.1. Determining pleiotropy in multi-instrument setting

Consider m genetic variants Gi, i∈Im. Let βGiX be the effect of Gi on the exposure
X and let ωi be its effect on the outcome Y through paths not consisting X . Both
the exposure and outcome can be written in terms of each instrument using the
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following OLS models (see Subsection 6.1.1 for reference):

X = β0X +βGiX Gi + εGiX ,

Y = b0 +bXY X +ωiGi + εXY = β0Y +(bXY βGiX +ωi︸ ︷︷ ︸
βGiY

)Gi + εGiY ,

where bXY is the causal effect of X on Y and βGiY is the effect (not necessarily
causal) of Gi on Y . In MR analysis, we are estimating the following quantity with
each instrument (see equation 5.11):

βIV,i =
Cov(Y,Gi)

Cov(X ,Gi)
=

βGiY

βGiX
= bXY +

ωi

βGiX
,

which is biased for the true causal effect if ωi 6= 0. This is exactly the case with
pleiotropic instruments. Unfortunately, elucidating the bias caused by non-zero ωi

is not possible without knowing the underlying structural model of the variables
involved. Since pleiotropy is known to be widespread [41, 130], simply assuming
ωi = 0 is often not justified. To work around this issue, we can turn to the theory
of meta-analysis introduced in Subsection 3.1.2.

Let instruments Gi be independent and consider the IVW average 6.7 for es-
timating the causal effect. In the absence of pleiotropy, the true effects βIV,i are
identical for all i ∈ Im. The homogeneity in effects means that we could construct
β̂IVW using weights that are simple inverses of study-specific variances 6.4. Va-
lidity of the homogeneity assumption can be tested with the Cochran’s Q statistic
3.13 and, in case of heterogeneity, we could either account for study-specific bi-
ases with the DerSimonian and Laird method, or eliminate pleiotropic instruments
from the analysis altogether (Subsection 3.1.2). Several recent methods are based
on removing outlying instruments, such as MR pleiotropy residual sum and out-
lier (MR-PRESSO) test [130] and HEIDI-outlier test [126]. The latter determines
outliers on the basis of the d̂i-statistic 4.10 being significantly different from its
expected value. It is prudent to note that the sum of d̂i, the THEIDI statistic 4.11—
developed for detecting effect heterogeneity in colocalization analyses (Subsec-
tion 4.2.2)—can also be used to detect pleiotropy-induced heterogeneity in MR
studies, thus generalizing the Cochran’s Q statistic for dependent instruments.

Under the assumption that biases in causal effect estimates of individual in-
struments cancel out, E

(
ωi

βGiX

)
= 0, the corresponding IVW estimate β̂IVW is con-

sistent for the true causal effect even if all the instruments are pleiotropic. If
instrument strengths βGiX are independent from direct/pleiotropic effects ωi (ab-
breviated as the InSIDE assumption), we could equivalently assume zero average
pleiotropy, since in this case E

(
ωi

βGiX

)
= 0 ⇐⇒ E(ωi) = 0 [104]. It is therefore

not strictly necessary in multi-instrument two-sample MR settings to require all
instruments to be valid—it is sufficient for obtaining consistent causal effect esti-
mates if pleiotropic effects cancel out under the InSIDE assumption.
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6.3.2. Additional sensitivity analyses

Recall that the IVW estimator β̂IVW is the solution of an intercept-free weighted
least squares regression of individual causal effect estimates (Subsection 3.1.2)
and thus represents a slope of the regression line which goes through the origin
(Figure 8a). In the presence of directional pleiotropy, if the average pleiotropic
effect of instruments do not cancel out, the slope will be biased. To account
for directional pleiotropy, we can turn to Egger regression (introduced in Sub-
section 3.1.2) and allow for the intercept in model 3.10, a technique which in
the context of MR is termed MR-Egger regression [102]. Similarly to β̂IVW , the
causal effect estimate from MR-Egger regression is consistent even when all in-
struments are invalid, provided the InSIDE assumption holds [102]. However,
even though MR-Egger can correct for directional pleiotropy, there is little power
to do so if the number of instruments is small or the instruments are collectively
weak [131–133].

Instead of estimating the causal effect with IVW or MR-Egger regressions—
through a linear combination of individual estimates β̂IV,i—complimentary mea-
sures of central tendency can be considered for the same purpose. For example,
median [132] or mode [134] of the empirical distribution of β̂IV,i are good candi-
dates for representing the causal effect (Figure 8b). These would provide consis-
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Figure 8: Sensitivity analyses to detect horizontal pleiotropy in a Mendelian ran-
domization study. (a) IVW and MR-Egger causal effect estimates (red and blue
slopes, respectively) together with individual estimates from independent instru-
ments (slopes of dashed black lines), based on data in Ref. I [1]. The similarity
of IVW and MR-Egger estimates indicates no directional pleiotropy among the
instruments. (b) Distribution of causal effect estimates of individual instruments
with corresponding median (yellow) and mode (green).
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tent estimates if at least 50% of the instruments were valid or if the most frequent
was valid, respectively. Since the validity of any of the assumptions governing
pleiotropy cannot be verified, using orthogonal methods in the form of sensitiv-
ity analyses is likely to provide more reliable causal effect estimates compared to
using just a single method [129, 132].

6.4. Multivariable Mendelian randomization

Instead of attempting to correct for horizontal pleiotropy by relying on untestable
assumptions or discarding invalid instruments, we could try to account for all
possible causal paths from genetic variants to the outcome by including potential
risk factors in the model simultaneously (Figure 9). MR can easily be general-
ized like that (Subsection 5.4.3). Since the widespread physiological pleiotropy
seen among complex traits is likely to originate from pleiotropy in the regulatory
level [135], a multivariable Mendelian randomization (MVMR) approach looks
especially promising in gene expression studies.

Let Y be a random variable of a complex trait outcome, X = (X1,X2, . . . ,Xk) a
random vector of gene expression exposures and G = (G1,G2, . . . ,Gm) a random
vector of genetic instruments. For simplicity, assume all the variables are centered
and standardized. Now consider the MVMR model Y = Xb+ε with E(ε |G) = 0
(Subsection 5.4.3). The MVMR causal effect can be estimated by the two-stage
least squares estimator 5.18 by incorporating all of the instruments and exposures
in the model at the same time. However, this approach requires individual-level
data and thus is often not applicable in genetic studies. Recently, McDaid et
al. derived a summary statistics-based solution for estimating the MVMR causal
effect [136]:

b̂ =
(
Γ̂
′C−1

Γ̂
)−1

Γ̂
′C−1

γ̂ , (6.8)

where Γ̂ : m× k and γ̂ : m× 1 are standardized OLS effect estimates of genetic
instruments on exposures and outcome, respectively; and C : m×m is an LD-
correlation matrix of genetic instruments which can be estimated using reference
data. I have derived a covariance matrix for the MVMR causal effect estimator
6.8 using the Delta method [3] (see Appendix A for all the derivation details):

Var(b̂) = J(β )Var(β̂ )J(β )′ ,

where β̂ =
(
vec(Γ̂) γ̂

′)′ is the vector of individual effect estimates with true ef-
fects β = E

(
β̂
)
, Var(β̂ ) is the corresponding variance-covariance matrix which

can be estimated using summary statistics and a genotype reference, and

J(β ) =

(
∂ b̂
∂ Γ̂

(β )
∂ b̂
∂ γ̂

(β )

)
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Figure 9: Schematic of multivariable Mendelian randomization with an outcome
Y , k exposures (X1,X2, . . . ,Xk), and m genetic instruments (G1,G2, . . . ,Gm).

is the Jacobian matrix of b̂ evaluated at β (our notation is slightly loose here but
note that b̂ is essentially a function f : Rm(k+1)→Rk and thus takes any m(k+1)-
vector as an argument). However, the true effects are unknown, thus we will
approximate the Jacobian at β̂ instead. Since the estimates are already naturally
incorporated in Γ̂ and γ̂ , we can omit the argument altogether in the derivatives:

∂ b̂
∂ Γ̂

=
(
(Γ̂′C−1

Γ̂)−1⊗
(
− γ̂
′C−1

Γ̂(Γ̂′C−1
Γ̂)−1

Γ̂
′C−1))+

+
(
−γ̂
′C−1

Γ̂(Γ̂′C−1
Γ̂)−1⊗ (Γ̂′C−1

Γ̂)−1
Γ̂
′C−1)+

+
(
(Γ̂′C−1

Γ̂)−1⊗ (γ̂ ′C−1)
)
,

∂ b̂
∂ γ̂

= (Γ̂′C−1
Γ̂)−1

Γ̂
′C−1 ,

giving us everything we need to estimate the variance-covariance matrix of the
causal effect vector.

The difficulty in MVMR arises from having to identify all possible exposures
(genes) through which the effect of any given instrument on the outcome could
propagate. MVMR controls for pleiotropic effects through these exposures un-
der investigation [54], estimating exposure effects on the outcome that are not
mediated by other risk factors in the model [137]. This is different from single-
exposure MR which estimates the total causal effect of the risk factor on the out-
come, including the effect mediated by genes in the MVMR model. Thus causal
effects from univariable and multivariable MR do not have to be in agreement even
if there is no violation of MR assumptions. This could be an important consider-
ation for some practical applications. Our quest to identify drug targets means we
are interested in the total causal effect of genes. However, the dynamics between
genes are hard to disentangle and single-gene MR analyses are likely to suffer
substantially more due to pleiotropy—a bigger challenge to overcome than ad-
justing causal effects of prioritized genes later on in follow-up analyses. MVMR
is thus well suited for transcriptomics studies (Ref. III), though can benefit from
being complemented with single-gene MR (Ref. II) and sensitivity analyses.
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6.4.1. Dealing with remaining heterogeneity in effect estimates

MVMR can effectively deal with pleiotropic effects propagating through expo-
sures selected in the model. However, causal effect estimates can still be biased
due to failure to control for all the assumptions (Subsection 5.4.3); unmeasured
confounders in particular remain problematic. Additional sensitivity analyses are
therefore warranted even for MVMR analyses.

Recall that invalid instruments exhibiting horizontal pleiotropy introduce het-
erogeneity in univariable MR causal effect estimates; the presence of pleiotropy
in a single instrument can be tested by the d̂i-statistic 4.10 [126] and globally,
over all the instruments, either by the Cochran’s Q statistic 3.13 or the THEIDI

statistic 4.11 (Subsection 6.3.1). In MVMR however, ascertaining the validity of
instruments is not as straightforward—it is simply not possible to isolate genetic
variants in the analysis because the number of instruments in the model needs to
equal or exceed the number of exposures (Subsection 5.4.3). We can nevertheless
leverage the experience from traditional MR towards a generalized approach for
detecting pleiotropy/heterogeneity in multivariable settings.

In accordance with equation 5.9, the total causal effect of a valid instrument
on the outcome should equal the sum of effects mediated by all the exposures. We
can construct a test statistic similar to the d̂i-statistic 4.10 to test for differences
between these two, assumed to be normally distributed with mean zero [3]:

d̂i = β̂GiY −
k

∑
j=1

β̂GiX j b̂ j , d̂i ∼N
(

0,Var
(
d̂i
))

. (6.9)

To be able to obtain the variance of the d̂i-statistic 6.9 with summary statistics
alone, we could assume all individual estimates/terms in d̂i to be independent and
use the sum and product rule of variance [3]:

Var
(
d̂i
)
= Var

(
β̂GiY

)
+

k

∑
j=1

[
Var
(
β̂GiX j

)
Var
(
b̂ j
)
+b2

jVar
(
β̂GiX j

)
+β

2
GiX j

Var
(
b̂ j
)]

,

where b j and βGiX j are the true effect of exposure X j on Y and instrument Gi on
X j, respectively. Like in univariable MR, instruments deviating too much from
the norm in terms of the d̂i-statistic 6.9 could be eliminated from the analysis.
Furthermore, the sum of d̂i over all the instruments allows to test for effect het-
erogeneity [137] just like Cochran’s Q and THEIDI statistics.

The methods of causal inference invariably depend on assumptions [40], so a
blind application of some methodology can easily lead astray. Investing into sensi-
tivity analysis is thus always worthwhile in practice. Familiarity with the problem
domain further helps to construct causal arguments and choose the most appro-
priate analysis approach. As we will see by examples in the following chapter,
obtaining sound results in practice further benefits from triangulation of evidence
from multiple orthogonal sources.
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7. IDENTIFYING CAUSAL GENES IN PRACTICE

Alice laughed: There’s no use trying, she said;
one can’t believe impossible things.

I daresay you haven’t had much practice, said
the Queen.

Lewis Carroll (Alice in Wonderland)

In the previous chapters, we introduced in rather technical terms the principles
of identifying causal relationships between gene expression and complex traits
with statistical methods. It was to provide a foundation for understanding the
scientific contribution of this dissertation. In the chapter at hand, we will focus
on already published scientific articles that serve as the basis for this contribution.
It entails both methodological innovations and uncovering novel putative causal
relationships in practical applications. Since the articles have been reprinted at
the end of this dissertation and could thus be visited for more details, we will be
purposefully rather brief in our coverage here; we will merely show how to apply
the theoretical framework that we have learned so far—and mold it whenever
necessary—in such a way as to enable causal answers to specific questions in
custom-tailored analyses.

7.1. Causal inference using small sample individual-level data
(Ref. I)

In Ref. I, we set out to find causal links between C-reactive protein (CRP) and
gene expression in the EGCUT cohort. Elevated levels of CRP in the blood are
indicative of inflammation in the body [138]. While inflammation is the immune
system’s normal response to pathogens (e.g. viral, bacterial), tissue injury and
other harmful stimuli, it can have detrimental effects in chronic form; lead to in-
flammatory diseases (e.g. CVD, T2D) and early mortality [139]. As a biomarker,
CRP can be used in clinical practice to determine disease progress and measure
treatment effectiveness [140–142]. Whether CRP shares any actual responsibility
in the decline of immune function is an open question which is not well under-
stood. Here, we tried to shed light on the matter.

7.1.1. Novel likelihood-based model selection approach to prioritize
putative causal genes

A major obstacle to overcome in this study was the small sample size—there were
only 491 individuals with overlapping gene expression and CRP measurements in
the Estonian data. As we know, MR is not well suited to small samples due to lim-
ited power (Subsection 6.1.2). Instead, our approach (loosely inspired by [143])
was to exploit the rules of d-separation (Subsection 5.2.1) to establish possible
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causal relationships between triplets (G,X ,Y ) of genetic variant G, gene expres-
sion trait X and CRP levels Y ; evaluate respective model likelihoods, and prioritize
best-fitting models. This boiled down to a multi-step analysis procedure.

First, we performed an association study between all gene expression traits and
CRP; significant associations from such an analysis include causal relationships
X → Y and X ← Y but are also likely to emerge due to confounding (Subsec-
tion 5.3.1). Next, we conducted a cis-eQTL analysis with significant gene expres-
sion traits from the previous step, this time identifying causal G→X relationships.
Together, the results of these two steps are sufficient for the following models:

(i) causal—genetic variant regulates CRP levels via gene expression mediation
(ii) colliding—genetic variant and CRP independently regulate gene expression

(iii) reverse—genetic variant regulates gene expression through CRP mediation
(iv) independent—genetic variant independently regulates both gene expression

and CRP levels
For every triplet (G,X ,Y ), we thus had to calculate the likelihood of the four mod-
els and prioritize the likeliest one (more details in [1]). However, note that per our
procedure, genetic variants were selected in the second step based on the strength
of association with gene expression. This leads to selection bias favouring causal
and colliding models over the others. We could thus simplify our analysis and
determine a plausible causal direction between X and Y by the difference in AIC
values of these two models in the EGCUT sample:

∆AIC =
n

∏
i=1

pcausal(G = gi,X = xi,Y = yi)︸ ︷︷ ︸
p(gi)p(xi|gi)p(yi|xi)

−
n

∏
i=1

pcolliding(G = gi,X = xi,Y = yi)︸ ︷︷ ︸
p(gi)p(yi)p(xi|gi,yi)

,

(7.1)
where the following distributions were assumed:

G∼ B
(
2, frequency(G)

)
,

Y ∼N
(
EY,Var(Y )

)
,

X | G∼N
(
EXG,Var(X)

)
,

Y | X ∼N
(

EY −
√

Var(Y )
Var(X)ρXY (X−EX),

(
1−ρ

2
XY
)

Var(Y )
)
,

X | G,Y ∼N
(

EXG−
√

Var(X)
Var(Y )ρXY (Y −EY ),

(
1−ρ

2
XY
)

Var(X)

)
.

In order to work with triplets that had considerable support for one or the other
model, we required that |∆AIC| ≥ 10. Furthermore, causal triplets had to satisfy
G⊥6⊥Y ∧G⊥⊥Y | X while colliding triplets had to satisfy G⊥⊥Y ∧G⊥6⊥Y | X (Sub-
section 5.2.1). Nevertheless, our likelihood-based approach was never designed
to weed out all confounding, rather we attempted to prioritize candidate genes for
additional investigations.
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Altogether, the analysis above highlighted ten candidate genes which were
brought forward to a two-sample MR analysis (Section 6.2). To account for trait
complexities, increase power in the analysis and have independent sources of evi-
dence, we used summary statistics from the biggest CRP GWAS [144] and eQTL
study (then unpublished eQTLGen Consortium data [69]) available at the time.
Among the ten candidates, only one involved a causal triplet model—the FADS2
gene. To officially test for its causal effect on CRP levels (H0 : bXY = 0), we
performed the SMR analysis 6.6 with the top instrument identified in the eQTL
study; we did not reach statistical significance (P = 0.0996). For genes involved
in colliding triplet models, we tested for the causal effect of CRP on expression
(H0 : bY X = 0) using genetic variants associated with CRP levels (P < 5× 10−8)
as instruments in a multi-instrument MR setting with the IVW estimator 6.7, fol-
lowed by MR-Egger regression to investigate the presence of horizontal pleiotropy
(Subsection 6.3.1). A single gene, CD59, emerged as being putatively causally
regulated by CRP levels (b̂Y X = 0.2, P = 0.0012).

7.1.2. The importance of triangulation of causal evidence

Due to assumptions which are not testable in practice, isolated statistical analyses
are not enough to warrant causal claims. Evidence is stronger if orthogonal meth-
ods and approaches lead to the same conclusions. In particular, the results should
fit into the biological understanding of the mechanistic processes in question. Sta-
tistical results should ideally be validated in experimental settings, though this
is rarely seen in computational analyses papers. In our study, we confirmed the
causal link between CRP and CD59 expression in blood with cell culture stimu-
lation assays, adding considerable conviction to the finding.

While we could not gather enough support for a functional role of FADS2 ex-
pression on CRP, it has been associated with lipid levels [145, 146] which in turn
have been causally implicated in inflammatory processes and CRP [147]; FADS2
could thus have a mediated indirect effect on CRP and we could have been under-
powered to detect it. On the other hand, CD59 is known to inhibit the formation
of complement membrane attack complex which as part of the innate immune
system induces the lysis and death of targeted cells during infections and inflam-
mation [148]. The involvement of CRP in the regulation of CD59 expression in
blood thus suggests a negative feedback mechanism to control the immune re-
sponse from damaging healthy blood cells. This could have implications in terms
of understanding and controlling for low-grade chronic inflammation.

7.1.3. Other contributions to the field

The contributions of Ref. I to the wider scientific community are not only our
methodological approach and novel results. As part of the study, the raw RNA-
seq data of the EGCUT cohort was—for the first time—prepared, processed, anal-
ysed, and made publically available in the form of eQTL summary statistics. Fur-
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thermore, note how we identified a link from a complex trait to gene expression,
not vice versa. To the best of our knowledge, this had not been done before with
computational methods. Causal links of such direction would have been—and still
are!—difficult to uncover with MR due to relatively small sample sizes of gene ex-
pression data (Figure 6b). In addition to that, trans-eQTL summary statistics irre-
spective of the strength of association were not readily available at the time [149],
likely due to overhead in data management (associations between all SNPs and
gene expression traits are in tens or even hundreds of billions). We cooperated
with the eQTLGen Consortium to access necessary summary statistics—based on
the biggest eQTL study available, though unpublished at the time.

Finally, it is important to acknowledge that we endeavoured causal reasoning
only after collecting causal evidence from multiple orthogonal sources. Experi-
mental validation—made possible thanks to a direct collaboration with immunol-
ogy Prof. Pärt Peterson from the University of Tartu—was particularly essential.
All in all, our study shows the importance and significance of triangulation of
evidence for causal reasoning.

7.2. Genes in 16p11.2 BP4-BP5 CNV region with a causal
effect on age at menarche (Ref. II)

In Ref. II, we seeked to explain the effect of 16p11.2 600 kilobase (kb) BP4-BP5
CNV interval on reproductive traits. Copy number dosages of this interval have
been linked to developmental disorders (e.g. autism), changes in brain structure,
cognitive functioning, and extreme BMI [150–153]. Collectively, these traits im-
ply a disrupted developmental process, characterizable by reproductive outcomes.
Though pubertal timing has been associated with common SNPs in this interval
in GWAS approaches [154], it has remained relatively understudied as part of the
CNV phenotype. While CNVs are usually rare due to potentially very detrimental
health outcomes, rearrangements of the 16p11.2 BP4-BP5 interval can be con-
sidered as fairly common with a frequency of 0.04% for deletion and 0.05% for
reciprocal duplication [150]. For these reasons, careful investigation into the func-
tional relationships at play here is of great clinical interest, specifically in terms
of the genes responsible for the phenotypic tendencies. Of particular priority in
this study was the timing of sexual development as measured by the beginning
of puberty. Since this is better defined in women than in men, we concentrated
primarily on age at menarche (AAM) as the trait of interest.

7.2.1. Puberty timing tracks with 16p11.2 BP4-BP5 dosage

Starting off with a UKBB-based association analysis, we showed for the first time
that AAM tracks with copy number dosage of the 16p11.2 BP4-BP5 interval,
representing a mirror effect; menstrual cycles of women carrying either the dele-
tion or reciprocal duplication of this CNV region started about 1.5 years earlier
(Wilcoxon P = 0.001) or later (Wilcoxon P = 0.002), respectively, compared to
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the average of 12.9 years in normal controls. These results validated in mouse
models, though effect directions were inverted compared to humans: female mice
carrying either the deletion or duplication reached first ovulation about 5 days
later (Wilcoxon P = 4.8× 10−6) or 2 days earlier (Wilcoxon P = 0.0021) than
their wild type littermates.

The 16p11.2 BP4-BP5 CNV interval encompasses and thus has consequences
on 29 genes (Figure 10). To pinpoint genes causally modulating AAM, we natu-
rally turned to MR. There is a caveat however—the physical proximity of many
genes in such a small region results in genetic architectures that seem to be very
similar due to LD (Figure 3). It becomes virtually impossible to differentiate
valid instruments from eQTLs exhibiting horizontal pleiotropy, representing a
problem of bias for MR analysis. We tackled the issue by complementing the
traditional SMR+HEIDI approach (equations 6.6 and 4.11) [88] with the MVMR
method 6.8 [136], hypothesizing that having all the BP4-BP5 genes in the model
simultaneously—accounting for pleiotropic effects through these likely causal
genes—could better help to deal with the bias.
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Figure 10: Loss of function deletions and copy gain duplications in gnomAD
data [155] covering at least 1000 base pairs in the 16p11.2 BP4-BP5 CNV interval
from 29.6−30.2 Mb (bottom), and genes in the same region [82] (top). The bigger
(≈ 600 kb) CNVs have consequences on all 29 genes in the region.

To maximize statistical power, we used summary statistics from the largest
eQTL study (then unpublished eQTLGen Consortium data [69]) and GWAS on
AAM [154] at the time. The eQTL instruments were identified in whole blood
which is not necessarily the most informative tissue for AAM; however, sample
sizes for more relevant tissues were very small (N ≈ 100 for brain tissues in GTEx
data [118]) and blood eQTLs have been shown to be good proxies for eQTLs of
other tissues [156]. We used a P-value threshold 10−5 for the inclusion (corre-
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sponds to F ≈ 20 in equation 6.3) which guarantees strong instruments while not
compromising on power like more stringent thresholds. In order to include only
independent SNPs, we applied the stepwise fine-mapping strategy as implemented
in GCTA software [83] (Subsection 4.1.1). Altogether, 12 out of the 29 genes had
strong eQTLs in the eQTLGen data. These genes were tested for the causal ef-
fect on AAM with our MR approach, more than doubling the number of genes
previously analyzed for this purpose [154]. The analysis supported a causal role
in AAM for two genes: INO80E (bXY = 0.071, P = 9.3× 10−5) and KCTD13
(bXY =−0.074, P = 9.7×10−4).

7.2.2. External investigation into causal genes

Similarly to Ref. I, we embarked on an independent validation approach in ex-
perimental settings to validate the MR findings. Unlike CRP however, human
AAM cannot be treated to a lab protocol, prompting us to turn to animal models
instead. A useful indicator of the reproductive function is provided by the devel-
opment of the gonadotropin-releasing hormone (GnRH) system which happens
to be evolutionarily well conserved in vertebrates [157]. Zebrafish represents a
particularly good model organism to study this due to its transparency in early
development [158]. The animals are genetically modified such that GnRH neu-
rons (of type 3 specifically) would express enhanced green fluorescent protein
(EGFP) [157–159]. The development of the GnRH3 system in such transgenic
(Tg) zebrafish can then easily be monitored in high-resolution using fluorescence
imaging techniques [159]. We independently modulated the dosage of BP4-BP5
genes in the Tg:GnRH3:EGFP zebrafish line and measured the area of EGFP-
positive cells in the dorsal aspect of larvae at 5 days post fertilization (dpf). Over-
expression of a single gene, ASPHD1, significantly reduced the EGFP signal com-
pared to controls (by 19%, linear regression P < 0.0001); other genes had no ef-
fect, not even INO80E nor KCTD13 which were brought forward in the MR anal-
ysis. A similar reduction in EGFP signal at 5 dpf was seen in Tg:GnRH3:EGFP
larvae depleted of ASPHD1 transcripts with CRISPR/Cas9 genome editing tech-
nique [160] (by 13%, linear regression P = 0.0031).

We could not test for the causal effect of ASPHD1 on AAM with MR due
to data availability; ASPHD1 is predominantly expressed in brain and pituitary
gland [118], and did not have any eQTLs in our whole-blood based data. However,
we hypothesized that MR-supported causal genes INO80E and KCTD13 could
interact with ASPHD1 to exacerbate or mitigate its effect. Co-injecting KCTD13
with ASPHD1 indeed resulted in a significantly reduced EGFP signal compared
to overexpression of just ASPHD1 (by 14%, linear regression P = 0.003). Not
too much is currently known about the biological function of ASPHD1 but our
results suggest it interacts with KCTD13 and plays a role in the development of
the reproductive system.
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7.2.3. Summary of our contributions to the field

In conclusion, we showed an association with the copy number dosage of 16p11.2
BP4-BP5 interval and pubertal timing. More importantly, we applied an interdis-
ciplinary approach of computational MR analyses and experiments on zebrafish
models to tease out functionally responsible genes, identifying ASPHD1 as a
driver and KCTD13 as a modifier of the reproductive phenotype. These are im-
portant findings for making sense of the underlying biological processes in sexual
development and the aetiology of associated diseases.

The analysis we conducted herein confirms an important role for MR in estab-
lishing causal genes for complex traits but signifies the importance of orthogonal
(experimental) approaches and tissue-specific scans. Causal analyses in tissues
other than whole blood have so far remained scarce due to low power of MR and
small sample sizes of available gene expression data. This is likely to change in
the future with continuous collection of tissue-specific expression measurements
by projects like GTEx [118], together with harnessing and systematic analysis of
this data by initiatives such as the eQTL Catalogue [161]. Nevertheless, expres-
sion profiling in blood remains the most abundant and continues to represent the
most viable option for MR studies in terms of providing raw power. As is evident
from our analysis however, tissue-specific gene-trait relationships can be missed
if blood is used as a proxy to other tissues. By integrating rare variant analyses,
MR, and experiments on mouse and zebrafish models, we could overcome limi-
tations of any single methodological approach. Our MR results fed directly into
the design of lab experiments and helped to elucidate the interplay between gene
expression and reproductive traits.

Our study in Ref. II represents a thorough and powerful investigation into
the molecular mechanisms behind pubertal timing. Similarly to Ref. I, we back
our claims using several sources of evidence, made possible thanks to a combined
collaborative effort of many distinct researchers. Just the analyses with the highest
relevance to the narrative of this dissertation have been described here. Refer to
the paper at hand [2] for more details.

7.3. Mendelian randomization over the transcriptome (Refs. III,
IV, V)

In Ref. III, we performed a systematic evaluation of MVMR for identifying
causal genes over the entire transcriptome for 43 complex traits; in Ref. IV, we
performed the analysis in men and women separately. We have already covered
the theoretical suitability of MVMR for causal gene discovery in Section 6.4, cor-
roborated by simulation studies [54, 137] and custom-tailored analyses (e.g. Ref.
II [2]) alike. However, these examples demonstrating the promise of MVMR
are sporadic and highly circumstance-specific. It is not clear whether the ben-
efits of this methodology over competing strategies for gene prioritization (e.g.
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fine-mapping, single-gene MR) are generalizable to less defined situations and
hypothesis-free scans. Here, we investigated these matters in detail.

7.3.1. Practical considerations of transcriptome wide analysis

Applying MVMR to estimate the causal effect of an arbitrary gene on an outcome
raises the question of how to determine accompanying genes and respective in-
struments to include in the model. Since eQTLs are more likely to manifest direct
causal effects in cis as opposed to act on distant genes [135], a general strategy
could be to incorporate in the model all the genes in a genomic region of interest.
In our approach, called transcriptome wide Mendelian randomization (TWMR),
this is implemented as follows:

1. For a focal gene X f , let its instruments be eQTLs that pass a pre-specified
P-value threshold in an eQTL study: G f = {G ∈ G | PG,X f ≤ threshold},
where G denotes for the set of all SNPs.

2. From the set of all gene expression exposures X , find genes that share
eQTLs with the focal gene: X = (X ∈ X | PG,X ≤ threshold∧G ∈ G f ).

3. Define instruments as eQTLs of all the previously established exposures,
G = {G ∈ G | PG,X ≤ threshold,X ∈ X}.

Completing the steps above already facilitates the MVMR approach 6.8 which
naturally allows for LD between instruments. Nevertheless, we pruned eQTLs to
be nearly independent in order to account for the weak instrument bias of MR
(Subsection 6.1.1). Only then did we apply formula 6.8 to estimate the causal
effect of the focal gene X f on the outcome, correcting for heterogeneity in effect
estimates by eliminating outlying instruments as per the d̂i-statistic 6.9.

We used summary statistics from the largest eQTL and GWAS meta-analyses
at the time to run the algorithm. Like in Ref. I and Ref. II, eQTLs once again
originated from data by the eQTLGen Consortium [69]. As reasoned previously,
this choice of data maximizes statistical power, even though blood may not nec-
essarily be the causal tissue for some traits.

7.3.2. Improving upon existing approaches to implicate novel causal
gene-trait relationships (Ref. III)

Among 19251 genes and 43 traits, we found 3913 significant associations after
correcting for multiple tests (P-value < 0.05/16000, where 16000 corresponds
to the approximate number of genes tested for each trait); 36% of these relation-
ships were not previously prioritized by GWAS and fine-mapping approaches. To
study the reasons behind this apparent discrepancy, we conducted both GWAS
and TWMR analyses with BMI in randomly chosen subsets of various different
sizes of the UKBB data, defining GWAS hits as all genes within 500 kb region
from significant SNPs. As could be expected, the number of BMI-related genes
increased linearly with sample size irrespective of the methodology; more impor-
tantly however, genes missed by GWAS but detected by TWMR in smaller sample
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sizes tended to eventually be confirmed by GWAS in bigger sample sizes. This
provides evidence for the superiority of TWMR in terms of statistical power.

In total, 848 of the TWMR-recommended genes were causal for several traits,
indicating widespread pleiotropy like other studies before us [41, 130]. Dealing
with pleiotropy is crucial to minimize biases in causal effect estimation. To further
our understanding in how the MVMR approach fares compared to single-gene
MR in accurately estimating causal effects in realistic settings, we designed a
simulation study. We used both methods to estimate the causal effect in simulation
models with varying number of genes (e.g. 3 or 5), SNPs (e.g. 15 or 30), and
degrees of pleiotropy that each SNP exhibits on gene expression (i.e. the number
of genes it influences on average). MVMR was universally superior in terms of
mean squared error (MSE) between true and estimated causal effects. The single-
gene MR suffered from inflated T1E rate (upwards 20%) while MVMR did not
exceed the 5% nominal level. Importantly, the benefits of lower MSE and T1E did
not come at the expense of power—both methods fared comparably in that regard.
In brief, MVMR for causal inference in our simulations was considerably less
affected by pleiotropy than single-gene MR while not compromising on power.

One of our many novel findings of causal gene-trait relationships is the medi-
ating role of intellectual impairment-associated BSCL2 [162] in the culmination
of educational attainment. However, as well as implicating functional genes in re-
gions not previously prioritized by GWAS for corresponding traits, we could also
reassign causal genes in regions already flagged as trait-associated. For example,
we found a causal link between a short stature-associated CRIPT [163] and height
in a locus where another gene, SOCS5, was previously prioritized instead [164].
Altogether, we observed many examples where the top GWAS SNP did not lead
to a TWMR-implicated gene, indicating that the physically closest gene to the
most trait-significant genetic variant in the region need not always be causal, like
shown elsewhere [165, 166].

The results and examples in Ref. III really are plentiful; we restated only the
more interesting findings here. Refer to the actual paper (reprinted at the end of
the dissertation) and its supplementary [3] for further exploration.

7.3.3. Sex-specific effects (Ref. IV)

The results that we have covered so far were found by analyzing entire populations
without any regard to obvious discrepancies between some stratums of individu-
als. Most notably, men and women present differences in characteristics of nearly
all complex traits and diseases: in susceptibility (incidence and prevalence), age
of onset, progression, severity, etc. [167]. Not accounting for that can lead to
missed discoveries and incorrect estimates due to effect dilution. The main culprit
for the apparent disregard to sex-specificity of complex traits in association stud-
ies lies in the difficulty in detecting potentially small differences in effect sizes
between strata. After all, genetic variants exhibit at most only a tiny influence on
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trait variability by the polygenic model [20], requiring large sample sizes to dis-
cover as is. Sex-stratified analyses need to make do with roughly half the available
samples to detect differences in effects which can be—by design—even smaller.
Until recently, sex-specific analyses have simply been underpowered to even at-
tempt performing. It is therefore not surprising that drugs have been developed
and prescribed following a one-size-fits-all paradigm, leading to variable efficacy
between sexes, and adverse reactions [168]. In order to truly advance precision
medicine, it is paramount to account for sex-specificity in complex traits and dis-
eases, and understand the mechanisms responsible for phenotypic differences be-
tween sexes. Despite recognizing the difficulty of the task, we set out to explore
these problems in Ref. IV.

Our undertaking was motivated by the hypothesis that variation in phenotype
values between men and women is at least partly driven by differences in gene ex-
pression regulation. To enable inference to that end, we first identified sex-specific
eQTLs from 1928 women and 1519 men in whole blood RNA-seq data col-
lected by the BIOS Consortium (https://www.bbmri.nl/acquisition-use-analyze/
bios/). Using a t-test, we found 18 genes with sex-specific eQTLs. We performed
a UKBB-based phenome-wide association study with lead eQTLs of these genes
and over 700 traits, identifying some associations with morphological and hema-
tological traits; however, these associations did not replicate in sex-stratified anal-
ysis of corresponding traits, indicating no enrichment of sex-specific GWAS hits
among sex-specific eQTLs. To also approach from the other side, we started off
with sex-specific association studies of two traits with considerable differences
between men and women—WHR and testosterone levels—but did not see any
enrichment of sex-specific eQTLs among sex-specific GWAS findings either.

While it is still too early to say how much of sex-specificity in traits is down
to sex-specificity in gene expression regulation—we show by simulations that the
power to test for this is simply too low, requiring millions of samples—a sex-
specific TWMR analysis on the traits above (WHR and testosterone levels) turned
out to be more fruitful, uncovering several sex-specific causal genes, e.g. IFT27
with testosterone levels in men and CCDC92 with WHR in women. Importantly, a
negative control TWMR analysis on educational attainment did not show any sex-
specific associations, providing some validation for our approach. Thus TWMR
can help to identify putative mechanisms underlying sex differences in complex
traits, even if traditional GWAS approaches are unable to do so.

7.3.4. Reverse causation: from traits to expression (Ref. I, V)

Studies looking for causal relationships between gene expression and complex
traits have predominantly focused on only one causal direction, gene → trait.
There are two major reasons why trait→ gene relationships have not been investi-
gated as much. First, it is arguably more useful to identify causal genes underlying
diseases because these could be used to develop drugs for the cure or intervention
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of said diseases. Second, exploring trait influences on the transcriptome requires
trans-eQTLs which have not been widely available until recently. Our analysis in
Ref. I [1]—remember that we reported a causal effect of circulating CRP levels
on CD59 expression—represents one of the few and earliest exceptions in this re-
gard (Subsection 7.1.3). As part of the study, we curiously noticed that observed
gene-trait correlations in EGCUT data do not overlap with causal gene→ trait as-
sociations identified with TWMR in Ref. III (Figure 11). Due to data availability,
we analyzed a subset of 22 out of all the complex traits investigated in Ref. III,
including blood cell counts, hemodynamic parameters, anthropometry measure-
ments, lipid levels, and diseases with at least 20 cases. All quantitative trait values
were measured from blood samples where gene expression was quantified, or on
the day when samples were taken. For diseases, individuals were classified as
cases if they had been diagnosed with the disease by this day, controls otherwise.

Figure 11: Scatter plot of Ẑ-statistics from the EGCUT-based correlation analysis
(Ref. I) on x-axis and Ẑ-statistics from TWMR analysis (Ref. III) on y-axis.
Each point represents a gene expression-outcome pair. Blue and yellow points
correspond to just correlated xor causally associated relationships, respectively,
while red points indicate significance in both analyses (note that only those in the
first and third quadrants exhibit consistent effect direction).

While correlations can emerge due to confounding and should thus not be used
to infer causal relationships by theory (Subsection 5.3.1), we would still have ex-
pected some enrichment of causality. In Ref. V, we theorize on the possibility that
gene-trait correlations could be better described by the reverse direction: causal
trait→ gene associations. This would be consistent with a recent large-scale tran-
scriptome study which found that only a small fraction (4%) of trans-eQTL effects
can be explained by mediation via genes in cis, indicating widespread environ-
mental causes in gene expression regulation [69]. Research on this is ongoing.
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7.3.5. Our contributions to the field

Here, we show convincing evidence that MVMR has more power to identify
causal genes compared to GWAS and fine-mapping approaches. Further, it cor-
rects for some of the pleiotropy-induced bias in the causal effect estimates while
having a reduced T1E rate compared to single-gene MR. Applying MVMR in our
transcriptome wide scan lead to the identification of many putative causal genes
for various complex traits.

The plethora of causal gene-trait relationships that we uncovered in Ref. III
gives predence to the claim that gene expression acts as a mediator between ge-
netic variants and complex traits. In addition, note that eQTLs—used as instru-
ments in MR—by definition lead to discoveries of expression-induced associa-
tions with complex traits; genetic variants responsible for changes in the protein
structure of genes are simply not targeted by eQTL studies. In fact, the TWMR
approach correctly did not uncover known gene-trait associations induced by cod-
ing variants. Therefore, our findings are indicative of extensive regulatory effects
acting on complex traits on the gene level. We also show widespread sharing
of genetic architecture between traits, corroborated by other studies [41, 130]. In-
sight from our analyses coupled with the notion that just computational tools were
used to prioritize causal relationships is promising for the pharmaceutical industry
concerned with the design and development of candidate disease interventions.

In an attempt to provide insight for precision medicine approaches, we inves-
tigated in Ref. IV whether sex-specificity in complex traits can be attributed to
sex-specificity in gene expression regulation. We showed by power calculations
that available gene expression data is currently not abundant enough to answer
this question with traditional GWAS approaches, yet sex-specific TWMR can be
applied to yield sex-specific causal genes.

Even though correlations should not be used to inform causal links due to con-
founding, true causality implies correlation (Subsection 5.3.1). However, we did
not observe any enrichment of causal gene→ trait relationships among signifi-
cant gene expression-trait correlations in Ref. V. Instead, we argued that causal
trait→ gene relationships might be more prevalent among such correlations.

Like in Ref. I and Ref. II, our results in Refs. III-V are based on expression
data originating from whole blood. Analyses in other tissues have the potential
to uncover tissue-specific effects and thus would likely result in the identifica-
tion of even more functional relationships. Given our understanding about the
superior power of TWMR over GWAS for implicating causal genes, this leads
us to hypothesize that future efforts in teasing out yet more causal links between
genes and complex traits could have bigger benefits from concentrating on tissue-
specific analysis, instead of increasing GWAS sample size. Like argued in Sub-
section 7.2.3, the feasibility and meaningfulness of this endeavour is likely to
increase in the near future when additional gene expression data from non-blood
tissues becomes more abundant and widely available.
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8. CONCLUSION

I almost wish I hadn’t gone down that
rabbit-hole — and yet — and yet — it’s
rather curious, you know, this sort of life!

Lewis Carroll’s Alice
(Alice in Wonderland)

The material presented in this dissertation is—of necessity—a mix from several
different fields, incorporating statistical methods from regression to meta-analysis
(Chapter 3), association-based approaches for gene prioritization (Chapter 4), the
formal concept of causality by Pearl (Chapter 5), the method of instrumental vari-
ables in econometrics (Section 5.4), how all these intertwine to enable MR to-
gether with sensitivity analyses (Chapter 6) for the purposes of causal inference in
human genetics, and applied research (Chapter 7). The methods for disentangling
causal relationships from observational data come in slightly different flavours but
all are based on the same causal theory and—as we have hopefully managed to
convince—are fundamentally very similar. This claim holds even for the methods
that we did not explicitly cover in this dissertation, e.g. the popular regression-
based approach for mediation analysis by Baron and Kenny [107] followed by the
Sobel test [169], the causal inference test [108], network-based causal analysis
methods [109], or structural equation models in general [40] (Section 5.2). Mak-
ing causal inference from these methods is built on very strong assumptions re-
quiring preemptive knowledge about underlying structural relationships between
variables [110]. In contrast, MR, even though it comes with its own assumptions,
is more robust by allowing for unmeasured confounders of the exposure-outcome
relationship. This makes it applicable in more realistic settings, which is exactly
the reason why we have given it the most attention in this dissertation.

8.1. In terms of teaching potential

Along with covering some of my more important research contributions over the
past years (published in scientific journals), the core objective of this disserta-
tion was to bring together connected theories and methods of mathematics and
statistics in the field of causal inference and present them uniformly in the context
of human genetics. There is an understandable tendency among scientific com-
munities dealing with the intricacies of different concepts and methodologies to
internalize or take for granted certain knowledge, and develop an intrinsic way
of expressing related material. Addressing similar concepts and methodologies in
an inharmonious manner can give rise to misconceptions and confusion over their
utility and applicability in varying scenarios. The organisation and structuring of
this dissertation was strongly influenced by my desire to avoid this and provide a
coherent, theoretically sound treatment of inherently linked topics.
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The analysis of causality is becoming very popular in human genetics due to
increasing sample sizes; especially MR has gained a lot of traction over the last
years. This further necessitates the placement of methods in context relative to
each other, in terms of causality and what they can or cannot be used for. While
scientific papers often assume existing knowledge, this dissertation aims to cover
all the necessary material from the ground up and somewhat demystify the concept
of causality in the process. My hope is that it will be useful for the new generation
of (early career) researchers—in Estonia but not limited to—interested in the field
of statistical genetics. The material presented here could, in the future, serve as
a graduate level course in statistical genetics, either given by me or somebody
else. For that reason, I tried my best to write this dissertation in a review-like
tutorial-like manner, while not compromising too much on theoretical detail.

8.2. In terms of scientific research

It should be clear from the evidence presented in this dissertation that causality
cannot be determined easily based on statistical reasoning alone. Sensitivity anal-
yses can often help to highlight the violations of method assumptions and should
thus be attempted along with formal causal analysis. Even so, implications to
results and findings from untestable assumptions should be considered. Trian-
gulation of causal evidence from orthogonal sources of information is especially
important for increasing the trustworthiness of causal reasoning (Refs. I and II).
Like is usually the case, the best approach to solving any problem depends on
the problem domain; deep familiarity and understanding of it not only helps to
choose the most appropriate methodology, it also facilitates arguments based on
non-statistical evidence. While statistical methods are tremendously promising in
speeding up causal discoveries in bulk (Ref. III), the final arbiter of causal results
will remain to be experimental evidence [30].

An important reason for the increasing popularity of MR is that it can be per-
formed using just summary statistics. For that reason, public databases of eQTLs
(e.g. eQTLGen data [69] and the eQTL Catalogue [161]) and GWAS associa-
tions (e.g. the UKBB-based GeneATLAS [120], LD Hub [170], and PhenoScan-
ner [171]) make MR applicable over a wide range of phenotypes, both molecular
and clinical. The platform MR-Base [172] integrates several of such resources
and even implements traditional MR methods together with sensitivity analyses
to facilitate causal inference phenome-wide. Simply put, it has never been easier
to attempt causal analyses in human genetics. All this means an unprecedented
access into exploring the aetiology of disease and prioritizing drug targets for clin-
ical trials [37,173]. Indeed, phenome-wide MR studies have already been utilized
for new discoveries of causal relationships between traits [174]. I have followed
suit in my research, tackling functional genomics by developing and applying
causal inference methods to identify causal genes for complex traits and diseases.

In Ref. I, we applied a likelihood-based causal analysis framework together
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with MR and lab experiments to elucidate causes and consequences between CRP
and gene expression. We uncovered a causal effect of CRP on CD59 expression
in blood, leading us to theorize about its protective function regarding healthy
blood cells during human immune response. Causal links of such direction (from
complex trait to gene expression) are hard to detect with computational tools—
though we theorize in Ref. V that simple gene-trait correlations might be enriched
of such relationships—due to scarcity of gene expression data. Our success in that
regard comes down to both integration of different data and methods, and working
as part of an interdisciplinary team of scientists with varying skills and expertise,
leading to orthogonal sources of causal evidence and triangulation thereof.

In Ref. II, we shed light on functional genes mediating sexual development in
the 16p11.2 BP4-BP5 CNV interval, pinpointing ASPHD1 as a main driver and
KCTD13 as a modifier of the CNV phenotype. Starting off with a computational
analysis, we decided for a MVMR approach to prioritize a list of AAM-relevant
genes, in turn feeding these into experiments with zebrafish models. Coupled
with rare variant association analyses on humans and mouse models, we provided
unprecedented insight into development of reproductive traits and aetiology of as-
sociated diseases. These findings can once again (similarly to Ref. I) be attributed
to our integrative interdisciplinary approach involving expertise in different sci-
entific disciplines.

In Ref. III and Ref. IV, we applied MVMR over the entire transcriptome on a
wide variety of complex traits—both over all individuals and stratified by sex—to
identify actionable genes that could be brought forward to further experiments.
Our method, TWMR, discovered causal genes with superior power compared to
GWAS and fine-mapping approaches, and with a reduced T1E rate compared to
single-gene MR. We uncovered a plethora of putative causal gene-trait relation-
ships. However, as small sample sizes of gene expression data rendered sex-
specific analyses largely unfruitful, it still remains to be seen in what portion can
sex-specificity in phenotypes be attributed to differences in the regulatory level.

In conclusion, computational approaches represent a powerful means to gene
prioritization and are already being used for selecting drug targets for RCTs. How-
ever, it should be kept in mind that causal analysis on observational data comes
with a set of assumptions that necessitate understanding of methods and careful
interpretation of results. Limitations due to data availability have resulted in most
of the studies, including ours, to be conducted on whole blood gene expression
measurements. This is despite our understanding that blood may not be the causal
tissue for traits, and gene expression may not be a good proxy for gene products
(proteins) that drugs would target.

8.2.1. Future directions

The methods introduced in this dissertation are directly applicable to omics lay-
ers beyond transcriptomics, such as proteomics. In the future, protein assays
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and tissue-specific gene expression quantification are likely to propel analyses
in these directions and further causal discoveries. The primary reasoning behind
this notion is the continued acquisition of data by biobanks and research initiatives
worldwide. With sufficient data, MR would become feasible in molecular pheno-
types where sample size is currently the limiting factor (Subsection 6.1.2). In this
aspect, the advancement of scientific knowledge on causal relationships depends
on technological developments and respective costs in harnessing the necessary
data from the biological material of biobank participants. Recent MR analyses
with a subset of the proteome on a phenome-wide scale have already yielded new
insight into disease processes and drug target prioritization [175].

Yet more insight into causal processes is likely to stem from statistical method
development. Traditional MR analyses are isolated to specific exposure and out-
come traits at a time (Section 6.1), unable to capture more sophisticated rela-
tionships between several variables. However, biological systems can rather be
thought of as complex networks of genetic and environmental factors [39]. To
uncover the structure of these networks, known and verified causal relationships
should either be incorporated into new investigations step-by-step, or confound-
ing robust methods should be developed that permit to build causal networks from
the ground up. These involve mediation analyses able to distinguish between di-
rect and indirect causal effects. Integration of different data types is necessary for
all such approaches. Initial frameworks for elucidating causal networks incorpo-
rating all the available phenotype information of national biobanks have recently
been proposed [176].

The major limiting factor of causal enquiries is the inability to verify core
method assumptions (Section 5.4). Computational results need to undergo bio-
logical validation but this represents a bottleneck. In my opinion, the capacity
to prioritize causal discoveries could be greatly enhanced if methods could be
benchmarked and tested against reliable standards on simulated data. For this pur-
pose, the functioning of biological systems would need to be adequately captured
by simulation procedures—accurately capturing genetic architectures of complex
traits (Subsection 2.2.2) would suffice. Quantifying the reliability of causal re-
sults obtained through statistical and computational means would facilitate fo-
cused method development and subsequent discovery of reliable insight into dis-
ease processes.
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Appendix A. DERIVATION OF THE MULTIVARIABLE
MENDELIAN RANDOMIZATION STANDARD ERROR

Consider the multivariable causal effect estimator 6.8:

b̂ = (Γ̂′C−1
Γ̂)−1

Γ̂
′C−1

γ̂ ,

where Γ̂ : m×k is a matrix of standardized eQTL effect sizes such that Γ̂i j = β̂GiX j

is the standardized effect of instrument Gi on exposure X j; C : m×m is an LD-
matrix between SNPs, and γ̂ : m× 1 is a vector of standardized trait effect sizes
such that γ̂i = β̂GiY is the standardized effect of Gi on the outcome Y . Estimator b̂
is essentially a function f : Rm(k+1)→ Rk, where k is the number of risk factors
and m is the number of SNPs. Define the following:

β̂ =

(
vec(Γ̂)

γ̂

)
,

σ
β̂
=

(√
Var
(
β̂1
)
,

√
Var
(
β̂2
)
, . . . ,

√
Var
(
β̂m(k+1)

))′
,

such that β̂ is the vector of estimated effects of instruments on exposures and
outcome—let β = E

(
β̂
)

denote the true effects—and σ
β̂

is the corresponding
vector of standard errors.

The Delta method gives us:

f (β̂ )≈ f (β )+ J(β )(β̂ −β ) , (A.1)

where J : k×m(k+1) is a Jacobian matrix. We can use the fact that E
(
β̂
)
= β to

approximate the average causal effect as

E
(
b̂
)
= E

(
f (β̂ )

)
≈ f (β ) . (A.2)

In turn, the variance can be approximated using A.2 and A.1:

Var
(
b̂
)
= Var

(
f (β̂ )

)
= E

((
f (β̂ )−E

(
f (β̂ )

))(
f (β̂ )−E

(
f (β̂ )

))′)
≈ E

((
f (β̂ )− f (β )

)(
f (β̂ )− f (β )

)′)
≈ J(β )E

((
β̂ −β

)(
β̂ −β

)′)
J′(β )

= J(β )ΣJ′(β ) . (A.3)

The covariance matrix of β̂ under fixed genotypes is Σ=σ
β̂

σ
′
β̂
�(R⊗C), where R

is the correlation matrix of risk factors and outcome. Taking R = Ik+1 for simplic-
ity allows to estimate Σ using just summary statistics and a genotype reference.
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The Jacobian matrix J is the matrix of all first-order partial derivatives of a
function, in our case f . Thus we need to take derivatives to find its value at β .
However, true effects are unknown in reality. For that reason, we will evaluate
J at the estimated effects β̂ instead. For simplicity, we will omit the argument
altogether and write J in terms of the causal effect estimator b̂ which conveniently
already incorporates all the individual estimates in the form of the eQTL effect
size matrix Γ̂ and GWAS effect size vector γ̂:

J =

(
∂ b̂
∂ Γ̂

∂ b̂
∂ γ̂

)
, (A.4)

where the vertical line is used to separate the two blocks of the Jacobian matrix J.
First, we will find the derivative over Γ̂:

∂ b̂
∂ Γ̂

=
∂ (Γ̂′C−1Γ̂)−1Γ̂′C−1γ̂

∂ Γ̂

=
∂ (Γ̂′C−1Γ̂)−1Γ̂′C−1γ̂

∂ (Γ̂′C−1Γ̂)−1Γ̂′
∂ (Γ̂′C−1Γ̂)−1Γ̂′

∂ Γ̂

=
(
(C−1

γ̂)′⊗111k
) ∂ (Γ̂′C−1Γ̂)−1Γ̂′

∂ Γ̂
.

In order to facilitate the derivation, let us first define variables S := (Γ̂′C−1
Γ̂)−1

and T := Γ̂
′. Now we can express

∂ (Γ̂′C−1Γ̂)−1Γ̂′

∂ Γ̂
=

∂ (Γ̂′C−1Γ̂)−1T
∂ (Γ̂′C−1Γ̂)−1

∣∣∣∣
T=const

∂ (Γ̂′C−1Γ̂)−1

∂ Γ̂
+

∂SΓ̂′

∂ Γ̂′

∣∣∣∣
S=const

∂ Γ̂′

∂ Γ̂

=
(
Γ̂⊗111k

) ∂ (Γ̂′C−1Γ̂)−1

∂ Γ̂
+
(
111m⊗ (Γ̂′C−1

Γ̂)−1)Pm,k ,

where Pm,k : mk×mk is a commutation matrix (used to transform a vectorized
matrix to its vectorized transpose). We have

∂ (Γ̂′C−1Γ̂)−1

∂ Γ̂
=

∂ (Γ̂′C−1Γ̂)−1

∂ Γ̂′C−1Γ̂

∂ Γ̂′C−1Γ̂

∂ Γ̂

=
(
−(Γ̂′C−1

Γ̂)−1⊗ (Γ̂′C−1
Γ̂)−1) ∂ Γ̂′C−1Γ̂

∂ Γ̂
.

Once again, let us define variables S := Γ̂
′ and T := C−1

Γ̂ to facilitate the subse-
quent derivation. Then

∂ Γ̂′C−1Γ̂

∂ Γ̂
=

∂ Γ̂′T
∂ Γ̂′

∣∣∣∣
T=const

∂ Γ̂′

∂ Γ̂
+

∂SC−1Γ̂

∂C−1Γ̂

∣∣∣∣
S=const

∂C−1Γ̂

∂ Γ̂

=
(
(C−1

Γ̂)′⊗111k
)

Pm,k +(111k⊗ Γ̂
′)(111k⊗C−1) .

86



Putting everything above together leads to a rather complicated expression. We
will simplify to get rid of the identity and commutation matrices, and eventually
reach a somewhat more manageable solution:

∂ b̂
∂ Γ̂

=
∂ (Γ̂′C−1Γ̂)−1Γ̂′C−1γ̂

∂ Γ̂

=
(
(C−1

γ̂)′⊗111k
)[

(Γ̂⊗111k)
(
−(Γ̂′C−1

Γ̂)−1⊗ (Γ̂′C−1
Γ̂)−1) ·

·
((
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)
Pm,k +(111k⊗ Γ̂

′)(111k⊗C−1)
)
+

+(111m⊗ (Γ̂′C−1
Γ̂)−1)Pm,k

]

=
(
(C−1

γ̂)′⊗111k
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+
(
−γ̂
′C−1
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(
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(
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(
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(
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. (A.5)
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We used the following properties to get (A.5):
• (A⊗B)(C⊗D) = (AC)⊗ (BD)

• A(B+C) = AB+AC
• A(BC) = (AB)C
• Pk,1 = 111k

• Pk,1(A⊗B)Pm,k = B⊗A, where A : 1×m and B : k× k
• A⊗ (B+C) = (A⊗B)+(A⊗C)

To complete the derivation, we will also have to find the derivative over γ̂ .
Luckily, this is less of a mouthful:

∂ b̂
∂ γ̂

=
∂ (Γ̂′C−1Γ̂)−1Γ̂′C−1γ̂

∂ γ̂
= (Γ̂′C−1

Γ̂)−1
Γ̂
′C−1 . (A.6)

Substituting (A.5) and (A.6) into (A.4) and using the latter to estimate J(β ) in
(A.3) gives us everything we need to estimate Var(b̂), the variance-covariance
matrix of the multivariable Mendelian randomization causal effect vector.
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SISUKOKKUVÕTE

Haiguspõhjuslike geenide tuvastamine statistiliste
meetoditega

Üheks suurimaks inimkonna saavutuseks viimasel sajandil on olnud keskmise
eluea kiire kasv. Tõusnud on ka keskmine tervena elatud aastate arv, ent mitte
võrdväärses tempos. Probleemiks on just vanusega kaasnevad kroonilised haigu-
sed (nt südame- ja veresoonkonnahaigused). Tervislikke eluviise järgides on või-
malik haigusi ennetada, kuid pea sama oluline roll on ka geneetilistel protsessidel.
Tänapäeva meditsiin ekspluateerib seda teadmist, arendades ravimeid, mis kor-
raldavad haigusega seotud geeniproduktide ehk valkude töö haigusele pärssivalt
ümber. Selleks on esmalt tarvis leida haiguspõhjuslikud geenid, mille produktide
funktsiooni modifitseerida. Peamiseks standardiks ravimite tööpõhimõtte validee-
rimiseks (tegelikult igasuguse põhjusliku seose uurimiseks) on kontrollgrupiga
kliinilised uuringud. Kuigi sellised uuringud on ravimitööstuses laialt levinud, on
kogu protsessi läbiviimine üsna kulukas ja aeganõudev. Liiati ei ole kliiniliste
uuringute tegemine eetilistel kaalutlustel alati võimalikki. Protsessi efektiivsust
on võimalik oluliselt tõsta, kui prioritiseerida uuringutes vaadeldavaid kandidaat-
geene näiteks statistiliste meetoditega.

Käesolevas doktoritöös otsimegi statistilise analüüsi abil haigusi ja teisi komp-
leksseid fenotüübilisi tunnuseid põhjuslikult mõjutavaid geene. Tegu on kiiresti
areneva teadusvaldkonnaga statistilises geneetikas, mis on hoo sisse saanud tänu
rahvuslike biopankade tegevusele, mille tulemusel on tekkinud suured andmehul-
gad inimeste geno- ja fenotüüpidega (nt Tartu Ülikooli Eesti geenivaramuga on
liitunud ligi viiendik eestlastest). Samas on matemaatiline raamistik põhjuslike
seoste uurimiseks alles arenemisjärgus. Analüüsiks vajalik teooria hõlmab laene
erinevatelt teadusaladelt – traditsioonilisest statistikast, ökonomeetriast, genee-
tikast, põhjuslikkuse teooriast –, millel puudub ühtne käsitlus. Selle doktoritöö
üheks põhieesmärgiks ja panuseks (lisaks publitseeritud teadusartiklites loodud
uuele teadmisele) on vastav teooria haiguspõhjuslike geenide leidmise konteks-
tis harmoniseerida. Eesmärgi realiseerimiseks pühendame märkimisväärselt palju
aega matemaatilise teooria põhjalikule käsitlemisele, tutvustades olulisi kontsept-
sioone, statistilisi meetodeid ja oskusteavet. Alles seejärel kirjeldame doktoritöö
raames valminud teaduspublikatsioonide tulemusi, mis põhinevad eelnevalt tut-
vustatud metoodika arendamisel ja rakendamisel praktikas inimeste andmetel.

Paljude fenotüübiliste tunnuste (sh üldlevinud haiguste) väljakujunemine on
kompleksne protsess. Rolli võivad omada paljud erinevad geenid üle kogu genoo-
mi, kusjuures igal üksikul geenil võib olla vaid marginaalne mõju. Väikeste põh-
juslike efektide avastamiseks on üldjuhul vajalikud suured, tuhandetesse ulatuvad
valimimahud. Oma teadustöö raames arendasime välja metoodika, mis erinevate
põhjuslike seoste hulgast suurima tõepära printsiibil kõige usaldusväärsemat seost
valides võimaldab funktsionaalseid geene prioritiseerida ka väiksema valimimahu
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korral (n≈ 500). Rakendasime antud metoodikat Eesti geenivaramu andmetel, et
uurida põletikumarkeri C-reaktiivse valgu funktsiooni põletikuprotsessides. Leid-
sime, et see reguleerib geeni CD59 avaldumist veres. Kuna vastav geen inhibeerib
immuunreaktsiooni tugevust, võib C-reaktiivne valk osaleda tervete vererakkude
kaitsmisel organismi immuunvastuses patogeenidele.

Iga statistiline meetod põhineb teatud eeldustele uuritava fenomeni kohta, mil-
le paikapidavusest sõltub analüüsi järelduste usaldusväärsus. Põhjuslike geenide
leidmise kontekstis on väga oluline arvestada DNA pärilikkusseadustega. Näiteks
kipuvad lähedalasuvad genoomipiirkonnad päranduma koos, mis tekitab nendeva-
helist seost. Probleemiks on ka laialdaselt levinud pleiotroopia – nähtus, mille ko-
haselt võib üks geen mõjutada paljusid erinevaid tunnuseid. Mõlemad seaduspä-
rad raskendavad põhjuslikku interpretatsiooni. Teadustöö raames töötasime välja
nende nähtuste osas robustse (võrreldes alternatiividega) algoritmi, mis võimaldab
mistahes tunnuse kujunemist mõjutavaid geene leida üle kogu genoomi. Suurema
haarde saavutamiseks geen-tunnus vaheliste seoste kirjeldamiseks rakendasime
seda Mendeli pärilikkusseadustel põhinevat metoodikat 43 erineval fenotüübili-
sel tunnusel. Leidsime tuhandeid uusi seoseid. Seejuures näitasime väljatöötatud
metoodika ülimuslikkust võrreldes alternatiividega, seda nii suurema statistilise
võimsuse kui ka väiksema I tüüpi vea tegemise protsendi osas. Eriti põhjalikult
uurisime antud metoodikaga ühe iseäranis probleemse ja geenitiheda genoomi-
piirkonna (16p11.2) seost inimeste seksuaalse arenguga. Viimane on seotud hai-
gustega hilisemas elus, seega on vastavate protsesside mõistmine olulise tähtsu-
sega. Analüüsi tulemusel suutsime osutada geenidele (ASPHD1, KCTD13), mis
omavad põhjuslikku mõju.

Meditsiinis on järjest enam kandepinda võtmas personaalsed, iga inimese (ge-
neetiliste) eripäradega arvestavad lahendused. Erilist tähelepanu on pälvinud ravi-
mite ja ravimiannuste määramine vastavalt inimeste ainevahetuslikele iseärasus-
tele. Samas ilmnevad erinevused fenotüübilistes tunnustes juba ühiskonnakihtide
lõikes, näiteks meeste ja naiste vahel, ja personaalmeditsiini juurutamisele võib
nende erinevustega arvestamine tähendada tõelist läbimurret. Seetõttu uurisime
doktoritöös käsitletavas teadustöös ka seda, mil määral on fenotüübiliste tunnuste
soospetsiifilisus tingitud eripäradest geenide avaldumises ning kas meestel ja nais-
tel võivad rolli mängida erinevad põhjuslikud geenid. Näitame statistilisele võim-
susanalüüsile tuginedes, et arvutuslike meetoditega ei ole hetkel võimalik nendele
küsimustele lõplikku hinnangut anda – selleks oleks tarvis suuremaid andmemah-
te, kui avalikus ruumis parasjagu kättesaadav on.

Viimaks, mistahes kahe tunnuse vahelise põhjusliku seose avastamiseks ei pii-
sa üldjuhul korrelatsiooni leidmisest nende tunnuste vahel. Kuigi mõnel juhul võib
see tõesti viidata funktsionaalsele seosele, võib korrelatsiooni tekkimine olla tin-
gitud segavatest faktoritest – kolmandatest tunnustest, mis on seotud nii ühe kui
ka teise uuritava tunnuse kujunemisega. Vastupidine siiski kehtib – põhjuslik li-
neaarne seos (üldjuhul me eeldamegi lineaarseid seoseid) tekitab tunnuste vahel
ka korrelatsiooni. Huvitaval kombel ei näinud me oma teadustöös aga peaaegu
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mitte mingisugust ülekatet geenide vahel, millel leiti vaatlusandmetel statistilisi
meetodeid rakendades uuritavate tunnustega põhjuslik side või pelgalt korrelat-
sioon. Antud fenomen võib olla tingitud geenide omavahelisest tugevast struktuu-
rist, mis läbi paljude segavate faktorite moonutab igasuguse põhjusliku signaa-
li. Samas teoretiseerime oma teadustöös ka selle üle, et tunnustega korreleeritud
geenidel võib olla parem ülekate nende geenidega, mille avaldumisele mõjuvad
põhjuslikult hoopis komplekstunnused ise (nt haigused). Igal juhul näitab meie
tähelepanek selgelt, et korrelatsioone ei ole mõistlik kasutada funktsionaalsete
geenide prioritiseerimiseks.

Fikseeritud vaatlusandmete pealt ei ole üldjuhul võimalik kontrollida kõiki-
de eelduste kehtivust, millele põhjuslikud mudelid tuginevad. See eeldaks eel-
teadmisi tunnustevahelise põhjusliku struktuuri kohta, mida teades ei oleks enam
vajadust analüüsi teostadagi. Võimetus eelduste täitmist verifitseerida võib tekita-
da küsitavusi ka tulemuste ja järelduste paikapidavuse kohta. Doktoritöö raames
publitseeritud teadustöödes oleme seda riski minimiseerinud, rakendades sama
nähtuse uurimiseks erinevaid metoodikaid, sh valideerinud leitud tulemusi katse-
liselt laboris. Tunnustevahelisi seoseid oleme põhjuslikult interpreteerinud vaid
siis, kui oleme erinevate lähenemistega jõudnud samadele järeldustele. Lõppsõna
põhjuslike seoste kehtivuse osas jääb alati laborikatsetele või kontrollgrupiga klii-
nilistele uuringutele. Siiski on selge, et statistilised meetodid võimaldavad analüü-
sida suurt hulka andmeid väga kiiresti. Pakutav efektiivsus on võtmetähtsusega,
et ravimiarenduse teel anda märkimisväärne panus haigustega võitlemisse.

110



PUBLICATIONS



CURRICULUM VITAE

Personal data

Name: Kaido Lepik
Date of birth: 05.11.1990
Citizenship: Estonia
E-mail: kaido.lepik@ut.ee

Education

2015–... University of Tartu, Faculty of Science and Technology, Computer
Science, PhD

2012–2014 University of Tartu, Faculty of Mathematics and Computer Sci-
ence, Mathematical Statistics, MSc (cum laude)

2009–2012 University of Tartu, Faculty of Mathematics and Computer Sci-
ence, Mathematical Statistics, BSc (cum laude)

Employment

2018–... University of Tartu, Institute of Genomics (Genome Center), Spe-
cialist for Bioinformatics

2018–... University of Tartu, Institute of Computer Science, Junior Re-
search Fellow in Bioinformatics

2017 Centre hospitalier universitaire vaudois in Lausanne, Switzerland,
Statistical Genetics Group, Visiting PhD Student

Nov 2017 Universitair Medisch Centrum Groningen in the Netherlands,
Functional Genomics Group, Visiting PhD Student

2012–2015 Kantar Emor, Data Engineer / Data Scientist

Honours & awards

Dec 2019 Supervised Tuuli Jürgenson to 2nd prize in the annual Estonian
research National Contest for University Students with her BSc
thesis "Associations between copy number variations and adverse
drug reactions"

Nov 2019 1st place in the Estonian Bioinnovation Days 2019 hackaton with
a DNA methylation based health monitoring tool

2017 Kristjan Jaak Scholarship for Short Study Visit for the research
visit to Groningen, Netherlands

2016 Dora Plus PhD Student Mobility Scholarship for the research visit
to Lausanne, Switzerland

2014 2nd place in the Student Project Contest of the Institute of Com-
puter Science of the University of Tartu with the MSc project

213



Teaching

2019 University of Tartu, Faculty of Science and Technology, Institute of
Computer Science, Teaching Assistant in Machine Learning 2

Supervised theses

2019 Tuuli Jürgenson, BSc thesis "Associations between copy number varia-
tions and adverse drug reactions"

Scientific work

Main fields of interest:
• statistical genetics – developing and applying statistical methods to learn

about human genetics;
• omics integration – combining multiple layers of biological data to gain

more insight into biological processes underlying complex trait variation;
• causal inference – studying and using analysis tools such as Mendelian ran-

domization to unravel functional relationships and direction of effects be-
tween traits.

Publications and preprints

2020 Eleonora Porcu, Jennifer Sjaarda, Kaido Lepik, Cristian Carmeli, Liza
Darrous, Jonathan Sulc, Ninon Mounier, and Zoltán Kutalik. Causal
inference methods to integrate omics and complex traits. Cold Spring
Harb. Perspect. Med., August 2020.

2020 Eleonora Porcu, Annique Claringbould, Kaido Lepik, BIOS Consor-
tium, Tom G Richardson, Federico A Santoni, Lude Franke, Alexandre
Reymond, and Zoltán Kutalik. The role of gene expression on human
sexual dimorphism: too early to call. bioRxiv, April 2020.

2019 Katrin Männik, Thomas Arbogast, Maarja Lepamets, Kaido Lepik,
Anna Pellaz, Herta Ademi, Zachary A Kupchinsky, Jacob Ellegood,
Catia Attanasio, Andrea Messina, Samuel Rotman, Sandra Martin-
Brevet, Estelle Dubruc, Jacqueline Chrast, Jason P Lerch, Lily R Qiu,
Triin Laisk, The 16p11.2 European Consortium, The Simons VIP Con-
sortium, The eQTLGen Consortium, R Mark Henkelman, Sébastien
Jacquemont, Yann Herault, Cecilia M Lindgren, Hedi Peterson, Jean
Christophe Stehle, Nicholas Katsanis, Zoltan Kutalik, Serge Nef, Bog-
dan Draganski, Erica E Davis, Reedik Mägi, and Alexandre Reymond.
Leveraging biobank-scale rare and common variant analyses to identify
ASPHD1 as the main driver of reproductive traits in the 16p11.2 locus.
bioRxiv, July 2019.

214



2019 Eleonora Porcu, Sina Rüeger, Kaido Lepik, eQTLGen Consortium,
BIOS Consortium, Federico A Santoni, Alexandre Reymond, and
Zoltán Kutalik. Mendelian randomization integrating GWAS and eQTL
data reveals genetic determinants of complex and clinical traits. Nat.
Commun., 10(1):3300, July 2019.

2019 Glen James, Sulev Reisberg, Kaido Lepik, Nicholas Galwey, Paul Avil-
lach, Liis Kolberg, Reedik Mägi, Tõnu Esko, Myriam Alexander, Dawn
Waterworth, A Katrina Loomis, and Jaak Vilo. An exploratory phe-
nome wide association study linking asthma and liver diseasegenetic
variants to electronic health records from the Estonian Biobank. PLoS
One, 14(4):e0215026, April 2019.

2017 Kaido Lepik, Tarmo Annilo, Viktorija Kukuškina, eQTLGen Consor-
tium, Kai Kisand, Zoltán Kutalik, Pärt Peterson, and Hedi Peterson. C-
reactive protein upregulates the whole blood expression of CD59 - an
integrative analysis. PLoS Comput. Biol., 13(9):e1005766, September
2017.

TBD Maarja Lepamets, Kaido Lepik, Tuuli Jürgenson, Mart Kals, Cristian
Carmeli, Annique Claringbould, Murielle Bochud, Silvia Stringhini,
Cisca Wijmenga, Lude Franke, Reedik Mägi, and Zoltán Kutalik. New
CNV quality score enables discovering novel phenotype associations
from genome-wide CNV analysis. In preparation.

215



ELULOOKIRJELDUS

Isikuandmed

Nimi: Kaido Lepik
Sünniaeg: 05.11.1990
Kodakondsus: Eesti
E-mail: kaido.lepik@ut.ee

Haridus

2015–... Tartu Ülikool, loodus- ja täppisteaduste valdkond, informaatika,
doktoriõpe

2012–2014 Tartu Ülikool, matemaatika-informaatikateaduskond, matemaati-
line statistika, magistriõpe (cum laude)

2009–2012 Tartu Ülikool, matemaatika-informaatikateaduskond, matemaati-
line statistika, bakalaureuseõpe (cum laude)

Teenistuskäik

2018–... Tartu Ülikool, loodus- ja täppisteaduste valdkond, arvutiteaduse
instituut, bioinformaatika nooremteadur

2018–2019 Tartu Ülikool, Tartu Ülikooli genoomika instituut (geenivaramu),
bioinformaatika spetsialist

2017 Centre hospitalier universitaire vaudois Lausanne’is Šveitsis, sta-
tistilise geneetika grupp, külalisdoktorant

Nov 2017 Universitair Medisch Centrum Groningen Hollandis, funktsio-
naalse genoomika grupp, külalisdoktorant

2012–2015 Kantar Emor, andmeinsener / andmeteadlane

Teaduspreemiad ja tunnustused

Dets 2019 Juhendatava Tuuli Jürgensoni II preemia üliõpilaste teadustööde
riiklikul konkursil bakalaureusetööga "Koopiaarvu variatsioonide
mõju ravimi kõrvaltoimete tekkimisele"

Nov 2019 I koht Eesti Bioinnovatsiooni päevad 2019 häkatonil rakendusega
inimeste tervisenäitajate jälgimiseks DNA metülatsiooni põhjal

2017 Kristjan Jaagu välislähetuste stipendium teaduskoostööks Gronin-
genis Hollandis

2016 Dora Pluss T1.2 doktorantide õpirände stipendium teaduskoostöö-
ks Lausanne’is Šveitsis

2014 II koht Tartu Ülikooli arvutiteaduse instituudi tudengiprojektide
võistlusel magistritööga vastavas kategoorias

216



Õppetöö

2019 Tartu Ülikool, loodus- ja täppisteaduste valdkond, arvutiteaduse insti-
tuut, õppeassistent aines masinõpe 2

Juhendatud väitekirjad

2019 Tuuli Jürgenson, bakalaureusetöö "Koopiaarvu variatsioonide mõju ra-
vimi kõrvaltoimete tekkimisele"

Teadustegevus

Peamised uurimisvaldkonnad:
• statistiline geneetika – statistiliste meetodite arendamine ja kasutamine jä-

relduste tegemiseks inimgeneetikas;
• oomikate integreerimine – erinevate bioloogiliste andmekihtide kombinee-

rimine, saamaks täpsemat ja mitmekülgsemat infot komplekstunnuste va-
rieeruvust põhjustavatest bioloogilistest protsessidest;
• põhjuslik analüüs – meetodite nagu Mendeli randomiseerimine arendamine

ja rakendamine tunnustevaheliste põhjuslike seoste avastamiseks.

Publikatsioonid ja eeltrükid

2020 Eleonora Porcu, Jennifer Sjaarda, Kaido Lepik, Cristian Carmeli, Liza
Darrous, Jonathan Sulc, Ninon Mounier, and Zoltán Kutalik. Causal
inference methods to integrate omics and complex traits. Cold Spring
Harb. Perspect. Med., August 2020.

2020 Eleonora Porcu, Annique Claringbould, Kaido Lepik, BIOS Consor-
tium, Tom G Richardson, Federico A Santoni, Lude Franke, Alexandre
Reymond, and Zoltán Kutalik. The role of gene expression on human
sexual dimorphism: too early to call. bioRxiv, April 2020.

2019 Katrin Männik, Thomas Arbogast, Maarja Lepamets, Kaido Lepik, An-
na Pellaz, Herta Ademi, Zachary A Kupchinsky, Jacob Ellegood, Catia
Attanasio, Andrea Messina, Samuel Rotman, Sandra Martin-Brevet, Es-
telle Dubruc, Jacqueline Chrast, Jason P Lerch, Lily R Qiu, Triin Laisk,
The 16p11.2 European Consortium, The Simons VIP Consortium, The
eQTLGen Consortium, R Mark Henkelman, Sébastien Jacquemont,
Yann Herault, Cecilia M Lindgren, Hedi Peterson, Jean Christophe Steh-
le, Nicholas Katsanis, Zoltan Kutalik, Serge Nef, Bogdan Dragans-
ki, Erica E Davis, Reedik Mägi, and Alexandre Reymond. Leveraging
biobank-scale rare and common variant analyses to identify ASPHD1 as
the main driver of reproductive traits in the 16p11.2 locus. bioRxiv, July
2019.

217



2019 Eleonora Porcu, Sina Rüeger, Kaido Lepik, eQTLGen Consortium,
BIOS Consortium, Federico A Santoni, Alexandre Reymond, and Zoltán
Kutalik. Mendelian randomization integrating GWAS and eQTL data re-
veals genetic determinants of complex and clinical traits. Nat. Commun.,
10(1):3300, July 2019.

2019 Glen James, Sulev Reisberg, Kaido Lepik, Nicholas Galwey, Paul Avil-
lach, Liis Kolberg, Reedik Mägi, Tõnu Esko, Myriam Alexander, Dawn
Waterworth, A Katrina Loomis, and Jaak Vilo. An exploratory pheno-
me wide association study linking asthma and liver diseasegenetic va-
riants to electronic health records from the Estonian Biobank. PLoS One,
14(4):e0215026, April 2019.

2017 Kaido Lepik, Tarmo Annilo, Viktorija Kukuškina, eQTLGen Consor-
tium, Kai Kisand, Zoltán Kutalik, Pärt Peterson, and Hedi Peterson. C-
reactive protein upregulates the whole blood expression of CD59 - an
integrative analysis. PLoS Comput. Biol., 13(9):e1005766, September
2017.

TBD Maarja Lepamets, Kaido Lepik, Tuuli Jürgenson, Mart Kals, Cristian
Carmeli, Annique Claringbould, Murielle Bochud, Silvia Stringhini,
Cisca Wijmenga, Lude Franke, Reedik Mägi, and Zoltán Kutalik. New
CNV quality score enables discovering novel phenotype associations
from genome-wide CNV analysis. In preparation.

218



DISSERTATIONES INFORMATICAE  
PREVIOUSLY PUBLISHED IN  

DISSERTATIONES MATHEMATICAE 
UNIVERSITATIS TARTUENSIS 

19.  Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999, 
56 p. 

22.  Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk. 
23.  Varmo Vene. Categorical programming with inductive and coinductive 

types. Tartu, 2000, 116 p.  
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p. 
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk. 
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p. 
45. Kristo Heero. Path planning and learning strategies for mobile robots in 

dynamic partially unknown environments. Tartu 2006, 123 p.  
49.  Härmel Nestra. Iteratively defined transfinite trace semantics and program 

slicing with respect to them. Tartu 2006, 116 p.  
53.  Marina Issakova. Solving of linear equations, linear inequalities and 

systems of linear equations in interactive learning environment. Tartu 
2007, 170 p.  

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language. 
Tartu 2007, 162 p. 

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p. 

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for 
Solving Ill-Posed Problems. Tartu 2010, 105 p. 

61.  Jüri Reimand. Functional analysis of gene lists, networks and regulatory 
systems. Tartu 2010, 153 p. 

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p. 

64.  Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs. 
Tartu 2010, 137 p. 

66.  Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p. 

67.  Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p. 

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p. 
72.  Margus Treumuth. A Framework for Asynchronous Dialogue Systems:  

Concepts, Issues and Design Aspects. Tartu 2011, 95 p. 
73. Dmitri Lepp. Solving simplification problems in the domain of exponents, 

monomials and polynomials in interactive learning environment T-algebra. 
Tartu 2011, 202 p. 

219



74.  Meelis Kull. Statistical enrichment analysis in algorithms for studying 
gene regulation. Tartu 2011, 151 p. 

77.  Bingsheng Zhang. Efficient cryptographic protocols for secure and 
private remote databases. Tartu 2011, 206 p. 

78.  Reina Uba. Merging business process models. Tartu 2011, 166 p. 
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.  
81.  Georg Singer. Web search engines and complex information needs. Tartu 

2012, 218 p. 
83. Dan Bogdanov. Sharemind: programmable secure computations with 

practical applications. Tartu 2013, 191 p.  
84.  Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu 

2013, 151 p.  
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language 

development in enterprise information systems. Tartu, 2013, 151 p. 
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu, 

2014, 121 p. 
91.  Vladimir Šor. Statistical Approach for Memory Leak Detection in Java 

Applications. Tartu, 2014, 155 p. 
92.  Naved Ahmed. Deriving Security Requirements from Business Process 

Models. Tartu, 2014, 171 p. 
94.  Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p. 
100.  Abel Armas Cervantes. Diagnosing Behavioral Differences between 

Business Process Models. Tartu, 2015, 193 p. 
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay: 

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p. 

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware 
Mobile Cloud Computing. Tartu, 2015, 163 p. 

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics. 
Tartu, 2016, 197 p. 

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice. 
Tartu, 2016, 144 p. 

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and 
General Domain Event Analysis: The Estonian Experience. Tartu, 2016, 
186 p. 

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge 
Protocols in the CRS Model. Tartu, 2017, 193 p. 

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed 
Computing Frameworks. Tartu, 2017, 168 p. 

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p. 

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of 
Polytopes. Tartu, 2017, 168 p. 

220



113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p. 

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert 
and Active Adversaries. Tartu, 2017, 316 p. 

116. Toomas Saarsen. On the Structure and Use of Process Models and Their 
Interplay. Tartu, 2017, 123 p. 

121.  Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning 
for Machine Learning Algorithms. Tartu, 2017, 106 p. 

122. Eno Tõnisson. Differences between Expected Answers and the Answers 
Offered by Computer Algebra Systems to School Mathematics Equations. 
Tartu, 2017, 195 p. 

 

221



DISSERTATIONES INFORMATICAE  
UNIVERSITATIS TARTUENSIS 

1.  Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.  

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p. 

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition 
Queries. Tartu 2018, 200 p. 

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures 
of Business Processes. Tartu 2019, 151 p. 

5.  Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in 
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p. 

6.  Irene Teinemaa. Predictive and Prescriptive Monitoring of Business 
Process Outcomes. Tartu 2019, 196 p. 

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019, 
131 p. 

8.  Toomas Krips. Improving performance of secure real-number operations. 
Tartu 2019, 146 p. 

9.  Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p. 

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data. 
Tartu 2019, 250 p. 

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy. 
Tartu 2019, 150 p. 

12.  Sulev Reisberg. Developing Computational Solutions for Personalized 
Medicine. Tartu 2019, 126 p. 

13.  Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in 
Requirements Engineering. Tartu 2019, 129 p. 

14.  Faiz Ali Shah. Extracting Information from App Reviews to Facilitate 
Software Development Activities. Tartu 2020, 149 p. 

15.  Adriano Augusto. Accurate and Efficient Discovery of Process Models 
from Event Logs. Tartu 2020, 194 p. 

16.  Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs 
and Commitments. Tartu 2020, 245 p. 

17. Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p. 

18.  Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p. 
19. Ilya Kuzovkin. Understanding Information Processing in Human Brain by 

Interpreting Machine Learning Models. Tartu 2020, 149 p. 
20.  Orlenys López Pintado. Collaborative Business Process Execution on the 

Blockchain: The Caterpillar System. Tartu 2020, 170 p. 
21.  Ardi Tampuu. Neural Networks for Analyzing Biological Data. Tartu 

2020, 152 p. 

222



22. Madis Vasser. Testing a Computational Theory of Brain Functioning with 
Virtual Reality. Tartu 2020, 106 p. 

23.  Ljubov Jaanuska. Haar Wavelet Method for Vibration Analysis of Beams 
and Parameter Quantification. Tartu 2021, 192 p. 

24. Arnis Parsovs. Estonian Electronic Identity Card and its Security Challen-
ges. Tartu 2021, 214 p. 


	List of original publications
	Introduction
	Applying genotyping in medical genetics
	Identifying intervention candidates for complex diseases
	Identifying trait-associated causal genes

	Aims of the dissertation

	Fundamentals of biological principles
	Cells maintain life using proteins
	Governed by the central dogma of molecular biology
	Proteins' involvement in disease through gene expression

	The basics of genetics
	DNA inheritance patterns
	Genetic architecture of complex traits


	Fundamentals of statistical genetics
	Genome wide association study
	Ordinary least squares estimator
	Meta-analysis

	Summary statistics
	Standardization
	Binary outcome


	Association based gene prioritization
	Fine-mapping
	Stepwise conditional analysis
	Bayesian fine-mapping

	Colocalization
	Bayesian colocalization
	Non-Bayesian colocalization and ties to causality

	Transcriptome-wide association studies
	TWAS for implicating causal genes


	Causal inference
	Causal relationships
	Directed acyclic graphs as causal models
	Intervention in the causal system
	Intervention's effect on the outcome—the causal effect

	Identifiability of the causal effect
	D-separation

	Assuming linear causal effects
	Regression for estimating linear causal effects

	Method of instrumental variables for linear causal effects not directly identifiable
	The IV estimator is consistent and asymptotically normal
	Generalization of IV to multiple instruments
	Generalization of IV to multiple exposures


	Mendelian randomization
	Mendelian randomization estimator
	Finite sample bias of the Mendelian randomization estimator
	Statistical power of Mendelian randomization

	Two-sample Mendelian randomization
	A simple fine-mapping strategy for a single instrument MR
	Allowing for multiple instruments
	TWAS-like polygenic score instruments for causal inference

	Pleiotropy in Mendelian randomization
	Determining pleiotropy in multi-instrument setting
	Additional sensitivity analyses

	Multivariable Mendelian randomization
	Dealing with remaining heterogeneity in effect estimates


	Identifying causal genes in practice
	Causal inference using small sample individual-level data (Ref. I)
	Novel likelihood-based model selection approach to prioritize putative causal genes
	The importance of triangulation of causal evidence
	Other contributions to the field

	Genes in 16p11.2 BP4-BP5 CNV region with a causal effect on age at menarche (Ref. II)
	Puberty timing tracks with 16p11.2 BP4-BP5 dosage
	External investigation into causal genes
	Summary of our contributions to the field

	Mendelian randomization over the transcriptome (Refs. III, IV, V)
	Practical considerations of transcriptome wide analysis
	Improving upon existing approaches to implicate novel causal gene-trait relationships (Ref. III)
	Sex-specific effects (Ref. IV)
	Reverse causation: from traits to expression (Ref. I, V)
	Our contributions to the field


	Conclusion
	In terms of teaching potential
	In terms of scientific research
	Future directions


	Derivation of the multivariable Mendelian randomization standard error
	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Publications
	C-reactive protein upregulates the whole blood expression of CD59 – an integrative analysis
	Leveraging biobank-scale rare and common variant analyses to identify ASPHD1 as the main driver of reproductive traits in the 16p11.2 locus
	Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
	The role of gene expression on human sexual dimorphism: too early tocall
	Causal Inference Methods to Integrate Omics and Complex Traits.

	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	KaidoLepik_PhD_dissertation_20210317.pdf
	List of original publications
	Introduction
	Applying genotyping in medical genetics
	Identifying intervention candidates for complex diseases
	Identifying trait-associated causal genes

	Aims of the dissertation

	Fundamentals of biological principles
	Cells maintain life using proteins
	Governed by the central dogma of molecular biology
	Proteins' involvement in disease through gene expression

	The basics of genetics
	DNA inheritance patterns
	Genetic architecture of complex traits


	Fundamentals of statistical genetics
	Genome wide association study
	Ordinary least squares estimator
	Meta-analysis

	Summary statistics
	Standardization
	Binary outcome


	Association based gene prioritization
	Fine-mapping
	Stepwise conditional analysis
	Bayesian fine-mapping

	Colocalization
	Bayesian colocalization
	Non-Bayesian colocalization and ties to causality

	Transcriptome-wide association studies
	TWAS for implicating causal genes


	Causal inference
	Causal relationships
	Directed acyclic graphs as causal models
	Intervention in the causal system
	Intervention's effect on the outcome—the causal effect

	Identifiability of the causal effect
	D-separation

	Assuming linear causal effects
	Regression for estimating linear causal effects

	Method of instrumental variables for linear causal effects not directly identifiable
	The IV estimator is consistent and asymptotically normal
	Generalization of IV to multiple instruments
	Generalization of IV to multiple exposures


	Mendelian randomization
	Mendelian randomization estimator
	Finite sample bias of the Mendelian randomization estimator
	Statistical power of Mendelian randomization

	Two-sample Mendelian randomization
	A simple fine-mapping strategy for a single instrument MR
	Allowing for multiple instruments
	TWAS-like polygenic score instruments for causal inference

	Pleiotropy in Mendelian randomization
	Determining pleiotropy in multi-instrument setting
	Additional sensitivity analyses

	Multivariable Mendelian randomization
	Dealing with remaining heterogeneity in effect estimates


	Identifying causal genes in practice
	Causal inference using small sample individual-level data (Ref. I)
	Novel likelihood-based model selection approach to prioritize putative causal genes
	The importance of triangulation of causal evidence
	Other contributions to the field

	Genes in 16p11.2 BP4-BP5 CNV region with a causal effect on age at menarche (Ref. II)
	Puberty timing tracks with 16p11.2 BP4-BP5 dosage
	External investigation into causal genes
	Summary of our contributions to the field

	Mendelian randomization over the transcriptome (Refs. III, IV, V)
	Practical considerations of transcriptome wide analysis
	Improving upon existing approaches to implicate novel causal gene-trait relationships (Ref. III)
	Sex-specific effects (Ref. IV)
	Reverse causation: from traits to expression (Ref. I, V)
	Our contributions to the field


	Conclusion
	In terms of teaching potential
	In terms of scientific research
	Future directions


	Derivation of the multivariable Mendelian randomization standard error
	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Publications
	C-reactive protein upregulates the whole blood expression of CD59 – an integrative analysis
	Leveraging biobank-scale rare and common variant analyses to identify ASPHD1 as the main driver of reproductive traits in the 16p11.2 locus
	Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
	The role of gene expression on human sexual dimorphism: too early tocall
	Causal Inference Methods to Integrate Omics and Complex Traits.

	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)




