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times of invoices in business-to-business sales process using real data of sales ledgers. Sur-
vival analysis and a novel ensemble method of Random Survival Forests is applied to the
right-censored data of late invoices. A theoretical overview of Random Survival Forests is
given and concordance index as a performance measure for survival models is explained.
A comprehensive overview of data preprocessing and deriving payment times from sales
ledgers is presented. We propose two separate models, for first-time debtors and for re-
peated debtors, and explore the effect of different predictors in a model. Random Survival
Forests prove to have advantages over Cox Proportional Hazards model as there are no
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that Random Survival Forests model which additionally uses historical payment beha-

viour of debtors, performs the best in ranking payment times of late invoices.
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Uletihtaegsete arvete tasumisaegade
modelleerimine elukestusanaliiiisi ja juhuslike
metsade meetoditega

Magistritoo

Janika Smirnov

Liihikokkuvote. Kéaesoleva magistritoo eesmargiks on uurida voimalusi ettevotetevahe-
lises miitigiprotsessis tliletdhtaegsete arvete makseaegade modelleerimiseks kasutades miiii-
gireskontrote reaalseid andmeid. Paremalt tsenseeritud andmetele rakendatakse elukestus-
analiitisi ja uudset juhuslike eluskestusmetsade meetodit. Tutvustatakse juhuslike elukes-
tusmetsade teooriat ja samasuunalisuse (concordance) néitajat kui headuse moodikut. An-
takse koikeholmav tilevaade miitigireskontrote tootlemisest ja arvete makseaegade tuleta-
misest. Magistritoo kédigus luuakse kaks mudelit — iiks esmakordsete volgnike makseaegade
modelleerimiseks ja teine korduvate volgnike jaoks ning uuritakse erineva sisuga tunnuste
moju mudeli ennustustépsusele. Juhuslike elukestusmetsade meetod osutub eelistatumaks,
sest vastupidiselt Coxi vordeliste riskide mudelile ei ndua see meetod taiendavaid eeldusi,
mis peavad olema tédidetud. Lopptulemusena jareldatakse, et parima tédpsusega on juhus-

like elukestusmetsade mudel, mis votab arvesse ka volglaste ajaloolist maksekaitumist.

CERCS teaduseriala: P160 Statistika, operatsioonanaliiiis, programmeerimine, finants-
ja kindlustusmatemaatika.
Mirksonad: Elukestusanaliilis, masinope, juhuslikud elukestusmetsad, tiletahtaegsed ar-

ved, miitigireskontro, tsenseerimine.
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Introduction

Account receivables collection is an important part of business management in every firm.
Poorly managed cash flow process could lead to significant liquidity problems. This, in
particular, is critical for smaller firms that are more dependent on the trade credit [1].
Ineffective collection of account receivables may lead to cash shortage in a firm and that,

in turn, could lead to problems meeting liabilities to its suppliers.

Therefore, liquidity problems and inability to pay its debts in one firm may have a snow-
ball effect. In worst case scenario, creditor that often receives late payments may need
to take short-term loans to overcome liquidity problems ([2], p. 7). Ability to reliably
forecast the cash flow and make wise decisions whether to credit sales invoices to some

debtors or not, is an essential part of the business process.

Credit management firms provide assistance to companies in their account receivables
collection and give recommendations whether it is advised to grant further credit to some
debtors. The decision is based on the creditworthiness of the debtor at the current mo-
ment and the decision making process is manual, time consuming and therefore expensive

in terms of labor costs.

The purpose of this thesis is to perform experimental analysis to model the payment
behaviour of the debtors and find solutions to provide predictive analysis that could be
used in the decision making of account receivables collection. It is of interest to reduce

the need for manual assessment of creditworthiness of the debtors.

The subject of our work is conditional analysis to model the payment behaviour of com-
panies that are already overdue on their invoice payments. More precisely, the thesis fo-
cuses on modelling late invoice payment times in business-to-business sales process using
survival analysis and random forests techniques, particularly, quite recent random sur-
vival forests method. Survival analysis allows us to model the ranking of payment times
and evaluate which characteristics of a company have an impact on the payment time.

Data for our analysis is provided by Register OU and Kreedix OU.

So far, the main methods when predicting the bankruptcy of a company were using fi-
nancial information of the companies. But there are many restrictions to using financial
information from the annual reports. Most importantly, annual reports have to be sub-

mitted 6 months after the year end, thus the information we get from the reports alone is



not up-to-date enough to predict short-term payment behaviour of a company. Secondly,
accessibility to entities’ financial information is restricted and reliability of the informa-
tion provided is questionable. Therefore it is necessary to find some alternative data and
methods that could be used in modelling the payment behaviour of a debtor. Our goal is
to use additional variables that are updated more frequently in order to predict payment
behaviour of a debtor on a timely basis and also assess if the financial data is needed in
a model.

The thesis is structured into 4 chapters. Chapter 1 provides the knowledge of important
terminology, introduces context of the problem and reviews of literature of previous re-
lated research. Chapter 2 gives a theoretical overview of the methods used in the analysis
part of the thesis. Data collection, preprocessing and descriptive analysis is described
in Chapter 3. Modelling, predictive analysis and comparisons of the models is presen-
ted in Chapter 4. Conclusions and proposals for future work summarizes the thesis.
Data processing and analysis is performed with statistical computing software R. The
R Code used to perform the analysis is provided separately as R files on the webpage
https://drive.google.com/open?id=0B703_4DFiD2dQXVENmhFeXJFVVE. The link is
accessible until 01.09.2016, after this date it is possible to inquire access to the R Codes
from the author of this thesis.



1 Background and Related Work

Understanding the problem of this thesis in addition to statistical knowledge requires
some basic understanding of business processes and accounting. Therefore, in the next
sections a small overview of terminology and introduction to the sales process is given.

In the last section of this chapter previous literature and research is reviewed.

1.1 Definitions

Creditor - A creditor is a person, bank, or other enterprise that has lent money or ex-
tended credit to another party [3]. In business-to-business sales process, creditor is the

company that issues a sales invoice to debtor.

Debtor - A debtor is a person or enterprise that owes money to another party [3]. In
business-to-business sales process, debitor is the company that receives a sales invoice
from creditor. Debitor becomes a debtor once it has not paid for an invoice before due
date.

Credit risk is the risk of loss of principal or loss of a financial reward originating from a

borrower’s failure to repay a loan or otherwise meet a contractual obligation [3].

Invoice-to-Cash Process is the process from the moment the invoice is created until

the moment the customer’s debt (payment) is settled /reconciled [4].

Due Date of an Invoice - payment term provided by Creditor to the Debitor; the date

when the invoice should be paid for.

Sales Ledger is a detailed itemization of sales made and not yet paid for. The report

includes both - invoices that are due and invoices that are not yet due [5].

Accounts Receivable (AR) - refers to money owed by customers (individuals or corpora-
tions) to another entity in exchange for goods or services that have been delivered or used,
but not yet paid for. Receivables usually come in the form of operating lines of credit and

are usually due within a relatively short time period, ranging from a few days to a year [3].



1.2 Introduction to the late payments problem and

evaluating creditworthiness of debtors

The credit risk evaluation problem is to make a classification of good or bad for a certain
customer using the attribute characteristics of the customer ([6], p. 8). So the problem of
late payments and credit risk are closely related. When analysing late payments we also
need to determine which debtors are likely to cover their debts early and which debtors

will have very long overdue days or, even worse, never pay their debts.

The credit risk modelling can be roughly categorized into two: consumer credit risk and
corporate credit risk. This thesis focuses on the corporate credit risk through business-
to-business (B2B) sales process (more precisely, invoice-to-cash process). See the typical
workflow of invoice-to-cash process in the Figure 1.1 [7]. Collection management high-

lighted in the figure is what we are interested in.

Customer L Order L Credit L Order L Customer
Acquisition | |Management| |Management| | Fulfillment Billing _‘

L mh:ﬁm’+ﬂn[?iu:ﬁulnsf+ Payment | | Cash
Management M ment Management| | Application

Figure 1.1: Typical invoice-to-cash process [7].

In this thesis we focus specifically on the payment behaviour of debtors. But due to the
limited amount of research and literature of modelling late invoice payments, in Section 1.4
we also review relevant literature and research of predicting business failure, loan defaults,

credit risk modelling of loans for both, corporate and consumer loans.

The debt collection plays an important role in businesses cash flow management. Receiv-
ing late payments from invoices can cause problems in company’s liquidity and cash flow
predictions. Being able to predict cash-flows accurately is essential for all businesses to
achieve financial stability. In fact, according to the European Payment Report 2015, a
survey carried out by Intrum Justitia [8], 40% of companies claimed that their customers
inability to pay on time is hindering growth and 31% see late payments as a threat to
their long-term survival. The respondents of the survey see 3.1% of their yearly revenues
being written off. This certainly implies that proper management of trade credit risk is

crucial to eliminate the losses.



Invoice-to-cash process is therefore an important part of the overall sales processes. At
the same time it is also slow, expensive and inaccurate as the collection activity steps are
processed manually [7]. There are also many factors to be considered in the collection
activities — typically all customers are contacted at fixed intervals even if they have always
paid on time. Also note, that it is generally true that the later a customer is contacted
the less likely the invoices will get paid on time. But then again, repeated contacting of

'good" customers may lead to lower customer satisfaction.

The seriousness of debt collection problems can also be illustrated by the fact that trade
credit insurance started evolving already in 1926 when the first conference on trade credit
insurance was held in London [9]. The need for a credit insurance for companies indic-
ates that there are problems in the payment behaviour of the debtors. In Estonia, there

is one state-owned insurance company that deals with trade credit insurance - KredEx

Krediidikindlustus AS [10].

Payment behaviour in Estonia. It follows from the Intrum Justitia survey [8], where
multiple choice answers were possible, that the main reasons for late payments in Estonia
are debtors that are in financial difficulties (74%), intentional late payments (66%) and
administrative inefficiencies of the customers (53%). Less respondents (18%) considered
disputes regarding goods and services delivered as a reason for late payments. According
to the survey, 78% of Estonian companies have been asked longer payment terms than
they feel comfortable with. The average business-to-business (B2B) payment term allowed

to customers in Estonia is 15 days, whereas the average time to actual payment is 20 days.

1.3 Thesis motivation and objectives

The main purpose of this thesis is to model the late payment days of invoices that are
already overdue in business-to-business sales process. The desired output is a measure
that could assess the late payment time of an invoice. The information provided by the
model is of interest for a credit management firm to direct further actions in debt collection
of their clients and provide the client with some suggestions about the creditworthiness
of those debtors.

The questions of interest of this thesis are:

e Identify characteristics that have an impact in the payment behaviour of companies

that are already overdue on their payments.

e Without making many adjustments to the data, do the automated procedures of

modelling result in a trustworthy model?
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e Does the ranking of payment times improve when using historical data of debtor

payment behaviour?
More specifically, the objectives of this thesis can be divided into two:

e for first-time debtors (new debtors in credit management firm database) create a

model that uses external information (publicly available information) as predictors;

e for repeated debtors create a model that additionally uses information about his-

torical payment behaviour of this debtor as predictors.

It is specifically of interest if using the historical data of previous invoice payments (which
we can define from the same data of sales ledgers) results in a more accurate model. This
would allow us to use up-to-date information about the debtor’s current financial situ-
ation. A detailed description of data provided for analysis and preprocessing of raw data

is given in Chapter 3.

1.4 Review of literature and previous research

Since the late 1960s, numerous studies were devoted to predict business failure using pub-
licly available data and combining it with statistical classification techniques. Pioneering
work and one of the first attempts to perform modern statistical failure analysis was done
by Tamari [11].

There was a steady growth in the number of articles published related to credit risk since
year 2000. A few possible reasons can be associated with the increased interest in credit
risk modelling - rapid development of some new data mining techniques, the availability

of more open credit datasets, the growth of credit products and credit markets ([6], p. 7).

When analysing the literature and research of problems that are similar to the question
of interest in this thesis, we can review material that in it’s essence is close to late invoices
payment problem - credit risk of companies, predicting failed firms (bankruptcies), model-
ling defaulted loans (corporate and consumer) and prediction models of invoice payments
in collection activities. We also review both - classification and regression problems. The
reason for the wide range of topics is that there is very limited literature of prediction
models of the invoice-to-cash process. But late payments of invoices is also a problem of
making difference between better debtors (late payments with less overdue days, e.g. up

to 30 days), bad and worst debtors (e.g. when no payment is received).

11



Credit Risk of Companies and Failures of Firms

The techniques for credit risk modelling can be roughly categorized into the following

groups ([6], p. 8):

e Statistical models: linear discriminant analysis, logistic regression, probit regression,

k-nearest neighbour, classification tree, etc.

e Mathematical programming methods: linear programming, quadratic programming,

integer programming, etc.

e Artificial intelligence techniques: artificial neural networks, support vector ma-

chines, genetic algorithm and genetic programming, rough set, etc.

e Hybrid approaches: artificial neural network and fuzzy system, rough set and arti-

ficial neural network, fuzzy system and support vector machines etc.

e Ensemble or combined methods: neural network ensemble, support vector machine

ensemble, hybrid ensemble etc.

Often it has been found out that hybrid and ensemble approaches usually achieve better
classification performance than individual models ([6], p. 23). As later described in
Section 2.2, we also implement an ensemble method in modelling late payment days of

debtors and we use a statistical model for comparison.

Defaulted loans

The problem of defaulted loans is similar to credit risk (or credit-scoring) evaluations as
credit-scoring systems aid the decision of whether to grant credit to an applicant or not.

Traditionally this is done by estimating the probability that an applicant will default [12].

In the industry of credit scoring the standard method with a long history is using logistic
regression making a decision between good and bad applicants. As a more recent modelling
technique in credit scoring and modelling defaults, it has been shown in [13] and [14] that

survival analysis can be applied in credit scoring.

Using survival analysis in predicting loan early repayment and predicting loan defaults,
has been discussed in [12]. It was concluded that survival analysis models are competitive
with the standard approach of logistic regression in credit scoring industry when used for

classifying loan applicants into two groups.

12



Invoice debt collection

There is rather small amount of literature dealing with the problem of invoice debt col-
lection and predictive analysis of payment times. An article [7] and a Master’s thesis [15]
both covered the problem of classifying whether an invoice will be late (overdue) or not,
and if an invoice is overdue then how many days it will be overdue until payment. The

problem was solved as a multiple classification problem using machine learning techniques.

In [15] invoice data and historical data were used as the predictors in the analysis and
predictive classification of overdue days of late payments. It was concluded that adding
historical data as predictors results in a more accurate model. From all the methods
applied, random forests performed the best when predicting overdue days classification.

Predictive analysis was performed based on one firm’s invoices to debtors.

In [7], invoices created by 4 firms were under observation. Predictive analysis was per-
formed for both, first-time invoices and returning invoices. For all 4 firms it was concluded
that using historical data as predictors improves the accuracy of invoice payment time
classification. Models were built separately on each firm but also a unified model that
could be used for all the firms was implemented. The unified model performed better
than the individual models (classification accuracies for unified model were 77%-96% and
for individual models 66%-93%) which suggests that the unified model can find common

patterns in these four firms that are overlooked by individual models.

Conclusions

The problem of this thesis is not a classification problem in nature (although it can be
solved as a classification problem as previously described). When analysing invoice debt
payments we are more interested in when the event occurs rather than whether it occurs
or not. This means we are interested in analysing time to an event and therefore survival
analysis approach is reasonable. The problem of invoice debt payments is similar to loan
early repayments which, as previously described, can be solved using survival analysis.
Interest in using survival analysis for loan defaults modelling and credit risk estimation
has shown some increase, several articles ([12], [16], [17], [18]) deal with the use of survival

analysis.

As our initiative is to view the problem of invoice late payments as a regression problem
rather than a classification problem, survival analysis fits our purpose. In ([19], p. 55) it
was concluded that in modelling credit scoring the differences between survival and logistic
models for a fixed time period are nearly indistinguishable. We present some more specific

reasons in Chapter 2 why survival analysis is a better fit than other methods.

13



2 Overview of Methods

The question of interest of this thesis is to analyze payment times of overdue invoices and

we have chosen survival analysis for this purpose.

A possible solution when modelling payment time of an invoice could also be linear reg-
ression as a function of a set of predictor variables. However, linear regression is not the
best choice in terms of our data as we do not have the precise payment time (minimum and
maximum payment times will be derived from data). Also, invoices that have been long
time overdue, are more likely to never be paid for and removing them from analysis would
result in too optimistic prognosis. In addition, time to payment is a positive number and
ordinary linear regression may not be the best choice unless event times are first trans-
formed in a way that removes this restriction [20]. Most importantly, as described above,
ordinary linear regression cannot effectively handle censoring of observations (invoices that

have been overdue for some time without any information about the actual payment time).

Therefore, in terms of our data, survival analysis is an appropriate method to analyze
and model time to payment of an overdue invoice as it takes censoring into account (in
the Figure 3.5 it can be seen that when removing data without known payment time, we

would underestimate the actual payment times).

2.1 Survival analysis

Survival analysis is used in statistics to model and analyze the expected duration of time
to a certain event. Generally such events are defined as ’failures’. Survival analysis is
mostly used for medical data and clinical trials where the event of failure is usually defined
as death or recurrence of a disease. In this section we follow [21], pp. 1-17, if not stated

otherwise.

In survival analysis, subjects are usually followed over a specified time period and the
focus is on time at which the event of interest occurs. We can see that it is possible that a
failure” time will not be observed in time period of observation due to deliberate design

of the experiment or random censoring.
In context of the problem of this thesis, time to event is the time from due date of an

invoice to the payment date of an invoice. So, objects under observation are invoices

that are overdue and time ¢ = 0 is due date of the invoice. Therefore, instead of having

14



a failure’ as an event, we have a positive event of ‘payment’ under observation. The
negative event of failure (time point when the invoice would never be paid) would be
undefinable. From now on our events of ’death’ and ’payment’ are equivalent terms. In
the context of survival analysis ‘alive” refers to unpaid invoice (invoice is “alive” when it

has not been paid for yet).

Let T denote a non-negative random variable representing the time to the event of interest
(in our case time to payment). The probability that the invoice is not paid before time ¢

is given by the survival function
St)=P(T>t)=1—F(t) = /°° f(z)de, (2.1)
t

where f(-) is the density and F(-) the distribution function of 7.

The survival function is considered to meet the following conditions:
e S(t) is a monotone decreasing function,
e S(0) =1,

e S(o0) = lim S(t) = 0.

t—o00

The last condition might not be fully applicable for the defaulted loans problem and
invoice-to-cash process but it can be assumed that in an infinite time period the debt of
invoice is either paid by the debtor, the claims are collected with the use of encashment
firm or in case of debtor’s bankruptcy, claims are covered with the assets of debtor firm.

So, in this thesis we assume that the third condition is satisfied.

Note that these three conditions are theoretical properties of survival curve and in prac-
tice, when using actual data, we usually obtain graphs that are step functions, rather than
smooth curves. The theoretical survival curve S(t) and the estimated survival function
S(t) are depicted in the Figure 2.1.

Density function of 7" can be defined through survival function (2.1),

) - g PUST <480 dF() __dS() 2.9

At—0+ At dt dt

Hazard function h(t) specifies the rate of success at time 7" = t given that the invoice
has not been paid for up to time t. Using (2.1) and (2.2), the hazard function can be
defined as

. P<T<t+AT>t) . PE<T<t+Ah) _ f(1)
A0+ At a0+ P(T>t)-At St

15



S(0)=1

S(t) S(o)

S(e=) =0 5

0 t 00 sy 0 t Study end

Figure 2.1: The theoretical survival curve S(t) on the left and the estimated survival
function S(t) on the right ([22], p. 10).

Therefore, with respect to our problem, h(t)At can be interpreted as the approximate
probability of payment of the invoice in time range [¢,t + At], given that there was no
payment up to time t. We can view h(t) as a measure of intensity at time ¢ or a measure
of the potential success at time t. It is important to notice that the hazard is a rate,

rather than a probability (it can assume values in [0, 00)).

Since
ht) = _dSé’t(igdt _ _dlogc(lf(t))’ (2.3)

it is verified that h(t), similarly to S(t), specifies the distribution of 7'

Cumulative hazard function H(t) is gained by integrating h(u) over (0,t) — which due

to (2.3) results in the expression

t
H(t) = / h(u)du = — log(S(1)). (2.4)
0
And therefore also
S(t) = exp[—H(t)]. (2.5)
So, each function S(t), H(t) and h(t) can be derived from any of the other functions. The
distribution of 7" is described by any of these three functions ([23], p. 405). Once the

distribution of T is known, many useful characteristics can be found.

Median life length (0.5-quantile) is the time (measured in days) for which the proba-
bility that invoice is not paid (and equally the probability that invoice is paid), S(t), is
0.5. In practice it means that the median life length (0.5-quantile) is the time by which
half invoices will not be paid for (and equally half invoices will be paid for). The median

life length is obtained by setting S(t) = 0.5 and finding respective t, denoted by T 5:

Tos = S71(0.5).

16



More generally, we can find the life length T,, = S(7'(a) for which the probability is «

that invoice is not paid.

Survival probabilities are other quantities of interest. The company might be inte-
rested in the probability that the invoice is still not paid before 7' = a, i.e. interested in
S(a), or the probability that invoice is paid between a < T' < b, i.e. in S(a) — S(b).

2.1.1 Censoring

Censoring is a form of missing data problem which is common in survival analysis. There
are 3 censoring types: right-, interval- and left-censoring ([23], p. 401). The most common
type of censoring, and also relevant in the context of this thesis, is right-censoring. In
clinical trials, where survival analysis is most commonly used, patients typically enter a
study at different times ([21], p. 12). In the context of this thesis the same applies - new
invoices are generated throughout the year, so new invoice observations enter the study

at different times.

We want to observe payment time of an invoice but censoring can occur in the following

ways ([22], p. 6) when adjusted to our data:

1. Loss to follow-up. At some time due to some reason the Creditor has not any more
provided sales ledgers (information about its claims). All invoices that occur in the
last sales ledger of the Creditor are censored. We know that the payment time of
the invoice is greater that the overdue days of the invoice at the balance date of last

sales ledger provided.

2. Partial loss to follow-up. At some periods of time Creditor has not provided Sales
Ledgers periodically and payment time of an invoice cannot be calculated reliably.
We know that payment time of invoice is greater than the overdue days of invoice

at the balance date of the previous sales ledger provided.

3. Termination of study. The last date of the study is 31.12.2015. All the invoices that
occur in the sales ledger at 31.12.2015 (meaning that the invoices are not paid) are

censored as we do not have further information of payments.

Random variable T' denotes a random failure (payment) time from the survival distribu-
tion S(t). We need additional notation for the response of the j-th invoice that contains
both censoring and payment events. Note, that the invoice may be censored if the invoice
is not followed long enough (the study ends at 31.12.2015) or due to loss to follow-up or
partial loss to follow-up. In fact, even the paid invoice may have a censoring time (the end

of study) and the censored invoice may have a payment time (some time after censoring).

17



The response of the j-th invoice is defined to be either payment time 7 or censoring time

C;. Let us define the event (payment) indicator §; of the j-th invoice as

5 1 if the event was observed (7 < (),
Ji =

(2.6)
0 if the event was censored (1} > Cj).

The observed response is

Y = min{T}, Cj}, (2.7)

which is the time that occurred first: the payment time or the censoring time. Hence
we observe K iid random pairs (Y}, 0;) that contain all the response information needed
([23], p. 406).

2.1.2 Kaplan-Meier method

Kaplan-Meier method is the best known and simplest non-parametric method for pro-
jection of survival curve. It can be used to estimate the survival function, also called
the product limit estimator. This estimator incorporates all the information available
(uncensored and censored) by considering survival to any point in time as series of steps

defined by the observed survival and censored times ([24], p. 28).

The steps are intervals defined by a rank ordering the survival times: each interval begins
at an observed time and ends just before the next ordered time. So, say we have obser-
vations of payment times of invoices and for the i-th invoice, time to payment is ¢;. Let
the number n; represent the survivors (number "at risk’, in our case number of unpaid
invoices) up to time ¢;, d; the number of payments at the time ¢;, and ¢; the number of

censored observations at time t;.

The Kaplan-Meier estimator of S(¢) is the product of the form

O )

<t T

where n; = n,_, — d;_1 — ¢;_1 and has a convention that 5’(75) =1ift <ty ([24], p. 34).

For example, if we have the following 8 time observations (3 censored observations marked

with '+ and 5 payments):

time 7 7 114 15 154+ 30 92 92+

We can calculate the Kaplan-Meier survival estimates as given in the Table 2.1.
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Table 2.1: Example data of invoice payments and the calculation of survival estimate.

| di | g S(tz)
0/0|8[0]0]1

1] 7]18]2]0|1-82=0.75
21116 | 0] 1[075-52=0.75
3155 1]1]075-%=06
41303 |1]0]06-352=04
5192021 ]1]04-32=02

The Kaplan-Meier curve is a right continuous step function which steps down only at an
uncensored observation ([21], p. 30). The plot of Kaplan-Meier curve for the data in
Table 2.1 is shown in the Figure 2.2.

0.8

5(f)

0.4

10 20 20 40 50 80 70 a0 20
Time to payment (days), t
Figure 2.2: The Kaplan-Meier curve for the example data in Table 2.1. The blue crosses

represent the censored observations.

Note that the Kaplan-Meier curve in the Figure 2.2 does not go to zero as the largest
survival time 92+ is censored. We cannot estimate S(t) beyond ¢t = 92 days. Some refer
to S(t) as a defective survival function. Alternatively, F'(t) = 1 — S(t) is called a sub-
distribution function as the total probability is less than 1 ([21], p. 30).
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2.1.3 Cox Proportional Hazards model

Cox Proportional Hazards (PH) model is a semi-parametric method of survival analysis
— it is assumed that the baseline hazard function is the same for all the objects under the
observation. The following theoretical overview of Cox PH model is provided on the basis
of [23], pp. 427-428.

Suppose that on each observation there are p predictor variables X = (X!, ..., X?) avail-
able. The survival model is generalized from a hazard function h(t) for the failure time

T to a hazard function given the predictors X:
h(t|X) = ho(t) exp(X3), (2.8)

where X8 = By + i X'+ -+ B,XP.

The regression formulation (2.8) is called the proportional hazards model. The hy(t) part
of the h(t|X) is called an underlying (or baseline) hazard function or a hazard function

for a standard subject, which is a subject with X5 = 0.

Depending on whether the underlying hazard function hg(t) has a constant scale para-
meter, X/ may or may not include an intercept fy. The term exp(X ) can be called
a relative hazard function and in many cases it is the function of primary interest as it

describes the (relative) effects of the predictors.

Based on (2.4) and (2.5), the PH model can also be written in terms of the cumulative

hazard and survival functions:

H(t|X) = Hy(t) exp(X ),

S(t1X) = exp(—Ho(t) exp(X 3)) = exp(—Ho ()7,
where Hy(t) is an underlying cumulative hazard function. Note, that S(¢|X), the prob-
ability of surviving (not paying) past time ¢ given the values of predictors X, can also be

written as

S(HX) = (1)),

where Sy(t) is the underlying survival distribution, Sy(t) = exp(—Ho(t)).

Proportionality assumption

The way in which the predictors affect the distribution of the response should be by mul-
tiplying the hazard or cumulative hazard by exp(Xf) or equivalently by adding X/ to

the log hazard or log cumulative hazard at each t. The effect of the predictors is assumed
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to be the same at all values of ¢ since log(ho(t)) can be separated from X 5. In other

words, the PH assumption implies no ¢-by-predictor interaction ([23], p. 428).

Suppose we have two specifications of the predictors X, defined as X, and X. From the
Cox PH model (2.8) we can obtain general formula for estimating a hazard ratio that
compares X, = (X!, ..., XP) and X = (X!, ..., XP):

_ h(tX.) _ ho(t) exp(BX.)

HR =50 = ho(t) exp(5X)

=exp(f(X, — X)) =6,
where 6 is a constant, i.e. not depending on ¢.

The Cox PH model assumes that the hazard ratio comparing any two specifications of
predictors is constant over time ¢t. Equivalently, this means that the hazard for one invoice
is proportional to the hazard for any other invoice, where the proportionality constant is
independent of time ([22], p. 165).

Partial likelihood function and estimation of

The likelihood construction is based on [23], pp. 476-477. Let t; < ty < ... < t)y repres-
ent the unique ordered failure (payment) times. Assume for now that there are no tied
payment times (tied censoring times are allowed). Consider a set of invoices at risk of
payment an instant before event (payment) time ¢;. Let this risk set of invoices at time
t; be denoted by n;. So n; is the set of invoices j such that the subjects had not failed
(not paid) or been censored by time ¢;. Therefore n; includes invoices with payment or

censoring time Y; > ¢;, where Y is defined as in (2.7).

The conditional probability that invoice k is the one that was paid at t;, given that the
invoices in the set n; are at risk of being paid, and given further that exactly one payment

occurs at t;, is by the rules of conditional probability

P("invoice k is paid at t;"|n;)

P("invoice k is paid at t;"|n;, "one paid invoice at t;") = BC d ivoice at £, ny)”
one paid invoice at t;"|n;

This conditional probability equals

ho(t;) exp(Xif3) _ exp(Xy[) _ exp(Xyf) ' (2.9)
Z. ho(t:) exp(X;/3) Z exp(X;3) Y. exp(X;5)

Note, that (2.9) is independent of hy(t). In order to understand this likelihood, let us
consider a special case of § = 0, meaning that the predictors have no effect. Then

exp(Xyf) = exp(X;f) = 1 and P("invoice k is paid at ¢;"|n;, "one payment at ¢;") equals
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1/n;. As before, n; is the number of invoices at risk (of payment) at time ¢;.

A total likelihood can be computed by multiplying individual likelihoods over all failure
(payment) times as these conditional probabilities are themselves independent across the

different payment times. A partial likelihood for f is:

eXp(Xkﬁ)

L = .
(6) (Yidr=1) Eyjzyk eXP(Xjﬂ)

(2.10)

The log partial likelihood can be directly derived from (2.10):

logL(B)= > [(Xkﬂ) —10g< > eXp(XjB)>] : (2.11)
(Yi,0,=1) Yi>Ys

The maximum partial likelihood estimator can be derived by maximizing (2.10) or (2.11)

with respect to 8 ([24], p. 96).

Stepwise Cox model and the AIC procedure

It would be ideal to perform variable selection by trying out a lot of different models that
contain a different subset of the predictors in order to decide on the best model. Based on
the number of predictors p, there are 27 models containing subsets of predictors. When p
is large, automated approaches are more efficient and preferred. There are three classical

approaches for the predictor selection ([25], pp. 78-79):

e Forward selection. We start with a null model (a model with no predictors, only an
intercept). The predictor that improves the model the best, is added. The procedure

is performed as long as there is no statistically significant predictor to be added.

e Backward selection. We start with a full model (a model that contains all pre-
dictors). The least statistically significant predictor is removed. This selection is

applied multiple times until there is no predictor that is statistically insignificant.

e Mixed selection. A combination of forward and backward selection. We start with
the null model and forward selection is performed. At each step it is considered if
any of the previously added predictors have become insignificant and if needed, a
backward selection is performed. Forward and backward steps are performed until
all predictors in the model have a sufficiently low p-value (and all predictors that

are not in the model would have a large p-value if added to the model).

As the mixed selection involves both — forward and backward selection — we implement

mixed selection when fitting the Cox model.
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To evaluate whether adding or removing a predictor improves the accuracy of the model
we use the Akaike’s information criterion (AIC). The statistic used to make comparisons

between possible models is
AIC = —2-log(L) 4+ 2 - m,

where m is the number of 3 coefficients under consideration and L is the likelihood of the
model (the likelihood is replaced by the partial likelihood), refer to (2.10) and (2.11). The
decision rule for choosing the best model is that the smaller the AIC value, the better the
model is ([21], pp. 123-124).

2.2 Decision Tree Methods

Decision trees can be applied to both regression and classification problems ([6], p. 303).
A tree-based method Random Forests has recently also been extended for the analysis of

right censored survival data [27].

In Random Forests, a number of decision trees is built on bootstrapped training samples.
When building these decision trees, each time a split in a tree is considered, a random
sample of m predictors is chosen as split candidates from the full set of p predictors.
So, the split is allowed to use only those m predictors, meaning that the algorithm is
not allowed to even consider a majority of the available predictors. At each split a fresh

sample of m predictors is taken. Typically m ~ /p is chosen ([25], p. 319).

As brought out in Section 1.4, ensemble methods often outperform individual models.
In the following we will give an overview of an ensemble tree method Random Survival

Forests.

2.2.1 Random Survival Forests

In survival analysis many different regression modelling strategies can be applied to pre-
dict the risk of future events. Often, however, the default choice of analysis relies on Cox
regression modelling due to its convenience. Extensions of the random forest approach to

survival analysis provide an alternative way to build a risk prediction model [28].

The main advantage of Random Survival Forests is that it is highly data adaptable and vir-
tually model assumption free. In survival analysis we often need to rely on some restrictive
assumptions (e.g. the assumption of proportional hazards). There is always the concern
whether associations between predictors and hazards have been modelled appropriately,

and whether or not non-linear effects or higher order interactions for predictors should be
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included. In contrast, such problems are handled seamlessly and automatically within a

Random Forests approach [29].

The algorithm for Random Survival Forests is as follows:
1. Draw B bootstrap samples from the original data.

2. Grow a tree for each bootstrap sample. At each node of the tree randomly select m
predictors (covariates) for splitting on. Split on a predictor using a survival splitting
criterion. A node is split on that predictor which maximizes survival differences

across daughter nodes.

3. Grow the tree to full size under the constraint that a terminal node should have no

less than a specified number of unique deaths (payments).

4. Calculate an ensemble cumulative hazard estimate by combining information from

the n trees. One estimate for each individual (invoice) in the data is calculated.

5. Compute an out-of-bag (OOB) error rate for the ensemble derived using the first b

trees, where b=1,...,B.

We provide an illustrative example of Random Survival Forest tree in the Figure 2.3. The
top internal node corresponds to splitting factor variable representing submission of last
annual report and has two levels: SUBMITTED and UNSUBMITTED. Left-hand node
consists of invoices for which the factor variable value is SUBMITTED. The right-hand

consists of the remaining observations.

<> Node spi
Yes No ©  Terminal node
Last annual report: SUBMITTED

Yes No Yes No

Revenue < 1000 000 Tax paid < 50 000

CHF 1 CHF 2 CHF 3

CHF 4 CHF 5

Figure 2.3: Example of a tree in Random Survival Forests.
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An example of a continuous variable splitting in the Figure 2.3 can be seen for Revenue.
The tree is grown such that when all invoices are dropped down the tree at least the spe-
cified number of unique payment events are in each terminal node. A cumulative hazard
function (CHF) is constructed for each terminal node ([30], p. 21). A comprehensive

description of splitting process based on [29] follows.

Splitting rules

The node splits are essential and most important parts of the algorithm. The available
options for splitting rules are a log-rank splitting rule (the default splitting rule), a con-
servation of events splitting rule, a log-rank score rule, and a fast approximation to the
log-rank splitting rule. As the log-rank splitting will be used in the purpose of our ana-

lysis, other methods will not be covered in this section.

Assume that during the growing process of a tree we seek to split node h into two daughter
nodes. Let’s assume that there are K, observations {(Y1,01), ..., (Yk,,0xk,)} (as defined
in (2.7)) within h. As before, assume we have predictors X = (X!,..., X?). A proposed
split at node h on a given predictor X* (u € {1,...,p}) is always of the form X" < ¢ and
X" > c. The split forms two daughter nodes and two new sets of survival data. A good

split maximizes survival differences across the two sets of data.

Let t; <ty < --- <ty be the distinct payment times in the parent node h, and let d, ;,
and n; ; equal the number of payments and individuals at risk at time ¢; in the daughter
nodes j = 1,2. Note that n;; is the number of invoices in daughter j that are alive (not

paid) at time ¢;, or who have an event (payment) at time ¢;. More precisely,
ni,l - #{ﬂ Z tlelu S C}7 ni,? — #{ﬂ Z tlelu > C})

where X' is the value of X* for observation [ =1,..., K.

Finally, define n; = n;1+n;2 and d; = d; 1+d; 2. Let n; be the total number of observations
in daughter j. Thus, n; = n;+ns. Note that ny = #{l : X* < c}and ny = #{l : X} > c}.

Log-rank splitting

The log-rank statistic for a split at the value ¢ for predictor X* is

d;
(di,l - nz‘,l)
L(X",c) = = .
\l M1 (1_?%,1) (ni_di> d;
i—1 n; n; n; — 1
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The value |L(X*", ¢)| is the measure of node separation: the larger the value for |L(X", c)|,
the greater the difference between the two groups, and the better the split is. The best
split at node h is determined by finding the predictor X* and ¢* such that |L(X", ¢)| <
|L(X", c¢*)| for all X* and c.

Ensemble estimation

Random Survival Forests produce an ensemble estimate for the cumulative hazard func-
tion which is also the basis for calculating the model performance (see C-index in section
2.3.1).

The cumulative hazard function is estimated for each tree grown from a bootstrap data set
by grouping hazard estimates by terminal nodes. Consider a node h, let ¢, , be the distinct
payment times in & and let d;j, and n;; equal the number of payments and invoices at
risk at time ¢; ;. The cumulative hazard estimate for node i and fixed ¢ is defined as
()= > i,
tin<t i,k
A sequence of such estimates, ]f[h(t), is provided by each tree. Suppose there are M
terminal nodes in the tree, then there are M such estimates. Consider individual (invoice)
j, and denote its predictor vector as X; = (X}, ..., X7). In order to compute H(tX;) for
an individual j, one has to drop X; down the tree and find the terminal node for respective

j. If the terminal node is h then the estimate is
H(t|X;) = Hy(t), X, €h. (2.12)

The cumulative hazard function (2.12) is computed for all invoices j in the data and for
te{ty, .. tx}.

Also note that the estimate (2.12) is based on one tree. In order to produce an ensemble,
(2.12) is averaged over all B trees. Let H,(¢|X) denote the cumulative hazard estimate
(2.12) for tree b = 1,..., B. The out-of-bag (OOB) ensemble cumulative hazard estimate
for j is

B

> LipHy(11X;)

H(t]X;) = =
> L
b=1

where [;;, = 1 if j is an OOB point for b, otherwise I, = 0.

, (2.13)

26



Note, that estimator (2.13) is obtained by averaging over bootstrap samples in which j is
excluded, meaning datasets in which j is an OOB value. The ensemble cumulative hazard

estimator uses all bootstrap samples:

H.(t|X;) i (1) X;). (2.14)

2.2.2 RandomForestSRC package

To be able to reliably compare Cox Model and Random Survival Forests we divide data

into two: training set and test set. The results of models are validated on the same test set.

In the RandomForestSRC package [31] it is advised to experiment with different node
sizes, as it also determines the number of splits and a bad choice of node size may result

in underfitting or overfitting.

We give an overview of important parameters used in RandomForestSRC:

e formula — a symbolic description of a model to be fit;
e ntree — number of trees grown in a forest;
e nodesize — minimum terminal node size (default is 3 deaths (payments));

e splitrule — splitting rule used to grow a tree (default is logrank).

To plot the results and evaluate which variables were used and are important in the tree
growing process, we use Variable Importance (VIMP) from ggRandomForests package
[34]. VIMP measure was originally defined in CART package using a measure involving
surrogate variables [32] and it also used for Random Survival Forests. A description of
VIMP follows in Section 2.3.2.

2.3 Performance measures

In this section we introduce concordance index as a performance for survival models and

explain variable importance in Random Survival Forests models.

2.3.1 C-index

To estimate prediction error for both, Cox model and Random Survival Forests, we use
concordance index (C-index) which is one of the most commonly used performance meas-
ures of survival models ([23], pp. 256-258). It estimates the probability that, in a ran-

domly selected pair of cases, the case that is paid first had a worst predicted outcome. In
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its essence it calculates the fraction of times that for a pair of invoices the invoice that
was predicted to be paid later was actually paid sooner, i.e., the prediction ranked the
payment times incorrectly. Unlike other measures of survival performance, the C-index
does not depend on a single fixed time for evaluation. The C-index also specifically ac-

counts for censoring.

Calculating C-index is based on [27]. It requires a predicted outcome which we define
using OOB ensemble cumulative hazard function (CHF) similar to (2.13) to define a
predicted outcome. This value is derived from OOB data and thus it can be used to
obtain an OOB estimate for C.

Let t9,...,t° denote pre-chosen unique time points (we use the unique event (payment)
times t1,...,ty). To rank two invoices k and j, we say k has a worse predicted outcome
than j if

m m

Z “(t91X},) > Z “(t91X5). (2.15)

C-index calculation:
1. Form all possible pairs {(Y%, ), (Y;,9;)} of cases over the data.

2. Omit pairs (Y%, ;) and (Y], d;) where shorter survival time is censored. Omit pairs
(Y, o) and (Y}, 6;) if Yy, = Y, unless at least one is a death (payment). Let Per-

missible denote the total number of permissible (remained) pairs.

3. For each permissible pair where Y;, # Y, , count 1 if the shorter survival time
has worse predicted outcome; count 0.5 if predicted outcomes are tied. For each
permissible pair, where Y}, = Y; and both are deaths (payments), count 1 if predicted
outcomes are tied; otherwise (one is censored), count 0.5. For each permissible
pair where Y, = Y; but not both are deaths (payments), count 1 if the death
(payment) has worse predicted outcome; otherwise (one is censored), count 0.5. Let

Concordance denote the counts over all permissible pairs.

4. The C-index, C, is defined by

c Concordance

Permissible

Error is defined Error = 1 — C'. The error value of 0.5 indicates that the model has no
predictability (it is equivalent to tossing a coin). The error value of 0 shows that the
model has a perfect predictability. If Error > 0.5, it indicates that the predictors of the
model predict the opposite direction [29].
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Concordance index for Cox model is calculated using function survConcordance in the
survival package. This function calculates the C-index based on survival times ([33], pp.
94-95).

2.3.2 Variable importance

Random Forests typically result in improved accuracy over the prediction that uses one
tree (e.g. classical decision tree). Unfortunately it is difficult to interpret the resulting
model since there is a large number of trees. Thus it is not clear which variables are most

important in the procedure ([25], p. 319).

Variable importance (VIMP) is a measure that shows how worse would the prediction
be if that variable were not available. To calculate VIMP for a variable X", drop OOB
cases down their in-bag survival tree. Whenever a split for X* is encountered, assign a
daughter node randomly (both nodes have equal probability). The cumulative hazard
function from each such tree is calculated and averaged. The VIMP for X* is the pre-
diction error for the original ensemble subtracted from the prediction error for the new

ensemble obtained using randomizing X" assignments [32].

As the prediction error in Random Survival Forests is characterized by C-index, VIMP
can be interpreted in terms of misclassification. As described in Section 2.3.1, C-index
estimates the probability of correctly classifying (ranking) two cases. Thus, VIMP for X*
measures the increase (or decrease) in misclassification error on the OOB (or test) data

if X* were not available.

A large VIMP value indicates that excluding the variable reduces the predictive accuracy
in the forest. VIMP close to zero indicates the variable contributes nothing to predictive
accuracy, and negative values indicate the predictive accuracy improves when the variable
is excluded [34].

Note that it is incorrect to think VIMP estimates change in prediction error for a forest
grown with and without a variable. For example, if two variables are highly correlated and
both predictive, each can have large VIMP values. Removing one variable and regrowing
the forest may affect the VIMP for the other variable (its value might get larger), but

prediction error will likely remain unchanged [32].
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3 Data Description and Processing

Data about invoices (more precisely, sales ledgers of creditors) for this thesis is provided
by Kreedix OU that is a credit management service provider in Estonia. Data about all
Estonian companies is provided by Register OU, a firm that intends to provide procedures
to small and medium companies to optimize their invoice-to-cash processes. Refer to the

Figure 3.1 to get an understanding of the data and subjects of our analysis.

Credit Management
> ’ firm
A

_Sales invoices Does not pay on time

; - " )
Debitor
% Phaste o Debtor

o La!e_;a;:ywants _ o
% We analyze and model the

No payment ™ === 3te invoices of Debtors

Figure 3.1: Flowchart of the process of debt collection and credit management which is

source of sales ledgers data for our analysis.

The database available for our analysis is all sales ledgers reports provided by the clients
(in Figure 3.1 referred to as Creditor) to the credit management bureau Kreedix OU.
Sales ledgers (SL) are from time period January 2015 to December 2015 (balance dates
(printout dates) of SL reports). For simplicity purposes we do not distinguish between
the terms Debitor and Debtor: from now on we only use term Debtor to name the firm

an invoice is addressed to.

For the invoice payment analysis we have the following sources of data:
e DATA 1: Sales ledgers data — information about invoices that were overdue and
invoices that were not overdue;

e DATA 2: Database of all Estonian companies: registry code, company name, num-
ber of employees, date of registry, age, registry status (active, bankrupt, deleted,
liquidation);

e DATA 3: Data from annual reports 2012-2014 (financial data is available for all

companies that have yearly sales in an amount that is more than 50 000 euros);

e DATA 4: Tax debt data from Estonian Tax and Customs Board (e.g. sum of tax
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paid, paid tax change quarter over quarter, number of unsubmitted tax declara-
tions).

Note that none of the databases reflect the date of payment of an invoice. Payment time
can be derived from the balance date times of sales ledgers. For example, if an invoice
'InvID1” with due date 30.01.2015 is in the sales ledger at 02.02.2015, it reflects that the
invoice is overdue 3 days as of 02.02.2015. If the same invoice 'InvID1’ is in the sales
ledger at 09.02.2015, it means the invoice has not been paid for and it is overdue 10 days.
Now, when the invoice 'InvID1’ is not in the sales ledger at 16.02.2015, it means the in-
voice has been paid in the time interval of 10.02.2015 (included) to 16.02.2015 (included).
Time ¢ = 0 is the due date (30.01.2015) of invoice 'InvID1’, the minimum payment date of
‘InvID1’ is 10.02.2015 (¢ = 11) and the maximum payment date of 'InvID1’ is 16.02.2015
(t=17).

3.1 Terminology and variable definition

The variables available to us from the sales ledgers (DATA 1) database are the following:

e Creditor — name of the firm issuing a sales invoice;

e Creditor_reg code — registry code of the firm issuing an sales invoice;

e Debtor — name of the firm (the buyer who has to pay) the invoice is addressed to;
e Invoice — the number / ID of invoice;

e Invoice_Date — the date of issuing the invoice (this might be NA). This date is

not actually not important information for us);
e Due_Date — the due date of the invoice;
e Sum — the sum that has not been paid for the invoice;

e Balance_Date — the date of the sales ledger report.

We have generated the following variables to the database to be later able to preprocess

DATA 1 for payment time analysis:

e Debtor_reg code — the registry code of the Debtor is added to the data from
Register OU database (where the debtor’s registry code was missing originally, we
added registry code from DATA 2, using Debtor (name of debtor). Where debtor

name had mistakes in DATA 1, names were corrected and registry code was added);

e InvID — Unique invoice ID (defined as Creditor_Invoice) to avoid having same

invoice numbers from different creditors;

e minBalDate — for the InvID the first date the invoice appeared in a sales ledger;
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maxBalDate — for the InvID the last date the invoice appeared in a sales ledger;

OverdueDays = Balance_Date — Due_ Date.

— if x = OverdueDays > (0 — the invoice is overdue = days at the Balance_ Date

— if z = OverdueDays < 0 — the invoice is not overdue at the Balance_ Date

e minPaymentDate — the minimum possible payment date of the invoice, see also

"Definition of limits for payment date" for details;

e maxPaymentDate — the maximum possible payment date of the invoice, see also

"Definition of limits for payment date" for details.

Definition of limits for payment date. The invoice is in the sales ledger as long as it

hasn’t been paid for, therefore:

e if the maxBalDate of the invoice is the last date of the sales ledgers from that creditor

— we do not know the payment date — we define

— minPaymentDate < N A;

— maxPaymentDate < N A;
e otherwise

— minPaymentDate <— maxBalDate 4 1;

— maxPaymentDate < next Balance_Date of the creditor following to the
mazxBal_ Date of that creditor.

3.2 Data preprocessing

From the sales ledgers database all data rows that had Sum < 0 were removed (as all
data with Sum < 0 indicates credit invoices or prepayments that don’t need to be taken
into account when analysing debt data). The database consisted of 195 108 rows before

aggregation and data filtering.

In the initial database one row of data is an entry in one sales ledger, the database needed
to be aggregated to a invoice level so that we would have one row per one invoice. As our
observations in the analysis will be invoices (more precisely time to payment or censoring
time of an invoice), we aggregated the initial database to a invoice level to have the data
in the survival analysis context. After aggregation we have 84 635 invoices (both overdue

and not overdue invoices).
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The data of sales ledgers is a database that has many different sources (the accounting
systems of Kreedix clients differ) and therefore the data is subject to some quality problems
that need to be taken into account and identified. The original sales ledger reports
provided by the clients have been manually processed by the employees of Register OU.
In the final database of sales ledgers provided by Register OU we have identified two types

of sources for potential errors:
1. Problems in the initial sales ledgers provided by Kreedix OU clients.
e The sales ledgers are reports from different accounting systems of Kreedix OU

clients (mostly in Excel) and may cause problems in the preprocessing phase;

e Manual mistakes in debtor name caused by typing errors in accounting system,

not up-to-date debtor registry code;

e During the analysis we have identified data rows that do not seem logical (e.g.
due date of the invoice is 365 days in the future) - this might be caused by

long-term liabilities (such as loans).

2. Manual processing of the sales ledgers into one database. As the reports of sales
ledgers were in many different forms, it is easy to make mistakes like taking a wrong

column or calculating the dates incorrectly.

We have taken into account these types of mistakes and implemented procedures to elim-

inate these shortcomings.

3.2.1 Data cleaning - faulty data corrections, outlier detection
and exclusion from database

There are some specific characteristics or restrictions we can define for an invoice of

interest, we predefined the conditions that our invoice in the database should meet:

e Invoice_Date < Due Date - The due date of the invoice should not be earlier than

the date of the invoice;
e |Due_Date — Balance_Date| < 90;
e |Due_Date — Invoice_Date| < 90;

The first condition was set to identify manual processing mistakes. Invoices, for which
the condition Invoice_ Date < Due_Date was false, were first examined separately and
compared to original raw data. Where a manual preprocessing mistake was found, the

database was adjusted to be in accordance with the initial raw data (sales ledger provided
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by the Creditor).

Other conditions needed to be set because the database of sales ledger included some

long-term claims (such as loans, etc) that are not related to invoice-to-cash process.

When examining the data of invoices, a limit of 90 days was set as the maximum pos-
sible days of payment term. In 2013 there was a change in the Law of Obligations Act
(Volaoigusseadus) and 60 days was declared to be a maximum payment term in business-
to-business sales ( Voladigusseadus, §82', section (2)). It is still possible to have special
agreements and contracts to have longer payment terms and therefore as in our data it
could be seen that 90 days is also a plausible payment term, a limit of 90 days was set.

The limit is needed to exclude possible loan borrowings in the sales ledgers.

The initial database did not have Invoice Date for all the invoices — 12 912 invoices had
a missing invoice date. As the invoice date is not relevant to our modelling process, we
keep the data where the invoice date is missing. The invoice date is only needed to clean

the data of some of the faulty entries.

All the data entries that did not meet our conditions might have been either a faulty entry
(a manual mistake in the data processing phase or a long-term debt, such as a loan). After
filtering the data with conditions set for an invoice, 1.2% of data was discarded (83 620

rows of invoices remained).

3.2.2 Data corrections

To eliminate the faulty data due to manual preprocessing and the mistakes in the original

sales ledgers provided by the clients, some detective analysis was performed:

e The original database had debtor registry codes in some cases. To assure that
the registry codes were correct, the debtor company name was compared to the
Register OU database (DATA 2) using registry code. Where there were inconsist-
encies found between the company name in the DATA 2 and the name in DATA
1, Debtor_reg_code was changed for the registry code that is in compliance with
the company name in the sales ledger. It is due to the fact that in the accounting
system the registry code might be outdated/mistyped/missing but the name of the
company is correct. All the missing registry codes were added manually (registry
code of the debtor is the ID for merging the data of predictors).

Invoices that did not have Debtor_reg_ code, registry code was added from DATA 2
using Debtor as an ID. Where NA values were generated, debtor names were correc-

ted (manual typing mistakes by accountants or informal names of companies that
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did not match the name in DATA 2) and Debtor_reg_ code was manually added.

e The data of foreign debtors was removed from the database (registry code containing

letters or the registry code not of length of 8 numbers).

e Balance Date analysis was performed to identify manual processing mistakes —

inconsistent Balance Dates were corrected as in the original sales ledgers.

3.2.3 Data selection process

As the purpose of this thesis is to analyse data in the survival analysis context, we needed
to define the time period of the study (time of observing). In our case the study time
is year 2015 — from the database the overdue invoices that had a due date in 2015 were

selected.

Note, that a separate database of all invoices (both overdue and not yet overdue - DATA

1) was kept to later define historical payment behaviour of the debtors.

We also eliminated data of the creditors that had provided us with only 1 sales ledger.
Data of one sales ledger would not provide us with any payment information and would

generate censored data.

After all the preprocessing and data filtering we have 28 510 overdue invoices that had a
due date in 2015.

3.2.4 Defining payment time and censoring time

The difference between maximum and minimum payment time for our final data is char-
acterized by the histogram on Figure 3.2. Note that 3 465 invoices had NA min and max

payment dates and therefore these invoices do not reflect in the histogram.
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Figure 3.2: Histogram of the difference between maximum and minimum payment time.

Since most of the observations had up to 8 days difference between maximum and min-
imum payment time (see the histogram), it was decided to define the fixed payment time
for all of those invoices that had the difference of payment times less than 8 days. The
payment time was defined as a mean of the difference. In this way the defined payment
time differs from the actual (unknown) payment time +4 days (it is the maximum dif-
ference). All the other invoices for which the difference between maximum and minimum
payment time is more than 8 days or for which the payment times are NA, we treat as
censored observations. The censoring time is the last date the invoice is known to be

unpaid.

3.3 Example data in context of survival analysis

In this section we present an example data for our analysis. Table 3.1 demonstrates how
the payment date of an invoice is derived and how the time is calculated in the context
of survival analysis. Status indicates whether an observation is censored or not (Status
1 indicates that the Time is the payment time of the invoice and Status 0 indicates that

the Time is the time of censoring).

Table 3.1: Example database of sales ledger.

Creditor | Debtor | Invoice Due Date | Balance Date | Payment Date | Time | Status
A E 1 13/01/2015 28/01/2015 31/01/2015 18 1
A B 2 13/03/2015 27/05/2015 NA 75 0
B F 3 01/02/2015 05/04/2015 NA 63 0
C G 4 25/04/2015 20/05/2015 23/05/2015 28 1
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The example data of the Table 3.1 as time-to-event data is demonstrated in the Figure

3.3. Note, that for survival analysis the time ¢t = 0 is the Due_ Date of Invoice.
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Figure 3.3: Example data in its original format (left) and in survival analysis context
(right).

3.4 Possible predictors, preprocessing of predictor

values and missing data treatment

A list of all the possible predictors is presented in the Appendix A. In this section we
present information about more complex predictors that need some further explanation.

Note that all the variables are added respectively to the due date of an invoice.

3.4.1 Initial variables available

1. Invoice data

Sum. The base sum of the invoice. The sum of the invoice is added as a predictor be-
cause some companies (especially smaller companies) that have liquidity problems, might

be able to pay smaller invoices first and larger invoices are more likely to be more overdue.

2. Tax data
Tax debt. Tax debt data is updated at the 1st and 15th date of each month. In the

database we have as predictors tax debt at the current month (taz_debt0), 1 month before
(taz_debt1m) and 2 months before (taz_debt2m). So, if the invoice has a due date at the
8th day of the month, taz_debt0 is dated from the 1st day of the month. If the due date
of the invoice is at 18th day of the month, the tax debt 0 is dated from the 15th day of
the month.

Taz paid. Tax paid is quarterly paid taxes (total sum of turnover and social tax). The
variable is added to the invoice data by due date - taxes paid by the debtor in previous

quarter before the due date of an invoice.
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For 89 invoices the tax paid was a negative sum in the database. This could be caused
by the fact that the original data from Estonian Tax and Customs Board (ETCB) is
cumulative tax paid. In case of tax corrections (which is common in accounting) the
previous period data might not be updated in the ETCB database and when calculating
the non-cumulative tax paid sums for quarters, there might be some negative sums. All

the negative sums of tax paid were treated as 0 in our analysis.

Tax qoq. The tax change quarter over quarter (this is ratio of the change in tax paid).
Infinite values were encountered as in the calculation of the ratio some Inf and -Inf values
had been generated. For the purposes of our analysis, the Inf values were replaced with
the maximum value of other Taz qoq and the -Inf values were replaced with the minimum

value of other Tax qoq.

Unsubmitted declarations. Number of unsubmitted tax declarations (cumulative
number). For the purposes of analysis this variable will be transformed into binary vari-
able: 1 — the debtor has had unsubmitted tax declarations in the past and 0 - the debtor

hasn’t had any unsubmitted tax declarations.

3. Company specific data

Business type. The business type of the company. It could be a measure of company

size different business types have different requirements on minimum equity.

Business type | Osaithing | Aktsiaselts | Other
Number of invoices 22 549 5 227 734

In the table ’Other’ consists of business types such as FIE, Mittetulundusiihing, Euroopa
Ariiihing, Riigi- ja kohaliku omavalitsuse asutus, Sihtasutus, Téisithing, Tulundusiihistu,
Usaldusiihing, Vélismaadritihingu filiaal. As discussed later, we will not use business type
as a predictor because we believe financial data from annual report reflects better the size

of a company.

EMTAK letter. EMTAK letter represents the field of activity of the debtor. For
example, it is usually considered that there are more problems with late invoices in con-
struction. A more specific table of EMTAK letters in our database is presented in the
Appendix B. We also present a possibility to classify the EMTAK letter into three groups
(refer to Appendix B). To have balanced groups, we finally combine the EMTAK letters

into two larger groups as presented in the Table 3.2.
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Table 3.2: EMTAK letters combined into two groups of Manufacturing and Service.

No. of | No. of | Percentage
Group EMTAK letters debtors | invoices | of invoices
EMTAK1
A, B,C,DEF 2 650 14 951 52%
(Manufacturing)

EMTAK2 GJ H7 17 J) K7 L7 MJ N7 OJ P7 QJ R‘) 2 981 13 559 48(7
0

(Service) S, T,U

Age. Debtor’s age in years starting from the registry time of the company to the due
date of invoice. In the database there were some invoices with a negative age of —1 which
could be caused by the rounding of difference in time. All the negative sums for age were

replaced with 0.

Claims current. Debtor’s other liabilities (in euros) at the due date of a specific invoice.

4. Annual reports and financial data

The financial information from year 2014 is gathered from the annual reports of the com-
panies (DATA 3). We added the relevant financial data to the invoice data for each debtor.

Total sales. Total sales or revenue is the amount of money that a company actually
receives for goods or services sold. Investors will often consider a company’s revenue and
net income separately to determine the health of a business. It is possible for net income
to grow while revenue remains stagnant, as a result of cost-cutting [3]. Therefore, as
income is more volatile and more of a subject to be biased by company’s management
and strategical decisions in a year, we use sales as a baseline in our model. Net income

will not be added as a predictor.

Equity. Shareholders’ equity is equal to a firm’s total assets less total liabilities and is
one of the most common financial metrics employed by analysts to determine the financial
health of a company. Shareholders’ equity represents the net value of a company, or the
amount that would be returned to shareholders if all the company’s assets were liquidated
and all its debts repaid [3]. Equity also comprises the retained earnings of a company and
therefore it represents the information of income from the beginning of the company. A
low value of equity shows that a company’s liabilities are large in comparison to its assets
(meaning that the financial health of the company is not so good), large value of equity
shows that the liabilities of company are well covered by its assets. Note that in Estonia

it is not allowed to have a negative equity.
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Total Assets. Total assets is a balance sheet item representing what a firm owns. As-
sets are bought to increase the value of a firm or benefit firm’s operations. Asset can be
thought of as something that can generate cash flow [3]. We have added total assets as a

predictor indicating the size of a company.

Current Assets. Current assets are assets that the company could convert into cash
within a year in the normal course of business. Current assets include cash, accounts
receivable, inventory, marketable securities, prepaid expenses and anything else that can

easily be turned into cash [3].

Current Liabilities. Current liabilities are a company’s debts or obligations that are
due within one year, including short term debt, accounts payable, accrued liabilities and
other debts. Normally, companies withdraw or cash current assets in order to pay their

current liabilities [3].

Some missing data of financial information occurred. There are two different reasons for

the missing data of annual reports.

Sources of missing data:

e The debtor has not submitted annual report 2014;

e Register OU has annual report data of 2014 for companies that had total sales
greater than 50 000 euros.

Solutions for treating missing data (step-by-step):

1. Missing data of 2014 was replaced with annual report data from 2013 (where pos-
sible);

2. It was checked if remained missing observations could be replaced with data from
2012 but none of the debtors with missing data occurred in the 2012 annual report

database;
3. The remaining missing data (4 554 invoices, 1 402 debtors) was treated as follows:

e Total sales - sales information is missing for companies that have total sales
less than 50 000 euros, the missing data of total sales was replaced with a mean
(25 000 euros).

e Equity - the minimum requirements of equity are established by the Ariseadustik.
There are different requirements for AS and OU, therefore the missing data
was replaced with the minimum requirement as follows (in Estonia the equity

is not allowed to be negative):
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— AS: The minimum requirement of equity is 25 000 euros ([35], §222);
— OU: The minimum requirement of equity is 2 500 euros ([35], §136);

— Other: Business type other consists multiple types of businesses and there
is no minimum equity requirement established. In this case missing data

(for 572 invoices) was replaced with 0.

e Total Assets - in the accounting the basic rule of the balance sheet is that the
Total Assets = Equity + Total liabilities. Therefore, as we have no baseline to
evaluate total liabilities, we assume the liabilities to be 0 euros. Missing data

of Total Assets is replaced with the value of equity.

e Current Assets - we have no baseline for assessing current assets, therefore

missing data is replaced with 0.

e Current Liabilities - we have no baseline for assessing current liabilities, there-

fore missing data is replaced with 0.

3.4.2 Additionally added predictors of ratios

In model fitting different methods will be tested. For example, for financial data from an-
nual reports we will try to fit total sales, current assets and equity straight into the model.
But, also as it is suggested in predictive modelling literature ([36], p. 27), using combin-
ations of predictors can sometimes be more efficient than using the individual values
(using ratios of predictors may be more effective than using two independent predictors).

Therefore, some ratios of financial data that we intend to use in modelling are introduced.

We guess that the use of ratios may be more useful for the Cox PH model than for Random
Survival Forests since the latter is a decision tree and in essence takes the interactions of
predictors into account with its multiple splits. But as ratios combine multiple variables
into one, they may be a beneficial form for random survival forests as well. This will be

tested in the experiments performed in Chapter 4.

1. Invoice data

Sum ratio. The invoice base sum depends on the debtor - we assume that companies
with a greater turnover also have larger purchasing amounts. For this reason we include
a Sum ratio that is the invoice base sum divided by the debtor’s weekly sales (total sales
divided by 52). In the calculation, 8 infinite values were created. Those infinite values

were replaced with the maximum of finite ratio values of the database.
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2. Annual report data

Asset turnover. Asset turnover ratio shows company’s sales value relative to its assets.
Turnover ratio can often be used as an indicator of the efficiency with which a company
is deploying its assets in generating revenue. Asset turnover also indicates the sector of
company - for example, retail is a sector that most often yields the highest asset turnover
ratios. Conversely, firms in sectors like utilities and telecommunications, which have large

asset bases, will have lower asset turnover [3].

Current ratio. Current ratio is a liquidity ratio and it measures company’s ability to
cover short-term obligations. Current ratio is defined as current assets divided by current
liabilities. The higher the current ratio is, the more capable the company is of paying
its obligations. Having a current ratio below 1 shows that the company is not in good
financial health and suggests that it is questionable if the company is able to pay off its
obligations. Although it is a measure on the balance sheet date of the annual report, it

still indicates company’s financial situation [3].

Infinite ratios that are generated when calculating the ratios, are replaced with the max-

imum value of finite ratios. Values of NA (indicating division of 0/0) are replaced with a 0.

3.4.3 Historical payment behaviour data as variables

Defining the predictors representing the historical payment behaviour of debtor is presen-
ted in the Appendix A. Overall we defined multiple measures that could indicate historical
payment. To be used in the analysis as predictors, we have selected three measures of his-
torical payment behaviour (all measures take into account only the invoices of the debtor

for the specific invoice under consideration):

Average days late. Average number of overdue days for paid late invoices in the time

period of 30 days before due date of the invoice to the due date of invoice.

Ratio of OS late. Defined as ’Sum of late invoices base sums outstanding (OS)’ relative
to ’Sum of all invoices base sums outstanding (OS)’ at the date of 30 days before due

date of specific invoice.

Ratio of paid late. Defined as 'Sum of late invoice base sums that were paid in the
time period of 30 days before due date of the invoice to the due date of invoice’ relative
to ’Sum of all invoice base sums that were paid in the time period of 30 days before due

date of the invoice to the due date of invoice’.
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Note, that we have defined those predictors for 30 days before due date on an invoice. It
would be of interest to define additional measures for longer time periods as well to see if

the accuracy of model is improved. In the context of this thesis it is out of scope.

We used 30 days of historical data as previous payment behaviour definition because it

should be representative of debtor’s current financial situation.

3.5 Initial data analysis

In this section we first illustrate our data — the payment behaviour in general and in

groups.

3.5.1 Descriptive analysis

The overdue days of invoices are shown in the Figure 3.4. The density functions are
plotted separately for invoices with defined payment times (time to payment) and for
censored observations (time to censoring - last date when the invoice is known to be
unpaid) separately. The plot is cut at 120 days as there where few observations beyond
120 days (see Table 3.3).
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Figure 3.4: The density functions of payment and censoring times for overdue invoices

It can be seen from the Figure 3.4 that the censored and uncensored invoices have ap-
proximately the same density. As the proportion of censored and uncensored invoices is

difficult to see in the graph, we will later illustrate the comparison in a table.
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The Kaplan-Meier survival curves of the invoice data are in the Figure 3.5. As could
be seen from the Figure 3.4, there is little invoice data after 90 days, therefore we have

plotted the Kaplan-Meier survival curves up to 90 days.
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Figure 3.5: Kaplan-Meier survival curves of all overdue invoice data (left) and for non-

censored data (right).

We can again see from the Figure 3.5 that leaving out the censored data (the data we
have no or insufficient information about payment time) would result in underestimating
the time to payment. It can be seen from the graph that when taking censoring into
account, the median payment time of all invoices is more than 15 days. If we would
discard the censored invoices, the median payment time would be less than 15 days. And
the proportion of unpaid invoices at 90 days is significantly higher when taking censored
observations into account. That is the fundamental reason why censored times need to

be added in our analysis.

We have classified the overdue days of invoices into traditional groups of overdue days
of invoices (also referred to as overdue classes of invoices). The grouping of invoices by
overdue days is usual when doing impairments on claims and in the process of cash flow
predictions. See Table 3.3 to see number of different creditors and debtors per overdue

classes of invoices.
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Table 3.3: Table of overdue payment and censoring times of invoices that had a due
date in 2015.

Time in days 1-7| 815|16-30 | 31-60 | 61-90 | 91-120 | 121—...
# of paid invoices 3303 6393 | 3394 | 1647 470 187 222
# of censored invoices | 4 288 | 2957 | 2498 | 1621 547 341 642
# of all invoices 759119350 | 5892 | 3268 | 1017 528 864
# of Creditors 53 64 73 74 65 59 54
# of Debtors 2494 | 3034 | 2344 | 1358 529 280 351

It follows from the Table 3.3 that most of the observed times for invoices are censored after
60 days (in total 1 530 invoices, which is 64% of all invoices). In the first overdue class
of 1-7 days, a large proportion (56%) of censored invoices is caused by loss to follow-up

and termination of the study (refer to Section 2.1.1).

3.5.2 Kaplan-Meier curves for debtor payment behaviour ana-
lysis

In the following we represent some analysis of debtors with the use of Kaplan-Meier
curves. We group the debtors to our best knowledge just to see if there are some different
payment behaviour indicators for some predictors and to see if our hypothesis about the

payment behaviour of debtors is in correspondence with the data.

To see if the payment behaviour of the debtors differs in age groups, the age (in years)
of the debtor company was classified into three groups: 0-2, 3-7 and more than 8 years.
Note, that as roughly half of the data is censored, we have not depicted censoring times

in the graphs for readability reasons. The dashed lines represent confidence intervals.

As it follows from Figure 3.6, the Kaplan-Meier survival curves do indicate a difference

but it can also be seen that the curves cross after 240 days.
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Figure 3.6: Debtors’ payment behaviour by age groups (with confidence intervals).

Submission of last annual report (year 2014) indicates a huge difference in payment be-
haviour. The Figure 3.7 shows that the invoices of debtors that have not submitted the
annual report of 2014, take longer time to pay for the invoices (half of the debtors have
paid for the invoice 30 days after the due date). The invoices of the debtors that have
submitted last annual report, are paid in less time (half of the debtors have paid for the
invoice 15 days after the due date). We can also see that in day 100 the proportion of

unpaid invoices is twice bigger for the debtors that have not submitted the annual report.
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Figure 3.7: Debtors’ payment behaviour by submitting annual report of 2014.

We also hypothesized that the business type could indicate a difference in payment beha-
viour as a measure of company size (due to the minimum requirements set for the equity).
The Figure 3.8 does not show that there might be such a relationship between the business
type and payment behaviour. We can see that the Kaplan-Meier curves overlap indicat-

ing that there isn’t a significant difference between the groups. We also have financial
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information of debtors and hence the business type of a company becomes unnecessary.
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Figure 3.8: Debtors’ payment behaviour by business type.

EMTAK letter represents the field of activity of the company. The Figure 3.9 shows that
the grouping of EMTAK letters into two groups as described in Appendix B does indicate
some difference in the payment behaviour. In can be seen from the graph that debtors
classified as service (by EMTAK letter) tend to pay for the late invoices sooner (median

around 10 days) than the debtors classified as manufacturing (median around 25 days).
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Figure 3.9: Debtors’ payment behaviour by EMTAK letter group (see also Appendix
B).
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4 Models, Experimental Results and Analysis

In this chapter we present the experimental results of fitting two models — for first-time
debtors and repeated debtors. We hypothesize that adding historical payment behaviour
of debtors as predictors would improve the predictive accuracy of the model and allow us

to reduce the number of other predictors.

4.1 Models without historical payment information

Model that uses the overall and external (publicly available) information about the debtor
(invoice, company measures, financial data and ratios — see Appendix A and Appendix
C.1) is applied to explain the payment time of a first-time debtor (a debtor for which no

historical payment behaviour is available).

In Table 4.1 our train and test data is described. We acknowledge that a random selec-
tion of train and test sets may result in using future information in the training phase of
model building. That appears due to the fact that one debtor may have multiple invoices
in one month and with random selection there might be one invoice in the training set
and second in the test set. Thus, the variables describing the debtor would mostly be the

same in training and test sets.

On the other hand, if we select the training and test sets according to time sequence (by
due date), the C-index calculation for the test set may be penalized. In Table 4.1 divi-
sion by time means that train set contains all invoices with a due date before 1.11.2015
and test set contains all invoices with a due date after 1.11.2015 (included). Due to the
construction of the study all invoices are censored at 31.12.2015, the latest. Therefore,
division by time results in C-index penalization: in the test set it is more difficult to
rank the payment times correctly (the maximum time of payment is 60 days) than in the

training set (the maximum time of payment is 365 days).

Random division into training and test sets was performed with no restrictions. We ran-
domly allocate 80% of invoices to train set and 20% of to test set. To be able to compare
models, we use the same training and test sets in all of our experiments (applies to both,

Cox PH model and Random Survival Forests).

For these reasons described we experiment with two different division types as shown in

Table 4.1. It can be seen that in both cases the train and tests set are similarly balanced.
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Table 4.1: Division into train and test sets randomly and taking time into account.

Random division Divison by time
Train Test Total Train Test Total
No. of invoices with payment time 12532 | 3084 | 15616 | 12575 | 3041 | 15 616
No. of invoices with censored time 10276 | 2618 | 12 894 9997 | 2897 | 12 894
Total 22 808 | 5 702 | 28 510 | 22 572 | 5 938 | 28 510

4.1.1 Cox Proportional Hazards model

Cox PH model was fit to the data using Akaike criterion rule for selecting variables (mixed
selection method). Concordance index was used to evaluate how well the model performs
when ranking the payment times. Error (rate) shown in model comparison tables is

1—Concordance (in percentages).

Experiments

We experiment with three different sets of predictors in a full model to evaluate the
importance of different types of predictors (e.g. the effect of financial data from annual
reports). In Table 4.2 we present the final results of fitting Cox PH model using mixed
selection with AIC rule.

Table 4.2: Comparison of models with three different sets of predictors ('#of pred’ shows
the number of predictors in the full model, 'Pred’ shown the number of predictors in the
final model).

# of Random division Division by time
Model

pred. Pred Error Error Pred Error Error

(train) (test) (train) (test)

M1: Invoice +
Company measures + 16 14 35.53% 35.33% 15 35.35% 40.85%
Fin data 4+ Ratios
M2: Invoice +
Company measures + 13 11 35.55% 35.35% 13 35.34% 40.73%
Fin data
M3: Company 12 10 | 35.63% | 35.51% | 11| 35.51% | 40.98%
measures + Ratios

We can see that giving different sets of predictors has little effect on the ranking ability of
model: the change in error rate between models is 0.26% the most. From the table it also

follows as stated earlier, the division of train and test sets by time sequence may penalize
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Concordance index calculation as the test set error is significantly larger than for random
selection. At the same time, it is difficult to guess how big is the effect of penalization
for division by time sequence and what is the effect of providing future information in the

training phase when using random division.

The ranking ability of payment times is around 65% for all models using random divi-
sion of train and test set and 59-65% for models using division by time. Recall that if
the error rate is 50%, the model is no better than a coin toss. Hence, these models have

some predictability but we conclude that the ranking ability of the model is not very good.

We would actually prefer the model with less predictors (model M3) as there is not a
significant change in error rate between the three models. However, in this section we will
analyze the model with all predictors (model M1) in more depth to have an overview of
all the predictors. In all model interpretations and performance assessments we use the

training and test set division by time sequence.

Model interpretation

When testing the proportional hazards assumption for model M1, the PH assumption is
fails for 9 variables (see Appendix C.2.1, p-value < 0.05). However, the p-values for some
variables are not very below 0.05 (e.g. for the age of debtor). Also, when plotting the
Schoenfeld residuals, we do not notice a violation (see Figure 4.1 with residuals for the

variable Sum).
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|
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Oe+00
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Figure 4.1: Schoenfeld residuals for the variable Sum.
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In the plots of Schoenfeld residuals a non-zero slope is evidence against proportionality.
A smoothing spline is shown on graph by a solid line. Systematic departures from a hori-
zontal line are indicative of non-proportional hazards. Visual evaluation of all the graphs
of predictors does not capture a significant violation which also may be caused by the
wide limits of values. However, note that even ’significant’ nonproportionality may make
no difference to the interpretation, particularly for large sample sizes ([37], pp. 127-145),

therefore we will continue to further explore the Cox PH model.

When analyzing variables in the model M1, the only variable that was dropped from the

full set, was ratio of invoice sum (see Appendix C.2.1).

In this model M1, for example invoices with an EMTAK group EMTAK2 (Service) have
66% increased rate of payment when compared to group EMTAK1 (Manufacturing) under
the assumption that all the other variables do not change. Invoices of debtors that have
not submitted tax declarations have 52% (1/0.66=1.52) decreased rate of payment when

compared to invoices of debtors that have no unsubmitted tax declarations (see Appendix
C.2.1).

In conclusion, from Table 4.2 it follows that using only Company measures + Ratios as
predictors (model M3) approximately results in the same performance as a full model
M1 where financial information and invoice sum is added. In practice we would prefer a

model with less predictors (a more robust model), i.e. model M3.

4.1.2 Random Survival Forests (RSF)

To begin with Random Survival Forests, we need to decide on the number of trees to grow
when training the model. Therefore we firstly fitted all predictors from the data to the
train set and averaged over 1 000 trees. The error rate corresponding to the number of
trees fit is shown in the Figure 4.2. It follows that there is not a significant change in the
error rate (1-Concordance) after 250 trees is grown. Therefore, in our analysis we grow

250 trees in each experiment.
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Figure 4.2: Out-of-bag error rate change respective to the number of trees grown.

When using random survival forests method it is advised to experiment with different
node sizes [31]. Choosing the correct node size is important because it also reflects how
many times a variable is used in the model. Recall that the terminal node size is defined
as number of paid invoices. Alltogether we have 15 616 paid invoices (12 532 in train and
3 084 in the test set).

Table 4.3: Experiments with different terminal node sizes using all (16) predictors (model

M1, random division of train and test set).

Minimum terminal

rode size 3 10 30 50 100 200 1000
Average number of 6015| 2531 | 1007 623 315 162 29
terminal nodes

Error (OOB) 28.11% | 27.34% | 27.12% | 27.24% | 28.08% | 29.15% | 32.43%
Error (test) 28.50% | 27.49% | 27.19% | 27.24% | 27.92% | 28.78% | 31.67%

It can be seen from the Table 4.3 that using a too small terminal node size may result
in underfitting (OOB error can be decreased with bigger node size) and setting terminal
node size too large may result in overfitting (OOB error starts to increase). As we have
a separate validation set (test set), we will choose 50 as the terminal node size because
the OOB and test error are the same with this node size. In fact, the OOB and test set

errors are quite equal here which is caused by the nature of forming OOB and test sets.
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Experiments
As before we experimented with different sets of predictors when fitting Cox model, we

do the same when fitting RSF models.

Table 4.4: Comparison of models with different sets of predictors (terminal node size

was set to 50 unique payments, 250 trees were grown).

Model Number of Random division | Division by time

ode predictors Error Error Error Error
(train) (test) (train) (test)

M1: Invoice + Company

measures + Fin data + 16 27.46% 27.58% 26.51% 36.46%

Ratios

M2: Invoice + Company 13 27.81% | 28.08% | 26.88% | 36.64%

measures + Fin data

gﬁog"mpany measures + 12 28.07% | 28.22% | 27.04% | 37.09%

It can be seen from the Table 4.4 that error rate is the smallest when all possible predict-
ors are fit into the model. However, when reducing the set of predictors to only Company
measures and Ratios that we defined (model M3), the error increases only 0.60% roughly.
We will look at the variable importance (VIMP) of the model M1 with 16 predictors and
model M3 with 12 predictors in more depth to see which variables have the most effect (in

all comparisons we view the models with training and test sets division by time sequence).

Best model

In the Figure 4.3 it can be seen that the predictors that most affect the error rate are
EMTAK (classification into two: Service and Manufacturing) and submission of annual
report in both models. When the financial data is added as predictors (sales, equity and
current assets), they have a higher VIMP than ratios. This may be explained by the fact
that random forests itself manages to account for interactions of different predictors due
to its decision tree origin. In addition, as emphasized in Section 2.3.2, when variables are
correlated, removing one variable and regrowing the forest may affect the VIMP for the

other variable.

To illustrate this with an example, we can see from Figure 4.3 that when we removed
financial data, the VIMP for current ratio (CR) in model M3 increased and is larger than
the VIMP for current claims (claim_ current). For comparison, in model M1 the VIMP
for current ratio is smaller than the VIMP for current claims. To evaluate the importance

of financial data and ratios we may compare the error rates of the models. We can see
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that the error rates for these three models to not change in a large scale. Hence, the ad-

ditional predictors add some accuracy to the model but the difference in error rate is small.

No predictors have a negative effect on error rate (a negative VIMP would indicate that
the predictive accuracy of the model would be improved when the predictor was removed).
Note, that we have also fitted all three predictors of tax debt into the model because RSF
might be able to capture the interaction of multiple past events, e.g. a debtor that had
tax debts all three past months might take longer time to pay debts than a debtor that

had no tax debts for past two months.
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Figure 4.3: VIMP for model M1 with all predictors (left) and for model M3 with

Company measures and Ratios as predictors (right).

4.1.3 Comparison of Cox and RSF models

If we compare the error rates of Cox model and RSF (Random Survival Forests) models,
then in all cases the RSF model has smaller error rates than Cox model. However, we
acknowledge that unfortunately the C-indexes used to calculate the error rates for Cox
and RSF models are not directly comparable. To be more precise, the Cox model uses the
predicted survival probability at the actual event time, whereas the RSF uses functions
(2.15) described in Section 2.3.1. The same comparison method of C-index that uses

different predicted outcome for each method, was presented in [27].

In addition, we point out that Cox model may improve if the continuous variables were
transformed (e.g. log transformations or standardizing variables). In this thesis however,

the main focus is to find automatized procedures without intensive human interference
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and division into groups or transformation of continuous variables is not performed.

The fact that Random Survival Forests has no underlying assumptions that need to be

fulfilled, is also an advantage over the Cox model.

We conclude that the Random Survival Forests has the best predictive accuracy with all
predictors fit into the model. The error rate for training set is 27% and 36% for test set. It
is said ([33], survConcordance) that the common result for survival analysis concordance
is 60-70%, equivalent to 30-40% error rate. We can conclude that the model M1 provides

an acceptable predictive ability of ranking payment times.

4.2 Models with historical payment information

As the payment time of an invoice is a small time period and it depends on the current
situation of the debtor, it is desired to have current and up-to-date information about the
financial capability of debtor. Therefore, we define some predictors that would indicate
the most recent payment behaviour (more precisely predictors for debtors at the invoice

due date that would indicate problems of meeting its liabilities).

Model that uses historical payment behaviour of the debtor in addition to predictors used
in Section 4.1 will be applied to data of debtors for which we have payment behaviour
data from 1 month before the due date of an invoice. After defining historical variables
(see Appendix A), we have a database of 16 181 invoices. The divisions into train and

test sets are shown in the Table 4.5.

Table 4.5: Division into train and test sets randomly and taking time into account.

Random division Division by time

Train Test Total Train Test Total

No. of invoices with payment time 7789 1945 | 9734 7492 | 1719 9211

No. of invoices with censored time 5155 | 1292 6 447 4456 | 1653 6 109

Total 12 944 | 3 237 | 16 181 | 11 948 | 3 372 | 16 181

As in Section 4.1, we again fit the models using different sets of predictors in a full model
to see the effect and importance of different types of variables. To compare if adding
historical data improves the models, we also fit models without predictors of "History’ to
this data of 16 181 invoices (compared to Section 4.1 the number of invoices is reduced

now).
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4.2.1 Cox Proportional Hazards model

Again the Cox PH model was fit using Akaike criterion rule (mixed selection method)

but now for the model with historical data.

Experiments

We experimented with different sets of predictors and the results are shown in Table

4.6. Adding historical data as predictors into the model reduces the error by 2% in all

variations of predictors. Even the model M9 with only Company Measures and History

has a smaller error than the model with all predictors without "History’ (model M1).

Table 4.6: Comparison of models with different sets of predictors ("#of pred’ shows the

number of predictors in the full model, "Pred’ in the final model).

# of Random division Division by time
Model ; :

pred. Pred C-index | C-index Pred Error Error

" | (train) (test) " | (train) (test)

M1: Invoice +
Company measures + 16 13 34.80% 34.99% 13 34.14% 38.44%
Fin data + Ratios
M2: Invoice +
Company measures + 13 11 34.92% 34.93% 12 34.21% 38.33%
Fin data
M3: Company 12 9| 35.00% | 35.21% 8| 34.40% | 38.73%
measures + Ratios
M4: Invoice +
Company measures +
Fin data + Ratios + 19 17 32.02% 32.65% 15 32.05% 36.38%
History
M5: Invoice +
Company measures + 16 15 32.14% 32.62% 12 32.10% 36.72%
Fin data 4 History
M6: Company
measures + Ratios + 15 12 32.22% 32.65% 10 32.24% 36.57%
History
MT7: Invoice +
Company measures + 16 13 32.14% 32.78% 12 32.17% 36.49%
Ratios + History
MS8: Invoice +
Company measures -+ 13 12 | 32.25% | 32.76% 10 | 32.19% | 36.72%
History
M9: Company 12 10 | 32.31% | 32.68% 9| 32.25% | 36.70%

measures + History
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Other variations of predictors did not have such an effect on error rate — adding and re-
moving other types of predictors reduced or increased the error by less than 0.5%. When
in Section 4.1 we analyzed the model with all predictors and smallest error rate, then in
this section we will view the model that has less predictors but a competitive error rate

when compared to other models.

Model interpretation

Although some models in Table 4.6 had a smaller error rate, model M9 uses less variables
and the error rate is not significantly different from other models also using historical pay-
ment behaviour as predictors. And therefore in practice we would prefer a more robust

model that uses less predictors.

The output of the model M9 is added in the Appendix C.2.2. The variables in the model
are submission of tax declarations, tax debt 1 month ago, EMTAK letter, submission of
2014 annual report, other claims for the debtor currently, age (in years), average days of
late invoices in the previous month, ratio of paid late invoice sums 1 month ago, ratio of
outstanding late invoices 1 month ago. All these variables seem reasonable for modelling

payment times of a debtor.

When analyzing the historical data predictors, we can see that increase of one overdue
day of paid late invoices in the previous month will result in the decrease of payment rate
3% (1/0.97=1.03) under the assumption that all the other variables do not change. One
unit increase in the ratio of paid late invoice sums in the previous month results in 86%

increase of payment rate.

The proportional hazard assumption is again violated (see Appendix C.2.2) for 5 variables
(p-value < 0.05). As before, when plotting Schoenfeld residuals, visual assessment does
not capture a major violation for those variables. Even though we pointed out in Section
4.1.1 that a violation of proportional hazards may make no difference for large sample
sizes, it is still one of the reasons why Random Survival Forests that has no assumptions

to be taken into consideration may prove to be a preferred method.

4.2.2 Random Survival Forests (RSF)

As in Section 4.1.2, we experiment with different input variables to see the effect of
variables. In addition, we perform experiments with historical behaviour variables to see

if these predictors compensate the need of some types of predictors.
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Experiments

We use the same sets of predictors as for the Cox model in Section 4.2.1. The results of
RSF error rates for different model types are presented in Table 4.7. Similarly to Cox
models in Section 4.2.1 it can be seen that model M9 is comparable to M1 in terms of
error rates. This means that a model using less predictors with "History’, has approxi-

mately the same accuracy in ranking payment times like a full model without 'History’.

Table 4.7: Comparison of models with different sets of predictors (terminal node size

was set to 50 unique payments, 250 trees were grown).

Model Number of | Random Division | Division by time
ocde predictors Error Error Error Error
(train) (test) (train) (test)
M1: Invoice + Company
measures + Fin data + 16 28.14% 28.15% 26.92% 35.05%
Ratios
M2: Invoice + Company 13 98.41% | 28.48% | 27.39% | 35.46%
measures + Fin data
M3: Company measures + 12 28.68% | 28.60% | 27.54% | 35.89%
Ratios
Ma4: Invoice + Company
measures + Fin data + 19 26.34% 26.72% 25.06% 33.07%
Ratios + History
M5: Invoice + Company
measures + Fin data + 16 26.58% 27.04% 25.40% 33.32%
History
M6: Company measures + 15 26.85% | 26.99% | 25.39% | 33.35%
Ratios + History
MT7: Invoice + Company
1 26. 27. 25. .24
measures + Ratios + History 6 6.70% 7.03% 5.37% 33.24%
M8: Invoice + Company 13 28.03% | 28.19% | 26.71% | 34.19%
measures + History
M9: Company measures + 12 28.08% | 28.43% | 26.79% | 34.79%
History

We can overall conclude that similarly to experiments with Cox model in Section 4.2.1, it
follows from the Table 4.7 that adding historical payment behaviour data of debtors into

the model improves model accuracy in all variations of predictors.
When comparing the models we can see that a full model M4 has the best performance

for both train and test sets division types. As pointed out in 4.1.1, in model comparisons

we use the division into train and test sets by time sequence.
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Best model

We compare the variable importance of the full model without historical data (model
M1) and the full model with historical data (model M4) in Figure 4.4. We can see that
the predictors reflecting historical payment behaviour have a large variable importance,

especially average overdue days of paid late invoices in the previous month.
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Figure 4.4: Comparison of VIMP for RSF model M1 (left) and for RSF model M4
(right).

The same applies here as described in Section 4.1.2 — when we remove some variables,
the VIMP for other variables may change. Thus, to assess the actual effect of predictors
we can view the error rates in Table 4.7 for different sets of predictors. For example, to
see the effect of ratios and financial data, compare models M5 and M7. We can see that
the error rates are approximately the same which indicates that both variables have the

similar impact to the performance of model.

4.2.3 Comparison of Cox and RSF models

When comparing the Cox and RSF, it follows that Random Survival Forests models have
smaller error rate in all cases of predictor sets. However, as pointed out in Section 4.1.3,
the C-indexes (and therefore error rates) of Cox and RSF models are not directly com-
parable. We can also see that adding historical data as predictors improved both models:

Cox and RSF error rates were reduced roughly by 2%.

29



When compared to Cox PH model, the Random Survival Forests has multiple advantages:
it has no underlying assumptions and since it makes splits on each node, there is no need

for transformation of variables (e.g. log transformation or standardization of variables).

To summarize, we can conclude that for our data Random Survival Forests performed
better in ranking payment times and is a preferred model since it has no underlying
assumptions. When historical data is available for debtors, using previous payment be-

haviour as predictors improves the model accuracy of ranking payment times correctly.

4.3 Conclusions and applications in practice

In this section we present some examples of the results. We will restrict our examples to

using only the Random Survival Forests model with historical data (model M4).

Let us compare three examples of invoices in the test set, see Figure 4.5. On the graphs
we have presented the predicted (RSF model M4) survival curves for the corresponding

invoices.

We can see that the invoice that was paid in less time (Invoice 1) has a steeper survival
curve, going to zero faster. In contrast, invoice for which we know it hasn’t been paid for
at the 51st overdue day (Invoice 3), has a slowly sloping (downwards) survival curve. In-
voices that are similar to Invoice 3 in their predictor variables, have probability of ~ 37%
at the 60th overdue day to be unpaid. If we compare the median payment times to be
then Invoice 1 has a median of 9 days, Invoice 2 has 23 days and Invoice 3 has 31 days.
Median represents the overdue day by which the probability is 0.5 that the invoice with
similar predictors has not been paid for (and 0.5 that it has have been paid for) and we

can see that the median days also indicate the steepness of the survival curve.

In this example we can conclude that the ranking of invoices is appropriate and the sur-
vival curves are representative of the actual payment (or censor) times. Note, that the

steepness of a survival curve also represents the payment rate due to the relation (2.5).

All the debtors of these three invoices are from the Manufacturing classification of EM-
TAK letter. The annual report of 2014 was submitted for Invoice 1 and 2, but not for
invoice 3. According to the VIMP (Figure 4.4), paid average late days in previous month
has a high importance in the model. For Invoice 1 the average was 0 days, for Invoice 2,

it was 11 days and for Invoice 3 it was 39 days.
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Figure 4.5: Comparison of predicted survival curves for three different invoices in test
data (division by time). Invoice 1 has actual payment time of 9 days and Invoice 2 of 36

days after due date, Invoice 3 has censoring time of 51 days.

For the credit management firm it is of interest what is the probability that a late invoice
is paid before a certain time. We illustrate the effects of predictor values to the probab-
ility of payment with an example. We choose a number of predictors (mostly based on
VIMP shown in Table 4.4 for model M4). Other variables are fixed by the median values
presented in Appendix A. Time period of interest in this case is 2 weeks (14 days). In
the Table 4.8 we present the probability that a late invoice is paid before 14 overdue days

A

(the probability is equal to 1 — S(14)).

Note that in the table we have fixed the initial values of predictors (Invl) with median
values (see Appendix A). For other invoices we have changed the variables one-by-one.
As a reminder, EMTAK value 2 is Service sector and EMTAK value 1 is Manufacturing
sector. Yes value for annual report (2014) submitting means that the report was submit-

ted and No means the contrary. Other predictor values are continuous.
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Table 4.8: Example of predicted probabilities that a late invoice is paid before 14 overdue

days, conditional on predictor values.

Invl | Inv2 | Inv3 | Inv4 | Invb | Inv6 | Inv7 | Inv8 | Inv9 Inv10
paid_late_
avglm 4 50 4 50 4 4 4 4 4 4
(days)
EMTAK 2 2 1 1 2 1 2 1 2 2
last - Yes Yes Yes Yes No No No No Yes Yes
anreport
age (in 11 11 11 11 11 11 1 30 11 11
years)
equity (in 89 89 89 89 89 89 89 89 | 1 000 89
thousands)
tax—debt0 0 0 0 0 0 0 0 0 0 | 100 000
(in euros)
Prob. of
payment 0.89 | 025 | 050 | 025| 050 | 043 | 0.58| 051 | 0.84 0.78
(1-S(14))

We can see that for a median invoice (Invl) where the debtor is from Service and the
last annual report was submitted, the probability that the invoice is paid before 14 days,
is 89%. Considering the overall distribution of payment times (refer to Figure 3.4), this

seems plausible as the majority of invoices are paid before 15 days.

For invoice Inv2 the average days of paid late invoices in the previous month is set to 50
days. We can see that the previous payment behaviour has a huge effect — the probability
of payment before 14 days is only 25% for this invoice. It can also be seen that changing
the EMTAK classification has a huge effect (compare Invl and Inv3). But if we compare
Inv2 and Inv4, the EMTAK classification has no effect, which indicates that the previous
payment behaviour affects the probability more than EMTAK classification.

The effect of not submitting last annual report can be seen from Invb and Inv6. For
Service sector the probability of payment decreased by 39% (compare Invl and Inv5), for
Manufacturing sector the probability of payment decreased from 50% to 43% (compare
Inv3 and Inv6). Age was changed for different EMTAK classifications and interestingly
both — decreasing age and increasing age — resulted in increased probability of payment

(compare Inv5 and Inv7; Inv6 and Inv8 correspondingly).
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Setting equity to 1 million resulted in a small decrease of probability of payment (com-
pare Invl and Inv9). It may seem odd at first sight but actually it may be caused by the
fact that larger entities have specific times for payments and do not keep an eye on the
exact due dates. Setting tax debt to 100 000 euros, decreased the probability of payment
by 11% (compare Invl and Inv10) which is in correspondence with our hypothesis that
companies with tax debt have a decreased payment probability.

In the Figure 4.6 we present the survival curves for 5 selected invoices. We can see that
the predicted survival curve for the invoice with increased equity (Inv9) is similar to in-
voice Inv1l. Invoices Inv3 and Inv8 (both from Manufacturing sector) are similar, invoice
Inv8 has decreased probability of payment after 20 days when compared to invoice Inv3.
That is because the debtor of invoice Inv8 has not submitted last annual report. Inv4 has
the worst predicted payment probability compared to other 4 invoices due to the large

overdue days of previous paid late invoices.
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Figure 4.6: Survival curves for invoices Inv1l, Inv2, Inv3, Inv8 and Inv9 from Table 4.8.

Finally, to have an intuitive comparison with the credit management firm’s expert (manual)
decisions and our predicted payment probabilities, we present box plots in the Figure 4.7.
The credit management firm gives advice to the creditor whether to grant some extra
credit (make additional sales) to the debtor or not. The advice is given in three categor-
ies: Yes, No or Wait.
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These 4 box plots in the Figure 4.7 represent the predicted probabilities in the test set
(November and December 2015) that the invoice is paid before 14, 30, 45 and 60 days
correspondingly. We can see that for the majority of Yes decisions done by the experts,
our predicted payment probability is much higher at all time points than for the No de-
cisions. The predicted probabilities for the majority of Wait decisions is overlaying Yes
and No decisions as expected. These box plots support the appropriateness of the times
ranking ability of our model (RSF model M4).
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Figure 4.7: Predicted probabilities of payment (on the vertical axis) before 14 days
(upper left), 30 days (upper right), 45 days (lower left) and 60 days (lower right) compared
to the credit advice given by the credit management firm. The probabilities are predicted
on test set (division by time) and the credit advice of the debtor is correspondingly taken

from the period of November or December 2015.
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Conclusions and Future Work

Predicting failure of companies and loan defaults has been a well-researched area in the
past and it has a wide range of use in the financial sector. However, usually traditional
methods that were developed in the past are applied and the models mostly based on
annual reports of the companies which give multiple restrictions and are not up to date

to reflect current situation of companies.

This thesis focused on invoice-to-cash process in business-to-business sales, more precisely
modelling the payment behaviour of debtors with late invoices. Survival analysis that in
recent years has been found to be a suitable method when predicting loan defaults was
applied. Earlier research has also shown that the performance of survival analysis is com-
petitive with logistic regression in credit scoring. In addition, survival analysis allows
us to analyze right-censored data and was therefore a preferred method in this thesis.
Cox Proportional Hazards model that is traditionally used with using survival analysis to
model time-to-event data was compared to a recent and novel method of Random Survival

Forests.

To use more up-to-date information in modelling the payment behaviour of debtors,
monthly updated information of tax debts and changes in tax payments was used. It
followed from the experiments that adding tax debt information into the models resulted
in a more accurate model. Moreover, we experimented with the use of historical payment
behaviour of debtors as predictors. It followed that historical information of even only 1
month back improved the models such that it allowed us to remove information of finan-

cial data without sacrificing the accuracy of the model.

Application of the recently developed ensemble method, Random Survival Forests, proved
to be successful in ranking the payment times of late invoices. The main advantages of
Random Survival Forests are that it has no underlying restrictions or assumptions for the
data, it automatically manages to account for interactions of different predictors without

much interference of the end-user.

The models presented in this thesis were the first experiments to explore methods and
possibilities of partially automatizing the process of decision making in a credit manage-
ment firm. We introduced a possibility to apply two models — one for first-time debtors
and one for debtors that already have historical payment behaviour information available

for the credit management firm.
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To summarize, in this thesis we managed to use an alternative database from accounting
systems, to derive approximate payment times of invoices and to build a model to rank
those events. In conclusion two models that could be used in practice to evaluate the
payment probability of a debtor were proposed. First model uses only external public
information and is therefore applicable for all debtors to give initial evaluations, second
model uses additionally previous payment history and is applicable for repeated debtors

to give more precise evaluations.

Future work. As the data available for analysis in this thesis comprised of one year, it
would be of interest to implement the results in 2016 to review the performance of models
proposed. With the increase of the credit management firm’s clients (in terms of creditors
providing information about debtors), applying the models in 2016 could result in better
performance as there might be more historical information available for the debtors. In
this thesis we restricted the predictors of historical payment behaviour data to 1 month
and 3 variables. It would be of interest to define some more variables to explore if the

models could be improved.
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A Predictors

A.1 Invoice data

Predictor

Description

Class

Values

Sum

Base sum of the invoice

Continuous

Min: 0 | Max: 390 105
Median: 154 | Mean: 1 005

A.2 Company measures

The following data of company measures and information about tax debt and paid taxes.

Register OU database

B)

Predictor Description Class Values
Submission of 2014 annual
report - if the debtor has Yes / No
last_anreport submitted the 2014 report or Factor .
not at the due date of the (15 038 / 13 472)
invoice
. All other current claims for the . Min: -96 805 | Max: 930 713
claim_ current Continuous
company Median: 0 | Mean: 778
Ace of th . Positive Min: 0 | Max: 78
age e of the company in years
& & pany ¥ Integer Median: 11 | Mean: 12
EMTAK of the company (see Appendix Factor /

(15 096 / 13 414)

Data originating from Estonian Tax and Customs Board database

Predictor Description Class Values
Unsubscribed declars (modified)
— dummy variable if the debtor Yes / No
unsubdeclars . Factor
has had unsubmitted tax (1 120 / 27 390)
declarations
Min: 0 | Max: 1 228 728
tax_debt0 Tax debt current month Continuous 1n' | Max
Median: 0 | Mean: 2 903
Min: 0 | Max: 1 228 728
tax_debtlm Tax debt 1 month ago Continuous 1n. | Max
Median: 0 | Mean: 2 814
Min: 0 | Max: 1 228 728
tax_debt2m Tax debt 2 months ago Continuous 1n. | Max
Median: 0 | Mean: 2 599
Tax paid change ratio over tax . Min: -3 000 | Max: 3 000
tax_qoq . . Continuous )
paid in previous quarter Median: 0 | Mean: 313
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A.3 Financial data

Predictor Description Class Values
) Total sales. Yearly sales of the Contintous Min: 0 | Max: 1.4e+09
sales debtor (2014) Med: 5.8e+05 | Mean: 6.3e+06
Current assets in the balance . Min: 0 | Max: 1.2e+09
current_assets Continuous
sheet (2014) Med: 1.5¢405 | Mean: 2.1e406
Total assets in the balance sheet . Min: 0 | Max: 1.5e4-09
total_assets Continuous
(2014) Med: 2.7e+05 | Mean: 5.2e+06
shortterm_ Short-term liabilities (also . . Min: 0 | Max: 6.1+€08
liabilit; referred to as current assets) in | Continuous
iabilities the balance sheet (2014) Med: 1.1e405 | Mean: 1.8e+06
. Equity in the balance sheet . Min: -7.5e4-06 | Max: 1.5e4-09
equity Continuous

(2014)

Med: 8.9e+04 | Mean: 2.3e+06

A.4 Ratios

Additional ratio variables were introduced to test if ratios provide more information than

annual information.

/ Current liabilities

Predictor Description Class Values
Sum / (Total sales / 52).
- Invoice base sum ratio over . Min: 0 | Max: 350
ratioSum weekly turnover (weekly Continuous )
turnover = 201/ total sales / Median: 0.02 | Mean: 0.33
52)
Min: 0 | Max: 74
asset_turnover | Total assets / Total sales Continuous . in: 0| Max
Median: 2.55 | Mean: 5.10
io = Min: Max: 41
CR Current ratio = Current assets Continuous in: 0 | Max: 417

Median: 1.07 | Mean: 3.88

A.5 Historical payment behaviour data

Historical payment behaviour data was introduced to test if it would result in a more ac-

curate model. Historical information is available only for 16 181 invoices (see Section 4.2).
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Predictor Description Class Values
Ratio paid late(sum). Invoice sums paid late _

ratio_sum_ | divided by all invoices paid within 30 days Continuous Min: 0 | Max: 1

paid_latelm | before due date of the invoice under Med: 0.72 | Mean: 0.76
observation
Ratio OS late (sum). Invoice sums that were

ratio_sum_ | late at 30 days before due date divided by all Contintous Min: 0 | Max: 1

OS_latelm invoices sums outstanding 30 days before due Med: 1.00 | Mean: 0.76
date of the invoice under observation

paid_late_ Averfage .days late. Average overdue days of . Min: 0 | Max: 103

1 late invoices that were paid 30 days before Continuous
aveim due date of the invoice under observation Med: 4.23 | Mean: 8.63

More specified calculation of the historic payment behaviour is described in the table

below.
# | Predictor Description Class
1 No. of invoices OS Number of invoices outstanding 1 month before Positive integer
2 | No. of invoices paid Number of invoices paid 1 month before Positive integer
3 | No. of invoices paid late Number of invoices paid late 1 month before Positive integer
No. of invoices paid on o ) ) e
4 time Number of invoices paid on time 1 month before | Positive integer
o Number of late invoices outstanding 1 month e
5 | No. of late invoices OS Positive integer
before
o Sum of late invoice sums outstanding 1 month e
6 | Sum of late invoices OS Positive integer
before
o . . Positive
7 | Sum of invoices OS Sum of invoice sums outstanding 1 month before integer
8 Sum of invoices paid Sum of invoice sums paid 1 month before Positive integer
9 Sum of invoices paid late | Sum of invoice sums paid late 1 month before Positive integer
Average sum of invoices L . e
10 . Average of invoice sums paid late 1 month before | Positive integer
paid late
Sum of invoices paid on o ) ) e ]
11 time Sum of invoice sums paid on time 1 month before | Positive integer
12 | Ratio paid late (no.) Ratio 3 over 2 Continuous
13 | Ratio paid late (sum) Ratio 9 over 8 Continuous
14 | Ratio OS late (no.) Ratio 5 over 1 Continuous
15 | Ratio OS late (sum) Ratio 6 over 7 Continuous
Average overdue days of paid late invoices durin, .
16 | Average days late past 3% days ysoLp & | Continuous
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B Data description

Debtors by EMTAK letter

In Estonia, there are 21 EMTAK letter specifying the field of activity of a company. In
our data, 19 EMTAK letters are represented. The following frequency table presents the

invoice debtor’s field of activity in our data.

EMTAK Description No. of No. of Percentage

letter p debtors invoices | of invoices

A Agriculture, forestry and fishing 244 536 2%

B Mining and quarrying 18 149 1%

C Manufacturing 1186 7198 25%

D Electricity, gas, steam and air conditioning 91 62 0%
supply

E Water Supp')lyj Sewer'age’, waste management 34 1892 1%
and remediation activities

F Construction 1 100 6 824 24%

G Wh.olesale and retail trade; Repair of motor 1511 8 441 30%
vehicles and motorcycles

H Transportation and storage 375 2 131 7%

I Accommodation and food service activities 138 387 1%

J Information and communication 72 138 0%

K Financial and insurance activities 18 24 0%

L Real estate activities 140 333 1%

M Professional, scientific and technical activities 235 656 2%

N Administrative and support service activities 179 772 3%

o Public admlnlst.ratlon apd defense; 929 75 0%
compulsory social security

P Education 36 72 0%

Q Human health and social work activities 19 27 0%

R Arts, entertainment and recreation 134 198 1%

S Other service activities 95 160 1%
Activities of households as employers;

T undifferentiated goods and services producing 0 0 0%
activities for households for own use

U Act1v1t1e.s of extraterritorial organisations 0 0 0%
and bodies

NA The field of activity is not specified 47 145 1%
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The classification of EMTAK letters into three groups as suggested by the ESA 2010 ([38],
p. 550) is presented in the following table.

Group | EMTAK letters Description

G1 A Agriculture, forestry and fishing
Mining; Manufacturing; Electricity gas, steam and

G2 B.C,D,E, F air conditioning supply; 'Se.werage', W&'Lstfe
management and remediation activities;
Construction

G) H7 I7 J7 K? L7 M) N7 O? P? Q7 ; -
G3 RS T U Services

We have assigned the debtors that have not specified the EMTAK letter to the group G3
in the analysis part as the group G3 is more general and the reason for a company not to

specify its field of activity might have been not finding a proper subgroup.

The group G1 only consists of 536 invoices while there are 14 415 in group G2 and 13 559
invoices in group G3. For this reason we add debtors with EMTAK letter A to the group
G2 as Agriculture, forestry and fishing in its essence fits better to the Industrial activity
that to the Service activities.

Finally, we have defined more robust groups for EMTAK letters as follows:

No. of No. of Percentage
Group EMTAK letters debtors invoices | of invoices
EMTAK1
_ A,B,C,D,E F 2 650 14 951 52%
(Manufacturing)
ENITAKZ Ga H7 L J, Ka L7 M7 N? Oa Pa Q7 R7 Sa 2 981 13 559 48%
(Service) T, U
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C DModels

In experimental part of the thesis different types of models were fit to the data to be able
to see the effect of different predictors. In this Appendix we introduce which predictors

represent different models.

C.1 Model building - explanation of predictors fit
into the models

Invoice

Data from the invoice (see Appendix A.1) - base sum of the invoice. In total 1 predictor.

Company measures

Data reflecting the tax debts, changes in paid tax and overall company (debtor) measures

(all the variables introduced in Appendix A.2). In total 9 predictors.

Financial data

Data reflecting the company size and financial situation. Note that not all the predictors
from Appendix A.3 were fit to the models. Predictors of financial data that were fit in

models were Total sales, Current assets, Equity. In total 3 predictors.

Short-term liabilities was omitted as we already have Claims current in Company meas-
ures. We consider Claims current to be more representative of debtor’s current financial

situation.

Total assets was omitted as total assets contain Current assets as well and we consider

Current assets to be more representative liquidity of the debtor.

Ratios
Data of the additionally defined ratios (see Appendix A.4). In total 3 predictors.

History

Data of the additionally defined historical payment behaviour (see Appendix A.5). Vari-
ables that were fit into the model, were Ratio of paid late, Ratio of OS late, Average days
late. In total 3 predictors.

75



C.2 Examples of fitted models
C.2.1 Models without historical payment behaviour

Cox model

Train and test data division by time. Predictors for full model: Invoice + Company
measures + Financial data + Ratios

> fitform .2.all <— Surv(TIME, STATUS) ~ Sum +
sales + equity + current_assets +
unsubdeclars + tax_debt0 + tax debtlm + tax_ debt2m +
EMTAK + last_anreport + claim_current + age + tax_qoq +
ratioSum + asset_turnover + CR
> fit.cox.2 <— coxph(fitform.2.all, data=trainTime)
> cox.train.2 <— stepAIC(fit.cox.2, direction="both’, trace=TRUE)
> summary (cox . train.2)
Call:
coxph (formula = Surv(TIME, STATUS) ~ Sum + sales 4+ equity + current_assets +
unsubdeclars + tax_debt0 + tax _debtlm + tax_debt2m + EMTAK +
last_anreport + claim_current + age + tax _qoq + asset_turnover +
CR, data = trainTime)

n= 22572, number of events= 12575

coef exp(coef) se(coef) z Pr(>|z|)

Sum 2.970e—06 1.000e4+00 1.315e—06 2.259 0.02391 =
sales 1.321e—09 1.000e4+00 5.113e—10 2.583 0.00978 xx
equity 3.747e—09 1.000e+00 7.599e—10 4.932 8.16e—07 *x*x*
current__assets —3.160e—09 1.000e+00 1.564e—09 —2.021 0.04324 =x*
unsubdeclarsl —4.205e—01 6.568e¢—01 4.869e¢—02 —8.635 < 2e—16 =x*=*
tax_debt0 —3.176e—06 1.000e4+00 1.470e—06 —2.161 0.03067 =
tax_debtlm —4.265e—06 1.000e4+00 1.647e—06 —2.591 0.00958 =xx
tax_debt2m 2.539e—06 1.000e+00 1.416e—06 1.793 0.07303 .
EMTAKEMTAK2 5.048e¢—01 1.657e+00 1.825e—02 27.663 < 2e—16 =x**
last_anreportUNSUBMITTED —4.354e—01 6.470e—01 1.969e—02 —22.109 < 2e—16 s#*x*
claim_ current —1.502e¢—05 1.000e+00 1.504e—06 —9.992 < 2e—16 ***
age 1.800e—02 1.018e+4+00 1.479e—03 12.169 < 2e—16 s**x*
tax_qoq —1.330e—04 9.999e—-01 1.023e—05 —12.998 < 2e—16 =x*=*
asset_turnover —1.803e—03 9.982e—01 8.917e—-04 —2.022 0.04321 =
CR —6.515e—04 9.993e—01 3.897e¢—04 —-1.672 0.09454
Signif. codes: 0 ’xx%x’ 0.001 ’x%’ 0.01 ’x’ 0.05 ’.” 0.1 ’,’ 1

exp(coef) exp(—coef) lower .95 upper .95
Sum 1.0000 1.0000 1.0000 1.0000
sales 1.0000 1.0000 1.0000 1.0000
equity 1.0000 1.0000 1.0000 1.0000
current_assets 1.0000 1.0000 1.0000 1.0000
unsubdeclarsl 0.6568 1.5226 0.5970 0.7225
tax_debt0 1.0000 1.0000 1.0000 1.0000
tax_debtlm 1.0000 1.0000 1.0000 1.0000
tax_debt2m 1.0000 1.0000 1.0000 1.0000
EMTAKEMTAK2 1.6566 0.6036 1.5984 1.7169
last_anreportUNSUBMITTED 0.6470 1.5455 0.6225 0.6725
claim_current 1.0000 1.0000 1.0000 1.0000
age 1.0182 0.9822 1.0152 1.0211
tax_qoq 0.9999 1.0001 0.9998 0.9999
asset_turnover 0.9982 1.0018 0.9965 0.9999
CR 0.9993 1.0007 0.9986 1.0001

Concordance= 0.647 (se = 0.003 )
Rsquare= 0.103 (max possible= 1
Likelihood ratio test= 2458 on 15 df, p
Wald test = 2272 on 15 df, p
Score (logrank) test = 2392 on 15 df, p

I
coo
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> survConcordance (Surv (TIME, STATUS) ~ predict(cox.train.2, trainTime),
trainTime)

Call:

survConcordance (formula = Surv(TIME, STATUS) ~ predict(cox.train.2,

trainTime ), data = trainTime)

n= 22572
Concordance= 0.6465187 se= 0.003019216

concordant discordant tied.risk tied.time  std(c—d)
90955467.0 49729421.0 339.0 3175259.0 849518.2

> survConcordance (Surv (TIME, STATUS) ~ predict(cox.train.2, testTime),
testTime)

Call:

survConcordance (formula = Surv(TIME, STATUS) ~ predict(cox.train.2,

testTime ), data = testTime)

n= 5938

Concordance= 0.5915388 se= 0.006208237

concordant discordant tied.risk tied.time std (c—d)
5145818.0 3553216.0 23.0 295367.0 108011.6

Checking PH assumption

> cox.zph(cox.train.2)

rho chisq p
Sum 0.03927 12.031 0.000523
sales —0.00309 0.316 0.573986
equity —0.01693 2.530 0.111702
current__assets 0.00239 0.220 0.638736
unsubdeclarsl 0.02131 5.753 0.016462
tax_debt0 —0.00314 0.512 0.474175
tax_debtlm 0.01731 6.741 0.009420
tax_debt2m 0.01759 3.573 0.058734
EMTAKEMTAK2 —0.17180 353.590 0.000000
last_anreportUNSUBMITTED 0.03118 12.061 0.000515
claim_ current 0.00305 0.125 0.723291
age —0.02054 4.880 0.027162
tax_qoq —0.02131 5.698 0.016985
asset_turnover 0.02296 6.824 0.008996
CR —0.03539 15.075 0.000103
GLOBAL NA 488.248 0.000000

Random Survival Forests

# 2. Invoice + Company measures + Annual Report + Ratios
> fitform .2.all <— Surv(TIME, STATUS) ~
Sum +
sales + equity + current_assets +
unsubdeclars + tax_debt0 4+ tax debtlm + tax_ debt2m +
EMTAK + last_anreport + claim_current +
age + tax_qoq +
ratioSum + asset_turnover + CR

> grow.time.2. all <— rfsrc(fitform.2.all, data=as.data.frame(trainTime),
forest=TRUE, ntree=250, coerce.factor=
c(’last_anreport’, 'EMTAK’, ’'unsubdeclars’),
nodesize=50, na.action="na.omit’, splitrule =
"logrank 7)

> pred.time.2. all <— predict (grow.time.2. all , newdata =
as.data.frame(testTime), na.action=’'na.omit’)
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> grow.time.2. all
Sample size: 22572
Number of deaths: 12575
Number of trees: 250
Minimum terminal node size: 50
Average no. of terminal nodes: 625.608
No. of variables tried at each split: 4
Total no. of variables: 16
Analysis: RSF
Family: surv
Splitting rule: logrank
Error rate: 26.51%

> pred.time.2. all
Sample size of test (predict) data: 5938
Number of deaths in test data: 3041
Number of grow trees: 250
Average no. of grow terminal nodes: 625.608
Total no. of grow variables: 16
Analysis: RSF
Family: surv
Test set error rate: 36.46%

C.2.2 Models with historical payment behaviour

Cox model

> # 7. Company measures + History

fitform .7 <— Surv(TIME, STATUS) ~
unsubdeclars + tax debt0 4+ tax_debtlm + tax debt2m + EMTAK +
last_anreport + claim_current +

age + tax_qoq —+

paid_late_avglm 4 ratio_sum paid_latelm 4 ratio_sum OS latelm

> fit.cox.7 <— coxph(fitform .7, data=trainData.hist)

> cox.train.7 <— stepAIC(fit.cox.7, direction="both’, trace=IRUE)

> cox.pred.7 <— predict(cox.train.7, newdata=testData.hist)

> survConcordance (Surv (TIME, STATUS) ~ predict(cox.train.7, trainData.hist),

trainData . hist)

Call:

survConcordance (formula = Surv(TIME, STATUS) ~ predict(cox.train.7,

trainData. hist), data = trainData.hist)

n= 11948

Concordance= 0.6775722 se= 0.004017601

concordant discordant tied.risk tied.time std (c—d)
29134621.0 13848398.0 59245.0 1531649.0 345853.3

> # Determine concordance

> survConcordance (Surv (TIME, STATUS) ~ predict(cox.train.7, testData.hist),
testData . hist)

Call:

survConcordance (formula = Surv(TIME, STATUS) ~ predict(cox.train.7,

testData.hist), data = testData.hist)

n= 4233
Concordance= 0.6330447 se= 0.007355821
concordant discordant tied.risk tied.time std (c—d)

2781385.00 1611122.00 5501.00 179244.00 64701.92

> cox.train.7

Call:

coxph (formula = Surv(TIME, STATUS) ~ unsubdeclars + tax_debtlm +
EMTAK + last_anreport + claim_current + age + paid_late_avglm +
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ratio_sum paid_latelm + ratio_sum OS latelm , data = trainData.hist)

coef exp(coef) se(coef) zZ p
unsubdeclarsl —3.57e—01 7.00e—01 6.84e—02 —5.22 1.8e—-07
tax_debtlm —2.52e—06 1.00e+00 9.08e—07 —2.78 0.00542
EMTAKEMTAK?2 5.77e—01 1.78e+00 2.48e¢—02 23.26 < 2e—16
last_anreportUNSUBMITTED —4.12e—01 6.62e—01 2.42e—02 —17.01 < 2e—16
claim_ current —1.66e—05 1.00e+00 2.02e—06 —8.21 2.2e—16
age 6.78¢—03 1.01e+00 1.95e¢—03 3.47 0.00052
paid_late_avglm —2.86e—02 9.72e—01 1.44e—03 —19.91 < 2e—16
ratio_sum paid_latelm 6.23e—01 1.86e4+00 3.40e—02 18.31 < 2e-—16
ratio_sum OS latelm —4.96e—02 9.52e—-01 3.31e—02 —1.50 0.13324

Likelihood ratio test=2148 on 9 df, p=0
n= 11948, number of events= 7492

Checking PH assumption

> cox.zph(cox.train.7)

rho chisq p
unsubdeclarsl 0.00625 0.2981 0.585091
tax_debtlm 0.04171 12.5443 0.000397
EMTAKEMTAK?2 —0.10804 79.2763 0.000000
last_anreportUNSUBMITTED 0.01995 2.8616 0.090716
claim_ current —0.00385 0.0819 0.774757
age —0.03801 10.5030 0.001192
paid_late_avglm 0.14004 191.2844 0.000000
ratio_sum paid_latelm —0.02214 4.1031 0.042804
ratio_sum OS latelm —0.01507 1.5986 0.206108
GLOBAL NA 462.8577 0.000000

Random Survival Forests

> grow.5.hist <— rfsrc(fitform .5, data=as.data.frame(trainData.hist),
forest=IRUE, ntree=250, coerce.factor=
c(’last_anreport’, 'EMTAK’, ’unsubdeclars’),
nodesize=50, na.action="na.omit’,
splitrule = ’logrank’)

> pred.5. hist <— predict(grow.5. hist, newdata = as.data.frame(testData.hist),
na.action="na.omit’)

> grow.5. hist
Sample size: 11948
Number of deaths: 7492
Number of trees: 250
Minimum terminal node size: 50
Average no. of terminal nodes: 330.924
No. of variables tried at each split: 5
Total no. of wvariables: 19
Analysis: RSF
Family: surv
Splitting rule: logrank
Error rate: 25.06%

> pred.5. hist
Sample size of test (predict) data: 4233
Number of deaths in test data: 2242
Number of grow trees: 250
Average no. of grow terminal nodes: 330.924
Total no. of grow variables: 19
Analysis: RSF
Family: surv
Test set error rate: 33.07%
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