
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science Curriculum

Uku Pattak

Customer Support Gateway
Built as Lean Software

Bachelor's Thesis (9 ECTS)

Supervisor Jordan Valdma, MSc

Supervisor Helle Hein, PhD

Tartu 2015

Customer support gateway built as lean software

Abstract:

Operating fast and iterating with tight feedback loops often differentiates startups from

large corporations. Having the ability to adapt and learn rapidly from the market gives an

competitive advantage. The final success of a product or a service often depends on user

experience. Important aspect of user experience is Customer Support, which in

companies often invest heavily.

In this work, we looked into ways to quickly deliver a piece of software with principles of

Lean Software Development, Build-Measure-Learn cycle and Minimum Viable Product.

We defined the problems with providing help to TransferWise customers and

implemented a successful solution for the stated problems after analysing the alternative

solutions from other services.

Keywords:

Lean software, Build-Measure-Learn, Customer Support, TransferWise.

Klienditoevärava ehitamine Lean tarkvara kujul

Lühikokkuvõte:

Tihtipeale eristab startup’e ehk idufirmasid suurfirmadest kiire tegutsemine ning

sagedaste tagasisidetsüklite itereerimine. Kiire õppimis- ja kohanemisvõime annavad

olulise konkurentsieelise. Toote või teenuse lõpliku edu määrab kasutajakogemus.

Seetõttu pööravad firmad suurt tähelepanu oma klienditoele, mis moodustab suure osa

kogemusest.

Käesolevas töös tutvustatakse viise, kuidas kiirendada tarkvara tarnimist. Selleks

vaadatakse lähemalt Lean tarkvaraarenduse põhimõtteid, ehita-mõõda-õpi tsüklit ja

minimaalset valmistoodet. Järgnevalt defineeritakse kliendiabi probleemid

TransferWise’is, analüüsitakse alternatiivseid lahendusi teistelt teenustelt ning

implementeeritakse edukas lahendus püstitatud probleemidele.

Võtmesõnad:

Lean tarkvara, ehita-mõõda-õpi, klienditugi, TransferWise

1

Contents

Introduction
Goals .
Outline .

1. Lean Software Development
1.1. History of Lean Thinking .
1.2. Definition .
1.3. Lean Principles .

1.3.1. Eliminate Waste .
1.3.2. Amplify Learning .
1.3.3. Decide as Late as Possible .
1.3.4. Deliver as Fast as Possible .
1.3.5. Empower the Team .
1.3.6. Build Quality In .
1.3.7. See the Whole .

1.4. Minimum Viable Product .
1.5. Build-Measure-Learn .
1.6. Test Driven Development .

2. TransferWise

2.1. Overview .
2.2. Customer Support .
2.3. Development .

3. Problem statement

3.1. Bug Report System .
3.2. Help Out of Sight .
3.3. General Problem .

4. Current alternatives

4.1. Zapier .
4.1.1. Overview .
4.1.2. Reporting an Issue in Zapier .

4.2. UserVoice

4
5
5

6
6
6
7
8

 8
8
8
9
9

10
10
11
11

13
13
14
14

15
15
17
18

19
19
19
19
21

2

4.2.1. Overview .
4.2.2. Using the UserVoice widget .

4.3. Conclusions .

5. Our Journey to the Solution
5.1. Gateway to Help 1.0 .

5.1.1. Building .
5.1.2. Metrics .
5.1.3. Learnings .

5.2. Internationalised Gateway .
5.2.1. Building .
5.2.2. Metrics .
5.2.3. Learnings .

5.3. Location based FAQ .
5.3.1. Building .
5.3.2. Metrics .
5.3.3. Learnings .

5.4. Implementation details .

6. Future works
6.1. Analysing Service via FAQ .
6.2. Structuring Customers Questions and Feedbacks

Conclusions

Abbreviations

Bibliography

21
22
23

25
25
25
29
31
32
32
33
34
35
35
36
37
37

39
39
39

40

41

42

3

Introduction

Competition today is ruthless. Having the agility to quickly iterate with tight

feedback loops and run faster is where the competitive edge lies. Technology

companies today compete on how quickly they can take customer feedback and

turn it into released features or improvements. We will look into ways to quickly

deliver software by looking at the Lean Software Development principles and

associated methods.

The final success of a product or a service often depends on user experience.

Therefore companies put a lot of effort into their Customer Support (CS) which is a

big part of the experience. In the end, it is all about delivering a brilliant product

that users love to use.

The present thesis will look into ways to make user experience of a service called

TransferWise better by concentrating on the CS side. The ideas are collected from

other services that have excelled in providing help to their customers and then the

journey to the solution is described.

4

Goals

The thesis carries the following goals:

1. Introduce the reader to the terms Lean Software Development (LSD),

Minimum Viable Product (MVP), Build-Measure-Learn (BML) cycle and Test

Driven Development (TDD).

2. Bring out problems related to providing help to TransferWise customers and

investigate alternative solutions.

3. Provide an enhanced solution to the problems by gathering ideas from

alternative solutions and building it with LSD principles in mind.

Outline

The work is organised as follows:

1. Lean Software Development - Introduces the term Lean Software

Development, describing its origins and history, usefulness and giving an

overview of its principles and methods.

2. TransferWise - Introduces TransferWise, its customer support and

development processes.

3. Problem Statement - Introduces customer help problems in TransferWise and

explains what metrics are affected by that.

4. Current Alternatives - Analyses current alternatives to find ideas for solving

the problems.

5. Our Journey to the Solution - Introduces the solution to the previously

defined problems.

6. Future works - List of possibilities for future work on our solution.

5

Chapter 1

Lean Software Development

1.1. History of Lean Thinking

In order to properly understand Lean Software Development an appreciation of its

conceptual roots is appropriate. In 1950, Toyota was a small company that had

moved from crafting looms to manufacturing cars. Toyota faced stiff competition

from the established US manufacturers, and their small home market lowered the

prices down. Owner Kiichiro Toyoda saw that there was incredible waste and

unnecessary delays in car manufacturing. His vision to compete with the US

behemoths would be to re-think car manufacturing from the ground up [1].

Toyota’s manager Taiichi Ohno responded to Toyoda’s vision by developing what

came to be known as the Toyota Production System or in other words “a system for

the absolute elimination of waste” [2]. Anything that does not create value for

customer is waste and needs to be removed.

In 1990 the book ‘The Machine That Changed the World’ gave a new name to The

Toyota Production System [3]. From then on, Toyota’s approach to manufacturing

would be known as Lean Production. Those lean principles have also been extended

to the supply chain, to product development, and to software development.

1.2. Definition

Lean Software Development (LSD) is a translation of lean manufacturing principles

and practices to the software development domain. Principles are guiding ideas and

6

insights about a discipline, while practices are what you actually do to carry out

principles [1]. Lean software development has seven principles and many practices

which have a very similar philosophy with Agile Software Development methods [4].

Agile Software Development is an umbrella term for several software development 1

methods (including Extreme Programming and Scrum) that were developed in

1990s [4]. These methods share a common philosophy which was described as

values and principles in the Manifesto for Agile Software Development [5].

1.3. Lean Principles
The term “Lean Software Development” originates from the book by the same

name, written by Mary and Tom Poppendieck [1]. The book presents the traditional

lean principles in a modified form to be suitable for software development. Let us

go through them briefly.

1.3.1. Eliminate Waste

Taiichi Ohno explained how Toyota Production System works “All we are doing is

looking for the timeline from the moment a customer gives us an order to the

point when we collect the cash. And we are reducing that timeline by removing the

non value added wastes” [6].

Waste is anything that does not add value. The first step of eliminating waste is to

recognize it. The second step is to develop a capability to really see waste. In

software development it can be partially done work or extra features. Only about

20% of the features and functions in typical software are used regularly [6]. Other

80% still need unnecessary testing, documentation and support.

1 A term used to cover a broad category of functions rather than a single specific item.

7

1.3.2. Amplify Learning

Software development is a knowledge-creating process. The best approach for

improving software development environment is to amplify learning [1]. The

learning process is sped up by usage of short iteration cycles. During those short

sessions the development team learns more about the domain problem and figures

out possible solutions for further developments.

1.3.3. Decide as Late as Possible

Irreversible decisions need to be delayed to the latest point. By the time the

decision needs to be made there will be more information about which of those

options is the best route to take. It also gives us time to potentially explore the

different options in more detail and experiment, helping to come to the right

conclusion [7].

In areas of complexity or uncertainty, where things are very likely to change, this is

especially important. Example of deciding as late as possible in agile development

methods is iteration planning. In agile, we decide what features to include in each

iteration and analyse them just in time for them to be developed. Keeping decisions

about features and the development of those features close together helps to

ensure that the right product is delivered, because it leaves less room for change

[7]. A key strategy for delaying commitments when developing a complex system is

to build a capacity for changes into the system.

1.3.4. Deliver as Fast as Possible

It is common for people to think too deeply about future requirements that may or

may not ever arise, or over-engineer solutions, both in terms of the software

architecture, and also the business requirements [7]. This will slow down the pace

of the development iteration.

8

In development the discovery cycle is critical for learning: design, implement,

feedback, improve. Without speed, we cannot delay decisions. Without speed, we

do not have reliable feedback. The shorter these cycles are, the more can be

learned. Speed assures that customers get what they need now, not what they

needed yesterday.

1.3.5. Empower the Team

There has been a traditional belief in most businesses about the decision-making in

the organization – the managers tell the workers how to do their own job. In a Lean

Software Development, the roles are turned around. The people who actually do

the work combine the knowledge with the power of many minds. When equipped

with necessary expertise and guided by a leader, they will make better technical

and process decisions than anyone can make for them.

Top-notch execution lies in getting the details right, and no one understands the

details better than the developers who actually do the work [1]. This means

responding to people promptly, listening attentively, hearing their opinions and not

dismissing them even when they are different to your own. Another important part

of respecting people is giving people the responsibility to make decisions about

their work. To achieve this, it is important to build knowledge and develop people

who can think for themselves. People who can think for themselves and are

experts in their area often need to be empowered to feel respected [7].

1.3.6. Build Quality In

Build integrity in means that the system’s central concepts work together as a

smooth, cohesive whole [7]. Software needs an additional level of integrity— it must

maintain its usefulness over time. Software is usually expected to evolve gracefully

as it adapts to the future. Software with integrity has a coherent architecture,

9

scores high on usability and fitness for purpose, and is maintainable, adaptable, and

extensible.

Quality is obviously extremely important, or you inevitably create all sorts of waste

further down the line. It is important to avoid quality issues materialising as early as

possible, and also to build it in throughout the entire development process, not just

at the end.

1.3.7. See the whole

The larger the system, the more organizations are involved in its development and

the more parts are developed by different teams. Quite often, the common good

suffers if people attend first to their own specialized interests. When individuals or

organizations are measured on their specialized contribution rather than overall

performance, then it can ultimately result in an exponential increase in the time to

add new features, notably lower quality product, which affects the end users and

ultimately may also affect their efficiency or the competitiveness of the product [6].

A lean organisation seeks to optimise the whole value stream, not just individual

functions or teams.

1.4. Minimum Viable Product
A common way to follow the “Eliminate waste” principle is to build a minimum

viable product (MVP). “A Minimum Viable Product is that version of a new product

which allows a team to collect the maximum amount of validated learning about

customers with the least effort.” [8].

A MVP has just those core features that allow the product to be deployed, and no

more. It is a strategy targeted at avoiding building products that customers do not

want, that seeks to maximize the information learned about the customer.

10

1.5. Build-Measure-Learn
We use Build-Measure-Learn (BML) loop process to amplify learning and deliver as

fast as possible. BML has three main phases illustrated on Figure 1.1. The first phase

is the Build phase, in which the goal is to build a minimum viable product as quickly

as possible. This is followed by the Measure phase, where the goal is to determine

whether the real progress is being made; and finally, by the Learn phase, where a

decision is made whether to persevere (carry on with the same goals) or pivot

(change some aspect of the product strategy) [8].

Figure 1.1: Build-Measure-Learn phases with

 Ideas-Data-Product outcomes [9]

The Build-Measure-Learn loop emphasizes speed as a critical ingredient to the

product development. A team or company's effectiveness is determined by its

ability to ideate, quickly build a MVP of that idea, measure its effectiveness in the

market, and learn from that experiment.

1.6. Test Driven Development
Build integrity in is done with Test Driven Development (TDD) that relies on the

repetition of a very short development cycle: first the developer writes an (initially

failing) automated test case that defines a desired improvement or new function,

11

then produces the minimum amount of code to pass that test; and finally, refactors

the new code to acceptable standards. It encourages simple designs and inspires

confidence [10].

12

Chapter 2

TransferWise

2

2.1. Overview
TransferWise is a money transfer service with more than 300 currency routes

globally. The difference between conventional money transfers and TransferWise

lies in how payments are routed. Instead of transferring the sender's money

directly to the recipient, TransferWise redirects to the recipient of an equivalent

transfer going in the opposite direction. Likewise, the recipient of the transfer

receives a payment not from the sender initiating the transfer, but from the sender

of the equivalent transfer. This process avoids costly currency conversion and

transfers crossing borders by allowing the company to minimise the amount of

money exchanged between currencies, and the savings are passed on to customers

[11]. This is illustrated on Figure 2.1.

Figure 2.1: Comparison between TransferWise and

other money transfer services

13

2.2. Customer Support
Customer Support (CS) is a division of TransferWise that attempts to help the user

resolve and understand specific issues with the product or services provided.

Because of the nature of TransferWise's activity in the financial services market,

specifically involving users money, the volume of contacts to this department is

high. As one could expect, without support a client would be much less inclined to

take a risk with a service they do not trust and understand, particularly if it could

result in a loss of their savings. TransferWise's emphasis in this area is to make sure

no risk taking is needed, the service is clear and understandable, and above all,

provides a service that customers can trust.

2.3. Development
TransferWise service development is driven by metrics. Actionable metrics can lead

to informed business decisions and subsequent action. These are in contrast to

vanity metrics - measurements that give “the rosiest picture possible” but do not

accurately reflect the key drivers of a business [12]. It is important to understand

which metric is the actionable one and which one can only mislead the

development.

Teams who develop TransferWise are autonomous and independent. Their work

progress is tracked with a metrics called key performance indicators (KPI). Thesis

author is working in a team called Transfer Creation to whom is most important to

convert all the users who have intention to make transfer. This is measured with a

conversion metric which is the team's main KPI. Conversion metric is affected by

many different factors. One of those is the service quality - defects and bad user

experience. We’ll discuss this topic in more depth in Chapter 3.

14

Chapter 3

Problem statement
3

3.1. Bug Report System
Usually the defect reports are coming from the users. They report the issue to the

CS who then talks to the responsible team. The problem here is that there is not

much information collected from the customer, because customer do not know

what data we want from them and how it should be structured.

To get more information from users, CS needs to have a multiple roundtrips where

they ask specific questions based on context of the issue. But still sometimes

engineers can only use their imagination while fixing reported defects.

To solve this issue we came up with a system called Bug Report, which allows users

to report defects with their own description that is merged with a background info:

● screenshot of the problem

● JavaScript browser log

● client technical info - browser name and version, Operating System name

and version, screen size.

At first we wanted to validate the assumption that users will report bugs

voluntarily. For that we created a MVP with a basic form (as seen on Figure 3.1)

without any extra data from the background.

15

Figure 3.1: Bug report system screenshot

The experiment was planned for 2 weeks and for 10% of users. Link to the form was

placed in three of the most popular pages, in their header, footer and Live chat

window. For technical reasons it only ran for 5 days. There were 12 776 participants,

38 clicks on links (that opened the form) and 2 submits. From those two submits

there were 0 bug reports which could only mean that the experiment failed. By

analysing the reason why the experiment failed we concluded that the links to the

system were placed on the page where users were looking for help rather to report

a bug.

Learnings from the Bug Report system were promising. We started thinking about

better places for the links and then we found a new problem: TransferWise misses a

clear gateway to help, all the information about getting help is scattered around the

service and users have to figure out their own way to the Help page.

16

3.2. Help Out of Sight

In TransferWise there are multiple ways to get help:

● Contact CS via:

- Live chat, which is opened at 11 AM - 11 PM,

- call via phone which has multiple different country lines opened on

different times,

- send an email.

● Frequently Asked Questions (FAQ) list.

Live chat option can be used on every page by clicking on the “Live chat” button on

the bottom right corner. This makes it the most prominent way to contact CS.

Email and call information can be found partly in the header, footer and on the Help

page. FAQ has its own section in there also with a few hard coded questions in the

header. All of these are focused on Figure 3.2.

Figure 3.2: Ways to get Help in TransferWise

As we can see the information is not consistently placed and the service favors

contacting CS rather than directing users to read FAQ before. This will lead to two

problems.

17

Firstly, users who are not Sherlock Holmes, may not find a help, because all the

links to it can be hidden or hard to find. Secondly, if they can find a way to contact

CS then the response time could be over 8 hours which means they may

discontinue using the service. The long response time is partly caused by a big

amount of users who ask trivial questions what are answered on the FAQ page.

These problems can affect higher level metrics like conversion.

3.3. General Problem
Conversion metric is the most widespread metric in TransferWise that indicates

success. It shows how many users, who had an intention to make a transfer, were

able to make a successful transfer with TransferWise. The success in TransferWise

is not 100% and this is affected by many factors. Our hypothesis is that part of the

unsuccessful transfers are caused by users who have hard time to get help. To

prove this assumption we can only iterate with different solutions and see if we can

increase the conversion.

In the following chapter we will look into solutions to our problems from other

services. From there we try to come up with our own solution in Chapter 5.

18

Chapter 4

Current alternatives

In this chapter we investigate two service providers who have solutions for our

problems stated in Chapter 3. We analyse positive and negative sides of those

implementations to gather ideas for our own solution.

4

4.1. Zapier

4.1.1. Overview

Zapier is a web service that lets you easily connect web applications, making it fast

to automate tedious tasks [13]. For example it is possible to send out an Email with

Mandrill application when Firebase database has a new entry. Zapier depends on

multiple application programming interfaces to connect different applications and

this can make the servic fragile.

4.1.2. Reporting an Issue in Zapier

Zapier can detect problems with different apps faster with their easy to access

issue reporting. On every page there is the red button "Get Help" which allows

Zapier clients to find help with ease (as seen on Figure 4.1).

19

Figure 4.1: Zapier way to give help

The button takes a small amount of the screen and attention, trying to be found

only when user will need help. Color of it is a bad choice for TransferWise: red

means financial trouble, or it could mean danger [14].

Clicking on the button directs users to the Help page where they can choose a

specific topic or an application with they have a problem. There will be a preciser

FAQ list when choosing one. With filtering they reduce a thinking needed from the

users and increase the user experience [15]. But with directing clients away from

their current context to the Help page may confuse them and decrease the user

experience.

On every Help page the “Get help” changes to “Contact us” button and clicking on it

opens up a modal window (as seen on Figure 4.2). It has a contact form which

allows users to report issues from the service rather than using an email. This is

more convenient for clients and it gives extra opportunities for owners to get more

structured data out of the reports via different inputs.

20

Figure 4.2: Support form with different flows

The form window has multiple trust elements to give people feeling that their

reports are read and taken care of:

● customer support profile pictures

● “We’re Here to Help You!” title.

This way they can build trust and increase reporting conversion [16].

4.2. UserVoice

4.2.1. Overview

UserVoice is a software-as-a-service provider of customer support tools [17]. The

tools list is long and it is made to fully meet CS needs:

● widget for chat and feedback

● support ticket system

● forums

● etc.

Because TransferWise already has a tool for their CS then there is no point of using

UserVoice. We can only analyse what the widget offers.

21

4.2.2. Using the UserVoice widget

UserVoice widget is used by many service providers including Memrise and Bitly. It

is highly customizable, but we will be focusing on the default variant: a blue button

with a Question sign on the bottom right corner (as seen on Figure 4.3). It has a

same positioning method that Zapier has, but with a more calming color. Using only

icon can seem like a cleaner design, but it can confuse the users [18].

Figure 4.3: UserVoice widgets button

Clicking on the button pops out a much smaller modal window with no overlay

compare to Zapier (as seen on Figure 4.4). Window takes small amount of a page

room and it allows users to see the page they are. This makes writing a comment or

a question about the page more convenient and no context changing is needed. The

problem is information quantity that could be shown in this small window.

22

Figure 4.4: Widget first view - a form

Customers can read helpful articles on the second step before submitting the

report. Such flow has two sides:

● positive side - user will construct their question before and probably will be

smarter to look answers from FAQ afterwards;

● negative side - user, who has put a lot of effort and time constructing the

question, can be steamed-up after seeing a answer right away on the next

step.

4.3. Conclusions
Both services have similar concepts in button placement, modal window and the

flow. Link to a help is always visible to the users using fixed bottom right position.

Although, Zapier has a clearer way to represent it with text rather than using icon,

but with a bad color for a financial service.

UserVoice provides help information with modal window to keep users in their

context and shows FAQ on an intermediate step before letting users to submit

23

report. Zapier puts emphasis on FAQ and for that they have a separate page before

user can contact support.

Each flow has their good and bad sides. In the following chapter we will pick some

of the ideas from those services and use them to solve issues stated in Chapter 3.

24

Chapter 5

Our Journey to the Solution

Our solution is built as a MVP with BML cycle in a form of a new module that

integrates with the TransferWise service. In combination with some of the existing

solutions we now have ideas how to solve the problems defined in Chapter 3.

5

5.1. Gateway to Help 1.0

5.1.1. Building

We started writing down ideas from existing solutions and mixed them with our

own thoughts. After having a long list of things generated, it was time to eliminate

the waste and do some sketches with minimal amount of features which will do the

work.

First problem to solve was how get help from anywhere. For that we followed

existing solutions by creating a fixed button “Get Help” as can be seen also on

Figure 5.1. This would be positioned on every page and will open the Gateway.

25

Figure 5.1: Button which rules them all

Unlike from the UserVoice there is a modal window with overlay to have more

room for extra information, but in the same time not directing users from their

current locations like Zapier does. Window has multiple views that are isolated

steps:

1. FAQ

2. Contact options list

3. Call

4. Email

With separate steps it is possible to understand on which step users choose to get

help.

The FAQ view pops out first as seen on Figure 5.2. This way we can provoke users to

think by themselves at first. If they can not find any answers from there then we

shall give them opportunity to switch to the next view with a click on the “Contact

Support” button.

26

Figure 5.2: First step of Gateway

What made our solution different from others is the contact options list. There are

multiple choices where customers can choose:

● Chat

● Call

● Email

We do not want to force users to choose one option over the other. Thats why we

have options equally in a row with no hints that one is faster than the other etc. (as

seen on Figure 5.3).

Figure 5.3: Contact options list

27

Live chat option can be only seen when the 3rd Party service SnapABug is turned

on. Clicking on the Live chat option will close the Gateway and open the SnapABug

service. This means the client has reached to the end of the flow.

Call and email options have their own views with static contact information shown

on Figure 5.4. Both of them have a unique button with text “Cheers” which indicates

successful finish for us. There is always the link to the previous step and the

window will close when clicked either on the X or on the overlay.

Figure 5.4: Call and email view sketches with real information

We created a AngularJS plugin, isolated module written in JavaScript on AngularJS

platform [19] to implement our sketches as fast as possible. AngularJS is widely used

in TransferWise. Building it as a component made it very easy to integrate it into

different pages. Module was written using TDD process to follow “Built integrity in”

principle.

Module has been integrated with analytics platform Mixpanel [20]: every click on

the links and buttons, every step change and window visibility is listened and sent

28

to the Mixpanel. From there we collect data from different graphs (Figure 5.5) for

our metrics.

Figure 5.5: Mixpanel funnel graph

Server-side Groovy code was only needed to initialise the experiment. The feature

was experimented on a 50% of TransferWise users and could be turned off

immediately if anything should have gone wrong. To deliver as fast as possible we

postponed internalisation by having everything in English on the user interface.

5.1.2. Metrics

We ran the experiment for 7 days by showing the “Get Help” link to a 50% of users.

Collected statistics can be seen in Tables 5.1, 5.2 and 5.3.

Table 5.1: General statistics

Participants (who saw the button) 33 289

Clicked on the “Get Help” button 1291 (4% of participants)

Users (clicked on FAQ link or viewed contact info) 821 (64% of clicks)

Conversion 59.3%

29

Table 5.2: FAQ statistics

Clicked on FAQ link 307 (37% of users)

Read only FAQ 263 (32% of users)

Table 5.3: Contact statistics

Potential CS contacts 452 (55% of users)

Chose call 103 (21% of contacts)

Chose email 96 (23% of contacts)

Chose chat 253 (56% of contacts)

CS contacts 13 171 (4% increase from previous 14 days)

All of these metrics can be useful from different viewpoints. For example users

preferences in contact options (Figure 5.6) will tell CS on which option they should

be focusing more, but it can be irrelevant for the FAQ article authors.

Figure 5.6: Users preferences in contact options

We had to choose actionable metrics in our context. The right ones are those that

give us insights in our progress to solve the stated problems:

● Where to get help?

30

● How to provide help faster?

● How to increase conversion among users who need help?

A good way to see if the Gateway gives help, is to look at the percentage of users.

Gateway users are people who tried to find help with clicking FAQ links or looked at

the contact information. By analysing the percentage of those, we can see how

many people did or did not understand the tool.

To make Help providing faster, one can decrease the amount of contacts CS needs

to assist. Progress of that can be analysed by looking at CS cases amount. However

this metric is influenced by many factors and teams, so it would not give us a clear

feedback of our work. To see the real effect, we need to look at how many contacts

we saved (people who got help without contacting CS) with the Help Gateway.

For our general problem, i.e. conversion, we are going to track users who needed

help (clicked on the "Get Help" button) and made a successful transfer. To clear the

noise made by other teams, we chose to look at only new users from the U.K which

has the highest traffic, but the smallest amount of teams affecting the channel.

These metrics were selected to be our KPI and we were looking at them in a every

iteration to measure our success when trying to solve problems stated in Chapter

3. Unfortunately, we also discovered a problem while collecting metrics. We had no

statistics about current solutions (E.g. Help link in the header and the Live chat

button) and without those we could not compare the new tool with the current

TransferWise solutions. We fixed that problem in the next iteration.

5.1.3. Learnings

Firstly, as mentioned above we had no statistics about the current solutions which

were needed for comparison. This was our first learning: think about the events

31

which are needed to be tracked for statistics while building the tool. Also collect

some pre-metrics in the first days of the experiment for confirmation.

Secondly, we gave help to 32% of Gateway users without them contacting CS by

showing FAQ view first. Because the questions in the view were always the same for

the new and the existing users then we expected this number to be around 15%. By

having a higher outcome of 17%, we can say that putting the FAQ view before the

contact options was a success.

Thirdly, only 64% of the people who clicked on the "Get Help" button really used

the tool. Expected results were 80-85%, where most of the non-users would be the

“testers” who had no intention to get help. Because our tool is only translated into

English and TransferWise customers are from all over the world then it could have

affected the metric. It is easy to solve this problem: internationalize the tool to all

the supported languages.

5.2. Internationalised Gateway
5.2.1. Building

We started off by adding missing click trackings to the Live Chat button and to the

Help link in the header. The next step was to translate the user interface into

Italian, German, Spanish and French. For implementation we used the

angular-translate [21] module.

Some of the translated FAQ links direct users to untranslated articles, which means

a link and an article can be in different languages. In this case we followed the

"Decide as late as possible” principle: we will choose to translate an FAQ article only

then when we see users' interest.

32

With these changes we expected to increase the number of Gateway users by

5-10%. Also this (experiment) can develop into another side project where

TransferWise teams can get insights about their new features, fixes etc. We are

going to talk about it in Chapter 6.

5.2.2. Metrics

All the statistics in Mixpanel were checked immediately after the release to make

sure everything we need for the experiment analytics is available. After another 7

days we started comparing this iteration (v2) with the previous one (v1). We

collected statistics only for our KPI:

● Gateway users - users, who clicked on FAQ links or continued to Contact

Support step.

● Read only FAQ - users, who clicked on the FAQ link and did not continue to

Contact Support step.

● Conversion - users, who clicked on the “Get help” button and finished the

transfer successfully.

Gateway users metric increased by 2% (as seen on Figure 5.7), from 64% (821 users)

to 66% (903 users). At the same time “Read only FAQ” metric stayed on the same

level - 32% (as seen on Figure 5.8).

Figure 5.7

Figure 5.8

33

Conversion between first and second version escalated by 2%, from 59% to 61% (as

seen on Figure 5.9) and the biggest difference can be seen between our solution

and current solutions - Live chat button (44%) and Help link in the header (38%).

These metrics are visualised in Figure 5.10.

Figure 5.9

Figure 5.10

5.2.3. Learnings

Firstly, we were expecting to see a surge in the Gateway user's percentage which

surprisingly did not happen. By having only 100 more users (2% more of the users

who clicked) we can say that translated tool was not getting more attention from

the users than the English only version.

Secondly, we were able to increase the conversion, but not with a help of a FAQ

(because it stayed on the same level). One can assume that the translations made

the flow more understandable - making it more clear what contact options we have

- or the CS made a better job.

Finally, we have the statistics which we can use to prove our hypothesis. By having

a 20% higher conversion rate from other solutions we can say that there were

34

users who had hard time to get help before our solution. But we are not sure if this

conversion rate is the solutions peak. If we could make the FAQ view more useful to

the users then we might decrease the CS contacts amount and from that increase

the conversion.

5.3. Location based FAQ

5.3.1. Building

In TransferWise FAQ articles are written by a small group of CS people, who are

familiar with customers' questions. For example, they know that most of the time

new users ask about TransferWise security and regulations on the ‘Landing’ page

and "How long does my transfer take?" on the ‘Account’ page. To follow the

"Empower the team" principle we teamed up with them to make the FAQ links more

helpful.

We came up with a location based FAQ system which means that we are going to

show different questions on different locations of the website. Some examples:

● When the user is on the ‘Landing’ page then we will show questions about

changing personal settings.

● When the user is on the ‘Make transfer’ step then we will show questions

about payment options.

FAQ list was constructed together with the FAQ team where we found 2-4 articles

for every page in TransferWise. We used angular-route module [22] to detect

location changes in AngularJS applications and trigger updates on the questions list

in the Gateway. To deliver as fast as possible we hardcoded those questions into

AngularJS service and covered the whole logic with automated tests. One last thing

was to add Mixpanel event tracking to every question click and we were ready to

release the 3rd iteration of the Help Gateway.

35

We were not expecting to see any dramatic changes in our KPI. From the first

iteration we already have shown “More FAQs” link to the users which directs them

to the FAQ page. With this iteration we had only made the precise FAQ easier to

find and by that more convenient to use.

5.3.2. Metrics

Third iteration experiment was tested in the end of the month, which means most

of the users are transferring received salaries back to their homeland. That also

means higher traffic in TransferWise. Given fact was reflected from the statistics

where we saw 10% increase in the participants. Other from that we also had a 2%

more Gateway users (Figure 5.11) and a 4% more Only FAQ users (Figure 5.12).

Conversion has gained 3% from the last iteration (62% to 65%) as can be seen on

Figure 5.13.

Figure 5.11

Figure 5.12

36

Figure 5.13

5.3.3. Learnings

We were able to move the conversion even further with a help of a FAQ view. In our

tracked events we saw an enormous rise in users who interacted with the FAQ links

in comparison to the previous iterations. Even though “Read Only FAQ” metric do

not reflect the jump, we still got good insights about users problems on different

locations.

Unfortunately we also detected some problems. While trying to deliver a new

feature as fast as possible we forgot about the issues that hardcoded FAQ links can

cause. There were a couple of situations where some of the shown questions were

updated and their URLs were changed. To fix these broken links we had to modify

the URLs in our code and do a new release. If we had made the system more

dynamical (ex. get FAQ links from the database) then the fix would not need such a

big effort from us. We could even change the questions on an ongoing basis.

37

5.4. Implementation details
The implemented feature was solely built by the thesis author with different

client-side technologies. The technology stack includes:

● JavaScript (JS) programming language,

● AngularJS framework,

● different AngularJS modules,

● Karma test runner [23],

● Jasmine test framework [24].

TransferWise client-side applications are mostly built in AngularJS framework.

Karma is used to run AngularJS tests and Jasmine is a well known and respected

Behavior-Driven test framework, which allows to write tests that reflect the

behavior desired. Gateway module structure is shown on Figure 5.14.

Figure 5.14: Gateway structure

38

Chapter 6

Future works
6

6.1. Analysing Service via FAQ
In TransferWise we highly appreciate our customers feedback, but it is hard to get

it without annoying them too much. They need to see their benefit in it. This is

where the FAQ come into to the play.

When the team looks at the metrics and sees possibilities for improvement in the

product then they can make hypotheses of the shortcomings and validate them by

showing related FAQ links. When these links get the expected amount of attention

from users then they can be sure that the problems exist. At the same time the

users get help while not knowing that they are giving a feedback.

6.2. Structuring Customers Questions and Feedbacks
In TransferWise the email contact cases take the longest time to get resolved

compare to the Phone and Live chat cases. To lower the resolve time we can build

our own structured form, something that we tried with the Bug Report, or use a 3rd

party services that focuses on a in-app messaging. New system would replace the

Email option in the Gateway.

39

Conclusions

In this work, we introduced the principles of Lean Software Development, gave a

short introduction to Build-Measure-Learn cycle, minimum viable product and

test-driven development practices. We defined the problem about the

inconsistency in TransferWise help links and the problem with encouraging the

users to contact CS before reading the FAQ. We implemented a solution for the

stated problems after analysing the alternative solutions from other services.

Our solution to follow above mentioned principles and practices is presented in the

form of the new module called "Help Gateway". It is fully covered with automated

tests, written in JavaScript on AngularJS platform and is easily integratable to

TransferWise. This results in lacking dependencies on server-side and guarantees

short delivery time for new features. The Gateway is accessible from every page

with a click on the "Get Help" button.

The proposed solution proves that the current link between TransferWise

customers and help was insufficient, but the solution has the potential to be even

more useful. We have produced some ideas for future development, which we want

to try out and experiment in the near future.

40

Abbreviations

1. LSD - Lean Software Development

2. BML - Build-Measure-Learn cycle

3. MVP - Minimum Viable Product

4. TDD - Test Driven Development

5. CS - Customer Support

6. FAQ - Frequently Asked Questions

7. KPI - Key Performance Indicator

41

Bibliography

[1] M. Poppendieck, T.Poppendieck, Lean Software Development: An Agile

Toolkit. Addison-Wesley, 2003.

[2] T.Ohno, N.Bodek, Toyota Production System: Beyond Large-Scale

Production, Productivity, 1988.

[3] J.P.Womack, D.T.Jones, D.Roos, The Machine That Changed the World,

Free Press, 2007.

[4] M. Fowler, “Agile Versus Lean”,

http://martinfowler.com/bliki/AgileVersusLean.html, 2008 [Accessed

April 2015].

[5] “Manifesto for Agile Software Development”, http://agilemanifesto.org

[Accessed April 2015].

[6] M. Poppendieck, T.Poppendieck, Implementing Lean Software

Development: From Concept to Cash, Addison-Wesley, 2007.

[7] All About Agile blog, “Lean Principles”,

http://www.allaboutagile.com/lean-principles-4-defer-commitment,

November 2010 [Accessed April 2015].

[8] E. Ries, The Lean Startup, Crown Publishing, 2011.

[9] Build-Measure-Learn figure,

http://www.400minutes.com/build-measure-learn-spiral [Accessed

May 2015].

[10] K. Beck, Test Driven Development: By Example, Addison-Wesley, 2002.

[11] “What is TransferWise?”,

https://transferwise.com/support/customer/en/portal/articles/15675

14 [Accessed April 2015].

[12] A. Croll, B. Yoskovitz, Lean Analytics: Use Data to Build a Better Startup

Faster, O'Reilly Media, 2013.

42

http://martinfowler.com/bliki/AgileVersusLean.html
http://agilemanifesto.org/
http://www.allaboutagile.com/lean-principles-4-defer-commitment/
http://www.400minutes.com/build-measure-learn-spiral
https://transferwise.com/support/customer/en/portal/articles/1567514
https://transferwise.com/support/customer/en/portal/articles/1567514

[13] “What is Zapier?”, https://zapier.com/how-it-works [Accessed April

2015].

[14] S. Weinschenk, “100 things you should know about people: You React To

Colors Based On Your Culture”,

http://www.blog.theteamw.com/2011/01/12/100-things-you-should-kn

ow-about-people-51-you-react-to-colors-based-on-your-culture,

January 2011 [Accessed April 2015].

[15] S. Krug, Don't Make Me Think: A Common Sense Approach to Web Usability,

2005.

[16] Shaun Cronin, “Cultivating Trust Through Web Design”,

http://webdesign.tutsplus.com/articles/cultivating-trust-through-web-

design--webdesign-9727 [Accessed May 2015].

[17] “About UserVoice”, https://www.uservoice.com/about [Accessed April

2015].

[18] T. Byttebier, “The Best Icon is a Text Label”,

http://thomasbyttebier.be/blog/the-best-icon-is-a-text-label, March

2015 [Accessed April 2015].

[19] AngularJS platform, https://angularjs.org [Accessed April 2015].

[20] “About Mixpanel analytics tool”, https://mixpanel.com/about [Accessed

April 2015].

[21] Angular-translate module, https://angular-translate.github.io [Accessed

April 2015].

[22] Angular-route module, https://docs.angularjs.org/api/ngRoute,

[Accessed April 2015].

[23] Karma, http://karma-runner.github.io [Accessed May 2015].

[24] Jasmine, http://jasmine.github.io [Accessed May 2015].

43

https://zapier.com/how-it-works/
http://www.blog.theteamw.com/2011/01/12/100-things-you-should-know-about-people-51-you-react-to-colors-based-on-your-culture/
http://www.blog.theteamw.com/2011/01/12/100-things-you-should-know-about-people-51-you-react-to-colors-based-on-your-culture/
http://webdesign.tutsplus.com/articles/cultivating-trust-through-web-design--webdesign-9727
http://webdesign.tutsplus.com/articles/cultivating-trust-through-web-design--webdesign-9727
https://www.uservoice.com/about/
http://thomasbyttebier.be/blog/the-best-icon-is-a-text-label
https://angularjs.org/
https://mixpanel.com/about/
https://angular-translate.github.io/
https://docs.angularjs.org/api/ngRoute
http://karma-runner.github.io/
http://jasmine.github.io/

Non-exclusive licence to reproduce thesis and make thesis public

I, Uku Pattak (date of birth: 26.09.1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of

the copyright,

Customer support gateway built as lean software,

supervised by Jordan Valdma, Helle Hein.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the

intellectual property rights or rights arising from the Personal Data Protection

Act.

Tartu, 13.05.2015

44

