
1
Tartu 2020

ISSN 1024-6479
ISBN 978-9949-03-477-2

DISSERTATIONES 
BIOLOGICAE 

UNIVERSITATIS  
TARTUENSIS

378

SIIM
-K

A
A

R
EL SEPP	

Soil eukaryotic com
m

unity responses to land use and host identity

SIIM-KAAREL SEPP

Soil eukaryotic community responses
to land use and host identity



DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 

378 
 

  



DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 

378 
 
 
 
 
 
 
 
 
 

SIIM-KAAREL SEPP 
 
 

Soil eukaryotic community responses  
to land use and host identity 

  



Department of Botany, Institute of Ecology and Earth Sciences, Faculty of 
Science and Technology, University of Tartu, Estonia 
 
Dissertation was accepted for the commencement of the degree of Doctor 
philosophiae in plant ecology at the University of Tartu on October 5th, 2020 by 
the Scientific Council of the Institute of Ecology and Earth Sciences, University 
of Tartu. 
 
Supervisor: Dr. Maarja Öpik, University of Tartu, Estonia 
 Prof. Martin Zobel University of Tartu, Estonia 
 
Opponent: Prof. Marcel van der Heijden, Department of Agroecology & 

Environment, Agroscope, Switzerland, and University of 
Zurich, Switzerland 

 
Commencement:  Room 218, 40 Lai Street, Tartu, on December 8th 2020 at 

13.15. 
 
 
Publication of this thesis is granted by the Institute of Ecology and Earth 
Sciences, University of Tartu and by the Doctoral School of Earth Sciences and 
Ecology created under the auspices of the European Social Fund. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
ISSN 1024-6479 
ISBN 978-9949-03-477-2 (print) 
ISBN 978-9949-03-478-9 (pdf) 
 
Copyright: Siim-Kaarel Sepp, 2020 
 
 
University of Tartu Press  
www.tyk.ee 

 
 
 
 
 
 
 



5 

CONTENTS 

LIST OF PUBLICATIONS ............................................................................  6 
I  INTRODUCTION .....................................................................................  7 

1.1.  Background ........................................................................................  7 
1.1.1.  Impact of land use ...................................................................  7 
1.1.2.  Host preference in AM fungi ..................................................  9 

1.2.  Objectives of the thesis ......................................................................  10 
II  MATERIALS AND METHODS ..............................................................  11 

2.1.  Complex changes in biota as response to woody encroachment .......  11 
2.1.1.  Study design and data collection .............................................  11 
2.1.2.  Data analysis ...........................................................................  11 

2.2.  Effects of land use on AM fungal communities at small and  
large scales .........................................................................................  12 
2.2.1.  Study design and data collection .............................................  12 
2.2.2.  Data analysis ...........................................................................  13 

2.3.  Specificity patterns in a plant-mycorrhizal network ..........................  14 
2.3.1.  Study design and data collection .............................................  14 
2.3.2.  Data analysis ...........................................................................  15 

2.4.  Molecular and bioinformatics methods .............................................  15 
III  RESULTS .................................................................................................  17 

3.1.  Complex changes in biota as response to woody encroachment .......  17 
3.1.1.  Changes in the belowground biota ..........................................  17 
3.1.2.  Coincidence of plant community patterns above- and below 

ground .....................................................................................  20 
3.2.  Effects of land use on AM fungal communities at small and  

large scales .........................................................................................  20 
3.3.  Specificity patterns in a plant-mycorrhizal network ..........................  23 

IV DISCUSSION ...........................................................................................  26 
4.1.  Soil biota undergoes complex and correlated changes in response to 

woody plant presence ........................................................................  26 
4.2.  Land use modifies the AM fungal communities ................................  27 
4.3.  Host-symbiont preference in plant-AM fungal networks ..................  29 

5.  CONCLUSIONS .......................................................................................  31 
SUMMARY ...................................................................................................  32 
REFERENCES ...............................................................................................  34 
SUMMARY IN ESTONIAN .........................................................................  42 
ACKNOWLEDGEMENTS ...........................................................................  46 
PUBLICATIONS ...........................................................................................  47 
CURRICULUM VITAE ................................................................................  196 
ELULOOKIRJELDUS ...................................................................................  200 
  



6 

LIST OF PUBLICATIONS 

This thesis is based on the following publications denoted in the text by bold 
Roman numerals: 

I. Sepp, S.-K., Davison, J., Moora, M., Neuenkamp, L., Oja, J., Roslin, T., 
Vasar, M., Öpik, M., Zobel, M. (2020). Woody encroachment in grassland 
elicits complex changes in the functional structure of above- and below-
ground biota. Ecosphere (pending) 

II. Sepp, S.-K., Jairus, T., Vasar, M., Zobel, M., & Öpik, M. (2018). Effects of 
land use on arbuscular mycorrhizal fungal communities in Estonia. 
Mycorrhiza, 28(3), 259–268. https://doi.org/10.1007/s00572-018-0822-3 

III. García de León, D., Davison, J., Moora, M., Öpik, M., Feng, H., Hiiesalu, I., 
Jairus, T., Koorem, K., Liu, Y., Phosri, C., Sepp, S., Vasar, M., & Zobel, M. 
(2018). Anthropogenic disturbance equalizes diversity levels in arbuscular 
mycorrhizal fungal communities. Global Change Biology, 24(6), 2649–
2659. https://doi.org/10.1111/gcb.14131 

IV. Sepp, S.-K., Davison, J., Jairus, T., Vasar, M., Moora, M., Zobel, M., & 
Öpik, M. (2019). Non-random association patterns in a plant–mycorrhizal 
fungal network reveal host–symbiont specificity. Molecular Ecology, 28(2), 
365–378. https://doi.org/10.1111/mec.14924 

 
Published papers are reproduced with permission from the publishers. 
 
 
Author’s contributions to the publications: 

Was responsible for ***, contributed substantially **, contributed * 

 Designing the 
study 

Carrying out 
the experiment 

Analysing the 
data 

Preparing the 
manuscript 

I  *** *** 
II ** *** *** *** 
III  * * 
IV ** *** *** *** 

 



7 

I INTRODUCTION 

1.1. Background 

Knowledge on belowground diversity and its dynamics has lagged behind for 
decades, compared to understanding of aboveground biodiversity (Bardgett & 
van der Putten, 2014). Yet, awareness of the importance of soil biota in ecosystem 
functioning has risen at a quickening pace (Wall et al., 2012). Belowground 
organisms are responsible for a vast array of ecosystem functions, including plant 
productivity, organic matter decomposition, nutrient cycling, climate regulation 
and pathogen control (van der Heijden et al., 2015; Delgado-Baquerizo et al., 
2016, 2020). The piecemeal data on soil biodiversity, however, still precludes use 
of this major reserve of biodiversity and function (Orgiazzi et al., 2016) in global 
assessments and policymaking (Cameron et al., 2018). 

Advances in molecular methods have provided the basis for overcoming some 
of the limitations of biodiversity research belowground (Lindahl et al., 2013; Hart 
et al., 2015), allowing ecologists to infer patterns of the structure and function of 
soil (micro-)biota (e.g., Davison et al., 2015; Bahram et al., 2018). It must be noted, 
however, that these rapid advances come at a cost of being prone to bias at nearly 
every step of the process, such as storage and extraction methods, primer choice 
(Garlapati et al., 2019; Beng & Corlett, 2020), as well as dependence on the 
reference data available for accurate species identification (Lücking et al., 2020). 

 
 

1.1.1. Impact of land use 

Growth of the human population has altered a significant proportion of all terrestrial 
ecosystems, with an estimate of roughly 50 million km2 of soils (Goldewijk et al., 
2011) being under anthropogenic use (e.g., crop and livestock production). 
Current and future sustainability of human societies is unconditionally linked to 
the health, functions, and the very existence of soils worldwide (Sanderman et al., 
2017). Fact is that current human dominance of soil resources has several negative 
consequences, ranging from accelerated erosion and compaction to loss of bio-
diversity and soil organic matter and depletion of nutrients (Keesstra et al., 2016). 
Nevertheless, impact of land use on different parts of soil biodiversity is poorly 
quantified (Creamer et al., 2016), and as such, generalisations about soil functional 
changes or losses resulting from anthropogenic change are difficult to make. 

Biodiversity studies typically consider the responses of single trophic groups 
to environmental change. There are mostly methodological reasons for this, as it 
is much more difficult to study different taxonomic groups together than to deal 
with one group. At the same time, the response of a given trophic group may 
depend on the abundance and diversity of other trophic groups (Soliveres et al., 
2016). Thanks to the methodological developments of recent years, it is now 
possible to use environmental DNA metabarcoding to study large fractions of the 
entire biotic community (Calderón‐Sanou et al., 2020) and to address associations 
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(i.e., multivariate correlation; Peres-Neto & Jackson, 2001) among different 
taxonomic and functional groups (Prober et al., 2015; Tedersoo et al., 2016; 
Janssen et al., 2018; Neuenkamp et al., 2018; Wubs et al., 2019; Zinger et al., 
2019). Such a multitaxon approach makes it possible to identify which groups 
exhibit high turnover along the spatial and temporal gradients of interest and thus 
provides indirect information about changes to ecosystem function. Multitaxon 
studies are needed in order to understand which organisms show highest turnover 
and potentially drive changes in total community structure along different 
ecological gradients. 

Interactions between plants and soil microbes have a great importance for 
determining plant fitness and community dynamics, and subsequently whole eco-
system processes (Semchenko et al., 2018). In respect to these soil organisms, 
much attention has been focused towards functionally important functional groups 
such as arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota 
(Tedersoo et al., 2018). With approximately three quarters of terrestrial plant 
species (Brundrett & Tedersoo, 2018) providing photoassimilated carbon to these 
obligately symbiotic organisms in exchange for nutrients foraged from the soil 
matrix (Smith & Read, 2008) and increased resistance to biotic and abiotic 
stresses (Sikes et al., 2010) the amount of effort is unsurprising. Further, AM 
fungi contribute to ecosystem characteristics such as soil aggregation (Rillig et 
al., 2015) and carbon and nitrogen cycling (Hodge & Storer, 2015; Treseder, 
2016). Knowledge of AM fungal diversity is important to understanding of plant 
diversity patterns and community function (Zobel & Öpik, 2014; Kokkoris et al., 
2020), and in turn infer the role of the symbiosis in ecosystems. 

The type and intensity of land use are important drivers of local biodiversity 
(Newbold et al., 2015). With respect to AM fungi, intensification of land use has 
been demonstrated to result in a decrease in AM fungal molecular richness in 
roots (Helgason et al., 1998) or in soil (Lumini et al., 2010; Verbruggen et al., 
2012; Xiang et al., 2014). Other studies have shown either an increase in root AM 
fungal molecular richness (Vályi et al., 2015) or no changes in soil AM fungal 
molecular richness (Dai et al., 2013) under intensive land use. However, no studies 
have examined if these discrepancies between studies might be influenced by 
initial diversity of ecosystems, which is becoming equalized by disturbance. It has 
been suggested that anthropogenic activity on community diversity and com-
position operates via facilitation of disturbance-tolerant, generalist taxa. Indeed, 
such patterns have been recorded among soil fungi at the regional scale (Mueller 
et al., 2016). 

Current information about the effect of land use on AM fungal communities 
is based mostly on comparisons of different agricultural practices (e.g., Jansa 
et al., 2003; Lumini et al., 2011; Manoharan et al., 2017). Moreover, while these 
studies suggest that agricultural intensification can lead to decreases in AM 
fungal diversity and changes in community composition, they do not explicitly 
compare anthropogenic sites with analogous natural habitat. In order to identify 
large-scale variation in the effects of anthropogenic disturbance on AM fungal 
communities, it is necessary to compare natural and anthropogenic ecosystems in 
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otherwise analogous habitat conditions across a geographically broad range of 
locations. Further, there is much less information about the effects of e.g., 
seminatural land use or forestry management on AM fungal communities (but see 
Koorem et al., 2017).  

Particular AM fungal taxa may be favoured or inhibited by specific abiotic 
conditions such as soil pH (Dumbrell et al., 2010), nitrogen and phosphorus 
availability (Camenzind et al., 2014; Liu et al., 2015), and soil texture (Lekberg 
et al., 2007). The effects of land use on diversity and composition of AM fungi 
may result from different mechanisms. In open treeless ecosystems such as arable 
fields and cultivated grasslands, change in AM fungal community composition 
can be caused by different responses of fungal taxa to the combination of 
mechanical disturbance and nutrient addition (Säle et al., 2015). AM fungal 
community composition in plant roots also may depend on light conditions; 
individual AM fungi can benefit or suffer from increased light availability to the 
host plant (Öpik et al., 2009; Liu et al., 2015; Koorem et al., 2017). Land use 
changes associated either with the removal of upper vegetation layers (forest 
clearcutting) or the introduction of an upper canopy (shrub and tree encro-
achment) may affect AM fungal communities by increased or decreased carbon 
supply from plants to the fungi under changed light conditions. 

 
 

1.1.2. Host preference in AM fungi 

Generally, AM fungi have been shown to exhibit low host specificity (e.g., 
compared to root endophytes; Abrego et al., 2020). Due to the relatively low 
number of fungal species (ca 288 described or ca 1700 putative species (Öpik & 
Davison, 2016); and relatively high number of mycorrhizal plant species (esti-
mates up to 90% of the ca 308 000 known vascular plant species; Fitter & Moyer-
soen, 1996; Christenhusz & Byng, 2016), individual AM fungal species must 
associate with many different host plants, a fact that has been demonstrated in an 
analysis of a global scale dataset by Lekberg and Waller (2016). However, when 
viewed at the scale of a single community, AM fungi have been found to associate 
non-randomly with different plant species (Davison et al., 2011, 2016; Bainard 
et al., 2014). 

It is possible that host – AM fungal preferences might manifest at the level of 
plant functional groups, rather than individual plant species. It has been shown 
that ecological groups of plant species associate with a specific set of AM fungal 
species (Öpik et al., 2009; Davison et al., 2011; Koorem et al., 2017), with some 
evidence that plant adaptation to certain environmental conditions is related to 
the ability to selectively form functional symbiosis with AM fungi (Osborne et al., 
2018). At a finer taxonomic scale, the composition of AM fungal communities in 
the roots of plant individuals appears to depend on plant functional traits (Koti-
línek et al., 2017). These lines of evidence suggest that the ecological properties 
of plants can substantially shape AM fungal community composition (Geml & 
Wagner, 2018), and thus possibly the function of the fungal microbiome assembled 
in the roots (van der Heijden & Hartmann, 2016). 
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1.2. Objectives of the thesis 

The main objective of the thesis was to assess the effect of anthropogenic 
influence on soil microbial communities. Toward that goal, we used eDNA 
metabarcoding from soil (Papers I, II, III) and roots (Paper II) to study the 
responses of mainly the arbuscular mycorrhizal fungal, but also other co-existing 
soil eukaryotic groups to land use change. Most of the work was carried out on 
understudied seminatural ecosystems to fill the knowledge gaps in these kinds of 
habitat types, but we also aimed to generalize, and thus addressed AM fungal 
communities in anthropogenic vs natural settings at a global scale. 

A secondary aim was, drawing from the previous results, to establish the 
occurrence of possible host-symbiont preference in the AM fungal – plant 
interaction network, as host preference is one of the key areas of research 
needed to interpret results from metabarcoding, and to guide the application of 
plant symbiotic partners. 

In particular, the papers comprising the thesis focused on the following: 
Paper I: The paper studied the effect of management dependent presence or 

absence of woody vegetation on associations between different taxonomic and 
functional groups of soil biota in a wooded meadow. We used eDNA meta-
barcoding to address several taxonomic and functional groups in parallel, con-
sidering eukaryotes (in particular soil micro- and mesofauna), fungi and more 
specifically arbuscular mycorrhizal (AM) fungi. We aimed to infer the role of 
woody plants as ecosystem engineers (sensu Jones et al., 1994, 1996) in driving 
the diversity and composition of the wider biotic community, notably above-
ground vegetation and soil biota. In addition, we sought to assess the effective-
ness of soil metabarcoding in describing the plant communities in comparison 
with conventional vegetation plots. 

Papers II, III: Papers II and III were, in general, targeted towards describing 
the effect of land use on AM fungal communities. Toward that goal, Paper II 
studied the response of AM fungi to different land use types, including both ‘pulse’ 
(e.g., forest clearcutting) and ‘press’ (e.g. seminatural grassland management) 
type (Bender et al., 1984) of human impacts. Paper III took a more global view 
on the impact of humans and looked at the effect of land-use-induced anthropo-
genic disturbance on the diversity and composition of AM fungal communities 
using a global set of paired anthropogenic (disturbed) and natural (undisturbed) 
plots. 

In Paper II, as an additional aim, we compared the AM fungal communities of 
plant roots and surrounding soil to assess the effect of host plant in the formation 
of the observed AM fungal set. 

Paper IV: We aimed to establish whether plant species exhibit specificity 
towards their fungal symbionts, and whether such specificity depends on plant 
traits. We accomplished this by exhaustively sampling a local plant – AM fungal 
network and describing the host effect of the plant species as well as looking at 
the bipartite network level characteristics of the system. 
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II MATERIALS AND METHODS 

2.1. Complex changes in biota as response  
to woody encroachment 

2.1.1. Study design and data collection 

Paper I assessed the compound effects of woody encroachment on the com-
position and diversity of grassland soil biota and aboveground vegetation. The 
study compared wooded and open patches in a wooded meadow habitat where 
the environmental conditions were homogeneous throughout the study area, and 
sampling plots differed by presence or absence of woody vegetation. The 
meadow of 153 ha has been a hayfield since at least the beginning of the 18th 
century, but probably for centuries earlier (Kukk & Kull, 1997; Kukk, 2004). The 
mowed area began to decrease in the 1940s, and currently only about 15 ha is 
used as a hayfield and mown annually. According to information from local 
landowners, currently wooded patches developed around large tree individuals 
during the 1940s and further expanded during the 1960s and 1970s. 

Sampling was conducted in plots of 30 × 30 m, in each of which nine regularly 
spaced soil samples were collected. Two plots were located in open parts and two 
in wooded parts of the meadow. For each sampling point, we also described a 
1 × 1 m vegetation subplot where all vascular plant species in the ground‐layer 
community were recorded and their abundance was estimated as percentage cover 
(Peet & Roberts, 2013). The study encompassed the aboveground vegetation, 
general fungi, arbuscular mycorrhizal (AM) fungi, soil animals and plant DNA 
fragments present in soil. 

 
 

2.1.2. Data analysis 

The general soil fungal and soil animal data were split into functional and dietary 
groups, respectively, to draw conclusions about the patterns of more particular 
soil organism groups. Animal taxa were grouped based on dietary traits according 
to expert opinion, namely fungivores, bacterivores, litter feeders, root feeders, 
macro plant feeders, algal/lichen feeders, predators and parasitic animals. Fungal 
taxa were further classified into eight functional groups, based on the FUNguild 
database (Nguyen et al., 2016), namely animal pathogens, plant/fungal pathogens 
(including parasites), saprotrophs (i.e., fungi whose main autecological niche is 
saprotrophy) and fungal decomposers (i.e., fungi that fill the decomposition niche 
in a community – including saprotrophs, but also certain mycorrhizal fungi; 
Lindahl & Tunlid, 2015), AM fungi, EcM fungi, fungal endophytes (but 
excluding fungi with recorded pathotrophic mode), and other symbiotrophs 
(mostly ecto- and orchid mycorrhizal, and lichenized fungi). Only FUNguild 
assignments with confidence levels of Probable and Highly Probable were 
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retained, whereas remaining fungal taxa were considered as undefined fungi. To 
compare soil biotic community richness, plant community richness, and composi-
tional differences between the two habitat types, we fitted linear mixed models 
(LMM) and used permutational multivariate ANOVAs (PERMANOVA). LMMs 
(function lmer() from R package lme4; Bates et al., 2015) used sample taxon 
richness as the dependent variable, habitat as an independent variable and plot as 
a random factor; the results of richness models were validated by parallel analyses 
with Chao extrapolated Shannon diversity (Chao et al., 2014) as the dependent 
variable. We tested the effect of habitat on the composition of soil biotic com-
munities using PERMANOVA with 999 permutations (function adonis() from R 
package vegan), assuming a nested data structure of plots within habitat types. 
For a coarse-scale overview of the biotic changes associated with woody plant 
encroachment, we performed a χ2 test (function Chisq.test() in R) on the 
cumulative sequence count table of the groups of soil biota (fungal functional 
groups, animal dietary groups, and plants) in either habitat type. The standardized 
residuals (standardized by residual cell variance) of individual cells were then 
used to infer the relative effect of each group of soil animals on the difference 
between the two habitat types. Pairwise correlation (i.e. a scaled measure of 
covariance) among groups of soil organisms and the plant community were 
assessed using Procrustean randomization tests (Peres-Neto & Jackson, 2001), 
using the functions procrustes() and protest() from the vegan package. 
 
 

2.2. Effects of land use on AM fungal communities  
at small and large scales 

2.2.1. Study design and data collection 

The study in Paper II incorporated six regional habitat types from 12 sites in 
Estonia: semi-natural grazed dry calcareous grassland, overgrown ungrazed 
calcareous grassland, semi-natural wooded meadow (haymaking once per year), 
farmyard lawn, boreonemoral mixed forest, and clear-cut sites of boreonemoral 
forest. We identified AM fungi in the roots of a single plant species to avoid the 
effects of host species identity on root AM fungal community composition (Jansa 
et al., 2008; Dumbrell et al., 2010). Five randomly chosen individuals of Prunella 
vulgaris – a herbaceous plant species that occurs in a wide array of grassland and 
forest ecosystems – were excavated from each site. From the soil surrounding the 
roots of each focal plant individual, 5 g soil samples were collected for 
identification of the AM fungi available to the focal plant in soil. 

For Paper III, 16 sites were included worldwide with two plots sampled per 
site: a natural grassland (unwooded sites), forest or shrubland (both considered 
wooded sites), and a corresponding anthropogenic homologue. The anthropo-
genic plot was located nearby (<10 km apart) and represented either an inten-
sively managed arable land, cultivated lawn, heavily overgrazed pasture, roadside 
or wasteland (Table S1). Each plot represented an area with similar vegetation in 
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terms of vegetation height and the identity of dominant plant species. In all cases, 
disturbance had completely altered the natural plant community with virtually no 
plant species from the undisturbed community present. 

 
 

2.2.2. Data analysis 

In Paper II, We used linear mixed effects model to compare mean sample AM 
fungal richness and diversity among different habitat types. To account for the 
non-independence between samples from the same site, we included site in the 
models as a random factor, thereby effectively nesting samples within site. For 
comparisons of AM fungal community composition among habitat types, non-
metric multidimensional scaling (NMDS) of Bray-Curtis distances was used to 
visualize the separation of communities. To test for significant differences among 
communities, we used nested two-way PERMANOVA with sample type and site 
nested within habitat as explanatory variables. For pairwise differences between 
habitat community compositions, we ran PERMANOVA for all possible habitat 
pairs and used Bonferroni correction to set significance levels for p-values. 
UniFrac distance (Lozupone & Knight, 2005) also was used to test for differences 
in phylogenetic community composition among samples.  

To compare the difference in the dispersion of AM fungal communities in soil 
and root samples in Paper II, we calculated beta diversity in two complementary 
ways. First, by taking the group average distance from the centroid of all samples 
of that type (either root or soil). The alternative included calculating the mean 
distance to the centroid for the two sample types within individual sites and 
testing the differences in within-site dispersion (for both root and soil samples) 
among habitat types. 

In Paper III, The effects of disturbance (natural, anthropogenic), ecosystem 
type (wooded, unwooded) and their interaction on alpha (AM fungal taxon 
richness and Chao extrapolated diversity (Chao et al., 2014)) and beta diversity 
estimates were assessed using linear mixed models). Soil pH and soil phosphorus 
concentration (mg/kg) were included as covariates and a random effect structure 
of plot nested within site was incorporated. The proportion of cultured taxa in 
samples was modelled using a generalized linear mixed model (GLMM) with a 
binomial error structure and the same random and fixed effect structures as for 
the LMMs. Permutation multivariate analyses of variance (PERMANOVA) based 
on the single matching coefficient distance to centroid (dCensm) were conducted 
to assess the effects of ecosystem type, disturbance and their interaction, soil pH 
and soil phosphorus concentration on AM fungal taxonomic composition. 

Beta diversity in Paper III was estimated within plot and within disturbance 
category (across sites). Following the recommendations of Anderson et al. (2011), 
we (i) estimated variation among communities with a measure of multivariate 
dispersion (dCen; the distance of each sample from a group centroid in multi-
variate space (Anderson et al., 2006)), based on dissimilarities derived using the 
simple matching coefficient (dCensm); and (ii) explored relationships between 
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community structure and environmental variables (including ecosystem type, 
disturbance and soil chemistry) using nonmetric multidimensional scaling 
(NMDS) based on dCensm. 

 
 
2.3. Specificity patterns in a plant-mycorrhizal network 

2.3.1. Study design and data collection 

In Paper IV, the study was carried out in a phytocoenotically and edaphically 
homogenous plot in a semi-natural dry calcareous (alvar) grassland. Sampling 
was carried out as two temporal snapshots during one year: in the first half of 
July, and in the first half of September. On both occasions, the entire root system 
of up to five individuals of each plant species present in the ca 1000 m2 plot 
(45 × 25 m) was excavated and subsequently sequenced for AM fungi. In total, 
35 plant species (including two non-mycorrhizal species) were sampled (33 in 
July; 30 in September), and 224 samples were collected. The plant species 
belonged to 19 families, including 2 monocot and 15 eudicot families. 

The local plant community was described with the help of 10 1 × 1 m 
vegetation plots from a separate study at the same site, conducted in the same 
year as the current study (García de León et al., 2016). Percentage plant cover 
was estimated visually for each species in each plot. The local frequency of a 
plant species was calculated as the proportion of plots in which it was present; its 
local abundance was calculated as the sum of its cover values in all plots. The 
local abundance measure was taken to represent a coarse overview of the relative 
dominance of different plant species in the study habitat. We classified two plant 
functional groups for further analyses, namely grasses and forbs. Plant mycor-
rhizal status was defined as the frequency of occurrence of mycorrhizal symbiosis 
of said plant species in literature records (Gerz et al., 2018). Mycorrhizal status 
was assigned on the basis of the data set in Gerz et al.,(2016), using two 
approaches: (a) mycorrhizal status as a categorical variable: plant species that 
have been consistently described as colonized by AM fungi in reporting literature 
are considered obligately mycorrhizal (OM); species sometimes reported as being 
colonized by AM fungi and sometimes not are considered facultatively mycor-
rhizal (FM); and (b) mycorrhizal status as a continuous variable (mycorrhizal 
status coefficient): calculated as the proportion of empirical observations of AM 
fungal colonization among all reports of mycorrhizal status for the particular 
plant species (Gerz et al., 2016); larger values indicate a more obligatory state of 
AM formation. 
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2.3.2. Data analysis 

To test which plant characteristics were related to AM fungal richness in root 
samples, we used linear mixed-effects models. The explanatory variables were 
plant mycorrhizal status, plant mycorrhizal coefficient, plant functional group, 
plant local abundance and plant local frequency, as well as the time of sampling. 
The response variable was the number of AM fungal virtual taxa in a plant root 
sample. To account for the non-independence of samples from the same species, 
we included plant species as a random factor. We used PERMANOVA analyses 
of Morisita-Horn distances to test the effects of plant species, time of sampling, 
plant mycorrhizal status, plant mycorrhizal coefficient, plant functional group, 
plant local abundance or plant local frequency on AM fungal community com-
position in root samples. 

For calculating the plant-AM fungal network parameters, we used the 
aggregated species-level matrix with cells containing mean AM fungal taxon 
relative abundance per plant species across both seasons, and chose network indices 
that were able to incorporate abundance data. To test whether the observed 
network exhibited non-random patterns, we used a null model approach. In short, 
we compared the network characteristic value calculated from the real life data 
matrix to a pool of values from 999 matrices that were generated by randomly 
reshuffling the original data frame (using a conservative quasiswapcount algo-
rithm). If the real value lied outside the 95% confidence interval of the distri-
bution of the random values, the observed network was said to differ significantly 
from random, i.e., some biological factor is influencing the pattern. 

 
 

2.4. Molecular and bioinformatics methods 

For the soil sampling in Papers I, II and III, DNA was extracted from each 
individual 5 g sample of dried soil with the MoBio PowerMax Soil DNA Isolation 
Kit (MoBio Laboratories, Carlsbad, USA). For Papers II and IV, plant root 
sampling comprised randomly subsampling the root system of the target 
individual’s root system up to a maximum of 75 mg (depending on availability 
of material), and extracting the DNA using the PowerSoil®‐htp 96 Well Soil 
DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA). 

AM fungal DNA from the small-subunit (SSU) ribosomal RNA gene V4 
region was amplified using the AM fungal specific primer pair WANDA 
(Dumbrell et al., 2011) and AML2 (Lee et al., 2008) for Paper I, and NS31 
(Simon et al., 1992) and AML2 for Papers II, III and IV. In Paper I, the fol-
lowing other amplicons and primer pairs were used: general fungi – ITS2 region 
with degenerate primer pair fITS7 and fITS7o (forward) and ITS4 (reverse 
primer; White et al., 1990; Ihrmark et al., 2012; Kohout et al., 2014); plants – 
chloroplast trnL region with primers trnL(UAA)g and trnL(UAA)h (Taberlet et 
al. 2007); general eukaryotic community – 18S SSU rRNA gene V4 region with 
primers F574 and R952 (Hadziavdic et al. 2014). Sequencing was performed on 
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Illumina MiSeq platform for Paper I and 454 Life Sciences platform for Papers 
II, III and IV. 

The bioinformatics workflow for all included papers has followed the steps 
described in Vasar et al. (2017). In short, sequence reads go through barcode and 
primer verification and removal, and quality filtering; Illumina-generated paired-
end reads are combined. Chimeric sequences are omitted. The sequences are then 
submitted to a BLAST+ (Camacho et al., 2009) search against the respective 
databases: MaarjAM (Öpik et al., 2010) for AM fungi (Papers I – IV), UNITE 
(Nilsson et al., 2018) for all fungi (Paper I), and GenBank (Clark et al., 2016) 
for plants and general eukaryotic sequences (Paper I). In the MaarjAM database, 
SSU marker gene data from AM fungi is used to define phylogenetically determ-
ined species estimates called virtual taxa, henceforth referred to as VT. The 
resulting taxon identifications are subsequently collected into sample × taxon 
community matrices, which is the basis of all subsequent statistical analyses. 
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III RESULTS 

3.1. Complex changes in biota as response  
to woody encroachment 

3.1.1. Changes in the belowground biota 

Thirteen out of eighteen studied organism groups exhibited different mean 
richness per sample between the two studied habitat types, notably woody and open 
patches (Table 1). In all cases, mean sample richness was higher in open patches, 
except for EcM fungi, which exhibited significantly higher richness in wooded 
patches. In addition to the differences observed among plant communities (pre-
sented above), the two habitats hosted different communities of general soil fungi 
(ITS2; PERMANOVA R2 = 0.2, p = 0.002) and soil animals (SSU V4; PERMA-
NOVA R2 = 0.13, p = 0.002), with the soil fungal communities of wooded habitat 
being distinct between the two sampling plots. With the exceptions of litter and 
macro plant -feeding soil animals, all soil organism groups included differed 
highly significantly in their community compositions between the two habitat 
types (Table 1), with habitat accounting for 9% (bacterivorous animals) to 44% 
(plants) of compositional variation. Out of 171 tested pairwise compositional 
correlations between communities of the groups included in the study (Procrustes 
Protest analysis), 99 indicated significant correlation at the sample level among 
different organism groups. Notable significant results included correlations bet-
ween community compositions of plants and all fungi (ITS2 general fungal 
amplicon; r = 0.9, p = 0.003), plants and all soil animals (r = 0.7, p = 0.003), 
plants and AM fungi (AM-fungal specific amplicon; r = 0.6, p = 0.003), and all 
fungi and all soil animals (r = 0.8, p = 0.003). In terms of habitat-wise differences 
at the organism group level, there was a marked effect of habitat type on the 
relative abundance (based on sequence count) of different soil organism groups 
(contingency table χ2 = 2.39 × 104, df = 17, p-value < 0.001; Fig. 1), with AM, 
EcM, other symbiotrophic fungi and fungal decomposers contributing most to the 
χ2 score. 
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Figure 1 The relative contribution of each studied functional group to the community 
compositional difference between wooded and open habitats in Paper I. Contribution of 
each functional group and habitat combination to the overall χ2 score in a contingency 
table of cumulative organism group frequency (sequence counts of the organism groups 
among all samples from each habitat) are presented. Red colors indicate positive 
association with a habitat type; blue colors indicate negative association. Color intensity 
indicates the size of the standardized residual between expected and observed frequency 
(sequence counts). Plants, fungi, and soil micro- and mesofauna were addressed. (Figure 3 
in Paper I). 
 
 
  

Parasitic animals

Predators

Algal/lichen feeding animals

Macro plant feeding animals

Root feeding animals

Litter feeding animals

Bacterivorous animals

Fungivorous animals

Undefined fungi

Endophytic fungi

Other symbiotrophic fungi

Decomposer fungi (incl. mycorrhizal)

Saprotrophic fungi

Animal pathogenic fungi

Plant/fungal pathogenic fungi

EcM fungi

AM fungi

Plants (DNA based)

Open Wooded

−100

−50

0

50

100

Standardized
residuals



20 

3.1.2. Coincidence of plant community patterns above-  
and below ground 

Vegetation plots indicated differences between wooded and open patches in mean 
plant species richness per sample (open: 28.7±1 SE and wooded: 10.2±0.5 SE 
species; LMM p < 0.001) and in plant community composition (PERMANOVA 
R2 = 0.5, p < 0.001). Using plant DNA sequences from soil, a similar pattern was 
detected, with wooded and open patches differing in mean sample richness (open: 
19.9±1.4 SE and wooded: 13.7±0.8 SE; LMM p = 0.022) and community 
composition (PERMANOVA R2 = 0.44, p = 0.002). A strong association between 
plant communities detected by vegetation survey and from plant DNA in the soil 
was also revealed by Procrustes analysis (r = 0.879; p < 0.001). 
 
 

3.2. Effects of land use on AM fungal communities  
at small and large scales 

In Paper II, no clear pattern was observed in cumulative VT number per site 
among the habitat types representing different land uses. Likewise, mean VT 
richness per sample did not differ among habitat types either in soil (F5, 48 = 0.45, 
p = 0.8) or in root samples (F5, 31 = 1.92, p = 0.23). Mean extrapolated diversity 
(expH´) per sample likewise showed no significant effect of habitat type (soil: 
F5, 48 = 0.36, p = 0.86; roots: F5, 31 = 0.91, p = 0.53; Fig. 2). However, mean VT 
richness per sample was significantly greater in soil samples than in root samples 
(F = 75.46, df = 90, p < 0.001), with a mean sample VT richness of 26 (±0.97 SE) 
and 16 (±0.89 SE) respectively. Ninety VT, representing a large majority of 
sequences (158 752 sequences), were detected in both sample types, 30 VT were 
found only in soil samples (1151 sequences) and 5 VT were found only in root 
samples (31 sequences). 

In Paper III, ecosystem type (naturally wooded vs. unwooded) influenced 
AM fungal richness (Figure 2a), and Chao extrapolated diversity per sample 
(Figure 2b). Specifically, unwooded sites exhibited higher alpha diversity per 
sample than wooded sites. Disturbance did not have a unidirectional effect on 
AM fungal richness (Figure 2a), Chao extrapolated diversity per sample (Figure 
2b) or on any measure of beta diversity (Figure 2c) per plot. In sites where mean 
natural AM fungal diversity was low, disturbance increased mean richness 
(Figure 2e), Chao extrapolated diversity (Figure 2f) and beta diversity per plot 
(Figure 2g); while it decreased mean diversity estimates per plot in sites where 
mean natural diversity was high. Disturbance also generally increased the pro-
portion of cultured taxa in Paper III (Figure 2d,h). 
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Figure 2 Effect of disturbance on arbuscular mycorrhizal fungal diversity estimates in 
Paper III: Richness (a), Chao extrapolated diversity (b), beta diversity (c; dCensm), and 
proportion of cultured taxa per sample (d) for unwooded and wooded sites. Within-site 
standardized differences in diversity between anthropogenic and natural plots (y-axis) vs. 
natural plot diversity (x-axis) for richness (e), Chao extrapolated diversity (f), beta 
diversity (g) and the proportion of cultured taxa (h). Letters within panels (a–d) (n = 177) 
indicate significant differences between ecosystem and disturbance categories identified 
in models (Table S4). Thick lines represent medians; boxes indicate interquartile ranges; 
and whiskers show maximum and minimum values per sample. Bars (sites) within panels 
e–h (n = 32) are arranged in rank order. Differences above zero indicate positive effects 
of disturbance on diversity; differences below zero indicate negative effects of 
disturbance. AU1: Australia 1; AU2: Australia 2; CH1: China 1; CH2: China 2; CH3: 
China 3; CH4: China 4; EE: Estonia; GD: Guadeloupe; FG: French Guiana; GA: Gabon; 
GR: Greece; IC: Iceland; LH: Lithuania; SW: Sweden; TH: Thailand; US: United States. 
R-squared describes Pearson correlation between diversity in the natural plot and the 
diversity difference (i.e. the result of subtracting diversity in the natural plot from 
diversity in anthropogenic plot). (Figure 2 in Paper III). 
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Community composition (reported as results of PERMANOVA tests here and 
throughout the paragraph) of AM fungi in Paper II differed among habitat types 
(F = 6.7, df = 5, p = 0.001) and sample types (F = 21.1, df = 1, p = 0.001), with a 
significant interaction between the two factors (F = 1.4, df = 5, p = 0.028). The 
habitat effect remained when separately analysing soil samples (F = 5.6, df = 5, 
p = 0.001) and root samples (F = 2.5, df = 5, p = 0.001). Phylogenetic community 
composition was also significantly different among habitat types (F = 14.6, df = 5, 
p = 0.001) and sample types (F = 50.9, df = 1, p = 0.001), with a significant 
interaction between habitat and sample type (F = 2.6, df = 5, p = 0.001). In Paper 
III, ecosystem type (R2 = 18%, p < 0.01), disturbance (R2 = 5% p < 0.01), their 
interaction (R2 = 4%, p = 0.01) and pH (R2 = 6%, p = 0.04) influenced AM fungal 
taxonomic composition. 

Beta diversity analyses in Paper II showed more dispersion between soil 
samples than root samples both when using simple taxon abundances (F = 19.0, 
df = 1, pperm < 0.001; Figure 3), and when accounting for both taxon abundances 
and phylogenetic diversity (F = 17.5, df = 1, pperm < 0.001). The within-site beta 
diversity was marginally significantly different among habitats (F = 4.2, df = 5, 
p = 0.0547) when sample type and site were included in the model. In Paper III, 
beta diversity within plot, measured using dCensm, did not differ significantly 
between wooded and unwooded sites; however, alternative beta diversity metrics 
indicated higher beta diversity per sample in wooded sites. 
 

Figure 3 Mean sample distances from beta diversity centroid for soil and root samples in 
Paper II, using Morisita-Horn distance. Mean values (middle line), 1st and 3rd quartiles 
(boxes), 1.5 times inter-quartile range (whiskers) and outliers (dots) are shown. Boxes 
topped by the same letter do not differ significantly at p ≤ 0.05 by ANOVA. (Figure 4 in 
Paper II). 
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3.3. Specificity patterns in a plant-mycorrhizal network 

In the network study in Paper IV, 98 AM fungal VT were detected from 33 plant 
species in summer and 97 VT from 30 plant species in autumn. Mean AM fungal 
VT richness per sample was significantly affected by plant species (F23,191 = 4.63, 
p < 0.001). Furthermore, mean AM fungal VT richness was affected by plant 
functional group (F1,28 = 7.32, p = 0.011) and the local abundance of plant species 
(F1,28 = 7.645, p < 0.001), with grasses and locally more abundant plant species 
having more AM fungal VT per sample respectively (Fig. 4 a, f). Plant mycor-
rhizal status coefficient was positively related to mean sample AM fungal rich-
ness (F1, 28 = 6.094, p = 0.02 Fig. 4c). Plant species had the strongest effect on the 
taxon composition of AM fungal communities in root samples; sampling time 
and plant functional group also exhibited a marginally significant effect on AM 
fungal community composition, but explained little variance. 

Figure 4 Richness of arbuscular mycorrhizal (AM) fungal VT per sample among plant 
functional groups, plants of different mycorrhizal status, sampling times, and in relation 
to plant species frequency and abundance in Paper IV. Differing letters in boxplots and 
trend lines in scatterplots indicate a significant effect (linear mixed models with plant 
species as random factor). In boxplots, mean values (middle line), 1st and 3rd quartiles 
(boxes) and up to 1.5 times inter-quartile range (whiskers) are shown. Zero values for 
plant local frequency and local richness indicate that these plants were not identified in 
other plant quadrats on which these measures were based, but were present in our plot. 
(Figure 2 in Paper IV). 
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The modularity of the plant-AM fungal interaction network, which included all 
plant species in both sampling times, was 0.18, which is higher than expected by 
chance (p < 0.001). Five modules of plant-AM fungal interactions could be 
distinguished, with one exhibiting highly significant within-module phylogenetic 
clustering of AM fungal taxa (mean pairwise distance = 0.103, z = –2.359, 
p = 0.005, plant species in module = 6). Network connectance (connect-
ance = 0.521; p < 0.001), nestedness (nestedness temperature = 27, p < 0.001) 
and links per species (i.e. average number of symbiotic partners of a species; 
(links per species = 12.9, p < 0.001) were significantly lower than expected by 
chance. The overall specialization index in the entire network (H2’) was also 
significantly higher than expected at random (H2’ = 0.16, df = 998, p < 0.001). 
When compared to random distributions of AM fungal taxa among plant species, 
all but one plant species demonstrated a higher-than random level of symbiont 
specialization (d’). 

Plant species-level specialization index (d’) was significantly affected by plant 
local abundance (F1,28 = 6.43, p = 0.017), with locally less abundant species being 
more specialized (Fig. 5j) Forbs also showed a tendency to be more specialized 
than grasses (Fig. 5f), but the trend was marginally non-significant (F1,28 = 3.621, 
p = 0.067). When using the quantitative mycorrhizal status coefficient, more 
obligatorily mycorrhizal plants were less specialized (F1,28 = 6.332, p = 0.018; 
Fig. 5h). 

Among the plant – AM fungal networks split by plant functional group, 
grasses had a greater average number of links (plant – AM fungal connections) 
per plant species than forbs (forbs – 50.6, grasses – 63.6), with the difference 
being larger than expected by chance (p < 0.001). Moreover, the network of forbs 
and AM fungi had a higher modularity than the network of grasses and AM fungi 
(forbs – 0.20, grasses – 0.14), the difference being larger than expected by chance 
(p < 0.001, Fig. S9 in Paper IV). There was a trend for grasses to be less 
specialized than forbs (F1,28 = 3.62, p = 0.067). 
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Figure 5 Plant-AM fungal interaction network parameters in Paper IV: plant species 
symbiont range (or “degree”) (a–e) and plant species d’ (level of specialization) (f–j) in 
relation to plant functional group, mycorrhizal status, frequency and abundance. Differing 
letters in boxplots and black lines in scatterplots indicate a significant effect; grey lines 
indicate a marginally non-significant effect (linear models). In boxplots, mean values 
(middle line), 1st and 3rd quartiles (boxes) and up to 1.5 times inter-quartile range 
(whiskers) are shown. (Figure 3 in Paper IV). 
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IV DISCUSSION 

The research conducted in this thesis primarily sought to determine the impact of 
land use intensity and mode on communities of different soil-dwelling eukaryotic 
organism groups. This was achieved by carrying out studies varying in scale, land 
use type, and the soil biotic components targeted. We show that land use affects 
soil eukaryotic communities at global and local scales, but not always in an 
expected manner (i.e., decreased diversity with increased human disturbance), 
emphasizing the need for in-depth studies encompassing several aspects of 
biodiversity. In addition, the thesis sheds light on a pressing issue in the field of 
plant symbiotic microbiota – whether the microbial communities assembled in 
plants are results of stochastic processes or are they derived from possible 
functional or ecological properties of the involved organisms. 
 
 
4.1. Soil biota undergoes complex and correlated changes 

in response to woody plant presence 

In Paper I, we showed that the presence of wooded patches in an otherwise 
homogeneous open grassland ecosystem impacts the diversity and composition 
of the wider eukaryotic community. Moreover, a majority of the soil eukaryotic 
organism groups exhibited significant correlation in community structure, either 
with the plant community, or with other groups. The functional structure of the 
biotic community, as characterized by the proportion of DNA sequences attributed 
to different functional groups, differed significantly between open and wooded 
grassland patches, to which symbiotic fungi (AM, EcM and other symbiotrophic 
fungi) contributed the most. Current evidence concerning correlated patterns of 
richness among different taxonomic groups is inconsistent (Wolters et al., 2006; 
Gossner et al., 2016; Banerjee et al., 2018; Noreika et al., 2019; Delgado-
Baquerizo et al., 2019). Our results confirm some of the previously established 
patterns in terms of decreasing plant diversity related to woody plant encro-
achment in European grasslands (Poschlod & WallisDeVries, 2002; Dengler et 
al., 2014), and demonstrate analogous patterns among other soil biota – higher 
diversity of fungi (on average ca 65% higher richness per sample, excluding EcM 
fungi) and soil animals (on average ca 40% higher) in open than wooded 
grassland patches. The strength of this pattern is emphasized in our study system 
by the fact that the reverse diversity pattern – higher diversity in wooded than in 
open grassland patches – emerged only among EcM fungi, which reflects the 
presence of their host plant species (Schwob et al., 2017) in wooded patches. 

Widespread impacts of woody plant encroachment were evidenced by simul-
taneous responses in multiple groups in Paper I. Among others, we recorded 
significant pairwise correlations between community matrices of plants and 
fungi, plants and soil animals. The compositions of all fungal functional groups 
were significantly correlated with the plant community. Where most animal 
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dietary groups likewise correlated significantly with plant community, some of 
them – such as fungi- and bacterivorous, parasitic, and litter-feeding animals – 
were less tightly interlinked with the vegetation. Such dampening of knock-on 
effects between trophic layers may perhaps be explained by patterns of generality 
of specific trophic associations. At the community level, the differences in 
responses to woody encroachment were observed between kingdoms: where 
fungi exhibited clear responses, animals revealed less distinct patterns, with 
plants in between. Such differential patterns among animals and fungi may be 
attributable to the trophic wiring of the system, with plants and fungi being more 
intimately depending on each other, but soil animals being characterized by 
omnivorous or generalist feeding associations (see Digel et al., 2014). 

We further demonstrated the applicability of metabarcoding plant-derived 
eDNA from soil in identifying plant diversity. There was a significant correlation 
between plant richness, and significant correlations between compositional 
patterns of plant communities, described either with the help of conventional 
vegetation plots, or by plant metabarcoding.  

On the other hand, in Paper I, the methodological caveats of molecular species 
delimitation became very clear in the comparison of several different organism 
groups. The specific resolution achieved for a group of organisms (such as soil 
animals) varies with a wealth of methodological choices (including storage and 
extraction methods, primer choice etc.; Garlapati et al., 2019; Beng & Corlett, 
2020). Beyond the constraints of molecular techniques and sufficiency of sampling, 
the outcome data are highly dependent on the reference data available for accurate 
species identification – differences in reference database quality might also partly 
explain why some patterns are visibly more pronounced. Thus, results based on 
molecular identification of species must always be taken with a grain of salt, and 
the importance of clear descriptions of the methods must be stressed. 

 
 

4.2. Land use modifies the AM fungal communities 

AM fungal taxon richness per sample did not differ significantly among habitat 
types in the regional study in Paper II. These results are in concordance with 
some earlier findings in which similar AM fungal diversity levels were observed 
irrespective of land use intensity (Morris et al., 2013; Simons et al., 2017). On 
the other hand, in the same climatic region, Moora et al. (2014) found that AM 
fungal taxon richness differed among habitats of different land use type and 
intensity. The lack of discernible patterns of AM fungal richness in this study 
may reflect the relatively low disturbance in the natural and seminatural vs 
disturbed or abandoned habitat types. Whereas we expected to observe greater 
AM fungal richness in open than in forested habitats as reported in Moora et al. 
(2014), we detected no clear trend with respect to habitat openness, corroborating 
some earlier observations of no difference between AM fungal richness (e.g., 
Koorem et al., 2017). Thus, local factors such as subtle differences in soil 
conditions, may affect AM fungal taxon richness patterns more than regional 



28 

scale drivers related to habitat types or disturbance regimes. However, AM fungal 
community composition was significantly different among most habitat types in 
both root and soil samples. The results are similar to previous works (Moora 
et al., 2014; Vályi et al., 2015; Rodriguez-Echeverria et al., 2017) which showed 
that habitat type and land use intensity drives compositional change of AM fungal 
communities. 

We also hypothesized that the effect of land use in Paper II depends on dif-
ferences in habitat openness, leading to opposite changes for increased (clear-
cutting) or decreased (shrub encroachment) light availability in the field layer, 
however, the direction of change was not as distinct as we expected. AM fungal 
communities in boreonemoral forests were somewhat different from those in 
nearby clear-cut areas, whereas shrub encroachment following abandonment of 
former calcareous grasslands resulted in only a slight change in soil AM fungal 
community composition. Yet, the contrast among habitats with improved (clear-
cut) or deteriorated (overgrown grassland) light conditions was not particularly 
evident. As for calcareous grasslands, vascular plant communities change after 
abandonment as well (Neuenkamp et al., 2016), but these changes typically 
concern relative abundances of species rather than the overall composition 
(species list) of communities. Changes in AM fungal communities thus are in 
accordance with rather small changes in plant community composition in 
abandoned calcareous grasslands. 

In the global survey of Paper III, there was no unidirectional effect of anthro-
pogenic disturbance on AM fungal alpha or beta diversity. However, disturbance 
increased diversity in sites with naturally low diversity and decreased diversity in 
sites with naturally high diversity, that is, disturbance had the effect of equalizing 
levels of diversity over large scales. A similar pattern has been shown with plant 
communities where species-rich plant communities may impoverish following 
disturbance (Gibson et al., 2011) and naturally species-poor plant communities 
may gain species after disturbance (Widenfalk & Weslien, 2009). The equalizing 
of diversity levels by disturbance, however, has not been claimed to be a general 
trend yet. 

An equalizing effect of disturbance on levels of AM fungal alpha diversity is 
also consistent with findings on other microbes (ectomycorrhizal fungi, archaea 
and bacteria; Epp Schmidt et al., 2017) that reported biotic homogenization 
resulting from biodiversity loss in some communities, but not others. As sug-
gested by Epp Schmidt et al. (2017), a mechanism analogous to that influencing 
plants (i.e., the exclusion of an important number of late successional specialist 
species from naturally rich communities, which is compensated in naturally poor 
communities by the arrival of new pioneer species) may also influence the AM 
fungal communities. 

The functional structure of AM fungal communities showed a more pro-
nounced directional change in response to disturbance, in terms of both com-
munity composition and the proportion of cultured AM fungal taxa increasing in 
anthropogenic communities. Higher proportions of cultured AM fungi in anthro-
pogenic habitats can be the result of ruderal traits in these fungi (Chagnon et al., 
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2013). Traits including fast growth rate, efficient hyphal fusion and short-life 
cycles (van der Heijden et al., 2008; Chagnon et al., 2013; Ohsowski et al., 2014) 
may enable cultured AM fungi to be relatively resistant to soil disturbance and to 
have the capacity to re-establish functional hyphal networks and symbiotic inter-
actions with host plants. 

The results of Paper II and III indicate that it is not sufficient to focus solely 
on levels of AM fungal diversity, because these may decrease or increase following 
land-use-related disturbance, depending on the local ecological context. Focus 
must also be placed on understanding and potentially preserving the functional 
structure of AM fungal communities experiencing anthropogenic disturbance. 

 
 

4.3. Host-symbiont preference in plant-AM  
fungal networks 

In Paper II, we found that the AM fungal community composition seemed to be 
more similar among different habitats in root samples of the single focal plant 
species than in soil samples. This could indicate that even the single host plant, 
common among all studied habitats, may behave as an additional filter sensu 
Davison et al. (2016) between the local AM fungal taxon pool (in soil) and the 
realized taxon pool in plant roots. Further, root AM fungal communities were 
also more similar than soil communities in terms of phylogenetic beta diversity. 
Because phylogenetic similarity could be considered a proxy of functional 
similarity (Chagnon et al., 2013), lower phylogenetic beta diversity in the roots 
may yet again indicate a host plant filter, by which a plant species selects its AM 
fungal partners according to function. The pattern dampening effect of the host 
plant could be explained by its plasticity, which may buffer or amplify certain 
changes in habitat conditions. In particular, the focal plant species (Prunella 
vulgaris) individuals exhibit large performance plasticity in response to changes 
in growing conditions (cf. Uibopuu et al., 2012). The ability to buffer local condi-
tions may be facilitated due to intraspecific variation of the host plant (Johnson 
et al., 2012), especially given the wide range of habitat conditions sampled in the 
current study. 

Network analysis is a powerful approach for addressing ecological inter-
actions between functionally different partners (Bascompte & Jordano, 2007), 
and it has already demonstrated its value in disentangling the characteristics of 
plant – AM fungal relationships (Öpik & Moora, 2012; Chagnon, 2016). Drawing 
on the hints to host preference in Paper II, the network level study on Paper IV 
confirmed that the network of interacting plants and AM fungi in the studied 
grassland ecosystem exhibited a significantly higher level of specialization than 
would be expected from null models. Further, nestedness in the network was 
demonstrated to be higher than expected at random. A bipartite interaction net-
work is nested when interactions are organized such that specialists (for example, 
plants that interact with few AM fungi) interact with subsets of the species with 
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whom generalists (for example, plants that associate with many AM fungi) 
interact (Staniczenko et al., 2013). Tylianakis et al. (2018) showed that nested-
ness in AM interaction networks is caused by non-random symbiont attachment, 
preferentially to more central (species with shorter indirect links to others within 
the same trophic level) plant or AM fungal species. The environmental conditions 
in the dry calcareous grassland ecosystem studied, where soil moisture, for 
instance, can change rapidly from one extreme to the other (Lundholm & Larson, 
2003), may place considerable stress on plant-AM fungal networks. It has been 
suggested that nested network structure can contribute to network persistence 
because the core of interactions then occurs between generalists and is therefore 
stable enough to allow the remaining, more specialized symbiotic community to 
remain viable even in the presence of disturbance (Bascompte et al., 2003). 
Bastolla et al. (2009) demonstrated that a highly nested interaction network 
allows for the maximum number of species to coexist, given a certain number of 
interactions. It has further been shown that a new species entering a community 
will experience the lowest competitive load if it attaches to generalist species 
(Bastolla et al., 2009). This naturally leads to a nested network and could be one 
of the mechanisms facilitating high species richness at the current study site. 
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5. CONCLUSIONS 

Taking into account the fact that soil biodiversity globally is at risk and largely 
influenced by human activities (Geisen et al., 2019), a better understanding of the 
diversity, but also interactions of soil organisms, is essential to balance the needs 
of the human society with the very basic requirements of a functioning ecosystem. 
In that regard, research comprising this thesis explored the effect of land use at both 
local and global scales, and took into consideration various groups of soil 
organisms. 

Changes, even seemingly minute, in land use that result from human manage-
ment decisions induce an array of changes in the belowground. The presence or 
absence of woody vegetation in the aboveground translate to complex and 
correlated changes of soil-dwelling animals and fungi. Moreover, the intensity of 
the reaction to the presence of an ‘ecosystem engineer’ is largest among fungi 
with a symbiotic lifestyle, thus suggesting that these groups of organisms are key 
elements of the change in biotic community and the resulting ecosystem function 
in this system. The results indicate that a multitrophic perspective is needed to 
distinguish the organisms that are, on the one hand, most affected by management 
decisions, and on the other hand, drive the subsequent cascading changes in the 
ecosystem. 

Further, change of land use mode or intensity does not always translate into 
discernible and clear changes in the diversity of some organism groups, in this 
case arbuscular mycorrhizal fungi. However, land use rather consistently affects 
the compositional structure of the biotic community, and thus potentially the 
function of the belowground sphere, highlighting the need to take into account 
multiple facets of the biotic component of ecosystems when assessing the effect 
of human impact. What is more, results from the global study demonstrate that 
contrasting mechanisms of diversity might dominate at different ends of the 
diversity gradient. This implies that it does not always suffice to take the (non-) 
existence of intuitively clear patterns of, for example, diversity as is, but a more 
detailed view can reveal ecologically significant motifs. 

At a finer scale, the study demonstrates patterns of host preference in a ubi-
quitous symbiotic interaction such as the arbuscular mycorrhiza, indicating the 
need for biodiversity research to take into account not only the focal group of 
organisms, but also the co-existing biota, with whom multipartite interactions 
drive the assembly of communities. 

The rapidly evolving environmental DNA metabarcoding approach used 
throughout the study should and is becoming a common tool in community 
ecology, given the challenges of traditional morphology-based species detection 
and identification across the entire tree of life. Having said that, a good morpho-
logical basis is essential for development of ecologically meaningful metabar-
coding standards in most organisms, meriting integrated approaches combining 
traditional and DNA-based methods. Further, metabarcoding should never be 
taken at face value, because depending on the organism group, blind trust in 
sequences and databases might lead the field even further astray. Therefore, there 
is a dire need of good standards in both the technical details and reference datasets 
in order to generate true and comparable results. 
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SUMMARY 

Soil and the organisms that dwell in it are inextricably linked with the functioning 
of terrestrial ecosystems. Alas, compared to the aboveground, research on soil 
organisms has lagged behind for decades due to the methodological constraints 
on detecting and identifying species in the belowground. This, in turn, has 
impeded reaching information about one of the largest biodiversity reserves into 
climatic models and onto the desks of decision makers. Luckily, developments in 
DNA-based metabarcoding techniques mean that this much needed information 
is now being accumulated by ecologists with an ever hastening pace. Neverthe-
less, much of the knowledge pertaining diversity patterns of underground orga-
nisms is still missing or inconclusive. 

To a large extent, ecosystem processes are influenced by interactions between 
primary producers – in terrestrial habitats, plants – and interacting soil organisms. 
Although soil biota is diverse, much of the research conducted focuses only on 
particular branches on the tree of life. In nature, however, interactions that drive 
ecosystem processes are often multipartite and the responses of one group of 
organisms to a change in environment might depend on the behavior of others. 
Exactly these kinds of issues can be solved with more affordable molecular 
methods that enable barcoding of large portions of soil biodiversity and study 
correlations of multiple organism groups. 

On the other hand, generalizations are still being hindered by the lack of infor-
mation about specific organisms or organism groups. For example, knowledge of 
the responses of arbuscular mycorrhizal (AM) fungi, a ubiquitous group of 
microscopic soil organisms that form symbiosis with most of the terrestrial plants, 
to human influence has long been centered on agroecosystems with natural and 
seminatural habitats being left in the background. In addition to knowledge gaps 
in community ecology or macroecology of AM fungi in the soil, processes 
governing the assembly of AM fungi in plant roots are unknown. For example, 
do members of this species-poor, but omnipresent fungal group colonize plant roots 
randomly, or are there any species-species preferences between host and symbiont? 

The research presented in this thesis mainly revolves around responses of soil 
eukaryotic communities to land use change. We showed that, at coarse taxonomic 
scales, different soil organism groups (e.g., mycorrhizal fungi, root-feeding 
animals, etc.) respond to habitat change in a correlated manner, in terms of both 
diversity and community composition. From the perspective of a narrower group 
of organisms – the AM fungi – we demonstrated a homogenizing effect of human 
disturbance on diversity of this group of soil fungi. In naturally poor habitats, 
human influence enriches the AM fungal community through addition of distur-
bance tolerant taxa, and in naturally rich habitats, human disturbance removes a 
part of species, expectedly late successional ones. At a local scale, we similarly 
showed that even intuitively detrimental habitat change does not directly translate 
to species loss or gain, but more to the change in the species composition. Thus, 
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function derived from the set of species present, not the number of species present 
(i.e., richness), might drive ecosystem responses to anthropogenic change. 

We also studied host preference in plant–AM fungal interactions. We demon-
strated that a single host plant species tends to select a similar set of fungal part-
ners from the soil species pool, irrespective of habitat type. Furthermore, we 
explored the patterns governing plant–AM networks and demonstrated that fungal 
assemblies in roots of different plant species do not result from stochastic pro-
cesses, but instead exhibit host/symbiont preference and follow structures that 
promote resilience of said networks. 

We show significant changes of soil biota in response to land use change. 
Given that human impact influences and endangers soil biodiversity at a global 
scale, knowledge of the direction and mechanisms of the effects is necessary to 
balance the ever-growing needs of humanity and the need for retaining the 
integrity of ecosystems.  



34 

REFERENCES 

Abrego N, Huotari T, Tack AJM, Lindahl BD, Tikhonov G, Somervuo P, Schmidt NM, 
Ovaskainen O, Roslin T. 2020. Higher host plant specialization of root-associated 
endophytes than mycorrhizal fungi along an arctic elevational gradient. Ecology and 
Evolution 10: 8989–9002. 

Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, 
Cornell HV, Comita LS, Davies KF, et al. 2011. Navigating the multiple meanings of 
β diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28. 

Anderson MJ, Ellingsen KE, McArdle BH. 2006. Multivariate dispersion as a measure of 
beta diversity. Ecology Letters 9: 683–693. 

Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, 
Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, et al. 2018. Structure and 
function of the global topsoil microbiome. Nature 560: 233–237. 

Bainard LD, Bainard JD, Hamel C, Gan Y. 2014. Spatial and temporal structuring of 
arbuscular mycorrhizal communities is differentially influenced by abiotic factors and 
host crop in a semi-arid prairie agroecosystem. FEMS Microbiology Ecology 88: 333–
344. 

Banerjee S, Thrall PH, Bissett A, Heijden MGA van der, Richardson AE. 2018. Linking 
microbial co-occurrences to soil ecological processes across a woodland-grassland 
ecotone. Ecology and Evolution 8: 8217–8230. 

Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem 
functioning. Nature 515: 505–511. 

Bascompte J, Jordano P. 2007. Plant-animal mutualistic networks: The architecture of 
biodiversity. Annual Review of Ecology, Evolution, and Systematics 38: 567–593. 

Bascompte J, Jordano P, Melián CJ, Olesen JM. 2003. The nested assembly of plant–
animal mutualistic networks. Proceedings of the National Academy of Sciences 100: 
9383–9387. 

Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J. 2009. The 
architecture of mutualistic networks minimizes competition and increases bio-
diversity. Nature 458: 1018–1020. 

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using 
lme4. Journal of Statistical Software, Articles 67: 1–48. 

Bender EA, Case TJ, Gilpin ME. 1984. Perturbation experiments in community ecology: 
theory and practice. Ecology 65: 1–13. 

Beng KC, Corlett RT. 2020. Applications of environmental DNA (eDNA) in ecology and 
conservation: opportunities, challenges and prospects. Biodiversity and Conservation 
29: 2089–2121. 

Brundrett MC, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and 
global host plant diversity. New Phytologist 220: 1108–1115. 

Calderón‐Sanou I, Münkemüller T, Boyer F, Zinger L, Thuiller W. 2020. From environ-
mental DNA sequences to ecological conclusions: How strong is the influence of 
methodological choices? Journal of Biogeography 47: 193–206. 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 
2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421–421. 

Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC. 2014. 
Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and 
molecular diversity in a tropical montane forest. Global Change Biology 20: 3646–
3659. 



35 

Cameron EK, Martins IS, Lavelle P, Mathieu J, Tedersoo L, Gottschall F, Guerra CA, 
Hines J, Patoine G, Siebert J, et al. 2018. Global gaps in soil biodiversity data. Nature 
Ecology & Evolution 2: 1042–1043. 

Chagnon P-L. 2016. Seeing networks for what they are in mycorrhizal ecology. Fungal 
Ecology 24: 148–154. 

Chagnon P-L, Bradley RL, Maherali H, Klironomos JN. 2013. A trait-based framework 
to understand life history of mycorrhizal fungi. Trends in Plant Science 18: 484–491. 

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. 2014. Rare-
faction and extrapolation with Hill numbers: a framework for sampling and estimation 
in species diversity studies. Ecological Monographs 84: 45–67. 

Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world 
and its annual increase. Phytotaxa 261: 201–217. 

Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2016. GenBank. Nucleic 
Acids Research 44: D67–D72. 

Creamer RE, Hannula SE, Leeuwen JPV, Stone D, Rutgers M, Schmelz RM, Ruiter PC 
de, Hendriksen NB, Bolger T, Bouffaud ML, et al. 2016. Ecological network analysis 
reveals the inter-connection between soil biodiversity and ecosystem function as 
affected by land use across Europe. Applied Soil Ecology 97: 112–124. 

Dai M, Bainard LD, Hamel C, Gan Y, Lynch D. 2013. Impact of land use on arbuscular 
mycorrhizal fungal communities in rural Canada. Applied and Environmental Micro-
biology 79: 6719–6729. 

Davison J, Moora M, Jairus T, Vasar M, Öpik M, Zobel M. 2016. Hierarchical assembly 
rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biology and Bio-
chemistry 97: 63–70. 

Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, 
Hiiesalu I, Jairus T, et al. 2015. Global assessment of arbuscular mycorrhizal fungus 
diversity reveals very low endemism. Science 349: 970–973. 

Davison J, Öpik M, Daniell TJ, Moora M, Zobel M. 2011. Arbuscular mycorrhizal fungal 
communities in plant roots are not random assemblages. FEMS Microbiology Ecology 
78: 103–115. 

Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge 
DJ, Lambers H, Neuhauser S, Gallardo A, García-Velázquez L, et al. 2019. Changes 
in belowground biodiversity during ecosystem development. Proceedings of the 
National Academy of Sciences 116: 6891–6896. 

Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, 
Berdugo M, Campbell CD, Singh BK. 2016. Microbial diversity drives multifunctio-
nality in terrestrial ecosystems. Nature Communications 7: 10541. 

Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, 
Berhe AA, Cutler NA, Gallardo A, et al. 2020. Multiple elements of soil biodiversity 
drive ecosystem functions across biomes. Nature Ecology & Evolution 4: 210–220. 

Dengler J, Janišová M, Török P, Wellstein C. 2014. Biodiversity of Palaearctic grass-
lands: a synthesis. Agriculture, Ecosystems & Environment 182: 1–14. 

Digel C, Curtsdotter A, Riede J, Klarner B, Brose U. 2014. Unravelling the complex 
structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 
123: 1157–1172. 

Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T. 
2011. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by 
massively parallel pyrosequencing. New Phytologist 190: 794–804. 



36 

Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche 
and neutral processes in structuring a soil microbial community. The ISME Journal 4: 
337–345. 

Epp Schmidt DJ, Pouyat R, Szlavecz K, Setälä H, Kotze DJ, Yesilonis I, Cilliers S, 
Hornung E, Dombos M, Yarwood SA. 2017. Urbanization erodes ectomycorrhizal 
fungal diversity and may cause microbial communities to converge. Nature Ecology 
& Evolution 1: 1–9. 

Fitter AH, Moyersoen B. 1996. Evolutionary trends in root-microbe symbioses. Philo-
sophical Transactions of the Royal Society of London. Series B: Biological Sciences 
351: 1367–1375. 

García de León D, Moora M, Öpik M, Neuenkamp L, Gerz M, Jairus T, Vasar M, 
Guillermo Bueno C, Davison J, Zobel M. 2016. Symbiont dynamics during ecosystem 
succession: Co-occurring plant and arbuscular mycorrhizal fungal communities. 
FEMS Microbiology Ecology 92: fiw097. 

Garlapati D, Charankumar B, Ramu K, Madeswaran P, Ramana Murthy MV. 2019. A 
review on the applications and recent advances in environmental DNA (eDNA) 
metagenomics. Reviews in Environmental Science and Bio/Technology 18: 389–411. 

Geisen S, Wall DH, van der Putten WH. 2019. Challenges and opportunities for soil 
biodiversity in the Anthropocene. Current Biology 29: R1036–R1044. 

Geml J, Wagner MR. 2018. Out of sight, but no longer out of mind – towards an increased 
recognition of the role of soil microbes in plant speciation. New Phytologist 217: 965–
967. 

Gerz M, Bueno CG, Ozinga WA, Zobel M, Moora M. 2018. Niche differentiation and 
expansion of plant species are associated with mycorrhizal symbiosis. Journal of 
Ecology 106: 254–264. 

Gerz M, Bueno CG, Zobel M, Moora M. 2016. Plant community mycorrhization in 
temperate forests and grasslands: relations with edaphic properties and plant diversity. 
Journal of Vegetation Science 27: 89–99. 

Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw 
CJA, Laurance WF, Lovejoy TE, et al. 2011. Primary forests are irreplaceable for 
sustaining tropical biodiversity. Nature 478: 378–381. 

Goldewijk KK, Beusen A, Drecht G van, Vos M de. 2011. The HYDE 3.1 spatially 
explicit database of human-induced global land-use change over the past 12,000 years. 
Global Ecology and Biogeography 20: 73–86. 

Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner 
SC, Sikorski J, Wubet T, et al. 2016. Land-use intensification causes multitrophic 
homogenization of grassland communities. Nature 540: 266–269. 

Hart MM, Aleklett K, Chagnon P-L, Egan C, Ghignone S, Helgason T, Lekberg Y, 
Öpik M, Pickles BJ, Waller L. 2015. Navigating the labyrinth: a guide to sequence-
based, community ecology of arbuscular mycorrhizal fungi. New Phytologist 207: 
235–247. 

van der Heijden MGA, Bardgett RDR, Van Straalen NM. 2008. The unseen majority: soil 
microbes as drivers of plant diversity and productivity in terrestrial ecosystems. 
Ecology Letters 11: 296–310. 

van der Heijden MGA, Hartmann M. 2016. Networking in the plant microbiome. PLOS 
Biology 14: e1002378. 

van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR. 2015. Mycorrhizal ecology 
and evolution: the past, the present, and the future. New Phytologist 205: 1406–1423. 



37 

Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the wood-
wide web? Nature 394: 431–431. 

Hodge A, Storer K. 2015. Arbuscular mycorrhiza and nitrogen: implications for individual 
plants through to ecosystems. Plant and Soil 386: 1–19. 

Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, 
Stenlid J, Brandström-Durling M, Clemmensen KE, et al. 2012. New primers to 
amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and 
natural communities. FEMS Microbiology Ecology 82: 666–677. 

Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E. 2003. Soil tillage 
affects the community structure of mycorrhizal fungi in maize roots. Ecological 
Applications 13: 1164–1176. 

Jansa J, Smith FA, Smith SE. 2008. Are there benefits of simultaneous root colonization 
by different arbuscular mycorrhizal fungi? New phytologist 177: 779–789. 

Janssen P, Bec S, Fuhr M, Taberlet P, Brun J-J, Bouget C. 2018. Present conditions may 
mediate the legacy effect of past land-use changes on species richness and com-
position of above- and below-ground assemblages. Journal of Ecology 106: 306–318. 

Johnson D, Martin F, Cairney JWG, Anderson IC. 2012. The importance of individuals: 
intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytologist 
194: 614–628. 

Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69: 
373–386. 

Jones CG, Lawton JH, Shachak M. 1996. Organisms as ecosystem engineers. In: Samson 
FB, Knopf FL, eds. Ecosystem Management: Selected Readings. New York, NY: 
Springer New York, 130–147. 

Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, 
Quinton JN, Pachepsky Y, Van Der Putten WH, et al. 2016. The significance of soils 
and soil science towards realization of the United Nations sustainable development 
goals. Soil Science Society of America Journal 2: 111–128. 

Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, 
Štajerová K, Vosátka M, Sýkorová Z. 2014. Comparison of commonly used primer 
sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal 
solution? Soil Biology and Biochemistry 68: 482–493. 

Kokkoris V, Lekberg Y, Antunes PM, Fahey C, Fordyce JA, Kivlin SN, Hart MM. 2020. 
Codependency between plant and arbuscular mycorrhizal fungal communities: what 
is the evidence? New Phytologist. doi:10.1111/nph.16676 

Koorem K, Tulva I, Davison J, Jairus T, Öpik M, Vasar M, Zobel M, Moora M. 2017. 
Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously 
shaped by host characteristics and canopy-mediated light availability. Plant and Soil 
410: 259–271. 

Kotilínek M, Hiiesalu I, Košnar J, Šmilauerová M, Šmilauer P, Altman J, Dvorský M, 
Kopecký M, Doležal J. 2017. Fungal root symbionts of high-altitude vascular plants 
in the Himalayas. Scientific Reports 7: 6562–6562. 

Kukk T (Ed.). 2004. Pärandkooslused. Õpik-käsiraamat. [Seminatural Communities. 
Manual-textbook]. Tartu: Pärandkoosluste Kaitse Ühing. 

Kukk T, Kull K. 1997. Seminatural grasslands. In: Estonia Maritima 2. 1–249. 
Lee J, Lee S, Young JPW. 2008. Improved PCR primers for the detection and identi-

fication of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65: 339–349. 



38 

Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB. 2007. Role of niche 
restrictions and dispersal in the composition of arbuscular mycorrhizal fungal 
communities. Journal of Ecology 95: 95–105. 

Lekberg Y, Waller LP. 2016. What drives differences in arbuscular mycorrhizal fungal 
communities among plant species? Fungal Ecology 24: 135–138. 

Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, 
Pennanen T, Rosendahl S, Stenlid J, et al. 2013. Fungal community analysis by high-
throughput sequencing of amplified markers – a user’s guide. New Phytologist 199: 
288–99. 

Lindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi – potential organic matter decom-
posers, yet not saprotrophs. New Phytologist 205: 1443–1447. 

Liu Y, Mao L, Li J, Shi G, Jiang S, Ma X, An L, Du G, Feng H. 2015. Resource avail-
ability differentially drives community assemblages of plants and their root-associated 
arbuscular mycorrhizal fungi. Plant and Soil 386: 341–355. 

Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing micro-
bial communities. Applied and Environmental Microbiology 71: 8228–8235. 

Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, 
Crous PW, Druzhinina IS, Geiser DM, et al. 2020. Unambiguous identification of 
fungi: where do we stand and how accurate and precise is fungal DNA barcoding? 
IMA Fungus 11: 14. 

Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. 2010. Disclosing arbuscular 
mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyro-
sequencing approach. Environmental Microbiology 12: 2165–2179. 

Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V. 2011. Different farming 
and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil 
communities. Ecological Applications 21: 1696–1707. 

Lundholm JT, Larson DW. 2003. Temporal variability in water supply controls seedling 
diversity in limestone pavement microcosms. Journal of Ecology 91: 966–975. 

Manoharan L, Rosenstock NP, Williams A, Hedlund K. 2017. Agricultural management 
practices influence AMF diversity and community composition with cascading effects 
on plant productivity. Applied Soil Ecology 115: 53–59. 

Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, Vasar M, Zobel M. 2014. 
Anthropogenic land use shapes the composition and phylogenetic structure of soil 
arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology 90: 609–
621. 

Morris EK, Buscot F, Herbst C, Meiners T, Obermaier E, Wäschke NW, Wubet T, Rillig 
MC. 2013. Land use and host neighbor identity effects on arbuscular mycorrhizal 
fungal community composition in focal plant rhizosphere. Biodiversity and Conser-
vation 22: 2193–2205. 

Mueller RC, Rodrigues JLM, Nüsslein K, Bohannan BJM. 2016. Land use change in the 
Amazon rain forest favours generalist fungi. Functional Ecology 30: 1845–1853. 

Neuenkamp L, Lewis RJ, Koorem K, Zobel K, Zobel M. 2016. Changes in dispersal and 
light capturing traits explain post-abandonment community change in semi-natural 
grasslands. Journal of Vegetation Science 27: 1222–1232. 

Neuenkamp L, Moora M, Öpik M, Davison J, Gerz M, Männistö M, Jairus T, Vasar M, 
Zobel M. 2018. The role of plant mycorrhizal type and status in modulating the 
relationship between plant and arbuscular mycorrhizal fungal communities. New 
Phytologist 220: 1236–1247. 



39 

Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, 
Choimes A, Collen B, et al. 2015. Global effects of land use on local terrestrial 
biodiversity. Nature 520: 45–50. 

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 
2016. FUNGuild: An open annotation tool for parsing fungal community datasets by 
ecological guild. Fungal Ecology 20: 241–248 

Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, 
Kennedy P, Picard K, Glöckner FO, Tedersoo L, et al. 2018. The UNITE database for 
molecular identification of fungi: handling dark taxa and parallel taxonomic classi-
fications. Nucleic Acids Research 47: D259–D264. 

Noreika N, Helm A, Öpik M, Jairus T, Vasar M, Reier Ü, Kook E, Riibak K, Kasari L, 
Tullus H, et al. 2019. Forest biomass, soil and biodiversity relationships originate 
from biogeographic affinity and direct ecological effects. Oikos 128: 1653–1665. 

Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM. 2014. Where the wild things are: looking 
for uncultured Glomeromycota. New Phytologist 204: 171–179. 

Öpik M, Davison J. 2016. Uniting species- and community-oriented approaches to under-
stand arbuscular mycorrhizal fungal diversity. Fungal Ecology 24: 106–113. 

Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. 2009. Large-scale parallel 454 
sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi 
in a boreonemoral forest. New Phytologist 184: 424–437. 

Öpik M, Moora M. 2012. Missing nodes and links in mycorrhizal networks. New Phyto-
logist 194: 304–306. 

Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M. 2010. 
The online database MaarjAM reveals global and ecosystemic distribution patterns in 
arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188: 223–241. 

Orgiazzi A, Bardgett RD, Barrios E. 2016. Global soil biodiversity atlas. Luxembourg: 
European Commission. 

Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, Savo-
lainen V. 2018. Arbuscular mycorrhizal fungi promote coexistence and niche diver-
gence of sympatric palm species on a remote oceanic island. New Phytologist 217: 
1254–1266. 

Peet RK, Roberts DW. 2013. Classification of natural and semi-natural vegetation. In: 
van der Maarel E, Franklin J, eds. Vegetation Ecology. John Wiley & Sons, Ltd, 28–
70. 

Peres-Neto PR, Jackson DA. 2001. How well do multivariate data sets match? The advant-
ages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 
169–178. 

Poschlod P, WallisDeVries MF. 2002. The historical and socioeconomic perspective of 
calcareous grasslands – lessons from the distant and recent past. Biological Conser-
vation 104: 361–376. 

Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, 
Adler PB, Bakker JD, et al. 2015. Plant diversity predicts beta but not alpha diversity 
of soil microbes across grasslands worldwide. Ecology Letters 18: 85–95. 

Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Leh-
mann A. 2015. Plant root and mycorrhizal fungal traits for understanding soil 
aggregation. New Phytologist 205: 1385–1388. 

Rodriguez-Echeverria S, Teixeira H, Correia M, Timoteo S, Heleno R, Öpik M, Moora 
M. 2017. Arbuscular mycorrhizal fungi communities from tropical Africa reveal 
strong ecological structure. New Phytologist 213: 380–390. 



40 

Säle V, Aguilera P, Laczko E, Mäder P, Berner A, Zihlmann U, van der Heijden MGA, 
Oehl F. 2015. Impact of conservation tillage and organic farming on the diversity 
of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 84: 38–52. 

Sanderman J, Hengl T, Fiske GJ. 2017. Soil carbon debt of 12,000 years of human land 
use. Proceedings of the National Academy of Sciences 114: 9575–9580. 

Schwob G, Roy M, Manzi S, Pommier T, Fernandez MP. 2017. Green alder (Alnus 
viridis) encroachment shapes microbial communities in subalpine soils and impacts 
its bacterial or fungal symbionts differently. Environmental Microbiology 19: 3235–
3250. 

Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, 
Pritchard WJ, Long JRD, Oakley S, et al. 2018. Fungal diversity regulates plant-soil 
feedbacks in temperate grassland. Science Advances 4: eaau4578. 

Sikes BA, Powell JR, Rillig MC. 2010. Deciphering the relative contributions of multiple 
functions within plant–microbe symbioses. Ecology 91: 1591–1597. 

Simon L, Lalonde M, Bruns TD. 1992. Specific amplification of 18S fungal ribosomal 
genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and 
Environmental Microbiology 58: 291–295. 

Simons NK, Lewinsohn T, Blüthgen N, Buscot F, Boch S, Daniel R, Gossner MM, Jung K, 
Kaiser K, Müller J, et al. 2017. Contrasting effects of grassland management modes 
on species-abundance distributions of multiple groups. Agriculture, Ecosystems & 
Environment 237: 143–153. 

Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. Oxford: Academic Press. 
Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, 

Baumgartner V, Binkenstein J, et al. 2016. Biodiversity at multiple trophic levels is 
needed for ecosystem multifunctionality. Nature 536: 456–459. 

Staniczenko PPA, Kopp JC, Allesina S. 2013. The ghost of nestedness in ecological net-
works. Nature Communications 4: 1391. 

Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S, Harend H, Buegger F, 
Pritsch K, Koricheva J, et al. 2016. Tree diversity and species identity effects on soil 
fungi, protists and animals are context dependent. The ISME Journal 10: 346–362. 

Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, 
Ryberg M, Abarenkov K. 2018. High-level classification of the Fungi and a tool for 
evolutionary ecological analyses. Fungal Diversity 90: 135–159. 

Treseder KK. 2016. Model behavior of arbuscular mycorrhizal fungi: predicting soil 
carbon dynamics under climate change. Botany 94: 417–423. 

Tylianakis JM, Martínez-García LB, Richardson SJ, Peltzer DA, Dickie IA. 2018. 
Symmetric assembly and disassembly processes in an ecological network. Ecology 
Letters 21: 896–904. 

Uibopuu A, Moora M, Öpik M, Zobel M. 2012. Temperate forest understorey species 
performance is altered by local arbuscular mycorrhizal fungal communities from 
stands of different successional stages. Plant and Soil 356: 331–339. 

Vályi K, Rillig MC, Hempel S. 2015. Land-use intensity and host plant identity inter-
actively shape communities of arbuscular mycorrhizal fungi in roots of grassland 
plants. New Phytologist 205: 1577–1586. 

Vasar M, Andreson R, Davison J, Jairus T, Moora M, Remm M, Young JPW, Zobel M, 
Öpik M. 2017. Increased sequencing depth does not increase captured diversity of 
arbuscular mycorrhizal fungi. Mycorrhiza 27: 761–773. 

Verbruggen E, Van Der Heijden MGA, Weedon JT, Kovachuck GA, Röling WFM, 
Kowalchuk GA, Röling WFM. 2012. Community assembly, species richness and 



41 

nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology 
21: 2341–2353. 

Wall DH, Behan-Pelletier V, Ritz K, Herrick JE, Jones TH, Six J, Strong DR, van der 
Putten WH (Eds.). 2012. Soil Ecology and Ecosystem Services. Oxford: Oxford 
University Press. 

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal 
ribosomal RNA genes for phylogenetics. In: Innis M, Gelfland D, Sninsky J, White T, 
eds. PCR protocols: a guide to methods and applications. San Diego., 315–322. 

Widenfalk O, Weslien J. 2009. Plant species richness in managed boreal forests – Effects 
of stand succession and thinning. Forest Ecology and Management 257: 1386–1394. 

Wolters V, Bengtsson J, Zaitsev AS. 2006. Relationship among the species richness of 
different taxa. Ecology 87: 1886–1895. 

Wubs ERJ, Putten WH van der, Mortimer SR, Korthals GW, Duyts H, Wagenaar R, 
Bezemer TM. 2019. Single introductions of soil biota and plants generate long-term 
legacies in soil and plant community assembly. Ecology Letters 22: 1145–1151. 

Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, 
Chen Y, et al. 2014. Land use influences arbuscular mycorrhizal fungal communities 
in the farming – pastoral ecotone of northern China. New Phytologist 204: 968–978. 

Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, Barba MD, Gaucher P, Gielly L, 
Giguet‐Covex C, Iribar A, et al. 2019. Body size determines soil community assembly 
in a tropical forest. Molecular Ecology 28: 528–543. 

Zobel M, Öpik M. 2014. Plant and arbuscular mycorrhizal fungal (AMF) communities – 
which drives which? (A Helm, Ed.). Journal of Vegetation Science 25: 1133–1140. 

  



42 

SUMMARY IN ESTONIAN 

Eukarüootse mullaelustiku seos maakasutuse muutuse ning 
peremeestaime identiteediga 

Võrreldes maapinnal elavate organismidega, on mikroskoopilise mullaelustiku 
uurimine aastakümneid, mõnes aspektis aastasadu, ajale jalgu jäänud. Muld ning 
selles elavad organismid on aga ökosüsteemide lahutamatu osa. Mullaelustiku 
funktsioonid on näiteks orgaanilise aine lagundamine, toitainetsükli käigus-
hoidmine ning taimestiku produktiivsuse tagamine. Kahjuks tähendab mulla-
organismide uurimise keerukus seda, et vähesedki teadaolevad andmed on tihti-
peale vastukäivad ning kliimamudelitesse ning otsusetegijate laudadele on tead-
mised mullaelust visad jõudma. 

Samas on viimastel aastakümnetel kättesaadavamaks muutunud molekulaarsed 
meetodid maa-aluse elu uurimiseks. Tänu organismide triipkoodistamisele ehk 
DNA-järjestuste põhisele määramisele suudavad ökoloogid tuvastada ka silmale 
nähtamatuid organisme ning süüvida ühe suurima elurikkuse varamu – mulla – 
mitmekesisuse ning ka funktsioonide mustritesse. 

Ökosüsteemides toimuvaid protsesse mõjutavad maismaal valdavalt primaar-
produtsentide – taimede – ning nendega otse või kaudsemalt seotud mullaorga-
nismide vahelised suhted. Kuigi on selge, et mullaelustik on liigirikas ning selle 
kujunemisel on oluline roll enamike suurte organismirühmade esindajatel, võe-
takse uuringute fookusesse sageli vaid üks kindel rühm. Põhjused on arusaadavad – 
mitme asjaga korraga tegelemine hajutab paratamatult fookust ning mitme rühma 
esindajate määramine käib n-ö tavaökoloogile tihtipeale üle jõu. Looduses 
toimivad interaktsioonid aga mitme osapoole vahel ning ühe taksonoomilise 
rühma vastus keskkonnamuutusele võib sõltuda lisaks iseomastele tunnustele ka 
teiste organismirühmade käitumisest. Eelmainitud molekulaarsed meetodid on 
sellistes olukordades suureks abiks. Just viimastel aastatel toimunud sekvenee-
rimistehnoloogiate oluline täiustumine ning odavnemine võimaldavad suhteliselt 
mõistlike kulutustega triipkoodistada suurt osa elurikkusest. See annab võimaluse 
uurida lisaks üksikutele organismirühmadele ka elurikkuse erinevate kompo-
nentide koosvarieerumist ja seeläbi hinnata, kas kooslustes toimuvad muutused 
on samasuunalised. Taolised teadmised on olulised muuhulgas ka selleks, et 
mõista, millised elusolendid on inimtegevusest enim mõjutatud, ning teades eri-
nevate organismidega seotud ökosüsteemi funktsioone, suudame hinnata, milli-
sed ökosüsteemi protsessid tõenäoliselt enim muutuvad. 

Doktoritöö üheks eesmärgiks oli uurida, kuidas käitub mulla eukarüootne 
mikroelustik sõltuvalt puisniidu majandamisest. Puisniidud on liigirikkad puu- ja 
põõsagruppidega heinamaad, mis Eestis esinevad peamiselt läänepoolsetes maa-
kondades ja läänesaartel, ning kus puittaimede esinemine sõltub inimese majan-
damisotsusest. Selleks määrati Laelatu puisniidul DNA-triipkoodi põhjal nii 
mullaseened, mullaloomad, spetsiifilisemalt AM (arbuskulaarmükoriissed) seened 
ning ka mullas leiduv taimne DNA. Uurimuse tulemusena tuvastati puittaimede 
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roll ökosüsteemi inseneridena puisniidul – puittaimede esinemine või puudumine 
muidu homogeenses keskkonnas tingis enamiku uuritavate organismirühmade 
mitmekesisuse ning koosluse liiglise muutuse. Kõikide uuritud rühmade puhul, 
välja arvatud ektomükoriisaseened, oli elurikkus kõrgem puittaimedeta ehk avatud 
kasvukohas, kinnitades ka varasemate, üksikutele organismirühmadele kesken-
dunud tööde tulemusi. Ektomükoriisaseente puhul ilmnenud vastupidist mustrit 
võib põhjendada peremeestaimede (puittaimede) olemasolu ning ohtrusega 
kasvukohas. Lisaks olid enamike rühmade vahelised muutused korrelatsioonis 
kas omavahel või taimkatte muutusega. Avatud ning puittaimedega proovi-
lappide eluskoosluse funktsionaalne struktuur erines olulisel määral, kusjuures 
enim mõjutasid erinevust sümbiootilise eluviisiga seened (näiteks AM seened ja 
ektomükoriisaseened). Korrelatsioon taimekooslusega esines kõikidel seene-
rühmadel, kuid mitmel loomarühmal, näiteks seen- ja bakteritoidulistel loomadel, 
parasiitsetel mullaloomadel ning kõdutoidulistel, ei ilmnenud olulist koosluse 
koosseisu sõltuvust taimkattest. Seda võib seletada erineva mullaelustiku spet-
siifilisusega sümbioosse partneri või toidulaua suhtes – mullaloomad on üldjuhul 
troofilistes suhetes vähem valivad kui näiteks sümbioosse eluviisiga seened. 

Teisalt uuriti, kas mullas leiduva taimset päritolu DNA põhjal on võimalik 
tuvastada maapealse taimkatte tegelikke mustreid. See teadmine on oluline näi-
teks globaalsete uurimuste teostamisel, kus traditsioonilise taimkattekirjelduse 
tegemiseks puudub ekspertiis. Ilmnes, et mullast DNA-triipkoodi põhiselt tuvas-
tatud taimekoosluste muster korreleerus traditsioonilistel taimkatteruutudel 
tuvastatud mustriga. Küll aga ei olnud võimalik DNA-põhiselt taimeliike täpselt 
tuvastada, selle põhjuseks on üldiste referentsandmebaaside puudulikkus ning 
kõikuv kvaliteet. Seega võib DNA-põhise analüüsiga tuvastada küll ökoloogi-
liselt olulise mustri, kuid täpse taimkatte liiginimekirja koostamiseks ei ole need 
meetodid veel piisavalt arenenud. 

Samas ei ole vähemtähtsad ka kindlate organismirühmade täpsemad alus-
uuringud, sest, nagu öeldud, on teadmised varjatud mullaelustikust endiselt lünk-
likud ning mõnel puhul vasturääkivad. Üheks enim levinud taimede ning mikro-
organismide suhteks on arbuskulaarne mükoriisa, kus n-ö üht otsa pidi taime-
juurtes ning teist otsa pidi mullas elavad krohmseente hõimkonna mikroseened 
varustavad taime mullas leiduvate toitainetega ning saavad taimelt fotosünteesi 
käigus fikseeritud energiarikkaid süsinikuühendeid. Lisaks nn toitainekauban-
dusele pakub umbes kahe kolmandiku maismaataimedega sümbioosis elav seene-
rühm taimedele muuhulgas kaitset patogeenide ja põua eest ning kujundab seene-
niidistikust erituvate valkudega mulla struktuuri. On ilmne, et AM seenekooslused 
mõjutavad otseselt taimkatet ning sellest johtuvaid ökosüsteemide protsesse. 

Lõpuni pole aga selge näiteks see, kuidas mõjutavad inimtekkelised häiringud 
ökosüsteemides, so muutused maakasutuse režiimis ning intensiivsuses, AM 
seenekooslusi. On leitud, et maakasutuse intensiivistumine põhjustab AM seente 
elurikkuse langust nii taimejuurtes kui mullas, kuid ka vastupidist – inimtekke-
lised häiringud võivad AM seente liigirikkust hoopis tõsta. Samas ei ole seni 
uuritud, kuidas inimmõju järgsed protsessid sõltuvad süsteemi algsest seisundist. 
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Piisavat tähelepanu ei ole saanud ka maakasutuse intensiivsuse skaala keskmes 
asetsevad ökosüsteemid. Kui taimesümbiontide uuringute lõviosa on kesken-
dunud just põllumajandusmaadele ning väga intensiivsele ökosüsteemi inimese-
poolsele ümberkujundamisele, siis palju vähem on teada mulla mikroelustiku 
käitumisest poollooduslikes kooslustes (nt alvarid, puisniidud). Üheks käesoleva 
töö põhiliseks eesmärgiks oligi uurida inimtekkeliste muutuste mõju AM seente 
kooslustele nii kohalikul kui ka globaalsel skaalal. 

Globaalsel skaalal tehtud uuringus leiti, et inimtekkeline häiring ei mõjuta AM 
seente elurikkust kindlasuunaliselt – mõju suund sõltub ökosüsteemi esialgsest 
elurikkusest. Selgus, et inimtegevusel oli elurikkust ühtlustav mõju – AM seente 
osas liigirikkamates looduslikes paikades oli inimtegevusel elurikkust vähendav 
ning looduslikult vaesemates paikades suurendav mõju. Tõenäoliselt võib olla 
tegemist elurikkuse gradiendi eri otstes domineerivate erisuunaliste mehhanis-
midega: liigirikastes elupaikades mõjutab häiring negatiivselt hilissuktsessiooni-
lisi elupaigaspetsiifilisi liike, samas kui liigivaestes elupaikades soodustab häiring 
vabade elupaikade loomisega uute pioneerliikide saabumist. Samuti leiti, et inim-
tekkelised häiringud mõjutavad funktsionaalselt erinevaid AM seeneliike eri-
nevalt. Nimelt oli inimmõjuga proovialade AM seenekooslustes rohkem kultuuris 
kasvatatavaid AM seeneliike, mida võib seletada nende liikide tõenäoliselt 
ruderaalse elukäigustrateegiaga – kultuuris kasvatatavad seeneliigid on kiire-
kasvulised ja lühikese elutsükliga, mis soodustab nende esinemist ja populat-
siooni taasloomist ka häiritud elupaikades. 

Lokaalsel skaalal uuriti AM seenekoosluste muutust Eesti looduslikel ja 
poollooduslikel aladel, kaasates nii majandatud (nt püsivalt hooldatud alvar, puis-
niit) või looduslikus seisundis (salumets) ning ka „häiritud“ (nt kinnikasvanud 
alvar, õuemuru, lageraielank) kasvukohti. Leiti, et vastupidiselt hüpoteesile ei 
erinenud häiritud ja häirimata kasvukohad AM seente liigirikkuse poolest. Selline 
tulemus võib olla tingitud piisavalt vähesest häiringust – isegi lageraie on võrrel-
des tavalise põllumajandusmaaga mullaelustikule tõenäoliselt tunduvalt vähem 
häiriv. Samas leiti, et AM seenekoosluse koosseis erines oluliselt kasvukoha-
tüüpide lõikes. 

Eelmainitud lokaalskaala uuringus võeti proove nii taimejuurtest kui ka neid 
ümbritsevast mullast, kusjuures juureproove võeti ainult ühe kõigis käsitletud 
kasvukohtades kasvanud generalistliku taimeliigi – hariliku käbiheina – isen-
ditelt. Kui sarnane kasvukohtade vaheline ökoloogiline muster oli tuvastatav nii 
juure- kui mullaproovidest, ilmnes, et ühe taimeliigi juurtes elavad AM seene-
kooslused on eri kasvukohtade vahel sarnasemad, kui mullast leitavad AM seene-
kooslused, seda nii taksonoomiliselt kui fülogeneetiliselt. Kuna seenekoosluse 
fülogeneetilist koosseisu võiks osalt tõlgendada ka funktsionaalsete tunnuste 
näitajana, võib oletada, et uuringu fookuses olnud peremeestaimeliik võib valida 
oma sümbioosseid partnereid vastavalt nende funktsioonidele. 

Potentsiaalset peremeestaime- või seenpartneri eelistuse temaatikat laiendati 
analüüsiga, kus võeti vaatluse alla terviklik taimede ning AM seente vaheline 
interaktsioonivõrgustik ca 0,1 ha suurusel alvari proovialal. Võrreldes sümbioos-
sete partnerite identiteete ja ohtrusi kõikide koosluses esinevatel taimeliikidel, 
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ilmnes, et taimeliigi juurtest leitav AM seenekooslus ei olnud juhuslik, vaid 
peegeldab osade partnerite eelistamist teistele. Samuti tuvastati, et antud koosluses 
esines interaktsioonide pesastumine, see tähendab, et partneri valikul rohkem 
spetsialiseerunud liigid moodustasid interaktsioone liikidega, kellega elasid süm-
bioosis ka partneri valikul generalistlikumad liigid. Selline struktuur on oluline 
kogu võrgustiku stabiilsuse tagamiseks, kuna interaktsioonide enamik leiab aset 
generalistlike liikide vahel, tagades nii ilmselt uuritud koosluse (alvar) vastu-
pidavuse muutliku niiskusrežiimi poolt põhjustatud stressile. 

Doktoritöös läbiviidud uuringute tulemusena ilmnes korduvaid olulisi mulla-
elustiku muutusi sõltuvalt maakasutusrežiimist. Arvestades, et inimtegevus 
ohustab mulla elurikkust globaalsel skaalal, on teadmised inimmõju ulatusest 
erinevatele mullaorganismide rühmadele olulised, et tasakaalustada inimkonna 
järjest kasvavaid vajadusi ning vajadust säilitada ökosüsteemide terviklikkust ja 
põhifunktsioone. 
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