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Chapter 1

Introduction

The purpose of this thesis is to study the Morita equivalence of idempo-
tent rings using various algebraic constructions. Our goal is to find as many
connections as possible between Morita equivalence and the considered con-
structions. The category of firm bimodules over two idempotent rings and
especially monomorphisms in this category will be of special interest.

1.1 Background

The notion of a Morita equivalence for rings with identity first arose in 1958
from the seminal paper [36] by Kiiti Morita. He described when the module
categories of two rings with identity are equivalent. Later this situation
became known as Morita equivalence of the underlying rings. The resulting
Morita theory has proven to be very useful in the development of the theory
of rings with identity. First steps for extending Morita equivalence to non-
unital rings were made by Abrams in 1983 with [1], who considered rings with
local units. Further developments in extending Morita theory to a more wider
class of rings were made by Komatsu in 1986 with [20] for s-unital rings and
Anh and Marki in 1987 with [7] for rings with local units. Later in 1991
Garcia and Simén developed Morita theory for idempotent rings in [14].
One especially useful tool — which is widely used in this thesis — for study-
ing Morita equivalence is the notion of a Morita context. Morita contexts
were first introduced by Bass in 1962 in [8], who called them preequivalence
datas. They were extensively used by Amitsur in 1971 in [3] and Miiller
in 1972 in [37] and have become increasingly popular for studying Morita
equivalence ever since. Morita equivalence is defined using the equivalence
of certain module categories. This makes it obvious that it is an equivalence
relation on the class of rings, but on the other hand equivalence functors
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are hard to work with, especially if we wish to understand the structure of
Morita equivalent rings. Morita contexts are helpful here, because they are
much more concrete objects. Essentially, they consist of two bimodules and
two bimodule homomorphisms.

Over the years, Morita theory has also been developed for many different
algebraic structures, e.g. monoids (by Banaschewski and Knauer), semi-
groups (by Talwar in 1995 with [43]), quantales, C*-algebras etc. Morita
equivalence of semigroups will be of particular interest in this thesis, because
we will introduce several notions used to study Morita equivalence of semi-
groups into the ring case. In particular enlargements borrowed from Lawson’s
article [29] and strict local isomorphisms borrowed from Marki’s and Stein-
feld’s paper [35]. Although the Morita theory of factorizable semigroups and
idempotent rings are similar in some aspects, there exist some considerable
differences. For instance if two monoids are Morita equivalent, then either
of them is an enlargement of the other, but two Morita equivalent rings with
identity need not be isomorphic to their joint enlargement. Also we will show
that the only idempotent ring Morita equivalent to {0} is {0} itself. This is
a considerable difference from the Morita equivalence of semigroups, because
there are many infinitely semigroups Morita equivalent to the one-element
semigroup.

Finally we will thoroughly study the category of firm bimodules over
idempotent rings. The term “firm module” was first used by Quillen in
1996 in [39]. Although, a similar notion for modules over unital algebras was
already introduced by Taylor in 1982 in [45] under the name regular modules.
Categories of firm modules and their applications in Morita theory have been
extensively studied by Marin in his master’s thesis [33] and [34] in 1998 and
later with Garcia and Gonzélez-Férez in articles [12], [13], [17] and [18].

1.2 Overview of the thesis

This thesis is divided into six chapters. The first chapter is the introduction,
where we give a short historical overview of developments in Morita theory.
Subsequently the summary of the thesis is presented.

In Chapter 2 we will give the preliminaries, which are necessary for un-
derstanding the material of this thesis. We will try to keep the text rather
self-contained. First we will introduce some notions from category theory,
which will be used in what follows. Namely we define adjoint functors and
several kinds of monomorphisms. Next we present the basics of ring and
module theory and after that introduce bimodules. Finally we will introduce
Morita theory by defining and describing Morita equivalence for idempotent
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rings and Morita contexts.

In Chapter 3 we will define Rees matrix rings and tensor product rings
for arbitrary rings. We will use both of these concepts to study Morita
equivalence of idempotent rings. It turns out that every idempotent Rees
matrix ring is Morita equivalent to its ground ring (Theorem 3.8). We define
pseudo-surjective mappings. We see that every tensor product ring over an
idempotent ring R, which is defined by a pseudo-surjective (R, R)-bilinear
map, is Morita equivalent to R (Theorem 3.16). Then we define strict lo-
cal isomorphisms of rings, inspired by a similar notion in semigroup theory
introduced by Marki and Steinfeld. We show that if two rings are Morita
equivalent, then any pseudo-surjectively defined tensor product ring over one
of those rings is strictly locally isomorphic to the other one (Corollary 3.24).
Finally we prove a result connecting the constructions of Rees matrix rings
and tensor product rings (Theorem 3.40). We will also study the rings of
adjoint endomorphisms of modules. This approach is a generalization of the
ideas used by Anh in [5]. We use adjoint endomorphisms to describe Morita
equivalence of s-unital rings (Theorem 3.39). This section is based on [48].

In Chapter 4 we will define enlargements of rings, which is again a notion
borrowed from semigroup theory. First we prove some simple properties of
enlargements and then give two natural constructions that produce enlarge-
ments. We will show that enlargements — namely the existence of a joint
enlargements — can be used to describe Morita equivalence of idempotent
rings (Theorem 4.13). For instance this description allows us to easily con-
clude that the only ring Morita equivalent to {0} is {0} itself (Corollary
4.15). Furthermore, we will show that for any two Morita equivalent idem-
potent rings there exists a Morita context between those rings, where the
bimodules are induced by their joint enlargement (Corollary 4.21). Finally
we show that a joint enlargement of certain particular rings is lurking behind
the strong Morita equivalence of semigroups (Theorem 4.25). This section is
based on [27].

In Chapter 5 we will study unitary ideals of Morita equivalent idempotent
rings. First we show that the set of all unitary ideals of an idempotent ring
actually forms a unital quantale (Proposition 5.3). In particular we will prove
that that the quantales of unitary ideals of Morita equivalent idempotent
rings are isomorphic (Theorem 5.8). Next we will briefly consider socles and
annihilators in connection to Morita equivalence. Finally, we will prove that
if two idempotent rings are Morita equivalent, then their quotients, by the
ideals that correspond to each other, are also Morita equivalent (Theorem
5.16). Essentially we will give a way of factorizing Morita contexts by ideals.
This section is based on [49].

In Chapter 6 we will study the category of firm bimodules over two idem-
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potent rings. First we will have a lengthy detour concerning the subcategories
of firm, closed and torsion-free bimodules over idempotent rings. Due to the
size of this section it is divided into subsections. After introducing the cat-
egories of firm and closed bimodules over some idempotent rings, we will
show explicitly that these categories are equivalent to each other and also to
the category of unitary torsion-free bimodules over the same rings (Theorem
6.14). Moreover, the category of closed bimodules over some idempotent
rings is an essential localization of the category of all bimodules over those
rings (Theorem 6.16). Next we will describe monomorphisms in the category
of all bimodules and in the category of all unitary bimodules over two rings.
There we will also give an example of a non-injective monomorphism in the
category of unitary bimodules over some particular rings, proving that this
category is not balanced (Example 6.23). Finally we will describe monomor-
phisms in the category of firm bimodules (Theorem 6.25) and show that the
lattice of unitary sub-bimodules of a given firm bimodule is isomorphic to
the lattice of categorical subobjects of this bimodule (Theorem 6.29). This
chapter is a generalization of [47].



Chapter 2

Preliminaries

In this chapter we will introduce notions that are needed in this thesis. First
we will dwell into category theory. Then we will introduce several special
kinds of rings and modules, which will be important later. In order to con-
sider Morita theory we will then study bimodules, especially the categories
of firm and closed bimodules. Finally we will introduce the basics of Morita
theory.

2.1 Some notions from category theory

In this thesis we will assume some prior knowledge of category theory. Still
there are some notions which will be defined in this section, but first we
must introduce some notation. Let A be a category. If A is an object of A,
then we will simply write A € A, and Mor4(A, B), where A, B € A, will
denote the set of all morphisms of A from A to B. Also, Mor(A) wil denote
the class of all morphisms in A. Functors will usually be denoted by bold
capital latin letters. Next we will define the notions of adjoint functors and
the equivalence of categories.

Let A and B be categories and F: A — B and G: B — A functors.
The functor F is called a left adjoint of G or, equivalently, G is called a
right adjoint of F with the notation F 4 G or G I F, if there exist two
natural transformations e: Fo G — idg and n: id4 — G o F such that for
any objects A € A and B € B the so called triangle identities hold:

idp(a) = epa) o F(na), (2.1)
id(;(B) = G(SB) e} 77(;(3).

Such 7 is called the unit and € the counit of the adjunction F 4 G. Adjoint
functors can be composed in the following sence: if F 4 G and F/ 4 G’ are

13
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adjunctions, then there exists an adjunction
FoF 4G oG. (2.3)

One of the most important properties of adjoint functors is that every
functor that has a left (right) adjoint preserves limits (colimits) (Proposi-
tion 18.9 in [2]).

A functor F: A — B is called an equivalence functor (between cat-
egories A and B) if there exists a functor G: B — A and two natural
isomorphisms €: F oG — idg and n: idgy — G o F. In that case the
functor G is also an equivalence functor between A and B. If there exists an
equivalence functor F: A — B, then we say that the categories A and B are
equivalent and write A =~ B. If F: A — Band G: B — A are equivalence
functors, then clearly F is a left and right adjoint of G and vice versa.

Next we must recall the notion of a monomorphism and its special cases
regular and extremal monomorphisms. These will play an important role in
what follows.

Definition 2.1. Let A be a category. A morphism f: A — Bin A is called
a monomorphism, if it is left cancellable, i.e., for every pair on morphisms
g,h: C'— Ain A, the following property holds:

feg=foh = g=h

The dual notion of a monomorphism, i.e. a right cancellable morphism,
is called an epimorphism. A morphism that is both a monomorphism and
an epimorphism is called a bimorphism.

If A is a construct ([2, Definition 5.1]), then all injective (surjective)
morphisms in A are monomorphisms (epimorphisms) in A (Corollary 7.38 in

2]).

Definition 2.2. A morphism f: A — B is called a regular monomor-
phism, if it is an equalizer of some morphisms g,h: B — C.

It is easy to check that a regular monomorphism is indeed a monomor-
phism.

Definition 2.3. A monomorphism f is called an extremal monomor-
phism if f = g o e, where e is an epimorphism, implies that e is an iso-
morphism.

Also, we recall a very well known property of regular and extremal mono-
morphisms.
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Lemma 2.4 ([2, Corollary 7.63]). Every regular monomorphism is extre-
mal.

Finally we will need some notions concerning reflective and coreflective
subcategories. The following definitions are taken from [9].

Definition 2.5. Let A be a category. A full subcategory B C A is called
(co)reflective if its inclusion functor J: B — A has a left (right) adjoint
F: A — B. The functor F: A — B is called a (co)reflector.

Let B be a reflective subcategory of A with the reflector F: A — B. Due
to the adjunction F 4 J there exist two natural transformations e: FoJ —
idg and n: id4 — J o F such that for every object B € B we have

idB = E&pOoNB.

On the other hand, using the naturality of ¢ and condition (2.1) (as shown
on Figure 2.1), we calculate

NBoeEp — J(nB) oep = 51:‘(3) o F(T]B) = 1dF(B) .

€B

B F(B)——2—»B
773{ F(WB)j B
F(B)  F(F(B)) = F(b)

Figure 2.1

Therefore we have shown that eg: F(B) — B is an isomorphism. In con-
clusion, we have that if F: A — B is some reflector then the counit of
the adjunction F 4 J is a natural isomorphism and its inverse is the unit
restricted to the objects of B. Dually, it can be shown that if C is a core-
flective subcategory of A with a coreflector G: A — C, then the unit of the
adjunction J 4 G is a natural isomorphism.

Definition 2.6 (Definition 3.5.6 in [9]). A reflective subcategory B C A
is called an essential localization of A if its reflector F: A — B has a left
adjoint.

Next we will prove a lemma about essential localizations, which will prove
to be useful in the following sections. This lemma was first published in [47].
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Lemma 2.7. Let A be a category and B an essential localization of A. If
monomorphisms and regular monomorphisms coincide in the category A,
then they also coincide in B.

PROOF. Let A be a category where monomorphisms and regular monomor-
phisms coincide and B C A its essential localization with a reflector F: A —
B and let p: id4 — F be the unit of the adjunction F 4 J, where J: B — A
is the inclusion functor.

Let f: B — C be a monomorphism on B and g,h € Mor4(A.B) such
that fog = foh. Since B is a reflective subcategory of A, we may consider
the morphisms F(g),F(h): F(A) — F(B). Since f is a monomorphism in
B we know that pg' o F(g) = p5' o F(h). Now, since p is natural we obtain
that

9= (p5' o F(g9)) o pa = (pg' o F(h)) 0 pa=h,
which implies that f: B — C'is also a monomorphism in A.

By assumption, we know that f is a regular monomorphism in A, which
means that there exist morphisms u, v € Mor 4(C, D) such that f is an equal-
izer of u and v. Since B is an essential localization, the reflection functor
F: A — Bhas aleft adjoint. Thus F is a right adjoint functor and by Propo-
sition 18.6 in [2] it preserves equalizers. So, the morphism F(f): F(B) —
F(C) is an equalizer of morphisms F(u), F(v): F(C) — F(D) in B (as shown
on Figure 2.2).

Figure 2.2

Due to p being a natural transformation, the equality

pco f=F(f)ops
holds. This equality implies that F(u) o pco f = F(v)o pco f.
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Let e: E — C be a morphism in B such that F(u)opcoe = F(v)opcoe.
Since F(f) is the equalizer of F(u) and F(v), there exists a unique morphism
m': E — F(B) in B such that F(f) om’ = pc o e. Morphisms pp and pc
are isomorphisms in B. Denoting m := pz' om/ : E — B we have

fom=fopzlom =pzloF(f)om' =p;lorcoe=e.

Uniqueness of m follows from the fact that f is a monomorphism in B. Thus
we have shown that f is the equalizer of the morphisms F(u) o po, F(v) o
pc: C — F(D)in B. [ |

Now we have all the necessary notions from category theory and we may
move on to algebraic notions.

2.2 Rings and modules

In this thesis we will mostly consider associative but not necessarily having
an identity element nor commutative rings, i.e. an abelian group (R;+) will
be called a ring if it is equipped with a mapping R x R — R, (a,b) — ab,
called multiplication, which satisfies the condition (ab)c = a(bc) for every
a,b,c € R and addition and multiplication are connected by the distributivity
conditions:

(a+bc=ac+bc and  cla+b)=ca+ ch,

for every a,b,c € R.

We will need to consider modules over rings. Let R be a ring, denote by
Modp the category whose objects are all right R-modules and morphisms are
the homomorphisms of right R-modules; similarly zMod will be the category
containing all left R-modules. Analogously, for all subsequent categories of
modules, the position of the ground ring as an index will indicate either
left or right modules. Let M and N be right R-modules. We will denote
the set of all right R-module homomorphisms from M to N by the symbol
Homp(M, N) and analogously the set of all left R-module homomorphisms
by the symbol gHom (M, N), i.e.

Hompg(M, N) := Morwmed, (M, N),
rHom (M, N) := Mor ,mod (M, N).

The set Homg (M, N) can actually be turned into a right R-module by defin-
ing addition and scalar multiplication as folows

(f +9)(@) = f(x) + g(2),
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(fr)(@) := flrz), (2.4)

for every f,g € Homg(M,N) and r,z € R. The set gHom(M, N) can
analogously be viewed as a left R-module by defining scalar multiplication
as

(rf)(z) := flar), (2.5)

for every f € Homg(M,N) and r,x € R.
If My is a right R-module, A C M and S C R, then we denote

ke
AS = {Z xSk

k=1

E*eN; ay,...,a € A; 51,...,5k*€S}QM.

For left modules (and later for bimodules) we will use a similar notation.
Next we will define several special kinds of modules and rings. We will
formulate the definitions for right modules. Dually one can define such no-
tions for left modules. All of these notions give rise to similar notions for
rings, which will be defined by considering a ring R as an R-module Rp.

Definition 2.8. A right R-module My is called unitary, if MR = R,
i.e. for every element m € M there exist elements ry,...,r« € R and
my,...,me= € M such that m = mqry + ... + mprp«. The category of all
unitary right R-modules is denoted by UModg.

It is easy to see that if R has an identity element 1, then Mg is unitary
if and only if m1 = m for every m € M.

Definition 2.9. A ring R is called idempotent if the R-module Rg is uni-
tary.

Idempotent rings are of central importance in this thesis. Clearly every
ring with an identity element is idempotent.

We assume the familiriarity with the notion of tensor product of modules
(see, for example, paragraph 12.1 in [51]), which will be used extencively in
this thesis. Still, we will formulate the notion of a balanced mapping, because
of its importance later.

Definition 2.10. Let R be aring, Mg and g/N R-modules and A an abelian
group. A mapping a: M x N — A is called R-balanced, if, for every r € R,
m,m’ € M and n,n’ € N, we have

L. a(m+m/,n)=a(m,n)+ a(m' n);

2. a(m,n+n') =a(m,n)+ a(m,n);

3. a(mr,n) = a(m,rn).
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We will also formulate the universal property of the tensor product as the
following proposition.

Proposition 2.11 (Universal property of the tensor product). Let R
be a ring, Mr and gN R-modules and A an abelian group. For every R-
balanced map ao: M X N — A there exists a unique homomorphism of abelian
groups v: M ®@g N — A such that vy o ® = « (Figure 2.3).

M x N

T

M®RN—>A

Figure 2.3

Next we will define firm modules.

Definition 2.12. A right R-module Mpy is called firm, if the canonical ho-
momorphism

Vpr: M@RR%M, ka(@”{’k'—)zmkﬁg (26)
k=1 k=1

is bijective. The category of all firm right R-modules is denoted by FModp.
Definition 2.13. A ring R is called firm, if the R-module Ry is firm.

Clearly every firm module is also unitary. Namely, Mg is unitary if and
only if vy, is surjective. The converse is not always true. Hence, every
firm ring is idempotent. Also every ring with identity is firm. Canepeel and
Grandjean published the following example of a unitary but non-firm module
in 1998.

Example 2.14 (Unitary non-firm module; Example 1.2 in [15]). Let
R =75 ® Z. Consider R as a ring with the usual componentwise addition
and multiplication defined by

(Z1,a1)(Z3, a2) = (172, araz).

The ring R is firm, because it has a left identity (0, 1).
Fix ¢ = (0,2) € R. The principal ideal

cR={(0,20) | be Z} =27
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is unitary, but not firm as a right R-module. For unitarity consider an
element (0, 2b) € cR, then (0,20) = (0,2)(0,b) = ¢(0,b), where (0,b) € R and
(0,2) € cR. Now, consider the element (0,2) ® (1,0) € cR ®g R. Obviously

ver((0,2) @ (1,0)) = (0,2)(1,0) = (0,0).
On the other hand there exists a well-defined right Z-module homomorphism
cR®pr R — Zy, (0,20) ® (z,a) — bz,

which maps (0,2) ® (1,0) — 1 # 0. This proves that (0,2) ® (1,0) # 0
in cR ®gr R, because there exists a homomorphism of abelian groups that
does not take (0,2) ® (1,0) to zero. Hence cR is not firm, because v, is not
injective. U

Gonzalez-Férez and Marin have also proved that there exist unitary but
non-firm modules in [17] (Corollary 21).

Next we will give an example of an idempotent but non-firm ring, which
was found by Ulo Reimaa.

Example 2.15 (Idempotent non-firm ring). Consider the following two
semigroups S = {z,a,b,e} and B = {0,1,2,3,4} given by their Cayley
tables:

Bi{0O1 2 3 4
fjjgi 010 0 0 0 0
alz z 2z z and 11000 21
P 210 0 00O
els 0 » e 310 0 0 0 O
410 0 0 3 4

Note that S is a non-firm semigroup, meaning that the S-acts S ®g .S and
S are not isomorphic (see Example 2.3 in [23]). Consider the mapping
Y: S x § — B given by the following table:

Y|z a b e
z10 0 0 0
al0 0 0 0.
b0 2 0 1
el0 3 0 4

It is easy to check that 1) is S-balanced, meaning that ¥ (ss’, s”) = (s, s's”)
for every s,s',s” € S. Recall the notion of a semigroup ring (paragraph 5.3
in [51]) and consider the semigroup rings

Zo|S] = {k1z + koa + ksb + kae | ki, ko, k3, ks € Zs}
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and Zs[B]. Clearly, the mapping induced by 1,
wl: ZQ[S] X ZQ[S] — ZQ[B],

is Zs[S]-balanced. By the universal property of the tensor product (Propo-
sition 2.11), there exists a well-defined homomorphism of abelian groups

U Zo|S) @as) Za[S] — Zo[B).

Note that ¢/(b® a) = 2 # 0 = ¢/(b ® b), which proves that b ®a # b ® b in
Zo[S]| ®z,(5] Z2[S]. On the other hand

V251D ® a) = ba = z = bb = vz,51(b & b).

This proves that the mapping vz, is not injective and hence the ring Z,[S]
is not firm. It can be checked that Z,[S] is idempotent. O

Next we will define the notion of a torison-free module.

Definition 2.16. A right R-module My, is called torsion-free if
tr(M) :={me M |mR={0}} ={0}.
The category of all torsion-free right R-modules is denoted by TfModg.

The category of all unitary and torsion-free right R-modules is denoted
by UTfModp.

Definition 2.17. A right R-module Mp is called closed, if the canonical
homomorphism

Ay M — Hompg(R, M), (Ay(m))(r) =mr
is bijective. The category of all closed right R-modules is denoted by CModp.

Clearly every closed module is also torsion-free. Namely, A,/ is injective
if and only if Mg is torsion-free, because Ker(Ay;) = tg(M). The terms
“firm module” and “closed module” were used by Quillen in [39]. Actually,
firm modules appeared under the name ”regular module” already in [45] by
Taylor. Marin and Gonzalez-Férez have studied the categories FModg and
CModp and their properties extensively in [34], [17] and [18].

We will need the following theorem proven by Marin, which claims that
the categories FModgr, CModg and UTfModg are equivalent categories if R
is idempotent.
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Theorem 2.18 (Proposition 2.7 in [34]). Let R be an idempotent ring.
There exist equivalence functors

_R: CModip — UTfModgp,
Hompg(R,_): UTfModr — CModg,
 /tr(_): FModg — UTfModp,

_ ®r R: UTfModr — FModp.

These equivalences are realized by natural isomorphisms defined as follows

Aot o Homp(R, 1c) = A\;' otco__: Homg(R,CR) — C,
An|ng = Ang: N — Hompg(R, N)R,

(_/t())(wn) = [wv]: (N ®r R)/tr(N ®r R) = N,
(] ®idg)ovy': A— A/tr(A) ®r R,

where C' € CModgr, N € UTfModgr, A € FModg and vc: CR — C is the
inclusion.

R __®rR

/\ /\
CModp ~ UTfModr ~ FMod g
V\_/ V\_/

Hompg (R, ) _/tr()

Figure 2.4

Next we will define a few more special rings. Let R be a ring. An element
e € R is called idempotent, if eec = e.

Definition 2.19 (Definition 1 in [7]). A ring R is said to have local
units, if for every finite subset {ry,...,r,} C R there exists an idempo-
tent element e € R such that

re=ery=rmrie, ..., Tp=er,=7mr,e.

Every ring with local units is firm. We will also need the following weaker
form of a ring with local units. A ring R is said to have left local units if
for every subset {r,...,7,} C R there exists an idempotent e € R such that
ri=ery,...,r, = er,. Aring with right local units is defined dually. Here,
the idempotent e is called a (left, right) local unit for the set {ry,...,r,}.
Obviously, every ring with an identity element, is also a ring with (left, right)
local units. In that case, the identity element 1 is the (left, right) local unit
for any subset of R.

Now we will introduce the notion of s-unital rings.
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Definition 2.20 ([46]). A ring R is called left (right) s-unital if for every
r € R there exists an element v € R such that

r=or (r =rv).

A ring R is called s-unital if it is both left and right s-unital, i.e. for every
r € R there exist elements u,v € R such that r = vr = ru.

For example every ring with local units, including every von Neumann
regular ring (see paragraph 3.1 in [51]), is s-unital. We will need the following
result about s-unital rings, that was proved by Tominaga in [46].

Theorem 2.21 (Theorem 1 in [46]). A ring R is left s-unital if and only
if for every finite subset {r1,...,r,} C R there exists v € R such that

r = vry, cey Tn = Uy,
Next, we will prove that every left (or right) s-unital ring is firm.
Lemma 2.22. FEvery left s-unital ring is firm and hence also idempotent.

PrOOF. Let R be a left s-unital ring. Consider the homomorphism
k* k?*
vr: R®r R — R, Zm QR 1), > Z"’H’;
k=1 k=1

The homomorphism vg is surjective, because every » € R can be expressed
r = vr for some v € R and hence r = vr = vg(v @ 1).
Next let ZZ=1 ry @1, € Ker(vg), then Zzzl rgr, = 0. By Theorem 2.21,

there exists an element v € R such that r, = vry, for any k € {1,... k*}.
Now

k* k* k*

Zrk@)r; :Zm’k@?";f =v® (eré) =v®0=0.

k=1 k=1 k=1

Hence Ker(vg) = {0}, which proves that vy is injective. In conclusion, vg is
an isomorphism, which proves that R is firm. Every firm ring is idempotent.Hl

Lastly, we must recall the notion of an ideal of a ring. Let R be a ring.
A subset I C R is called a right (left) ideal of R if it is a subgroup of
(R;+) and IR C I (RI C I). Obvously, every right (left) ideal of R may be
considered as a right (left) R-module. A subset I C R is called an ideal of
R if it is both a left and a right ideal of R. We will write I < R if I is an
ideal of R and the symbol Id(R) will denote the set of all ideals of R. The set
Id(R) is a complete lattice with respect to the inclusion relation. In Id(R)
joins are sums and meets are intersections.
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2.3 Bimodules

Let R and S be rings. A left S-module M, which is also a right R-module,
is called an (S, R)-bimodule, if the condition

(sm)r = s(mr)

holds for every s € S, r € R and m € M. In such a case we write ¢Mpg to
indicate that M is an (S, R)-bimodule. A subset A C M is called a sub-
bimodule of an (S, R)-bimodule M if A is a submodule of both the left
S-module ¢M and the right R-module Mg. The set of all sub-bimodules of
an (S, R)-bimodule M is denoted by Sub(M).

The category of all (S5, R)-bimodules is denoted by sModg, morphisms in
this category are mappings, which are both homomorphisms of left S-modules
and also homomorphisms of right R-modules. For any M, N € gModg,
denote

sHomp (M, N) := Mor mody (M, N).

The set sHompg(M, N) can be viewed as an (S, R)-bimodule by defining
addition componentwise, right R-multiplication with (2.4) and left S-multi-
plication analogously.

Let M € sModg. Notice that the right R-module Homg(R, M) of right
R-module homomorphisms can be viewed as an (.S, R)-bimodule, by defining
an S-multiplication for every f € Hompg(R, M) as follows

(sf)(r) == sf(r), (2.7)

for any s € S and r € R. The left S-module sgHom (S, M) can analogously
be viewed as an (S, R)-bimodule, i.e. addition in ¢Hom(S, M) is defined
componentwise and S-, R-multiplications are defined as follows

for every f € sHom(S, M), s,s' € S and r € R.

Definition 2.23. An (S, R)-bimodule gMpg is called unitary, if sM is a
unitary left S-module and Mg is a unitary right R-module. The category of
all unitary (S, R)-bimodules is denoted by sUModg.

Firm, torsion-free and closed bimodules are defined completely analo-
gously and their categories are denoted by sFModg, sTfModgr and sCModg,
respectively. Also, we will adopt a convention of notation that if any of the
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abbrevations u, f, tf, ¢ or utf is written to the left or right side of sym-
bol Mod, then it denotes a category of bimodules whose objects have the
respective properties as left or right modules. For example the category
sutfModcg consists of all (S, R)-bimodules ¢ My such that M is a left uni-
tary and torsion-free S-module and Mpg is a right closed R-module. All of
these categories are full subcategories of sModg.

Now we will prove a simple, yet extremely useful description of unitary
bimodules.

Lemma 2.24. Let S and R be rings and sMg an (S, R)-bimodule. A bi-
module ¢ Mpg is unitary if and only if SMR = M.

PROOF. Necessity. Let s Mg be a unitary bimodule. Then M =SM =SMR.

Sufficiency. Let M = SM R hold. Fix m € M, then there exist elements
S1y.--ySpx €8, r1,..., T and myq, ..., mg € M such that m = symqr; +
oot ST, Now

k*

k*
m = Z SEMETE = Z sk(myry) € SM,
k=1

k=1
k* k*

m = E SEMETE = E (sgmg)ry € MR.
k=1 k=1

This proves the inclusions M C SM and M C M R. The converse inclusions
are obvious. [ |

Let S and R be idempotent rings. Due to the previous lemma, we can
construct a functor

U=S5_R: sModg — sUModr, M — SMR. (2.10)

Indeed, for every M € sModg, we have S(SMR)R = (SS)M(RR) = SMR,
meaning that U(M) € sUModg. The functor U maps morphisms to restric-
tions: U(f) = flsmyr: SMR — SNR, for every f € Mor mod, (M, N) with
M, N € sModg. Clearly there exists a natural isomorphism U = U o U, if
we view U as an endofunctor of sModpg. It is easy to see that the functor U
can be expressed as a composition

U=(_R)o(S_): sModr— suModg — sUModp.

Let the symbol USub(M) denote the set of all unitary sub-bimodules of an
(S, R)-bimodule ¢Mg. The set USub(M) is a nonempty poset with respect
to the inclusion relation. The following proposition shows that USub(M) is
even a lattice with some good properties.
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Proposition 2.25. If sMpg is an (S, R)-bimodule, then USub(M) is a com-
plete lattice. If R and S are idempotent rings, then this lattice is modular.

Proor. Let M € gModpg for some rings S and R. It is easy to see that the
sum of any set of unitary sub-bimodules of M is a unitary sub-bimodule.
Hence USub(M) is a complete lattice with

\/ By, := ZBk,

keK keK

for any set K with B, € USub(M), k € K. The least element of USub(M)
is {0}.

Now assume that the rings S and R are idempotent. Then the meet of
an arbitrary subset {By | k € K} C USub(M) is calculated as follows:

/\Bk::S<ﬂ Bk>R.

keK keK

Let A, B,C € USub(M) be such that A C C'. Then (A+B)NC = A+BNC,
because the lattice of all sub-bimodules Sub(M) is modular. Hence

(AVB)AC = R((A+B)NC)S = R(A+ (BNC))S = RAS + R(BNC)S
— A+ R(BNC)S=AV(BAC),

which means that the complete lattice USub(M) is modular. [

2.4 Morita theory

In this section we will introduce Morita contexts and show how they can be
used to study Morita equivalence for idempotent rings.

Definition 2.26. A six-tuple (R, S, rPs, sQr,0, ¢), where R and S are rings
and rPs, sQ)r are bimodules, is called a Morita context, if

0: r(P®sQ)r — rRr, ¢: 5(Q®rP)s — sSs

are bimodule homomorphisms such that

0(p @ Q)p' = pdla®p), (2.11)
90(p®q') = ¢(g @ p)d (2.12)

for every p,p’ € P and ¢,q' € Q.
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We say that a Morita context (R, S, rPs, s@r,0,¢) is unitary, if the
bimodules rPs and Qg are unitary; and surjective (bijective), if the
homomorphisms ¢ and ¢ are surjective (bijective). We will say that two
rings S and R are connected by a Morita context, if there exists a Morita
context (R, S, RPS, SQR: 9, ¢)

Next we will prove one useful little proposition that first appeared in [27],
which claims that unitary surjective Morita contexts only connect idempotent
rings.

Proposition 2.27. If (R, S, rPs,sQr,0,¢) is a unitary surjective Morita
context, then the rings S and R are idempotent.

PROOF. Let (R, S, rPs, sQr,0,¢) be an unitary surjective Morita context.
Take r» € R. Using the surjectivity of # we can find an element Zzzl Dh &
gn € P ® @ such that r = 9(2221 P ® qp). Since rP is unitary, for every
h € {1,...,h*}, there exist a natural number k*, elements rp,..., 7 € S
and pp1, ..., prks € P such that p, = rp1pp1 + - - . + ThieDrie (if necessary, we
add some zero summands to get the equal length of sums for all h’s). Now

h* h*
er(th@)qh):Z@(ph@qh Ze(zrhkphk@)(ﬁz)
h=1 h=1 h—1

b T
- Z Z 0 (rnephr @ qn) Z Z k0 (prk ® qn) € RR.
h=1 k=1 h=1 k=1

This proves that R is an idempotent ring. The proof that S is idempotent is
analogous. |

In [14] (after Corollary 2.9) Garcia and Simén defined two idempotent
rings S and R to be Morita equivalent if the categories UTfModgr and
UTfModgs are equivalent categories. A somewhat similar idea for generaliz-
ing Morita equivalence for non-unital rings was also used by Nobusawa in
[38] already in 1984. We will denote Morita equivalence of rings S and R
by S ~yg R. Due to Theorem 2.18 we could equivalently claim that two
idempotent rings S and R are Morita equivalent if the categories CModg and
CModg or categories FModgr and FModg are equivalent. From these defini-
tions it is easy to see that Morita equivalence is an equivalence relation on
the class of all idempotent rings. The categories of CModg and CModg were
also used by Garcia and Marin to extend Morita theory to arbitrary rings in
[13].

Propositions 2.3 and 2.6 in [14] give us a way to characterise Morita
equivalence of idempotent rings in terms of unitary surjective Morita con-
texts. This characterization is given as the following theorem.
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Theorem 2.28. Two idempotent rings are Morita equivalent if and only if
they are connected by a unitary surjective Morita context.

It turns out that from each Morita context a new ring arises in a natural
way.

Definition 2.29. Let I' = (R, S, rPs, sQr, 0, ¢) be a Morita context. Then
the Morita ring I' of the context I' is defined as the matrix set

"= {ls 1

with componentwise addition and with the multiplication

{T p} r pf} B {rr’%—@(p@q,) rp + ps’ ] (2.13)

q s |¢d ¢ g’ +s¢ dlq@p)+ss|

rER,sES,pEP,qGQ}

It is easy to see that, if idempotent rings S and R are Morita equivalent,
then their corresponding Morita ring is idempotent.
Note that the subsets

(]
{6

are subrings of I’ that are isomorphic to R and S, respectively. This gives us
a way of considering I' as an (R, S)- or (S, R)-bimodule, by defining for any
€ R, s €S and [¢%] € T lefthand multiplications by

[

SRR

and analogously on the righthand side. With these module structures in
mind we can easily see that the mappings

reR}gF, (2.14)

ses}gf (2.15)

P —T, pl—>{8 g} and Q—T, q'—>[0 O]
are injective bimodule homomorphisms. _

In conclusion we have seen that the Morita ring I' has isomorphic copies
of R, S, P and () as corresponding substructures.



Chapter 3

Rees matrix rings and tensor
product rings

In this chapter we will define Rees matrix rings and tensor product rings
over arbitrary rings. We will show that both of these concepts can be used
to study Morita equivalence of rings. We will also study the rings of ad-
joint endomorphisms of modules. In the last two sections we will study the
connections between Rees matrix rings and tensor product rings and finally
we will describe Morita equivalence of firm rings in terms of tensor product
rings. This chapter is based on [48].

3.1 Rees matrix rings

Rees matrix rings over a ring with identity were introduced in [7] (Defini-
tion 2.1) by Anh and Mérki. We will use a similar definition for an arbitrary
associative ring R. Firstly we shall define finite-dimensional Rees matrix
rings. Let R be a ring, m, n some natural numbers and M € Mat,, ,,(R) a
fixed matrix. Consider the ring

M = M(R;m,n; M) = (Mat, »(R), +, *),

where addition + is the usual componentwise addition of matrices and mul-
tiplication * is defined as follows:

X*Y = XMY, X,Y € Mat,, »,(R).
Such a ring M is called a (finite-dimensional) Rees matrix ring over R.

We will also use a more general definition of Rees matrix rings.

29
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Definition 3.1 (Definition 2.1 in [6]). Let A and = be non-empty sets
and M: = x A — R a mapping. Consider the set M = M(R; A, =; M)
of mappings A x = — R having only a finite number of non-zero values —
these correspond to A X = matrices over R with a finite number of non-zero
entries. In M(R; A, Z; M) we define addition as the usual point-wise addition
and multiplication * with

X *Y = XMY,

where the multiplication on the right-hand side means the usual multiplica-
tion of matrices. With these operations M = M(R; A, E; M) is a ring, called
a Rees matrix ring.

Elements of a Rees matrix ring M(R; A, =; M) are called matrices and
the mapping M is called a sandwich matrix. It is clear that, if we take
A={1l,...,m} and E={1,...,n}, then M(R;A,Z; M) = M(R;m,n; M).

In this section we will give proofs with finite-dimensional Rees matrix
rings, because they are easier to follow and more illustrative of the tech-
nique. These proofs can easily be generalized to arbitrary Rees matrix rings.
This can be done by noticing that for every matrix X € M(R; A, =Z; M), there
exists a minimal submatrix u(X) such that every value outside of pu(X) is
zero. This matrix (X)) can be expressed as an element of M(R;mx,nx; M')
for some numbers ny and myx and a submatrix M’ of M. By adding ze-
ros to pu(X) where necessary, we can also say that p(X) is from a finite-
dimensional Rees matrix ring M(R;m/,n’; M") for every m’ > myx and
n’ > nx. Then whenever we have a finite collection of matrices X1, ..., Xy« €
M(R; A, =Z; M), we can do calculations in a finite-dimensional Rees matrix
ring M(R;m,n; M') which is a subring of M(R; A, Z; M) and p(Xj) is from
M(R;m,n; M'), for every k € {1,...,k*}. Such generalizations are given as
corollaries. Firstly we will prove a proposition which describes idempotent
Rees matrix rings.

Proposition 3.2. A Rees matriz ring M = M(R;m,n; M) is idempotent
if and only iof
MatLl(R) = Matlm(R)M Math(R).

PROOF. Let a Rees matrix ring M = M(R;m,n; M) be idempotent. Then,
for every X € M there exist matrices Y1, 2y, ..., Y, Zpr € M such that
X=Y«Z,+ ...+ Y * Zp«. Therefore

11 .- Tin k* K
X=|: -~ | =) YMxZ=) YiMZ
k=1 k=1

Imli .- Tmn
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kx« | Yk11 -+ Ykln M1 - Him Zk1l  ---  Rkln
k=1 _ykml cee Ykmn Hnl - Hnm Zkml - - Zkmn
—n n _
E YkihMh1 - - - E Yk1hMhn
k™ h=1 h=1 Zk11 - .- Zkln
— n n
k=1 Zkml -+ Rkmn
E Ykmhlbh1 - .- § YkmhHhn
Lh=1 h=1 i
[ m n m n T
g E YkihMhjZkjl - - E Yk1hHhjZkjn
k* | j=1 h=1 j=1 h=1
k=1 m n m n
E YemhMhjZkjl - - - E YkemhhjZkjn
| =1 h=1 j=1 h=1 i

Now we see that for every p € {1,...,m} and ¢ € {1,...,n}, [z, €
Mat 1 (R) and

k* m n k* Zqu
o) = DD konttngznia| = D [k o ] M| |, (31)
k=1 j=1 h=1 k=1 Zkmg

which implies that [z,,] € Mat;,(R)M Mat,, 1(R). Since X was chosen
arbitrarily, we have shown that Mat, ;(R) = Mat; ,,(R)M Mat,, ;(R), which
proves the necessity of our proposition. To prove the sufficiency one just has
to retrace the previous steps in the opposite order. [ |

Corollary 3.3. A Rees matriz ring M(R; A, Z; M) is idempotent if and only
if

R=Z=MAN,
where Z' is the set of mappings {1} x = — R with finite number of non-zero

values and N is the set of mappings A x {1} — R with finite number of
non-zero values and the set of mappings {1} x {1} — R is identified with R.

From the decomposition (3.1), we deduce the following proposition.

Proposition 3.4. If a Rees matrixz ring M(R; A, =; M) is idempotent, then
the ring R s idempotent.
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Example 3.5 (Idempotent Rees matrix ring). If D is a division ring,
then every Rees matrix ring over D is idempotent. Consider a Rees matrix
ring M(D, m,n, M), where M = [upi]; L, € Mat,, (D) is not a zero matrix.
If p1y # 0, then every one-element matrix [d] € Mat; 1(D) can be written as

d
Hir o - Ham 0
[d=[pg 0 ... 0| - .| € Mat, ,,(D)M Mat,, (D).

If p11 = 0, then there exists a pp, # 0 for some h and k. The matrix [d] can
then be expressed analogously using p,x. Due to Proposition 3.2, the ring
M(D;m,n; M) is idempotent. O

Next we will prove a little lemma, which will later become useful in several
results.

Lemma 3.6. For an idempotent ring R and m,n € N,
Mat,, »(R) = Mat,, 1 (R) Maty ,,(R).

PrOOF. Clearly Mat,, ;(R) Mat;,(R) € Mat,,,(R). Let X = [2,4],.2; €
Mat,, »(R). Let p € {1,...,m} and ¢ € {1,...,n} be arbitrary, then, due
to R being idempotent, there exist elements xy, 2%, ..., Ty, wﬁ%q € R such
that x, = 12} + ... + 2y, 2}, . Denote by Ay (r) the m x n-matrix with
the entry r at the position (p, ¢) and zeros elsewhere. Then

" 0 .
kpq kpq O O O / 0 O
Apg(Tpq) :Z Apg(wpy,) :Z Lk (p- line) { o (g. cflﬁmn) o '
k=1 k=1 0
L 0 i

(3.2)
Therefore every matrix A,,(z,,) can be expressed as an element of the set
Mat,, 1 (R) Mat; ,,(R). Now, it follows that

X =) Apy(rpq) € Maty, 1 (R) Maty ,(R).

1 g=1

NE

p

Therefore Mat,, ,,(R) = Mat,, 1 (R) Maty ,,(R). [
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Corollary 3.7. Let M(R;A,=; M) be a Rees matriz ring over an idem-
potent ring R. Then for every f € M(R;N,ZE;M), there exist n € N,
gi,---s9n: N — R and hy,... h,: Z — R such that for every A\ € A
and £ € =

FOLE) =D a(Mh(§).

Now we are ready to prove the main theorem of this section. This theorem
is the ring theoretic analogue of Proposition 2 in [22].

Theorem 3.8. A ring R and a Rees matriz ring M = M(R;m,n; M) are
connected by a unitary surjective Morita context if and only if M is idempo-
tent.

PROOF. Necessity. Let M and R be connected by a unitary surjective Morita
context. Then by Proposition 2.27 the ring M is idempotent.

Sufficiency. Let the Rees matrix ring M = M(R;m,n; M) be idem-
potent. Consider the left R-module r(Mat, ,(R)) and the right R-module
(Mat,, 1(R))r, where for every r € R the R-multiplications are defined as
follows:

r [xl xn] = [m;l m;n} € Mat; ,(R),
Y1 wmr
clr=| ¢ | €Mat,1(R).
Ym YmT

Since M is idempotent, R is also idempotent by Proposition 3.4. Then, for
arbitary Y € Mat,, 1(R), we can write

k:*
(7 Z Y1k | Yk 0
v v2| _ k=1 _ k 01l , Yo
: Z/2 : ylk + : )
: : | :
L Ym

where Y1, ..o, Yy Y11, Yins - - - Y1k, Yipe € Rand y1 = yniyyy + -0+ Y1 Yype-

Continuing analogously, we can express every entry of ¥ as a sum of
products of elements of R, and so the whole matrix Y as a sum of products of
column-matrices and elements of R, which implies that the right R-module
(Mat,,1(R))g is unitary. The left R-module gp(Mat;,(R)) is analogously
unitary.
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We define a right and a left M-multiplication for modules zr(Mat; ,(R))
and (Mat,, 1(R))r, respectively, as follows

X *Z :=XMZ € Maty ,,(R),
Z%Y = ZMY € Maty1(R),

where Z € M, X € Mat, ,(R) and Y € Mat,,1(R). A straightforward veri-
fication shows that we have bimodules p(Mat; ,(R))a and a(Maty,1(R))r-
Let Y = [y]in, € Mat,, 1(R). By Proposition 3.2, there exist matrices
X1 = [z, Xgr = [Tg+n] € Maty ,(R) and Y7, ..., Y € Mat,,1(R) such
that y1 = X7 % Y] + ... + X+ * Y. Now

- -
Y1 Xk*Yk Tkl ... Tkn 0
Y2 kz:; l 0 . 0 Y2
Y= T Y2 - : - L Vit
: : il . :
Ym : o ... 0 Ym
L Ym
By continuing this process for every element s, . .., y,,, we see that the mod-

ule p(Mat,, 1 (R)) is unitary. Analogously, the module (Mat; ,(R)) is also
unitary. Therefore we have shown that r(Mat; ,,(R))am and y(Mat,, 1 (R))r
are unitary bimodules.
Define a mapping
k* k*
0: p(Maty,(R) ®p Maty1(R)r — rRr, > Xp®Yy > Y XMV,
k=1 k=1
Consider the mapping : Maty,(R) x Mat,,1(R) — R, (X,Y) — XMY.
The mapping 6 clearly preserves addition and for every Z € M

0(X «2,Y) = (X« Z)MY = (XMZ)MY = XM(ZMY) = 0(X,Z xY).

Therefore, the mapping 0 is M-balanced. Due to the universal property
of tensor product (see Proposition 2.11), the mapping 6 is a well-defined
homomorphism of abelian groups. For every r € R and Z:;l Xy ®Y, €
Mat, ,,(R) ® Mat,, 1 (R), we have

k* k* k* k*
0 <7“ (Zxk ® n)) =0 (Z(er) ® Yk> - rZXan =70 (Zxk ® Yk>.
k=1

k=1 k=1 k=1

Analogously 0((2:21 X ®Yy)r) = ‘9(2]12:1 X ®Yy)r, therefore 6 is a homo-
morphism of bimodules. The homomorphism 6 is surjective due to Proposi-
tion 3.2.
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Now define a mapping

k* k*
¢: m(Maty,1(R) ®p Maty n(R) i = mMar, D Y@ Xp =Y VX
k=1 k=1

Note that the multiplication of matrices distributes over addition and, for
every r € R, Y € Mat,, 1 (R) and X € Mat;,(R), we have (Yr)X =Y (rX),
which implies that the mapping ¢: Mat,, 1 (R) x Maty ,(R) — M, (Y, X) —
Y X is R-balanced. Thereore ¢ is a well-defined homomorphism of abelian
groups (see Proposition 2.11). For every Z € M and 22:1 Y, ® Xi €
Mat,, 1(R) ®r Mat; ,(R) we have

b (Z* (ZYk ®Xk>> = ¢ (Z(Z*Yk) ®Xk> = (Z*Yi) Xy

k=1 k=1 k=1
k* k*
= 7 x (ZYka> :Z*QS(ZYk@Xk) .
k=1 k=1

Analogously gb((zz;l Y@ Xy) % Z) = gb(ZZ;l Y, ® X)) * Z and therefore ¢
is a homomorphism of bimodules. By Proposition 3.4 R is idempotent and
Lemma 3.6 implies that ¢ is surjective.
Finally note that, for every X, X’ € Mat; ,,(R) and Y,Y’ € Mat,,1(R),
we have
IXRY)X' =(XMY)X'=XMYX)=X*xYX)=Xxo(Y @ X'),
YIXRY)=Y'(XMY)=Y'X)MY =Y'X)xY =¢(Y' @ X)xY.
In conclusion, we have shown that

(Rv Ma R(Matl,n(R))Ma M(Matm,l(R>)R7 97 ¢)
is a unitary surjective Morita context between rings R and M. [ |
Corollary 3.9. A Rees matriz ring M(R; A, Z; M) and the ring R are con-
nected by a unitary surjective Morita context if and only if M(R; A,Z; M) is
idempotent.

From the previous theorem and Theorem 2.28 we can deduce the following
result.

Corollary 3.10. If a Rees matriz ring M = M(R; A, Z; M) is idempotent,
then the rings R and M are Morita equivalent.

We can also deduce the following classical result as a corollary.

Corollary 3.11. If R is a ring with identity, then R and the Rees matriz
ring M(R;n,n; ) = Mat,(R) are Morita equivalent, where I is the identity
matriz.
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3.2 Tensor product rings

In this chapter we will consider tensor product rings. We show how to define
a multiplication on the tensor product of modules over an arbitrary ring R
using a certain bilinear mapping. This construction is analogous to that
of Morita semigroups defined by Talwar in [44] (Section 6). For rings with
an identity element and unitary modules this construction appears in [6]
(Definition 2.2).

Let R be an arbitrary ring and zP and Qg arbitrary R-modules. Also,
let there be given an (R, R)-bilinear mapping

(,): PxQ— R
(R, R)-bilinearity here means that, for every p,p’ € P, q,¢ € Q and r € R,

p+r,9)=®a+ @9,
(pa+d) = q +pd),
(rp,q) =r(p,q),
(p,qr) = (p.qr.

A pair of modules (rP,Qr) with an (R, R)-bilinear map (, ): P x @ — R
is often called a pair over R (e.g. Definition 2.2 in [6] and Definition 1 in

[5)-
Define a multiplication x on the generators of the abelian group @ ®g P
by
(g@p)*(d®@p):=q& (p.d) (3.3)
and extend this definition to all elements of the tensor product Q ®g P via
the distributivity property.
Note that, for every pair (¢,p) € @ x P, we can define a mapping

i QX P —=QRrP, (q1,p1) = @1 ® (p1,9)p
The mappings f, , are all R-balanced, because for every ¢i,¢q2 € Q, p1,p2 € P
and r € R
far(@r + @2.01) = (61 + @) ® (p1,@)p = @1 @ (1, Q) + 42 @ (P2, Q)P
= fop(a,p1) + fop(q, 1),
foplarr,pr) = (ar)®(p1, @)p=q @7 (p1, )p=q1 @ (rp1, )p= fop(q1,7p1)

and analogously f,,(q1,p1 + p2) = fop(q1,p1) + fyp(q1,p2). Therefore there
exist endomorphisms

k* k*
for: QOrP=Q®rP, > q®p— > 6 ® (pr,q)p
k=1 k=1
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of the abelian group Q ®g P (see Proposition 2.11).
Now define a mapping

71 Qx P —=End(Q®zP),  (q.p) > fop-

Here End(Q ®g P) is an abelian group with respect to the pointwise addition
of endomorphisms. Notice that, for every ¢i1,q2 € Q, p1,p2 € P, r € R and
ZZ:l ki ® pr € Q ® P, we have

k* k*
(7(q1 + 42, 1)) (Z Kk ©@ Pk) = fatem (Z kg ©@ Pk)
k=1 k=1
k*

= Z K @ (ks 1 + q2) D1
k=1

=D @ {pr @)+ Z ke @ (pr; 42)P1

= (7(q1, 1) + 7(q2, 1) <Z K ®pk> )
k*
P— (z e pk) - (z o pk)
k=1

= 5 @ (pr, air)p
k=1

= Z Kk @ (pr, q1)7TD1
k=1

and analogously 7(q1,p1 + p2) = 7(qi,p1) + 7(q1,p2). Therefore 7 is R-
balanced and hence, due to the universal property of the tensor product
(Proposition 2.11), there exists a group homomorphism

7: Q® P — End(Q ® P), q®p'—>m-

Now we can consider the well-defined mapping

T: (QOP)Xx (QRP)=-Q®P,  (z,y)— (T(2))(y)
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We have, for every ¢,¢' € Q and p,p’ € P,

T(q@p,d @) =(TpR )¢ @) = fop(d @) =q® (p,q")p.

As we can see, the mapping 7 coincides with the multiplication % in definition
(3.3), which means that the multiplication « is well-defined.
Finally notice that, for every ¢; ® p1, g2 ® p2,q3 @ p3s € @ ® P, we have

(1 ®p1) * (g2 ® p2)) * (g3 ® p3) = (q1 @ (1, @2)p2) * (¢3 @ ps3)
= q1 ® ({1, 2)P2, 43)P3
= q1 ® (P1, @2) (P2, 43)P3
= (q1 @ p1) * (q2 ® (P2, g3)p3)
= (1 ®@ p1) * ((q2 @ p2) * (g2 @ p3)).

This implies that the multiplication * is associative and therefore the abelian
group @ ® P with x is a ring.

Definition 3.12. Tensor product of modules ¢ ®% P with multiplication x
defined in (3.3) is called a tensor product ring defined by an (R, R)-bilinear

mapping 3 = (, ).

Often we will omit the mapping [ from the tensor product symbol, i.e.
we write QQ ®g P := Q@%P

Next we will define the notion of a pseudo-surjective mapping. But first
some notation, for any ring R and a set A C R, we will denote by (A)s the
subgroup generated by A in the additive group (R, +).

Definition 3.13. Let R be aring and B a set. We call a mapping f: B — R
pseudo-surjective, if (Imf); = R, i.e. the additive subgroup of R generated
by the set Imf is equal to R.

Clearly, every surjective mapping is also pseudo-surjective, but the con-
verse is not always true. Next we will characterize pseudo-surjective bilinear
mappings.

Lemma 3.14. Let B: rP X Qr — R be a bilinear mapping. Then (Imf)g
consists of all finite sums of the elements of Imp.

PROOF. Let f: grP X Qr — R be a bilinear mapping and s € (Imf);. Then
there exist k* € N, py,...,pp- € P and ¢, ..., q+ € @ such that

s=EBp1,q) & ... £ B(pr, i)
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Note that, for any p € P and ¢ € @), we have

B(p,q) + B(—=p,q) = B(p —p,q) = B(0,q) = B(0-0,q) = 05(0,q) =0,

which proves that —f(p,q) = B(—p,q). Therefore we can find elements
Py D € Psuch that s = S(pl,q1) + ... 4+ B0, o) = 2:21 B(pS, qr) M

If the mapping § = (, ) is pseudo-surjective (surjective), then we say
that the corresponding tensor product ring () ®]B% P is pseudo-surjectively
(surjectively) defined.

Proposition 3.15. Let R be an idempotent ring and rP, Qgr unitary R-
modules. Then every pseudo-surjectively defined tensor product ring QQ ®r P
18 tdempotent.

PROOF. Let ZZ:1 QG Rpr € Q® P. Since the module g P is unitary, for every
ke {1,...,k*} there exist elements pg1,...,pep € P and 741, ..., 7gps € R
such that pr = rp1pr1 + - .. + Tereprrs- Also, due to the pseudo-surjectivity
of (), for every k € {1,...,k*} and h € {1,...,h*}, there exist elements

Prhis -« Pknje € P and Gupi, ..., Grnge € Q such that ry, = 35 (Drngs Grng)-
Therefore we have

h* K
ZQk Q pr = qu 2 <Z7”khpkh> = ZZ% @ T'khPkh

k=1 h=1

- .
- Z Z Qe @ (Z(Iﬁmy Qkhj)> Dkh

Jj=1

Z Z Z @ (Dkns Qrng)Prn

k=1 h=1 j=1
ke Re

ZQk®pkh]) (qkn; @ prn) € (Q ®r P) % (Q ®p P),
k=1 h=1 j=1

which implies that the ring () ®z P is idempotent. |

Next we will prove a result analogous to Theorem 5 in [44].

Theorem 3.16. Let R be an idempotent ring, rP and Qgr unitary R-modu-
lesand (,): PxQ — R a pseudo-surjective (R, R)-bilinear mapping. Then
the tensor product ring Q Qg P defined by (, ) is Morita equivalent to R.
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PROOF. Define a right and a left (QQ ®g P)-multiplication on the R-modules
rP and Qg, respectively, as follows:

k*

-
p (Z T ®pk> = (0, k) (3.4)
k=1

k=1

k* k*
(z " @pk> . 35)

k=1 k=1

where p € P, ¢ € () and ZIZ=1 G @ pr € Q ®r P. We will show that the
multiplication (3.4) is well defined. Consider the mapping

Q x P — End(rP), (q,p)— (_, q)p-

This mapping is clearly well defined and R-balanced, due to (, ) being (R, R)-
bilinear. Now, by the universal property of the tensor product (Proposi-
tion 2.11), there exists a well-defined homomorphism of abelian groups

: Q@g P — End(rP), Z%@%HZ L gR)p

The multiplication (3.4) can now be expressed as pd = 7(0)(p), for every
p € Pand § € Q ®g P. Hence, the multiplication (3.4) is well defined. The
multiplication (3.5) is analogously well defined. It is easy to check that we
obtain bimodules pPogp and gopr@r.

Let p € P. Due to P being unitary, there exist pi,...,prx € P and
r1,...,Tp € R such that p = ripy + ... + rp=pp=. Also, for every k €
{1,...,k*}, there exist pg1,...,pppr € P and g1, ..., qen~ € @ such that
I ZZ*:l(pkh, qrkn), because (, ) is pseudo-surjective. Now

ke R Kt h*
p= Zrkpk—zz Pkhs Qkh)P Zzpkh Qkn @ pi) € P(Q ®@r P),
k=1 h=1 k=1 h=1

which implies that Pygp is a unitary right module and therefore pPggp is a
unitary bimodule. Analogously ggp@r is a unitary bimodule.
Define a mapping

0: r(P®ger@)r— rRBr. Y _ph@an > Y (on.an)-

Since (, ) is additive and, for every p,p’ € P and ¢,¢’ € Q,

(pld @p),q) = {p, W, 0 =®.d)P 0= pd0 0) = (d @p))
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we see that the mapping : P x Q — R, (p,q) = (p,q) is (Q ® P)-balanced.
Now the universal property of the tensor product (see Proposition 2.11) im-
plies that @ is a well-defined homomorphism of abelian groups. The bracket
(, ) being (R, R)-bilinear and pseudo-surjective implies that 6 is a surjective
homomorphism of bimodules.

Notice that, for every p,p’ € P and ¢,q € @, we have

O(p®@q)p" = (p,q)p’ = plg®p') = pid(g®p'),
(9(p®q)=qp,q) = (¢ @p)g=id(¢ @p)q.

In conclusion, we have shown that (R, Q ®‘% P, P,Q,0,idgsp) is a unitary
surjective Morita context. By Proposition 3.15, the ring Q® g P is idempotent
and now, by Theorem 2.28, we conclude that the rings R and () ® P are
Morita equivalent. |

Let A be an abelian group, P ®g () be an arbitrary tensor product of
S-modules and ¢: P ®g5 ) — A a homorphism of abelian groups. Denote
Y =1 o®,ie., for every p € P and g € (), we have

b(p,q) = U(p®q).
Then the mapping v PxQ— Ais clearly S-balanced. If gPs and sQr
are (R, S)- and (S, R)-bimodules, respectively, then v is also (R, R)-bilinear.
IfY: P®rQ — A is surjective, then 1 is pseudo-surjective, because in that
case, for every a € A there exists lezzﬂ% ® qr € P ®p Q such that

K ke ke
= (Zpk®%) => Ve @ar) =Y (k. qi) € (Imid)s.
K=1 K=1 k=1

Next we give a simple corollary of Theorem 3.16, which is a ring-theoretic
analogue of Proposition 4.7 in [26].

Corollary 3.17. Let R be an idempotent ring. The rings R and R ®@% R
are Morita equivalent with a corresponding surjective unitary Morita context
(R, R®% R, R, R,v,idpgr), where v: ROrR — R, ZZZI rk®r;HZ§:1 T

If R is idempotent, then R ®g R is firm by Proposition 3.2 in [47]. Thus
we can say that each idempotent ring is Morita equivalent to a firm ring.
Now we will prove an analogue of Proposition 4 in [44].

Proposition 3.18. Let (R, S, gPs, sQr, 0, ) be a unitary surjective Morita
context connecting idempotent rings R and S, and let () ®R P, P ® Q be

tensor product rmgs defined by the mappings (9 ¢, respectively. Then the
rings R, S, P ®S Q and Q ®% P are all Morita equivalent.



42 CHAPTER 3. REES MATRIX AND TENSOR PRODUCT RINGS

PrROOF. The definition of the tensor product implies that the mappings
0: P x @ — R and ¢f: Q x P — S are R- and S-balanced, respectively.
Since ¢ and ¢ are surjective, the tensor product rings P ®g ) and () Qg P
are well- and pseudo-surjectively defined. By Theorem 3.16 we obtain Morita
equivalences R ~\yg QQ ®r P and S ~yg P ®s (). By Theorem 2.28 and the
transitivity of Morita equivalence we obtain the equivalences R ~\g S and
Q ®r P =~y P ®s @ (and also all other combinations). [ |

In order to prove our next theorem, we must define locally injective homo-
morphisms and strict local isomorphisms of rings. Strict local isomorphisms
for semigroups were first introduced by Mérki and Steinfeld in [35].

Definition 3.19. We call a homomorphism 7: R — S of rings locally
injective if its restriction to any subring of the form aRb, where a € Ra and
b € bR, is injective.

A locally injective homomorphism of rings, which is also surjective, is
called a strict local isomorphism.

Obviously, every injective ring homomorphism is also locally injective and
every ring isomorphism is a strict local isomorphism. Later, in Example 3.22,
we will see that there exist non-injective homomorphisms, which are locally
injective.

We will give a description of locally injective ring homomorphisms f:
S — R, where S is an s-unital ring.

Lemma 3.20. Let S be a right s-unital ring and f: S — R a ring homo-
morphism. Then f is locally injective if and only if f|ss is injective for every
ses.

PROOF. Necessity. Let f: S — R be alocally injective ring homomorphism.
Let s € S and consider the restriction f|ss. Let ss’ € Ker(f|ss). Since S is
right s-unital, there exists u € S such that ss’ = ss’u. Now there also exists
a v €S such that u = uv € uS and

ss' = ss'u € Ker(f|ssu) = {0}.

(The last equality holds, because f is locally injective.) Hence ss’ = 0, which
proves that f|ss is injective.
Sufficiency. Let s € S and f|ss be injective. Note that for every s’ € S
we have
555" C 58,

which means that f|sss is a restriction of f|ss and therefore also injective.
As can be seen, this implication actually does not assume anything from the
ring S. ]
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Next we will prove a useful proposition about locally injective homomor-
phisms and strict local isomorphisms of rings. Roughly speaking it says that
strict local isomorphisms between rings are more or less the same thing as
linear functionals.

Proposition 3.21. Let R be a ring, Mg be an R-module and f: Mgr — Rpg
a homomorphism of modules. If we define a multiplication on the abelian
group M by

mem' :=mf(m'), (m,m’ € M), (3.6)

then we obtain a ring and f is a locally injective homomorphism of rings. If
S is a right s-unital ring then all strict local isomorphisms S — R can be
obtained using this construction.

PrOOF. Let R be a ring, Mg an R-module and f: Mpr — Rpr a homo-
morphism of right R-modules. It is easy to see that M is a ring, where
multiplication e is defined by (3.6), and that f is a homomorphism of rings.

Leta=aeac Meaandb=beb c be M. Alsolet p =aep' ebbe
such that, f(p) = 0. Then

(aep' eb)el) =d epel/
a'0f(b') =0.

p=aefeb=(dea)ep e(bel)=de
—d/f(pe V) = d[(pf (V) = ' F(p) (V)

Hence Ker(f|aenses) = {0}, which proves that f is locally injective.

To prove the second claim, we consider a strict local isomorphism f:
S — R where S is a right s-unital ring. We turn the abelian group (.5, +)
into a right R-module by defining

s-1:= 8§,
where r € R, 5,5 € S and f(s') = r (using the surjectivity of f). We
need to check if this is well defined. Suppose that also f(s”) = r. Then
f(ss") = f(s)f(s") = f(s)f(s") = f(ss"). By Lemma 3.20, f|s is injective,
implying ss’ = ss”, as required. We see that f : Sg — Rp is a module
homomorphism by noticing that, for every s,s’" € S and r € R such that
f(s") = r, we have

fls-r) = [f(ss) = f(s)f(s') = f(s)r.

If we now define a ring multiplication @ on S using the module homomorphism
f and the rule (3.6) then e coincides with the original multiplication of S,
because s @ s = s f(s') = ss' for every s, € S. [ |
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The previous proposition gives us a way to construct many locally injec-
tive homomorphisms of rings. One such will be constructed in the following
example.

Example 3.22 (Non-injective locally injective homomorphism). Let
R be an s-unital ring (e.g. Z). Consider the direct product R x R as a
(right) R-module with componentwise addition and scalar multiplication.
The mapping

f: RxR— R, (a,b) — a

is clearly a non-injective homomorphism of R-modules. We can turn R x R
into a ring with multiplication defined as in (3.6). Now we see that f is a
homomorphism of rings that is locally injective, but not injective. As f is
surjective, it is also a strict local isomorphism. ]

Now we are ready to prove a theorem which says that whenever R and S
are arbitrary rings and (R, S, rPs, sQr, 0, ¢) is a Morita context (not neces-
sarily unitary or surjective), then there exist locally injective homomorphisms
P®SQ—>RandQ®RP—>S

Theorem 3.23. Let R and S be rings that are connected by a Morita context
(R, S, rPs, sQr, 0, ¢). Consider the tensor product ring P ®2 Q defined by
¢. Then 0: P ®¢§ @ — R is a locally injective homomorphism of rings.

PROOF. Let (R, S, RPS, sQr, 0, ¢) be a Morita context. Notice that for every
Zk 1 Dk ®qk,2h 1 Ph®q), € P®g (Q, we have

k*  h*

k* h*
(zpmqk) . (zpz®q;> S o b,
k=1 h=1

k=1 h=1

k* h*
=3 @ dla @ 14,)d,

k=1 h=1

e h
= Z Zpk ® qxb(p), @ q)

k=1 h=1
k* h*
_ (zmqk) ’ (zpmq;) |
k=1 h=1

Therefore, the multiplication x of the ring P ®ﬁ @ is defined using the right
R-module homomorphism 6 : (P ®g Q)r — Rg. By Proposition 3.21, 6 is a
locally injective homomorphism of rings. |
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Corollary 3.24. Let R and S be two Morita equivalent idempotent rings.
Then there exist pseudo-surjectively defined tensor product rings () ®g P,
P ®s Q and strict local isomorphisms Q g P — S and P ®5 Q) — R.

PRrOOF. Let R and S be idempotent rings such that R ~yg S. Then, by
Theorem 2.28; there exists a surjective Morita context (R, S, rPs, sQr, 0, ®).

By Theorem 3.23, the mapping 6: P ®ﬁ @ — R is a locally injective homo-
morphism of rings. Since 0 is also surjective, ¢ is a strict local isomorphism.
Analogously ¢: Q ®% P — S is a strict local isomorphism. [ |

It turns out that if either of the mappings P ®s Q) — Ror Q ®g P — S
is an isomorphism, then the converse of the previous corollary also holds.

Proposition 3.25. Let R and S be idempotent rings. If R is isomorphic to
some pseudo-surjectively defined tensor product ring P ®g ), where Ps and
5@ are unitary modules, then the rings R and S are Morita equivalent.

PROOF. Let R be isomorphic to some pseudo-surjectively defined tensor
product ring P ®g ). The rings P ®g ) and S are Morita equivalent by
Theorem 3.16. Since isomorphic rings are obviously Morita equivalent and
Morita equivalence is transitive, we have that R ~yg S. |

3.3 Tensor product rings and adjoint
endomorphisms

In this section we will explore the relationship between tensor product rings
and rings of adjoint endomorphisms of modules.

Let gP and Qg be R-modules and = (,): P xQ — R be an (R, R)-
bilinear mapping. Adjoint endomorphisms of modules over a ring with local
units were introduced in [5] (Definition 2).

Definition 3.26. Module endomorphisms f € End(zP) and g € End(Qg)
are called adjoint (with respect to 8 = (, )) if, for every p € P and g € Q,
we have

(f(p); ) = (p,9(q))-

We will denote the set of all pairs (f, g) of adjoint endomorphisms with
respect to 8 by Q7. The set Q7 is a subring of ((End(zP))°? x End(Qg); +, o),
where for every f, f' € End(gP) and g,¢" € End(Qg)

(Lo +(d)=(+Ff9+4),
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(f,g)o(f',d)=(fofgog)

and (End(rP))°P denotes the opposite ring of End(gzP).
Next we will introduce an important type of pairs of adjoint endomor-
phisms.

Lemma 3.27. Let gP and Qg be R-modules and 5=, ): PxQ — R an
(R, R)-bilinear mapping. For any k* € N, p1,...,pp« € P and qq, ..., Qe €
@, the mappings

k* K
F=> (ape: rRP—>rP and g:=> qlpe._): Qr— Qr
k=1 h=1

(3.7)
are adjoint endomorphisms.

PRrROOF. Clearly the mappings f and g are endomorphisms of modules, due
to 8= (, ) being (R, R)-bilinear. Note that, for every p € P and ¢ € Q, we
have

(f(p).a)= <Z<p, k)P q> = (p.a) (v, @)= <p, > an(pr, q>> =(p,9(2)),

k=1 k=1
which means that f and g are adjoint. Therefore (f,g) € Q7. [ |
We will call the endomorphisms f and ¢ from (3.7) S-basic endomor-
phisms of zP and Q)g, respectively.

Now we will study the subring of endomorfism pairs given by (3.7) more
closely. Denote

2= {Z(<_7 G)Prs G (pr, ) € 7

k=1

k* e N;Vk: pp. € P,q GQ}.

It can easily be seen from Lemma 3.27 that X7 is a subring of Q7. In fact
Y7 is the set of all pairs (f,g) € Q7 given by (3.7).

Theorem 3.28. Let R be a ring. Then, for every (R, R)-bilinear mapping
B=1{(,): RPxXQr — R, there exists a strict local isomorphism Q®’%P — %A
of rings.

PROOF. Let R be aring and 8 = (, ): grP x Qr — R an (R, R)-bilinear
mapping. Define a mapping

e i
P QepP—=Y N g @pe—= > (L aepealpe ). (38)
h=1 K=l
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Consider the mapping ¢: Q@ x P — X7, (¢,p) = ((_, ¢)p, ¢{p, _)). Tt is easy
to see that ¢ is R-balanced, which means that, due to the universal property
of tensor product (Proposition 2.11), ¢ is a well-defined homomorphism of
abelian groups.

e B
Let S ax @ D, Sor—y @ @ 1)y € Q @, P, then

k* h* k* h*
; ((qu@bm) . (zqmpz)) _, (zzqm@k,qgmz)
k=1 h=1 k=1 h=1

*

Eol

bl
Il

—
>
—

(( ar) (Prs G) P> W P> @) Py )

ko
*

(({_s @r)Prs> @) Phs QPR @D, )

ol
]
R
>
S
I

(s )P @i{pres ) © (s @) P @1 (Pl )

_ (Z e pk,_>>) : (Z«_, q;>p;,q;<p;,_>>)

h*
:@(zmm) o (zqmp;).
k=1 h=1

Therefore ¢ is a homomorphism of rings. Clearly, ¢ is surjective.
Let

k* h* j*
Fv—zzzak@bk (an @ pa) * (¢; @ dj) € ax (Q &g P) %7,
k=1 h=1 j=1
where

Oé—zak®bk—zz ®b/ CLk@bk)E(Q@%P)*a

z=1 k=1

and 7y =3, ¢;®d; € v (Q ®% P), be such that ¢(x) = 0. Then

(ZZZ (ar @ bi) * (qn @ pp) * (¢; ®dj)>

k=1 h=1 j=1

_ (Z DY ak @ bk, an) (P, Cj>dj)

k=1 h=1 j=1
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= ZZZ s a) (b, qn) (Pn, ¢5)dj, ar bk, qn) (pn, ¢;)(dj, _)) = 0.

k=1 h=1 j=1
Thus
f* h* j*
SN W ak) (e an) (pn. c)d; = 0
k=1 h=1 j=1
for every x € {1,...,2*} and therefore

/<;:ZZZ(%@)IM)*(%@%)*(%®dj)

ag ® b,) * (ag ® be) * (qn @ pr) * (¢; ® d;)

(]
g

L@ (UL, ar) (b, an) (Pn, ¢j)d;

Il
S

Hence Ker(¢|ax@ap)vy) = {0}, which implies that ¢ is locally injective. In
conclusion, we have proved that ¢: @ ®% P — Y8 is a strict local isomor-
phism of rings. |

In order to strengthen the previous theorem, we must define the notion
of a dual bilinear bracket.

Definition 3.29. An (R, R)-bilinear mapping (, ): rPxXQgr — grRpg is said
to be a dual mapping, if
(1) for every finite subset Y C @, there exist py,...,pr € P and ¢, ...,
g+ € @) such that for every y € Y

k*
y= Z QP y)
k=1

(2) for every finite subset X C P, there exist py,...,pp- € P and ¢, ...,
qn+ € @ such that for every x € X

h*

v =" (x. ).

h=1
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As can be seen, the previous definition could also be stated as follows:
an (R, R)-bilinear mapping 5: rP X Qr — rRpg is said to be dual if for any
finite subset Y C (@, there exists a §-basic endomorphism of QQr for which
every y € Y is a fixed point; and for every finite subset X C P, there exists
a (-basic endomorphism of zpP for which every x € X is a fixed point.

It is easy to see that every locally projective pair (Definition 3 in [5]) is
dual in the sense of the previous definition. Next we will give two examples,
which show that dual mappings occur naturally in algebra.

Example 3.30 (Dual mapping I). Let V' be a Euclidean space. It can be
considered as a right or a left R-module. The inner product of V' is an (R, R)-
bilinear mapping (, ): gV x Vg — R. Let {e1,...,e,} be an orthonormal
basis for V. Then

T = Z(x, en)en,
h=1
for every x € V, thus (2) is satisfied for all subsets of V' (not only finite).
Similarly (1) is satisfied. Hence the inner product of any Euclidean space is
a dual mapping. O

We will give an example, which shows that two dual mappings arise nat-
urally from a unitary surjective Morita context connecting s-unital rings.

Example 3.31 (Dual mapping II). Let R and S be s-unital rings that
are connected by a unitary surjective Morita context (R, S, rPs, sQr, 0, ¢).
We will show that

0:rPxQr— rRr, (0,q)— 0(p®q)

is a dual mapping. (For ¢ a similar proof works. )

Take a finite set Y = {y, . .. ,yn} C Q. Since g@ is unitary, every y, € Y
can be expressed as yp = Zh 1 SkhQkh, Where sp, € S and g, € @ for
every h € {1,...,h*}. Due to left s-unitality, there exists u € S such that
Skn = usgy for every k € {1,...,n} and he{l,....n}

Since ¢ is surjective there eX1sts 19 D Dj E Q ®pg P such that

=6 (Z g ®pj> = dlq; ®p))-
j=1 Jj=1

Now, for every k € {1,...,n},

Yk = Z Skhqkh = Z USkRGrh = Z Z o(q; @ pj)Skndrn

h=1 j=1
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heo g J h”
- Z Z 4;0(p; @ Skngrn) = Z q;0 (pj ® Z Skthh>
j=1

h=1 j=1 h=1

-
Z (P ®uk) = > _ 4;0(ps, yi).
j=1

This proves condition (1) of the definition of duality. The proof of condi-
tion (2) is analogous using right s-unitality of S. O

Next we will prove that some dual mappings induce a Morita context.

Proposition 3.32. Let R be a ring and = (,): RP X Qr — grRgr a
pseudo-surjective dual mapping. Then R is idempotent and the rings R and
Y8 are Morita equivalent.

PROOF. Let R be aring and f = (, ): P x Qr — gRr a dual mapping
such that (Im 8)s = R. To turn the abelian group P into a bimodule gPss
and the abelian group @) into a bimodule y,s(Q)g we define

p(f,9) = f(p),
(f,9)a = g(q).
These multiplications are clearly well defined and turn P into a right ¥°-

module and Q into a left ¥¥-module. Let r € R, (f,g) € ¥¥ and p € P.
Then

(rp)(f,9) = f(rp) = rf(p) = r(p(f, 9))

Analogously we have ((f,g)q)r = (f,g)(qr) for any ¢ € Q). Hence pPss and
s8Qr are bimodules. Take p € P. Then there exist ¢i,...,q» € @ and
Pi,...,ppe € P such that p = Z : (P, qn)pn, because of the duality of (, ).
Now note that p € RP and

h* h*
p=> _(p.a)pn=p (Z((_, qn)Dh, qh<ph,_>)> € Py’

h=1 h=1
Hence rPsps is unitary. The bimodule 5sQ) g is analogously unitary.
We define

0: P®ZEQ—>R, Zpk®Qk'_>Z<pk7qk>7

¢ QerP =Y > q@pi— Y (L a)pe (P )
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Consider the mapping 6: P x Q — R, (p,q) — (p,q). Clearly 8 is additive
in both of its arguments. Note that, for every p € P, ¢ € Q and (f,g) € X7,
we have

0p(f.9).a) = ((f,9).a) = (fP),q) = (v, 9(0)) = (p. (f. 9)a) = O(p. (f,9)),

which proves that 0 is Y%-balanced. By the universal property of the tensor
product (see Proposition 2.11), € is a well-defined homomorphism of abelian
groups. By the (R, R)-bilinearity of 3, 0 is also a homomorphism of (R, R)-
bimodules. The homomorphism 6 is surjective, because (Im ) = R.

The mapping ¢ is a well-defined homomorphism of bimodules due to
Theorem 3.28. The homomorphism ¢ is clearly surjective.

Finally, note that, for every p,p’ € P and ¢,q¢ € @), we have

0pq)p =, q)r =p((_, q)p', ¢, ) = poplg @),
q0p®q)=dpq={_dw»dp _))a=ed,

In conclusion, (R, X%, g Pss, 5sQr, 0, ¢) is a unitary surjective Morita context.

Since R and X7 are connected by a unitary surjective Morita context,
we conclude that they are both idempotent by Proposition 2.27. Due to
Theorem 2.28, we know that R and ¥° are Morita equivalent rings. |

Note that for instance every surjective dual mapping f: P x Q — R
clearly satisfies (Im ) = R, i.e. is pseudo-surjective, and therefore induces
a unitary surjective Morita context.

Next we will show that X7 is isomorphic to a subring of End(Qg). Sim-
ilarly we could show that ¥? is also isomorphic to an analogous subring of
(End(gP))°P.

Proposition 3.33. If R is a ring and 5= (, ): rP X Qr — rRgr is a dual
mapping, then X8 is isomorphic to the subring

7= {Z Qi (Pk, )

of the endomorphism ring End(QRgr).

k* € N; Vk: quQ,kaP} (3.9)

PROOF. Let 5:=(,): rP X Qr — rRg be a dual mapping. Define

¢: X7 = End(Qr),  (f,9) =g

Clearly v is a ring homomorphism, whose image is IT°.
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Let (f,g) € ¥° be such that g = 0. Take an arbitrary p € P. Since
<,2 is dual, there exist py,...,pp« € P and qq, ..., g € @ such that f(p) =

Y w1 (f(P), @r)pr- Now

flp) = Z(f(P)7 Q)Dr = Z(p,g(%)ﬁ?k = Z(p, 0)pr = Z(p, 0)0py, = 0.

Therefore f = 0, which implies that Kerty = {0}. In conclusion, ¢ is an
isomorphism of rings ¥ and I1°. |

Corollary 3.34. Let R be a ring and B = (, ): RP X Qr — rRgr a pseudo-
surjective dual mapping. Then R is idempotent and the rings R and I11° are
Morita equivalent.

The following result generalizes Proposition 2.2 in [5].

Proposition 3.35. Let R be a ring. If (,): rP X Qr — rRgr is a dual
(R, R)-bilinear mapping, then the tensor product ring Q Qg P defined by (, )
15 s-unital.

PrROOF. Let = (,): gP X QR — rRpr be a dual (R, R)-bilinear map-
ping. Fix an element z = Zk LT @ € Q ®B P. Consider the set
{q1,..., @~} C Q. By the duality of (, ), there exist elements p},...,p). € P
and ¢,...,q,. € @ such that, for every k € {1,...,k*}, we have ¢, =

et @h (P @) Demote a := 37,7, ¢}, @ pl,. Now

k* k* h* k* h*
r= GOp=) (Z q2<p2,qk>) Rpr=Y_ > ah® (phqr)pr
k=1

k=1 \h= k=1 h=1
* * k‘*
_ZZ (¢, @ p}) * (qx @ pr) <th®ph)*<2qk®pk> =axx.
k=1 h=1 k=1

Analogously we can construct an element b € @ ®ﬁ P such that v = z x b,
which implies that @) ®B P is an s-unital ring. |

Now we can prove a theorem which says that the subring ¥° of the ring
0P of adjoint endomorphisms is isomorphic to a tensor product ring if the
underlying bilinear bracket is dual.

Theorem 3.36. Let R be a ring and = (, ): rP X Qr — rRg be a dual
(R, R)-bilinear mapping. Then the tensor product ring Q@%P 18 1.somorphic
to ¥° and 11°.
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PrOOF. Let = (, ) be a dual (R, R)-bilinear mapping. By Theorem 3.28
we know that the mapping ¢: Q@%P — Y7 defined by (3.8) is a strict local
isomorphism. It suffices to prove that ¢ is injective.

Let Y5 qx @ pi € Ker(p). Then S5, qe(pr, ) = 0. The ring Q &5, P
is s-unital by Propos1t10n 3.35, therefore applying Theorem 2.21 we can find
an element r = Z; LK ® p; € Q@Y P such that for every k € {1,...,k*}

(g @ p) * T = @ @ pi.

Note that
k* J*
qu®pk Z(Qk®pk *x—zz G @ pr) * (K © pj)
k=1 k=1 j=1
k* j*
—ZZ%® Dy Kj) P ZZ% Pis Kj) @ pj
k=1 j=1 k=1 j=1

j k* i
—Z<Z%<pk,ffj>> ® pj = ZO@pJ_O
k=1

%
Jj=1

Hence Ker(y) = {0}. Therefore ¢ is injective, which means that ¢ is also an
isomorphism. By Proposition 3.33 we have that @) ®]ﬁ% P is also isomorphic
to I1°. [ |

3.4 Morita equivalence of firm rings

In this section we will prove a theorem that gives a necessary and sufficient
condition for two firm rings to be Morita equivalent. We will need the fol-
lowing proposition about Morita contexts connecting two Morita equivalent
firm rings.

Proposition 3.37. If firm rings R and S are Morita equivalent, then they
are connected by a bijective Morita context (R, S, rPs, sQr, v, ), where P
and @) are firm bimodules.

PROOF. Let R and S be firm rings and R ~yg S. By Theorem 4.24 in [33],
there exists a surjective Morita context (R, S, gPs, sQr, v, ), where gPs
and g@Q g are firm bimodules. The homomorphisms ¢ and ¢ are bijective by
Proposition 5.5 in [33]. [ |

It should be remarked that we will take a closer look at firm bimodules
in Section 6.1.1, which includes an explicit proof of the existence of Morita
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contexts with firm bimodules for Morita equivalent idempotent rings (see
Proposition 6.4).

Now we are ready to prove the following description of Morita equivalent
firm rings. This generalizes a part of Theorem 2.6 in [5] from rings with local
units to firm rings.

Theorem 3.38. Let R and S be firm rings. Then R and S are Morita
equivalent if and only if R is isomorphic to a pseudo-surjectively defined
tensor product ring P ®g Q.

PROOF. Necessity. Let R ~\g S. By Proposition 3.37, there exists a bijec-
tive Morita context (R, S, rPs, sQr, 0, ¢). Then P ®g @ is a tensor product
ring defined by gg which is pseudo-surjective due to the bijectivity of ¢. Also
0: P®sQ — R is an isomorphism of rings by Theorem 3.23.

Sufficiency. Let R be isomorphic to a pseudo-surjectively defined tensor
product ring P ®g ). By Theorem 3.16, the rings P ®¢ ) and S are Morita
equivalent, which implies R ~yg S. |

Next we will prove that two s-unital rings R and S are Morita equiva-
lent if and only if there exists a right R-module Qg (with some additional
properties) such that S is isomorphic to a subring of End(Qg). This is a
generalization of a well known result that two rings with identity R and
S are Morita equivalent if and only if there exists a progenerator (Jr with
S = End(Qgr) (Corollary 22.4 in [4]).

Theorem 3.39. Two s-unital rings R and S are Morita equivalent if and
only if there exist R-modules R P, Qr, a dual (R, R)-bilinear pseudo-surjective
mapping B = (,): RP X Qr — rRr and S = 11° as rings.

PROOF. Necessity. Let R and S be Morita equivalent s-unital rings. Since
s-unital rings are firm, they are connected by a bijective Morita context
(R, S, rPs, sQr,0,¢) (Proposition 3.37). From Example 3.31 we know that
0: P x Qr — grRg is a dual mapping. Due to Theorem 3.36 we have
Q®%P =¥’ From Corollary 3.24 we obtain the isomorphism S = Q®Y P =
Eé, because ¢ is bijective. Also, »f o 70 by Proposition 3.33. Finally, let
r € R. Since 6 is surjective, there exists ZZ;lpk R q € P ®g @ such that

r= ‘9(2]1::1 Pk @ qx). Now

i k*
rz@(Zpk@MJk) Zepk@)% :Z (Pr: ar),
k=1

k=1

which proves that (Im ), = R.
Sufficiency. By Corollary 3.34, the rings R and II? = S are Morita
equivalent. |
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3.5 Connection between Rees matrix rings
and tensor product rings

In this section we will prove a theorem, that sheds some light into how Rees
matrix rings and tensor product rings are connected. Let R be a ring and
A, = some sets, denote by A’ and Z' the sets of all mappings {1} x A - R
and = x {1} — R with a finite number of non-zero values, respectively. The
sets A’ and Z' are the infinite-dimensional analogues of sets Mat; ,,(R) and
Mat,, 1 (R), respectively, related to a Rees matrix ring M(R;m,n; M).

Theorem 3.40. An idempotent Rees matriz ring M(R; A,=Z; M) is a strict
local isomorphic image of the tensor product ring =’ @r A'.

ProoF. Consider an idempotent Rees matrix ring M = M(R; A, Z; M) and
R-modules pA’ and = with componentwise addition and R-multiplication.
The ring R is idempotent by Proposition 3.4 and therefore the modules gA’
and =, are unitary (see the proof of Theorem 3.8).

Define a mapping

<,>2 R(AIXEI)R—)RRR, <X,Y> =XxY =XMY.

The mapping (, ) is clearly (R, R)-bilinear and, by Corollary 3.3, (, ) is also
surjective. Consider the tensor product ring =’ ®z A’ surjectively defined by
(,). Now define a mapping

k* k*
V: Z@rAN = M, d Vi@ Xy Y VX
k=1 k=1

The mapping ¢ is a well-defined homomorphism of abelian groups by the
universal property of tensor product (see Proposition 2.11). The mapping
1 is surjective, because by Corollary 3.7, every Z € M can be expressed as
7 = 22:1 Y Xy, where Y, € 2/ and X, € A’ for every k € {1,...,k*}.

Consider A’ as a right M-module similarly to the proof of Theorem 3.8,
then the tensor product (Z' ®r A’)rq also becomes a right M-module with
multiplication

YoX)«Z=Y® (X x*xZ).

Let S8 Vi ® Xz € 2 @ A and Z € M, then

k* k* e
(G ((Zyk®Xk> *Z) = (ZYk@@(Xk*Z)) :ZYk(Xk*Z)
k=1 k=1

k=1
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k* k*
= (ank> x 7 =1 (Zyk ®Xk> x 7.
k=1 k=1

Therefore v is also a homomorphism of right M-modules.
Notice that, for arbitrary S5 Vi @ Xp, b V) @ X € Z' @ N, we
have

k* h* k* h*
<2Yk ® Xk> X <Z Y, ® X,Q) =Y ) Vi@ (X, V)X
k=1 h=1 k=1 h=1
k* h* k* h*
= Y @ (X =YX, =D Vi@ (Xk * ZY;{X;L>
k=1 h=1 k=1 h=1

ke h*
- ZYk® (Xk * 1) (ZY;Z@)X},))
=1 h—1
K B>
= <2Yk®Xk> * 1) (ZY;Z@)X;L) ;
=1 h=1

which means that the multiplication x on (Z' ® g A’)rq coincides with the
multiplication defined by the module homomorphism . Now by Proposi-
tion 3.21, module homomorphism 1 is a locally injective homomorphism of

rings.
Since 9 is surjective and locally injective homomorphism of rings, it is a
strict local isomorphism of rings. ]

As a consequence of the previous theorem, we see that
(E, ®R A,)/ Ker¢ = M(R7 A7 Ea M)7

that is, idempotent Rees matrix rings are quotients of tensor product rings.



Chapter 4

Enlargements of rings

In this chapter we will define the notion of an enlargement of a ring and use it
to study Morita equivalence. The joint enlargement of two rings will prove to
be especially effective. In particular, the existence of a joint enlargement of
two idempotent rings turns out to be equivalent to those rings being Morita
equivalent. This chapter is based on [27].

4.1 Definition and basic properties of
enlargements

First we will define the enlargement of a ring. This definition is based on a
similar notion for semigroups introduced by Lawson in [29].

Definition 4.1. We call a ring R an enlargement of its subring S if the
conditions R = RSR and S = SRS hold. We also say that R is an enlarge-
ment of all rings isomorphic to such S.

We write S C R when R is an enlargement of its subring S. Next we will
prove some simple properties of enlargements.

Proposition 4.2. Let R and S be rings with S T R. Then the following
assertions hold.

(1) The ring R is idempotent.

(2) If R is commutative then R = S.

(3) If S is an ideal of R, then R = S.

(4) If S = {0}, then R = {0}.

PRroOOF. Let R and S be rings and S E R.

57
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1. Notice that
R=RSR=R(SR) C RR CR.

Hence RR = R holds.
2. If R is a commutative ring then, due to (1), we have
R=RSR=RRS =RS=R(SRS)=SRRS =SRS=25.
3. If S is an ideal of R, then
R=RSRCSCR.

Therefore R = 5.
4. This follows directly from (3). [

The next proposition is the ring-theoretic analogue of Proposition 2 in
[31]. In fact, there is no difference in the proof, but we will present it for the
sake of completeness.

Proposition 4.3. Let S, R and T be rings. The following assertions hold.
(1) If SC R and RC T, then SCT.
(2) If S © R holds and f: R — T is a surjective ring homomorphism,
then f(S)C T.

PROOF. Let S, R and T be rings and S C R.
1. Let R C T hold, then obviously S C T'. Notice that

TST CTRT =T =TRSRT = (TR)S(RT) C TST,
which implies that T'ST = T. Also notice that
S=SRSCSTS=(SRS)T(SRS)=SR(STS)RSCSRTRS=SRS=S,

which implies that S = ST'S. In conclusion, we have shown that S C T
2. Let f: R — T be a surjective ring homomorphism. Then

T = f(R) = f(RSR) = f(R)f(9)f(R) =Tf(S)T,
f(S) = F(SRS) = f(S)f(R)f(S) = f(S)T[(S).
Therefore f(S) C T. |

In the previous proposition we showed that the relation C is transitive.
It is also antisymmetric. Clearly every idempotent ring is an enlargement of
itself. This implies that the relation C is a partial order relation on the class
of all idempotent rings.

Now we will take a look at enlargements of idempotent rings. Immedi-
ately from the definition of idempotent rings we have the following result,
which says that in the case of idempotent rings it suffices to check only two
inclusions instead of four.
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Lemma 4.4. A ring R is an enlargment of an idempotent ring S if and only
if RC RSR and SRS C S.

Note that a subring S of a ring R, satisfying SRS C S, is called a bi-ideal
of R (see [41], page 11).
Now we will prove another little property that simplifies finding enlarge-

ments of an idempotent ring. It is a ring-theoretic analogue of Proposition 3
in [31].

Proposition 4.5. Let S be an idempotent subring of a ring R. If S = SRS
then S T RSR.

PROOF. Let R be a ring and S C R an idempotent subring with S = SR.S.
Denote R’ := RSR; this is a subring of R. Then S =SS =SS5 C RSR =
R’. Therefore S is a subring of R’. Notice that

SR'S = S(RSR)S = SR(SRS) = SRS = S,
R'SR' = (RSR)S(RSR) = R(SRS)RSR = R(SRS)R= RSR =R/
Hence S C RSR. [ |

Next we will give two series of examples of enlargements, which show that
certain natural matrix constructions give rise to enlargements.

Example 4.6 (Enlargement of a ring I). A full matrix ring over an idem-
potent ring S is an enlargement of S.

Let n € N and consider the full matrix ring R := Mat,(S) over an
idempotent ring S. We will prove that R is an enlargement of S using
Lemma 4.4.

Let Apx(s) be an (n x n)-matrix with entry s at the intersection of h-th
row and k-th column, and zeroes elsewhere. Then

S :={An(s)|s e S}

is an idempotent subring of R which is isomorphic to the ring S. To prove
the inclusion R € RS’R it suffices to show that each Ayx(s) belongs to RS'R.

Take s € S. Since S is idempotent, we can write s = 22:1 ujs;v; for
some uj, s;,v; € S. Hence

*

Api(s ZAhk (ujs;v;) ZAM u;) - A (s;) - Au(v;) € RS'R.

Also, we have the inclusion S’RS’ C S’, because
AH(S) A AH(S/) = AH(SCLHS/) € SI.
for any s, s’ € S and any matrix A = [ans] € R. d
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For the next example we will need the notion of a unital Rees matirix
ring, whose definition is inspired from a similar notion for semigroups in [35].
We call a Rees matrix ring M(S; A, Z; M) unital if S is a ring with identity
1 and 1 is an entry of M.

Example 4.7 (Enlargement of a ring II). A unital Rees matrix ring over
a ring S with identity is an enlargement of S.

Consider a unital Rees matrix ring M = M(S;A,Z; M). For any s € S
let A,,(s) denote the (A x Z)-matrix over S such that A,,(s)(u,v) = s and
Aup(8)(i,7) = 0 for all other pairs (i,7) € A x Z. By our assumption, there
exist vy € = and ug € A such that M(vg,up) =1 € S. Putting

S" 1= {Aupu(s) | s € S}

we obtain a subring of M which is isomorphic to S (with the isomorphism
t: S— 85" s+ Ayya(s)). Using Lemma 4.4 again, we will show that S’ is
an idempotent ring and S’ C M.

To prove that S’ is an idempotent ring we consider an arbitrary element
s € S. Then

Auo,vo (S) - Auo,vo (S>MAU0,UO(1) - Auomo(s) * Auoﬂ)o(l) €S x S/,

and hence S’ = S’ * 9.
The inclusion S’ * M x S C S holds because, for every A € M and
s,s' € S, we have

Ao (8) * Ak AUO,vo(3/> = Auo,vo<3)MAMAuo,vo(sl)

and the last matrix product may have a nonzero entry only at the position
(Uo, Uo)-

Finally, to prove the inclusion M C M % S’ x M we note that, by the
definition of a Rees matrix ring, every element of M is a finite sum of matrices
of type A,.,(s), and

Auo(8) = Auwy (8)M Aug o (1) M Ay (1)
= Auup(8) * Aug (1) * Ayg (1) € M % S"x M.

In conclusion, we have shown that S T M(S; A, =Z; M). O

4.2 Enlargements and Morita equivalence

In this section we will show that enlargements of idempotent rings are very
closely related to the Morita equivalence of these rings.
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Proposition 4.8. If R is an enlargement of an idempotent ring S then R
and S are Morita equivalent.

PROOF. Let S be an idempotent ring and S £ R. Since isomorphic rings
are Morita equivalent, it suffices to consider only the situation, where S C R.
Consider the subring SR C R as an (S, R)-bimodule and the subring RS C R
as an (R, S)-bimodule. From Proposition 2.27 we know that the ring R is
idempotent. Therefore, the bimodules RS and SR are unitary.

Define the following mappings:

k* k*
§: RS ®s SR — R, Zrksk ® ST > Zrksks;r;, (4.1)

k=1 k=1

o o
¢: SR®pr RS — SRS =5, Z SETk @ TSy Z SET KT S)- (4.2)

k=1 k=1

Note, that the mapping 6: RS xSR— R, (rs, s'r") — rss'r’ is S-balanced,
and since S is an abelian group with respect to addition, we get from the
universal property of tensor product (Proposition 2.11), that 0 is a well-
defined homomorphism of abelian groups. Analogously ¢ is well defined.

For every r, 71,71, ..., 1), 7. € Rand sq,87, ..., Sg+, S). € S, we compute
k* k* k*
o(r E resE @ s | | =46 E rrEsE ® spry | = g TTRSESLT),
k=1 k=1 k=1
k* k*
! ! !
=T E TkSESTE =10 E TRSE @ STy
k=1 k=1

and, analogously, 9((2’;;1 TESE ® ST )T) = Q(ZZ;I riSk @ sy )r. Therefore
f is a bimodule homomorphism.

Now, take an arbitrary element r € R. Since S C R and S is idempotent,
we have R = RSR = R(SS)R = (RS)(SR). Hence, there exist elements
71,7 oy Thr, Tee € R and s1, 8], ..., Sg=, s € S such that

k* k*
r= E TESESET) =0 E TESk @ i1y | -
k=1 k=1

Thus, @ is surjective. Analogously, ¢ is a surjective bimodule homomorphism.
Finally, if p, p’ € RS and 0,0’ € SR, then

0(p@a)p = (po)p' = plop’) = pplo @ p'),
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o'0(p @ o) = o'(po) = (o'p)o = (0’ @ p)o.

In conclusion, we have shown that (R, S, RS, SR, 0, ¢) is a unitary surjec-
tive Morita context connecting rings R and S. By Theorem 2.28, R ~yg S.H

From the previous proposition and Examples 4.6 and 4.7 we obtain the
following two corollaries. The first corollary is also a generalization of Corol-
lary 3.11.

Corollary 4.9 (Cf. Corollary 22.6 in [4]). A full matriz ring over an
tdempotent ring S is Morita equivalent to S.

Corollary 4.10. A unital Rees matrix ring over a ring S with identity is
Morita equivalent to S.

Now we will define the notion of a joint enlargement of rings and show
that each unitary surjective Morita context gives rise to a joint enlargement.

Definition 4.11. Let S, R and T be rings. The ring T is called a joint
enlargement of S and R if T is an enlargement of both S and R.

It turns out that if S ~yg R, then the corresponding Morita ring is a
joint enlargement of S and R.

Proposition 4.12. If idempotent rings R and S are connected by a unitary
surjective Morita context I' = (R, S, gPs, sQr, 0, ¢), then the Morita ring I’
is a joint enlargement of R and S.

PrOOF. Let S and R be idempotent rings and I' = (R, S, gPs, sQr, 0, ¢) a
unitary surjective Morita context. It is easy to see that

7=l o

is an idempotent subring of F_thai is isomorphic to R. We will prove the
inclusions ' CT'RT and_RF R CR.
Every matrix [¢%] € I" can be expressed as a sum

rp_rO+Op+OO+OO
g s| (00 00 q 0 0 s|°
It suffices to show that the last four matrices belong to T RT. For [ 9] this is
clear. Now consider p € P. Since gP is unitary, we can find py,...,pp € P
and r1,...,7r € R such that p =rip; + ... + rppr+«. Then we have
k*
o b= (w00 b err-mATCrAT

0 0 0 0]10 O
k=1

TER}QF
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Analogously [2 0] e TRT forany ¢ € Q. If s € S, then due to the surjectivity
of ¢, there exists ZIZ:1 gL @ pr € Q ®p P such that s = ¢(ZZ:1 qr @ Pk)-

Hence -
0 0] 0 010 pg — _
b= [0 0 4] eremn cran

And so we have proven the inclusion I CT RT.
Note that for any r,7",r" € R, s € S, g € Q and p € P, we have

AL R 307 g

which implies the 1nclus10n_§fR C R. We have proven R C T'. The proof
of S C T is analogous with S = {[99] | s € S}. [ |

Now we are ready to prove the main theorem of this chapter.

Theorem 4.13. Idempotent rings are Morita equivalent if and only if they
have a joint enlargement.

PROOF. Necessity. If idempotent rings R and S are Morita equivalent then,
by Theorem 2.28, they are connected by a unitary surjective Morita context
I'. By Proposition 4.12, the Morita ring T is their joint enlargement.
Sufficiency. If idempotent rings R and S have a joint enlargement T then,
by Proposition 4.8, T" is Morita equivalent to R and S. By transitivity of the
Morita equivalence relation, the rings R and S are Morita equivalent. |

Thus, two idempotent rings are Morita equivalent if and only if they can
be embedded nicely in some ring 7. This is a purely algebraic condition
which does not refer to categories, and probably it is easier to use compared
to the definition through equivalence functors.

We will draw some conclusions from Theorem 4.13.

Corollary 4.14. Two rings with identity (two rings with local units, two s-
unital rings) are Morita equivalent if and only if they have a joint enlargement
which has identity (has local units, is s-unital).

PROOF. Necessity. Assume that two rings R and S are connected by a
unitary surjective Morita context I'. By Theorem 4.13, the rings R and S
have a joint enlargement T
1. If R and S are rings with identity then the matrix [§ 9] is the identity
element of their joint enlargement T.
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2. Let R and S be rings with local units. Fix a finite set

G = {{“ pl} {T" p}} cT.
g1 S dn Sn

For every k € {1,...,n} we can express p, = ZZ’;l TrhPrhSkn and g =
Zi’;l S QitThe, because P and () are unitary. There exists a local unit
e € R for the set {ry,..., 70,711,712, - - s Tnhz, 7115 - Ty} © R and a
local unit d € S for the set {s1,..., 55,511,512, -, Snhz, 811 -+, s;t;} C
S. Then the matrix [§9] is a local unit for the set G.

3. Similar to part 2.

Sufficiency. This follows immediately from Theorem 4.13. |

Corollary 4.15. The only idempotent ring Morita equivalent to {0} is {0}
itself.

PROOF. Assume that 7" is an idempotent ring Morita equivalent to {0}. By
Theorem 4.13 they have a joint enlargement S. Due to Proposition 4.2 (4),
we have that S = {0}. Now it is clear that 7" = {0} too. [

The previous corollary shows one aspect how the Morita equivalence of
rings differs from the Morita equivalence of semigroups. Namely, there exist
many semigroups that are Morita equivalent to the one-element semigroup
(Theorem 16 in [21]).

Next we consider some connections of enlargements and (sets of) idem-
potents. Let £(R) denote the set of all idempotent elements of a ring R. If
E C E(R) is a nonempty set of idempotents then the set FRE is a subring
of R.

Proposition 4.16. Let R be a ring and let @ # E C E(R). Then R is an
enlargement of its subring ERFE if and only if R = RER.

PROOF. Let R be aring and @ # E C E(R).
Necessity. Let FRE T R. Then we have

R =R(ERE)R = RE(RER) C RERCR.

Hence R = RER.
Sufficiency. Assume that R = RER. Then we have

(ERE)R(ERE) = (ERE)(RER)E = (ERE)RE = E(RER)E = ERE,
R(ERE)R = RE(RER) = RER = R.

Therefore, ERE C R. [ |



4.2. ENLARGEMENTS AND MORITA EQUIVALENCE 65

Corollary 4.17. Let e € R be an idempotent element of a ring R. The
condition ReR = R holds if and only if R is an enlargement of its subring
eRe.

Corollary 4.18. Let R be a ring and let & #+# E C E(R). If R = RER, then
the rings R and ERE are Morita equivalent.

Next we will give an example, where we calculate all of the subrings of
Matg(Zs), to which it is an enlargement of.

Example 4.19 (Subrings and enlargements). Consider the ring R :=
Matgy(Zs). By Corollary 4.9, the ring R is Morita equivalent to Z,. We
computationally proved, that R has 27 proper subrings and 8 idempotents:

= ol b 1 3 ool 5B i bol b ol

Every idempotent e € 8(R)\{[gg], [%?]} satisfies the condition ReR = R

and generates a subring of the form eRe = {[gg], e}. By Corollary 4.17, R
is an enlargement of all of these subrings.
Additionally there are 6 interesting four-element subrings:

b

}
}
}
}
|

Y

(]| ol|0| OI.O' OI.O' Ol|0| Ol|0| Ol
olol ol ol '~lol "ol ol ol ol =l ol
ol o] ol =l ol o] ol O o O Ol —|

»—llOllr—lIO|IOIO|IOI >—t||>—l| ’_‘I.’_'Iol
—l ol ool ol ol =l ==l ol
T T T T T
—l ol ol ol =l =l ol =l =l =] =
»—tlollr—ll >—t||©|©||©| >—*|I>—l| >—t||>—l| >—tl

— —— = A= A=
ool ool ool oo ool o al

All of the previous subrings are of the form {e, ¢’} R{e, ¢’} = {[g g], e, e, ete'}
for some idempotents e, ¢’ € E(R). Hence, by Proposition 4.16, R is also an
enlargement of all of these subrings. In total there are 12 proper subrings
of R, to which R is an enlargement (this has been proven computationally).
Also, in this situation, if any of the aforementioned subrings is included in
any other, then the bigger subring is an enlargement of the smaller one. This
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is collected onto Figure 4.1, where two subrings are connected by a line if the
upper subring is an enlargement of the lower one.

Mat2 (Zg)

|
|

{[8817[8317} {[88]7[?3}7} {[83“11}’} {[88]’ } {[88“?31} {[88]’[811’}
sona S W En s W ens WapehS Uengns ushee

X
X
A
e
X

{eon o {sann) {earad {eaea {Bo.ehy {8a.ea}
Figure 4.1

By Corollary 4.18, all of the rings in Figure 4.1 are Morita equivalent to
each other (and to Zs). O

4.3 Morita contexts come from enlargements
Let T be a joint enlargement of its subrings R and S. It is easy to see that

it induces a Morita context with bimodules pPg := RT'S and sQr := STR
and

k*

0: RTS ®s STR — R, Zrktksk ® Sty Z TetrSkSptyry,  (4.3)
k=1 k=1
k* K+

¢: STR®pr RTS — S, Z StiTE @ rity.S, — Z sptirerity sy, (4.4)
k=1 k=1

We see that all the information about such a Morita context is encoded in a
single ring T

1. R and S are subrings (even bi-ideals) of T

2. P and Q are subgroups of (T, +);

3. the scalar multiplications of P and @) are defined using multiplication

in T

4. 0 and ¢ are defined using the multiplication in 7.

In our next theorem we will prove that any unitary Morita context be-
tween idempotent rings is isomorphic to a Morita context coming from a
joint enlargement. But for that result we must first recall the notion of an
isomorphism between Morita contexts, which appeard in [37] by Miiller. We
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say that a Morita context I' = (R, S, P, @, 0, ¢) is isomorphic to a Morita
context I'' = (R, S, P',Q’', ¢, ¢), if there exists a pair (f,g), where

1. f: P— P and g: Q — @ are bimodule isomorphisms,

2 §o(fog) =0and do(ge f) = b

The pair (f,g) is also called an isomorphism between Morita contexts T’
and I".

Theorem 4.20. Every unitary Morita context I' connecting idempotent rings
R and S is isomorphic to the unitary Morita context (R, S, RU'S, STR, ¢, ¢).

ProoOF. Let R and S be idempotent rings connected by a unitary Morita
context I' = (R, S, P,Q, 0, ¢).

The scalar multiplications of bimodules RT'S and ST R are defined using
the isomorphic copies of R and S in T (see (2.14) and (2.15)). Note that for
any ' € R, s’ € S and [ %] €T, we have

T,rps,_T’O r pl |0 O |rr r'p| |0 O [0 r'ps
g s/~ |0 O||¢g s||0 & |0 OO0 s [0 0 |°

Hence we have

:
ms- {50 e

k=1

Vk: rkER,pkeP,skES}:{[g OHpGP}

where the last equality holds due to the unitarity of P. Analogously we have
STR={[306]la € Q}. o

Consider the Morita context (R, S, RI'S, ST R, ¢, ¢), with ¢ = tgo1) and
© =g o ¢, where

P = — &o Dk = 0 pk 0 0
Y/t RTS®@gSTR— R, Y 0 0 HE ol
k=1 =1

¢': STR @ RT'S — S is defined analogously; R = {[39] | » € R}; S =
{1997 | s € S}; tg: R — R, [359] = 7 and t5: S — S, [§9] +— s. The
mappings ¢ and ¢ are well-defined homomoprhisms, because the mappings
in (4.1) and (4.2) are well-defined homomorphisms. Here I is considered as
n (R,S)- and (S, R)-bimodule with multiplications defined in (2.16) and
(2.17).

Define the mappings

. = 0 p
f: P— RIS, p»—>[0 O]’
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= 00
g: Q— STR, qr—>lq O]
The mappings f and g are clearly bimodule isomorphisms. Now for any
p € P and g € (Q we have

(¢O(f®g))(p®q)=(mow')qg ]5]@[2 8}):%({8 IS} B SD
ZLRQQ@SM) 8D=9(p®q).

Therefore we have ¢ o (f ® g) = ¢ and analogously ¢ o (g ® f) = ¢, which
proves that the Morita context I' is isomorphic to (R, S, RI'S, ST R, ¢, ¢). R

Let R and S be idempotent rings with a joint enlargement 7. We will
call the Morita context (R, S, RT'S,STR, 0, ¢), where 6 and ¢ are defined as
in (4.3) and (4.4), respectively, the Morita context induced by 7. The
previous theorem gives us a way to concretize the Morita context connecting
Morita equivalent idempotent rings.

Corollary 4.21. Two idempotent rings R and S are Morita equivalent if
and only if they are connected by the Morita context induced by their joint
enlargement T'.

4.4 Rings Morita equivalent to a ring with
identity

In this section, we will give a necessary and sufficient condition, when a ring
with left (or right) local units is Morita equivalent to a ring with identity.
Our result will be a slight generalization of Proposition 3.5 in [7] by Anh and
Marki and Corollary 4.3 in [1] by Abrams. Also the following theorem is a
special case of the Theorem in [11] by Garcia. However, we use a different
technique from all of them for proving it.

Theorem 4.22. A ring R with left local units is Morita equivalent to a ring
with identity if and only if there exists an idempotent e € R such that R =
ReR. In that case R is Morita equivalent to its subring eRe.

PROOF. Necessity. Let a ring R with left local units be Morita equivalent to
a ring S which has an identity 1. Then, by Theorem 2.28, there exist unitary
bimodules grPs and Qg and surjective homomorphisms 0: gr(P ®g Q)r —
rRr and ¢: s(Q ®g P)s — Ss, which satisfy conditions (2.11) and (2.12).
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Since ¢ is surjective, there exist ¢, ..., q,. € Q and p},...,p). € P such

that
h*
¢ (ZQZQQP%) =1€e8.
h=1
As gP is unitary, for every h € {1,...,h*}, there exist elements 7, ...,

Thie € Rand ppa, ..., ppe € P such that pj, = rpippi+. . .+7heDri+. Consider
the finite set U := {rpx | h € {1,...,h*},k € {1,...,k*}}. Since R has left
local units, we can find an idempotent element e € R such that r,, = erp
for every r, € U. Now, for every h € {1,...,h*}, we have

epz =€ (Z ThkPhk) = Z ETnkPhk = Z ThkPnk = pﬁl-

k=1 k=1 k=1

Let r € R. Due to the surjectivity of 6, there exist py,...,p;+ € P and
q,---,q+ € Q such that

r=10 <ij ® Qj> = 0(p; ®q)).
j=1 j=1

Take any summand 0(p; ® ¢;) from the last sum. Then we have

-
0(p; © q;) = 0(p; ® 1¢;) = 0 (pj ® ¢ (Z a, ®p'h) %‘)

h=1
h* h*
= 0(p; @ 8g, @ pr)ay) = Y 0(p; ® 440(p), ® q5))
h=1 h=1
h* h*
= 0(p; © q,)0(0h ® q;) = Y 6(p; © g;,)6 e, @ g5)
h=1 h=1
.
= 0(p; ® q;)eb(p}, © q;) € ReR.
h=1

It follows that r € ReR. Since the inclusion ReR C R is obvious, we conclude
that R = ReR.

Sufficiency. If a ring R has left local units, then it is also idempotent.
Let e € R be an idempotent element such that R = ReR. Then, due to
Corollary 4.17, we have eRe C R, where eRe is a ring with identity e.

By Proposition 4.8, we know that the rings R and eRe are Morita equiv-
alent. ]
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From Corollary 4.10 we obtain another result about the class of rings
Morita equivalent to some ring S with identity.

Proposition 4.23. Let S # {0} be a ring with identity. There exists a ring
with any cardinality, which is larger than the cardinality of S, that is Morita
equivalent to S.

PROOF. Let S # {0} be a ring with identity. We can construct a unital
Rees matrix ring M = M(S; A, =Z; M) with any cardinality larger than the
cardinality of S by choosing suitable sets A and =. By Corollary 4.10, we
have S ~yg M. [ |

It should be noted here, that a unital Rees matrix ring over a ring with
identity need not be a ring with identity itself.

Finally we will write a few words about the Morita equivalence of two
finite rings with identity element. Let R and S be rings with identity. If
R ~y\g S and R is finite, then S is also finite. Indeed, by Corollary 22.7 in [4],
there exists a natural number n € N and an idempotent matrix A € Mat,,(R)
such that S = A Mat, (R)A. Since R is finite, Mat,,(R) is also finite for every
n € N and therefore S is finite. In conclusion, we see that finiteness is an
invariant of Morita equivalence for rings with identity. But finiteness is not an
invariant of Morita equivalence for idempotent rings, due to Proposition 4.23.

The following is a classical result about Morita equivalence of rings with
identity.

Theorem 4.24 (Corollary 22.6 and Corollary 22.7 in [4]). Let R and
S be rings with identity. Then R ~yg S if and only if there exists a full
matriz ring T = Mat,,(R) and an idempotent A € T' such that T = T AT and
S = ATA.

In the light of our results, we can recognize a joint enlargement here.
Namely

e T is an enlargement of R by Example 4.6, and

e T is an enlargement of S by Corollary 4.17.
In general, neither R nor S need be isomorphic to 7. This is in a sharp
contrast with the monoid case. Namely, if A and B are monoids, then

so each of the monoids is a joint enlargement. (This follows from Theorem
2.3 in [32].)
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4.5 Enlargements of rings and Morita
equivalence of semigroups

In this section we will prove a result that shows which if two semigroups are
connected by a unitary surjective Morita context, then there exist natural
rings which have a joint enlargement. First we must recall that if A and B
are semigroups, then a six-tuple (A, B, 4Pg, pQa,0,¢) is called a Morita
context if P and () are biacts and §: P®gQ — A and ¢: Q@4 P — B
are biact homomorphisms that satisfy conditions similar to (2.11) and (2.12).
Unitary and surjective Morita contexts of semigroups are defined similarly
to the case of rings (with unitary biacts in place of bimodules). If two
semigroups A and B are connected by a unitary surjective Morita context,
then they are called strongly Morita equivalent (Definition 7 in [44]). A
semigroup S is called factorizable if S = 5SS := {ss' | 5,5’ € S}. Strongly
Morita equivalent semigroups must be factorizable.

It is natural to ask: do two factorizable strongly Morita equivalent semi-
groups have a joint enlargement? The answer to this question is not known.
Lawson has proved (Theorem 1.1 in [30]) that a joint enlargement exists in
the case of semigroups with local units. His construction is very different
from the construction of a Morita ring of a context. It turns out that even
if strongly Morita equivalent semigroups may not have a joint enlargement,
they can be embedded into rings that have a joint enlargement.

The first part of the following theorem can be deduced from the theorem
in [16], but we will write out all the necessary subsemigroups for the sake of
completeness.

Theorem 4.25. If semigroups A and B are strongly Morita equivalent, then
there exists a ring T' such that
(1) A and B are isomorphic to some subsemigroups A" and B’ of the mul-
tiplicative semigroup of T', respectively;
(2) T is a joint enlargement of rings (A") and (B'), where (S) denotes the
subring generated by the set S.

PRroOOF. Let A and B be semigroups connected by a unitary surjective Morita
context (A, B, APg, Q4,0 ¢). Consider the ring

=l

where Z[A] and Z[B] are semigroup rings, Z") and Z(%?) are free abelian
groups with bases P and () respectively. Addition in 7T is defined compo-
nentwise and multiplication is defined analogously to the multiplication in a

v e Z[A], y € ZIB], feZ®, gGZ(Q)},
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Morita ring (2.13):

{% fl] {962 fﬂ ,: {%1‘2 +0(f1 ® g2) x1fa + fi1ye
g Yl |92 y2| 9172 + Y192 y1y2 + o(g1 ® f2)

Note that, for every f € Z() there exist py,...,pe- € P and z,..., 2 € Z
such that f = Ziﬂ 2epi. Analogously, for every g € Z(@ can be expressed
as g = ZZZl 25.qn, where ¢, € @ and zj, € Z for every h € {1,...,h*}. Since
6 and ¢ are homomorphisms of abelian groups, we have

* * h* k*
0(f@9) Z Z 2o 0or@a)  and @9 f) =YY zhand(ar ©p).
k=1 h=1 h=1 k=1

1. Consider the sets

A'::{B 8] aeA}QT and B'::{[g QHbEB}QT.

If ay, Qs € A, then
ap O] [az 0]  [aiaz 0 /
{o oHo o]_lo O}GA'

Therefore, A’, and analogously B’, is a subsemigroup of the multiplica-
tive semigroup of T'. Clearly A = A’ and B = B'.

2. Notice that the subring generated by the set A" C T can be expressed
as

er[A]}.

 EN:Vk: 2 €7, a eA’} —7[A]= {B 8}

k*
= E Rk
k=1

The inclusion T(A’)T C T is obvious. Take an arbitrary matrix [2 /] €
T and express it as a sum

xf_x0+0f+00+00

g y| (00 00 g 0 0 yl|’
Since the Morita context (A, B, 4Pg, pQa, 0, ¢) is unitary and surjec-
tive, the semigroup A is a factorizable semigroup (Lemma 7 in [21]). In

turn Z[A] is an idempotent ring and there exist elements xq, z, 27, ...,
Tpr, Ty, T € Z[A] such that x = xyzi2! + ... + xp 2} 2. Now

B 8} B g ﬁ)k 8} ﬁ)k 8} ﬁf 8} € (A (A (A) CT(A)T.
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Biacts P and @ are unitary, hence Z"") and Z(?) are unitary bimodules
and there exist elements 1, ..., 7, € Z[A] and fi,. .., fur € ZF) such
that f =x1f1 + ...+ xp for. Then

0 f1 =Tz 0] 0 f
— k k N ! ! !
o J—;;h o [0 &) € e = qaranr c T
and analogously [§ 8] € T(A") C T(A")T. From the surjectivity of ¢
we know that there exists an element 22:1 I @ fr € 7@ ®z[A] yASS,
such that y = 22:1 &(gr @ fr). Now

k*
0 0] <J0 0]f0 f ) e
hJ—;LkaOFammmm—ﬂmr
Therefore we have shown that T'= T(A")T.

Notice that since Z[A] is idempotent, we have (A’) = (A")(A")(A") C
(AT (A"). For every &1,&, v € Z[A], y € Z[B], f € Z") and g € Z@,
we have

& 0] |z fl|& O _|&z &ff|& 0] _|&zé& O / /
[OOQy 0 0/=|0 oo o= 0 ofAEA)
In conclusion we have shown that (A’) C T'. The proof for (B') C T is
analogous. [ |

Due to Proposition 4.2 (1) we obtain that the ring 7" from the previous
theorem is idempotent. Note that the ring (A’) from the previous theorem
is isomorphic to the semigroup ring Z[A]. This observation gives us the
following corollary.

Corollary 4.26. If semigroups A and B are strongly Morita equivalent, then
the semigroup rings Z[A] and Z|B| are Morita equivalent.






Chapter 5

Unitary ideals of rings

In this section we will study unitary ideals of rings. In particular we will
prove that the set of unitary ideals of a ring forms a quantale and if two
idempotent rings R and S are Morita equivalent, then their quantales of
unitary ideals are isomorphic. Also we will show that the quotient rings by
ideals that correspond to each other under that isomorphism are connected
by a Morita context with surjective mappings. This section is based on the
article [49].

5.1 Quantale of unitary ideals

Let R be aring. A right (left) ideal I of R is called unitary if [ is a unitary
right (left) R-module, i.e., IR = I (RI = I). Anideal I <R is called unitary
if I is a unitary (R, R)-bimodule. By Lemma 2.24 we deduce that an ideal
I < R is unitary if and only if RIR = I. The set of all unitary ideals of R
will be denoted by UId(R). Unitary ideals of a ring are also studied in [10],
where they are called lower closed ideals (Definition 3.1).

Next we will define the notion of a quantale. First recall that a poset L
is called a complete lattice if every subset of L has both a meet and a join.

Definition 5.1 (Definition 2.1.1 in [40]). A complete lattice L is called
a quantale, if it is equipped with an associative binary operation *: LxL —
L, such that for every set K and for every a,b, € L, where k € K, the
following conditions hold

a (\/ bk> = \/ (axby),

keK keK

75



76 CHAPTER 5. UNITARY IDEALS OF RINGS

(\/ bk> sa=\/ (b *a).

keK keK

A quantale L is called unital if there exists an element e € L such that
axe =exa = a for every a € L. The element e is called the identity
element of the quantale A.

Let L and L' be quantales. A mapping f: L — L' is called an isomor-
phism of quantales if it is bijective, preserves arbitrary joins and

flar * az) = f(a1) * f(az)

for every aj,as € L. An isomorphism of unital quantales also has to
preserve the identity element.

It is well known that the lattice Id(R) of all ideals of a ring R is a quantale
(Example §2.6 in [40]). Now we will prove a proposition, which shows that
the set of unitary ideals of a ring R naturally posesses the structure of a
quantale.

Proposition 5.2. Let R be a ring. The set UId(R) is a quantale.

ProOOF. The poset (UId(R), C) is a complete lattice where, for every subset
U C UId(R), we have

VU=>"T and /\U:\/{VEUId(R)

1eU

vV C ﬂj}.

IeU

By Proposition 3.2 in [10], any sum of unitary ideals is also a unitary ideal.
Define the operation x: UId(R) x Uld(R) — UId(R) as (I3, I5) — 11 I5.
If J € UId(R) and U C UId(R) then

J * (\/ 1) :J<Z]) => JI=\/(J*1I).

The other compatibility condition in the definition of a quantale holds anal-
ogously. |

We will see that if R is an idempotent ring, then the quantale UId(R) is
even unital.

Proposition 5.3. If R is an idempotent ring, then UId(R) is a unital quan-
tale with identity element R.
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PRrROOF. If R is an idempotent ring then, by Proposition 5.2, UId(R) is a
quantale and R is a unitary ideal of itself. It is also clear from the definition
of a unitary ideal that for every I € UId(R) we have RI = IR = I, which
means that R is an identity element of UId(R).

Meets are calculated here as follows:

AUzR(QI)R,

for any subset U C UId(R). [ |

From Proposition 2.25 we obtain that if R is an idempotent ring, then
the quantale UId(R) is also a modular lattice.

Next we will give a description of unitary ideals generated by a subset of
R, but first we need to give the definition.

Definition 5.4. Let R be a ring. It is said that an ideal I < R is generated
by a subset X C R if I is the smallest ideal that contains X. In that case
we write [ = (X),. We say that an ideal I < R is finitely generated if it
is generated by a finite set X C R.

One can give an explicit description of the ideal generated by X. Accord-
ing to [41] (page 5), the ideal (X), is

(X)y =ZX + RX + XR+ RXR. (5.1)

Proposition 5.5. Let R be a ring. If a unitary ideal I < R is generated by
a set X C R, then I = RXR.

PRrROOF. Let (X), = I € Uld(R). Then we have

I=RIR=R(ZX +RX+ XR+ RXR)R
=ZRXR+ RRXR+ RXRR+ RRXRR C RXR.

On the other hand, we see from the equality (5.1) that RX R C I. Therefore
we have I = RXR. [ |
5.2 Unitary ideals and s-unital rings

In this section we will see that s-unital rings can be described in terms of
unitary left and right ideals.
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Proposition 5.6. A ring R is right (left) s-unital if and only if all right
(left) ideals of R are unitary.

PROOF. Necessity. Let R be an s-unital ring. If I is a right ideal of R and
a € I, then a = au for some v € R. Hence [ = IR.

Sufficiency. Let all right ideals of a ring R be unitary. Take an element
r € R. Since the right ideal I = Zr + rR is unitary, there exist elements

21, ..., 2 € Zoand ri,uq, ..., T, ups € R such that
ke K K+
Z KT TTE) Uy = Z(zkruk + rrgug) = Z(r(zkuk) + r(rrug))
—1 k=1 k=1

k*
=7 Z(zkuk + rpug).
k=1

The case for left s-unitality is completely analogous. |

Corollary 5.7. All ideals of an s-unital ring are unitary.

5.3 Quantales of unitary ideals and Morita
contexts

In this section we will study the quantales of unitary ideals of rings connected
by a surjective but not necessarily unitary Morita context. It turns out that
in that case these quantales are isomorphic. The following theorem is a ring
theoretic analogue of Theorem 3.4 in [24]. It also generalizes Proposition 3.3
in [7] and Proposition 3.5 in [14].

Theorem 5.8. Let R and S be rings. If R and S are connected by a sur-
jective Morita context (R, S, rPs,sQr, 0, ), then their quantales of unitary
ideals UId(R) and UId(S) are isomorphic. This isomorphism takes finitely
generated ideals to finitely generated ideals. If the rings R and S are idem-
potent, then the previous isomorphism is a morphism of unital quantales.

Proor. Let R and S be rings connected by a surjective Morita context

(R7 57 RPSa SQRv 07 ¢)
1. Note that, for every unitary ideal J € UId(S), the set

.
O(PJ ®s Q) = {0 (Zpkjk ® Qk>

k=1
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is an ideal, because 6 is an (R, R)-bimodule homomorphism (here the
set PJ ®g @ is considered as a subset of the tensor product P ®g Q).
Additionally, we have

0(PJ ®s Q) =0(PSJS ®s Q) =0(PSJ @5 5Q)
— (Pl (6)] @ Im(6)Q) = (Im(6)PJ @ QIm(6))
= 0(RPJ ®5 QR) = RI(PJ 5 Q)R.
Therefore, the ideal O(PJ ® @) is unitary. Analogously, we can show

that, for every I € UId(R), the set ¢(QI ® P) is a unitary ideal of S.
This allows us to define the mappings

0: UId(S) — UId(R), ©(J):=0(PJ®sQ), (5.2)
®: UIA(R) — UIA(S), (1) :=¢(Ql @x P).  (5.3)
Let Ji, Jo € UId(S) be such that J; C J;. Then we have the inclusion
O(J1) =0(PJ1 ®s Q) C O(PJy ®s Q) = O(J3), which means that the

mapping © preserves order. Analogously, the mapping ® also preserves

order. If J € UId(S), then

D(O(J)) = 9(QO(PJ ®s Q) ®r P) = ¢(¢(Q ®r PJ)Q @R P)
= $(Q @ P)JH(Q ®r P) = SJS = J.
Analogously, ©(®(I)) = I holds for every I € UId(R), which means
that the mappings ® and © are inverses of each other. Hence, the
mappings ® and © are actually isomorphisms of posets. Consequently,

® and © both preserve arbitrary joins.
If Jl, JQ S UId(S), then

O(J1)0(y) = 0(PJ; ®s Q)0(PJy ®s Q) = 0(PJy ®s QO(PJy ®s Q))
=0(PJ1 ®@s ¢(Q @r P1)Q) = 0(PJ1 ®5 ¢(Q ®r P) Q)
0(PJy @5 S50Q) = 0(PJy @5 J>Q)
O(P(J.Jo) ®s Q) = O(J1.Ja).

Analogously, we can show that, for every I, Iy € UId(R), the equality
O(1,)P(Iy) = P(I15) holds. Hence, © and ¢ are isomorphisms of
quantales.

2. Let J € UId(S) be a finitely generated ideal. Then there exists a finite
set X = {xy,...,2,} C J such that J = SXS (see Proposition 5.5).
Fix an index k € {1,...,n}. Then the element x; can be written as

h*

/
Ty = E SkhLEhSkh s
h=1
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where s, Siyy .-y Skhe, S € S and gy, ..., xpp € X. Using the
surjectivity of ¢, we can also express xj, as follows:

t*

Tk = Z (g @ p)&d(q; @ py),

t=1

where ql,q’l,...,qt*,qg* S Q,pl,pﬁ,...,pt*,pg* € P and 51,...,&* c X.
Now, for every p € P and g € (), we have

O(pry @ q) =0 (p > ola®@p)sdlg @) ® q)
t=1

= 0(pd(q @ p)& ® dg; @ p))q)

t=1
t*

— Z 0(0(p @ q)pe&e @ q,0(p; ® q))

t=1
t*
=500 © 4)0(pi& © 4)0(p, © q) € RYR,
t=1
where
Y= {0(p&®q)|te{l,....t*}} CR.
Clearly, Y is a finite set. Note that

O(J) =0(PJ ®s Q) = {9 (Zpuju ® qu>

u=1
u* h*
— / . pu€P> QuEQa
u*  h*
w € P, w€Q,
-5 S wtmotsa s 225 w20 ]

Thu€X, Spu, S, €S
u—1 he1 hu 3 hus O hy

C RYR.

Vu: pueP,queQ,jueJ}

On the other hand, ¥ C ©(J). Since O(J) is an ideal of R which
contains Y,

(Y)e € O(J) C RYR C (Y),,
which implies O(J) = (Y),. Hence, O(J) is a finitely generated ideal.
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3. Let the rings R and S be idempotent. Then, by Proposition 5.3, the
quantales UId(R) and UId(S) are unital quantales with identity ele-

ments R and S, respectively. Since sup-lattice isomorphisms preserve
the largest elements, ©(S) = R and ®(R) = S. [

Remark. In Proposition 3.5 in the article [14], it has been shown that if
idempotent rings R and S are connected by a unitary surjective Morita con-
text, then the lattices UId(R) and UId(S) are isomorphic. We have proved
that, additionally, they are isomorphic as quantales, that these isomorphisms
behave well with respect to finitely generated ideals, and showed that assumig
idempotence of rings and unitariness of bimodules in the Morita context is
not necessary.

Theorem 5.8 implies that the isomorphisms © and ® preserve all proper-
ties of unitary ideals that are defined using multiplication of ideals, inclusion
relation, joins or meets. For example, if [ is a semiprime element in the
quantale UId(R) ([40, Definition 3.2.5]), then ®(/) is semiprime in UId(S).
An analogous statement holds for prime elements ([40, Definition 3.2.8]). In
[42], the radical of a complete lattice is defined as the meet of all coatoms.
Thus & takes the radical of the lattice UId(R) to the radical of UId(.S).

Corollary 5.9. If R is an idempotent ring and n a natural number, then
UId(R) and Uld(Mat,(R)) are isomorphic quantales.

PROOF. Let R be an idempotent ring. By Corollary 4.9, R ~\g Mat, (R).
The ring Mat, (R) is idempotent by Example 4.6 and Proposition 4.2 (1).
Then, by Theorem 2.28, the rings R and Mat,,(R) are connected by a unitary
surjective Morita context. Now the claim follows from Theorem 5.8. ]

Corollary 5.10. If R is an s-unital ring and n a natural number, then Id(R)
and Id(Mat,,(R)) are isomorphic quantales.

PRrROOF. Let R be a s-unital ring. Using Theorem 2.21, we see that for every
matrix A € Mat, (R) there exists an element u € R such that

M1 ... Tin uryy ... Urip u ... 0 M1 ... Tin
A= 5 = : : =

Tl -+ Tnn Urp1  -.. UTpp O ... u| |[Tw1 ... Twn

Hence Mat, (R) is left s-unital. Analogoualy we see that Mat,(R) is right
s-unital. The claim follows from Corollary 5.9 and Corollary 5.7. ]
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In [10] Buys and Kyuno showed that the lattices UId(R) and UId(S) are
also isomorphic to the lattices USub(P) and USub(Q), where P and @ come
from the Morita context. The last two lattices will be studied with more
detail in Section 6.4.

Theorem 5.11 (Theorem 3.3 in [10]). Let the rings R and S be con-
nected by a surjective Morita context (R, S, rPs, sQr,0,¢). Then the fol-
lowing lattices are isomorphic:

(1) UId(R), (2) UId(S), (3) USub(rPs), (4) USub(sQr).

The isomorphisms in the previous theorem are obtained using the follow-
ing mappings:

U: UId(R) — USub(P),  U(I):=
Q: USub(P) — UId(R),  Q(A) := ( ®s Q);
U': UId(R) — USub(Q),  ¥/(I):= QI,

(R) (

Q: USub(Q) — UIA(R), (B):=60(P ®s B).

Remark. Among other things, Theorem 5.11 implies that if R and S are
s-unital rings then

R is uniform <= § is uniform <= gPs is uniform <= Qg is uniform,

where uniformity means that the intersection of every two non-zero ideals
(sub-bimodules) is non-zero (see Paragraph 19.9 in [51]). An analogous claim
holds for the dual notion — hollowness (see Paragraph 41.3 in [51]). In
particular, uniformity and hollowness are Morita invariants on the class of
s-unital rings.

In [10] (Definition 4.1), the two sided socle of a ring R is defined as
Soc(R) = Z{I | I is a minimal ideal of R}.

Minimal ideals of R are precisely the atoms of the lattice Id(R) and Soc(R)
is the join of all atoms of the complete lattice Id(R).

Definition 5.12. We define the unitary two-sided socle of a ring R as

USoc(R Z{IGUId ) | I={0} or I is an atom of the lattice UId(R)}
= \/{[ € UId(R) | I={0} or I is an atom of the lattice UId(R)},

where the join is calculated in the lattice UId(R) (see also Section 2 in [42]).
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If rings R and S are connected by a surjective Morita context, then by
Theorem 5.8 there exists a sup-lattice isomorphism ©: UId(S) — UId(R)
and it follows that

©(USoc(S)) = USoc(R).

If the ring R (and analogously S) satisfies the condition
VreR: (RrR={0} = r=0), (5.4)

then every minimal ideal of R is unitary (Proposition 3.5 in [10]), hence
USoc(R) = Soc(R) and we may write

©(Soc(S)) = Soc(R).

Definition 5.13 (Definition 4.5 in [10]). A ring R is called completely
reducible if Soc(R) = R.

If R is an idempotent ring, then the fact that the ring R is completely
reducible means that the largest element R is the join of all atoms in the
lattice UId(R).

Proposition 5.14. Let R and S be s-unital rings. If R and S are connected
by a surjective Morita context, then R is completely reducible if and only if
S is completely reducible.

ProoF. Let R and S be s-unital rings connected by a surjective Morita
context. Assume that S is completely reducible. Since R is s-unital, it
satisfies (5.4). Indeed take r € R such that RrR = {0}. Due to the s-
unitality we can find v € R such that » = ru and also v € R such that
r=ru=uv(ru) =vru € RrR. By our assumption we then have r = 0.

Hence Soc(R) = USoc(R) and Soc(S) = USoc(S). Due to Theorem 5.8,
we have a sup-lattice isomorphism ©: Uld(S) — UId(R). Now

Soc(R) = O(Soc(S)) = O(S) = R,

yielding that R is completely reducible. The other direction is similar. W

5.4 Ideals and Morita contexts

In this section we will prove some results that will show how Morita contexts
relate to the ideals of its underlying rings.
Recall that the annihilator of a right R-module Mg is defined as:

Anng(M) :={r € R| Mr = 0}.
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It is easy to see that, for any right R-module Mg, its annihilator Anng(M)
is an ideal of R. A right R-module Mp, is called faithful if Anng(M) = {0}.
Now we will prove a result which generalizes Proposition 18.47 in [28].

Proposition 5.15. Let R and S be s-unital rings. If R and S are connected
by a surjective Morita context (R, S, rPs, sQr,0,®) then there exists an iso-
morphism ®: 1d(R) — 1d(S). Moreover, for every right R-module Mg,

e O(Anng(M)) = Anng(M Qg P);

o Mp s faithful if and only if the right S-module M ®p P is faithful.

Proor. Let R and S be s-unital rings connected by a surjective Morita
context (R, S, gPs,sQr,0,¢). By Corollary 5.7, we have Id(R) = UId(R)
and Id(S) = UId(S). Due to Theorem 5.8, Id(R) = Id(S) as quantales,
where the isomorphism ®: Id(R) — Id(S) is defined as in (5.3). Note that

(M ®@g P)®(Anng(M)) = (M ®r P)p(Q Anng(M) Qg P)
=M ®r (P ®s Q) Anng(M)P
=M ®p RAnng(M)P = MR Anng(M) ®p P
C M Anng(M)®@r P=0®gr P ={0}.

Therefore, we have ®(Anng(M)) C Anng(M ®g P). Analogously, we can
show that O(Anng(M®gP)) CAnngr(M®prP®sQ), where ©: 1d(S) —1d(R)
is an isomorphism defined as in (5.2).

Now, take r € Anng(M ®r P®sQ) C R. Since R is s-unital, there exists
an element v € R such that r = vr and, due to the surjectivity of , there exist
elements py,...,p € P and qq,...,q» € Q such that v = 22:1 O(pr @ q,)-
Note that, for any m € M, we have

k*
mr =mur = vy(mQv)r = Z var(m @ 0(pe @ qi))r

= vn((idy ®0)(m @ pr @ qi))r = Y _ var((idas @0)((m @ pr @ qi)r))

o
*

v ((idy ®0)(0)) = 0,

=1

o

where vy : M — R is a homomorphism defined as in (2.6). Hence, r €
Anng(M). Now we have proved the inclusions

@(Anns(M SR P)) Q ADDR(M SR P®S Q) Q ADHR(M).



5.4. IDEALS AND MORITA CONTEXTS 85

Applying the poset isomorphism @ to the previous sequence of inclusions we
obtain

Anng(M ®pr P) = ®(O(Anng(M ®@g P))) C ¢(Anng(M)).

In conclusion, we have shown that ®(Anng(M)) = Anng(M ®g P).
If My is faithful, then {0} = Anng(M) = ©(Anng(M ®gr P)), which
implies that Anng(M ®pr P) = {0}, because © is an isomorphism. |

Next we will prove a theorem about finding quotients of Morita contexts,
it is a generalization of Corollary 18.49 in [28]. It will imply that if R and
S are Morita equivalent idempotent rings then every quotient ring of R is
Morita equivalent to a certain quotient ring of S.

Theorem 5.16. Let R and S be rings and I' = (R, S, gPs, sQr,0,0) a
Morita context. Then, for every ideal I € Id(R), the quotient rings R/I
and S/®(I) are connected by a Morita context

Iy = (R/1,5/0(1), P/¥(I), Q¥ (I),( ),

where
¢: Id(R) — 1d(S5), O(1) = p(QI ® P),
U: Id(R) — Sub(P), U(I):=1IP,
U’: Id(R) — Sub(Q), v'(I):=QI.
Moreover,

o if I' is surjective, then I'; is also surjective;
o if I' us unitary, then I'; is also unitary.

PROOF. Let I € Id(R). We must show that the abelian group P/W¥([) is an
(R/I,S/®(I))-bimodule. Consider the mappings

R/Ix PJU(I) — P/U(I),  ([r], [p]) = [rpl;
PIU(I) x S/@(I) = P/u(I),  ([pl,[s]) = [ps].

Let pi,ps € P and s1,s, € S be such that [pi]w) = [poluy and [si]eq) =
[s2]o(r)- Then we have py—p, € W(I) = IP and 51 —55 € ®(I) = ¢(QIQrP).
Note that

p151 — p2s1 = (p1 — p2)s1 € IPS C IP,
p2s1 — P25z = pa(s1 — s2) € PO(QI @ P) = 0(P ®s Q)IP C RIP C IP,
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which implies that

[p181]\1/(1) = [p?sl]\I/(I) = [p2$2]\1/(1)-

Therefore the mapping (5.6) is well defined. Analogously, the mapping (5.5)
is also well defined. Now it is easy to see that P/WU(I) is an (R/I,S/®(I))-
bimodule with the mappings (5.5) and (5.6).
Analogously, the abelian group Q/W'(7) is an (S/®(I), R/I)-bimodule.
Define the mappings ¢ and n as follows:

k* k*

¢: P/Y(I) ®@s/a) Q/V'(I) = R/, Z[pk] ® [gx] — Z[Q(pk ® qr)lr,
n: Q/V'(I) @ryr P/U(I) = S/B(I), > ] @ [pi] = D [6(ar @ pi)laen)-

To show that these mappings are well defined, we consider the mappings

C: P/U(I) x Q1) = R/T,  ([Plewy: ldlwn) = [0(p @ @)1,
Q/V'(I) x P/U(I) = S/®(I),  ([dlww) [Plewy) = [¢(q @ p)laq).

Let P1,P2 € P and qi, Q2 € Q be such that [pl]\p([) = [pg]\y([) and [QI]\I!’(I) =
[g2)wr(r)- Then py —p, € W(I) = IP and ¢; —qo € V(1) = QI, therefore there
exist elements Ay, ..., \g» € P, Ky,...,kp € Qand ¢y, 04, ..., 4, 1 € I such
that p1 —pe = 04\ + ... + L= Mp» and ¢4 — g2 = K1ty + ... + Kpst).. Now

(1) [an]) = ([pals [an]) = 101 = p2) @ )]s = [Z we @ q) | = [0]r,
C([pa)s []) = C([pa). [aa]) = [0(p2 @ (@1 — )]s = [20 P2 @ kn)ty | = [0]1.
Therefore we have

6([291] U(I); [QI]\P’ ) é([ ] [CI1]x1ﬂ I)) é([ ] [Q2]\1//(1))

which gives us that the mapping  is well defined. Since ¢ is also S /O(1)-
balanced, due to the universal property of tensor product (see Proposi-
tion 2.11), the mapping ( is a well-defined homomorphism of abelian groups.
Analogously, the mappings 77 and n are well defined. Also, ¢ and n are bi-
module homomorphisms, because # and ¢ are bimodule homomorphisms.
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Now, for every p,p’ € P and ¢,¢ € @, we have

C(pl e la)l] =0 )] =10 @ ] = [pé(e@p")] = [pIn(ld @ [¢]).
[d'1¢([p] @ [q]) = [d][0(p @ q)] = [d'0(p ® q)] = [¢(d' @ p)a] = n([¢'] @ [p])[q]-

In conclusion, we have shown that (R/I,S/®(I), P/Y(I),Q/V'(I),(,n) is a
Morita context.

If 6 and v are surjective, then ¢ and n are also surjective. If P and @) are
unitary, then their quotient bimodules are unitary too. |

Corollary 5.17. If two idempotent rings R and S are Morita equivalent,
then, for every ideal I € Id(R), the quotient rings R/I and S/®(I) are also

Morita equivalent.






Chapter 6

Monomorphisms and unitary
sub-bimodules of firm
bimodules

In this chapter we will study monomorphisms in the categories sUModyz and
sFModg, for idempotent rings S and R. First we will study the categories
sFModgr and sCModg thoroughly. Then we show that the bimodule cate-
gories sFModg, sCModg and sUTfModg are equivalent and, moreover, that
the category sCModg is an essential localization of sModg. Later we will
use these results to show that, for a firm (S5, R)-bimodule s Mg, the lattice of
unitary sub-bimodules USub(M) is isomorphic to the lattice of subobjects
of M in the category sFModg. This chapter is a generalization of article [47]
to the case of bimodules.

6.1 Subcategories of the category of all bi-
modules

In this section we will study the bimodule subcategories sUModg, sFModpg,
sCModir and gUTfModg. As a main result we will prove that ¢FModpg,
sCMody and sUTfModp are all equivalent categories if S and R are idempo-
tent rings. Finally we will show that if S and R are idempotent rings, then
sCModpy is an essential localization of sModg. The equivalence of the cate-
gories of right modules FModg, UTfModiz and CModyi was proved by Marin
(Theorem 2.45 in [33]). Since this sections is somewhat of a detour from the
rest of the thesis, but quite lengthy, it is divided in subsections.

89
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6.1.1 The coreflective subcategory of firm bimodules

Firstly we will study the category of firm bimodules sFModg. We will show
that it is a coreflective subcategory of sModg. But first we will characterize
firm bimodules in general.

Proposition 6.1. Let S and R be rings and sMpg a firm bimodule. Then
there exists an (S, R)-bimodule isomorphism

k* k*
M S@SM(XJRR—)M, Zsk@)mk@rk'_)ZSkmkrk' (61)
k=1 k=1

The familiy of morphisms j1 = (fiar) MesMody, 45 @ natural transformation from
the functor S ®s _ ®@r R: gModgr — sModg to id modp, -

Proo¥r. Note that, for any N € sModg, the mapping uy: SRsNRrR — N
is a morphisms in gModg. Fix Ny, Ny € sModg and f € Mormod,, (N1, Na)
(as shown on Figure 6.1).

SeN @ R—N LN,

idg ®f®ide lf

S®Ny® R———» N.
X No & 1N, 2

Figure 6.1

IfseS,re Randae€ Ny, then

(founm)(s®a®r)= f(sar) = sf(a)r = pun,(s ® f(a) @7)
= (g, 0 (Ids ®f ®idg))(s®a @ 7).

Therefore p: S ®s__ @r R — id mod,, 15 a natural transformation.

Let M € gFModg. From the definition of firm bimodules, we know that
there exist two canonical isomorphisms vy S ®g M — M and vy, :
M ®r R — M. The mapping idg ®vys, is an isomorphism, because the
tensor product of isomorphisms is also an isomorphism (Property 12.3 (3) in
[51]). For any s € S, r € R and m € M, we have

(Vom0 (ids ®var,)) (s @M@ 1) = vep(s @ mr) = smr. (6.2)

Denote pps := vgp o (idg @y, ). By extending (6.2) from its generators to
the whole S ®s M ®g R, we have obtained the needed isomorphism ;. W
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Note that if M € gModg is unitary, then u,, is a surjective (5, R)-
bimodule homomorphism. In the next proposition we will construct a functor
P: SMOdR — SFMOdR.

Proposition 6.2. Let S and R be idempotent rings. For any M € sModg,
the bimodule S ®s SM R ®pr R is firm and there exists a functor

P = S@S S_R Xr R: SMOdR — SFMOdR,
M— S®s SMR ®r R,
frids®f|smur ®idg.

PrOOF. Let S and R be idempotent rings and Mg an (S, R)-bimodule.
Denote N := S ®g SM, clearly N is a right R-module. By Proposition 2.38
in [33], the module NR ®r R is a firm right R-module. Analogously, the
module S ®s S(MR®g R) = S ®s SMR ®g R is a firm left S-module. In
conclusion, the module S ®s SMR ®pg R is a firm (S, R)-bimodule.

Let f € Mormods (A, B) and g € Mormod, (B, C), for some A, B,C €
sModg. Then

P(go f) =ids®(go f)|sar ®idg = (ids oids) ® (g o f)[sar ® (idroidr)
= (ids ®g|spr ® idg) o (ids ® f|sar ® idr) = P(g) o P(f).

Here we used the equality (g o f)|sar = glsBr © f|sar, which holds because,
for every 22:1 sparpry € SAR, we have

k* K+
f (Z Skakrk> = Z sif(ag)ry € SBR.

k=1 k=1

Also P(id4) = idggagr. Therefore P: gModgr — sFModpg is a functor. W
We see, that the functor P can be expressed as the composition
P:(S®S_®RR)OU: sModr — sUModr — sFModg,

where U = S__R is the functor defined in (2.10). It is also easy to see
that there exists a natural isomorphism P o P = P, if we consider P as an
endofunctor of sModg.

Analogously to Proposition 6.1, it can be shown that

= (1) acsFMods : 1dgFMody — S ®s_ ®r R

is also a natural transformation.
Now we will prove that the functor P is a coreflector of §FModpg.
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Theorem 6.3. Let S and R be idempotent rings. The category sFModg is
a coreflective subcategory of sModg with coreflector P: sModr — sFModg.

Proor. Let S and R be idempotent rings. We will show that there exists
an adjunction

Jr 15®sS_R®r R =P, (6.3)

where Jp: sFModr — gModp is the inclusion functor. From Proposition 6.1
and the remark before this theorem, we know that pi: JpoP — id moq, and
pt: id¢fmod, — P o Jp are natural transformations. We will show that p
is the counit and p~' is the unit of the adjunction (6.3).

For any firm bimodule A € sFModg, we have

f3pa) © Jp(py') = pao py' =ida = idge(a),

which proves the triangle identity (2.1).

Let M € sModg, then P(M) = S ®5 SMR @z R € sFModg. Fix a
generator 8 ® m @ r’ € P(M). Then, there exist elements sq,...,8g € S
and r1,...,r,« € R such that m = symqry + ... + Spemypsrps. Now

(P(MM) ° /LI;%M)> (s @m®r)

k*
= ((ids Qpyr @ idR)O/“LEQlaSMRQ@R) (S' ® <Z skmkrk> ® r’)

k=1

k*
= (id5®,uM®idR) (Zs’@sk@)mk@rk@r')
k=1
k*
= Z s’ X SpmpTE X r!
k=1

k*
=5 ® (Z skmkrk> Q7

k=1
=5 @mer =idpan(s @ma1'),

which proves the second triangle identity (2.2) P(u)o0 M;’%M) = idp(ary. Thus
we have the adjunction (6.3). [ |

Note that, using the functor P, we can construct a Morita context with
firm bimodules between idempotent Morita equivalent rings. The following
proposition can be deduced from Proposition 4.13 and Theorem 4.24 in [33],
but we will give a direct proof inspired by Theorem 4.11 in [26].
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Proposition 6.4. Two idempotent rings S and R are Morita equivalent if
and only if there exists a surjective Morita context (R, S, rPs, sQr, 0, ),
where rPs and sQr are firm bimodules.

PROOF. Necessity. Let S and R be idempotent rings and S =~y R. By The-
orem 2.28, there exists a unitary surjective Morita context (S, R, P, sQ'r,
¥, ). Consider the bimodules

P = P(P/) = R@RRP/S(X)SS: R®p P ®s S,
Q= P(Q/) =S ®g SQ/R@)RR: S ®g Q/ Rr R.

(The last equalities hold, because P" and )" are unitary). The bimodules P
and Q) are firm due to Proposition 6.2. The homomorphisms pup: P — P’
and pg: @ — @ defined as in (6.1) are surjective, because P' and ()’ are
unitary. Define the compositions

O:=vo(pp@pg): PosQ@— P osQ =R,
¢=po(ugy @up): QOrP Q&P 8.

The mappings 6 and ¢ are surjective (R, R)-bimodule and (S, S)-bimodule
homomorphisms, respectively, because they are defined as composites of two
surjective bimodule homomorphisms (the tensor product of surjective homo-
morphisms is also a surjective homomorphism).

Note that, for every p,p' € P, q,¢ € Q, s,5',s" € S and r,r", 7" € R, we
have

O((ropes)e(s"©@qer))(rop ®s) = vips @ "g") ' @ p' )
=rp(ps """ Rp @ =rRY(ps@ """ )r'p @ 5
=r@psp(s’qr’ @r'p )@ =r@pesp(s’qgr” @r'p')s
=(r@p@s)p(s"g’@r'p's) = (repes)e((s"®@qer)e(r @p @ ).

The condition (2.12) is analogous. In conclusion, we have shown that the
six-tuple (R, S, P, Q, 0, ¢) is a surjective Morita context with firm bimodules.

Sufficiency. Due to Theorem 2.28 and the fact that that firm bimodules
are also unitary. |

Remark 6.5. If S and R are firm rings, then a bimodule M € gModpy is
firm if and only if M = S ® M ® R by the isomorphism iy, from (6.1).
Necessity of this claim follows from Proposition 6.1. For sufficiency assume
that pys is an isomorphism and notice that

SEM=2S@(SeOMeR) =(S®S)aMeR2S®@M® R M.
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Explicitly, the homomorphism vy : S ®s M — M, s ® m + sm can be
expressed as

ver = g © (vs @ idy ®1dg) o (ids ®puyy ),

which means that v, s is an isomorphism, because it is a composite of iso-
morphisms. The isomorphism M ® R = M is analogous, which proves that
M is firm.

6.1.2 The reflective subcategory of closed bimodules

Now we will study the category of closed bimodules §CModg. First we must
introduce some notation. Let S and R be rings and M € sModg. Denote

tr(M) :={m e M [mR = {0}},
st(M) := {m € M | Sm = {0}},
t(M):={me M| SmR = {0}}
={meM|Vse SVreR: smr=0}. (6.4)

The sets tgr(M), st(M) and t(M) are clearly sub-bimodules of M and also
tr(M) + st(M) C t(M). (6.5)

Remark. Equation (6.4) deserves a bit more explanation. Let m € M
be such that SmR = {0}. The set SmR includes all sums of the form
symry + ... + sgmry, where k € N, therefore it also includes “sums” with
k = 1. Conversly, if m € M is such that smr = 0 for every r € R and s € S,
then clearly SmR = {0}.

Next we will prove one useful lemma about closed bimodules.
Lemma 6.6. Let S and R be rings and C' a closed (S, R)-bimodule. Then
tr(C) = st(C) = t(C) = {0}.

PROOF. Let C' € sCModg. Then, clearly tg(C) = st(C) = {0}, because sC
and Cp are both torsion-free modules.
Let ¢ € t(C). Then, for every s € S and r € R,

0 = scr = s(er).

Hence cr € st(C) = {0}, which means that ¢r = 0 for every r € R. Therefore
c € tg(C) = {0}, which proves that t(C) = {0}. [
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From the proof of the previous lemma and the inclusion (6.5), we obtain
the following corollary.

Corollary 6.7. A bimodule M € gsModg is torsion-free if and only if

t(M) = {0}.

Now we can construct a functor, for any idempotent rings S and R,
T: sModr — sTfModg, M — M/t(M). (6.6)

To see this, we show that if M € gModg, then M/t(M) is torsion-free. For
every m € M, we denote

[m] == m + t(M) € M/t(M).

Thus [m| = [m/] if and only if m —m' € t(M). Fix [m] € t(T(M)) =
t(M/t(M)). Then [0] = s[m]r = [smr] and hence smr € t(M) for every
r€ Rand s € S. Now let s € S and v € R. Idempotency of S and R
implies the existence of s1, 81, ..., Sg=, g« € Sand 1,77, ..., rp=, 7. € R such
that ' = s18] 4. ..+ Sgp=Sh and 7' = riry 4. ..+ 1.7+ Since symry, € t(M),
we have

h* k* b k* b

8 mr = (Z 3k3k> (Z 7"h7’h> = Z Sk(Ska’h Th—z Z skOTh—
h=1 k=1 h=1 k=1 h=1

which implies m € t(M) and therefore [m] = [0]. Hence we have shown

(using Corollary 6.7) that T(M) € sTfMody for every M € sModp.
Let M, N € gModg. For every f € sHomg(M, N), denote

T(f) = [f]: T(M) = T(N), [m]— [f(m)]. (6.7)

We will show that [f] is well defined. Let [m],[mo] € T(M) = M/t(M)
such that [m4] = [mg]. Then my —mgy € t(M). If s € S and r € R, then

sf(my —mo)r = f(s(my —ma)r) = f(0) = 0.
Hence f(mq —mg) = f(mq) — f(ms) € t(N), which implies that

[f1([mal) = [f (ma)] = [f (m2)] = [f]([ma]).

Therefore [f] is well defined. It is straightforward to check that [f] is a
homomorphism of (S, R)-bimodules. Also notice that

T(go f)([ml)=lgo f1([m])=g(f (m))]= (lglo[f)([m]) = (T(g) o T(f))([ml),
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T(idar)([m]) = [idarl([m]) = [idar(m)] = [m] = idx(ar ([m]),

for every f € sHomg(M,N), g € sHomg(N, A) and m € M. In conclusion,
T: gModr — sTfModpy is a well-defined functor.

Next we will prove two lemmas that help understand the functor T a
little better.

Lemma 6.8. There exists a natural isomorphism T o T = T, where T 1is
considered as an endofunctor of sModg.

PROOF. Let S, R be idempotent rings and M € sModg. By definition (6.6),
T(M) = M/t(M) is torsion-free. By Corollary 6.7, t(T(M)) = {[0]}. Now,
clearly there exists a natural isomorphism (T o T)(M) = T(M)/t(T(M)) =
T(M). [

Lemma 6.9. Let S and R be rings and sMpr a bimodule. The following
1somorphism holds in sModg:

(M/tr(M))/st(M/tr(M)) = M/t(M). (6.8)
ProoFr. Consider the sets

st(M/tr(M)) ={m + tr(M) [ S(m + tr(M)) = Sm + tg(M) = tr(M)},
t(M)/tr(M) = {m + tr(M) | m € t(M)}.

Let [m]| =m+tgr(M) € st(M/tg(M)). If m € tgr(M), then [m] = tgr(M) =
[0] € t(M)/tr(M). Now assume, that m & tg(M). Due to the definition of
st(M/tr(M)), we have

Sm + tr(M) = tr(M).

Fix s € S, then either sm = 0 or sm € tg(M) must hold. In either case we see
that smR = {0}. This implies that m € t(M) and hence [m] € t(M)/tr(M),
which proves the inclusion gt(M/tgr(M)) C t(M)/tr(M). The converse is
obvious, therefore st(M/tgr(M)) =t(M)/tgr(M).

Notice that tgp(M) C t(M). By Corollary 4.3.3 in [19], we have the
isomorphism of (S, R)-bimodules

(M/tr(M))/st(M/tr(M)) = (M/tr(M))/(t(M)/tr(M))) = M/t(M),

which proves formula (6.8). [
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From the previous proof we can easily deduce that the following analogue
of formula (6.8) holds:

(M/st(M))/tr(M/st(M)) = M/t(M).
Hence we see that the functor T can be expressed as a composition
T= (_/tR(_)) o (_/St<_)): SMOdR — gthOdR — STfMOdR (69)

or equivalently T = (__/st(_)) o (_/tr(_)).
With the next proposition we will construct a functor from gModg to
sCModg, where S and R are idempotent rings.

Proposition 6.10. Let S and R be idempotent rings and s Ng a torsion-free
(S, R)-bimodule. The set sHom (S, Hompg(R, N)) is a closed (S, R)-bimodule.

PROOF. Let N € ¢TfModg. By Theorem 2.27 in [33], the (S, R)-bimodule
K := Hompg(R, N) is right closed, which means that the mapping

A Kr — Homg(R, K), (Ag(f))(r)= fr

is an isomorphism of right R-modules. Take f € t(K). Then {0} = SfR,
which means that, for every r,7’ € R and s € S,

SF () = sf (') = (sr)(r) = 0.
Hence Im(f) C t(N) = {0}, which gives us
t(K) = t(Homg(R,N)) = {r — 0}.

Therefore K is also torsion-free.
By the left sided dual of Theorem 2.27 in [33], the (S, R)-bimodule
H = gHom(S,K) = sHom(S,Hompg(R, N)) is left closed. Consider the

homomorphism
)\Hi HRHHomR(R,H), )\H(f)(T) :fT.

We will show that Ay is an isomorphism of right R-modules. Consider the
diagram on Figure 6.2,

12
Homp(R, sHom(S, K)) __ > sHom(S, Homp(R, K))
g
Al sHom (S, Ag) = Axo__
sHom(S, K)

Figure 6.2



98 CHAPTER 6. MONOMORPHISMS OF FIRM BIMODULES

where

pr fro (s (e f(r)(s),
i g (re (s g(s)(r))-

It is easy to see that the mappings ¢ and v are well defined. Note that, for
every [ € Homg(R,H),r € Rand s € S,

(¥ 0 @)(f)(r)(s) = P(e(f))(r)(s) = e(f)(s)(r) = f(r)(s).

Hence v 0 ¢ = idgom(r,#) and analogously ¢ o1 = id Hom(s,7), Which means
that ¢ is bijective. For every h € H, s € S and r € R, we have

A (h)(r)(s) = (hr)(s) = h(s)r = A (h(5))(r) = (A 0 h)(5)(r)

= Ak o )(W)(s)(r) = ¥ ((Ax 0 _)(h))(r)(s)
= (Yo (Ax o _))(h)(r)(s).

The equality () holds due to the R-multiplication in H, defined as in (2.8).
The homomorphism Ag o is an isomorphism, because Ax is an isomor-
phism. We have obtained that Agy is bijective because it can be expressed
as a composition of two bijections Ay = 1) o (A o _). In conclusin, we have
shown that H is closed. |

Let S and R be idempotent rings. We can now construct a functor
K: sModgr — sCModpg as the composition

K = ¢Hom(S, Homg(R,_))o_ /t(_): sModgr — sTfModgr — sCModg.
(6.10)
Clearly sHom (S, Homg(R,_)) = sHom(S, __)oHompg(R,_ ) is a functor and
the functor T = __/t(_) was introduced in (6.6).

From this composition we see that for any f € sHompg(M,N), with
M, N € sModg,

K(f): sHom(S, Homg(R, M/t(M))) — sHom(S, Homg(R, N/t(N))),
g—I[fleg
Here we used the definition of T'(f) given in (6.7) and how hom-functors map
morphisms (Example 3.20 (4) in [2]).

The next corollary collects all the information we have on functor K so
far.
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Corollary 6.11. Let S and R be idempotent rings. There exists a functor
K: sModp — sCModg such that
K(M) = sHom(S, Homg(R, M/t(M))),
K(f): K(Ni) = K(N2), g [f]oy,

where f: Ny — Ny, for some N1, Ny € sModg.

It is easy to see that there exists an natural isomorphism K o K = K| if
we consider K as an endofunctor of gModg. Next we will prove that there
exists a natural transformation from id med, to K (again considered as an
endofunctor of gModg), even if S and R are arbitrary rings.

Proposition 6.12. Let S and R be rings and sCr a closed bimodule. Then
there ezists an (S, R)-bimodule isomorphism

vo: C = gHom(S, Homg(R,C)), c (s (r— scr)).
Moreover, the family v = (Yam)mesmody, 0f (S, R)-bimodule morphisms, where
ym: M — sHom(S, Homg(R, M/t(M))), m— (s~ (r— s[m]r)),

is a natural transformation from idomed, to sHom(S, Homg(R, __/t(_))):
SMOdR — SMOdR.

In order to not have to fix the elements of S and R all the time, denote
ym(m) == _[m]_, for every m € M.
S R

PROOF. Let M € sModg. First note that v, (m) is a left S-module homo-
morphism and 7, (m)(s) is a right R-module homomorphism for any m, m’ €
M and s € S. Hence, indeed Im(7yy) € sHom(S, Homg(R, M/t(M))). Fix
méeM,r e Rand s e S. Now

Yu(m+m') = _[m+m/|_=_([m]_+[m]_)=_[m]_+_[m]_
S R S R R S R S R
= yu(m) +yu(m'),
Yu(sm) = _[sm]_ = (_s)[m|_ = syu(m)
S R S R

and analogously vy (mr) = yp(m)r, which implies that ~,, is a bimodule
homomorphism.

Fix M, N € sModg and f € Mor mod, (M, N) (as shown on Figure 6.3).
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M Y™m

sHom(S, Homg (R, M/t(M)))

f J[f]o

NT sHom(S, Hompg(R, N/t(N)))

Figure 6.3

Fix an element m € M. Then
(vw o f)(m) = (f(m)) = _[f(m)]_=_f(m)_+t(M)
= f(gm_) +6(M) =[_f(m)_] = (([f] o _) ovar)(m).

R S R

= =

Hence, 7v: idmod, — sHom (S, Homp(R, _/t(_))) is a natural transforma-
tion.

Let C € sCModg. Firstly notice that C/t(C) = C and therefore the
two definitions of ¢ coincide. As a component of v, v¢ is indeed an (S, R)-
bimodule homomorphism. Notice that for every c € C, s € Sand r € R

1e(e)(s)(r) = ser = Ac(sc)(r) = Ac(pa(e)(s))(r) = (Ao o pele))(s)(r)
= ((Ac o _) o pc)(e)(s)(r).

C —»SHom (S,Hompg(R, C))

N Ao

sHom(S, C)
Figure 6.4

Hence ¢ can be expressed as a composition of two bijections Aco__ and p¢,
which implies that ¢ is also a bijection. |

It also follows that

7' = (72" cescmodr : sHom(S, Homg (R, _)) — idgcmody

is a natural isomorphism.
Next we will prove that the functor K turns out to be a reflector functor
of SCMOdR.

Theorem 6.13. Let S and R be idempotent rings. The category sCModg is
a reflective subcategory of sModg with reflector K: sModr — sCModg.
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ProOOF. Let S and R be idempotent rings. We will show that there exists
an adjunction

K = Hom(S, Homg(R, _/t(_))) 4 Jc. (6.11)

where Jo: sCModr — sModpg is the inclusion functor. From Proposi-
tion 6.12 and the paragraph after that, we know that v: idimed, = Ko Jc
and vy !': JooK — id cMod,, are natural transformations. We will show that
7 is the unit and v~ is the counit of adjunction (6.11).

For any closed bimodule C' € sCModgi we have

Je(veh) o Maee) = 16" 0 Yo = ide = idyq o),

which proves the triangle identity (2.2).
Let M € sModg. Then K(M)= ¢Hom(S, Homg(R, M/t(M))) € sCModg.
Fixing g € K(M), we have

)

(7{{@) o K(w)) (9) = rx(an © ((ym] © 9) = T any © 9= RO (Lo
= g = idk ) (9).

?elrcllce we have shown that the triangle identity (2.1) ’YI_(%M) oK () = idk( M.)
olds.

6.1.3 Equivalence of subcategories
Now we are ready to prove one of the main theorems of this section.

Theorem 6.14. Let S and R be idempotent rings. The categories sFModpg,
sUTfModr and sCModgr are equivalent categories.

PRrROOF. Consider the functors given on the diagram below (Figure 6.5).

S R __®rR S®s
sCModp I sutfModcg 11 sUTfModg 111 sutfModf g 1A% sFModg
s Hom(S, ) Hompg(R, ) _Jtr() _Jst()
Figure 6.5

We will prove that in subdiagrams II and III we have equivalence func-
tors. For subdiagrams I and IV the proof is similar and we will omit it.
Notice that the functors

_Ri SUthOdCR — SUTfMOdR,
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_Jtr(_): sutfModfg — sUTfModg,
_ ®r R: sUTfModgr — sutfModfp
are all well defined. We will next show that we have a functor
F := Homg(R,_): sUTfModgr — sutfModcg.
Due to Proposition 2.29 in [33] we have that
F(M) = Homg(R, M) = Homg(R, M/tr(M)) € sutfModcg

for every M € sUTfModg, because tgr(M) = {0} (see Corollary 6.7). If
f c MOI‘SUTfMOdR(M, N), s € S and g c HOIIlR(R, M), then

(F(f))(sg) = (f o )(sg) = fosg=s(fog)=s((fo_)g)=sF(f)g)),

which implies that F(f): Hompg(R,M) — Hompg(R,N) is an (S, R)-bi-
module homomorphism. Thus Homg(R,_): sUTfModg — sutfModcy is a
well-defined functor.

Fix bimodules C' € gutfModcgr, N € sUTfModr and A € gFMody and
define

ac = Ag' o Homg(R, 1c) = \g' otco__:  Hompg(R,CR) — C,
By = An|nr = AvR: N — Homg(R, N)R,
o = (/tr())(ux) = [pn]: (N @r R)/tp(N ®r R) = N,
ea:=([_]®idg)opuy": A— Altg(A) ®g R,

where 1c: CR — (' is the inclusion. From Theorem 2.18, we know that
the mappings ac, By, Oy and €4 are bijective homomorphisms of right R-
modules and the corresponding families of mappings «, 3, v and € are natural
transformations. More precisely

a:  Hompg(R,_)o__R — id uModcs,
ﬂ: idSUTfModR — _R o) HOHIR(R, _),
0:  (_/tr()) o (_®r R) = idsuTModn;
€: idSFModR — (_ ®R R) ) (_/tR(_>>
We will prove that ac, By, 0y and €4 are also homomorphisms of left S-

modules. If s € S, ¢_p € Homg(R,CR), n € N, [n’ @ '] € (N ®r R)/
tr(N ®g R) and ar € A € sUModg, then

ac(sc_) = /\51 olco(sc_)= /\51(50_) = sc=s\; (c_) = sac(c_),
R R R R R
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By (sn) = Ayr(sn) = snE = s(nf) = sfn(n),
on(s[n’ @1']) = [un]([sn" @ r']) = [(sn')r] e [s(n'r")] = son([n' @1']),

ea(sar) = ([ ®idg)(sa @ 1) = [sa] @ r = s([a] ® r) = sealar).

Equation (#x) holds because N is a bimodule. Hence, the mappings ac, Sy,
dn and €4 are also (S, R)-bimodule isomorphisms. Therefore, the functors
on subdiagrams IT and III are equivalences.

Now using the transitivity of category equivalence, we obtain the equiv-
alences sCModp =~ sUTfModi ~ sFModp. |

From the previous proof we also see that the restriction functors P| cmody, s
P| uttmods s K| sFMod, and K| utamod,, are equivalence functors. Because func-
tors P and K can be expressed as the following compositions

P=(S®s_)o(_®@rR)o(_R)o(S_),
K = (sHom(S, )) o (Hompg(R, ))o (_/tr(_)) o (_/st()).

6.1.4 An essential localization

We will need to consider one more functor, which we define as a composition
of functor U defined in (2.10) and T defined in (6.6):

Q:=ToU: gModr — sUTfModgr, M — (SMR)/t(SMR).
(Here we will use the same symbols for functors and their restrictions.)

Now we will prove that Q = ToU = UoT, i.e. the diagram on Figure 6.6
commutes (up to isomorphism).

SMOdR

T~T

sTfModp —g sUTfModgr

Figure 6.6

Lemma 6.15. The functor T o U is naturally isomorphic to U o T.
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Proor. Fix a bimodule M € gModg. Clearly t(SMR) C t(M) = Ker(k),
where k: M — M/t(M) is the canonical surjection. Note, that for any
ZIZZI spmpry € SM R, we have

(S - [ - St cs(0)

k=1 k=1 k=1

Hence Im(k|spr) € S(M/t(M))R. By the Fundamental Theorem of Homo-
morphisms (see Paragraph 6.5 in [51]) we have the following commutative
diagram.

KlsMR M )R

\/

SMR
t(SMR)

Figure 6.7

We explicitly write out the (S, R)-bimodule homomorphism «,:

ar:  (ToU)(M)= t(%MTi,) -5 (%) R=(UoT)(M),
k* k*
Z SEMETr + t(SMR) — Z Sk<mk + t(M))Tk
k=1 k=1

Clearly «ys is surjective. Also, «ys is injective, because t(SMR) =
Ker(k|smr). Hence ayy is an isomorphism in sUTfModg.

Next, we will show that o = (aar) megMmody, 1S natural. Note that, for any
[22;1 skmkrk]t(SMR) < SMR/t(SMR), we have

(UoT)(f) oan) [Z skmkrk] ‘S a <Z Sk[muleanT )
t(SMR)

= [Z skf(mk)’f’k] = Z 5k[f<mk)]t(N)rk>

t(N) k=1

=QanN f\SMR [ZSkkak]

t(SMR)
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k* k*
Z sk (M) = Z siLf (mue) vy Te-
k=1 k=1

t(SNR)

Hence (U o T)(f) o ap = an o (T o U)(f), which proves that « is natural.
In conclusion, we have shown that o = (@) mesmodn: ToU — Uo T is a
natural isomorphism. |

Introduce the following inclusion functors

Jci SCMOdR — SMOdR,
JFZ SFMOdR — SMOdR,
JQI sUTfMOdR — SMOdR.

Now we will collect all the information we have proven so far to one diagram
(Figure 6.8). We will denote the restrictions K’ := K| ytfmod, and P’ :=

P| uttMody,-

SCMOdR

K = sHom(S,Homg(R, _/t(_))) /4 ~Jc

SMOdR

sUTfModp

P=5S®sS _R®grR

SFMOdR

Figure 6.8

In the next theorem we will construct a left adjoint to the functor K.
This gives us the second main result of this section. The one sided analogue
of the following theorem was proves by Marin in [33] (Proposition 3.17).

Theorem 6.16. Let .S and R be idempotent rings. The subcategory sCModpg
1s an essential localization of sModg.

Proor. Let S and R be idempotent rings. We will prove that the functor

K= SHOHI(S, HOIHR(R,_/t(_))) SMOdR — SCMOdR
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has a left adjoint.

From Theorem 6.3 we have the adjunction P - Jg. Due to the equiva-
lences proven in Theorem 6.14, we have the following adjunctions (see Fig-
ure 6.8)

K/:KOJQ + U,:QOJc, (612)
T =QoJy F P =Polg. (6.13)

The next part of the proof is divided into two parts.

1. We will first prove that Q = QoJroP. Fix M € sModg. Without loss
of generality assume that bimodule M is unitary, because otherwise if
QlSUMOdR = Q O JF (¢] P’sUMOdR hOldS, then

QoJroP = (QoJroP|umedr) ©U = Qlsumed, o U =T o U =Q.

If ¢Mp is unitary, then P(M) = S ®s SMR®r R = S ®s M ®r R.
Define a mapping

S®sM®rR SMR
e QUEP(V)) = TR — S — Q)
k* k*
Zsk®mk®rk+t(5’®5M®RR)HZskmkrk+t(SMR)
k=1 k=1

First we will show that n,, is well defined. Take 22:1 S @M Q1) €
t(S ®s M ®r R). Now, for any s € S and r € R, we have

k* k*
S (Zskmkm> r==s (MM (Zsk & My ®T‘k>> T
k=1 k=1
k*
= Uum <s (Zsk ® my ®rk> r> = up(0) = 0.

k=1
Hence Z:Zl spmyry € t(SMR) and therefore
t(S ®s M ®r R) C Ker(k o ),

where k: SMR — SMR/t(SMR) is the canonical surjection. Now
using the Fundamental Theorem of Homomorphisms (see Paragraph 6.5
in [51]) we see that 7, is a well-defined (.S, R)-bimodule homomorphism
(Figure 6.9).
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K O s

//\}
SMR

S®sM®RR—> SMR t(SMR)

. i

S®sM®r R
t(S®s M ®r R)

Figure 6.9

The homomorphism 7, is clearly surjective. We will show that it is
injective. Fix [Zi:l sk @ my, @ 1] € Ker(ny). Then Z’,zzl SEMETE €
t(SMR) meaning that

k*
s (Z skmkrk> r=20

k=1

for any s € Sand r € R. Fix s € S and r € R. Since S and R are

idempotent, there exist s}, s7,..., s, s € S and 7,7, ... 75, 71 €
t* h*

R such that s =), sisf and r =), _, rry. Now

k* t* k* h*
N/ A4
S g S @My QT | r= E S;S¢ E S X myp Q1 E TR
k=1 t=1 k=1 h=1
r t* * *
= 5 E E StSt S @ myp X rkrhrh
Lt=1 h=1 k=1
t* *
. " "
= st X s, skmkrk rh X T
Lt=1 h=1
[t h*
" "
= E E sy @0@7ry | =[0].
t=1 h=1

Therefore [SF_, s, @ my, @ 1] € t(Q(Ip(P(M)))) = {[0]}. Hence
N is also injective and therefore a bimodule isomorphism. Clearly
n = (Nm)MesMod, 1S natural in M. From the isomorphism Q =
(QoJp)oP =T 0P, we obtain the adjunction

QrJpoP, (6.14)

by composing the adjunctions (6.13) and P F Jr as described in (2.3).
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2. Next we will prove that K = KoJq o Q. Fix a bimodule M € sModp.

We must show that bimodules K(M) and K(Jo(Q(M))) = K(SMR)
are isomorphic. Without loss of generality assume that bimodule M is
torsion-free, because otherwise if K| ttmod, = K| TtModr ©Jq o Q holds,
then
K = K| ttMod; © T = K| TtModr ©Jq0o Qo T
= Kl TModz ©Jqo Uo T o T = K| 1iModp ©JqoUo T
= KlstiModr ©Jqo Q=Ko JqgoQ

also holds (see Lemma 6.15 and Lemma 6.8). Clearly the inclusion

K(Jo(Q(M))) = sHom (S, Homp(R, SMR))
C sHom(S, Homg(R, M)) = K(M)

holds. Fix f € gHom(S, Homg(R,M)) = K(M) and s € S, r € R.
Since S and R are idempotent, there exist elements s1, 7, ..., Sg+, S €
S and 7q,7],. .., e, 7 € R such that s = s15] + ... + sp=s). and
r=nrry+ ...+ rpry.. We have

f(s)(r) = f(s) (Z wé)

h=1

B
= Z f(s)(rp)ry, (f(s) is a right R-homomorphism)
h=1
h*

.

() o
e )

= (Z skf(sﬁc)> (rp)ry,  (f is a left S-homomorphism)

= se(f(s)(rn))ry,  (left S-multipl. in Homg(R, M))

Hence Im(f) CSM R, which implies that f€ sHom (S,Homg(R,SMR)).
It suffices to show that the functors K and K o Jq o Q coincide on all
morphisms of s TfModg. Take M, N € sTfModg and g: M — N (then

l9] = 9)-
(KoJqoQ)(9) =K(Jq(Q(g))) = K(Jo(T(U(g))))
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= K(Jo(T(glsnmr))) = K(lglsar]) = glsmr o
K(g) =go_.
Now (K oJg o Q)(g9) = K(g) holds because we have previously shown
that for every f € K(M) we have Im(f) C SMR, which means that

glsmro f=go f. Therefore we have shown that K =K oJgo Q.
In conclusion we obtain the following composition of adjunctions

K=(KoJg)oQ F (JpoP)o(QoJg)=JpoP)oU’

QOJC JFOP/

T T\
sCModgr 1 sUTfModg 1 sModpgr

V\—/ V\_/
Kolg Q

Figure 6.10

from adjunctions (6.12) and (6.14) using (2.3) (see Figure 6.10). Hence, the
functor (JpoP’) o U": gCModr — sModg, is a left adjoint of K. [ |

6.2 Monomorphisms of (unitary) bimodules

Let S and R be rings. In this section we will study monomorphisms in
the category sModgr and give a sufficient condition for a morphism to be a
monomorphism in the category sUModg.

First we will introduce the notion of an Ab-category (Appendix A.4.1 in
[50]) and prove a simple lemma about monomorphisms in in these.

Definition 6.17. A category A is called an Ab-category or a pre-additive
category, if every morphism-set Mor4(B, C') has a structure of an abelian
group in such a way that composition distributes over addition.

Lemma 6.18. Let A be an Ab-category and C C A its full subcategory. A
morphism f € More(B, C) is a monomorphism if and only if

fou=0 = u=0 (6.15)
for every u € More(D, B).

PROOF. Necessity. Let f be a monomorphism. For every morphism u,
condition fou=0= fo0 implies u = 0.
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Sufficiency. For every u € Mor¢(D, B) assume condition (6.15). Let u
and v be morphisms such that f ou = f owv. Then

fou=fov = fou—fov=0= fo(u—v)=0
— u—v=0 = u=nw.

Therefore f is a monomorphism in the category C. |

Clearly, the category ¢Modg is an Ab-category for arbitrary rings S and
R. Monomorphisms in gModg can be described as follows.

Proposition 6.19. Let S and R be rings and f a morphism in sModg. The
following assertions are equivalent:

(1) f is a monomorphism;

(2) f is an extremal monomorphism;

(3) f is a regqular monomorphism;

(4) [ is injective.

ProOOF. ((3) = (2) = (1)). These implications hold in every category
(see Lemma 2.4).

((4) = (1)). This holds by Corollary 7.38 in [2], because sModg is a
construct [2, Definition 5.1 (2)].

(1) = (4)). Let f: M — N be a monomorphism in gModg. Consider
the inclusion (ke p: Ker f — M. Since Ker f is a sub-bimodule of M,
lKer f 18 an (S, R)-bimodule homomorphism. Clearly f o tke s = 0. Since
f is a monomorphism, using Lemma 6.18, we obtain txe, s = 0. We get
{0} = Im tker f = Ker f, which implies that f is injective.

(4) = (3)). Let f: sMpr — sNg be an injective homomorphism.
Then f is a monomorphism in gModg. Consider the quotient bimodule

C:=(Nx N)/(Imf x Imf) € sModpg.
Define the mappings g1,92: N — C' as follows:
g1(n) == [(n,0)],
ga(n) == [(0,n)],

for every n € N. Note that ¢g; and gy are (S5, R)-bimodule homomorphisms.
Let m € M. Observe that

(f(m),0) = (0, f(m)) = (f(m), =f(m)) = (f(m), f(=m)) € Imf x Im ,

)
therefore (g; o f)(m) = [(f(m),0)] = [(0, f(m))] = (g2 © f)(m). Hence
g1 c}f ?\[gg o f. Denote N :={n € N | g1(n) = g2(n)}. We will show that
Imf=N.
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(©). If n € Imf, then there exists m € M such that n = f(m). Hence

g1(n) = g1(f(m)) = (g1 0 f)(m) = (g2 0 f)(m) = g2(f(m)) = ga(n).

Therefore n € N.
(2). If n € NV, then g1(n) = g2(n) and

Imf x Imf = [(0,0)] = g1(n) = g2(n) = [(1,0)] = [(0,n)] = [(n, —n)].

Therefore (n,—n) € Imf x Imf, which implies that n € Tmf.
In conclusion, we have shown that Imf = A/, hence typ: Imf — N is
an equalizer of morphisms g, and g, (Figure 6.11).

Umf g1

Imf ———N——=3% C

A

M
Figure 6.11

Therefore there exists a unique homomorphism f’: M — Imf such that
tums © f = f. Since f is injective, f’ must also be injective. For every
m € M we have f(m) = ums(f'(m)) = f'(m), hence f’ is also surjective. In
conclusion, f’is a bimodule isomorphism and, therefore, f is also an equalizer
of g; and g9, which means that f is a regular monomorphism. ]

Next we will turn our attention to monomorphisms in gUModg. First we
will describe regular and extremal monomorphisms in sUModpg.

Proposition 6.20. Let S and R be rings and f a morphism in sUModg.
The following assertions are equivalent:

(1) f is a reqular monomorphism;

(2) f is an extremal monomorphism;

(3) f is injective.

PrROOF. ((1) = (2)). By Lemma 2.4.
((2) = (3)) Let f: sMr — sNg be an extremal monomorphism in
sUModpg. Consider the composition given on Figure 6.12.

M/ Ker f

Figure 6.12
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Here k: M — M/ Ker f is the canonical surjection and M/ Ker f € sUModg.
The mapping h: M/Ker f — N is a well-defined injective (S, R)-bimodule
homomorphism due to the Fundamental Theorem of Homomorphisms. Since
f is extremal, k is bijective. Now f is injective, because it can be expressed
as the composition of a bijective and an injective homomorphism f = h o k.

((3) = (1)) This implication can be proved exactly as the implication
(4) = (3) in Proposition 6.19 by noticing that the category sUModpg is
closed under taking direct squares and quotients. |

Next we will prove a necessary condition for a morphism being a mono-
morphism in sUModpg.

Proposition 6.21. Let S and R be rings and f € Mor umod, (M, N). If the
condition S(Ker f)R = {0} holds, then f is a monomorphism.

Proor. Let S and R be rings, f: M — N a morphism in sUMody and
assume that S(Ker f)R = {0} holds. Take g € Mor umod, (A, M) such that
fog=0and a € A. Since gAg is unitay, there exist si,...,s € S,
ri,...,7 € Rand aq,...,a, € A such that a = sja11m1 4+ ... + SprQpeTps.
For every index k € {1,...,k*} we have f(g(ax)) = 0. Now, by assumption
we obtain S_F_ s.g(az)ry = 0 and therefore

K k*
gla) =g (Z skakrk> = Z skg(ag)ry = 0.
k=1 k=1

Hence g = 0 and, by Lemma 6.18, f is a monomorphism. |

Corollary 6.22. Let S and R be rings and M € sUModg. The canonical
homomorphism py: S ®s M @r R — M is a monomorphism in sUModg.

PROOF. Let S and R be rings and M € gUModg. Notice that, due to M
being unitary, using Lemma 2.24 we have

SRsM@prR=S®s(SMR)@prR=SS®sM®rRR=S(S®sM&rR)R,

which implies that S ®s M ®r R € sUModg. Clearly, s defined as in (6.1)
is a morphism in sUModp.

Now, arbitrary a € Ker up; can be expressed as a = Zi;lsk Q my Q 1.
We have

k* k*
0= pp(a) = pur <Zsk & my, ®7“k> = Zskmkrk-

k=1 k=1
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For every s € S and r € R, we have

SOéT:S(E 5k®mk®7’k)7’:§ ssk®mk®rkr:§ SR SEMETe Qr

k=1 k=1 k=1

k:*
=s5s® (Zskmkrk> RKr=s0xr =20.
k=1

Therefore SaR = {0} and, by Proposition 6.21, py; is a monomorphism in
sUModp. [ |

Thanks to the previous corollary we can give an example of a non-injective
monomorphism in §UModg.

Example 6.23 (Non-injective monomorphism). From Example 2.14 we
know that the module M = (0, 2)(Zy®Z) is a unitary non-firm right (Z,®Z)-
module. Denote R := Zy @ Z. As any right module, M can be viewed as
a (Z, R)-bimodule with the usual left Z-multiplication. The new module
7z Mg retains its properties of being unitary, yet non-firm, because Mg is still
non-firm. Now, by Corollary 6.22, the morphism

prv: Qg M &g R— M, ZOMr = zmr

is a monomorphism in zUModg. Consider 1® (0,2) ® (1,2) € Z®z M Qg R.
Note that

n(1® (0,2) ® (1,0)) = 1(0,2)(1,0) = (0,0),

but
f1®(0,2)®(1,0)=1-1-1=1,

where f: Z®z M @r R — Zo, k® (0,20) ® (z,a) — kbZ is a (Z, Z)-bimodule
homomorphism. This proves that 1 ® (0,2) ® (1,0) # 0 € Z ®z M Qg R,
because every homomorphism takes zero to zero. Hence ), is a non-injective
monomorphism in zUModg. The morphism gy, is surjective, because M is
unitary, and therefore pj; is an epimorphism and a bimorphism. O

From the previous example we deduce that there exist rings S and R
such that the category sUModpg is not balanced, as it contains a bimorphism,
which is not an isomorphism.
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6.3 Monomorphisms of firm bimodules

In this section we will describe monomorphisms in the category sFModg,
where S and R are idempotent rings. But first we will prove some useful
properties of the functor P: ¢Modr — sFModg from Proposition 6.2.

Lemma 6.24. Let S and R be idempotent rings. If f: M — N is a mono-
morphism in sModg, then P(f) =ids ® f|smr ® idg is a monomorphism in
sFModg. Moreover, P: sModr — sFModg preserves surjective morphisms.

PROOF. 1. Let S and R be idempotent rings. By Theorem 6.3, the cate-
gory sFModg is a coreflective subcategory of sModg with a coreflector
P=5S5®sS R®rR: sModr — sFModg. Therefore P has a left
adjoint, which is the inclusion functor Jg. Hence P preserves all limits
and therefore also monomorphisms.

2. Let f: M — N be a surjective homomorphism on bimodules. Take
an arbitrary o = S5 sy @ np @ 1y, € P(N) = S ®g SNR®p R. For
every k € {1,...,k*}, there exists my € M such that n, = f(my), due
to the surjectivity of f. Now

D s@n@r, =y @ f(my)er, = (ids ® f@idg) (Z Sk @ my @ Tk>,
k=1 k=1

k=1

which implies that idg ® f ® idg is surjective. Also, since n, € SNR,
we obtain that P(f) = ids ® f|syr ® idg is surjective. [ |

Now we can present our main theorem of this section. This theorem
is inspired by an analogous theorem for semigroups and firm acts in [25]
(Theorem 2.10).

Theorem 6.25. Let S and R be idempotent rings and f: M — N a mor-
phism in sFModg. The following assertions are equivalent:
(1) f is a monomorphism;
(2) f is an extremal monomorphism;
(3) f is a regular monomorphism;
(4) S(Ker /)R = {0};
(5) f = pun o (ids ®a ® idg) o g, where A € sUModg, a: A — N is an
injective homomorphism and g: M — S ®s A ®gr R an isomorphism;
(6) f = ho(ids ®b®idg)og, where A, B € sUModg, b: A — B is an injec-
tive homomorphism and g: M — S®sARrR, h: S ®s B®r R — N
are isomorphisms.
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M f > N M f > N
T I
SRs A@r R — S®s N®r R S®sA®rR——> S®s B®r R
ids ®a ®idgr ids ®b ®idgr
Figure 6.13: Condition (5). Figure 6.14: Condition (6).

PROOF. ((3) = (2) = (1)). Holds in every category (Lemma 2.4).

((1) = (3)). The category sCModp is an essential localization of
sModg by Theorem 6.16. Now, by Proposition 6.19 and Lemma 2.7, we ob-
tain that monomorphisms and regular monomorphisms coincide in gCModp.
By Theorem 6.14, we know that sCModg and sFModg are equivalent cate-
gories, therefore monomorphisms and regular monomorphisms also coincide
in sFModpg.

((1) = (4)). Let f be a monomorphism. Consider the bimodule
S ®g S(Ker f)R ®g R, which is firm by Proposition 6.2, and the morphism

k* k*
HS(Ker f)R - S@S S(Kerf)R@RR — M, Z S @My Qg — Z SEMETE.
k=1 k=1

Clearly, f o piser fyr = 0 and hence, by Lemma 6.18, jigxer )r = 0. On the
other hand Im(uke r) = S(S(Ker f)R)R = (S5)(Ker f)(RR) = S(Ker f)R,
which implies that S(Ker f)R = {0}.

((4) = (1)). This is proved precisely as in Proposition 6.21.

((2) = (5)). Let f be an extremal monomorphism in sFModg. Ac-
cording to the Fundamental Homomorphism Theorem, there exist a bimodule
sAr = M/ Ker f, a surjective homomorphism e: M — A and an injective
homomorphism a: A — N in sModg, such that f = a o e (Figure 6.15).

M f > N
S®sMQr R A uN
ids@@@idR A

SRIARXRR——— S®s N®r R
idg ®a ®idg

Figure 6.15

As a quotient of a unitary bimodule M, the bimodule A = M/ Ker f is
also unitary. Still, A need not be a firm (.S, R)-bimodule. Using the naturality



116 CHAPTER 6. MONOMORPHISMS OF FIRM BIMODULES

of p (see Proposition 6.1), we have

fouy =aoeouy =aopuyo (ids®e ® idg)
:/uLNo(ids®a®1d3)0(1d5®€®id3).

Since M is firm, py, is bijective by Proposition 6.1, and therefore
f = pn o (ids ®a ®idg) o ((ids ®e @ idg) © uy})- (6.16)

By Proposition 6.2, we have that S ®¢ A ®g R is firm. Equality (6.16)
is a factorization of monomorphism f in gFModg into a composition of a
morphism py o (idg ®a ® idg) and an epimorphism (idg ®e ® idg) o )}
Indeed, since e is surjective, by Lemma 6.14, ids ®e ® idg is also surjective,
and hence idg ®e ® idg is an epimorphism. Due to the assumption that f is
extremal, we conclude that g := (idg ®e ® idg) o u1y; is an isomorphism.

((5) = (6)). This is obvious (take B := N and h := uy).

((6) = (1)). Assume that f = ho (ids ®b ® idg) o g for some uni-
tary (S, R)-bimodules A and B, injective homomorphism b: A — B and
isomorphisms g: M — S®s A®gr R and h: S ®s B®g R — N (Figure
6.14). Since the homomorphism b is injective, by Proposition 6.19, b is a reg-
ular monomorphism in §Modg. Now according to Lemma 6.24 the morphism
idg ®b®idg is a monomorphism in gFModg. Since g and h are isomorphisms,
f is also a monomorphism. [ |

Next, we will prove a result, which can be used to construct non-injective
monomorphisms in gFModg, where S and R are idempotent rings.

Proposition 6.26. Let S and R be idempotent rings, let a bimodule sMpg
be firm and sNg be a unitary, but non-firm, sub-bimodule of sMp. Let
ty: N — M be the inclusion mapping. Thenids @iy ®idr: SRsNRXrR —
S ®s M Rpr R is a non-injective reqular monomorphism in sFModg.

Proor. Using the naturality of x, we may consider the following commuta-
tive square (Figure 6.16).

idsg®tny ®idg
SRNQQQRR ——» S®s M Qg R

UN 12378

LN
N >

Figure 6.16
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Here ppy is bijective and py is surjective, but not injective. Suppose, to the
contrary, that idg ® ¢y ® idg is injective. Then s o (ids ® ¢y ® idg) is aslo
injective. From the equality

par o (ids ® ey ®idg) = ¢ty o p,

we deduce that py is injective. This is a contradiction to the assumtion that
N is not firm. Therefore idg ® ¢ty ® idg is non-injective.

On the other hand, idg ® 1y ®idg is a regular monomorphism in gFModg.
Because ty is a regular monomorphism in the category sModg by Proposi-
tion 6.19 and by Lemma 6.24 idg ® ¢y ® idgr is a monomorphism in gFModg
(here N is unitary, hence ty|sygr = tn). By Theorem 6.25, every monomor-
phism in gFModpy is also a regular monomorphism in gFModg. |

The previous proposition is meaningful, because by Example 2.14, there
exists a firm bimodule, which has a sub-bimodule that is unitary, but not
firm.

Finally we will prove a result about bimodules over xst-rings. Recall that
aring R is called a right (left) xst-ring, if every submodule of any unitary
right (left) R-module is unitary (Definition 1 in [12]).

Proposition 6.27. For idempotent rings S and R the following assertions
are equivalent:

(1) S is a left zst-ring and R a right zst-ring;

(2) sUModgr = sFModg;

(3) monomorphisms in sUModg are injective,

(4) pa is injective for all (S, R)-bimodules s Mg.

PROOF. Let S and R be idempotent rings.

((1) <= (2)). This equivalence follows from Proposition 9 in [17].

((2) = (3)). Assume that sUModr = sFModg holds. By Theorem
6.25 (5) we have that any monomorphism f: M — N in sUModg, is of the
form f = pyo(ids ®a®idg)og for a unitary (S, R)-bimodule A, an injective
homomorphism a: A — N and an isomorphism g: M — S ®¢ A ®r R.
By assumption, g4 is an isomorphism. Using the naturality of u, we get
that f = aopuso0g. Now we have expressed f as a composite of injective
homomorphisms, therefore f itself is also injective.

((3) = (4)). Assume monomorphisms in sUModg to be injective.
Let M € gModg. The (S, R)-bimodule S ®¢ M ®pg R is unitary, because
S(S ®s M ®r R)R = (59) ®s M ®g (RR) = S ®s M ®g R. Clearly,
SMR =U(M) is also unitary.
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Obviously Impuy, € SMR. Consider the homomorphism
pu M S @s M @r R — SMR, | (s @m@ 1) = pu(s @ m @ 7).

By the proof of Corollary 6.22, py|*M% is a monomorphism in gUModp.
Then, by the assumption, py|*MF is injective, therefore ), is also injective.

((4) = (2)). Assume that pyy is injective for all (S, R)-bimodules g M.
It is clear, that if ¢Ng is unitary, then uy is surjective, therefore puy is an
isomorphism and sUModgr = sFModg. |

6.4 Lattice of unitary sub-bimodules of a firm
bimodule

In this section we will show that, for a fixed firm bimodule M, the lattice
of unitary sub-bimodules USub(M) and the lattice of subobjects of M are
isomorphic. First we must recall the notion of subobjects of an object A in
some category A (see Definition 7.77 and Definition 7.79 in [2]).

Let A be a category and fix an object A of A. Let Iso(A) denote the
class of all isomorphisms in A. Consider the following equivalence relation
defined on the class of monomorphisms with codomain A in category A:

f~g <= Jhelso(A): f=goh.

A

s

h
Figure 6.17

Denote [f] = [f]~ the equivalence class of a monomorphism f by the
relation ~. We denote

SUB4(A) :={[f]~ | f: B — Ais a monomorphism}.

Equivalence classes [f] € SUB4(A) are called subobjects of A. The relation
=< defined by

f1=]g] <= 3ImeMor(d): f=gom

is a partial order on the class SUB4(A).

In [18, Theorem 6] Marin and Gonzalez-Férez showed that SUBgmed,, (M),
where M € FModg, is a lattice, gave formulas for computing joins and meets
for two subobjects and proved the following result.
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Theorem 6.28 (Theorem 6 in [18]). In the category of firm right mod-
ules over a ring, the lattices of subobjects are modular.

For every M € sFModgr we write
S(M) = SUBSFModR(M)-

The following theorem shows that if S and R are idempotent rings, then
for every bimodule M € gFModg, the lattices USub(M) and S(M) are iso-
morphic. It is a ring theoretic analogue of Theorem 4.2 in [25] for the case
of bimodules.

Theorem 6.29. Let sMpg be a firm (S, R)-bimodule over idempotent rings
S and R. Then there exists an isomorphism of lattices

U: USub(M) — S(M).

ProOOF. Let S and R be idempotent rings and M € gFModgr. We consider
the mapping ¥: USub(M) — S(M) defined by

for every ¢Ngr € USub(M) and the inclusion tx: N — M.

ids @y ®id
S@g Nop R-SEINOER oo A wp R

M
Figure 6.18

The (S, R)-bimodules S ®s N ®g R and S ®s M ®r R are firm by Propo-
sition 6.2 (the bimodules M and N are both unitary). The inclusion ¢y is
obviously injective and by Proposition 6.19 a monomorphism in sModg. By
Lemma 6.24, idg ® ¢y ®idg is a monomorphism in gFModg. Since M is firm,
the morphism f; is an isomorphism and gy 0 (idg ® ¢y ®idg) is a monomor-
phism as a composite of a monomorphism and an isomorphism. Therefore,
U is well defined.

Let N,O € USub(M). Assume that N C O and consider the inclusion
!y N — O (illustrated on Figure 6.19). Then ¢y = 1o o ¢/y and

V(N) = [par o (ids @ ey @ idg)] = [par o (ids ®(e0 0 tiy) @ idp)]
= [par o (ids ® 1o ® idRg) o (ids ® ty ® idR)]
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ids ® vy ®idpg

SN@rR———> S®sO0OQr R ———— > S®s M ®r R

ids@L/N(XJidR ids ® 1o ®idg
HUN Ho 12308
N , >0 - > M
I
LN
Figure 6.19

On the other hand, if we assume that ¥(N) < ¥(O), then
[tnv 0 pn] = [ 0 (ids @ ey ® idR)] = [ o (ids ® Lo @ idR)] = [Lo © pio]

by the naturality of . Hence, there exists a morphism g: S ®s N ®r R —
S ®s 0 ®pr R in sModg such that ty o uy = too o og. If n € N then, by
the unitarity of N, we know that there exist si,...,8« € S, r1,..., 76« € R
and ny,...,np« € N such that n = syniry + ... + sg=np«rp+. Consequently,

k* k*
n=1IN (Z Sknk?"k> = IN (,UN ( S @ N Q rk>>
k=1 k=1
k*
=lo (uo (g (Zsk@)nk ®rk>>> €lmip =0
k=1

and hence N C O. This proves that ¥ is an order-embedding.

Let us consider an equivalence class [f] € S, where f: N — M is a
monomorphism in gFModg. By Theorem 6.25 (5), f = paro(ids ®a®idg)og
for a unitary (S, R)-bimodule A, an injective homomorphism a: A — M and
an isomorphism g: N — S ®g A ®pr R.

We write a as a composition a = @’ 044y, where a(A) = Ima is a unitary
sub-bimodule of M and a': x +— a(z) is an isomorphism (Figure 6.20).

4 La(A
A a - a(A) (4) .y

Figure 6.20

Using the naturality of p and that (idg ®a’ ® idg) and g are isomorphisms,
we obtain the following equalities (illustrated on Figure 6.21)

U(a(A)) = [par o (ids @ Laay ® idR)] = [ta(a) © fla(a)]
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[La(A) O,Ua (1d5®a ®1dR)] = [La(A oa O,UA]
= [aopa = [,uMo (ids ®a ®idg)] =
= [up o (ids ®a ®idg) o g] = [f].

This proves the surjectivity of W.
ids ®a ®idg

N2 sowsAopR — > S®sa(A) 9 R —— = S©g Mg R

ids®a ®idp ids®La(A) ®idg
Ha Ha(A) s
> a(A >
a
Figure 6.21

We have shown that U is a surjective order-embedding and hence an
isomorphism of posets and lattices. [ |

Corollary 6.30. Let S and R be idempotent rings and M € sFModg. The
lattice S(M) is complete and modular.

Proor. Let S and R be idempotent rings and M € sFModg. By Proposi-
tion 2.25, we know that the lattice USub(M) is complete and modular. By
Theorem 6.29, we have the lattice isomorphism USub(M) = S(M). There-
fore S(M) is also a complete and modular lattice. [ |






Summary in Estonian

Idempotentsete ringide Morita ekvivalentsu-
sest ja pusivate bimoodulite monomorfismidest

Selles dissertatsioonis on uuritud idempotentsete ringide Morita ekvivalentsi
ning viimases peatiikis on tapsemalt vaadeldud erinevat tiiiipi bimoodulite
kategooriaid. Bimoodulitel on oluline roll Morita teoorias, néiteks esinevad
nad Morita kontekstide komponentidena. Ringi nimetatakse idempotentseks,
kui iga tema element on esitatav mingite elementide korrutiste summana.
Idempotentsed ringid on iihikelemendiga ringide tldistus.

[lma tihikelemendita ringide Morita ekvivalentsuse defineerimiseks on l-
diselt kolm erinevat loomulikku viisi: 6elda, et ringid R ja S on Morita ekvia-
lentsed parajasti siis, kui ringide R ja S pisivate, kinniste voi unitaarsete-
vaandeta parempoolsete moodulite kategooriad on ekvivalentsed. Idempo-
tentsete ringide klass on iiks suuremaid ringide klasse, kus koik need viisid
omavahel kokku langevad. Lisaks on idempotentsete ringide Morita ekvi-
valentsi mugav kirjeldada Morita kontekstide abil. Nimelt kehtib tingimus,
et idempotentsed ringid R ja S on Morita ekvivalentsed parajasti siis, kui
ringide R ja S vahel leidub unitaarne ja stirjektiivne Morita kontekst. See
kontekstidega kirjeldus leiab siinses dissertatsioonis rohket kasutust.

Kaesoleva dissertatsiooni pohieesmark on uurida mitmeid algebralisi kon-
struktsioone, mis on seotud idempotentsete ringide Morita ekvivalentsusega
ning nende abil avada idempotentsete ringide Morita ekvivalentsuse moistet.
Lisaks on viimases peatiikis erilise vaatluse all just piisivate bimoodulite ka-
tegooria ning monomorfismid selles kategoorias.

Antud vaitekiri koosneb kuuest peatiikist. Esimene peatiikk on sisse-
juhatus, kus antakse lithike tilevaade Morita teooria ajaloost ning seejarel
tutvustatakse vaitekirja struktuuri.

Teises peatiikis on toodud vajalikud eelteadmised, mida laheb vaja, et
moista seda véitekirja. Alustuseks on tutvustatud moningaid moisteid ka-
tegooriateooriast, nimelt kaasfunktoritega seotud moisteid ja erinevat liiki
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monomorfisme. Seejarel on ara toodud vajalikud moisted ringiteooriast ning
moodulite teooriast. Eelteadmiste peatiikis on pikemalt tutvustatud ka bi-
mooduleid ning defineeritud erinevad bimoodulite kategooriad. Lopetuseks
on antud Morita teooria algteadmised, s.h. on defineeritud idempotentsete
ringide Morita ekvivalentsus ja Morita kontekst ning esitatud Morita ekvi-
valentsuse kirjeldus kasutades Morita kontekste.

Kolmandas peatiikis defineeritakse Reesi-maatriksringi ja tensorkorrutis-
ringi moisted suvaliste ringide jaoks. Molemat konstruktsiooni on edukalt
kasutatud, et uurida Morita ekvivalentsust ning on toestatud tulemus, mis
seob omavahel Reesi-maatriksringid ja tensorkorrutisringid. Lisaks on siin
peatiikis vaadeldud kaas-endomorfismide ringe, millede abil on kirjeldatud
s-unitaalsete ringide Morita ekvivalentsus. See peatiikk pohineb artiklil [48].

Neljandas peatiikis on defineeritud ringide laiendid ning toestatud mit-
meid ringide laiendite lihtsamaid omadusi. Antud peatiiki pohiteoreemina on
toestatud, et idempotentsed ringid R ja .S on Morita ekvivalentsed parajasti
siis, kui leidub nende ringide iihine laiend. Lisaks on seal ndidatud, et iga uni-
taarne ja stirjektiivne Morita kontekst idempotentsete ringide R ja S vahel on
isomorfne unitaarse ja siirjektiivse Morita kontekstiga, mis on indutseeritud
ringide R ja S thise laiendi poolt. Lopetuseks on naidatud, et poolriithmade
Morita ekvivalentsus on seotud teatavate ringide iihise laiendiga. Neljas
peatiikk pohineb artiklil [27].

Viiendas peatiikis uuritakse ringi unitaarsete ideaalide kvantaali. Seal
on toestatud, et kui idempotentsed ringid R ja S on Morita ekvivalentsed,
siis on R ja S unitaarsete ideaalide kvantaalid isomorfsed. Siin peatiikis
on seejarel lithidalt uuritud Morita ekvivalentsete ringide sokleid ja nende
ringide moodulite annihilaatoreid. Lisaks on toestatud, et kui kaks ringi
on seotud Morita kontekstiga, siis on nende ringide faktorringid vastavate
ideaalide jargi samuti seotud sama liiki Morita kontekstiga. Viies peatiikk
pohineb artiklil [49].

Viimases ehk kuuendas peatiikis uuritakse pohjalikult piisivate bimoodu-
lite kategooriat iile mingite idempotentse ringide S ja R. Koigepealt on siin
ndidatud, et piisivate, kinniste ja unitaarsete-vadndeta (5, R)-bimoodulite
kategooriad on toepoolest ekvivalentsed. Seejarel on kirjeldatud monomor-
fismid piisivate (S5, R)-bimoodulite kategoorias. Lopetuseks on toestatud, et
mingi piisiva (S, R)-bimooduli M unitaarsete alam-bimoodulite vore on iso-
morfne bimooduli M (kategoorsete) alamobjektide vorega. Kuues peatiikk
on artikli [47] tildistus bimoodulite juhule.
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Summary in Latin

De aequivalentia Moritae anellorum idempo-
tentium et monomorfismo bimodulorum firmo-
rum

In hac dissertatione, aequivalentia Moritae anellorum idempotentium trac-
tata est et in capitulo ultimo genera ex variis categoriis bimodulorum tractata
sunt. Bimoduli in theoria Moritae magni momenti sunt, exampli gratia, ii
partes in contextibus Moritae sunt.

Meta principalis huius dissertationis est studium quarundam construc-
tionum algebrae, quae aequivalentiae Moritae anellorum idempotentium adi-
unctae sunt. Praeterea, in capitulo ultimo, categoria bimodulorum firmorum
et monomorphismi in ea observati sunt.

Haec dissertatio sex capitula habet. Primum capitulum introductio est.

In secundo capitulo scientia necessaria precursoria exposita est. Quaedam
notiones theoriae categoriarum introductae sunt. Deinde notiones necessariae
theoriae anellorum et modulorum relatae sunt. Postremo, scientia elemen-
taria theoriae Moritae tractata est, i.a. aequivalentia Moritae anellorum
idempotentium et contextus Moritae definiti sunt.

In tertio capitulo anellus matricis Reesi et anellus tensor-multiplicationis
anellis arbitrariis definitus est. Utraque constructio feliciter usa est studendo
aequivalentiae Moritae. Theorema, quod anellos matricis Reesi et anellos
tensor-multiplicationis conciliat, demonstratum est. Deinde anelli endomor-
phismorum adiunctorum considerati sunt, per quos aequivalentia Moritae
anellorum s-unitalium descripta est. Hoc capitulum scripturae [48] funda-
tum est.

In quarto capitulo extensiones anellorum definitae sunt et qualitates sim-
pliciores nonnullorum anellorum demonstratae sunt. In hoc capitulo theo-
rema, quod anelli idempotentes R et S aequivalentiam Moritae habent, si
anelli exensionem communem habent, demonstratum est. Hoc capitulum
scripturae [27] fundatum est.
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In quinto capitulo quantale idealium unitarium anelli tractatum est. In
hoc capitulo demonstratum est, ut si anelli idempotentes R et .S aequivalen-
tiam Moritae habent, quantalia idealium unitarium R et S isomorpha sunt.
Hoc capitulum scipturae [49] fundatum est.

In ultimo et sexto capitulo categoria bimodulorum firmorum supra quos-
dam anellos idempotentes S et R tractata est. Monomorphismi in categoria
(S, R)-bimodulorum firmorum descripti sunt. Postremo demonstratum est,
ut reticulum sub-bimodulorum unitarium cuiusdam (.S, R)-bimoduli firmi M
isomorphum est cum reticulo sub-obiectorum bimoduli M. Capitulum sex-
tum est praesentatio generalior scripturae [47].
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