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Chapter 1

Introduction

The purpose of this thesis is to study the Morita equivalence of idempo-
tent rings using various algebraic constructions. Our goal is to find as many
connections as possible between Morita equivalence and the considered con-
structions. The category of firm bimodules over two idempotent rings and
especially monomorphisms in this category will be of special interest.

1.1 Background

The notion of a Morita equivalence for rings with identity first arose in 1958
from the seminal paper [36] by Kiiti Morita. He described when the module
categories of two rings with identity are equivalent. Later this situation
became known as Morita equivalence of the underlying rings. The resulting
Morita theory has proven to be very useful in the development of the theory
of rings with identity. First steps for extending Morita equivalence to non-
unital rings were made by Abrams in 1983 with [1], who considered rings with
local units. Further developments in extending Morita theory to a more wider
class of rings were made by Komatsu in 1986 with [20] for s-unital rings and
Ánh and Márki in 1987 with [7] for rings with local units. Later in 1991
Garćıa and Simón developed Morita theory for idempotent rings in [14].

One especially useful tool – which is widely used in this thesis – for study-
ing Morita equivalence is the notion of a Morita context. Morita contexts
were first introduced by Bass in 1962 in [8], who called them preequivalence
datas. They were extensively used by Amitsur in 1971 in [3] and Müller
in 1972 in [37] and have become increasingly popular for studying Morita
equivalence ever since. Morita equivalence is defined using the equivalence
of certain module categories. This makes it obvious that it is an equivalence
relation on the class of rings, but on the other hand equivalence functors

9



10 CHAPTER 1. INTRODUCTION

are hard to work with, especially if we wish to understand the structure of
Morita equivalent rings. Morita contexts are helpful here, because they are
much more concrete objects. Essentially, they consist of two bimodules and
two bimodule homomorphisms.

Over the years, Morita theory has also been developed for many different
algebraic structures, e.g. monoids (by Banaschewski and Knauer), semi-
groups (by Talwar in 1995 with [43]), quantales, C∗-algebras etc. Morita
equivalence of semigroups will be of particular interest in this thesis, because
we will introduce several notions used to study Morita equivalence of semi-
groups into the ring case. In particular enlargements borrowed from Lawson’s
article [29] and strict local isomorphisms borrowed from Márki’s and Stein-
feld’s paper [35]. Although the Morita theory of factorizable semigroups and
idempotent rings are similar in some aspects, there exist some considerable
differences. For instance if two monoids are Morita equivalent, then either
of them is an enlargement of the other, but two Morita equivalent rings with
identity need not be isomorphic to their joint enlargement. Also we will show
that the only idempotent ring Morita equivalent to {0} is {0} itself. This is
a considerable difference from the Morita equivalence of semigroups, because
there are many infinitely semigroups Morita equivalent to the one-element
semigroup.

Finally we will thoroughly study the category of firm bimodules over
idempotent rings. The term “firm module” was first used by Quillen in
1996 in [39]. Although, a similar notion for modules over unital algebras was
already introduced by Taylor in 1982 in [45] under the name regular modules.
Categories of firm modules and their applications in Morita theory have been
extensively studied by Maŕın in his master’s thesis [33] and [34] in 1998 and
later with Garćıa and González-Férez in articles [12], [13], [17] and [18].

1.2 Overview of the thesis

This thesis is divided into six chapters. The first chapter is the introduction,
where we give a short historical overview of developments in Morita theory.
Subsequently the summary of the thesis is presented.

In Chapter 2 we will give the preliminaries, which are necessary for un-
derstanding the material of this thesis. We will try to keep the text rather
self-contained. First we will introduce some notions from category theory,
which will be used in what follows. Namely we define adjoint functors and
several kinds of monomorphisms. Next we present the basics of ring and
module theory and after that introduce bimodules. Finally we will introduce
Morita theory by defining and describing Morita equivalence for idempotent
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rings and Morita contexts.
In Chapter 3 we will define Rees matrix rings and tensor product rings

for arbitrary rings. We will use both of these concepts to study Morita
equivalence of idempotent rings. It turns out that every idempotent Rees
matrix ring is Morita equivalent to its ground ring (Theorem 3.8). We define
pseudo-surjective mappings. We see that every tensor product ring over an
idempotent ring R, which is defined by a pseudo-surjective (R,R)-bilinear
map, is Morita equivalent to R (Theorem 3.16). Then we define strict lo-
cal isomorphisms of rings, inspired by a similar notion in semigroup theory
introduced by Márki and Steinfeld. We show that if two rings are Morita
equivalent, then any pseudo-surjectively defined tensor product ring over one
of those rings is strictly locally isomorphic to the other one (Corollary 3.24).
Finally we prove a result connecting the constructions of Rees matrix rings
and tensor product rings (Theorem 3.40). We will also study the rings of
adjoint endomorphisms of modules. This approach is a generalization of the
ideas used by Ánh in [5]. We use adjoint endomorphisms to describe Morita
equivalence of s-unital rings (Theorem 3.39). This section is based on [48].

In Chapter 4 we will define enlargements of rings, which is again a notion
borrowed from semigroup theory. First we prove some simple properties of
enlargements and then give two natural constructions that produce enlarge-
ments. We will show that enlargements – namely the existence of a joint
enlargements – can be used to describe Morita equivalence of idempotent
rings (Theorem 4.13). For instance this description allows us to easily con-
clude that the only ring Morita equivalent to {0} is {0} itself (Corollary
4.15). Furthermore, we will show that for any two Morita equivalent idem-
potent rings there exists a Morita context between those rings, where the
bimodules are induced by their joint enlargement (Corollary 4.21). Finally
we show that a joint enlargement of certain particular rings is lurking behind
the strong Morita equivalence of semigroups (Theorem 4.25). This section is
based on [27].

In Chapter 5 we will study unitary ideals of Morita equivalent idempotent
rings. First we show that the set of all unitary ideals of an idempotent ring
actually forms a unital quantale (Proposition 5.3). In particular we will prove
that that the quantales of unitary ideals of Morita equivalent idempotent
rings are isomorphic (Theorem 5.8). Next we will briefly consider socles and
annihilators in connection to Morita equivalence. Finally, we will prove that
if two idempotent rings are Morita equivalent, then their quotients, by the
ideals that correspond to each other, are also Morita equivalent (Theorem
5.16). Essentially we will give a way of factorizing Morita contexts by ideals.
This section is based on [49].

In Chapter 6 we will study the category of firm bimodules over two idem-
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potent rings. First we will have a lengthy detour concerning the subcategories
of firm, closed and torsion-free bimodules over idempotent rings. Due to the
size of this section it is divided into subsections. After introducing the cat-
egories of firm and closed bimodules over some idempotent rings, we will
show explicitly that these categories are equivalent to each other and also to
the category of unitary torsion-free bimodules over the same rings (Theorem
6.14). Moreover, the category of closed bimodules over some idempotent
rings is an essential localization of the category of all bimodules over those
rings (Theorem 6.16). Next we will describe monomorphisms in the category
of all bimodules and in the category of all unitary bimodules over two rings.
There we will also give an example of a non-injective monomorphism in the
category of unitary bimodules over some particular rings, proving that this
category is not balanced (Example 6.23). Finally we will describe monomor-
phisms in the category of firm bimodules (Theorem 6.25) and show that the
lattice of unitary sub-bimodules of a given firm bimodule is isomorphic to
the lattice of categorical subobjects of this bimodule (Theorem 6.29). This
chapter is a generalization of [47].



Chapter 2

Preliminaries

In this chapter we will introduce notions that are needed in this thesis. First
we will dwell into category theory. Then we will introduce several special
kinds of rings and modules, which will be important later. In order to con-
sider Morita theory we will then study bimodules, especially the categories
of firm and closed bimodules. Finally we will introduce the basics of Morita
theory.

2.1 Some notions from category theory

In this thesis we will assume some prior knowledge of category theory. Still
there are some notions which will be defined in this section, but first we
must introduce some notation. Let A be a category. If A is an object of A,
then we will simply write A ∈ A, and MorA(A,B), where A,B ∈ A, will
denote the set of all morphisms of A from A to B. Also, Mor(A) wil denote
the class of all morphisms in A. Functors will usually be denoted by bold
capital latin letters. Next we will define the notions of adjoint functors and
the equivalence of categories.

Let A and B be categories and F : A → B and G : B → A functors.
The functor F is called a left adjoint of G or, equivalently, G is called a
right adjoint of F with the notation F a G or G ` F, if there exist two
natural transformations ε : F ◦G→ idB and η : idA → G ◦F such that for
any objects A ∈ A and B ∈ B the so called triangle identities hold:

idF(A) = εF(A) ◦ F(ηA), (2.1)

idG(B) = G(εB) ◦ ηG(B). (2.2)

Such η is called the unit and ε the counit of the adjunction F a G. Adjoint
functors can be composed in the following sence: if F a G and F′ a G′ are

13
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adjunctions, then there exists an adjunction

F ◦ F′ a G′ ◦G. (2.3)

One of the most important properties of adjoint functors is that every
functor that has a left (right) adjoint preserves limits (colimits) (Proposi-
tion 18.9 in [2]).

A functor F : A → B is called an equivalence functor (between cat-
egories A and B) if there exists a functor G : B → A and two natural
isomorphisms ε : F ◦ G → idB and η : idA → G ◦ F. In that case the
functor G is also an equivalence functor between A and B. If there exists an
equivalence functor F : A → B, then we say that the categories A and B are
equivalent and write A ≈ B. If F : A → B and G : B → A are equivalence
functors, then clearly F is a left and right adjoint of G and vice versa.

Next we must recall the notion of a monomorphism and its special cases
regular and extremal monomorphisms. These will play an important role in
what follows.

Definition 2.1. Let A be a category. A morphism f : A→ B in A is called
a monomorphism, if it is left cancellable, i.e., for every pair on morphisms
g, h : C → A in A, the following property holds:

f ◦ g = f ◦ h =⇒ g = h.

The dual notion of a monomorphism, i.e. a right cancellable morphism,
is called an epimorphism. A morphism that is both a monomorphism and
an epimorphism is called a bimorphism.

If A is a construct ([2, Definition 5.1]), then all injective (surjective)
morphisms in A are monomorphisms (epimorphisms) in A (Corollary 7.38 in
[2]).

Definition 2.2. A morphism f : A → B is called a regular monomor-
phism, if it is an equalizer of some morphisms g, h : B → C.

It is easy to check that a regular monomorphism is indeed a monomor-
phism.

Definition 2.3. A monomorphism f is called an extremal monomor-
phism if f = g ◦ e, where e is an epimorphism, implies that e is an iso-
morphism.

Also, we recall a very well known property of regular and extremal mono-
morphisms.
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Lemma 2.4 ([2, Corollary 7.63]). Every regular monomorphism is extre-
mal.

Finally we will need some notions concerning reflective and coreflective
subcategories. The following definitions are taken from [9].

Definition 2.5. Let A be a category. A full subcategory B ⊆ A is called
(co)reflective if its inclusion functor J : B → A has a left (right) adjoint
F : A → B. The functor F : A → B is called a (co)reflector.

Let B be a reflective subcategory of A with the reflector F : A → B. Due
to the adjunction F a J there exist two natural transformations ε : F ◦ J→
idB and η : idA → J ◦ F such that for every object B ∈ B we have

idB = εB ◦ ηB.

On the other hand, using the naturality of ε and condition (2.1) (as shown
on Figure 2.1), we calculate

ηB ◦ εB = J(ηB) ◦ εB = εF(B) ◦ F(ηB) = idF(B) .

B

F(B)

F(B)

F(F(B))

B

F(B)

ηB F(ηB) ηB

εB

εF(B)

Figure 2.1

Therefore we have shown that εB : F(B) → B is an isomorphism. In con-
clusion, we have that if F : A → B is some reflector then the counit of
the adjunction F a J is a natural isomorphism and its inverse is the unit
restricted to the objects of B. Dually, it can be shown that if C is a core-
flective subcategory of A with a coreflector G : A → C, then the unit of the
adjunction J a G is a natural isomorphism.

Definition 2.6 (Definition 3.5.6 in [9]). A reflective subcategory B ⊆ A
is called an essential localization of A if its reflector F : A → B has a left
adjoint.

Next we will prove a lemma about essential localizations, which will prove
to be useful in the following sections. This lemma was first published in [47].
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Lemma 2.7. Let A be a category and B an essential localization of A. If
monomorphisms and regular monomorphisms coincide in the category A,
then they also coincide in B.

Proof. Let A be a category where monomorphisms and regular monomor-
phisms coincide and B ⊆ A its essential localization with a reflector F : A →
B and let ρ : idA → F be the unit of the adjunction F a J, where J : B → A
is the inclusion functor.

Let f : B → C be a monomorphism on B and g, h ∈ MorA(A.B) such
that f ◦ g = f ◦ h. Since B is a reflective subcategory of A, we may consider
the morphisms F(g),F(h) : F(A) → F(B). Since f is a monomorphism in
B we know that ρ−1

B ◦ F(g) = ρ−1
B ◦ F(h). Now, since ρ is natural we obtain

that
g = (ρ−1

B ◦ F(g)) ◦ ρA = (ρ−1
B ◦ F(h)) ◦ ρA = h,

which implies that f : B → C is also a monomorphism in A.
By assumption, we know that f is a regular monomorphism in A, which

means that there exist morphisms u, v ∈ MorA(C,D) such that f is an equal-
izer of u and v. Since B is an essential localization, the reflection functor
F : A → B has a left adjoint. Thus F is a right adjoint functor and by Propo-
sition 18.6 in [2] it preserves equalizers. So, the morphism F(f) : F(B) →
F(C) is an equalizer of morphisms F(u),F(v) : F(C)→ F(D) in B (as shown
on Figure 2.2).

B C D

F(B) F(C) F(D)

f u

v

F(f) F(u)

F(v)

ρC ρ−1

C
ρDρB ρ−1

B

E

e

m′

B

A

Figure 2.2

Due to ρ being a natural transformation, the equality

ρC ◦ f = F(f) ◦ ρB

holds. This equality implies that F(u) ◦ ρC ◦ f = F(v) ◦ ρC ◦ f .
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Let e : E → C be a morphism in B such that F(u)◦ρC ◦e = F(v)◦ρC ◦e.
Since F(f) is the equalizer of F(u) and F(v), there exists a unique morphism
m′ : E → F(B) in B such that F(f) ◦m′ = ρC ◦ e. Morphisms ρB and ρC
are isomorphisms in B. Denoting m := ρ−1

B ◦m′ : E → B we have

f ◦m = f ◦ ρ−1
B ◦m

′ = ρ−1
C ◦ F(f) ◦m′ = ρ−1

C ◦ rC ◦ e = e.

Uniqueness of m follows from the fact that f is a monomorphism in B. Thus
we have shown that f is the equalizer of the morphisms F(u) ◦ ρC ,F(v) ◦
ρC : C → F(D) in B. �

Now we have all the necessary notions from category theory and we may
move on to algebraic notions.

2.2 Rings and modules

In this thesis we will mostly consider associative but not necessarily having
an identity element nor commutative rings, i.e. an abelian group (R; +) will
be called a ring if it is equipped with a mapping R × R → R, (a, b) 7→ ab,
called multiplication, which satisfies the condition (ab)c = a(bc) for every
a, b, c ∈ R and addition and multiplication are connected by the distributivity
conditions:

(a+ b)c = ac+ bc and c(a+ b) = ca+ cb,

for every a, b, c ∈ R.
We will need to consider modules over rings. Let R be a ring, denote by

ModR the category whose objects are all right R-modules and morphisms are
the homomorphisms of right R-modules; similarly RMod will be the category
containing all left R-modules. Analogously, for all subsequent categories of
modules, the position of the ground ring as an index will indicate either
left or right modules. Let M and N be right R-modules. We will denote
the set of all right R-module homomorphisms from M to N by the symbol
HomR(M,N) and analogously the set of all left R-module homomorphisms
by the symbol RHom(M,N), i.e.

HomR(M,N) := MorModR(M,N),

RHom(M,N) := Mor
RMod(M,N).

The set HomR(M,N) can actually be turned into a right R-module by defin-
ing addition and scalar multiplication as folows

(f + g)(x) := f(x) + g(x),
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(fr)(x) := f(rx), (2.4)

for every f, g ∈ HomR(M,N) and r, x ∈ R. The set RHom(M,N) can
analogously be viewed as a left R-module by defining scalar multiplication
as

(rf)(x) := f(xr), (2.5)

for every f ∈ HomR(M,N) and r, x ∈ R.
If MR is a right R-module, A ⊆M and S ⊆ R, then we denote

AS :=

{
k∗∑
k=1

aksk

∣∣∣∣∣k∗ ∈ N; a1, . . . , ak∗ ∈ A; s1, . . . , sk∗ ∈ S

}
⊆M.

For left modules (and later for bimodules) we will use a similar notation.
Next we will define several special kinds of modules and rings. We will

formulate the definitions for right modules. Dually one can define such no-
tions for left modules. All of these notions give rise to similar notions for
rings, which will be defined by considering a ring R as an R-module RR.

Definition 2.8. A right R-module MR is called unitary, if MR = R,
i.e. for every element m ∈ M there exist elements r1, . . . , rk∗ ∈ R and
m1, . . . ,mk∗ ∈ M such that m = m1r1 + . . . + mk∗rk∗ . The category of all
unitary right R-modules is denoted by UModR.

It is easy to see that if R has an identity element 1, then MR is unitary
if and only if m1 = m for every m ∈M .

Definition 2.9. A ring R is called idempotent if the R-module RR is uni-
tary.

Idempotent rings are of central importance in this thesis. Clearly every
ring with an identity element is idempotent.

We assume the familiriarity with the notion of tensor product of modules
(see, for example, paragraph 12.1 in [51]), which will be used extencively in
this thesis. Still, we will formulate the notion of a balanced mapping, because
of its importance later.

Definition 2.10. Let R be a ring, MR and RN R-modules and A an abelian
group. A mapping α : M×N → A is called R-balanced, if, for every r ∈ R,
m,m′ ∈M and n, n′ ∈ N , we have

1. α(m+m′, n) = α(m,n) + α(m′, n);
2. α(m,n+ n′) = α(m,n) + α(m,n′);
3. α(mr, n) = α(m, rn).
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We will also formulate the universal property of the tensor product as the
following proposition.

Proposition 2.11 (Universal property of the tensor product). Let R
be a ring, MR and RN R-modules and A an abelian group. For every R-
balanced map α : M×N → A there exists a unique homomorphism of abelian
groups γ : M ⊗R N → A such that γ ◦ ⊗ = α (Figure 2.3).

M ×N

M ⊗R N Aγ

⊗ α

Figure 2.3

Next we will define firm modules.

Definition 2.12. A right R-module MR is called firm, if the canonical ho-
momorphism

νM : M ⊗R R→M,
k∗∑
k=1

mk ⊗ rk 7→
k∗∑
k=1

mkrk (2.6)

is bijective. The category of all firm right R-modules is denoted by FModR.

Definition 2.13. A ring R is called firm, if the R-module RR is firm.

Clearly every firm module is also unitary. Namely, MR is unitary if and
only if νM is surjective. The converse is not always true. Hence, every
firm ring is idempotent. Also every ring with identity is firm. Canepeel and
Grandjean published the following example of a unitary but non-firm module
in 1998.

Example 2.14 (Unitary non-firm module; Example 1.2 in [15]). Let
R := Z2 ⊕ Z. Consider R as a ring with the usual componentwise addition
and multiplication defined by

(z1, a1)(z2, a2) = (a1z2, a1a2).

The ring R is firm, because it has a left identity (0, 1).
Fix c = (0, 2) ∈ R. The principal ideal

cR = {(0, 2b) | b ∈ Z} ∼= 2Z
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is unitary, but not firm as a right R-module. For unitarity consider an
element (0, 2b) ∈ cR, then (0, 2b) = (0, 2)(0, b) = c(0, b), where (0, b) ∈ R and
(0, 2) ∈ cR. Now, consider the element (0, 2)⊗ (1, 0) ∈ cR⊗R R. Obviously

νcR((0, 2)⊗ (1, 0)) = (0, 2)(1, 0) = (0, 0).

On the other hand there exists a well-defined right Z-module homomorphism

cR⊗R R→ Z2, (0, 2b)⊗ (z, a) 7→ bz,

which maps (0, 2) ⊗ (1, 0) 7→ 1 6= 0. This proves that (0, 2) ⊗ (1, 0) 6= 0
in cR ⊗R R, because there exists a homomorphism of abelian groups that
does not take (0, 2)⊗ (1, 0) to zero. Hence cR is not firm, because νcR is not
injective. �

González-Férez and Maŕın have also proved that there exist unitary but
non-firm modules in [17] (Corollary 21).

Next we will give an example of an idempotent but non-firm ring, which
was found by Ülo Reimaa.

Example 2.15 (Idempotent non-firm ring). Consider the following two
semigroups S = {z, a, b, e} and B = {0, 1, 2, 3, 4} given by their Cayley
tables:

S z a b e
z z z z z
a z z z z
b z z z b
e z a z e

and

B 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 2 1
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 3 4

.

Note that S is a non-firm semigroup, meaning that the S-acts S ⊗S S and
S are not isomorphic (see Example 2.3 in [23]). Consider the mapping
ψ : S × S → B given by the following table:

ψ z a b e
z 0 0 0 0
a 0 0 0 0
b 0 2 0 1
e 0 3 0 4

.

It is easy to check that ψ is S-balanced, meaning that ψ(ss′, s′′) = ψ(s, s′s′′)
for every s, s′, s′′ ∈ S. Recall the notion of a semigroup ring (paragraph 5.3
in [51]) and consider the semigroup rings

Z2[S] = {k1z + k2a+ k3b+ k4e | k1, k2, k3, k4 ∈ Z2}
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and Z2[B]. Clearly, the mapping induced by ψ,

ψ′ : Z2[S]× Z2[S]→ Z2[B],

is Z2[S]-balanced. By the universal property of the tensor product (Propo-
sition 2.11), there exists a well-defined homomorphism of abelian groups

ψ′ : Z2[S]⊗Z2[S] Z2[S]→ Z2[B].

Note that ψ′(b⊗ a) = 2 6= 0 = ψ′(b⊗ b), which proves that b⊗ a 6= b⊗ b in
Z2[S]⊗Z2[S] Z2[S]. On the other hand

νZ2[S](b⊗ a) = ba = z = bb = νZ2[S](b⊗ b).

This proves that the mapping νZ2[S] is not injective and hence the ring Z2[S]
is not firm. It can be checked that Z2[S] is idempotent. �

Next we will define the notion of a torison-free module.

Definition 2.16. A right R-module MR is called torsion-free if

tR(M) := {m ∈M | mR = {0}} = {0}.

The category of all torsion-free right R-modules is denoted by TfModR.

The category of all unitary and torsion-free right R-modules is denoted
by UTfModR.

Definition 2.17. A right R-module MR is called closed, if the canonical
homomorphism

λM : M → HomR(R,M), (λM(m))(r) = mr

is bijective. The category of all closed right R-modules is denoted by CModR.

Clearly every closed module is also torsion-free. Namely, λM is injective
if and only if MR is torsion-free, because Ker(λM) = tR(M). The terms
“firm module” and “closed module” were used by Quillen in [39]. Actually,
firm modules appeared under the name ”regular module” already in [45] by
Taylor. Maŕın and González-Férez have studied the categories FModR and
CModR and their properties extensively in [34], [17] and [18].

We will need the following theorem proven by Maŕın, which claims that
the categories FModR, CModR and UTfModR are equivalent categories if R
is idempotent.
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Theorem 2.18 (Proposition 2.7 in [34]). Let R be an idempotent ring.
There exist equivalence functors

R : CModR → UTfModR,

HomR(R, ) : UTfModR → CModR,

/tR( ) : FModR → UTfModR,

⊗R R : UTfModR → FModR.

These equivalences are realized by natural isomorphisms defined as follows

λ−1
C ◦ HomR(R, ιC) = λ−1

C ◦ ιC ◦ : HomR(R,CR)→ C,

λN |NR = λNR : N → HomR(R,N)R,

( /t( ))(νN) = [νN ] : (N ⊗R R)/tR(N ⊗R R)→ N,

([ ]⊗ idR) ◦ ν−1
A : A→ A/tR(A)⊗R R,

where C ∈ CModR, N ∈ UTfModR, A ∈ FModR and ιC : CR → C is the
inclusion.

CModR UTfModR FModR≈ ≈

R ⊗R R

/tR( )HomR(R, )

Figure 2.4

Next we will define a few more special rings. Let R be a ring. An element
e ∈ R is called idempotent, if ee = e.

Definition 2.19 (Definition 1 in [7]). A ring R is said to have local
units, if for every finite subset {r1, . . . , rn} ⊆ R there exists an idempo-
tent element e ∈ R such that

r1 = er1 = r1e, . . . , rn = ern = rne.

Every ring with local units is firm. We will also need the following weaker
form of a ring with local units. A ring R is said to have left local units if
for every subset {r1, . . . , rn} ⊆ R there exists an idempotent e ∈ R such that
r1 = er1, . . . , rn = ern. A ring with right local units is defined dually. Here,
the idempotent e is called a (left, right) local unit for the set {r1, . . . , rn}.
Obviously, every ring with an identity element, is also a ring with (left, right)
local units. In that case, the identity element 1 is the (left, right) local unit
for any subset of R.

Now we will introduce the notion of s-unital rings.
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Definition 2.20 ([46]). A ring R is called left (right) s-unital if for every
r ∈ R there exists an element v ∈ R such that

r = vr (r = rv).

A ring R is called s-unital if it is both left and right s-unital, i.e. for every
r ∈ R there exist elements u, v ∈ R such that r = vr = ru.

For example every ring with local units, including every von Neumann
regular ring (see paragraph 3.1 in [51]), is s-unital. We will need the following
result about s-unital rings, that was proved by Tominaga in [46].

Theorem 2.21 (Theorem 1 in [46]). A ring R is left s-unital if and only
if for every finite subset {r1, . . . , rn} ⊆ R there exists v ∈ R such that

r1 = vr1, . . . , rn = vrn.

Next, we will prove that every left (or right) s-unital ring is firm.

Lemma 2.22. Every left s-unital ring is firm and hence also idempotent.

Proof. Let R be a left s-unital ring. Consider the homomorphism

νR : R⊗R R→ R,
k∗∑
k=1

rk ⊗ r′k 7→
k∗∑
k=1

rkr
′
k

The homomorphism νR is surjective, because every r ∈ R can be expressed
r = vr for some v ∈ R and hence r = vr = νR(v ⊗ r).

Next let
∑k∗

k=1 rk ⊗ r′k ∈ Ker(νR), then
∑k∗

k=1 rkr
′
k = 0. By Theorem 2.21,

there exists an element v ∈ R such that rk = vrk for any k ∈ {1, . . . , k∗}.
Now

k∗∑
k=1

rk ⊗ r′k =
k∗∑
k=1

vrk ⊗ r′k = v ⊗

(
k∗∑
k=1

rkr
′
k

)
= v ⊗ 0 = 0.

Hence Ker(νR) = {0}, which proves that νR is injective. In conclusion, νR is
an isomorphism, which proves that R is firm. Every firm ring is idempotent.�

Lastly, we must recall the notion of an ideal of a ring. Let R be a ring.
A subset I ⊆ R is called a right (left) ideal of R if it is a subgroup of
(R; +) and IR ⊆ I (RI ⊆ I). Obvously, every right (left) ideal of R may be
considered as a right (left) R-module. A subset I ⊆ R is called an ideal of
R if it is both a left and a right ideal of R. We will write I E R if I is an
ideal of R and the symbol Id(R) will denote the set of all ideals of R. The set
Id(R) is a complete lattice with respect to the inclusion relation. In Id(R)
joins are sums and meets are intersections.
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2.3 Bimodules

Let R and S be rings. A left S-module M , which is also a right R-module,
is called an (S,R)-bimodule, if the condition

(sm)r = s(mr)

holds for every s ∈ S, r ∈ R and m ∈ M . In such a case we write SMR to
indicate that M is an (S,R)-bimodule. A subset A ⊆ M is called a sub-
bimodule of an (S,R)-bimodule M if A is a submodule of both the left
S-module SM and the right R-module MR. The set of all sub-bimodules of
an (S,R)-bimodule M is denoted by Sub(M).

The category of all (S,R)-bimodules is denoted by SModR, morphisms in
this category are mappings, which are both homomorphisms of left S-modules
and also homomorphisms of right R-modules. For any M,N ∈ SModR,
denote

SHomR(M,N) := Mor
SModR(M,N).

The set SHomR(M,N) can be viewed as an (S,R)-bimodule by defining
addition componentwise, right R-multiplication with (2.4) and left S-multi-
plication analogously.

Let M ∈ SModR. Notice that the right R-module HomR(R,M) of right
R-module homomorphisms can be viewed as an (S,R)-bimodule, by defining
an S-multiplication for every f ∈ HomR(R,M) as follows

(sf)(r) := sf(r), (2.7)

for any s ∈ S and r ∈ R. The left S-module SHom(S,M) can analogously
be viewed as an (S,R)-bimodule, i.e. addition in SHom(S,M) is defined
componentwise and S-, R-multiplications are defined as follows

(sf)(s′) = f(s′s), (2.8)

(fr)(s′) = f(s′)r, (2.9)

for every f ∈ SHom(S,M), s, s′ ∈ S and r ∈ R.

Definition 2.23. An (S,R)-bimodule SMR is called unitary, if SM is a
unitary left S-module and MR is a unitary right R-module. The category of
all unitary (S,R)-bimodules is denoted by SUModR.

Firm, torsion-free and closed bimodules are defined completely analo-
gously and their categories are denoted by SFModR, STfModR and SCModR,
respectively. Also, we will adopt a convention of notation that if any of the
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abbrevations u, f, tf, c or utf is written to the left or right side of sym-
bol Mod, then it denotes a category of bimodules whose objects have the
respective properties as left or right modules. For example the category

SutfModcR consists of all (S,R)-bimodules SMR such that SM is a left uni-
tary and torsion-free S-module and MR is a right closed R-module. All of
these categories are full subcategories of SModR.

Now we will prove a simple, yet extremely useful description of unitary
bimodules.

Lemma 2.24. Let S and R be rings and SMR an (S,R)-bimodule. A bi-
module SMR is unitary if and only if SMR = M .

Proof. Necessity. Let SMR be a unitary bimodule. Then M=SM=SMR.
Sufficiency. Let M = SMR hold. Fix m ∈M , then there exist elements

s1, . . . , sk∗ ∈ S, r1, . . . , rk∗ and m1, . . . ,mk∗ ∈ M such that m = s1m1r1 +
. . .+ sk∗mk∗rk∗ . Now

m =
k∗∑
k=1

skmkrk =
k∗∑
k=1

sk(mkrk) ∈ SM,

m =
k∗∑
k=1

skmkrk =
k∗∑
k=1

(skmk)rk ∈MR.

This proves the inclusions M ⊆ SM and M ⊆MR. The converse inclusions
are obvious. �

Let S and R be idempotent rings. Due to the previous lemma, we can
construct a functor

U = S R : SModR → SUModR, M 7→ SMR. (2.10)

Indeed, for every M ∈ SModR, we have S(SMR)R = (SS)M(RR) = SMR,
meaning that U(M) ∈ SUModR. The functor U maps morphisms to restric-
tions: U(f) = f |SMR : SMR → SNR, for every f ∈ Mor

SModR(M,N) with
M,N ∈ SModR. Clearly there exists a natural isomorphism U ∼= U ◦U, if
we view U as an endofunctor of SModR. It is easy to see that the functor U
can be expressed as a composition

U = ( R) ◦ (S ) : SModR → SuModR → SUModR.

Let the symbol USub(M) denote the set of all unitary sub-bimodules of an
(S,R)-bimodule SMR. The set USub(M) is a nonempty poset with respect
to the inclusion relation. The following proposition shows that USub(M) is
even a lattice with some good properties.
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Proposition 2.25. If SMR is an (S,R)-bimodule, then USub(M) is a com-
plete lattice. If R and S are idempotent rings, then this lattice is modular.

Proof. Let M ∈ SModR for some rings S and R. It is easy to see that the
sum of any set of unitary sub-bimodules of M is a unitary sub-bimodule.
Hence USub(M) is a complete lattice with∨

k∈K

Bk :=
∑
k∈K

Bk,

for any set K with Bk ∈ USub(M), k ∈ K. The least element of USub(M)
is {0}.

Now assume that the rings S and R are idempotent. Then the meet of
an arbitrary subset {Bk | k ∈ K} ⊆ USub(M) is calculated as follows:

∧
k∈K

Bk := S

(⋂
k∈K

Bk

)
R.

Let A,B,C ∈ USub(M) be such that A ⊆ C. Then (A+B)∩C = A+B∩C,
because the lattice of all sub-bimodules Sub(M) is modular. Hence

(A ∨B) ∧ C = R((A+B) ∩ C)S = R(A+ (B ∩ C))S = RAS +R(B ∩ C)S

= A+R(B ∩ C)S = A ∨ (B ∧ C),

which means that the complete lattice USub(M) is modular. �

2.4 Morita theory

In this section we will introduce Morita contexts and show how they can be
used to study Morita equivalence for idempotent rings.

Definition 2.26. A six-tuple (R, S, RPS, SQR, θ, φ), where R and S are rings
and RPS, SQR are bimodules, is called a Morita context, if

θ : R(P ⊗S Q)R → RRR, φ : S(Q⊗R P )S → SSS

are bimodule homomorphisms such that

θ(p⊗ q)p′ = pφ(q ⊗ p′), (2.11)

qθ(p⊗ q′) = φ(q ⊗ p)q′ (2.12)

for every p, p′ ∈ P and q, q′ ∈ Q.
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We say that a Morita context (R, S, RPS, SQR, θ, φ) is unitary, if the
bimodules RPS and SQR are unitary; and surjective (bijective), if the
homomorphisms θ and φ are surjective (bijective). We will say that two
rings S and R are connected by a Morita context, if there exists a Morita
context (R, S, RPS, SQR, θ, φ).

Next we will prove one useful little proposition that first appeared in [27],
which claims that unitary surjective Morita contexts only connect idempotent
rings.

Proposition 2.27. If (R, S, RPS, SQR, θ, φ) is a unitary surjective Morita
context, then the rings S and R are idempotent.

Proof. Let (R, S, RPS, SQR, θ, φ) be an unitary surjective Morita context.
Take r ∈ R. Using the surjectivity of θ we can find an element

∑h∗

h=1 ph ⊗
qh ∈ P ⊗ Q such that r = θ(

∑h∗

h=1 ph ⊗ qh). Since RP is unitary, for every
h ∈ {1, . . . , h∗}, there exist a natural number k∗, elements rh1, . . . , rhk∗ ∈ S
and ph1, . . . , phk∗ ∈ P such that ph = rh1ph1 + . . .+ rhk∗phk∗ (if necessary, we
add some zero summands to get the equal length of sums for all h’s). Now

r = θ

(
h∗∑
h=1

ph ⊗ qh

)
=

h∗∑
h=1

θ (ph ⊗ qh) =
h∗∑
h=1

θ

(
k∗∑
k=1

rhkphk ⊗ qh

)

=
h∗∑
h=1

k∗∑
k=1

θ (rhkphk ⊗ qh) =
h∗∑
h=1

k∗∑
k=1

rhkθ (phk ⊗ qh) ∈ RR .

This proves that R is an idempotent ring. The proof that S is idempotent is
analogous. �

In [14] (after Corollary 2.9) Garćıa and Simón defined two idempotent
rings S and R to be Morita equivalent if the categories UTfModR and
UTfModS are equivalent categories. A somewhat similar idea for generaliz-
ing Morita equivalence for non-unital rings was also used by Nobusawa in
[38] already in 1984. We will denote Morita equivalence of rings S and R
by S ≈ME R. Due to Theorem 2.18 we could equivalently claim that two
idempotent rings S and R are Morita equivalent if the categories CModR and
CModS or categories FModR and FModS are equivalent. From these defini-
tions it is easy to see that Morita equivalence is an equivalence relation on
the class of all idempotent rings. The categories of CModR and CModS were
also used by Garćıa and Maŕın to extend Morita theory to arbitrary rings in
[13].

Propositions 2.3 and 2.6 in [14] give us a way to characterise Morita
equivalence of idempotent rings in terms of unitary surjective Morita con-
texts. This characterization is given as the following theorem.
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Theorem 2.28. Two idempotent rings are Morita equivalent if and only if
they are connected by a unitary surjective Morita context.

It turns out that from each Morita context a new ring arises in a natural
way.

Definition 2.29. Let Γ = (R, S, RPS, SQR, θ, φ) be a Morita context. Then
the Morita ring Γ of the context Γ is defined as the matrix set

Γ =

{[
r p
q s

]∣∣∣∣r ∈ R, s ∈ S, p ∈ P, q ∈ Q}
with componentwise addition and with the multiplication[

r p
q s

] [
r′ p′

q′ s′

]
=

[
rr′ + θ(p⊗ q′) rp′ + ps′

qr′ + sq′ φ(q ⊗ p′) + ss′

]
. (2.13)

It is easy to see that, if idempotent rings S and R are Morita equivalent,
then their corresponding Morita ring is idempotent.

Note that the subsets

R :=

{[
r 0
0 0

]∣∣∣∣r ∈ R} ⊆ Γ, (2.14)

S :=

{[
0 0
0 s

]∣∣∣∣s ∈ S} ⊆ Γ (2.15)

are subrings of Γ that are isomorphic to R and S, respectively. This gives us
a way of considering Γ as an (R, S)- or (S,R)-bimodule, by defining for any
r′ ∈ R, s′ ∈ S and [ r pq s ] ∈ Γ lefthand multiplications by

r′
[
r p
q s

]
:=

[
r′ 0
0 0

] [
r p
q s

]
=

[
r′r r′p
0 0

]
, (2.16)

s′
[
r p
q s

]
:=

[
0 0
0 s′

] [
r p
q s

]
=

[
0 0
s′q s′s

]
(2.17)

and analogously on the righthand side. With these module structures in
mind we can easily see that the mappings

P → Γ, p 7→
[
0 p
0 0

]
and Q→ Γ, q 7→

[
0 0
q 0

]
are injective bimodule homomorphisms.

In conclusion we have seen that the Morita ring Γ has isomorphic copies
of R, S, P and Q as corresponding substructures.



Chapter 3

Rees matrix rings and tensor
product rings

In this chapter we will define Rees matrix rings and tensor product rings
over arbitrary rings. We will show that both of these concepts can be used
to study Morita equivalence of rings. We will also study the rings of ad-
joint endomorphisms of modules. In the last two sections we will study the
connections between Rees matrix rings and tensor product rings and finally
we will describe Morita equivalence of firm rings in terms of tensor product
rings. This chapter is based on [48].

3.1 Rees matrix rings

Rees matrix rings over a ring with identity were introduced in [7] (Defini-
tion 2.1) by Ánh and Márki. We will use a similar definition for an arbitrary
associative ring R. Firstly we shall define finite-dimensional Rees matrix
rings. Let R be a ring, m, n some natural numbers and M ∈ Matn,m(R) a
fixed matrix. Consider the ring

M =M(R;m,n;M) = (Matm,n(R),+, ∗),

where addition + is the usual componentwise addition of matrices and mul-
tiplication ∗ is defined as follows:

X ∗ Y := XMY, X, Y ∈ Matm,n(R).

Such a ring M is called a (finite-dimensional) Rees matrix ring over R.
We will also use a more general definition of Rees matrix rings.

29
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Definition 3.1 (Definition 2.1 in [6]). Let Λ and Ξ be non-empty sets
and M : Ξ × Λ → R a mapping. Consider the set M = M(R; Λ,Ξ;M)
of mappings Λ × Ξ → R having only a finite number of non-zero values –
these correspond to Λ× Ξ matrices over R with a finite number of non-zero
entries. InM(R; Λ,Ξ;M) we define addition as the usual point-wise addition
and multiplication ∗ with

X ∗ Y = XMY,

where the multiplication on the right-hand side means the usual multiplica-
tion of matrices. With these operationsM =M(R; Λ,Ξ;M) is a ring, called
a Rees matrix ring.

Elements of a Rees matrix ring M(R; Λ,Ξ;M) are called matrices and
the mapping M is called a sandwich matrix. It is clear that, if we take
Λ = {1, . . . ,m} and Ξ = {1, . . . , n}, then M(R; Λ,Ξ;M) =M(R;m,n;M).

In this section we will give proofs with finite-dimensional Rees matrix
rings, because they are easier to follow and more illustrative of the tech-
nique. These proofs can easily be generalized to arbitrary Rees matrix rings.
This can be done by noticing that for every matrix X ∈M(R; Λ,Ξ;M), there
exists a minimal submatrix µ(X) such that every value outside of µ(X) is
zero. This matrix µ(X) can be expressed as an element ofM(R;mX , nX ;M ′)
for some numbers nX and mX and a submatrix M ′ of M . By adding ze-
ros to µ(X) where necessary, we can also say that µ(X) is from a finite-
dimensional Rees matrix ring M(R;m′, n′;M ′′) for every m′ ≥ mX and
n′ ≥ nX . Then whenever we have a finite collection of matrices X1, . . . , Xk∗ ∈
M(R; Λ,Ξ;M), we can do calculations in a finite-dimensional Rees matrix
ringM(R;m,n;M ′) which is a subring ofM(R; Λ,Ξ;M) and µ(Xk) is from
M(R;m,n;M ′), for every k ∈ {1, . . . , k∗}. Such generalizations are given as
corollaries. Firstly we will prove a proposition which describes idempotent
Rees matrix rings.

Proposition 3.2. A Rees matrix ring M = M(R;m,n;M) is idempotent
if and only if

Mat1,1(R) = Mat1,n(R)M Matm,1(R).

Proof. Let a Rees matrix ringM =M(R;m,n;M) be idempotent. Then,
for every X ∈ M there exist matrices Y1, Z1, . . . , Yk∗ , Zk∗ ∈ M such that
X = Y1 ∗ Z1 + . . .+ Yk∗ ∗ Zk∗ . Therefore

X =

x11 . . . x1n
...

. . .
...

xm1 . . . xmn

 =
k∗∑
k=1

Yk ∗ Zk =
k∗∑
k=1

YkMZk
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=
k∗∑
k=1

yk11 . . . yk1n
...

. . .
...

ykm1 . . . ykmn


µ11 . . . µ1m

...
. . .

...
µn1 . . . µnm


zk11 . . . zk1n

...
. . .

...
zkm1 . . . zkmn



=
k∗∑
k=1



n∑
h=1

yk1hµh1 . . .
n∑
h=1

yk1hµhn

...
. . .

...
n∑
h=1

ykmhµh1 . . .

n∑
h=1

ykmhµhn


zk11 . . . zk1n

...
. . .

...
zkm1 . . . zkmn

 =

=
k∗∑
k=1



m∑
j=1

n∑
h=1

yk1hµhjzkj1 . . .
m∑
j=1

n∑
h=1

yk1hµhjzkjn

...
. . .

...
m∑
j=1

n∑
h=1

ykmhµhjzkj1 . . .
m∑
j=1

n∑
h=1

ykmhµhjzkjn


.

Now we see that for every p ∈ {1, . . . ,m} and q ∈ {1, . . . , n}, [xpq] ∈
Mat1,1(R) and

[xpq] =

[
k∗∑
k=1

m∑
j=1

n∑
h=1

ykphµhjzkjq

]
=

k∗∑
k=1

[
ykp1 . . . ykpn

]
M

zk1q
...

zkmq

 , (3.1)

which implies that [xpq] ∈ Mat1,n(R)M Matm,1(R). Since X was chosen
arbitrarily, we have shown that Mat1,1(R) = Mat1,n(R)M Matm,1(R), which
proves the necessity of our proposition. To prove the sufficiency one just has
to retrace the previous steps in the opposite order. �

Corollary 3.3. A Rees matrix ringM(R; Λ,Ξ;M) is idempotent if and only
if

R = Ξ′MΛ′,

where Ξ′ is the set of mappings {1} × Ξ→ R with finite number of non-zero
values and Λ′ is the set of mappings Λ × {1} → R with finite number of
non-zero values and the set of mappings {1}× {1} → R is identified with R.

From the decomposition (3.1), we deduce the following proposition.

Proposition 3.4. If a Rees matrix ring M(R; Λ,Ξ;M) is idempotent, then
the ring R is idempotent.
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Example 3.5 (Idempotent Rees matrix ring). If D is a division ring,
then every Rees matrix ring over D is idempotent. Consider a Rees matrix
ringM(D,m, n,M), whereM = [µhk]

n,m
h,k=1 ∈ Matn,m(D) is not a zero matrix.

If µ11 6= 0, then every one-element matrix [d] ∈ Mat1,1(D) can be written as

[d] =
[
µ−1

11 0 . . . 0
] µ11 . . . µ1m

...
. . .

...
µn1 . . . µnm



d
0
...
0

 ∈ Mat1,n(D)M Matm,1(D).

If µ11 = 0, then there exists a µhk 6= 0 for some h and k. The matrix [d] can
then be expressed analogously using µhk. Due to Proposition 3.2, the ring
M(D;m,n;M) is idempotent. �

Next we will prove a little lemma, which will later become useful in several
results.

Lemma 3.6. For an idempotent ring R and m,n ∈ N,

Matm,n(R) = Matm,1(R) Mat1,n(R).

Proof. Clearly Matm,1(R) Mat1,n(R) ⊆ Matm,n(R). Let X = [xpq]
m,n
p,q=1 ∈

Matm,n(R). Let p ∈ {1, . . . ,m} and q ∈ {1, . . . , n} be arbitrary, then, due
to R being idempotent, there exist elements x1, x

′
1, . . . , xkpq , x

′
kpq
∈ R such

that xpq = x1x
′
1 + . . . + xkpqx

′
kpq

. Denote by Apq(r) the m × n-matrix with
the entry r at the position (p, q) and zeros elsewhere. Then

Apq(xpq)=

kpq∑
k=1

Apq(xkx
′
k)=

kpq∑
k=1



0
...
0
xk (p. line)

0
...
0


[
0 . . . 0 x′k

(q. column)

0 . . . 0
]
.

(3.2)
Therefore every matrix Apq(xpq) can be expressed as an element of the set
Matm,1(R) Mat1,n(R). Now, it follows that

X =
m∑
p=1

n∑
q=1

Apq(xpq) ∈ Matm,1(R) Mat1,n(R).

Therefore Matm,n(R) = Matm,1(R) Mat1,n(R). �
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Corollary 3.7. Let M(R; Λ,Ξ;M) be a Rees matrix ring over an idem-
potent ring R. Then for every f ∈ M(R; Λ,Ξ;M), there exist n ∈ N,
g1, . . . , gn : Λ → R and h1, . . . , hn : Ξ → R such that for every λ ∈ Λ
and ξ ∈ Ξ

f(λ, ξ) =
n∑
k=1

gk(λ)hk(ξ).

Now we are ready to prove the main theorem of this section. This theorem
is the ring theoretic analogue of Proposition 2 in [22].

Theorem 3.8. A ring R and a Rees matrix ring M = M(R;m,n;M) are
connected by a unitary surjective Morita context if and only if M is idempo-
tent.

Proof. Necessity. LetM andR be connected by a unitary surjective Morita
context. Then by Proposition 2.27 the ring M is idempotent.

Sufficiency. Let the Rees matrix ring M = M(R;m,n;M) be idem-
potent. Consider the left R-module R(Mat1,n(R)) and the right R-module
(Matm,1(R))R, where for every r ∈ R the R-multiplications are defined as
follows:

r
[
x1 . . . xn

]
:=
[
rx1 . . . rxn

]
∈ Mat1,n(R),y1

...
ym

 r :=

y1r
...

ymr

 ∈ Matm,1(R).

Since M is idempotent, R is also idempotent by Proposition 3.4. Then, for
arbitary Y ∈ Matm,1(R), we can write

Y =


y1

y2
...
ym

 =



k∗∑
k=1

y1ky
′
1k

y2
...
ym

 =
k∗∑
k=1


y1k

0
...
0

 y′1k +


0
y2
...
ym

 ,

where y1, . . . , ym, y11, y
′
11, . . . , y1k∗ , y

′
1k∗ ∈ R and y1 = y11y

′
11 + . . .+ y1k∗y

′
1k∗ .

Continuing analogously, we can express every entry of Y as a sum of
products of elements of R, and so the whole matrix Y as a sum of products of
column-matrices and elements of R, which implies that the right R-module
(Matm,1(R))R is unitary. The left R-module R(Mat1,n(R)) is analogously
unitary.
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We define a right and a left M-multiplication for modules R(Mat1,n(R))
and (Matm,1(R))R, respectively, as follows

X ∗ Z := XMZ ∈ Mat1,n(R),

Z ∗ Y := ZMY ∈ Matm,1(R),

where Z ∈ M, X ∈ Mat1,n(R) and Y ∈ Matm,1(R). A straightforward veri-
fication shows that we have bimodules R(Mat1,n(R))M and M(Matm,1(R))R.
Let Y = [yk]

m
k=1 ∈ Matm,1(R). By Proposition 3.2, there exist matrices

X1 = [x1h], . . . , Xk∗ = [xk∗h] ∈ Mat1,n(R) and Y1, . . . , Yk∗ ∈ Matm,1(R) such
that y1 = X1 ∗ Y1 + . . .+Xk∗ ∗ Yk∗ . Now

Y =


y1

y2
...
ym

 =



k∗∑
k=1

Xk ∗ Yk

y2
...
ym

 =
k∗∑
k=1


xk1 . . . xkn
0 . . . 0
...

. . .
...

0 . . . 0

 ∗ Yk +


0
y2
...
ym

 .

By continuing this process for every element y2, . . . , ym, we see that the mod-
ule M(Matm,1(R)) is unitary. Analogously, the module (Mat1,n(R))M is also
unitary. Therefore we have shown that R(Mat1,n(R))M and M(Matm,1(R))R
are unitary bimodules.

Define a mapping

θ : R(Mat1,n(R)⊗M Matm,1(R))R → RRR,
k∗∑
k=1

Xk ⊗ Yh 7→
k∗∑
k=1

XkMYh.

Consider the mapping θ̂ : Mat1,n(R) ×Matm,1(R) → R, (X, Y ) 7→ XMY .

The mapping θ̂ clearly preserves addition and for every Z ∈M

θ̂(X ∗ Z, Y ) = (X ∗ Z)MY = (XMZ)MY = XM(ZMY ) = θ̂(X,Z ∗ Y ).

Therefore, the mapping θ̂ is M-balanced. Due to the universal property
of tensor product (see Proposition 2.11), the mapping θ is a well-defined
homomorphism of abelian groups. For every r ∈ R and

∑k∗

k=1Xk ⊗ Yk ∈
Mat1,n(R)⊗Matm,1(R), we have

θ

(
r

(
k∗∑
k=1

Xk ⊗ Yk

))
=θ

(
k∗∑
k=1

(rXk)⊗ Yk

)
= r

k∗∑
k=1

XkMYk=rθ

(
k∗∑
k=1

Xk ⊗ Yk

)
.

Analogously θ((
∑k∗

k=1 Xk⊗Yk)r) = θ(
∑k∗

k=1Xk⊗Yk)r, therefore θ is a homo-
morphism of bimodules. The homomorphism θ is surjective due to Proposi-
tion 3.2.
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Now define a mapping

φ : M(Matm,1(R)⊗R Mat1,n(R))M → MMM,
k∗∑
k=1

Yk ⊗Xk 7→
k∗∑
k=1

YkXk.

Note that the multiplication of matrices distributes over addition and, for
every r ∈ R, Y ∈ Matm,1(R) and X ∈ Mat1,n(R), we have (Y r)X = Y (rX),

which implies that the mapping φ̂ : Matm,1(R)×Mat1,n(R)→M, (Y,X) 7→
Y X is R-balanced. Thereore φ is a well-defined homomorphism of abelian
groups (see Proposition 2.11). For every Z ∈ M and

∑k∗

k=1 Yk ⊗ Xk ∈
Matm,1(R)⊗R Mat1,n(R) we have

φ

(
Z ∗

(
k∗∑
k=1

Yk ⊗Xk

))
= φ

(
k∗∑
k=1

(Z ∗ Yk)⊗Xk

)
=

k∗∑
k=1

(Z ∗ Yk)Xk

= Z ∗

(
k∗∑
k=1

YkXk

)
= Z ∗ φ

(
k∗∑
k=1

Yk ⊗Xk

)
.

Analogously φ((
∑k∗

k=1 Yk ⊗Xk) ∗ Z) = φ(
∑k∗

k=1 Yk ⊗Xk) ∗ Z and therefore φ
is a homomorphism of bimodules. By Proposition 3.4 R is idempotent and
Lemma 3.6 implies that φ is surjective.

Finally note that, for every X,X ′ ∈ Mat1,n(R) and Y, Y ′ ∈ Matm,1(R),
we have

θ(X ⊗ Y )X ′ = (XMY )X ′ = XM(Y X ′) = X ∗ (Y X ′) = X ∗ φ(Y ⊗X ′),
Y ′θ(X ⊗ Y ) = Y ′(XMY ) = (Y ′X)MY = (Y ′X) ∗ Y = φ(Y ′ ⊗X) ∗ Y.
In conclusion, we have shown that

(R,M, R(Mat1,n(R))M,M(Matm,1(R))R, θ, φ)

is a unitary surjective Morita context between rings R and M. �

Corollary 3.9. A Rees matrix ring M(R; Λ,Ξ;M) and the ring R are con-
nected by a unitary surjective Morita context if and only if M(R; Λ,Ξ;M) is
idempotent.

From the previous theorem and Theorem 2.28 we can deduce the following
result.

Corollary 3.10. If a Rees matrix ring M =M(R; Λ,Ξ;M) is idempotent,
then the rings R and M are Morita equivalent.

We can also deduce the following classical result as a corollary.

Corollary 3.11. If R is a ring with identity, then R and the Rees matrix
ring M(R;n, n; I) = Matn(R) are Morita equivalent, where I is the identity
matrix.
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3.2 Tensor product rings

In this chapter we will consider tensor product rings. We show how to define
a multiplication on the tensor product of modules over an arbitrary ring R
using a certain bilinear mapping. This construction is analogous to that
of Morita semigroups defined by Talwar in [44] (Section 6). For rings with
an identity element and unitary modules this construction appears in [6]
(Definition 2.2).

Let R be an arbitrary ring and RP and QR arbitrary R-modules. Also,
let there be given an (R,R)-bilinear mapping

〈 , 〉 : P ×Q→ R.

(R,R)-bilinearity here means that, for every p, p′ ∈ P , q, q′ ∈ Q and r ∈ R,

〈p+ p′, q〉 = 〈p, q〉+ 〈p′, q〉,
〈p, q + q′〉 = 〈p, q〉+ 〈p, q′〉,
〈rp, q〉 = r〈p, q〉,
〈p, qr〉 = 〈p, q〉r.

A pair of modules (RP ,QR) with an (R,R)-bilinear map 〈 , 〉 : P × Q → R
is often called a pair over R (e.g. Definition 2.2 in [6] and Definition 1 in
[5]).

Define a multiplication ? on the generators of the abelian group Q⊗R P
by

(q ⊗ p) ? (q′ ⊗ p′) := q ⊗ 〈p, q′〉p′ (3.3)

and extend this definition to all elements of the tensor product Q ⊗R P via
the distributivity property.

Note that, for every pair (q, p) ∈ Q× P , we can define a mapping

fq,p : Q× P → Q⊗R P, (q1, p1) 7→ q1 ⊗ 〈p1, q〉p.

The mappings fq,p are all R-balanced, because for every q1, q2 ∈ Q, p1, p2 ∈ P
and r ∈ R

fq,p(q1 + q2, p1) = (q1 + q2)⊗ 〈p1, q〉p = q1 ⊗ 〈p1, q〉p+ q2 ⊗ 〈p2, q〉p
= fq,p(q1, p1) + fq,p(q2, p1),

fq,p(q1r, p1)=(q1r)⊗〈p1, q〉p=q1⊗r〈p1, q〉p=q1⊗〈rp1, q〉p=fq,p(q1, rp1)

and analogously fp,q(q1, p1 + p2) = fq,p(q1, p1) + fq,p(q1, p2). Therefore there
exist endomorphisms

fq,p : Q⊗R P → Q⊗R P,
k∗∑
k=1

qk ⊗ pk 7→
k∗∑
k=1

qk ⊗ 〈pk, q〉p
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of the abelian group Q⊗R P (see Proposition 2.11).
Now define a mapping

τ̂ : Q× P → End(Q⊗R P ), (q, p) 7→ fq,p.

Here End(Q⊗RP ) is an abelian group with respect to the pointwise addition
of endomorphisms. Notice that, for every q1, q2 ∈ Q, p1, p2 ∈ P , r ∈ R and∑k∗

k=1 κk ⊗ ρk ∈ Q⊗ P , we have

(τ̂(q1 + q2, p1))

(
k∗∑
k=1

κk ⊗ ρk

)
= fq1+q2,p1

(
k∗∑
k=1

κk ⊗ ρk

)

=
k∗∑
k=1

κk ⊗ 〈ρk, q1 + q2〉p1

=
k∗∑
k=1

κk ⊗ 〈ρk, q1〉p1 +
k∗∑
k=1

κk ⊗ 〈ρk, q2〉p1

= (τ̂(q1, p1) + τ̂(q2, p1))

(
k∗∑
k=1

κk ⊗ ρk

)
,

(τ̂(q1r, p1))

(
k∗∑
k=1

κk ⊗ ρk

)
= fq1r,p1

(
k∗∑
k=1

κk ⊗ ρk

)

=
k∗∑
k=1

κk ⊗ 〈ρk, q1r〉p1

=
k∗∑
k=1

κk ⊗ 〈ρk, q1〉rp1

= (τ̂(q1, rp1))

(
k∗∑
k=1

κk ⊗ ρk

)

and analogously τ̂(q1, p1 + p2) = τ̂(q1, p1) + τ̂(q1, p2). Therefore τ̂ is R-
balanced and hence, due to the universal property of the tensor product
(Proposition 2.11), there exists a group homomorphism

τ : Q⊗ P → End(Q⊗ P ), q ⊗ p 7→ fq,p.

Now we can consider the well-defined mapping

τ : (Q⊗ P )× (Q⊗ P )→ Q⊗ P, (x, y) 7→ (τ(x))(y).
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We have, for every q, q′ ∈ Q and p, p′ ∈ P ,

τ(q ⊗ p, q′ ⊗ p′) = (τ(p⊗ q))(q′ ⊗ p′) = fq,p(q
′ ⊗ p′) = q ⊗ 〈p, q′〉p′.

As we can see, the mapping τ coincides with the multiplication ? in definition
(3.3), which means that the multiplication ? is well-defined.

Finally notice that, for every q1 ⊗ p1, q2 ⊗ p2, q3 ⊗ p3 ∈ Q⊗ P , we have

((q1 ⊗ p1) ? (q2 ⊗ p2)) ? (q3 ⊗ p3) = (q1 ⊗ 〈p1, q2〉p2) ? (q3 ⊗ p3)

= q1 ⊗ 〈〈p1, q2〉p2, q3〉p3

= q1 ⊗ 〈p1, q2〉〈p2, q3〉p3

= (q1 ⊗ p1) ? (q2 ⊗ 〈p2, q3〉p3)

= (q1 ⊗ p1) ? ((q2 ⊗ p2) ? (q2 ⊗ p3)).

This implies that the multiplication ? is associative and therefore the abelian
group Q⊗ P with ? is a ring.

Definition 3.12. Tensor product of modules Q⊗βR P with multiplication ?
defined in (3.3) is called a tensor product ring defined by an (R,R)-bilinear
mapping β = 〈 , 〉.

Often we will omit the mapping β from the tensor product symbol, i.e.
we write Q⊗R P := Q⊗βR P .

Next we will define the notion of a pseudo-surjective mapping. But first
some notation, for any ring R and a set A ⊆ R, we will denote by 〈A〉s the
subgroup generated by A in the additive group (R,+).

Definition 3.13. Let R be a ring and B a set. We call a mapping f : B → R
pseudo-surjective, if 〈Imf〉s = R, i.e. the additive subgroup of R generated
by the set Imf is equal to R.

Clearly, every surjective mapping is also pseudo-surjective, but the con-
verse is not always true. Next we will characterize pseudo-surjective bilinear
mappings.

Lemma 3.14. Let β : RP × QR → R be a bilinear mapping. Then 〈Imβ〉s
consists of all finite sums of the elements of Imβ.

Proof. Let β : RP ×QR → R be a bilinear mapping and s ∈ 〈Imβ〉s. Then
there exist k∗ ∈ N, p1, . . . , pk∗ ∈ P and q1, . . . , qk∗ ∈ Q such that

s = ±β(p1, q1)± . . .± β(pk∗ , qk∗).
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Note that, for any p ∈ P and q ∈ Q, we have

β(p, q) + β(−p, q) = β(p− p, q) = β(0, q) = β(0 · 0, q) = 0β(0, q) = 0,

which proves that −β(p, q) = β(−p, q). Therefore we can find elements
p′1, . . . , p

′
k∗ ∈ P such that s = β(p′1, q1) + . . .+ β(p′k∗ , qk∗) =

∑k∗

k=1 β(p′k, qk).�

If the mapping β = 〈 , 〉 is pseudo-surjective (surjective), then we say
that the corresponding tensor product ring Q⊗βR P is pseudo-surjectively
(surjectively) defined.

Proposition 3.15. Let R be an idempotent ring and RP , QR unitary R-
modules. Then every pseudo-surjectively defined tensor product ring Q⊗R P
is idempotent.

Proof. Let
∑k∗

k=1 qk⊗pk ∈ Q⊗P . Since the module RP is unitary, for every
k ∈ {1, . . . , k∗} there exist elements pk1, . . . , pkh∗ ∈ P and rk1, . . . , rkh∗ ∈ R
such that pk = rk1pk1 + . . . + rkh∗pkh∗ . Also, due to the pseudo-surjectivity
of 〈 , 〉, for every k ∈ {1, . . . , k∗} and h ∈ {1, . . . , h∗}, there exist elements
pkh1, . . . , pkhj∗ ∈ P and qkh1, . . . , qkhj∗ ∈ Q such that rkh =

∑j∗

j=1〈pkhj, qkhj〉.
Therefore we have

k∗∑
k=1

qk ⊗ pk =
k∗∑
k=1

qk ⊗

(
h∗∑
h=1

rkhpkh

)
=

k∗∑
k=1

h∗∑
h=1

qk ⊗ rkhpkh

=
k∗∑
k=1

h∗∑
h=1

qk ⊗

(
j∗∑
j=1

〈pkhj, qkhj〉

)
pkh

=
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

qk ⊗ 〈pkhj, qkhj〉pkh

=
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

(qk ⊗ pkhj) ? (qkhj ⊗ pkh) ∈ (Q⊗R P ) ? (Q⊗R P ),

which implies that the ring Q⊗R P is idempotent. �

Next we will prove a result analogous to Theorem 5 in [44].

Theorem 3.16. Let R be an idempotent ring, RP and QR unitary R-modu-
les and 〈 , 〉 : P ×Q→ R a pseudo-surjective (R,R)-bilinear mapping. Then
the tensor product ring Q⊗R P defined by 〈 , 〉 is Morita equivalent to R.
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Proof. Define a right and a left (Q⊗R P )-multiplication on the R-modules

RP and QR, respectively, as follows:

p

(
k∗∑
k=1

qk ⊗ pk

)
:=

k∗∑
k=1

〈p, qk〉pk, (3.4)(
k∗∑
k=1

qk ⊗ pk

)
q :=

k∗∑
k=1

qk〈pk, q〉, (3.5)

where p ∈ P , q ∈ Q and
∑k∗

k=1 qk ⊗ pk ∈ Q ⊗R P . We will show that the
multiplication (3.4) is well defined. Consider the mapping

Q× P → End(RP ), (q, p) 7→ 〈 , q〉p.

This mapping is clearly well defined and R-balanced, due to 〈 , 〉 being (R,R)-
bilinear. Now, by the universal property of the tensor product (Proposi-
tion 2.11), there exists a well-defined homomorphism of abelian groups

τ : Q⊗R P → End(RP ),
k∗∑
k=1

qk ⊗ pk 7→
k∗∑
k=1

〈 , qk〉pk.

The multiplication (3.4) can now be expressed as pδ = τ(δ)(p), for every
p ∈ P and δ ∈ Q⊗R P . Hence, the multiplication (3.4) is well defined. The
multiplication (3.5) is analogously well defined. It is easy to check that we
obtain bimodules RPQ⊗P and Q⊗PQR.

Let p ∈ P . Due to P being unitary, there exist p1, . . . , pk∗ ∈ P and
r1, . . . , rk∗ ∈ R such that p = r1p1 + . . . + rk∗pk∗ . Also, for every k ∈
{1, . . . , k∗}, there exist pk1, . . . , pkh∗ ∈ P and qk1, . . . , qkh∗ ∈ Q such that
rk =

∑h∗

h=1〈pkh, qkh〉, because 〈 , 〉 is pseudo-surjective. Now

p =
k∗∑
k=1

rkpk =
k∗∑
k=1

h∗∑
h=1

〈pkh, qkh〉pk =
k∗∑
k=1

h∗∑
h=1

pkh(qkh ⊗ pk) ∈ P (Q⊗R P ),

which implies that PQ⊗P is a unitary right module and therefore RPQ⊗P is a
unitary bimodule. Analogously Q⊗PQR is a unitary bimodule.

Define a mapping

θ : R(P ⊗Q⊗R Q)R → RRR,

h∗∑
h=1

ph ⊗ qh 7→
h∗∑
h=1

〈ph, qh〉.

Since 〈 , 〉 is additive and, for every p, p′ ∈ P and q, q′ ∈ Q,

〈p(q′ ⊗ p′), q〉 = 〈〈p, q′〉p′, q〉 = 〈p, q′〉〈p′, q〉 = 〈p, q′〈p′, q〉〉 = 〈p, (q′ ⊗ p′)q〉
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we see that the mapping θ̂ : P ×Q→ R, (p, q) 7→ 〈p, q〉 is (Q⊗P )-balanced.
Now the universal property of the tensor product (see Proposition 2.11) im-
plies that θ is a well-defined homomorphism of abelian groups. The bracket
〈 , 〉 being (R,R)-bilinear and pseudo-surjective implies that θ is a surjective
homomorphism of bimodules.

Notice that, for every p, p′ ∈ P and q, q′ ∈ Q, we have

θ(p⊗ q)p′ = 〈p, q〉p′ = p(q ⊗ p′) = p id(q ⊗ p′),
q′θ(p⊗ q) = q′〈p, q〉 = (q′ ⊗ p)q = id(q′ ⊗ p)q.

In conclusion, we have shown that (R,Q⊗θ̂RP, P,Q, θ, idQ⊗P ) is a unitary
surjective Morita context. By Proposition 3.15, the ringQ⊗RP is idempotent
and now, by Theorem 2.28, we conclude that the rings R and Q ⊗R P are
Morita equivalent. �

Let A be an abelian group, P ⊗S Q be an arbitrary tensor product of
S-modules and ψ : P ⊗S Q → A a homorphism of abelian groups. Denote
ψ̂ := ψ ◦ ⊗, i.e., for every p ∈ P and q ∈ Q, we have

ψ̂(p, q) = ψ(p⊗ q).

Then the mapping ψ̂ : P × Q → A is clearly S-balanced. If RPS and SQR

are (R, S)- and (S,R)-bimodules, respectively, then ψ̂ is also (R,R)-bilinear.
If ψ : P ⊗R Q→ A is surjective, then ψ̂ is pseudo-surjective, because in that
case, for every a ∈ A there exists

∑k∗

k=1 pk ⊗ qk ∈ P ⊗R Q such that

a = ψ

(
k∗∑
k=1

pk ⊗ qk

)
=

k∗∑
k=1

ψ(pk ⊗ qk) =
k∗∑
k=1

ψ̂(pk, qk) ∈ 〈Imψ̂〉s.

Next we give a simple corollary of Theorem 3.16, which is a ring-theoretic
analogue of Proposition 4.7 in [26].

Corollary 3.17. Let R be an idempotent ring. The rings R and R ⊗ν̂R R
are Morita equivalent with a corresponding surjective unitary Morita context
(R,R⊗ν̂RR,R,R, ν, idR⊗R), where ν : R⊗RR→ R,

∑k∗

k=1 rk⊗r′k 7→
∑k∗

k=1 rkr
′
k.

If R is idempotent, then R⊗R R is firm by Proposition 3.2 in [47]. Thus
we can say that each idempotent ring is Morita equivalent to a firm ring.

Now we will prove an analogue of Proposition 4 in [44].

Proposition 3.18. Let (R, S, RPS, SQR, θ, φ) be a unitary surjective Morita

context connecting idempotent rings R and S, and let Q ⊗θ̂R P , P ⊗φ̂S Q be

tensor product rings defined by the mappings θ̂, φ̂, respectively. Then the

rings R, S, P ⊗φ̂S Q and Q⊗θ̂R P are all Morita equivalent.
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Proof. The definition of the tensor product implies that the mappings
θ̂ : P × Q → R and φ̂ : Q × P → S are R- and S-balanced, respectively.
Since θ and φ are surjective, the tensor product rings P ⊗S Q and Q ⊗R P
are well- and pseudo-surjectively defined. By Theorem 3.16 we obtain Morita
equivalences R ≈ME Q⊗R P and S ≈ME P ⊗S Q. By Theorem 2.28 and the
transitivity of Morita equivalence we obtain the equivalences R ≈ME S and
Q⊗R P ≈ME P ⊗S Q (and also all other combinations). �

In order to prove our next theorem, we must define locally injective homo-
morphisms and strict local isomorphisms of rings. Strict local isomorphisms
for semigroups were first introduced by Márki and Steinfeld in [35].

Definition 3.19. We call a homomorphism τ : R → S of rings locally
injective if its restriction to any subring of the form aRb, where a ∈ Ra and
b ∈ bR, is injective.

A locally injective homomorphism of rings, which is also surjective, is
called a strict local isomorphism.

Obviously, every injective ring homomorphism is also locally injective and
every ring isomorphism is a strict local isomorphism. Later, in Example 3.22,
we will see that there exist non-injective homomorphisms, which are locally
injective.

We will give a description of locally injective ring homomorphisms f :
S → R, where S is an s-unital ring.

Lemma 3.20. Let S be a right s-unital ring and f : S → R a ring homo-
morphism. Then f is locally injective if and only if f |Ss is injective for every
s ∈ S.

Proof. Necessity. Let f : S → R be a locally injective ring homomorphism.
Let s ∈ S and consider the restriction f |sS. Let ss′ ∈ Ker(f |sS). Since S is
right s-unital, there exists u ∈ S such that ss′ = ss′u. Now there also exists
a v ∈ S such that u = uv ∈ uS and

ss′ = ss′u ∈ Ker(f |sSu) = {0}.

(The last equality holds, because f is locally injective.) Hence ss′ = 0, which
proves that f |sS is injective.

Sufficiency. Let s ∈ S and f |sS be injective. Note that for every s′ ∈ S
we have

sSs′ ⊆ sS,

which means that f |sSs′ is a restriction of f |sS and therefore also injective.
As can be seen, this implication actually does not assume anything from the
ring S. �



3.2. TENSOR PRODUCT RINGS 43

Next we will prove a useful proposition about locally injective homomor-
phisms and strict local isomorphisms of rings. Roughly speaking it says that
strict local isomorphisms between rings are more or less the same thing as
linear functionals.

Proposition 3.21. Let R be a ring, MR be an R-module and f : MR → RR

a homomorphism of modules. If we define a multiplication on the abelian
group M by

m •m′ := mf(m′), (m,m′ ∈M), (3.6)

then we obtain a ring and f is a locally injective homomorphism of rings. If
S is a right s-unital ring then all strict local isomorphisms S → R can be
obtained using this construction.

Proof. Let R be a ring, MR an R-module and f : MR → RR a homo-
morphism of right R-modules. It is easy to see that M is a ring, where
multiplication • is defined by (3.6), and that f is a homomorphism of rings.

Let a = a′ • a ∈ M • a and b = b • b′ ∈ b •M . Also let ρ = a • ρ′ • b be
such that, f(ρ) = 0. Then

ρ = a • ρ′ • b = (a′ • a) • ρ′ • (b • b′) = a′ • (a • ρ′ • b) • b′ = a′ • ρ • b′

= a′f(ρ • b′) = a′f(ρf(b′)) = a′f(ρ)f(b′) = a′0f(b′) = 0.

Hence Ker(f |a•M•b) = {0}, which proves that f is locally injective.
To prove the second claim, we consider a strict local isomorphism f :

S → R where S is a right s-unital ring. We turn the abelian group (S,+)
into a right R-module by defining

s · r := ss′,

where r ∈ R, s, s′ ∈ S and f(s′) = r (using the surjectivity of f). We
need to check if this is well defined. Suppose that also f(s′′) = r. Then
f(ss′) = f(s)f(s′) = f(s)f(s′′) = f(ss′′). By Lemma 3.20, f |sS is injective,
implying ss′ = ss′′, as required. We see that f : SR → RR is a module
homomorphism by noticing that, for every s, s′ ∈ S and r ∈ R such that
f(s′) = r, we have

f(s · r) = f(ss′) = f(s)f(s′) = f(s)r.

If we now define a ring multiplication • on S using the module homomorphism
f and the rule (3.6) then • coincides with the original multiplication of S,
because s • s′ = s · f(s′) = ss′ for every s, s′ ∈ S. �
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The previous proposition gives us a way to construct many locally injec-
tive homomorphisms of rings. One such will be constructed in the following
example.

Example 3.22 (Non-injective locally injective homomorphism). Let
R be an s-unital ring (e.g. Z). Consider the direct product R × R as a
(right) R-module with componentwise addition and scalar multiplication.
The mapping

f : R×R→ R, (a, b) 7→ a

is clearly a non-injective homomorphism of R-modules. We can turn R × R
into a ring with multiplication defined as in (3.6). Now we see that f is a
homomorphism of rings that is locally injective, but not injective. As f is
surjective, it is also a strict local isomorphism. �

Now we are ready to prove a theorem which says that whenever R and S
are arbitrary rings and (R, S, RPS, SQR, θ, φ) is a Morita context (not neces-
sarily unitary or surjective), then there exist locally injective homomorphisms
P ⊗S Q→ R and Q⊗R P → S.

Theorem 3.23. Let R and S be rings that are connected by a Morita context

(R, S, RPS, SQR, θ, φ). Consider the tensor product ring P ⊗φ̂S Q defined by

φ̂. Then θ : P ⊗φ̂S Q→ R is a locally injective homomorphism of rings.

Proof. Let (R, S, RPS, SQR, θ, φ) be a Morita context. Notice that for every∑k∗

k=1 pk ⊗ qk,
∑h∗

h=1 p
′
h ⊗ q′h ∈ P ⊗S Q, we have(

k∗∑
k=1

pk ⊗ qk

)
?

(
h∗∑
h=1

p′h ⊗ q′h

)
=

k∗∑
k=1

h∗∑
h=1

pk ⊗ φ̂(qk, p
′
h)q
′
h

=
k∗∑
k=1

h∗∑
h=1

pk ⊗ φ(qk ⊗ p′h)q′h

=
k∗∑
k=1

h∗∑
h=1

pk ⊗ qkθ(p′h ⊗ q′h)

=

(
k∗∑
k=1

pk ⊗ qk

)
θ

(
h∗∑
h=1

p′h ⊗ q′h

)
.

Therefore, the multiplication ? of the ring P ⊗φ̂S Q is defined using the right
R-module homomorphism θ : (P ⊗S Q)R → RR. By Proposition 3.21, θ is a
locally injective homomorphism of rings. �
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Corollary 3.24. Let R and S be two Morita equivalent idempotent rings.
Then there exist pseudo-surjectively defined tensor product rings Q ⊗R P ,
P ⊗S Q and strict local isomorphisms Q⊗R P → S and P ⊗S Q→ R.

Proof. Let R and S be idempotent rings such that R ≈ME S. Then, by
Theorem 2.28, there exists a surjective Morita context (R, S, RPS, SQR, θ, φ).

By Theorem 3.23, the mapping θ : P ⊗φ̂S Q→ R is a locally injective homo-
morphism of rings. Since θ is also surjective, θ is a strict local isomorphism.
Analogously φ : Q⊗θ̂R P → S is a strict local isomorphism. �

It turns out that if either of the mappings P ⊗S Q→ R or Q⊗R P → S
is an isomorphism, then the converse of the previous corollary also holds.

Proposition 3.25. Let R and S be idempotent rings. If R is isomorphic to
some pseudo-surjectively defined tensor product ring P ⊗S Q, where PS and

SQ are unitary modules, then the rings R and S are Morita equivalent.

Proof. Let R be isomorphic to some pseudo-surjectively defined tensor
product ring P ⊗S Q. The rings P ⊗S Q and S are Morita equivalent by
Theorem 3.16. Since isomorphic rings are obviously Morita equivalent and
Morita equivalence is transitive, we have that R ≈ME S. �

3.3 Tensor product rings and adjoint

endomorphisms

In this section we will explore the relationship between tensor product rings
and rings of adjoint endomorphisms of modules.

Let RP and QR be R-modules and β = 〈 , 〉 : P ×Q→ R be an (R,R)-
bilinear mapping. Adjoint endomorphisms of modules over a ring with local
units were introduced in [5] (Definition 2).

Definition 3.26. Module endomorphisms f ∈ End(RP ) and g ∈ End(QR)
are called adjoint (with respect to β = 〈 , 〉) if, for every p ∈ P and q ∈ Q,
we have

〈f(p), q〉 = 〈p, g(q)〉.

We will denote the set of all pairs (f, g) of adjoint endomorphisms with
respect to β by Ωβ. The set Ωβ is a subring of ((End(RP ))op×End(QR); +, ◦),
where for every f, f ′ ∈ End(RP ) and g, g′ ∈ End(QR)

(f, g) + (f ′, g′) = (f + f ′, g + g′),
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(f, g) ◦ (f ′, g′) = (f ′ ◦ f, g ◦ g′)

and (End(RP ))op denotes the opposite ring of End(RP ).
Next we will introduce an important type of pairs of adjoint endomor-

phisms.

Lemma 3.27. Let RP and QR be R-modules and β = 〈 , 〉 : P ×Q→ R an
(R,R)-bilinear mapping. For any k∗ ∈ N, p1, . . . , pk∗ ∈ P and q1, . . . , qk∗ ∈
Q, the mappings

f :=
k∗∑
k=1

〈 , qk〉pk : RP → RP and g :=
k∗∑
k=1

qk〈pk, 〉 : QR → QR

(3.7)
are adjoint endomorphisms.

Proof. Clearly the mappings f and g are endomorphisms of modules, due
to β = 〈 , 〉 being (R,R)-bilinear. Note that, for every p ∈ P and q ∈ Q, we
have

〈f(p), q〉=

〈
k∗∑
k=1

〈p, qk〉pk, q

〉
=

k∗∑
k=1

〈p, qk〉〈pk, q〉=

〈
p,

k∗∑
k=1

qk〈pk, q〉

〉
=〈p, g(q)〉,

which means that f and g are adjoint. Therefore (f, g) ∈ Ωβ. �

We will call the endomorphisms f and g from (3.7) β-basic endomor-
phisms of RP and QR, respectively.

Now we will study the subring of endomorfism pairs given by (3.7) more
closely. Denote

Σβ :=

{
k∗∑
k=1

(〈 , qk〉pk, qk〈pk, 〉) ∈ Ωβ

∣∣∣∣∣k∗ ∈ N;∀k : pk ∈ P, qk ∈ Q

}
.

It can easily be seen from Lemma 3.27 that Σβ is a subring of Ωβ. In fact
Σβ is the set of all pairs (f, g) ∈ Ωβ given by (3.7).

Theorem 3.28. Let R be a ring. Then, for every (R,R)-bilinear mapping
β = 〈 , 〉 : RP×QR → R, there exists a strict local isomorphism Q⊗βRP → Σβ

of rings.

Proof. Let R be a ring and β = 〈 , 〉 : RP × QR → R an (R,R)-bilinear
mapping. Define a mapping

ϕ : Q⊗βR P → Σβ,

k∗∑
k=1

qk ⊗ pk 7→
k∗∑
k=1

(〈 , qk〉pk, qk〈pk, 〉). (3.8)
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Consider the mapping ϕ̂ : Q×P → Σβ, (q, p) 7→ (〈 , q〉p, q〈p, 〉). It is easy
to see that ϕ̂ is R-balanced, which means that, due to the universal property
of tensor product (Proposition 2.11), ϕ is a well-defined homomorphism of
abelian groups.

Let
∑k∗

k=1 qk ⊗ pk,
∑h∗

h=1 q
′
h ⊗ p′h ∈ Q⊗

β
R P , then

ϕ

((
k∗∑
k=1

qk ⊗ pk

)
?

(
h∗∑
h=1

q′h ⊗ p′h

))
= ϕ

(
k∗∑
k=1

h∗∑
h=1

qk ⊗ 〈pk, q′h〉p′h

)

=
k∗∑
k=1

h∗∑
h=1

(〈 , qk〉〈pk, q′k〉p′h, qk〈〈pk, q′h〉p′h, 〉)

=
k∗∑
k=1

h∗∑
h=1

(〈〈 , qk〉pk, q′h〉p′h, qk〈pk, q′h〈p′h, 〉〉)

=
k∗∑
k=1

h∗∑
h=1

(〈 , qk〉pk, qk〈pk, 〉) ◦ (〈 , q′h〉p′h, q′h〈p′h, 〉)

=

(
k∗∑
k=1

〈 , qk〉pk, qk〈pk, 〉)

)
◦

(
h∗∑
h=1

(〈 , q′h〉p′h, q′h〈p′h, 〉)

)

= ϕ

(
k∗∑
k=1

qk ⊗ pk

)
◦ ϕ

(
h∗∑
h=1

q′h ⊗ p′h

)
.

Therefore ϕ is a homomorphism of rings. Clearly, ϕ is surjective.
Let

κ =
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

(ak ⊗ bk) ? (qh ⊗ ph) ? (cj ⊗ dj) ∈ α ∗ (Q⊗βR P ) ? γ,

where

α =
k∗∑
k=1

ak ⊗ bk =
x∗∑
x=1

k∗∑
k=1

(a′x ⊗ b′x) ? (ak ⊗ bk) ∈ (Q⊗βR P ) ? α

and γ =
∑

j cj ⊗ dj ∈ γ ? (Q⊗βR P ), be such that ϕ(κ) = 0. Then

ϕ(κ) = ϕ

(
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

(ak ⊗ bk) ? (qh ⊗ ph) ? (cj ⊗ dj)

)

= ϕ

(
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

ak ⊗ 〈bk, qh〉〈ph, cj〉dj

)
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=
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

(〈 , ak〉〈bk, qh〉〈ph, cj〉dj, ak〈bk, qh〉〈ph, cj〉〈dj, 〉) = 0.

Thus
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

〈b′x, ak〉〈bk, qh〉〈ph, cj〉dj = 0

for every x ∈ {1, . . . , x∗} and therefore

κ =
k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

(ak ⊗ bk) ? (qh ⊗ ph) ? (cj ⊗ dj)

=
x∗∑
x=1

k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

(a′x ⊗ b′x) ? (ak ⊗ bk) ? (qh ⊗ ph) ? (cj ⊗ dj)

=
x∗∑
x=1

k∗∑
k=1

h∗∑
h=1

j∗∑
j=1

a′x ⊗ 〈b′x, ak〉〈bk, qh〉〈ph, cj〉dj

=
k∗∑
x=1

a′x ⊗ 0 = 0.

Hence Ker(ϕ|α?(Q⊗P )?γ) = {0}, which implies that ϕ is locally injective. In

conclusion, we have proved that ϕ : Q ⊗βR P → Σβ is a strict local isomor-
phism of rings. �

In order to strengthen the previous theorem, we must define the notion
of a dual bilinear bracket.

Definition 3.29. An (R,R)-bilinear mapping 〈 , 〉 : RP×QR → RRR is said
to be a dual mapping, if

(1) for every finite subset Y ⊆ Q, there exist p1, . . . , pk∗ ∈ P and q1, . . . ,
qk∗ ∈ Q such that for every y ∈ Y

y =
k∗∑
k=1

qk〈pk, y〉;

(2) for every finite subset X ⊆ P , there exist p1, . . . , ph∗ ∈ P and q1, . . . ,
qh∗ ∈ Q such that for every x ∈ X

x =
h∗∑
h=1

〈x, qh〉ph.
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As can be seen, the previous definition could also be stated as follows:
an (R,R)-bilinear mapping β : RP ×QR → RRR is said to be dual if for any
finite subset Y ⊆ Q, there exists a β-basic endomorphism of QR for which
every y ∈ Y is a fixed point; and for every finite subset X ⊆ P , there exists
a β-basic endomorphism of RP for which every x ∈ X is a fixed point.

It is easy to see that every locally projective pair (Definition 3 in [5]) is
dual in the sense of the previous definition. Next we will give two examples,
which show that dual mappings occur naturally in algebra.

Example 3.30 (Dual mapping I). Let V be a Euclidean space. It can be
considered as a right or a left R-module. The inner product of V is an (R,R)-
bilinear mapping 〈 , 〉 : RV × VR → R. Let {e1, . . . , en} be an orthonormal
basis for V . Then

x =
n∑
h=1

〈x, eh〉eh,

for every x ∈ V , thus (2) is satisfied for all subsets of V (not only finite).
Similarly (1) is satisfied. Hence the inner product of any Euclidean space is
a dual mapping. �

We will give an example, which shows that two dual mappings arise nat-
urally from a unitary surjective Morita context connecting s-unital rings.

Example 3.31 (Dual mapping II). Let R and S be s-unital rings that
are connected by a unitary surjective Morita context (R, S, RPS, SQR, θ, φ).
We will show that

θ̂ : RP ×QR → RRR, (p, q) 7→ θ(p⊗ q)

is a dual mapping. (For φ̂ a similar proof works.)
Take a finite set Y = {y1, . . . , yn} ⊆ Q. Since SQ is unitary, every yk ∈ Y

can be expressed as yk =
∑h∗

h=1 skhqkh, where skh ∈ S and qkh ∈ Q for
every h ∈ {1, . . . , h∗}. Due to left s-unitality, there exists u ∈ S such that
skh = uskh for every k ∈ {1, . . . , n} and h ∈ {1, . . . , h∗}.

Since φ is surjective there exists
∑j∗

j=1 qj ⊗ pj ∈ Q⊗R P such that

u = φ

(
j∗∑
j=1

qj ⊗ pj

)
=

j∗∑
j=1

φ(qj ⊗ pj).

Now, for every k ∈ {1, . . . , n},

yk =
h∗∑
h=1

skhqkh=
h∗∑
h=1

uskhqkh=
h∗∑
h=1

j∗∑
j=1

φ(qj ⊗ pj)skhqkh
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=
h∗∑
h=1

j∗∑
j=1

qjθ(pj ⊗ skhqkh) =

j∗∑
j=1

qjθ

(
pj ⊗

h∗∑
h=1

skhqkh

)

=

j∗∑
j=1

qjθ (pj ⊗ yk) =

j∗∑
j=1

qj θ̂(pj, yk).

This proves condition (1) of the definition of duality. The proof of condi-
tion (2) is analogous using right s-unitality of S. �

Next we will prove that some dual mappings induce a Morita context.

Proposition 3.32. Let R be a ring and β = 〈 , 〉 : RP × QR → RRR a
pseudo-surjective dual mapping. Then R is idempotent and the rings R and
Σβ are Morita equivalent.

Proof. Let R be a ring and β = 〈 , 〉 : RP × QR → RRR a dual mapping
such that 〈Im β〉s = R. To turn the abelian group P into a bimodule RPΣβ

and the abelian group Q into a bimodule ΣβQR we define

p(f, g) := f(p),

(f, g)q := g(q).

These multiplications are clearly well defined and turn P into a right Σβ-
module and Q into a left Σβ-module. Let r ∈ R, (f, g) ∈ Σβ and p ∈ P .
Then

(rp)(f, g) = f(rp) = rf(p) = r(p(f, g)).

Analogously we have ((f, g)q)r = (f, g)(qr) for any q ∈ Q. Hence RPΣβ and

ΣβQR are bimodules. Take p ∈ P . Then there exist q1, . . . , qh∗ ∈ Q and
p1, . . . , ph∗ ∈ P such that p =

∑h∗

h=1〈p, qh〉ph, because of the duality of 〈 , 〉.
Now note that p ∈ RP and

p =
h∗∑
h=1

〈p, qh〉ph = p

(
h∗∑
h=1

(〈 , qh〉ph, qh〈ph, 〉)

)
∈ PΣβ.

Hence RPΣβ is unitary. The bimodule ΣβQR is analogously unitary.
We define

θ : P ⊗Σβ Q→ R,
k∗∑
k=1

pk ⊗ qk 7→
k∗∑
k=1

〈pk, qk〉,

φ : Q⊗R P → Σβ,
k∗∑
k=1

qk ⊗ pk 7→
k∗∑
k=1

(〈 , qk〉pk, qk〈pk, 〉).



3.3. ADJOINT ENDOMORPHISMS 51

Consider the mapping θ̂ : P × Q → R, (p, q) 7→ 〈p, q〉. Clearly θ̂ is additive
in both of its arguments. Note that, for every p ∈ P , q ∈ Q and (f, g) ∈ Σβ,
we have

θ̂(p(f, g), q) = 〈p(f, g), q〉 = 〈f(p), q〉 = 〈p, g(q)〉 = 〈p, (f, g)q〉 = θ̂(p, (f, g)q),

which proves that θ̂ is Σβ-balanced. By the universal property of the tensor
product (see Proposition 2.11), θ is a well-defined homomorphism of abelian
groups. By the (R,R)-bilinearity of β, θ̂ is also a homomorphism of (R,R)-
bimodules. The homomorphism θ is surjective, because 〈Im β〉s = R.

The mapping φ is a well-defined homomorphism of bimodules due to
Theorem 3.28. The homomorphism φ is clearly surjective.

Finally, note that, for every p, p′ ∈ P and q, q′ ∈ Q, we have

θ(p⊗ q)p′ = 〈p, q〉p′ = p(〈 , q〉p′, q〈p′, 〉) = pφ(q ⊗ p′),
q′θ(p⊗ q) = q′〈p, q〉 = (〈 , q′〉p, q′〈p, 〉)q = φ(q′, p)q.

In conclusion, (R,Σβ, RPΣβ , ΣβQR, θ, φ) is a unitary surjective Morita context.
Since R and Σβ are connected by a unitary surjective Morita context,

we conclude that they are both idempotent by Proposition 2.27. Due to
Theorem 2.28, we know that R and Σβ are Morita equivalent rings. �

Note that for instance every surjective dual mapping β : P × Q → R
clearly satisfies 〈Im β〉s = R, i.e. is pseudo-surjective, and therefore induces
a unitary surjective Morita context.

Next we will show that Σβ is isomorphic to a subring of End(QR). Sim-
ilarly we could show that Σβ is also isomorphic to an analogous subring of
(End(RP ))op.

Proposition 3.33. If R is a ring and β = 〈 , 〉 : RP ×QR → RRR is a dual
mapping, then Σβ is isomorphic to the subring

Πβ :=

{
k∗∑
k=1

qk〈pk, 〉

∣∣∣∣∣k∗ ∈ N; ∀k : qk ∈ Q, pk ∈ P

}
(3.9)

of the endomorphism ring End(QR).

Proof. Let β := 〈 , 〉 : RP ×QR → RRR be a dual mapping. Define

ψ : Σβ → End(QR), (f, g) 7→ g.

Clearly ψ is a ring homomorphism, whose image is Πβ.
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Let (f, g) ∈ Σβ be such that g = 0. Take an arbitrary p ∈ P . Since
〈 , 〉 is dual, there exist p1, . . . , pk∗ ∈ P and q1, . . . , qk∗ ∈ Q such that f(p) =∑k∗

k=1〈f(p), qk〉pk. Now

f(p) =
k∗∑
k=1

〈f(p), qk〉pk =
k∗∑
k=1

〈p, g(qk)〉pk =
k∗∑
k=1

〈p, 0〉pk =
k∗∑
k=1

〈p, 0〉0pk = 0.

Therefore f = 0, which implies that Kerψ = {0}. In conclusion, ϕ is an
isomorphism of rings Σβ and Πβ. �

Corollary 3.34. Let R be a ring and β = 〈 , 〉 : RP ×QR → RRR a pseudo-
surjective dual mapping. Then R is idempotent and the rings R and Πβ are
Morita equivalent.

The following result generalizes Proposition 2.2 in [5].

Proposition 3.35. Let R be a ring. If 〈 , 〉 : RP × QR → RRR is a dual
(R,R)-bilinear mapping, then the tensor product ring Q⊗R P defined by 〈 , 〉
is s-unital.

Proof. Let β = 〈 , 〉 : RP × QR → RRR be a dual (R,R)-bilinear map-
ping. Fix an element x =

∑k∗

k=1 qk ⊗ pk ∈ Q ⊗βR P . Consider the set
{q1, . . . , qk∗} ⊆ Q. By the duality of 〈 , 〉, there exist elements p′1, . . . , p

′
h∗ ∈ P

and q′1, . . . , q
′
h∗ ∈ Q such that, for every k ∈ {1, . . . , k∗}, we have qk =∑h∗

h=1 q
′
h〈p′h, qk〉. Denote a :=

∑h∗

h=1 q
′
h ⊗ p′h. Now

x =
k∗∑
k=1

qk ⊗ pk =
k∗∑
k=1

(
h∗∑
h=1

q′h〈p′h, qk〉

)
⊗ pk =

k∗∑
k=1

h∗∑
h=1

q′h ⊗ 〈p′h, qk〉pk

=
k∗∑
k=1

h∗∑
h=1

(q′h ⊗ p′h) ? (qk ⊗ pk) =

(
h∗∑
h=1

q′h ⊗ p′h

)
?

(
k∗∑
k=1

qk ⊗ pk

)
= a ? x.

Analogously we can construct an element b ∈ Q ⊗βR P such that x = x ? b,
which implies that Q⊗βR P is an s-unital ring. �

Now we can prove a theorem which says that the subring Σβ of the ring
Ωβ of adjoint endomorphisms is isomorphic to a tensor product ring if the
underlying bilinear bracket is dual.

Theorem 3.36. Let R be a ring and β = 〈 , 〉 : RP ×QR → RRR be a dual
(R,R)-bilinear mapping. Then the tensor product ring Q⊗βRP is isomorphic
to Σβ and Πβ.
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Proof. Let β = 〈 , 〉 be a dual (R,R)-bilinear mapping. By Theorem 3.28
we know that the mapping ϕ : Q⊗βRP → Σβ defined by (3.8) is a strict local
isomorphism. It suffices to prove that ϕ is injective.

Let
∑k∗

k=1 qk ⊗ pk ∈ Ker(ϕ). Then
∑k∗

k=1 qk〈pk, 〉 = 0. The ring Q⊗βR P
is s-unital by Proposition 3.35, therefore applying Theorem 2.21 we can find
an element x =

∑j∗

j=1 κj ⊗ ρj ∈ Q⊗
β
R P such that for every k ∈ {1, . . . , k∗}

(qk ⊗ pk) ? x = qk ⊗ pk.

Note that

k∗∑
k=1

qk ⊗ pk =
k∗∑
k=1

(qk ⊗ pk) ? x =
k∗∑
k=1

j∗∑
j=1

(qk ⊗ pk) ? (κj ⊗ ρj)

=
k∗∑
k=1

j∗∑
j=1

qk ⊗ 〈pk, κj〉ρj =
k∗∑
k=1

j∗∑
j=1

qk〈pk, κj〉 ⊗ ρj

=

j∗∑
j=1

(
k∗∑
k=1

qk〈pk, κj〉

)
⊗ ρj =

j∗∑
j=1

0⊗ ρj = 0.

Hence Ker(ϕ) = {0}. Therefore ϕ is injective, which means that ϕ is also an
isomorphism. By Proposition 3.33 we have that Q ⊗βR P is also isomorphic
to Πβ. �

3.4 Morita equivalence of firm rings

In this section we will prove a theorem that gives a necessary and sufficient
condition for two firm rings to be Morita equivalent. We will need the fol-
lowing proposition about Morita contexts connecting two Morita equivalent
firm rings.

Proposition 3.37. If firm rings R and S are Morita equivalent, then they
are connected by a bijective Morita context (R, S, RPS, SQR, ψ, ϕ), where P
and Q are firm bimodules.

Proof. Let R and S be firm rings and R ≈ME S. By Theorem 4.24 in [33],
there exists a surjective Morita context (R, S, RPS, SQR, ψ, ϕ), where RPS
and SQR are firm bimodules. The homomorphisms ψ and ϕ are bijective by
Proposition 5.5 in [33]. �

It should be remarked that we will take a closer look at firm bimodules
in Section 6.1.1, which includes an explicit proof of the existence of Morita
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contexts with firm bimodules for Morita equivalent idempotent rings (see
Proposition 6.4).

Now we are ready to prove the following description of Morita equivalent
firm rings. This generalizes a part of Theorem 2.6 in [5] from rings with local
units to firm rings.

Theorem 3.38. Let R and S be firm rings. Then R and S are Morita
equivalent if and only if R is isomorphic to a pseudo-surjectively defined
tensor product ring P ⊗S Q.

Proof. Necessity. Let R ≈ME S. By Proposition 3.37, there exists a bijec-
tive Morita context (R, S, RPS, SQR, θ, φ). Then P ⊗S Q is a tensor product
ring defined by φ̂ which is pseudo-surjective due to the bijectivity of φ. Also
θ : P ⊗S Q→ R is an isomorphism of rings by Theorem 3.23.

Sufficiency. Let R be isomorphic to a pseudo-surjectively defined tensor
product ring P ⊗S Q. By Theorem 3.16, the rings P ⊗S Q and S are Morita
equivalent, which implies R ≈ME S. �

Next we will prove that two s-unital rings R and S are Morita equiva-
lent if and only if there exists a right R-module QR (with some additional
properties) such that S is isomorphic to a subring of End(QR). This is a
generalization of a well known result that two rings with identity R and
S are Morita equivalent if and only if there exists a progenerator QR with
S ∼= End(QR) (Corollary 22.4 in [4]).

Theorem 3.39. Two s-unital rings R and S are Morita equivalent if and
only if there exist R-modules RP , QR, a dual (R,R)-bilinear pseudo-surjective
mapping β = 〈 , 〉 : RP ×QR → RRR and S ∼= Πβ as rings.

Proof. Necessity. Let R and S be Morita equivalent s-unital rings. Since
s-unital rings are firm, they are connected by a bijective Morita context
(R, S, RPS, SQR, θ, φ) (Proposition 3.37). From Example 3.31 we know that
θ̂ : RP × QR → RRR is a dual mapping. Due to Theorem 3.36 we have
Q⊗θ̂RP ∼= Σθ̂. From Corollary 3.24 we obtain the isomorphism S ∼= Q⊗θ̂RP ∼=
Σθ̂, because φ is bijective. Also, Σθ̂ ∼= Πθ̂ by Proposition 3.33. Finally, let
r ∈ R. Since θ is surjective, there exists

∑k∗

k=1 pk ⊗ qk ∈ P ⊗S Q such that

r = θ(
∑k∗

k=1 pk ⊗ qk). Now

r = θ

(
k∗∑
k=1

pk ⊗ qk

)
=

k∗∑
k=1

θ(pk ⊗ qk) =
k∗∑
k=1

θ̂(pk, qk),

which proves that 〈Im θ̂〉s = R.
Sufficiency. By Corollary 3.34, the rings R and Πβ ∼= S are Morita

equivalent. �
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3.5 Connection between Rees matrix rings

and tensor product rings

In this section we will prove a theorem, that sheds some light into how Rees
matrix rings and tensor product rings are connected. Let R be a ring and
Λ, Ξ some sets, denote by Λ′ and Ξ′ the sets of all mappings {1} × Λ → R
and Ξ× {1} → R with a finite number of non-zero values, respectively. The
sets Λ′ and Ξ′ are the infinite-dimensional analogues of sets Mat1,n(R) and
Matm,1(R), respectively, related to a Rees matrix ring M(R;m,n;M).

Theorem 3.40. An idempotent Rees matrix ring M(R; Λ,Ξ;M) is a strict
local isomorphic image of the tensor product ring Ξ′ ⊗R Λ′.

Proof. Consider an idempotent Rees matrix ringM =M(R; Λ,Ξ;M) and
R-modules RΛ′ and Ξ′R with componentwise addition and R-multiplication.
The ring R is idempotent by Proposition 3.4 and therefore the modules RΛ′

and Ξ′R are unitary (see the proof of Theorem 3.8).
Define a mapping

〈 , 〉 : R(Λ′ × Ξ′)R → RRR, 〈X, Y 〉 := X ∗ Y = XMY.

The mapping 〈 , 〉 is clearly (R,R)-bilinear and, by Corollary 3.3, 〈 , 〉 is also
surjective. Consider the tensor product ring Ξ′ ⊗R Λ′ surjectively defined by
〈 , 〉. Now define a mapping

ψ : Ξ′ ⊗R Λ′ →M,
k∗∑
k=1

Yk ⊗Xk 7→
k∗∑
k=1

YkXk.

The mapping ψ is a well-defined homomorphism of abelian groups by the
universal property of tensor product (see Proposition 2.11). The mapping
ψ is surjective, because by Corollary 3.7, every Z ∈ M can be expressed as
Z =

∑k∗

k=1 YkXk, where Yk ∈ Ξ′ and Xk ∈ Λ′ for every k ∈ {1, . . . , k∗}.
Consider Λ′ as a right M-module similarly to the proof of Theorem 3.8,

then the tensor product (Ξ′ ⊗R Λ′)M also becomes a right M-module with
multiplication

(Y ⊗X) ∗ Z = Y ⊗ (X ∗ Z).

Let
∑k∗

k=1 Yk ⊗Xk ∈ Ξ′ ⊗R Λ′ and Z ∈M, then

ψ

((
k∗∑
k=1

Yk ⊗Xk

)
∗ Z

)
= ψ

(
k∗∑
k=1

Yk ⊗ (Xk ∗ Z)

)
=

k∗∑
k=1

Yk(Xk ∗ Z)



56 CHAPTER 3. REES MATRIX AND TENSOR PRODUCT RINGS

=

(
k∗∑
k=1

YkXk

)
∗ Z = ψ

(
k∗∑
k=1

Yk ⊗Xk

)
∗ Z.

Therefore ψ is also a homomorphism of right M-modules.
Notice that, for arbitrary

∑k∗

k=1 Yk ⊗ Xk,
∑h∗

h=1 Y
′
h ⊗ X ′h ∈ Ξ′ ⊗R Λ′, we

have(
k∗∑
k=1

Yk ⊗Xk

)
?

(
h∗∑
h=1

Y ′h ⊗X ′h

)
=

k∗∑
k=1

h∗∑
h=1

Yk ⊗ 〈Xk, Y
′
h〉X ′h

=
k∗∑
k=1

h∗∑
h=1

Yk ⊗ (Xk ∗ Y ′h)X ′h =
k∗∑
k=1

Yk ⊗

(
Xk ∗

h∗∑
h=1

Y ′hX
′
h

)

=
k∗∑
k=1

Yk ⊗

(
Xk ∗ ψ

(
h∗∑
h=1

Y ′h ⊗X ′h

))

=

(
k∗∑
k=1

Yk ⊗Xk

)
∗ ψ

(
h∗∑
h=1

Y ′h ⊗X ′h

)
,

which means that the multiplication ? on (Ξ′ ⊗R Λ′)M coincides with the
multiplication defined by the module homomorphism ψ. Now by Proposi-
tion 3.21, module homomorphism ψ is a locally injective homomorphism of
rings.

Since ψ is surjective and locally injective homomorphism of rings, it is a
strict local isomorphism of rings. �

As a consequence of the previous theorem, we see that

(Ξ′ ⊗R Λ′)/Kerψ ∼=M(R,Λ,Ξ,M),

that is, idempotent Rees matrix rings are quotients of tensor product rings.



Chapter 4

Enlargements of rings

In this chapter we will define the notion of an enlargement of a ring and use it
to study Morita equivalence. The joint enlargement of two rings will prove to
be especially effective. In particular, the existence of a joint enlargement of
two idempotent rings turns out to be equivalent to those rings being Morita
equivalent. This chapter is based on [27].

4.1 Definition and basic properties of

enlargements

First we will define the enlargement of a ring. This definition is based on a
similar notion for semigroups introduced by Lawson in [29].

Definition 4.1. We call a ring R an enlargement of its subring S if the
conditions R = RSR and S = SRS hold. We also say that R is an enlarge-
ment of all rings isomorphic to such S.

We write S v R when R is an enlargement of its subring S. Next we will
prove some simple properties of enlargements.

Proposition 4.2. Let R and S be rings with S v R. Then the following
assertions hold.

(1) The ring R is idempotent.
(2) If R is commutative then R = S.
(3) If S is an ideal of R, then R = S.
(4) If S = {0}, then R = {0}.

Proof. Let R and S be rings and S v R.

57
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1. Notice that
R = RSR = R(SR) ⊆ RR ⊆ R.

Hence RR = R holds.
2. If R is a commutative ring then, due to (1), we have

R = RSR = RRS = RS = R(SRS) = SRRS = SRS = S.

3. If S is an ideal of R, then

R = RSR ⊆ S ⊆ R.

Therefore R = S.
4. This follows directly from (3). �

The next proposition is the ring-theoretic analogue of Proposition 2 in
[31]. In fact, there is no difference in the proof, but we will present it for the
sake of completeness.

Proposition 4.3. Let S, R and T be rings. The following assertions hold.
(1) If S v R and R v T , then S v T .
(2) If S v R holds and f : R → T is a surjective ring homomorphism,

then f(S) v T .

Proof. Let S, R and T be rings and S v R.
1. Let R v T hold, then obviously S ⊆ T . Notice that

TST ⊆ TRT = T = TRSRT = (TR)S(RT ) ⊆ TST,

which implies that TST = T . Also notice that

S=SRS⊆STS=(SRS)T (SRS)=SR(STS)RS⊆SRTRS=SRS=S,

which implies that S = STS. In conclusion, we have shown that S v T .
2. Let f : R→ T be a surjective ring homomorphism. Then

T = f(R) = f(RSR) = f(R)f(S)f(R) = Tf(S)T,

f(S) = f(SRS) = f(S)f(R)f(S) = f(S)Tf(S).

Therefore f(S) v T . �

In the previous proposition we showed that the relation v is transitive.
It is also antisymmetric. Clearly every idempotent ring is an enlargement of
itself. This implies that the relation v is a partial order relation on the class
of all idempotent rings.

Now we will take a look at enlargements of idempotent rings. Immedi-
ately from the definition of idempotent rings we have the following result,
which says that in the case of idempotent rings it suffices to check only two
inclusions instead of four.
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Lemma 4.4. A ring R is an enlargment of an idempotent ring S if and only
if R ⊆ RSR and SRS ⊆ S.

Note that a subring S of a ring R, satisfying SRS ⊆ S, is called a bi-ideal
of R (see [41], page 11).

Now we will prove another little property that simplifies finding enlarge-
ments of an idempotent ring. It is a ring-theoretic analogue of Proposition 3
in [31].

Proposition 4.5. Let S be an idempotent subring of a ring R. If S = SRS
then S v RSR.

Proof. Let R be a ring and S ⊆ R an idempotent subring with S = SRS.
Denote R′ := RSR; this is a subring of R. Then S = SS = SSS ⊆ RSR =
R′. Therefore S is a subring of R′. Notice that

SR′S = S(RSR)S = SR(SRS) = SRS = S,

R′SR′ = (RSR)S(RSR) = R(SRS)RSR = R(SRS)R = RSR = R′.

Hence S v RSR. �

Next we will give two series of examples of enlargements, which show that
certain natural matrix constructions give rise to enlargements.

Example 4.6 (Enlargement of a ring I). A full matrix ring over an idem-
potent ring S is an enlargement of S.

Let n ∈ N and consider the full matrix ring R := Matn(S) over an
idempotent ring S. We will prove that R is an enlargement of S using
Lemma 4.4.

Let Ahk(s) be an (n× n)-matrix with entry s at the intersection of h-th
row and k-th column, and zeroes elsewhere. Then

S ′ := {A11(s) | s ∈ S}

is an idempotent subring of R which is isomorphic to the ring S. To prove
the inclusion R ⊆ RS ′R it suffices to show that each Ahk(s) belongs to RS ′R.

Take s ∈ S. Since S is idempotent, we can write s =
∑j∗

j=1 ujsjvj for
some uj, sj, vj ∈ S. Hence

Ahk(s) =

j∗∑
j=1

Ahk(ujsjvj) =

j∗∑
j=1

Ah1(uj) · A11(sj) · A1k(vj) ∈ RS ′R .

Also, we have the inclusion S ′RS ′ ⊆ S ′, because

A11(s) · A · A11(s′) = A11(sa11s
′) ∈ S ′.

for any s, s′ ∈ S and any matrix A = [ahk] ∈ R. �
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For the next example we will need the notion of a unital Rees matirix
ring, whose definition is inspired from a similar notion for semigroups in [35].
We call a Rees matrix ringM(S; Λ,Ξ;M) unital if S is a ring with identity
1 and 1 is an entry of M .

Example 4.7 (Enlargement of a ring II). A unital Rees matrix ring over
a ring S with identity is an enlargement of S.

Consider a unital Rees matrix ring M =M(S; Λ,Ξ;M). For any s ∈ S
let Auv(s) denote the (Λ× Ξ)-matrix over S such that Auv(s)(u, v) = s and
Auv(s)(i, j) = 0 for all other pairs (i, j) ∈ Λ × Ξ. By our assumption, there
exist v0 ∈ Ξ and u0 ∈ Λ such that M(v0, u0) = 1 ∈ S. Putting

S ′ := {Au0,v0(s) | s ∈ S}

we obtain a subring of M which is isomorphic to S (with the isomorphism
ι : S → S ′, s 7→ Au0,v0(s)). Using Lemma 4.4 again, we will show that S ′ is
an idempotent ring and S ′ vM.

To prove that S ′ is an idempotent ring we consider an arbitrary element
s ∈ S. Then

Au0,v0(s) = Au0,v0(s)MAu0,v0(1) = Au0,v0(s) ∗ Au0,v0(1) ∈ S ′ ∗ S ′,

and hence S ′ = S ′ ∗ S ′.
The inclusion S ′ ∗ M ∗ S ′ ⊆ S ′ holds because, for every A ∈ M and

s, s′ ∈ S, we have

Au0,v0(s) ∗ A ∗ Au0,v0(s′) = Au0,v0(s)MAMAu0,v0(s
′)

and the last matrix product may have a nonzero entry only at the position
(u0, v0).

Finally, to prove the inclusion M ⊆ M ∗ S ′ ∗ M we note that, by the
definition of a Rees matrix ring, every element ofM is a finite sum of matrices
of type Au,v(s), and

Au,v(s) = Au,v0(s)MAu0,v0(1)MAu0,v(1)

= Au,v0(s) ∗ Au0,v0(1) ∗ Au0,v(1) ∈M ∗ S ′ ∗M.

In conclusion, we have shown that S vM(S; Λ,Ξ;M). �

4.2 Enlargements and Morita equivalence

In this section we will show that enlargements of idempotent rings are very
closely related to the Morita equivalence of these rings.
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Proposition 4.8. If R is an enlargement of an idempotent ring S then R
and S are Morita equivalent.

Proof. Let S be an idempotent ring and S v R. Since isomorphic rings
are Morita equivalent, it suffices to consider only the situation, where S ⊆ R.
Consider the subring SR ⊆ R as an (S,R)-bimodule and the subring RS ⊆ R
as an (R, S)-bimodule. From Proposition 2.27 we know that the ring R is
idempotent. Therefore, the bimodules RS and SR are unitary.

Define the following mappings:

θ : RS ⊗S SR→ R,

k∗∑
k=1

rksk ⊗ s′kr′k 7→
k∗∑
k=1

rksks
′
kr
′
k, (4.1)

φ : SR⊗R RS → SRS = S,
k∗∑
k=1

skrk ⊗ r′ks′k 7→
k∗∑
k=1

skrkr
′
ks
′
k. (4.2)

Note, that the mapping θ̂ : RS × SR→ R, (rs, s′r′) 7→ rss′r′ is S-balanced,
and since S is an abelian group with respect to addition, we get from the
universal property of tensor product (Proposition 2.11), that θ is a well-
defined homomorphism of abelian groups. Analogously φ is well defined.

For every r, r1, r
′
1, . . . , rk∗ , r

′
k∗ ∈ R and s1, s

′
1, . . . , sk∗ , s

′
k∗ ∈ S, we compute

θ

(
r

(
k∗∑
k=1

rksk ⊗ s′kr′k

))
= θ

(
k∗∑
k=1

rrksk ⊗ s′kr′k

)
=

k∗∑
k=1

rrksks
′
kr
′
k

= r
k∗∑
k=1

rksks
′
kr
′
k = r θ

(
k∗∑
k=1

rksk ⊗ s′kr′k

)

and, analogously, θ((
∑k∗

k=1 rksk ⊗ s′kr′k)r) = θ(
∑k∗

k=1 rksk ⊗ s′kr′k)r. Therefore
θ is a bimodule homomorphism.

Now, take an arbitrary element r ∈ R. Since S v R and S is idempotent,
we have R = RSR = R(SS)R = (RS)(SR). Hence, there exist elements
r1, r

′
1, . . . , rk∗ , r

′
k∗ ∈ R and s1, s

′
1, . . . , sk∗ , s

′
k∗ ∈ S such that

r =
k∗∑
k=1

rksks
′
kr
′
k = θ

(
k∗∑
k=1

rksk ⊗ s′kr′k

)
.

Thus, θ is surjective. Analogously, φ is a surjective bimodule homomorphism.
Finally, if ρ, ρ′ ∈ RS and σ, σ′ ∈ SR, then

θ(ρ⊗ σ)ρ′ = (ρσ)ρ′ = ρ(σρ′) = ρφ(σ ⊗ ρ′),
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σ′θ(ρ⊗ σ) = σ′(ρσ) = (σ′ρ)σ = φ(σ′ ⊗ ρ)σ.

In conclusion, we have shown that (R, S,RS, SR, θ, φ) is a unitary surjec-
tive Morita context connecting rings R and S. By Theorem 2.28, R ≈ME S.�

From the previous proposition and Examples 4.6 and 4.7 we obtain the
following two corollaries. The first corollary is also a generalization of Corol-
lary 3.11.

Corollary 4.9 (Cf. Corollary 22.6 in [4]). A full matrix ring over an
idempotent ring S is Morita equivalent to S.

Corollary 4.10. A unital Rees matrix ring over a ring S with identity is
Morita equivalent to S.

Now we will define the notion of a joint enlargement of rings and show
that each unitary surjective Morita context gives rise to a joint enlargement.

Definition 4.11. Let S, R and T be rings. The ring T is called a joint
enlargement of S and R if T is an enlargement of both S and R.

It turns out that if S ≈ME R, then the corresponding Morita ring is a
joint enlargement of S and R.

Proposition 4.12. If idempotent rings R and S are connected by a unitary
surjective Morita context Γ = (R, S, RPS, SQR, θ, φ), then the Morita ring Γ
is a joint enlargement of R and S.

Proof. Let S and R be idempotent rings and Γ = (R, S, RPS, SQR, θ, φ) a
unitary surjective Morita context. It is easy to see that

R =

{[
r 0
0 0

]∣∣∣∣r ∈ R} ⊆ Γ

is an idempotent subring of Γ that is isomorphic to R. We will prove the
inclusions Γ ⊆ ΓRΓ and RΓR ⊆ R.

Every matrix [ r pq s ] ∈ Γ can be expressed as a sum[
r p
q s

]
=

[
r 0
0 0

]
+

[
0 p
0 0

]
+

[
0 0
q 0

]
+

[
0 0
0 s

]
.

It suffices to show that the last four matrices belong to ΓRΓ. For [ r 0
0 0 ] this is

clear. Now consider p ∈ P . Since RP is unitary, we can find p1, . . . , pk∗ ∈ P
and r1, . . . , rk∗ ∈ R such that p = r1p1 + . . .+ rk∗pk∗ . Then we have[

0 p
0 0

]
=

k∗∑
k=1

[
rk 0
0 0

] [
0 pk
0 0

]
∈ RΓ = RRΓ ⊆ ΓRΓ.
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Analogously [ 0 0
q 0 ] ∈ ΓRΓ for any q ∈ Q. If s ∈ S, then due to the surjectivity

of φ, there exists
∑k∗

k=1 qk ⊗ pk ∈ Q ⊗R P such that s = φ(
∑k∗

k=1 qk ⊗ pk).
Hence [

0 0
0 s

]
=

k∗∑
k=1

[
0 0
qk 0

] [
0 pk
0 0

]
∈ Γ

(
ΓRΓ

)
⊆ ΓRΓ.

And so we have proven the inclusion Γ ⊆ ΓRΓ.
Note that for any r, r′, r′′ ∈ R, s ∈ S, q ∈ Q and p ∈ P , we have[

r′ 0
0 0

] [
r p
q s

] [
r′′ 0
0 0

]
=

[
r′r r′p
0 0

] [
r′′ 0
0 0

]
=

[
r′rr′′ 0

0 0

]
∈ R,

which implies the inclusion RΓR ⊆ R. We have proven R v Γ. The proof
of S v Γ is analogous with S = {[ 0 0

0 s ] | s ∈ S}. �

Now we are ready to prove the main theorem of this chapter.

Theorem 4.13. Idempotent rings are Morita equivalent if and only if they
have a joint enlargement.

Proof. Necessity. If idempotent rings R and S are Morita equivalent then,
by Theorem 2.28, they are connected by a unitary surjective Morita context
Γ. By Proposition 4.12, the Morita ring Γ is their joint enlargement.

Sufficiency. If idempotent rings R and S have a joint enlargement T then,
by Proposition 4.8, T is Morita equivalent to R and S. By transitivity of the
Morita equivalence relation, the rings R and S are Morita equivalent. �

Thus, two idempotent rings are Morita equivalent if and only if they can
be embedded nicely in some ring T . This is a purely algebraic condition
which does not refer to categories, and probably it is easier to use compared
to the definition through equivalence functors.

We will draw some conclusions from Theorem 4.13.

Corollary 4.14. Two rings with identity (two rings with local units, two s-
unital rings) are Morita equivalent if and only if they have a joint enlargement
which has identity (has local units, is s-unital).

Proof. Necessity. Assume that two rings R and S are connected by a
unitary surjective Morita context Γ. By Theorem 4.13, the rings R and S
have a joint enlargement Γ.

1. If R and S are rings with identity then the matrix [ 1 0
0 1 ] is the identity

element of their joint enlargement Γ.
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2. Let R and S be rings with local units. Fix a finite set

G :=

{[
r1 p1

q1 s1

]
, . . . ,

[
rn pn
qn sn

]}
⊆ Γ.

For every k ∈ {1, . . . , n} we can express pk =
∑h∗k

h=1 rkhpkhskh and qk =∑t∗k
t=1 s

′
ktqktr

′
kt, because P and Q are unitary. There exists a local unit

e ∈ R for the set {r1, . . . , rn, r11, r12, . . . , rnh∗n , r
′
11, . . . , r

′
nt∗} ⊆ R and a

local unit d ∈ S for the set {s1, . . . , sn, s11, s12, . . . , snh∗n , s
′
11 . . . , s

′
nt∗n
} ⊆

S. Then the matrix [ e 0
0 d ] is a local unit for the set G.

3. Similar to part 2.
Sufficiency. This follows immediately from Theorem 4.13. �

Corollary 4.15. The only idempotent ring Morita equivalent to {0} is {0}
itself.

Proof. Assume that T is an idempotent ring Morita equivalent to {0}. By
Theorem 4.13 they have a joint enlargement S. Due to Proposition 4.2 (4),
we have that S = {0}. Now it is clear that T = {0} too. �

The previous corollary shows one aspect how the Morita equivalence of
rings differs from the Morita equivalence of semigroups. Namely, there exist
many semigroups that are Morita equivalent to the one-element semigroup
(Theorem 16 in [21]).

Next we consider some connections of enlargements and (sets of) idem-
potents. Let E(R) denote the set of all idempotent elements of a ring R. If
E ⊆ E(R) is a nonempty set of idempotents then the set ERE is a subring
of R.

Proposition 4.16. Let R be a ring and let ∅ 6= E ⊆ E(R). Then R is an
enlargement of its subring ERE if and only if R = RER.

Proof. Let R be a ring and ∅ 6= E ⊆ E(R).
Necessity. Let ERE v R. Then we have

R = R(ERE)R = RE(RER) ⊆ RER ⊆ R.

Hence R = RER.
Sufficiency. Assume that R = RER. Then we have

(ERE)R(ERE) = (ERE)(RER)E = (ERE)RE = E(RER)E = ERE,

R(ERE)R = RE(RER) = RER = R.

Therefore, ERE v R. �
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Corollary 4.17. Let e ∈ R be an idempotent element of a ring R. The
condition ReR = R holds if and only if R is an enlargement of its subring
eRe.

Corollary 4.18. Let R be a ring and let ∅ 6= E ⊆ E(R). If R = RER, then
the rings R and ERE are Morita equivalent.

Next we will give an example, where we calculate all of the subrings of
Mat2(Z2), to which it is an enlargement of.

Example 4.19 (Subrings and enlargements). Consider the ring R :=
Mat2(Z2). By Corollary 4.9, the ring R is Morita equivalent to Z2. We
computationally proved, that R has 27 proper subrings and 8 idempotents:

E(R) =

{[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
0 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
1 1

]
,

[
0 1
0 1

]
,

[
1 0
1 0

]
,

[
1 1
0 0

]}
.

Every idempotent e ∈ E(R)\{[ 0 0
0 0

], [ 1 0
0 1

]} satisfies the condition ReR = R

and generates a subring of the form eRe = {[ 0 0
0 0

], e}. By Corollary 4.17, R
is an enlargement of all of these subrings.

Additionally there are 6 interesting four-element subrings:{[
0 0
0 0

]
,

[
0 0
1 1

]
,

[
1 1
0 0

]
,

[
1 1
1 1

]}
,{[

0 0
0 0

]
,

[
0 1
0 1

]
,

[
1 0
1 0

]
,

[
1 1
1 1

]}
,{[

0 0
0 0

]
,

[
0 1
0 0

]
,

[
1 0
0 0

]
,

[
1 1
0 0

]}
,{[

0 0
0 0

]
,

[
0 0
1 0

]
,

[
1 0
0 0

]
,

[
1 0
1 0

]}
,{[

0 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
0 0

]
,

[
0 1
0 1

]}
,{[

0 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
1 0

]
,

[
0 0
1 1

]}
.

All of the previous subrings are of the form {e, e′}R{e, e′} = {[ 0 0
0 0

], e, e′, e+e′}
for some idempotents e, e′ ∈ E(R). Hence, by Proposition 4.16, R is also an
enlargement of all of these subrings. In total there are 12 proper subrings
of R, to which R is an enlargement (this has been proven computationally).
Also, in this situation, if any of the aforementioned subrings is included in
any other, then the bigger subring is an enlargement of the smaller one. This
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is collected onto Figure 4.1, where two subrings are connected by a line if the
upper subring is an enlargement of the lower one.

{

[ 0 0

0 0
], [ 1 0

0 0
]
} {

[ 0 0

0 0
], [ 1 1

0 0
]
} {

[ 0 0

0 0
], [ 1 0

1 0
]
} {

[ 0 0

0 0
], [ 0 0

1 1
]
} {

[ 0 0

0 0
], [ 0 1

0 1
]
} {

[ 0 0

0 0
], [ 0 0

0 1
]
}

{

[ 0 0

0 0
],[ 0 1

0 0
],

[ 1 0

0 0
], [ 1 1

0 0
]

} {

[ 0 0

0 0
],[ 0 0

1 0
],

[ 1 0

0 0
], [ 1 0

1 0
]

} {

[ 0 0

0 0
],[ 1 1

1 1
],

[ 1 1

0 0
], [ 0 0

1 1
]

} {

[ 0 0

0 0
],[ 1 1

1 1
],

[ 1 0

1 0
], [ 0 1

0 1
]

} {

[ 0 0

0 0
],[ 0 0

1 1
],

[ 0 0

1 1
], [ 0 0

0 1
]

} {

[ 0 0

0 0
],[ 0 1

0 1
],

[ 0 1

0 1
], [ 0 0

0 1
]

}

Mat2(Z2)

Figure 4.1

By Corollary 4.18, all of the rings in Figure 4.1 are Morita equivalent to
each other (and to Z2). �

4.3 Morita contexts come from enlargements

Let T be a joint enlargement of its subrings R and S. It is easy to see that
it induces a Morita context with bimodules RPS := RTS and SQR := STR
and

θ : RTS ⊗S STR→ R,
k∗∑
k=1

rktksk ⊗ s′kt′kr′k 7→
k∗∑
k=1

rktksks
′
kt
′
kr
′
k, (4.3)

φ : STR⊗R RTS → S,
k∗∑
k=1

sktkrk ⊗ r′kt′ks′k 7→
k∗∑
k=1

sktlrkr
′
kt
′
ls
′
k. (4.4)

We see that all the information about such a Morita context is encoded in a
single ring T :

1. R and S are subrings (even bi-ideals) of T ;
2. P and Q are subgroups of (T,+);
3. the scalar multiplications of P and Q are defined using multiplication

in T ;
4. θ and φ are defined using the multiplication in T .
In our next theorem we will prove that any unitary Morita context be-

tween idempotent rings is isomorphic to a Morita context coming from a
joint enlargement. But for that result we must first recall the notion of an
isomorphism between Morita contexts, which appeard in [37] by Müller. We
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say that a Morita context Γ = (R, S, P,Q, θ, φ) is isomorphic to a Morita
context Γ′ = (R, S, P ′, Q′, θ′, φ′), if there exists a pair (f, g), where

1. f : P → P ′ and g : Q→ Q′ are bimodule isomorphisms,
2. θ′ ◦ (f ⊗ g) = θ and φ′ ◦ (g ⊗ f) = φ.

The pair (f, g) is also called an isomorphism between Morita contexts Γ
and Γ′.

Theorem 4.20. Every unitary Morita context Γ connecting idempotent rings
R and S is isomorphic to the unitary Morita context (R, S,RΓS, SΓR,ψ, ϕ).

Proof. Let R and S be idempotent rings connected by a unitary Morita
context Γ = (R, S, P,Q, θ, φ).

The scalar multiplications of bimodules RΓS and SΓR are defined using
the isomorphic copies of R and S in Γ (see (2.14) and (2.15)). Note that for
any r′ ∈ R, s′ ∈ S and [ r pq s ] ∈ Γ, we have

r′
[
r p
q s

]
s′ =

[
r′ 0
0 0

] [
r p
q s

] [
0 0
0 s′

]
=

[
r′r r′p
0 0

] [
0 0
0 s′

]
=

[
0 r′ps′

0 0

]
.

Hence we have

RΓS =

{
k∗∑
k=1

[
0 rkpksk
0 0

]∣∣∣∣∣∀k : rk ∈ R, pk ∈ P, sk ∈ S

}
=

{[
0 p
0 0

]∣∣∣∣p ∈ P} ,
where the last equality holds due to the unitarity of P . Analogously we have
SΓR = {[ 0 0

q 0 ]|q ∈ Q}.
Consider the Morita context (R, S,RΓS, SΓR,ψ, ϕ), with ψ = ιR ◦ψ′ and

ϕ = ιS ◦ ϕ′, where

ψ′ : RΓS ⊗S SΓR→ R,
k∗∑
k=1

[
0 pk
0 0

]
⊗
[

0 0
qk 0

]
7→

k∗∑
k=1

[
0 pk
0 0

] [
0 0
qk 0

]
;

ϕ′ : SΓR ⊗R RΓS → S is defined analogously; R = {[ r 0
0 0 ] | r ∈ R}; S =

{[ 0 0
0 s ] | s ∈ S}; ιR : R → R, [ r 0

0 0 ] 7→ r and ιS : S → S, [ 0 0
0 s ] 7→ s. The

mappings ψ′ and ϕ′ are well-defined homomoprhisms, because the mappings
in (4.1) and (4.2) are well-defined homomorphisms. Here Γ is considered as
an (R, S)- and (S,R)-bimodule with multiplications defined in (2.16) and
(2.17).

Define the mappings

f : P → RΓS, p 7→
[
0 p
0 0

]
,
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g : Q→ SΓR, q 7→
[
0 0
q 0

]
.

The mappings f and g are clearly bimodule isomorphisms. Now for any
p ∈ P and q ∈ Q we have

(ψ ◦ (f ⊗ g))(p⊗ q) = (ιR ◦ ψ′)
([

0 p
0 0

]
⊗
[
0 0
q 0

])
= ιR

([
0 p
0 0

] [
0 0
q 0

])
= ιR

([
θ(p⊗ q) 0

0 0

])
= θ(p⊗ q).

Therefore we have ψ ◦ (f ⊗ g) = θ and analogously ϕ ◦ (g ⊗ f) = φ, which
proves that the Morita context Γ is isomorphic to (R, S,RΓS, SΓR,ψ, ϕ).�

Let R and S be idempotent rings with a joint enlargement T . We will
call the Morita context (R, S,RTS, STR, θ, φ), where θ and φ are defined as
in (4.3) and (4.4), respectively, the Morita context induced by T . The
previous theorem gives us a way to concretize the Morita context connecting
Morita equivalent idempotent rings.

Corollary 4.21. Two idempotent rings R and S are Morita equivalent if
and only if they are connected by the Morita context induced by their joint
enlargement T .

4.4 Rings Morita equivalent to a ring with

identity

In this section, we will give a necessary and sufficient condition, when a ring
with left (or right) local units is Morita equivalent to a ring with identity.
Our result will be a slight generalization of Proposition 3.5 in [7] by Ánh and
Márki and Corollary 4.3 in [1] by Abrams. Also the following theorem is a
special case of the Theorem in [11] by Garćıa. However, we use a different
technique from all of them for proving it.

Theorem 4.22. A ring R with left local units is Morita equivalent to a ring
with identity if and only if there exists an idempotent e ∈ R such that R =
ReR. In that case R is Morita equivalent to its subring eRe.

Proof. Necessity. Let a ring R with left local units be Morita equivalent to
a ring S which has an identity 1. Then, by Theorem 2.28, there exist unitary
bimodules RPS and SQR and surjective homomorphisms θ : R(P ⊗S Q)R →
RRR and φ : S(Q⊗R P )S → SSS, which satisfy conditions (2.11) and (2.12).
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Since φ is surjective, there exist q′1, . . . , q
′
h∗ ∈ Q and p′1, . . . , p

′
h∗ ∈ P such

that

φ

(
h∗∑
h=1

q′h ⊗ p′h

)
= 1 ∈ S.

As RP is unitary, for every h ∈ {1, . . . , h∗}, there exist elements rh1, . . . ,
rhk∗ ∈ R and ph1, . . . , phk∗ ∈ P such that p′h = rh1ph1+. . .+rhk∗phk∗ . Consider
the finite set U := {rhk | h ∈ {1, . . . , h∗}, k ∈ {1, . . . , k∗}}. Since R has left
local units, we can find an idempotent element e ∈ R such that rhk = erhk
for every rhk ∈ U . Now, for every h ∈ {1, . . . , h∗}, we have

ep′h = e

(
k∗∑
k=1

rhkphk

)
=

k∗∑
k=1

erhkphk =
k∗∑
k=1

rhkphk = p′h.

Let r ∈ R. Due to the surjectivity of θ, there exist p1, . . . , pj∗ ∈ P and
q1, . . . , qj∗ ∈ Q such that

r = θ

(
j∗∑
j=1

pj ⊗ qj

)
=

j∗∑
j=1

θ(pj ⊗ qj).

Take any summand θ(pj ⊗ qj) from the last sum. Then we have

θ(pj ⊗ qj) = θ(pj ⊗ 1qj) = θ

(
pj ⊗ φ

(
h∗∑
h=1

q′h ⊗ p′h

)
qj

)

=
h∗∑
h=1

θ(pj ⊗ φ(q′h ⊗ p′h)qj) =
h∗∑
h=1

θ(pj ⊗ q′hθ(p′h ⊗ qj))

=
h∗∑
h=1

θ(pj ⊗ q′h)θ(p′h ⊗ qj) =
h∗∑
h=1

θ(pj ⊗ q′h)θ(ep′h ⊗ qj)

=
h∗∑
h=1

θ(pj ⊗ q′h)eθ(p′h ⊗ qj) ∈ ReR.

It follows that r ∈ ReR. Since the inclusion ReR ⊆ R is obvious, we conclude
that R = ReR.

Sufficiency. If a ring R has left local units, then it is also idempotent.
Let e ∈ R be an idempotent element such that R = ReR. Then, due to
Corollary 4.17, we have eRe v R, where eRe is a ring with identity e.

By Proposition 4.8, we know that the rings R and eRe are Morita equiv-
alent. �
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From Corollary 4.10 we obtain another result about the class of rings
Morita equivalent to some ring S with identity.

Proposition 4.23. Let S 6= {0} be a ring with identity. There exists a ring
with any cardinality, which is larger than the cardinality of S, that is Morita
equivalent to S.

Proof. Let S 6= {0} be a ring with identity. We can construct a unital
Rees matrix ring M = M(S; Λ,Ξ;M) with any cardinality larger than the
cardinality of S by choosing suitable sets Λ and Ξ. By Corollary 4.10, we
have S ≈ME M. �

It should be noted here, that a unital Rees matrix ring over a ring with
identity need not be a ring with identity itself.

Finally we will write a few words about the Morita equivalence of two
finite rings with identity element. Let R and S be rings with identity. If
R ≈ME S and R is finite, then S is also finite. Indeed, by Corollary 22.7 in [4],
there exists a natural number n ∈ N and an idempotent matrix A ∈ Matn(R)
such that S ∼= AMatn(R)A. Since R is finite, Matn(R) is also finite for every
n ∈ N and therefore S is finite. In conclusion, we see that finiteness is an
invariant of Morita equivalence for rings with identity. But finiteness is not an
invariant of Morita equivalence for idempotent rings, due to Proposition 4.23.

The following is a classical result about Morita equivalence of rings with
identity.

Theorem 4.24 (Corollary 22.6 and Corollary 22.7 in [4]). Let R and
S be rings with identity. Then R ≈ME S if and only if there exists a full
matrix ring T = Matn(R) and an idempotent A ∈ T such that T = TAT and
S ∼= ATA.

In the light of our results, we can recognize a joint enlargement here.
Namely

• T is an enlargement of R by Example 4.6, and
• T is an enlargement of S by Corollary 4.17.

In general, neither R nor S need be isomorphic to T . This is in a sharp
contrast with the monoid case. Namely, if A and B are monoids, then

A v B ⇐⇒ A ≈ME B ⇐⇒ B v A,

so each of the monoids is a joint enlargement. (This follows from Theorem
2.3 in [32].)
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4.5 Enlargements of rings and Morita

equivalence of semigroups

In this section we will prove a result that shows which if two semigroups are
connected by a unitary surjective Morita context, then there exist natural
rings which have a joint enlargement. First we must recall that if A and B
are semigroups, then a six-tuple (A,B, APB, BQA, θ, φ) is called a Morita
context if P and Q are biacts and θ : P ⊗B Q → A and φ : Q ⊗A P → B
are biact homomorphisms that satisfy conditions similar to (2.11) and (2.12).
Unitary and surjective Morita contexts of semigroups are defined similarly
to the case of rings (with unitary biacts in place of bimodules). If two
semigroups A and B are connected by a unitary surjective Morita context,
then they are called strongly Morita equivalent (Definition 7 in [44]). A
semigroup S is called factorizable if S = SS := {ss′ | s, s′ ∈ S}. Strongly
Morita equivalent semigroups must be factorizable.

It is natural to ask: do two factorizable strongly Morita equivalent semi-
groups have a joint enlargement? The answer to this question is not known.
Lawson has proved (Theorem 1.1 in [30]) that a joint enlargement exists in
the case of semigroups with local units. His construction is very different
from the construction of a Morita ring of a context. It turns out that even
if strongly Morita equivalent semigroups may not have a joint enlargement,
they can be embedded into rings that have a joint enlargement.

The first part of the following theorem can be deduced from the theorem
in [16], but we will write out all the necessary subsemigroups for the sake of
completeness.

Theorem 4.25. If semigroups A and B are strongly Morita equivalent, then
there exists a ring T such that

(1) A and B are isomorphic to some subsemigroups A′ and B′ of the mul-
tiplicative semigroup of T , respectively;

(2) T is a joint enlargement of rings 〈A′〉 and 〈B′〉, where 〈S〉 denotes the
subring generated by the set S.

Proof. LetA andB be semigroups connected by a unitary surjective Morita
context (A,B, APB, BQA, θ, φ). Consider the ring

T :=

{[
x f
g y

]∣∣∣∣x ∈ Z[A], y ∈ Z[B], f ∈ Z(P ), g ∈ Z(Q)

}
,

where Z[A] and Z[B] are semigroup rings, Z(P ) and Z(Q) are free abelian
groups with bases P and Q respectively. Addition in T is defined compo-
nentwise and multiplication is defined analogously to the multiplication in a
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Morita ring (2.13):[
x1 f1

g1 y1

] [
x2 f2

g2 y2

]
:=

[
x1x2 + θ(f1 ⊗ g2) x1f2 + f1y2

g1x2 + y1g2 y1y2 + φ(g1 ⊗ f2)

]
.

Note that, for every f ∈ Z(P ) there exist p1, . . . , pk∗ ∈ P and z1, . . . , zk∗ ∈ Z
such that f =

∑k∗

k=1 zkpk. Analogously, for every g ∈ Z(Q) can be expressed

as g =
∑h∗

h=1 z
′
hqh, where qh ∈ Q and z′h ∈ Z for every h ∈ {1, . . . , h∗}. Since

θ and φ are homomorphisms of abelian groups, we have

θ(f ⊗ g) =
k∗∑
k=1

h∗∑
h=1

zkz
′
hθ(pk⊗ qh) and φ(g⊗ f) =

h∗∑
h=1

k∗∑
k=1

z′kzhφ(qk⊗ ph).

1. Consider the sets

A′ :=

{[
a 0
0 0

]∣∣∣∣ a ∈ A} ⊆ T and B′ :=

{[
0 0
0 b

]∣∣∣∣ b ∈ B} ⊆ T.

If a1, a2 ∈ A, then[
a1 0
0 0

] [
a2 0
0 0

]
=

[
a1a2 0

0 0

]
∈ A′.

Therefore, A′, and analogously B′, is a subsemigroup of the multiplica-
tive semigroup of T . Clearly A ∼= A′ and B ∼= B′.

2. Notice that the subring generated by the set A′ ⊆ T can be expressed
as

〈A′〉=

{
k∗∑
k=1

zkak

∣∣∣∣∣k∗∈N; ∀k : zk∈Z, ak∈A′
}

=Z[A′]=

{[
x 0
0 0

]∣∣∣∣x∈Z[A]

}
.

The inclusion T 〈A′〉T ⊆ T is obvious. Take an arbitrary matrix [ x fg y ] ∈
T and express it as a sum[

x f
g y

]
=

[
x 0
0 0

]
+

[
0 f
0 0

]
+

[
0 0
g 0

]
+

[
0 0
0 y

]
.

Since the Morita context (A,B, APB, BQA, θ, φ) is unitary and surjec-
tive, the semigroup A is a factorizable semigroup (Lemma 7 in [21]). In
turn Z[A] is an idempotent ring and there exist elements x1, x

′′
1, x

′′
1, . . . ,

xk∗ , x
′
k∗ , x

′′
k∗ ∈ Z[A] such that x = x1x

′
1x
′′
1 + . . .+ xk∗x

′
k∗xk∗ . Now[

x 0
0 0

]
=

k∗∑
k=1

[
xk 0
0 0

] [
x′k 0
0 0

] [
x′′k 0
0 0

]
∈ 〈A′〉〈A′〉〈A′〉 ⊆ T 〈A′〉T.
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Biacts P and Q are unitary, hence Z(P ) and Z(Q) are unitary bimodules
and there exist elements x1, . . . , xh∗ ∈ Z[A] and f1, . . . , fh∗ ∈ Z(P ) such
that f = x1f1 + . . .+ xh∗fh∗ . Then[

0 f
0 0

]
=

k∗∑
k=1

[
xk 0
0 0

] [
0 fk
0 0

]
∈ 〈A′〉T = (〈A′〉〈A′〉)T ⊆ T 〈A′〉T

and analogously [ 0 0
g 0 ] ∈ T 〈A′〉 ⊆ T 〈A′〉T . From the surjectivity of φ

we know that there exists an element
∑k∗

k=1 gk ⊗ fk ∈ Z(Q) ⊗Z[A] Z(P )

such that y =
∑k∗

k=1 φ(gk ⊗ fk). Now[
0 0
0 y

]
=

k∗∑
k=1

[
0 0
gk 0

] [
0 fk
0 0

]
∈ (T 〈A′〉)(〈A′〉T ) = T 〈A′〉T.

Therefore we have shown that T = T 〈A′〉T .
Notice that since Z[A] is idempotent, we have 〈A′〉 = 〈A′〉〈A′〉〈A′〉 ⊆
〈A′〉T 〈A′〉. For every ξ1, ξ2, x ∈ Z[A], y ∈ Z[B], f ∈ Z(P ) and g ∈ Z(Q),
we have[
ξ1 0
0 0

] [
x f
g y

] [
ξ2 0
0 0

]
=

[
ξ1x ξ1f
0 0

] [
ξ2 0
0 0

]
=

[
ξ1xξ2 0

0 0

]
∈A′ ⊆ 〈A′〉.

In conclusion we have shown that 〈A′〉 v T . The proof for 〈B′〉 v T is
analogous. �

Due to Proposition 4.2 (1) we obtain that the ring T from the previous
theorem is idempotent. Note that the ring 〈A′〉 from the previous theorem
is isomorphic to the semigroup ring Z[A]. This observation gives us the
following corollary.

Corollary 4.26. If semigroups A and B are strongly Morita equivalent, then
the semigroup rings Z[A] and Z[B] are Morita equivalent.





Chapter 5

Unitary ideals of rings

In this section we will study unitary ideals of rings. In particular we will
prove that the set of unitary ideals of a ring forms a quantale and if two
idempotent rings R and S are Morita equivalent, then their quantales of
unitary ideals are isomorphic. Also we will show that the quotient rings by
ideals that correspond to each other under that isomorphism are connected
by a Morita context with surjective mappings. This section is based on the
article [49].

5.1 Quantale of unitary ideals

Let R be a ring. A right (left) ideal I of R is called unitary if I is a unitary
right (left) R-module, i.e., IR = I (RI = I). An ideal IER is called unitary
if I is a unitary (R,R)-bimodule. By Lemma 2.24 we deduce that an ideal
I E R is unitary if and only if RIR = I. The set of all unitary ideals of R
will be denoted by UId(R). Unitary ideals of a ring are also studied in [10],
where they are called lower closed ideals (Definition 3.1).

Next we will define the notion of a quantale. First recall that a poset L
is called a complete lattice if every subset of L has both a meet and a join.

Definition 5.1 (Definition 2.1.1 in [40]). A complete lattice L is called
a quantale, if it is equipped with an associative binary operation ∗ : L×L→
L, such that for every set K and for every a, bk ∈ L, where k ∈ K, the
following conditions hold

a ∗

(∨
k∈K

bk

)
=
∨
k∈K

(a ∗ bk),

75
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k∈K

bk

)
∗ a =

∨
k∈K

(bk ∗ a).

A quantale L is called unital if there exists an element e ∈ L such that
a ∗ e = e ∗ a = a for every a ∈ L. The element e is called the identity
element of the quantale A.

Let L and L′ be quantales. A mapping f : L→ L′ is called an isomor-
phism of quantales if it is bijective, preserves arbitrary joins and

f(a1 ∗ a2) = f(a1) ∗ f(a2)

for every a1, a2 ∈ L. An isomorphism of unital quantales also has to
preserve the identity element.

It is well known that the lattice Id(R) of all ideals of a ring R is a quantale
(Example §2.6 in [40]). Now we will prove a proposition, which shows that
the set of unitary ideals of a ring R naturally posesses the structure of a
quantale.

Proposition 5.2. Let R be a ring. The set UId(R) is a quantale.

Proof. The poset (UId(R),⊆) is a complete lattice where, for every subset
U ⊆ UId(R), we have

∨
U =

∑
I∈U

I and
∧

U =
∨{

V ∈ UId(R)

∣∣∣∣∣ V ⊆ ⋂
I∈U

I

}
.

By Proposition 3.2 in [10], any sum of unitary ideals is also a unitary ideal.
Define the operation ∗ : UId(R)× UId(R)→ UId(R) as (I1, I2) 7→ I1I2.

If J ∈ UId(R) and U ⊆ UId(R) then

J ∗

(∨
I∈U

I

)
= J

(∑
I∈U

I

)
=
∑
I∈U

JI =
∨
I∈U

(J ∗ I).

The other compatibility condition in the definition of a quantale holds anal-
ogously. �

We will see that if R is an idempotent ring, then the quantale UId(R) is
even unital.

Proposition 5.3. If R is an idempotent ring, then UId(R) is a unital quan-
tale with identity element R.
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Proof. If R is an idempotent ring then, by Proposition 5.2, UId(R) is a
quantale and R is a unitary ideal of itself. It is also clear from the definition
of a unitary ideal that for every I ∈ UId(R) we have RI = IR = I, which
means that R is an identity element of UId(R).

Meets are calculated here as follows:

∧
U = R

(⋂
I∈U

I

)
R,

for any subset U ⊆ UId(R). �

From Proposition 2.25 we obtain that if R is an idempotent ring, then
the quantale UId(R) is also a modular lattice.

Next we will give a description of unitary ideals generated by a subset of
R, but first we need to give the definition.

Definition 5.4. Let R be a ring. It is said that an ideal IER is generated
by a subset X ⊆ R if I is the smallest ideal that contains X. In that case
we write I = (X)g. We say that an ideal I E R is finitely generated if it
is generated by a finite set X ⊆ R.

One can give an explicit description of the ideal generated by X. Accord-
ing to [41] (page 5), the ideal (X)g is

(X)g = ZX +RX +XR +RXR. (5.1)

Proposition 5.5. Let R be a ring. If a unitary ideal I E R is generated by
a set X ⊆ R, then I = RXR.

Proof. Let (X)g = I ∈ UId(R). Then we have

I = RIR = R(ZX +RX +XR +RXR)R

= ZRXR +RRXR +RXRR +RRXRR ⊆ RXR.

On the other hand, we see from the equality (5.1) that RXR ⊆ I. Therefore
we have I = RXR. �

5.2 Unitary ideals and s-unital rings

In this section we will see that s-unital rings can be described in terms of
unitary left and right ideals.
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Proposition 5.6. A ring R is right (left) s-unital if and only if all right
(left) ideals of R are unitary.

Proof. Necessity. Let R be an s-unital ring. If I is a right ideal of R and
a ∈ I, then a = au for some u ∈ R. Hence I = IR.

Sufficiency. Let all right ideals of a ring R be unitary. Take an element
r ∈ R. Since the right ideal I = Zr + rR is unitary, there exist elements
z1, . . . , zk∗ ∈ Z and r1, u1, . . . , rk∗ , uk∗ ∈ R such that

r =
k∗∑
k=1

(zkr + rrk)uk =
k∗∑
k=1

(zkruk + rrkuk) =
k∗∑
k=1

(r(zkuk) + r(rkuk))

= r
k∗∑
k=1

(zkuk + rkuk).

The case for left s-unitality is completely analogous. �

Corollary 5.7. All ideals of an s-unital ring are unitary.

5.3 Quantales of unitary ideals and Morita

contexts

In this section we will study the quantales of unitary ideals of rings connected
by a surjective but not necessarily unitary Morita context. It turns out that
in that case these quantales are isomorphic. The following theorem is a ring
theoretic analogue of Theorem 3.4 in [24]. It also generalizes Proposition 3.3
in [7] and Proposition 3.5 in [14].

Theorem 5.8. Let R and S be rings. If R and S are connected by a sur-
jective Morita context (R, S, RPS, SQR, θ, φ), then their quantales of unitary
ideals UId(R) and UId(S) are isomorphic. This isomorphism takes finitely
generated ideals to finitely generated ideals. If the rings R and S are idem-
potent, then the previous isomorphism is a morphism of unital quantales.

Proof. Let R and S be rings connected by a surjective Morita context
(R, S, RPS, SQR, θ, φ).

1. Note that, for every unitary ideal J ∈ UId(S), the set

θ(PJ ⊗S Q) :=

{
θ

(
k∗∑
k=1

pkjk ⊗ qk

)∣∣∣∣∣∀k : pk ∈ P, jk ∈ J, qk ∈ Q

}
⊆ R
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is an ideal, because θ is an (R,R)-bimodule homomorphism (here the
set PJ ⊗S Q is considered as a subset of the tensor product P ⊗S Q).
Additionally, we have

θ(PJ ⊗S Q) = θ(PSJS ⊗S Q) = θ(PSJ ⊗S SQ)

= θ(P Im(φ)J ⊗S Im(φ)Q) = θ(Im(θ)PJ ⊗S QIm(θ))

= θ(RPJ ⊗S QR) = Rθ(PJ ⊗S Q)R.

Therefore, the ideal θ(PJ ⊗ Q) is unitary. Analogously, we can show
that, for every I ∈ UId(R), the set φ(QI ⊗ P ) is a unitary ideal of S.
This allows us to define the mappings

Θ: UId(S)→ UId(R), Θ(J) := θ(PJ ⊗S Q), (5.2)

Φ: UId(R)→ UId(S), Φ(I) := φ(QI ⊗R P ). (5.3)

Let J1, J2 ∈ UId(S) be such that J1 ⊆ J2. Then we have the inclusion
Θ(J1) = θ(PJ1 ⊗S Q) ⊆ θ(PJ2 ⊗S Q) = Θ(J2), which means that the
mapping Θ preserves order. Analogously, the mapping Φ also preserves
order. If J ∈ UId(S), then

Φ(Θ(J)) = φ(Qθ(PJ ⊗S Q)⊗R P ) = φ(φ(Q⊗R PJ)Q⊗R P )

= φ(Q⊗R P )Jφ(Q⊗R P ) = SJS = J.

Analogously, Θ(Φ(I)) = I holds for every I ∈ UId(R), which means
that the mappings Φ and Θ are inverses of each other. Hence, the
mappings Φ and Θ are actually isomorphisms of posets. Consequently,
Φ and Θ both preserve arbitrary joins.
If J1, J2 ∈ UId(S), then

Θ(J1)Θ(J2) = θ(PJ1 ⊗S Q)θ(PJ2 ⊗S Q) = θ(PJ1 ⊗S Qθ(PJ2 ⊗S Q))

= θ(PJ1 ⊗S φ(Q⊗R PJ2)Q) = θ(PJ1 ⊗S φ(Q⊗R P )J2Q)

= θ(PJ1 ⊗S SJ2Q) = θ(PJ1 ⊗S J2Q)

= θ(P (J1J2)⊗S Q) = Θ(J1J2).

Analogously, we can show that, for every I1, I2 ∈ UId(R), the equality
Φ(I1)Φ(I2) = Φ(I1I2) holds. Hence, Θ and Φ are isomorphisms of
quantales.

2. Let J ∈ UId(S) be a finitely generated ideal. Then there exists a finite
set X = {x1, . . . , xn} ⊆ J such that J = SXS (see Proposition 5.5).
Fix an index k ∈ {1, . . . , n}. Then the element xk can be written as

xk =
h∗∑
h=1

skhxkhs
′
kh,
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where sk1, s
′
k1, . . . , skh∗ , s

′
kh∗ ∈ S and xk1, . . . , xkh∗ ∈ X. Using the

surjectivity of φ, we can also express xk as follows:

xk =
t∗∑
t=1

φ(qt ⊗ pt)ξtφ(q′t ⊗ p′t),

where q1, q
′
1, . . . , qt∗ , q

′
t∗ ∈ Q, p1, p

′
1, . . . , pt∗ , p

′
t∗ ∈ P and ξ1, . . . , ξt∗ ∈ X.

Now, for every p ∈ P and q ∈ Q, we have

θ(pxk ⊗ q) = θ

(
p

t∗∑
t=1

φ(qt ⊗ pt)ξtφ(q′t ⊗ p′t)⊗ q

)

=
t∗∑
t=1

θ(pφ(qt ⊗ pt)ξt ⊗ φ(q′t ⊗ p′t)q)

=
t∗∑
t=1

θ(θ(p⊗ qt)ptξt ⊗ q′tθ(p′t ⊗ q))

=
t∗∑
t=1

θ(p⊗ qt)θ(ptξt ⊗ q′t)θ(p′t ⊗ q) ∈ RY R,

where

Y := {θ(ptξt ⊗ q′t) | t ∈ {1, . . . , t∗}} ⊆ R.

Clearly, Y is a finite set. Note that

Θ(J) = θ(PJ ⊗S Q) =

{
θ

(
u∗∑
u=1

puju ⊗ qu

)∣∣∣∣∣∀u : pu∈P, qu∈Q, ju∈J

}

=

{
θ

(
u∗∑
u=1

pu

(
h∗∑
h=1

shuxhus
′
hu

)
⊗qu

)∣∣∣∣∣∀u, h :
pu∈P, qu∈Q,
xhu∈X, shu, s

′
hu∈S

}

=

{
u∗∑
u=1

h∗∑
h=1

θ((pushu)xhu⊗(s′huqu))

∣∣∣∣∣∀u, h :
pu∈P, qu∈Q,
xhu∈X, shu, s

′
hu∈S

}
⊆ RY R.

On the other hand, Y ⊆ Θ(J). Since Θ(J) is an ideal of R which
contains Y ,

(Y )g ⊆ Θ(J) ⊆ RY R ⊆ (Y )g,

which implies Θ(J) = (Y )g. Hence, Θ(J) is a finitely generated ideal.
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3. Let the rings R and S be idempotent. Then, by Proposition 5.3, the
quantales UId(R) and UId(S) are unital quantales with identity ele-
ments R and S, respectively. Since sup-lattice isomorphisms preserve
the largest elements, Θ(S) = R and Φ(R) = S. �

Remark. In Proposition 3.5 in the article [14], it has been shown that if
idempotent rings R and S are connected by a unitary surjective Morita con-
text, then the lattices UId(R) and UId(S) are isomorphic. We have proved
that, additionally, they are isomorphic as quantales, that these isomorphisms
behave well with respect to finitely generated ideals, and showed that assumig
idempotence of rings and unitariness of bimodules in the Morita context is
not necessary.

Theorem 5.8 implies that the isomorphisms Θ and Φ preserve all proper-
ties of unitary ideals that are defined using multiplication of ideals, inclusion
relation, joins or meets. For example, if I is a semiprime element in the
quantale UId(R) ([40, Definition 3.2.5]), then Φ(I) is semiprime in UId(S).
An analogous statement holds for prime elements ([40, Definition 3.2.8]). In
[42], the radical of a complete lattice is defined as the meet of all coatoms.
Thus Φ takes the radical of the lattice UId(R) to the radical of UId(S).

Corollary 5.9. If R is an idempotent ring and n a natural number, then
UId(R) and UId(Matn(R)) are isomorphic quantales.

Proof. Let R be an idempotent ring. By Corollary 4.9, R ≈ME Matn(R).
The ring Matn(R) is idempotent by Example 4.6 and Proposition 4.2 (1).
Then, by Theorem 2.28, the rings R and Matn(R) are connected by a unitary
surjective Morita context. Now the claim follows from Theorem 5.8. �

Corollary 5.10. If R is an s-unital ring and n a natural number, then Id(R)
and Id(Matn(R)) are isomorphic quantales.

Proof. Let R be a s-unital ring. Using Theorem 2.21, we see that for every
matrix A ∈ Matn(R) there exists an element u ∈ R such that

A=

r11 . . . r1n
...

. . .
...

rn1 . . . rnn

=

ur11 . . . ur1n
...

. . .
...

urn1 . . . urnn

=

u . . . 0
...

. . .
...

0 . . . u


r11 . . . r1n

...
. . .

...
rn1 . . . rnn

.
Hence Matn(R) is left s-unital. Analogoualy we see that Matn(R) is right
s-unital. The claim follows from Corollary 5.9 and Corollary 5.7. �
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In [10] Buys and Kyuno showed that the lattices UId(R) and UId(S) are
also isomorphic to the lattices USub(P ) and USub(Q), where P and Q come
from the Morita context. The last two lattices will be studied with more
detail in Section 6.4.

Theorem 5.11 (Theorem 3.3 in [10]). Let the rings R and S be con-
nected by a surjective Morita context (R, S, RPS, SQR, θ, φ). Then the fol-
lowing lattices are isomorphic:
(1) UId(R), (2) UId(S), (3) USub(RPS), (4) USub(SQR).

The isomorphisms in the previous theorem are obtained using the follow-
ing mappings:

Ψ: UId(R)→ USub(P ), Ψ(I) := IP,

Ω: USub(P )→ UId(R), Ω(A) := θ(A⊗S Q);

Ψ′ : UId(R)→ USub(Q), Ψ′(I) := QI,

Ω′ : USub(Q)→ UId(R), Ω′(B) := θ(P ⊗S B).

Remark. Among other things, Theorem 5.11 implies that if R and S are
s-unital rings then

R is uniform ⇐⇒ S is uniform ⇐⇒ RPS is uniform ⇐⇒ SQR is uniform,

where uniformity means that the intersection of every two non-zero ideals
(sub-bimodules) is non-zero (see Paragraph 19.9 in [51]). An analogous claim
holds for the dual notion – hollowness (see Paragraph 41.3 in [51]). In
particular, uniformity and hollowness are Morita invariants on the class of
s-unital rings.

In [10] (Definition 4.1), the two sided socle of a ring R is defined as

Soc(R) :=
∑
{I | I is a minimal ideal of R}.

Minimal ideals of R are precisely the atoms of the lattice Id(R) and Soc(R)
is the join of all atoms of the complete lattice Id(R).

Definition 5.12. We define the unitary two-sided socle of a ring R as

USoc(R) :=
∑
{I∈UId(R) | I={0} or I is an atom of the lattice UId(R)}

=
∨
{I ∈ UId(R) | I={0} or I is an atom of the lattice UId(R)},

where the join is calculated in the lattice UId(R) (see also Section 2 in [42]).
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If rings R and S are connected by a surjective Morita context, then by
Theorem 5.8 there exists a sup-lattice isomorphism Θ: UId(S) → UId(R)
and it follows that

Θ(USoc(S)) = USoc(R).

If the ring R (and analogously S) satisfies the condition

∀r ∈ R : (RrR = {0} =⇒ r = 0), (5.4)

then every minimal ideal of R is unitary (Proposition 3.5 in [10]), hence
USoc(R) = Soc(R) and we may write

Θ(Soc(S)) = Soc(R).

Definition 5.13 (Definition 4.5 in [10]). A ring R is called completely
reducible if Soc(R) = R.

If R is an idempotent ring, then the fact that the ring R is completely
reducible means that the largest element R is the join of all atoms in the
lattice UId(R).

Proposition 5.14. Let R and S be s-unital rings. If R and S are connected
by a surjective Morita context, then R is completely reducible if and only if
S is completely reducible.

Proof. Let R and S be s-unital rings connected by a surjective Morita
context. Assume that S is completely reducible. Since R is s-unital, it
satisfies (5.4). Indeed take r ∈ R such that RrR = {0}. Due to the s-
unitality we can find u ∈ R such that r = ru and also v ∈ R such that
r = ru = v(ru) = vru ∈ RrR. By our assumption we then have r = 0.

Hence Soc(R) = USoc(R) and Soc(S) = USoc(S). Due to Theorem 5.8,
we have a sup-lattice isomorphism Θ: UId(S)→ UId(R). Now

Soc(R) = Θ(Soc(S)) = Θ(S) = R,

yielding that R is completely reducible. The other direction is similar. �

5.4 Ideals and Morita contexts

In this section we will prove some results that will show how Morita contexts
relate to the ideals of its underlying rings.

Recall that the annihilator of a right R-module MR is defined as:

AnnR(M) := {r ∈ R |Mr = 0}.
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It is easy to see that, for any right R-module MR, its annihilator AnnR(M)
is an ideal of R. A right R-module MR is called faithful if AnnR(M) = {0}.

Now we will prove a result which generalizes Proposition 18.47 in [28].

Proposition 5.15. Let R and S be s-unital rings. If R and S are connected
by a surjective Morita context (R, S, RPS, SQR, θ, φ) then there exists an iso-
morphism Φ: Id(R)→ Id(S). Moreover, for every right R-module MR,

• Φ(AnnR(M)) = AnnS(M ⊗R P );
• MR is faithful if and only if the right S-module M ⊗R P is faithful.

Proof. Let R and S be s-unital rings connected by a surjective Morita
context (R, S, RPS, SQR, θ, φ). By Corollary 5.7, we have Id(R) = UId(R)
and Id(S) = UId(S). Due to Theorem 5.8, Id(R) ∼= Id(S) as quantales,
where the isomorphism Φ: Id(R)→ Id(S) is defined as in (5.3). Note that

(M ⊗R P )Φ(AnnR(M)) = (M ⊗R P )φ(QAnnR(M)⊗R P )

= M ⊗R θ(P ⊗S Q) AnnR(M)P

= M ⊗R RAnnR(M)P = MRAnnR(M)⊗R P
⊆M AnnR(M)⊗R P = 0⊗R P = {0}.

Therefore, we have Φ(AnnR(M)) ⊆ AnnS(M ⊗R P ). Analogously, we can
show that Θ(AnnS(M⊗RP ))⊆AnnR(M⊗RP⊗SQ), where Θ: Id(S)→ Id(R)
is an isomorphism defined as in (5.2).

Now, take r ∈ AnnR(M ⊗RP ⊗SQ) ⊆ R. Since R is s-unital, there exists
an element v ∈ R such that r = vr and, due to the surjectivity of θ, there exist
elements p1, . . . , pk∗ ∈ P and q1, . . . , qk∗ ∈ Q such that v =

∑k∗

k=1 θ(pk ⊗ qk).
Note that, for any m ∈M , we have

mr = mvr = νM(m⊗ v)r =
k∗∑
k=1

νM(m⊗ θ(pk ⊗ qk))r

=
k∗∑
k=1

νM((idM ⊗θ)(m⊗ pk ⊗ qk))r =
k∗∑
k=1

νM((idM ⊗θ)((m⊗ pk ⊗ qk)r))

=
k∗∑
k=1

νM((idM ⊗θ)(0)) = 0,

where νM : M → R is a homomorphism defined as in (2.6). Hence, r ∈
AnnR(M). Now we have proved the inclusions

Θ(AnnS(M ⊗R P )) ⊆ AnnR(M ⊗R P ⊗S Q) ⊆ AnnR(M).
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Applying the poset isomorphism Φ to the previous sequence of inclusions we
obtain

AnnS(M ⊗R P ) = Φ(Θ(AnnS(M ⊗R P ))) ⊆ Φ(AnnR(M)).

In conclusion, we have shown that Φ(AnnR(M)) = AnnS(M ⊗R P ).
If MR is faithful, then {0} = AnnR(M) = Θ(AnnS(M ⊗R P )), which

implies that AnnS(M ⊗R P ) = {0}, because Θ is an isomorphism. �

Next we will prove a theorem about finding quotients of Morita contexts,
it is a generalization of Corollary 18.49 in [28]. It will imply that if R and
S are Morita equivalent idempotent rings then every quotient ring of R is
Morita equivalent to a certain quotient ring of S.

Theorem 5.16. Let R and S be rings and Γ = (R, S, RPS, SQR, θ, φ) a
Morita context. Then, for every ideal I ∈ Id(R), the quotient rings R/I
and S/Φ(I) are connected by a Morita context

ΓI = (R/I, S/Φ(I), P/Ψ(I), Q/Ψ′(I), ζ, η),

where

Φ: Id(R)→ Id(S), Φ(I) := φ(QI ⊗ P ),

Ψ: Id(R)→ Sub(P ), Ψ(I) := IP,

Ψ′ : Id(R)→ Sub(Q), Ψ′(I) := QI.

Moreover,
• if Γ is surjective, then ΓI is also surjective;
• if Γ is unitary, then ΓI is also unitary.

Proof. Let I ∈ Id(R). We must show that the abelian group P/Ψ(I) is an
(R/I, S/Φ(I))-bimodule. Consider the mappings

R/I × P/Ψ(I)→ P/Ψ(I), ([r], [p]) 7→ [rp], (5.5)

P/Ψ(I)× S/Φ(I)→ P/Ψ(I), ([p], [s]) 7→ [ps]. (5.6)

Let p1, p2 ∈ P and s1, s2 ∈ S be such that [p1]Ψ(I) = [p2]Ψ(I) and [s1]Φ(I) =
[s2]Φ(I). Then we have p1−p2 ∈ Ψ(I) = IP and s1−s2 ∈ Φ(I) = φ(QI⊗RP ).
Note that

p1s1 − p2s1 = (p1 − p2)s1 ∈ IPS ⊆ IP,

p2s1 − p2s2 = p2(s1 − s2) ∈ Pφ(QI ⊗R P ) = θ(P ⊗S Q)IP ⊆ RIP ⊆ IP,
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which implies that

[p1s1]Ψ(I) = [p2s1]Ψ(I) = [p2s2]Ψ(I).

Therefore the mapping (5.6) is well defined. Analogously, the mapping (5.5)
is also well defined. Now it is easy to see that P/Ψ(I) is an (R/I, S/Φ(I))-
bimodule with the mappings (5.5) and (5.6).

Analogously, the abelian group Q/Ψ′(I) is an (S/Φ(I), R/I)-bimodule.
Define the mappings ζ and η as follows:

ζ : P/Ψ(I)⊗S/Φ(I) Q/Ψ
′(I)→ R/I,

k∗∑
k=1

[pk]⊗ [qk] 7→
k∗∑
k=1

[θ(pk ⊗ qk)]I ,

η : Q/Ψ′(I)⊗R/I P/Ψ(I)→ S/Φ(I),
k∗∑
k=1

[qk]⊗ [pk] 7→
k∗∑
k=1

[φ(qk ⊗ pk)]Φ(I).

To show that these mappings are well defined, we consider the mappings

ζ̂ : P/Ψ(I)×Q/Ψ′(I)→ R/I, ([p]Ψ(I), [q]Ψ′(I)) 7→ [θ(p⊗ q)]I ,
η̂ : Q/Ψ′(I)× P/Ψ(I)→ S/Φ(I), ([q]Ψ′(I), [p]Ψ(I)) 7→ [φ(q ⊗ p)]Φ(I).

Let p1, p2 ∈ P and q1, q2 ∈ Q be such that [p1]Ψ(I) = [p2]Ψ(I) and [q1]Ψ′(I) =
[q2]Ψ′(I). Then p1−p2 ∈ Ψ(I) = IP and q1−q2 ∈ Ψ′(I) = QI, therefore there
exist elements λ1, . . . , λk∗ ∈ P , κ1, . . . , κh∗ ∈ Q and ι1, ι

′
1, . . . , ιk∗ , ι

′
h∗ ∈ I such

that p1 − p2 = ι1λ1 + . . .+ ιk∗λk∗ and q1 − q2 = κ1ι
′
1 + . . .+ κh∗ι

′
h∗ . Now

ζ̂([p1], [q1])− ζ̂([p2], [q1]) = [θ((p1 − p2)⊗ q1)]I =

[
k∗∑
k=1

ιkθ(λk ⊗ q1)

]
I

= [0]I ,

ζ̂([p2], [q1])− ζ̂([p2], [q2]) = [θ(p2 ⊗ (q1 − q2))]I =

[
h∗∑
h=1

θ(p2 ⊗ κh)ι′h

]
I

= [0]I .

Therefore we have

ζ̂([p1]Ψ(I), [q1]Ψ′(I)) = ζ̂([p2]Ψ(I), [q1]Ψ′(I)) = ζ̂([p2]Ψ(I), [q2]Ψ′(I)),

which gives us that the mapping ζ̂ is well defined. Since ζ̂ is also S/Φ(I)-
balanced, due to the universal property of tensor product (see Proposi-
tion 2.11), the mapping ζ is a well-defined homomorphism of abelian groups.
Analogously, the mappings η̂ and η are well defined. Also, ζ and η are bi-
module homomorphisms, because θ and φ are bimodule homomorphisms.
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Now, for every p, p′ ∈ P and q, q′ ∈ Q, we have

ζ([p]⊗ [q])[p′] = [θ(p⊗ q)][p′] = [θ(p⊗ q)p′] = [pφ(q ⊗ p′)] = [p]η([q]⊗ [p′]),

[q′]ζ([p]⊗ [q]) = [q′][θ(p⊗ q)] = [q′θ(p⊗ q)] = [φ(q′ ⊗ p)q] = η([q′]⊗ [p])[q].

In conclusion, we have shown that (R/I, S/Φ(I), P/Ψ(I), Q/Ψ′(I), ζ, η) is a
Morita context.

If θ and ψ are surjective, then ζ and η are also surjective. If P and Q are
unitary, then their quotient bimodules are unitary too. �

Corollary 5.17. If two idempotent rings R and S are Morita equivalent,
then, for every ideal I ∈ Id(R), the quotient rings R/I and S/Φ(I) are also
Morita equivalent.





Chapter 6

Monomorphisms and unitary
sub-bimodules of firm
bimodules

In this chapter we will study monomorphisms in the categories SUModR and

SFModR, for idempotent rings S and R. First we will study the categories

SFModR and SCModR thoroughly. Then we show that the bimodule cate-
gories SFModR, SCModR and SUTfModR are equivalent and, moreover, that
the category SCModR is an essential localization of SModR. Later we will
use these results to show that, for a firm (S,R)-bimodule SMR, the lattice of
unitary sub-bimodules USub(M) is isomorphic to the lattice of subobjects
of M in the category SFModR. This chapter is a generalization of article [47]
to the case of bimodules.

6.1 Subcategories of the category of all bi-

modules

In this section we will study the bimodule subcategories SUModR, SFModR,

SCModR and SUTfModR. As a main result we will prove that SFModR,

SCModR and SUTfModR are all equivalent categories if S and R are idempo-
tent rings. Finally we will show that if S and R are idempotent rings, then

SCModR is an essential localization of SModR. The equivalence of the cate-
gories of right modules FModR, UTfModR and CModR was proved by Maŕın
(Theorem 2.45 in [33]). Since this sections is somewhat of a detour from the
rest of the thesis, but quite lengthy, it is divided in subsections.

89
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6.1.1 The coreflective subcategory of firm bimodules

Firstly we will study the category of firm bimodules SFModR. We will show
that it is a coreflective subcategory of SModR. But first we will characterize
firm bimodules in general.

Proposition 6.1. Let S and R be rings and SMR a firm bimodule. Then
there exists an (S,R)-bimodule isomorphism

µM : S ⊗S M ⊗R R→M,
k∗∑
k=1

sk ⊗mk ⊗ rk 7→
k∗∑
k=1

skmkrk. (6.1)

The familiy of morphisms µ = (µM)M∈SModR is a natural transformation from
the functor S ⊗S ⊗R R : SModR → SModR to id

SModR.

Proof. Note that, for any N ∈ SModR, the mapping µN : S⊗SN⊗RR→ N
is a morphisms in SModR. Fix N1, N2 ∈ SModR and f ∈ Mor

SModR(N1, N2)
(as shown on Figure 6.1).

S ⊗N1 ⊗R N1

µN1

S ⊗N2 ⊗R N2µN2

idS ⊗f ⊗ idR f

Figure 6.1

If s ∈ S, r ∈ R and a ∈ N1, then

(f ◦ µN1)(s⊗ a⊗ r) = f(sar) = sf(a)r = µN2(s⊗ f(a)⊗ r)
= (µN2 ◦ (idS ⊗f ⊗ idR))(s⊗ a⊗ r).

Therefore µ : S ⊗S ⊗R R→ id
SModR is a natural transformation.

Let M ∈ SFModR. From the definition of firm bimodules, we know that
there exist two canonical isomorphisms ν

SM : S ⊗S M → M and νMR
:

M ⊗R R → M . The mapping idS ⊗νMR
is an isomorphism, because the

tensor product of isomorphisms is also an isomorphism (Property 12.3 (3) in
[51]). For any s ∈ S, r ∈ R and m ∈M , we have

(ν
SM ◦ (idS ⊗νMR

))(s⊗m⊗ r) = ν
SM(s⊗mr) = smr. (6.2)

Denote µM := ν
SM ◦ (idS ⊗νMR

). By extending (6.2) from its generators to
the whole S ⊗S M ⊗R R, we have obtained the needed isomorphism µM . �
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Note that if M ∈ SModR is unitary, then µM is a surjective (S,R)-
bimodule homomorphism. In the next proposition we will construct a functor
P : SModR → SFModR.

Proposition 6.2. Let S and R be idempotent rings. For any M ∈ SModR,
the bimodule S ⊗S SMR⊗R R is firm and there exists a functor

P := S ⊗S S R⊗R R : SModR → SFModR,

M 7→ S ⊗S SMR⊗R R,
f 7→ idS ⊗f |SMR ⊗ idR .

Proof. Let S and R be idempotent rings and SMR an (S,R)-bimodule.
Denote N := S ⊗S SM , clearly N is a right R-module. By Proposition 2.38
in [33], the module NR ⊗R R is a firm right R-module. Analogously, the
module S ⊗S S(MR ⊗R R) = S ⊗S SMR ⊗R R is a firm left S-module. In
conclusion, the module S ⊗S SMR⊗R R is a firm (S,R)-bimodule.

Let f ∈ Mor
SModR(A,B) and g ∈ Mor

SModR(B,C), for some A,B,C ∈
SModR. Then

P(g ◦ f) = idS ⊗(g ◦ f)|SAR ⊗ idR = (idS ◦ idS)⊗ (g ◦ f)|SAR ⊗ (idR ◦ idR)

= (idS ⊗g|SBR ⊗ idR) ◦ (idS ⊗f |SAR ⊗ idR) = P(g) ◦P(f).

Here we used the equality (g ◦ f)|SAR = g|SBR ◦ f |SAR, which holds because,
for every

∑k∗

k=1 skakrk ∈ SAR, we have

f

(
k∗∑
k=1

skakrk

)
=

k∗∑
k=1

skf(ak)rk ∈ SBR.

Also P(idA) = idS⊗A⊗R. Therefore P : SModR → SFModR is a functor. �

We see, that the functor P can be expressed as the composition

P = (S ⊗S ⊗R R) ◦U : SModR → SUModR → SFModR,

where U = S R is the functor defined in (2.10). It is also easy to see
that there exists a natural isomorphism P ◦ P ∼= P, if we consider P as an
endofunctor of SModR.

Analogously to Proposition 6.1, it can be shown that

µ−1 = (µ−1
A )A∈SFModR : id

SFModR → S ⊗S ⊗R R

is also a natural transformation.
Now we will prove that the functor P is a coreflector of SFModR.
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Theorem 6.3. Let S and R be idempotent rings. The category SFModR is
a coreflective subcategory of SModR with coreflector P : SModR → SFModR.

Proof. Let S and R be idempotent rings. We will show that there exists
an adjunction

JF a S ⊗S S R⊗R R = P, (6.3)

where JF : SFModR → SModR is the inclusion functor. From Proposition 6.1
and the remark before this theorem, we know that µ : JF ◦P→ id

SModR and
µ−1 : id

SFModR → P ◦ JF are natural transformations. We will show that µ
is the counit and µ−1 is the unit of the adjunction (6.3).

For any firm bimodule A ∈ SFModR, we have

µJF(A) ◦ JF(µ−1
A ) = µA ◦ µ−1

A = idA = idJF(A),

which proves the triangle identity (2.1).
Let M ∈ SModR, then P(M) = S ⊗S SMR ⊗R R ∈ SFModR. Fix a

generator s′ ⊗ m ⊗ r′ ∈ P(M). Then, there exist elements s1, . . . , sk∗ ∈ S
and r1, . . . , rh∗ ∈ R such that m = s1m1r1 + . . .+ sk∗mk∗rk∗ . Now(

P(µM) ◦ µ−1
P(M)

)
(s′ ⊗m⊗ r′)

=
(
(idS ⊗µM ⊗ idR)◦µ−1

S⊗SMR⊗R
)(
s′ ⊗

(
k∗∑
k=1

skmkrk

)
⊗ r′
)

= (idS ⊗µM ⊗ idR)

(
k∗∑
k=1

s′ ⊗ sk ⊗mk ⊗ rk ⊗ r′
)

=
k∗∑
k=1

s′ ⊗ skmkrk ⊗ r′

= s′ ⊗

(
k∗∑
k=1

skmkrk

)
⊗ r′

= s′ ⊗m⊗ r′ = idP(M)(s
′ ⊗m⊗ r′),

which proves the second triangle identity (2.2) P(µM)◦µ−1
P(M) = idP(M). Thus

we have the adjunction (6.3). �

Note that, using the functor P, we can construct a Morita context with
firm bimodules between idempotent Morita equivalent rings. The following
proposition can be deduced from Proposition 4.13 and Theorem 4.24 in [33],
but we will give a direct proof inspired by Theorem 4.11 in [26].
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Proposition 6.4. Two idempotent rings S and R are Morita equivalent if
and only if there exists a surjective Morita context (R, S, RPS, SQR, θ, φ),
where RPS and SQR are firm bimodules.

Proof. Necessity. Let S and R be idempotent rings and S ≈ME R. By The-
orem 2.28, there exists a unitary surjective Morita context (S,R, RP

′
S, SQ

′
R,

ψ, ϕ). Consider the bimodules

P := P(P ′) = R⊗R RP ′S ⊗S S = R⊗R P ′ ⊗S S,
Q := P(Q′) = S ⊗S SQ′R⊗R R = S ⊗S Q′ ⊗R R.

(The last equalities hold, because P ′ and Q′ are unitary). The bimodules P
and Q are firm due to Proposition 6.2. The homomorphisms µP ′ : P → P ′

and µQ′ : Q → Q′ defined as in (6.1) are surjective, because P ′ and Q′ are
unitary. Define the compositions

θ := ψ ◦ (µP ′ ⊗ µQ′) : P ⊗S Q→ P ′ ⊗S Q′ → R,

φ := ϕ ◦ (µQ′ ⊗ µP ′) : Q⊗R P → Q′ ⊗R P ′ → S.

The mappings θ and φ are surjective (R,R)-bimodule and (S, S)-bimodule
homomorphisms, respectively, because they are defined as composites of two
surjective bimodule homomorphisms (the tensor product of surjective homo-
morphisms is also a surjective homomorphism).

Note that, for every p, p′ ∈ P , q, q′ ∈ Q, s, s′, s′′ ∈ S and r, r′, r′′ ∈ R, we
have

θ((r ⊗ p⊗ s)⊗ (s′′ ⊗ q ⊗ r′′))(r′ ⊗ p′ ⊗ s′) = ψ(rps⊗ s′′qr′′)(r′ ⊗ p′ ⊗ s′)
= rψ(ps⊗ s′′qr′′)r′ ⊗ p′ ⊗ s′ = r ⊗ ψ(ps⊗ s′′qr′′)r′p′ ⊗ s′

= r ⊗ psϕ(s′′qr′′ ⊗ r′p′)⊗ s′ = r ⊗ p⊗ sϕ(s′′qr′′ ⊗ r′p′)s′

= (r ⊗ p⊗ s)ϕ(s′′qr′′⊗ r′p′s′) = (r ⊗ p⊗ s)φ((s′′⊗ q ⊗ r′′)⊗(r′ ⊗ p′ ⊗ s′)).

The condition (2.12) is analogous. In conclusion, we have shown that the
six-tuple (R, S, P,Q, θ, φ) is a surjective Morita context with firm bimodules.

Sufficiency. Due to Theorem 2.28 and the fact that that firm bimodules
are also unitary. �

Remark 6.5. If S and R are firm rings, then a bimodule M ∈ SModR is
firm if and only if M ∼= S ⊗ M ⊗ R by the isomorphism µM from (6.1).
Necessity of this claim follows from Proposition 6.1. For sufficiency assume
that µM is an isomorphism and notice that

S ⊗M ∼= S ⊗ (S ⊗M ⊗R) = (S ⊗ S)⊗M ⊗R ∼= S ⊗M ⊗R ∼= M.
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Explicitly, the homomorphism ν
SM : S ⊗S M → M , s ⊗ m 7→ sm can be

expressed as

ν
SM = µM ◦ (νS ⊗ idM ⊗ idR) ◦ (idS ⊗µ−1

M ),

which means that ν
SM is an isomorphism, because it is a composite of iso-

morphisms. The isomorphism M ⊗ R ∼= M is analogous, which proves that
M is firm.

6.1.2 The reflective subcategory of closed bimodules

Now we will study the category of closed bimodules SCModR. First we must
introduce some notation. Let S and R be rings and M ∈ SModR. Denote

tR(M) := {m ∈M | mR = {0}},
St(M) := {m ∈M | Sm = {0}},
t(M) := {m ∈M | SmR = {0}}

= {m ∈M | ∀s ∈ S ∀r ∈ R : smr = 0}. (6.4)

The sets tR(M), St(M) and t(M) are clearly sub-bimodules of M and also

tR(M) + St(M) ⊆ t(M). (6.5)

Remark. Equation (6.4) deserves a bit more explanation. Let m ∈ M
be such that SmR = {0}. The set SmR includes all sums of the form
s1mr1 + . . . + skmrk, where k ∈ N, therefore it also includes “sums” with
k = 1. Conversly, if m ∈M is such that smr = 0 for every r ∈ R and s ∈ S,
then clearly SmR = {0}.

Next we will prove one useful lemma about closed bimodules.

Lemma 6.6. Let S and R be rings and C a closed (S,R)-bimodule. Then

tR(C) = St(C) = t(C) = {0}.

Proof. Let C ∈ SCModR. Then, clearly tR(C) = St(C) = {0}, because SC
and CR are both torsion-free modules.

Let c ∈ t(C). Then, for every s ∈ S and r ∈ R,

0 = scr = s(cr).

Hence cr ∈ St(C) = {0}, which means that cr = 0 for every r ∈ R. Therefore
c ∈ tR(C) = {0}, which proves that t(C) = {0}. �
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From the proof of the previous lemma and the inclusion (6.5), we obtain
the following corollary.

Corollary 6.7. A bimodule M ∈ SModR is torsion-free if and only if
t(M) = {0}.

Now we can construct a functor, for any idempotent rings S and R,

T : SModR → STfModR, M 7→M/t(M). (6.6)

To see this, we show that if M ∈ SModR, then M/t(M) is torsion-free. For
every m ∈M , we denote

[m] := m+ t(M) ∈M/t(M).

Thus [m] = [m′] if and only if m − m′ ∈ t(M). Fix [m] ∈ t(T(M)) =
t(M/t(M)). Then [0] = s[m]r = [smr] and hence smr ∈ t(M) for every
r ∈ R and s ∈ S. Now let s′ ∈ S and r′ ∈ R. Idempotency of S and R
implies the existence of s1, s

′
1, . . . , sk∗ , sk∗ ∈ S and r1, r

′
1, . . . , rh∗ , r

′
h∗ ∈ R such

that s′ = s1s
′
1 + . . .+sk∗s

′
k∗ and r′ = r′1r1 + . . .+r′h∗rh∗ . Since s′kmr

′
k ∈ t(M),

we have

s′mr′=

(
k∗∑
k=1

sks
′
k

)
m

(
h∗∑
h=1

r′hrh

)
=

k∗∑
k=1

h∗∑
h=1

sk(s
′
kmr

′
h)rh=

k∗∑
k=1

h∗∑
h=1

sk0rh=0,

which implies m ∈ t(M) and therefore [m] = [0]. Hence we have shown
(using Corollary 6.7) that T(M) ∈ STfModR for every M ∈ SModR.

Let M,N ∈ SModR. For every f ∈ SHomR(M,N), denote

T(f) =: [f ] : T(M)→ T(N), [m] 7→ [f(m)]. (6.7)

We will show that [f ] is well defined. Let [m1], [m2] ∈ T(M) = M/t(M)
such that [m1] = [m2]. Then m1 −m2 ∈ t(M). If s ∈ S and r ∈ R, then

sf(m1 −m2)r = f(s(m1 −m2)r) = f(0) = 0.

Hence f(m1 −m2) = f(m1)− f(m2) ∈ t(N), which implies that

[f ]([m1]) = [f(m1)] = [f(m2)] = [f ]([m2]).

Therefore [f ] is well defined. It is straightforward to check that [f ] is a
homomorphism of (S,R)-bimodules. Also notice that

T(g◦f)([m])=[g◦f ]([m])=[g(f(m))]=([g]◦[f ])([m])=(T(g)◦T(f))([m]),
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T(idM)([m]) = [idM ]([m]) = [idM(m)] = [m] = idT(M)([m]),

for every f ∈ SHomR(M,N), g ∈ SHomR(N,A) and m ∈ M . In conclusion,
T : SModR → STfModR is a well-defined functor.

Next we will prove two lemmas that help understand the functor T a
little better.

Lemma 6.8. There exists a natural isomorphism T ◦ T ∼= T, where T is
considered as an endofunctor of SModR.

Proof. Let S, R be idempotent rings and M ∈ SModR. By definition (6.6),
T(M) = M/t(M) is torsion-free. By Corollary 6.7, t(T(M)) = {[0]}. Now,
clearly there exists a natural isomorphism (T ◦T)(M) = T(M)/t(T(M)) ∼=
T(M). �

Lemma 6.9. Let S and R be rings and SMR a bimodule. The following
isomorphism holds in SModR:

(M/tR(M))/St(M/tR(M)) ∼= M/t(M). (6.8)

Proof. Consider the sets

St(M/tR(M)) = {m+ tR(M) | S(m+ tR(M)) = Sm+ tR(M) = tR(M)},
t(M)/tR(M) = {m+ tR(M) | m ∈ t(M)}.

Let [m] = m+ tR(M) ∈ St(M/tR(M)). If m ∈ tR(M), then [m] = tR(M) =
[0] ∈ t(M)/tR(M). Now assume, that m 6∈ tR(M). Due to the definition of

St(M/tR(M)), we have

Sm+ tR(M) = tR(M).

Fix s ∈ S, then either sm = 0 or sm ∈ tR(M) must hold. In either case we see
that smR = {0}. This implies that m ∈ t(M) and hence [m] ∈ t(M)/tR(M),
which proves the inclusion St(M/tR(M)) ⊆ t(M)/tR(M). The converse is
obvious, therefore St(M/tR(M)) = t(M)/tR(M).

Notice that tR(M) ⊆ t(M). By Corollary 4.3.3 in [19], we have the
isomorphism of (S,R)-bimodules

(M/tR(M))/St(M/tR(M)) = (M/tR(M))/(t(M)/tR(M))) ∼= M/t(M),

which proves formula (6.8). �
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From the previous proof we can easily deduce that the following analogue
of formula (6.8) holds:

(M/St(M))/tR(M/St(M)) ∼= M/t(M).

Hence we see that the functor T can be expressed as a composition

T ∼= ( /tR( )) ◦ ( /St( )) : SModR → StfModR → STfModR (6.9)

or equivalently T ∼= ( /St( )) ◦ ( /tR( )).
With the next proposition we will construct a functor from SModR to

SCModR, where S and R are idempotent rings.

Proposition 6.10. Let S and R be idempotent rings and SNR a torsion-free
(S,R)-bimodule. The set SHom(S,HomR(R,N)) is a closed (S,R)-bimodule.

Proof. Let N ∈ STfModR. By Theorem 2.27 in [33], the (S,R)-bimodule
K := HomR(R,N) is right closed, which means that the mapping

λK : KR → HomR(R,K), (λK(f))(r) = fr

is an isomorphism of right R-modules. Take f ∈ t(K). Then {0} = SfR,
which means that, for every r, r′ ∈ R and s ∈ S,

sf(r′)r = sf(r′r) = (sfr′)(r) = 0.

Hence Im(f) ⊆ t(N) = {0}, which gives us

t(K) = t(HomR(R,N)) = {r 7→ 0}.

Therefore K is also torsion-free.
By the left sided dual of Theorem 2.27 in [33], the (S,R)-bimodule

H := SHom(S,K) = SHom(S,HomR(R,N)) is left closed. Consider the
homomorphism

λH : HR 7→ HomR(R,H), λH(f)(r) = fr.

We will show that λH is an isomorphism of right R-modules. Consider the
diagram on Figure 6.2,

HomR(R, SHom(S,K)) SHom(S,HomR(R,K))

SHom(S,K)

λH SHom(S, λK) = λK ◦

ϕ

ψ

Figure 6.2
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where

ϕ : f 7→ (s 7→ (r 7→ f(r)(s))),

ψ : g 7→ (r 7→ (s 7→ g(s)(r))).

It is easy to see that the mappings ϕ and ψ are well defined. Note that, for
every f ∈ HomR(R,H), r ∈ R and s ∈ S,

(ψ ◦ ϕ)(f)(r)(s) = ψ(ϕ(f))(r)(s) = ϕ(f)(s)(r) = f(r)(s).

Hence ψ ◦ϕ = idHomR(R,H) and analogously ϕ◦ψ = id
SHom(S,H), which means

that ψ is bijective. For every h ∈ H, s ∈ S and r ∈ R, we have

λH(h)(r)(s) = (hr)(s) =
(∗)
h(s)r = λK(h(s))(r) = (λK ◦ h)(s)(r)

= (λK ◦ )(h)(s)(r) = ψ((λK ◦ )(h))(r)(s)

= (ψ ◦ (λK ◦ ))(h)(r)(s).

The equality (∗) holds due to the R-multiplication in H, defined as in (2.8).
The homomorphism λK ◦ is an isomorphism, because λK is an isomor-
phism. We have obtained that λH is bijective because it can be expressed
as a composition of two bijections λH = ψ ◦ (λK ◦ ). In conclusin, we have
shown that H is closed. �

Let S and R be idempotent rings. We can now construct a functor
K : SModR → SCModR as the composition

K = SHom(S,HomR(R, )) ◦ /t( ) : SModR → STfModR → SCModR.
(6.10)

Clearly SHom(S,HomR(R, )) = SHom(S, )◦HomR(R, ) is a functor and
the functor T = /t( ) was introduced in (6.6).

From this composition we see that for any f ∈ SHomR(M,N), with
M,N ∈ SModR,

K(f) : SHom(S,HomR(R,M/t(M)))→ SHom(S,HomR(R,N/t(N))),

g 7→ [f ] ◦ g.

Here we used the definition of T(f) given in (6.7) and how hom-functors map
morphisms (Example 3.20 (4) in [2]).

The next corollary collects all the information we have on functor K so
far.
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Corollary 6.11. Let S and R be idempotent rings. There exists a functor
K : SModR → SCModR such that

K(M) = SHom(S,HomR(R,M/t(M))),

K(f) : K(N1)→ K(N2), g 7→ [f ] ◦ g,

where f : N1 → N2, for some N1, N2 ∈ SModR.

It is easy to see that there exists an natural isomorphism K ◦K ∼= K, if
we consider K as an endofunctor of SModR. Next we will prove that there
exists a natural transformation from id

SModR to K (again considered as an
endofunctor of SModR), even if S and R are arbitrary rings.

Proposition 6.12. Let S and R be rings and SCR a closed bimodule. Then
there exists an (S,R)-bimodule isomorphism

γC : C → SHom(S,HomR(R,C)), c 7→ (s 7→ (r 7→ scr)).

Moreover, the family γ = (γM)M∈SModR of (S,R)-bimodule morphisms, where

γM : M → SHom(S,HomR(R,M/t(M))), m 7→ (s 7→ (r 7→ s[m]r)),

is a natural transformation from id
SModR to SHom(S,HomR(R, /t( ))) :

SModR → SModR.

In order to not have to fix the elements of S and R all the time, denote
γM(m) :=

S
[m]

R
, for every m ∈M .

Proof. Let M ∈ SModR. First note that γM(m) is a left S-module homo-
morphism and γM(m)(s) is a right R-module homomorphism for any m,m′ ∈
M and s ∈ S. Hence, indeed Im(γM) ⊆ SHom(S,HomR(R,M/t(M))). Fix
m ∈M , r ∈ R and s ∈ S. Now

γM(m+m′) =
S

[m+m′]
R

=
S

([m]
R

+ [m′]
R

) =
S

[m]
R

+
S

[m′]
R

= γM(m) + γM(m′),

γM(sm) =
S

[sm]
R

= (
S
s)[m]

R
= sγM(m)

and analogously γM(mr) = γM(m)r, which implies that γM is a bimodule
homomorphism.

Fix M,N ∈ SModR and f ∈ Mor
SModR(M,N) (as shown on Figure 6.3).
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M SHom(S,HomR(R,M/t(M)))
γM

N SHom(S,HomR(R,N/t(N)))γN

f [f ] ◦

Figure 6.3

Fix an element m ∈M . Then

(γN ◦ f)(m) = γN(f(m)) =
S

[f(m)]
R

=
S
f(m)

R
+ t(M)

= f(
S
m

R
) + t(M) = [

S
f(m)

R
] = (([f ] ◦ ) ◦ γM)(m).

Hence, γ : id
SModR → SHom(S,HomR(R, /t( ))) is a natural transforma-

tion.
Let C ∈ SCModR. Firstly notice that C/t(C) = C and therefore the

two definitions of γC coincide. As a component of γ, γC is indeed an (S,R)-
bimodule homomorphism. Notice that for every c ∈ C, s ∈ S and r ∈ R

γC(c)(s)(r) = scr = λC(sc)(r) = λC(ρC(c)(s))(r) = (λC ◦ ρC(c))(s)(r)

= ((λC ◦ ) ◦ ρC)(c)(s)(r).

C SHom(S,HomR(R,C))

SHom(S,C)

γC

ρC λC ◦

Figure 6.4

Hence γC can be expressed as a composition of two bijections λC ◦ and ρC ,
which implies that γC is also a bijection. �

It also follows that

γ−1 = (γ−1
C )C∈SCModR : SHom(S,HomR(R, ))→ id

SCModR

is a natural isomorphism.
Next we will prove that the functor K turns out to be a reflector functor

of SCModR.

Theorem 6.13. Let S and R be idempotent rings. The category SCModR is
a reflective subcategory of SModR with reflector K : SModR → SCModR.
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Proof. Let S and R be idempotent rings. We will show that there exists
an adjunction

K = SHom(S,HomR(R, /t( ))) a JC, (6.11)

where JC : SCModR → SModR is the inclusion functor. From Proposi-
tion 6.12 and the paragraph after that, we know that γ : id

SModR → K ◦ JC

and γ−1 : JC ◦K→ id
SCModR are natural transformations. We will show that

γ is the unit and γ−1 is the counit of adjunction (6.11).
For any closed bimodule C ∈ SCModR we have

JC(γ−1
C ) ◦ γJC(C) = γ−1

C ◦ γC = idC = idJC(C),

which proves the triangle identity (2.2).
Let M ∈ SModR. Then K(M)=SHom(S,HomR(R,M/t(M)))∈SCModR.

Fixing g ∈ K(M), we have(
γ−1
K(M) ◦K(γM)

)
(g) = γ−1

K(M) ◦ ([γM ] ◦ g) = γ−1
K(M) ◦

S
g
R

= γ−1
K(M)(

S
g
R

)

= g = idK(M)(g).

Hence we have shown that the triangle identity (2.1) γ−1
K(M)◦K(γM) = idK(M)

holds. �

6.1.3 Equivalence of subcategories

Now we are ready to prove one of the main theorems of this section.

Theorem 6.14. Let S and R be idempotent rings. The categories SFModR,

SUTfModR and SCModR are equivalent categories.

Proof. Consider the functors given on the diagram below (Figure 6.5).

SCModR SutfModcR SUTfModR SutfModfR SFModR

R

HomR(R, )

S

S Hom(S, )

⊗R R

/tR( )

S ⊗S

/St( )

I II III IV

Figure 6.5

We will prove that in subdiagrams II and III we have equivalence func-
tors. For subdiagrams I and IV the proof is similar and we will omit it.
Notice that the functors

R : SutfModcR → SUTfModR,
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/tR( ) : SutfModfR → SUTfModR,

⊗R R : SUTfModR → SutfModfR

are all well defined. We will next show that we have a functor

F := HomR(R, ) : SUTfModR → SutfModcR.

Due to Proposition 2.29 in [33] we have that

F(M) = HomR(R,M) = HomR(R,M/tR(M)) ∈ SutfModcR

for every M ∈ SUTfModR, because tR(M) = {0} (see Corollary 6.7). If
f ∈ Mor

SUTfModR(M,N), s ∈ S and g ∈ HomR(R,M), then

(F(f))(sg) = (f ◦ )(sg) = f ◦ sg = s(f ◦ g) = s((f ◦ )(g)) = s(F(f)(g)),

which implies that F(f) : HomR(R,M) → HomR(R,N) is an (S,R)-bi-
module homomorphism. Thus HomR(R, ) : SUTfModR → SutfModcR is a
well-defined functor.

Fix bimodules C ∈ SutfModcR, N ∈ SUTfModR and A ∈ SFModR and
define

αC := λ−1
C ◦ HomR(R, ιC) = λ−1

C ◦ ιC ◦ : HomR(R,CR)→ C,

βN := λN |NR = λNR : N → HomR(R,N)R,

δN := ( /tR( ))(µN) = [µN ] : (N ⊗R R)/tR(N ⊗R R)→ N,

εA := ([ ]⊗ idR) ◦ µ−1
A : A→ A/tR(A)⊗R R,

where ιC : CR → C is the inclusion. From Theorem 2.18, we know that
the mappings αC , βN , δN and εA are bijective homomorphisms of right R-
modules and the corresponding families of mappings α, β, γ and ε are natural
transformations. More precisely

α : HomR(R, ) ◦ R→ id
SutfModcR ,

β : id
SUTfModR → R ◦ HomR(R, ),

δ : ( /tR( )) ◦ ( ⊗R R)→ id
SUTfModR ,

ε : id
SFModR → ( ⊗R R) ◦ ( /tR( )).

We will prove that αC , βN , δN and εA are also homomorphisms of left S-
modules. If s ∈ S, c R ∈ HomR(R,CR), n ∈ N , [n′ ⊗ r′] ∈ (N ⊗R R)/
tR(N ⊗R R) and ar ∈ A ∈ SUModR, then

αC(sc
R

) = λ−1
C ◦ ιC ◦ (sc

R
) = λ−1

C (sc
R

) = sc = sλ−1
C (c

R
) = sαC(c

R
),
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βN(sn) = λNR(sn) = sn
R

= s(n
R

) = sβN(n),

δN(s[n′ ⊗ r′]) = [µN ]([sn′ ⊗ r′]) = [(sn′)r′] =
(∗∗)

[s(n′r′)] = sδN([n′ ⊗ r′]),

εA(sar) = ([ ]⊗ idR)(sa⊗ r) = [sa]⊗ r = s([a]⊗ r) = sεA(ar).

Equation (∗∗) holds because N is a bimodule. Hence, the mappings αC , βN ,
δN and εA are also (S,R)-bimodule isomorphisms. Therefore, the functors
on subdiagrams II and III are equivalences.

Now using the transitivity of category equivalence, we obtain the equiv-
alences SCModR ≈ SUTfModR ≈ SFModR. �

From the previous proof we also see that the restriction functors P|
SCModR ,

P|
SUTfModR , K|

SFModR and K|
SUTfModR are equivalence functors. Because func-

tors P and K can be expressed as the following compositions

P = (S ⊗S ) ◦ ( ⊗R R) ◦ ( R) ◦ (S ),

K = (SHom(S, )) ◦ (HomR(R, )) ◦ ( /tR( )) ◦ ( /St( )).

6.1.4 An essential localization

We will need to consider one more functor, which we define as a composition
of functor U defined in (2.10) and T defined in (6.6):

Q := T ◦U : SModR → SUTfModR, M 7→ (SMR)/t(SMR).

(Here we will use the same symbols for functors and their restrictions.)

Now we will prove that Q = T◦U ∼= U◦T, i.e. the diagram on Figure 6.6
commutes (up to isomorphism).

SModR

STfModR

SUModR

SUTfModR

T T

U

U

Q

Figure 6.6

Lemma 6.15. The functor T ◦U is naturally isomorphic to U ◦T.
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Proof. Fix a bimodule M ∈ SModR. Clearly t(SMR) ⊆ t(M) = Ker(κ),
where κ : M → M/t(M) is the canonical surjection. Note, that for any∑k∗

k=1 skmkrk ∈ SMR, we have

κ

(
k∗∑
k=1

skmkrk

)
=

[
k∗∑
k=1

skmkrk

]
=

k∗∑
k=1

sk[mk]rk ∈ S
(

M

t(M)

)
R.

Hence Im(κ|SMR) ⊆ S(M/t(M))R. By the Fundamental Theorem of Homo-
morphisms (see Paragraph 6.5 in [51]) we have the following commutative
diagram.

SMR S

(

M

t(M)

)

R

SMR

t(SMR)

κ|SMR

κ′ αM

Figure 6.7

We explicitly write out the (S,R)-bimodule homomorphism αM :

αM : (T ◦U)(M) =
SMR

t(SMR)
→ S

(
M

t(M)

)
R = (U ◦T)(M),

k∗∑
k=1

skmkrk + t(SMR) 7→
k∗∑
k=1

sk(mk + t(M))rk.

Clearly αM is surjective. Also, αM is injective, because t(SMR) =
Ker(κ|SMR). Hence αM is an isomorphism in SUTfModR.

Next, we will show that α = (αM)M∈SModR is natural. Note that, for any

[
∑k∗

k=1 skmkrk]t(SMR) ∈ SMR/t(SMR), we have

((U ◦T)(f) ◦ αM)

[ k∗∑
k=1

skmkrk

]
t(SMR)

 = [f ]
∣∣
S( M

t(M)
)R

(
k∗∑
k=1

sk[mk]t(M)rk

)

=

[
k∗∑
k=1

skf(mk)rk

]
t(N)

=
k∗∑
k=1

sk[f(mk)]t(N)rk,

(αN ◦ (T ◦U)(f))

[ k∗∑
k=1

skmkrk

]
t(SMR)

=αN

[f |SMR]

[ k∗∑
k=1

skmkrk

]
t(SMR)





6.1. SUBCATEGORIES OF ALL BIMODULES 105

= αN

[ k∗∑
k=1

skf(mk)rk

]
t(SNR)

 =
k∗∑
k=1

sk[f(mk)]t(N)rk.

Hence (U ◦ T)(f) ◦ αM = αN ◦ (T ◦U)(f), which proves that α is natural.
In conclusion, we have shown that α = (αM)M∈SModR : T ◦U → U ◦ T is a
natural isomorphism. �

Introduce the following inclusion functors

JC : SCModR → SModR,

JF : SFModR → SModR,

JQ : SUTfModR → SModR.

Now we will collect all the information we have proven so far to one diagram
(Figure 6.8). We will denote the restrictions K′ := K|

SUTfModR and P′ :=
P|

SUTfModR .

SModR SUTfModR

SCModR

SFModR

JC

JF

⊣K = S Hom(S,HomR(R, /t( )))

⊢P = S ⊗S S R⊗R R

K′ U′ = S R≈

≈P′ T′ = /t( )

JQ

Q

Figure 6.8

In the next theorem we will construct a left adjoint to the functor K.
This gives us the second main result of this section. The one sided analogue
of the following theorem was proves by Maŕın in [33] (Proposition 3.17).

Theorem 6.16. Let S and R be idempotent rings. The subcategory SCModR
is an essential localization of SModR.

Proof. Let S and R be idempotent rings. We will prove that the functor

K = SHom(S,HomR(R, /t( ))) : SModR → SCModR
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has a left adjoint.
From Theorem 6.3 we have the adjunction P ` JF. Due to the equiva-

lences proven in Theorem 6.14, we have the following adjunctions (see Fig-
ure 6.8)

K′ = K ◦ JQ ` U′ = Q ◦ JC, (6.12)

T′ = Q ◦ JF ` P′ = P ◦ JQ. (6.13)

The next part of the proof is divided into two parts.
1. We will first prove that Q ∼= Q◦JF◦P. Fix M ∈ SModR. Without loss

of generality assume that bimodule M is unitary, because otherwise if
Q|

SUModR
∼= Q ◦ JF ◦P|

SUModR holds, then

Q ◦ JF ◦P = (Q ◦ JF ◦P|
SUModR) ◦U ∼= Q|

SUModR ◦U = T ◦U = Q.

If SMR is unitary, then P(M) = S ⊗S SMR ⊗R R = S ⊗S M ⊗R R.
Define a mapping

ηM : Q(JF(P(M))) =
S ⊗S M ⊗R R

t(S ⊗S M ⊗R R)
→ SMR

t(SMR)
= Q(M),

k∗∑
k=1

sk ⊗mk ⊗ rk + t(S ⊗S M ⊗R R) 7→
k∗∑
k=1

skmkrk + t(SMR).

First we will show that ηM is well defined. Take
∑k∗

k=1 sk ⊗mk ⊗ rk ∈
t(S ⊗S M ⊗R R). Now, for any s ∈ S and r ∈ R, we have

s

(
k∗∑
k=1

skmkrk

)
r = s

(
µM

(
k∗∑
k=1

sk ⊗mk ⊗ rk

))
r

= µM

(
s

(
k∗∑
k=1

sk ⊗mk ⊗ rk

)
r

)
= µM(0) = 0.

Hence
∑k∗

k=1 skmkrk ∈ t(SMR) and therefore

t(S ⊗S M ⊗R R) ⊆ Ker(κ ◦ µM),

where κ : SMR → SMR/t(SMR) is the canonical surjection. Now
using the Fundamental Theorem of Homomorphisms (see Paragraph 6.5
in [51]) we see that ηM is a well-defined (S,R)-bimodule homomorphism
(Figure 6.9).
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S ⊗S M ⊗R R SMR
SMR

t(SMR)

S ⊗S M ⊗R R

t(S ⊗S M ⊗R R)

µM κ

κ ◦ µM

κ′ ηM

Figure 6.9

The homomorphism ηM is clearly surjective. We will show that it is
injective. Fix [

∑k∗

k=1 sk ⊗mk ⊗ rk] ∈ Ker(ηM). Then
∑k∗

k=1 skmkrk ∈
t(SMR) meaning that

s

(
k∗∑
k=1

skmkrk

)
r = 0

for any s ∈ S and r ∈ R. Fix s ∈ S and r ∈ R. Since S and R are
idempotent, there exist s′1, s

′′
1, . . . , s

′
t∗ , s

′′
t∗ ∈ S and r′1, r

′′
1 , . . . , r

′
h∗ , r

′′
h∗ ∈

R such that s =
∑t∗

t=1 s
′
ts
′′
t and r =

∑h∗

h=1 r
′
hr
′′
h. Now

s

[
k∗∑
k=1

sk ⊗mk ⊗ rk

]
r =

(
t∗∑
t=1

s′ts
′′
t

)[
k∗∑
k=1

sk ⊗mk ⊗ rk

](
h∗∑
h=1

r′hr
′′
h

)

=

[
t∗∑
t=1

h∗∑
h=1

k∗∑
k=1

s′ts
′′
t sk ⊗mk ⊗ rkr′hr′′h

]

=

[
t∗∑
t=1

h∗∑
h=1

s′t ⊗ s′′t

(
k∗∑
k=1

skmkrk

)
r′h ⊗ r′′h

]

=

[
t∗∑
t=1

h∗∑
h=1

s′′t ⊗ 0⊗ r′′h

]
= [0].

Therefore [
∑k∗

k=1 sk ⊗ mk ⊗ rk] ∈ t(Q(JF(P(M)))) = {[0]}. Hence
ηM is also injective and therefore a bimodule isomorphism. Clearly
η = (ηM)M∈SModR is natural in M . From the isomorphism Q ∼=
(Q ◦ JF) ◦P = T′ ◦P, we obtain the adjunction

Q ` JF ◦P′, (6.14)

by composing the adjunctions (6.13) and P ` JF as described in (2.3).



108 CHAPTER 6. MONOMORPHISMS OF FIRM BIMODULES

2. Next we will prove that K = K ◦JQ ◦Q. Fix a bimodule M ∈ SModR.
We must show that bimodules K(M) and K(JQ(Q(M))) = K(SMR)
are isomorphic. Without loss of generality assume that bimodule M is
torsion-free, because otherwise if K|

STfModR = K|
STfModR ◦JQ ◦Q holds,

then

K = K|
STfModR ◦T = K|

STfModR ◦ JQ ◦Q ◦T
∼= K|

STfModR ◦ JQ ◦U ◦T ◦T ∼= K|
STfModR ◦ JQ ◦U ◦T

∼= K|
STfModR ◦ JQ ◦Q = K ◦ JQ ◦Q

also holds (see Lemma 6.15 and Lemma 6.8). Clearly the inclusion

K(JQ(Q(M))) = SHom(S,HomR(R, SMR))

⊆ SHom(S,HomR(R,M)) = K(M)

holds. Fix f ∈ SHom(S,HomR(R,M)) = K(M) and s ∈ S, r ∈ R.
Since S and R are idempotent, there exist elements s1, s

′
1, . . . , sk∗ , s

′
k∗ ∈

S and r1, r
′
1, . . . , rh∗ , r

′
h∗ ∈ R such that s = s1s

′
1 + . . . + sk∗s

′
k∗ and

r = r1r
′
1 + . . .+ rh∗r

′
h∗ . We have

f(s)(r) = f (s)

(
h∗∑
h=1

rhr
′
h

)

=
h∗∑
h=1

f(s)(rh)r
′
h (f(s) is a right R-homomorphism)

=
h∗∑
h=1

f

(
k∗∑
k=1

sks
′
k

)
(rh)r

′
h

=
h∗∑
h=1

(
k∗∑
k=1

skf(s′k)

)
(rh)r

′
h (f is a left S-homomorphism)

=
h∗∑
h=1

k∗∑
k=1

sk(f(s′k)(rh))r
′
h (left S-multipl. in HomR(R,M))

∈ SMR.

Hence Im(f)⊆SMR, which implies that f∈SHom(S,HomR(R,SMR)).
It suffices to show that the functors K and K ◦ JQ ◦Q coincide on all
morphisms of STfModR. Take M,N ∈ STfModR and g : M → N (then
[g] = g).

(K ◦ JQ ◦Q)(g) = K(JQ(Q(g))) = K(JQ(T(U(g))))
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= K(JQ(T(g|SMR))) = K([g|SMR]) = g|SMR ◦ ,

K(g) = g ◦ .

Now (K ◦ JQ ◦Q)(g) = K(g) holds because we have previously shown
that for every f ∈ K(M) we have Im(f) ⊆ SMR, which means that
g|SMR ◦ f = g ◦ f . Therefore we have shown that K = K ◦ JQ ◦Q.

In conclusion we obtain the following composition of adjunctions

K = (K ◦ JQ) ◦Q ` (JF ◦P′) ◦ (Q ◦ JC) = (JF ◦P′) ◦U′

SCModR SUTfModR SModR⊥ ⊥

Q ◦ JC JF ◦P′

QK ◦ JQ

Figure 6.10

from adjunctions (6.12) and (6.14) using (2.3) (see Figure 6.10). Hence, the
functor (JF ◦P′) ◦U′ : SCModR → SModR is a left adjoint of K. �

6.2 Monomorphisms of (unitary) bimodules

Let S and R be rings. In this section we will study monomorphisms in
the category SModR and give a sufficient condition for a morphism to be a
monomorphism in the category SUModR.

First we will introduce the notion of an Ab-category (Appendix A.4.1 in
[50]) and prove a simple lemma about monomorphisms in in these.

Definition 6.17. A category A is called an Ab-category or a pre-additive
category, if every morphism-set MorA(B,C) has a structure of an abelian
group in such a way that composition distributes over addition.

Lemma 6.18. Let A be an Ab-category and C ⊆ A its full subcategory. A
morphism f ∈ MorC(B,C) is a monomorphism if and only if

f ◦ u = 0 =⇒ u = 0 (6.15)

for every u ∈ MorC(D,B).

Proof. Necessity. Let f be a monomorphism. For every morphism u,
condition f ◦ u = 0 = f ◦ 0 implies u = 0.
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Sufficiency. For every u ∈ MorC(D,B) assume condition (6.15). Let u
and v be morphisms such that f ◦ u = f ◦ v. Then

f ◦ u = f ◦ v =⇒ f ◦ u− f ◦ v = 0 =⇒ f ◦ (u− v) = 0

=⇒ u− v = 0 =⇒ u = v.

Therefore f is a monomorphism in the category C. �

Clearly, the category SModR is an Ab-category for arbitrary rings S and
R. Monomorphisms in SModR can be described as follows.

Proposition 6.19. Let S and R be rings and f a morphism in SModR. The
following assertions are equivalent:

(1) f is a monomorphism;
(2) f is an extremal monomorphism;
(3) f is a regular monomorphism;
(4) f is injective.

Proof. ((3) =⇒ (2) =⇒ (1)). These implications hold in every category
(see Lemma 2.4).

((4) =⇒ (1)). This holds by Corollary 7.38 in [2], because SModR is a
construct [2, Definition 5.1 (2)].

((1) =⇒ (4)). Let f : M → N be a monomorphism in SModR. Consider
the inclusion ιKer f : Ker f → M . Since Ker f is a sub-bimodule of M ,
ιKer f is an (S,R)-bimodule homomorphism. Clearly f ◦ ιKer f = 0. Since
f is a monomorphism, using Lemma 6.18, we obtain ιKer f = 0. We get
{0} = Im ιKer f = Ker f , which implies that f is injective.

((4) =⇒ (3)). Let f : SMR → SNR be an injective homomorphism.
Then f is a monomorphism in SModR. Consider the quotient bimodule

C := (N ×N)/(Imf × Imf) ∈ SModR.

Define the mappings g1, g2 : N → C as follows:

g1(n) := [(n, 0)],

g2(n) := [(0, n)],

for every n ∈ N . Note that g1 and g2 are (S,R)-bimodule homomorphisms.
Let m ∈M . Observe that

(f(m), 0)− (0, f(m)) = (f(m),−f(m)) = (f(m), f(−m)) ∈ Imf × Imf,

therefore (g1 ◦ f)(m) = [(f(m), 0)] = [(0, f(m))] = (g2 ◦ f)(m). Hence
g1 ◦ f = g2 ◦ f . Denote N := {n ∈ N | g1(n) = g2(n)}. We will show that
Imf = N .
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(⊆). If n ∈ Imf , then there exists m ∈M such that n = f(m). Hence

g1(n) = g1(f(m)) = (g1 ◦ f)(m) = (g2 ◦ f)(m) = g2(f(m)) = g2(n).

Therefore n ∈ N .
(⊇). If n ∈ N , then g1(n) = g2(n) and

Imf × Imf = [(0, 0)] = g1(n)− g2(n) = [(n, 0)]− [(0, n)] = [(n,−n)].

Therefore (n,−n) ∈ Imf × Imf , which implies that n ∈ Imf .
In conclusion, we have shown that Imf = N , hence ιImf : Imf → N is

an equalizer of morphisms g1 and g2 (Figure 6.11).

Imf N C

M

ιImf g1

g2

f ′ f

Figure 6.11

Therefore there exists a unique homomorphism f ′ : M → Imf such that
ιImf ◦ f ′ = f . Since f is injective, f ′ must also be injective. For every
m ∈ M we have f(m) = ιImf (f

′(m)) = f ′(m), hence f ′ is also surjective. In
conclusion, f ′ is a bimodule isomorphism and, therefore, f is also an equalizer
of g1 and g2, which means that f is a regular monomorphism. �

Next we will turn our attention to monomorphisms in SUModR. First we
will describe regular and extremal monomorphisms in SUModR.

Proposition 6.20. Let S and R be rings and f a morphism in SUModR.
The following assertions are equivalent:

(1) f is a regular monomorphism;
(2) f is an extremal monomorphism;
(3) f is injective.

Proof. ((1) =⇒ (2)). By Lemma 2.4.
((2) =⇒ (3)) Let f : SMR → SNR be an extremal monomorphism in

SUModR. Consider the composition given on Figure 6.12.

M N

M/Ker f

f

κ h

Figure 6.12
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Here κ : M →M/Ker f is the canonical surjection and M/Ker f ∈ SUModR.
The mapping h : M/Ker f → N is a well-defined injective (S,R)-bimodule
homomorphism due to the Fundamental Theorem of Homomorphisms. Since
f is extremal, κ is bijective. Now f is injective, because it can be expressed
as the composition of a bijective and an injective homomorphism f = h ◦ κ.

((3) =⇒ (1)) This implication can be proved exactly as the implication
(4) =⇒ (3) in Proposition 6.19 by noticing that the category SUModR is
closed under taking direct squares and quotients. �

Next we will prove a necessary condition for a morphism being a mono-
morphism in SUModR.

Proposition 6.21. Let S and R be rings and f ∈ Mor
SUModR(M,N). If the

condition S(Ker f)R = {0} holds, then f is a monomorphism.

Proof. Let S and R be rings, f : M → N a morphism in SUModR and
assume that S(Ker f)R = {0} holds. Take g ∈ Mor

SUModR(A,M) such that
f ◦ g = 0 and a ∈ A. Since SAR is unitay, there exist s1, . . . , sk∗ ∈ S,
r1, . . . , rk∗ ∈ R and a1, . . . , ak∗ ∈ A such that a = s1a1r1 + . . . + sk∗ak∗rk∗ .
For every index k ∈ {1, . . . , k∗} we have f(g(ak)) = 0. Now, by assumption
we obtain

∑k∗

k=1 skg(ak)rk = 0 and therefore

g(a) = g

(
k∗∑
k=1

skakrk

)
=

k∗∑
k=1

skg(ak)rk = 0.

Hence g = 0 and, by Lemma 6.18, f is a monomorphism. �

Corollary 6.22. Let S and R be rings and M ∈ SUModR. The canonical
homomorphism µM : S ⊗S M ⊗R R→M is a monomorphism in SUModR.

Proof. Let S and R be rings and M ∈ SUModR. Notice that, due to M
being unitary, using Lemma 2.24 we have

S⊗SM ⊗RR = S⊗S (SMR)⊗RR = SS⊗SM ⊗RRR = S(S⊗SM ⊗RR)R,

which implies that S ⊗SM ⊗R R ∈ SUModR. Clearly, µM defined as in (6.1)
is a morphism in SUModR.

Now, arbitrary α ∈ KerµM can be expressed as α =
∑k∗

k=1sk ⊗mk ⊗ rk.
We have

0 = µM(α) = µM

(
k∗∑
k=1

sk ⊗mk ⊗ rk

)
=

k∗∑
k=1

skmkrk.
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For every s ∈ S and r ∈ R, we have

s α r =s

(
k∗∑
k=1

sk ⊗mk ⊗ rk

)
r=

k∗∑
k=1

ssk ⊗mk ⊗ rkr=
k∗∑
k=1

s⊗ skmkrk ⊗ r

= s⊗

(
k∗∑
k=1

skmkrk

)
⊗ r = s⊗ 0⊗ r = 0.

Therefore SαR = {0} and, by Proposition 6.21, µM is a monomorphism in

SUModR. �

Thanks to the previous corollary we can give an example of a non-injective
monomorphism in SUModR.

Example 6.23 (Non-injective monomorphism). From Example 2.14 we
know that the module M = (0, 2)(Z2⊕Z) is a unitary non-firm right (Z2⊕Z)-
module. Denote R := Z2 ⊕ Z. As any right module, M can be viewed as
a (Z, R)-bimodule with the usual left Z-multiplication. The new module

ZMR retains its properties of being unitary, yet non-firm, because MR is still
non-firm. Now, by Corollary 6.22, the morphism

µM : Z⊗Z M ⊗R R→M, z ⊗m⊗ r 7→ zmr

is a monomorphism in ZUModR. Consider 1⊗ (0, 2)⊗ (1, 2) ∈ Z⊗ZM ⊗RR.
Note that

µM(1⊗ (0, 2)⊗ (1, 0)) = 1(0, 2)(1, 0) = (0, 0),

but

f(1⊗ (0, 2)⊗ (1, 0)) = 1 · 1 · 1 = 1,

where f : Z⊗ZM ⊗RR→ Z2, k⊗ (0, 2b)⊗ (z, a) 7→ kbz is a (Z,Z)-bimodule
homomorphism. This proves that 1 ⊗ (0, 2) ⊗ (1, 0) 6= 0 ∈ Z ⊗Z M ⊗R R,
because every homomorphism takes zero to zero. Hence µM is a non-injective
monomorphism in ZUModR. The morphism µM is surjective, because M is
unitary, and therefore µM is an epimorphism and a bimorphism. �

From the previous example we deduce that there exist rings S and R
such that the category SUModR is not balanced, as it contains a bimorphism,
which is not an isomorphism.
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6.3 Monomorphisms of firm bimodules

In this section we will describe monomorphisms in the category SFModR,
where S and R are idempotent rings. But first we will prove some useful
properties of the functor P : SModR → SFModR from Proposition 6.2.

Lemma 6.24. Let S and R be idempotent rings. If f : M → N is a mono-
morphism in SModR, then P(f) = idS ⊗f |SMR ⊗ idR is a monomorphism in

SFModR. Moreover, P : SModR → SFModR preserves surjective morphisms.

Proof. 1. Let S and R be idempotent rings. By Theorem 6.3, the cate-
gory SFModR is a coreflective subcategory of SModR with a coreflector
P = S ⊗S S R ⊗R R : SModR → SFModR. Therefore P has a left
adjoint, which is the inclusion functor JF. Hence P preserves all limits
and therefore also monomorphisms.

2. Let f : M → N be a surjective homomorphism on bimodules. Take
an arbitrary α =

∑k∗

k=1 sk ⊗ nk ⊗ rk ∈ P(N) = S ⊗S SNR ⊗R R. For
every k ∈ {1, . . . , k∗}, there exists mk ∈M such that nk = f(mk), due
to the surjectivity of f . Now

k∗∑
k=1

sk⊗nk⊗rk =
k∗∑
k=1

sk⊗f(mk)⊗rk = (idS ⊗f⊗idR)

(
k∗∑
k=1

sk ⊗mk ⊗ rk

)
,

which implies that idS ⊗f ⊗ idR is surjective. Also, since nk ∈ SNR,
we obtain that P(f) = idS ⊗f |SMR ⊗ idR is surjective. �

Now we can present our main theorem of this section. This theorem
is inspired by an analogous theorem for semigroups and firm acts in [25]
(Theorem 2.10).

Theorem 6.25. Let S and R be idempotent rings and f : M → N a mor-
phism in SFModR. The following assertions are equivalent:

(1) f is a monomorphism;
(2) f is an extremal monomorphism;
(3) f is a regular monomorphism;
(4) S(Ker f)R = {0};
(5) f = µN ◦ (idS ⊗a ⊗ idR) ◦ g, where A ∈ SUModR, a : A → N is an

injective homomorphism and g : M → S ⊗S A⊗R R an isomorphism;
(6) f = h◦(idS ⊗b⊗idR)◦g, where A,B ∈ SUModR, b : A→ B is an injec-

tive homomorphism and g : M → S⊗SA⊗RR, h : S ⊗S B ⊗R R→ N
are isomorphisms.
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M N

S ⊗S A⊗R R S ⊗S N ⊗R R

f

g

idS ⊗a⊗ idR

µN

Figure 6.13: Condition (5).

M N

S ⊗S A⊗R R S ⊗S B ⊗R R

f

g

idS ⊗b⊗ idR

h

Figure 6.14: Condition (6).

Proof. ((3) =⇒ (2) =⇒ (1)). Holds in every category (Lemma 2.4).
((1) =⇒ (3)). The category SCModR is an essential localization of

SModR by Theorem 6.16. Now, by Proposition 6.19 and Lemma 2.7, we ob-
tain that monomorphisms and regular monomorphisms coincide in SCModR.
By Theorem 6.14, we know that SCModR and SFModR are equivalent cate-
gories, therefore monomorphisms and regular monomorphisms also coincide
in SFModR.

((1) =⇒ (4)). Let f be a monomorphism. Consider the bimodule
S ⊗S S(Ker f)R⊗R R, which is firm by Proposition 6.2, and the morphism

µS(Ker f)R : S ⊗S S(Ker f)R⊗RR→M,
k∗∑
k=1

sk ⊗mk ⊗ rk 7→
k∗∑
k=1

skmkrk.

Clearly, f ◦ µS(Ker f)R = 0 and hence, by Lemma 6.18, µS(Ker f)R = 0. On the
other hand Im(µKer f ) = S(S(Ker f)R)R = (SS)(Ker f)(RR) = S(Ker f)R,
which implies that S(Ker f)R = {0}.

((4) =⇒ (1)). This is proved precisely as in Proposition 6.21.
((2) =⇒ (5)). Let f be an extremal monomorphism in SFModR. Ac-

cording to the Fundamental Homomorphism Theorem, there exist a bimodule

SAR = M/Ker f , a surjective homomorphism e : M → A and an injective
homomorphism a : A→ N in SModR, such that f = a ◦ e (Figure 6.15).

M N

AS ⊗S M ⊗R R

S ⊗S A⊗R R S ⊗S N ⊗R R

f

idS ⊗a⊗ idR

µN

a
eµM

idS ⊗e⊗ idR µA

Figure 6.15

As a quotient of a unitary bimodule M , the bimodule A = M/Ker f is
also unitary. Still, A need not be a firm (S,R)-bimodule. Using the naturality
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of µ (see Proposition 6.1), we have

f ◦ µM = a ◦ e ◦ µM = a ◦ µA ◦ (idS ⊗e⊗ idR)

= µN ◦ (idS ⊗a⊗ idR) ◦ (idS ⊗e⊗ idR).

Since M is firm, µM is bijective by Proposition 6.1, and therefore

f = µN ◦ (idS ⊗a⊗ idR) ◦ ((idS ⊗e⊗ idR) ◦ µ−1
M ). (6.16)

By Proposition 6.2, we have that S ⊗S A ⊗R R is firm. Equality (6.16)
is a factorization of monomorphism f in SFModR into a composition of a
morphism µN ◦ (idS ⊗a ⊗ idR) and an epimorphism (idS ⊗e ⊗ idR) ◦ µ−1

M .
Indeed, since e is surjective, by Lemma 6.14, idS ⊗e⊗ idR is also surjective,
and hence idS ⊗e⊗ idR is an epimorphism. Due to the assumption that f is
extremal, we conclude that g := (idS ⊗e⊗ idR) ◦ µ−1

M is an isomorphism.
((5) =⇒ (6)). This is obvious (take B := N and h := µN).
((6) =⇒ (1)). Assume that f = h ◦ (idS ⊗b ⊗ idR) ◦ g for some uni-

tary (S,R)-bimodules A and B, injective homomorphism b : A → B and
isomorphisms g : M → S ⊗S A ⊗R R and h : S ⊗S B ⊗R R → N (Figure
6.14). Since the homomorphism b is injective, by Proposition 6.19, b is a reg-
ular monomorphism in SModR. Now according to Lemma 6.24 the morphism
idS ⊗b⊗idR is a monomorphism in SFModR. Since g and h are isomorphisms,
f is also a monomorphism. �

Next, we will prove a result, which can be used to construct non-injective
monomorphisms in SFModR, where S and R are idempotent rings.

Proposition 6.26. Let S and R be idempotent rings, let a bimodule SMR

be firm and SNR be a unitary, but non-firm, sub-bimodule of SMR. Let
ιN : N →M be the inclusion mapping. Then idS ⊗ιN⊗idR : S⊗SN⊗RR→
S ⊗S M ⊗R R is a non-injective regular monomorphism in SFModR.

Proof. Using the naturality of µ, we may consider the following commuta-
tive square (Figure 6.16).

S ⊗S N ⊗R R S ⊗S M ⊗R R

N M

idS ⊗ ιN ⊗ idR

µN µM

ιN

Figure 6.16



6.3. MONOMORPHISMS OF FIRM BIMODULES 117

Here µM is bijective and µN is surjective, but not injective. Suppose, to the
contrary, that idS ⊗ ιN ⊗ idR is injective. Then µM ◦ (idS ⊗ ιN ⊗ idR) is aslo
injective. From the equality

µM ◦ (idS ⊗ ιN ⊗ idR) = ιN ◦ µN ,

we deduce that µN is injective. This is a contradiction to the assumtion that
N is not firm. Therefore idS ⊗ ιN ⊗ idR is non-injective.

On the other hand, idS ⊗ ιN⊗ idR is a regular monomorphism in SFModR.
Because ιN is a regular monomorphism in the category SModR by Proposi-
tion 6.19 and by Lemma 6.24 idS ⊗ ιN ⊗ idR is a monomorphism in SFModR
(here N is unitary, hence ιN |SNR = ιN). By Theorem 6.25, every monomor-
phism in SFModR is also a regular monomorphism in SFModR. �

The previous proposition is meaningful, because by Example 2.14, there
exists a firm bimodule, which has a sub-bimodule that is unitary, but not
firm.

Finally we will prove a result about bimodules over xst-rings. Recall that
a ring R is called a right (left) xst-ring, if every submodule of any unitary
right (left) R-module is unitary (Definition 1 in [12]).

Proposition 6.27. For idempotent rings S and R the following assertions
are equivalent:

(1) S is a left xst-ring and R a right xst-ring;
(2) SUModR = SFModR;
(3) monomorphisms in SUModR are injective;
(4) µM is injective for all (S,R)-bimodules SMR.

Proof. Let S and R be idempotent rings.
((1) ⇐⇒ (2)). This equivalence follows from Proposition 9 in [17].
((2) =⇒ (3)). Assume that SUModR = SFModR holds. By Theorem

6.25 (5) we have that any monomorphism f : M → N in SUModR is of the
form f = µN ◦ (idS ⊗a⊗ idR)◦g for a unitary (S,R)-bimodule A, an injective
homomorphism a : A → N and an isomorphism g : M → S ⊗S A ⊗R R.
By assumption, µA is an isomorphism. Using the naturality of µ, we get
that f = a ◦ µA ◦ g. Now we have expressed f as a composite of injective
homomorphisms, therefore f itself is also injective.

((3) =⇒ (4)). Assume monomorphisms in SUModR to be injective.
Let M ∈ SModR. The (S,R)-bimodule S ⊗S M ⊗R R is unitary, because
S(S ⊗S M ⊗R R)R = (SS) ⊗S M ⊗R (RR) = S ⊗S M ⊗R R. Clearly,
SMR = U(M) is also unitary.
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Obviously ImµM ⊆ SMR. Consider the homomorphism

µM |SMR : S ⊗S M ⊗R R→ SMR, µM |SMR(s⊗m⊗ r) = µM(s⊗m⊗ r).

By the proof of Corollary 6.22, µM |SMR is a monomorphism in SUModR.
Then, by the assumption, µM |SMR is injective, therefore µM is also injective.

((4) =⇒ (2)). Assume that µM is injective for all (S,R)-bimodules SMR.
It is clear, that if SNR is unitary, then µN is surjective, therefore µN is an
isomorphism and SUModR = SFModR. �

6.4 Lattice of unitary sub-bimodules of a firm

bimodule

In this section we will show that, for a fixed firm bimodule M , the lattice
of unitary sub-bimodules USub(M) and the lattice of subobjects of M are
isomorphic. First we must recall the notion of subobjects of an object A in
some category A (see Definition 7.77 and Definition 7.79 in [2]).

Let A be a category and fix an object A of A. Let Iso(A) denote the
class of all isomorphisms in A. Consider the following equivalence relation
defined on the class of monomorphisms with codomain A in category A:

f ∼ g :⇐⇒ ∃h ∈ Iso(A) : f = g ◦ h.

A

B C
h

f g

Figure 6.17

Denote [f ] = [f ]∼ the equivalence class of a monomorphism f by the
relation ∼. We denote

SUBA(A) := {[f ]∼ | f : B → A is a monomorphism}.

Equivalence classes [f ] ∈ SUBA(A) are called subobjects of A. The relation
� defined by

[f ] � [g] :⇐⇒ ∃m ∈ Mor(A) : f = g ◦m

is a partial order on the class SUBA(A).
In [18, Theorem 6] Maŕın and González-Férez showed that SUBFModR(M),

where M ∈ FModR, is a lattice, gave formulas for computing joins and meets
for two subobjects and proved the following result.
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Theorem 6.28 (Theorem 6 in [18]). In the category of firm right mod-
ules over a ring, the lattices of subobjects are modular.

For every M ∈ SFModR we write

S(M) := SUB
SFModR(M).

The following theorem shows that if S and R are idempotent rings, then
for every bimodule M ∈ SFModR, the lattices USub(M) and S(M) are iso-
morphic. It is a ring theoretic analogue of Theorem 4.2 in [25] for the case
of bimodules.

Theorem 6.29. Let SMR be a firm (S,R)-bimodule over idempotent rings
S and R. Then there exists an isomorphism of lattices

Ψ: USub(M)→ S(M).

Proof. Let S and R be idempotent rings and M ∈ SFModR. We consider
the mapping Ψ: USub(M)→ S(M) defined by

Ψ(N) := [µM ◦ (idS ⊗ ιN ⊗ idR)], (6.17)

for every SNR ∈ USub(M) and the inclusion ιN : N →M .

S ⊗S N ⊗R R S ⊗S M ⊗R R M
idS ⊗ιN ⊗ idR µM

Figure 6.18

The (S,R)-bimodules S⊗SN ⊗RR and S⊗SM ⊗RR are firm by Propo-
sition 6.2 (the bimodules M and N are both unitary). The inclusion ιN is
obviously injective and by Proposition 6.19 a monomorphism in SModR. By
Lemma 6.24, idS ⊗ ιN⊗ idR is a monomorphism in SFModR. Since M is firm,
the morphism µM is an isomorphism and µM ◦(idS ⊗ ιN⊗ idR) is a monomor-
phism as a composite of a monomorphism and an isomorphism. Therefore,
Ψ is well defined.

Let N,O ∈ USub(M). Assume that N ⊆ O and consider the inclusion
ι′N : N → O (illustrated on Figure 6.19). Then ιN = ιO ◦ ι′N and

Ψ(N) = [µM ◦ (idS ⊗ ιN ⊗ idR)] = [µM ◦ (idS ⊗(ιO ◦ ι′N)⊗ idR)]

= [µM ◦ (idS ⊗ ιO ⊗ idR) ◦ (idS ⊗ ι′N ⊗ idR)]

� [µM ◦ (idS ⊗ ιO ⊗ idR)] = Ψ(O).
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S ⊗S N ⊗R R S ⊗S O ⊗R R S ⊗S M ⊗R R

N O M

idS ⊗ ι′
N
⊗ idR idS ⊗ ιO ⊗ idR

ι′
N

ιO

µN µO µM

idS ⊗ ιN ⊗ idR

ιN

Figure 6.19

On the other hand, if we assume that Ψ(N) � Ψ(O), then

[ιN ◦ µN ] = [µM ◦ (idS ⊗ ιN ⊗ idR)] � [µM ◦ (idS ⊗ ιO ⊗ idR)] = [ιO ◦ µO]

by the naturality of µ. Hence, there exists a morphism g : S ⊗S N ⊗R R→
S ⊗S O ⊗R R in SModR such that ιN ◦ µN = ιO ◦ µO ◦ g. If n ∈ N then, by
the unitarity of N , we know that there exist s1, . . . , sk∗ ∈ S, r1, . . . , rk∗ ∈ R
and n1, . . . , nk∗ ∈ N such that n = s1n1r1 + . . .+ sk∗nk∗rk∗ . Consequently,

n = ιN

(
k∗∑
k=1

sknkrk

)
= ιN

(
µN

(
k∗∑
k=1

sk ⊗ nk ⊗ rk

))

= ιO

(
µO

(
g

(
k∗∑
k=1

sk ⊗ nk ⊗ rk

)))
∈ Im ιO = O

and hence N ⊆ O. This proves that Ψ is an order-embedding.
Let us consider an equivalence class [f ] ∈ S, where f : N → M is a

monomorphism in SFModR. By Theorem 6.25 (5), f = µM ◦(idS ⊗a⊗ idR)◦g
for a unitary (S,R)-bimodule A, an injective homomorphism a : A→M and
an isomorphism g : N → S ⊗S A⊗R R.

We write a as a composition a = a′ ◦ ιa(A), where a(A) = Ima is a unitary
sub-bimodule of M and a′ : x 7→ a(x) is an isomorphism (Figure 6.20).

A a(A) M
a′ ιa(A)

Figure 6.20

Using the naturality of µ and that (idS ⊗a′ ⊗ idR) and g are isomorphisms,
we obtain the following equalities (illustrated on Figure 6.21)

Ψ(a(A)) = [µM ◦ (idS ⊗ ιa(A) ⊗ idR)] = [ιa(A) ◦ µa(A)]
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= [ιa(A) ◦ µa(A) ◦ (idS ⊗ a′ ⊗ idR)] = [ιa(A) ◦ a′ ◦ µA]

= [a ◦ µA] = [µM ◦ (idS ⊗ a⊗ idR)] =

= [µM ◦ (idS ⊗ a⊗ idR) ◦ g] = [f ].

This proves the surjectivity of Ψ.

S ⊗S A⊗R R S ⊗S a(A)⊗R R S ⊗S M ⊗R R

A a(A) M

N
idS ⊗ a′ ⊗ idR idS ⊗ ιa(A) ⊗ idR

a′ ιa(A)

µA µa(A) µM

idS ⊗ a⊗ idR

a

g

Figure 6.21

We have shown that Ψ is a surjective order-embedding and hence an
isomorphism of posets and lattices. �

Corollary 6.30. Let S and R be idempotent rings and M ∈ SFModR. The
lattice S(M) is complete and modular.

Proof. Let S and R be idempotent rings and M ∈ SFModR. By Proposi-
tion 2.25, we know that the lattice USub(M) is complete and modular. By
Theorem 6.29, we have the lattice isomorphism USub(M) ∼= S(M). There-
fore S(M) is also a complete and modular lattice. �





Summary in Estonian

Idempotentsete ringide Morita ekvivalentsu-

sest ja püsivate bimoodulite monomorfismidest

Selles dissertatsioonis on uuritud idempotentsete ringide Morita ekvivalentsi
ning viimases peatükis on täpsemalt vaadeldud erinevat tüüpi bimoodulite
kategooriaid. Bimoodulitel on oluline roll Morita teoorias, näiteks esinevad
nad Morita kontekstide komponentidena. Ringi nimetatakse idempotentseks,
kui iga tema element on esitatav mingite elementide korrutiste summana.
Idempotentsed ringid on ühikelemendiga ringide üldistus.

Ilma ühikelemendita ringide Morita ekvivalentsuse defineerimiseks on ül-
diselt kolm erinevat loomulikku viisi: öelda, et ringid R ja S on Morita ekvia-
lentsed parajasti siis, kui ringide R ja S püsivate, kinniste või unitaarsete-
väändeta parempoolsete moodulite kategooriad on ekvivalentsed. Idempo-
tentsete ringide klass on üks suuremaid ringide klasse, kus kõik need viisid
omavahel kokku langevad. Lisaks on idempotentsete ringide Morita ekvi-
valentsi mugav kirjeldada Morita kontekstide abil. Nimelt kehtib tingimus,
et idempotentsed ringid R ja S on Morita ekvivalentsed parajasti siis, kui
ringide R ja S vahel leidub unitaarne ja sürjektiivne Morita kontekst. See
kontekstidega kirjeldus leiab siinses dissertatsioonis rohket kasutust.

Käesoleva dissertatsiooni põhieesmärk on uurida mitmeid algebralisi kon-
struktsioone, mis on seotud idempotentsete ringide Morita ekvivalentsusega
ning nende abil avada idempotentsete ringide Morita ekvivalentsuse mõistet.
Lisaks on viimases peatükis erilise vaatluse all just püsivate bimoodulite ka-
tegooria ning monomorfismid selles kategoorias.

Antud väitekiri koosneb kuuest peatükist. Esimene peatükk on sisse-
juhatus, kus antakse lühike ülevaade Morita teooria ajaloost ning seejärel
tutvustatakse väitekirja struktuuri.

Teises peatükis on toodud vajalikud eelteadmised, mida läheb vaja, et
mõista seda väitekirja. Alustuseks on tutvustatud mõningaid mõisteid ka-
tegooriateooriast, nimelt kaasfunktoritega seotud mõisteid ja erinevat liiki
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monomorfisme. Seejärel on ära toodud vajalikud mõisted ringiteooriast ning
moodulite teooriast. Eelteadmiste peatükis on pikemalt tutvustatud ka bi-
mooduleid ning defineeritud erinevad bimoodulite kategooriad. Lõpetuseks
on antud Morita teooria algteadmised, s.h. on defineeritud idempotentsete
ringide Morita ekvivalentsus ja Morita kontekst ning esitatud Morita ekvi-
valentsuse kirjeldus kasutades Morita kontekste.

Kolmandas peatükis defineeritakse Reesi-maatriksringi ja tensorkorrutis-
ringi mõisted suvaliste ringide jaoks. Mõlemat konstruktsiooni on edukalt
kasutatud, et uurida Morita ekvivalentsust ning on tõestatud tulemus, mis
seob omavahel Reesi-maatriksringid ja tensorkorrutisringid. Lisaks on siin
peatükis vaadeldud kaas-endomorfismide ringe, millede abil on kirjeldatud
s-unitaalsete ringide Morita ekvivalentsus. See peatükk põhineb artiklil [48].

Neljandas peatükis on defineeritud ringide laiendid ning tõestatud mit-
meid ringide laiendite lihtsamaid omadusi. Antud peatüki põhiteoreemina on
tõestatud, et idempotentsed ringid R ja S on Morita ekvivalentsed parajasti
siis, kui leidub nende ringide ühine laiend. Lisaks on seal näidatud, et iga uni-
taarne ja sürjektiivne Morita kontekst idempotentsete ringide R ja S vahel on
isomorfne unitaarse ja sürjektiivse Morita kontekstiga, mis on indutseeritud
ringide R ja S ühise laiendi poolt. Lõpetuseks on näidatud, et poolrühmade
Morita ekvivalentsus on seotud teatavate ringide ühise laiendiga. Neljas
peatükk põhineb artiklil [27].

Viiendas peatükis uuritakse ringi unitaarsete ideaalide kvantaali. Seal
on tõestatud, et kui idempotentsed ringid R ja S on Morita ekvivalentsed,
siis on R ja S unitaarsete ideaalide kvantaalid isomorfsed. Siin peatükis
on seejärel lühidalt uuritud Morita ekvivalentsete ringide sokleid ja nende
ringide moodulite annihilaatoreid. Lisaks on tõestatud, et kui kaks ringi
on seotud Morita kontekstiga, siis on nende ringide faktorringid vastavate
ideaalide järgi samuti seotud sama liiki Morita kontekstiga. Viies peatükk
põhineb artiklil [49].

Viimases ehk kuuendas peatükis uuritakse põhjalikult püsivate bimoodu-
lite kategooriat üle mingite idempotentse ringide S ja R. Kõigepealt on siin
näidatud, et püsivate, kinniste ja unitaarsete-väändeta (S,R)-bimoodulite
kategooriad on tõepoolest ekvivalentsed. Seejärel on kirjeldatud monomor-
fismid püsivate (S,R)-bimoodulite kategoorias. Lõpetuseks on tõestatud, et
mingi püsiva (S,R)-bimooduli M unitaarsete alam-bimoodulite võre on iso-
morfne bimooduli M (kategoorsete) alamobjektide võrega. Kuues peatükk
on artikli [47] üldistus bimoodulite juhule.
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Summary in Latin

De aequivalentia Moritae anellorum idempo-

tentium et monomorfismo bimodulorum firmo-

rum

In hac dissertatione, aequivalentia Moritae anellorum idempotentium trac-
tata est et in capitulo ultimo genera ex variis categoriis bimodulorum tractata
sunt. Bimoduli in theoria Moritae magni momenti sunt, exampli gratia, ii
partes in contextibus Moritae sunt.

Meta principalis huius dissertationis est studium quarundam construc-
tionum algebrae, quae aequivalentiae Moritae anellorum idempotentium adi-
unctae sunt. Praeterea, in capitulo ultimo, categoria bimodulorum firmorum
et monomorphismi in ea observati sunt.

Haec dissertatio sex capitula habet. Primum capitulum introductio est.

In secundo capitulo scientia necessaria precursoria exposita est. Quaedam
notiones theoriae categoriarum introductae sunt. Deinde notiones necessariae
theoriae anellorum et modulorum relatae sunt. Postremo, scientia elemen-
taria theoriae Moritae tractata est, i.a. aequivalentia Moritae anellorum
idempotentium et contextus Moritae definiti sunt.

In tertio capitulo anellus matricis Reesi et anellus tensor-multiplicationis
anellis arbitrariis definitus est. Utraque constructio feliciter usa est studendo
aequivalentiae Moritae. Theorema, quod anellos matricis Reesi et anellos
tensor-multiplicationis conciliat, demonstratum est. Deinde anelli endomor-
phismorum adiunctorum considerati sunt, per quos aequivalentia Moritae
anellorum s-unitalium descripta est. Hoc capitulum scripturae [48] funda-
tum est.

In quarto capitulo extensiones anellorum definitae sunt et qualitates sim-
pliciores nonnullorum anellorum demonstratae sunt. In hoc capitulo theo-
rema, quod anelli idempotentes R et S aequivalentiam Moritae habent, si
anelli exensionem communem habent, demonstratum est. Hoc capitulum
scripturae [27] fundatum est.
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In quinto capitulo quantale idealium unitarium anelli tractatum est. In
hoc capitulo demonstratum est, ut si anelli idempotentes R et S aequivalen-
tiam Moritae habent, quantalia idealium unitarium R et S isomorpha sunt.
Hoc capitulum scipturae [49] fundatum est.

In ultimo et sexto capitulo categoria bimodulorum firmorum supra quos-
dam anellos idempotentes S et R tractata est. Monomorphismi in categoria
(S,R)-bimodulorum firmorum descripti sunt. Postremo demonstratum est,
ut reticulum sub-bimodulorum unitarium cuiusdam (S,R)-bimoduli firmi M
isomorphum est cum reticulo sub-obiectorum bimoduli M . Capitulum sex-
tum est praesentatio generalior scripturae [47].
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[2] Adámek, J., Herrlich, H., Strecker, G. E., (2004). Abstract and Concrete
Categories. The Joy of Cats. University of Bremen.

[3] Amitsur, S. A., (1971). Rings of quotients and Morita contexts, J. Alge-
bra 17, 273–298.

[4] Anderson, F. W., Fuller, K. R., (1974). Rings and Categories of Modules,
Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-
Heidelberg.
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