
Opportunities and Limits for Language Awareness in Text Editors

Cerstin Mahlow and Michael Piotrowski
Institute of Computational Linguistics

University of Zurich
Zurich, Switzerland

{mahlow, mxp}@cl.uzh.ch

Abstract

In this paper we argue that the concept of
language awareness, as known from pro-
grammer’s editors, can be transferred to
writing natural language and word proces-
sors. We propose editing functions which
use methods from computational linguis-
tics and take the structures of natural lan-
guages into consideration. Such functions
could reduce errors and better support writ-
ers in realizing their communicative goals.
We briefly compare characteristics of pro-
gramming languages and natural languages
and their processing tools with respect to
their suitability for being used in language-
aware functions in editors. However, lin-
guistic methods have limits, and there are
various aspects software developers have
to take into account to avoid creating a so-
lution looking for a problem: Language-
aware functions could be powerful tools
for writers, but writers must not be forced
to adapt to their tools.

1 Introduction

Writing is a daily task for a great number of peo-
ple. However, today’s word processors offer only
limited support for writing and editing: Most func-
tions are character-based and thus force writers
to translate high-level goals into low-level func-
tions of the editor. This causes typical errors, e.g.,
missing verbs, agreement errors, or wrong word
order. Functions improving the “brain-to-hand-
to-keyboard-to-screen-connection” (Taylor, 1987,
p. 79) as proposed by Dale (1989; 1996) or Mahlow
and Piotrowski (2008) could help avoid several
types of errors. Additionally, as cognitive resources
are limited (McCutchen, 1996; Allen and Scerbo,
1983), language-aware functions could reduce the
effort needed to deal with word processors and help

writers concentrate on their actual goals and remain
in control of their text. Writers should get inter-
active support during writing, very similar to the
support programmers get from their editors during
programming.

We will first describe the principles of language
awareness as they can be deduced from respective
functions in programmer’s editors and have a look
at the current situation in word processors. Then
we propose interactive editing functions operating
on linguistic elements and making use of tools and
methods of computational linguistics. From the
comparison of characteristics of programming lan-
guages and natural languages and the hence re-
sulting quality of the respective language process-
ing tools we will deduce opportunities and limits
language technologists have to be aware of when
implementing language-aware functions for word
processors.

2 Language Awareness in Editors

Both text written in natural languages (such as
English, German, or French) and computer pro-
grams written in programming languages (such
as Perl, Python, or C) have underlying syntactic
structures and are not merely strings of charac-
ters. In the context of programming languages,
text editors which are aware of this structure and
use this awareness to support the creation and edit-
ing of programs are referred to as syntax-directed,
language-sensitive, language-based, or language-
aware editors (Khwaja and Urban, 1993).

The ultimate goal of language awareness in pro-
grammer’s editors is to prevent errors in programs,
as the prevention of errors helps producing higher-
quality programs. Language awareness supports
programmers by giving them a better overview of
programs and by providing them with editing func-
tions operating on structural elements instead of
characters or lines.

14



In general, we can distinguish two types of
language-aware functionality: (1) Information func-
tions for highlighting individual language elements
and larger structures, or for displaying statistical
information regarding certain elements, which do
not change the text, and (2) operations for insert-
ing, reordering, modifying, or deleting elements,
i.e., functions changing the text. Both types of
functions operate on the elements defined by the
lexicon and the morphological and syntactical rules
of a concrete language.

Just as we can distinguish between formal lan-
guages (in this case: programming languages) and
natural languages, we can distinguish between two
major types of editors: Editors intended for writ-
ing computer programs (programmer’s editors) and
editors intended for writing natural-language text
(usually referred to as word processors). These two
types of editors can be seen as two instances of the
general class of text editors, each adapted to handle
writing, editing, and revising in specific languages.

We will now briefly analyze language awareness
in these two types of editors.

2.1 Language Awareness in Programmer’s
Editors

Programmer’s editors generally implement both
information functions and operations. Many editors
support different programming languages through
language-specific editing modes, which are either
activated automatically or can be selected by the
user.

Syntax highlighting is the most prominent in-
stantiation of an information function: Keywords,
variable names, and specific constructs can be high-
lighted using different colors or fonts. Program-
mer’s editors generally also help to ensure that
parentheses are properly nested, e.g., by highlight-
ing mismatches.

As instantiations of language-aware operations
we can typically find functions for deleting el-
ements, e.g., parenthesized expressions or com-
ments, for inserting or completing syntactic struc-
tures, such as conditional expressions or looping
constructs, and for selecting certain syntactic el-
ements (e.g., the current function definition) for
a subsequent operation. Some editors offer code
completion, i.e., the editor can complete an ini-
tial string typed by the user, either automatically
or upon request. The editor may take the context
into account; for example, in an object-oriented

programming language it may consider only the
names of those methods available for the particular
object.

Programmer’s editors also indent lines automati-
cally according to the syntax and may control the
insertion of whitespace and newlines (e.g., around
operators or after block-opening braces). In some
languages, such as Python, indentation serves to
indicate the block structure of the code. For lan-
guages like Perl, C, Java, or Lisp, indentation is not
mandatory but conventionally reflects the syntactic
structure, which is also marked by parentheses or
braces.

2.2 Language Awareness in Word Processors

Since programmer’s editors support developers
with specific functions for the programming lan-
guage being used, word processors could be ex-
pected to offer specific functions depending on the
language the writer is using.

However, unlike programmer’s editors, word
processors offer very few language-aware func-
tions: Almost all functions are based on characters
and lines. Thus, even state-of-the-art word pro-
cessors offer only a basic set of core operations
(e.g., select, cut, copy, paste, insert) (Piolat, 1991,
p. 262), (Sharples and Pemberton, 1990, p. 49),
regardless of the language the writer is using.

Checkers for spelling, grammar, and style, which
are nowadays available for various languages in
many word processors, provide a certain level of
“language awareness.” However, regardless of their
quality (Vernon, 2000; McGee and Ericsson, 2002),
they are essentially tools for post-writing: After a
draft is finished, they can detect errors and propose
modifications, but they generally do not support
writers during writing and editing, and thus do not
help to prevent errors.

This situation clearly is disappointing. Consid-
ering the fact that there already exist sophisticated
natural-language-processing methods and tools, we
think the time has come to add language-aware
functions to word processors as well.

3 Language-Aware Editing Functions in
Word Processors

Writers should receive interactive support from
their word processors, similar to the interactive
support programmers get. Supporting writers dur-
ing the writing and editing process reduces the
cognitive load and therefore helps avoiding errors.

15



Writers should be in control of their text, relying
on post-processing support only denies the fact that
writing is a very active and creative process.

We propose two types of functions operating
on linguistic elements, such as words, phrases,
or clauses. These functions are intended to work
analogously to the corresponding functions known
for programmer’s editors: (1) Information func-
tions for highlighting elements, such as verbs or
PP-attachments, or for providing writers with in-
formation about certain aspects of the text, such
as prepositions used, sentences without verbs, or
variants of multi-word expressions. Writers can
interpret the results themselves and decide how to
make use of them. (2) Operations for reordering,
modifying, or deleting linguistic elements. In or-
der to reduce the cognitive load, the number of
actions necessary to reach a specific goal should
be reduced drastically by combining sequences of
core operations into higher-level functions closer
to writers’ goals and their mental model of the task.
Examples would be the pluralization of an entire
phrase (a complex task for morphologically rich
languages as German), the reordering of conjunc-
tions, or the replacing of words or phrases through
the whole text (also a complex task for highly in-
flectional languages). See Mahlow et al. (2008) for
more details.

Both types of functions require linguistic knowl-
edge and linguistic resources. Linguistic knowl-
edge will influence the ideal combination of exist-
ing core operations into higher-level functions a
user can call with one keystroke: Reordering con-
juncts is a highly complex task if a writer has to
find the sequence of core operations on their own;
using one operation reduces the risk of producing
ungrammatical conjuncts. Linguistic resources will
be needed for operations that modify certain lin-
guistic elements: Pluralization of entire phrases
will obviously require morphological analysis and
generation.

4 Natural and Programming Languages

It is clear that there are significant differences
between programming languages and natural lan-
guages. Two important differences are:

1. The lexicon: The lexicon of programming lan-
guage is small and essentially closed. The
lexicon for a natural language is much bigger
and can be extended ad infinitum by morpho-
logical processes.

2. The syntactical rules: Syntactical rules for for-
mal languages are made a priori, i.e., prior
of creating a language. Users are not allowed
to change the rules. Syntactical rules for a
natural language, however, try to describe the
phenomena of a certain language a posteriori.
Natural languages “live,” i.e., users change
the rules as they are using the language – gen-
erally, native speakers are not even aware of
the rules. Linguists can only discover and
adapt the rules of a language afterwards by
observing the language.

Thus, as the lexicon of programming languages
is relatively small and – most importantly – closed,
functions for highlighting keywords, can be imple-
mented relatively easily. There are strict rules for
extending the “lexicon” of a language with variable
names (e.g., a name for a hash variable in Perl has
to begin with a “%”), so that these can generally
also be detected easily.

These properties of programming and natural
languages explain the difference in performance
of parsers for the respective types of languages:
Processors of programming languages can be im-
plemented easily, they are very sophisticated, work
very fast and deliver satisfying and reliable results.
Processors of natural language struggle with in-
complete rules, ambiguities, big and always incom-
plete resources, their results in general are not very
convincing, they need much time to deliver these
results, thus making them not very attractive for
interactive use – it is not acceptable for a writer to
wait several seconds for a phrase to be pluralized.

However, there exist morphological and syntac-
tical parsers for several natural languages which
work quite satisfactorily for restricted phenomena
or purposes. Additionally, nowadays computers
have sufficient processing power to reduce the time
needed to analyze word forms or generate phrases
drastically compared to the situation ten years ago.
We therefore propose to make use of those pro-
cessing tools in word processors in a similar way
programmer’s editors make use of parsers for pro-
gramming languages.

5 Opportunities and Limits

5.1 Opportunities

Language-aware operations using syntactical and
morphological components could offer writers new
ways of working creatively with their texts: With

16



one click they could apply changes to their texts,
inspect the results, undo them, and try a different
change. They could concentrate on their goal, play
with words and phrases, and would not have to
care about how to realize these changes, would not
have to worry about forgetting one occurrence, and
would not have to keep in mind that other locations
may need changes because of the original change
(e.g., pluralizing the subject of a sentence requires
adjustment of the finite verb).

Like syntax highlighting and indentation in pro-
grammer’s editors assists programmers, the high-
lighting of specific linguistic elements could help
writers to get a better overview of the structure of
their text written so far or to identify characteris-
tics with respect to style, e.g., overuse of certain
conjunctions or identical beginnings of sentences.
When linguistic resources are carefully chosen and
cleverly combined with the existing core function-
ality of word processors, and when the principles of
the respective language are taken into account and
the available computing power is utilized, various
interesting scenarios for language-aware function-
ality emerge (see Mahlow and Piotrowski (2008)
and Mahlow et al. (2008)).

5.2 Limits

While today’s computers are capable of performing
analyses and generation of linguistic structures fast
enough to be suitable for interactive use, linguis-
tic components usually fail to produce results that
are 100% correct in terms of precision and recall.
Furthermore, for most of these components it can-
not be predicted whether the results will be correct.
When using them as basis for language-aware func-
tions in word processors, writers must be aware that
they should not blindly trust the system to avoid
frustrations similar to those often associated with
checkers.

A second limit are cases where linguistic re-
sources can deliver correct, but ambiguous results,
e.g., it may not be possible to determine the exact
category of a word form. The editing function then
cannot be executed automatically but has to inter-
act with the writer to resolve the ambiguity. For
example, the plural of the German word Mutter
‘mother; screw nut’ may either be Mütter or Mut-
tern, depending on which of the two meanings are
intended.

A third limit is the danger of concentrating on
aspects of (computational) linguistics rather than

on aspects of the writing process and on writers’
needs. For example, at first glance, it seems to be
obvious that only operations resulting in grammat-
ically well-formed structures should be allowed.
But, on the one hand, the structure may not (yet)
be completed and therefore not well-formed be-
fore executing an operation (e.g., when pluralizing
a phrase consisting only of a determiner and an
adjective, and the noun is added only after pluraliz-
ing). On the other hand, the relevant operation may
be used only as one step in a complex sequence:
After executing this operation more changes will
be applied, and the result is not the end result (e.g.,
a list of word forms, clearly not a phrase, shall be
pluralized, and some of these are then moved to
other parts of the text).

This has also been realized during the develop-
ment of programmer’s editors: Especially in the
1980s and 1990s there have been many attempts
at programmer’s editors which are not based on
characters and lines at all but where the program-
mer instead edits the abstract syntax tree of the
program directly (Khwaja and Urban, 1993), thus
ensuring that the program was syntactically valid
at all times. However, programmers did not accept
this type of syntax-directed editors; one important
problem was that it also prohibits invalid intermedi-
ate states, making editing very cumbersome (Neal,
1987). Current programmer’s editors are therefore
based on the textual program representation and
only provide assistance as described in section 2.1
above.

Syntactic variability may also be considered a
problem for language awareness. For languages
with free word order, such as German, we can have
sentences like:

(1) Ich gab dem Kind gestern einen Apfel.

(2) Gestern gab ich dem Kind einen Apfel.

(3) Dem Kind gab ich gestern einen Apfel.

All syntactical variants express the same basic
meaning, ‘yesterday I gave an apple to the child.’
Another example are passive and active versions
of a sentence. Obviously syntactic variants slightly
change the meaning of a sentence by changing the
focus, but they still express the same main idea.
Syntactic variants are one aspect of creativity in
writing.

However, similar phenomena also exist in pro-
gramming languages: Just as in natural languages,
one meaning can be expressed in different ways.

17



In addition, there are also many ways to layout the
code, e.g., by using more or less line breaks.

Programmer’s editors provide valuable support
for programmers without restricting their creativ-
ity by forcing them to use one specific syntactic
structure for expressing something. This would
in fact be impossible since the editor is not able
to predict what the programmer has in mind. The
same applies to natural-language editing.

6 Conclusion

We have presented the concept of language-aware
functions in word processors using methods and
systems from computational linguistics. They rep-
resent opportunities for supporting the writing pro-
cess, but developers should avoid concentrating
on technical aspects alone, expecting writers to
adapt to their tools, which would cause dissatis-
faction and ultimately rejection of the tools. The
goal clearly must be to support writers by lowering
the cognitive effort for complex operations and at
the same time allowing them to define their goals
and to be in control of their texts. This principle
has to direct the implementation with respect to
technology and usability. Today’s state-of-the-art
methods and tools for NLP and the available com-
puting power can be used – and should be used –
to develop language-aware functions for interactive
support in word processors.

In the LingURed project (see http://www.
lingured.info) we are developing prototyp-
ical implementations of various language-aware
editing functions. Depending on licences for the
used resources we will publish these functions un-
der an open source licence, and we will evaluate
them for usability and effectiveness together with
experts in writing research.

References
[Allen and Scerbo1983] Robert B. Allen and M. W.

Scerbo. 1983. Details of command-language
keystrokes. ACM Trans. Inf. Syst., 1(2):159–178,
April.

[Dale and Douglas1996] Robert Dale and Shona Dou-
glas. 1996. Two investigations into intelligent text
processing. In Mike Sharples and Thea van der
Geest, editors, The New Writing Environment: Writ-
ers at Work in a World of Technology, chapter 8,
pages 123–145. Springer.

[Dale1989] Robert Dale. 1989. Computer-based edi-
torial aids. In Jeremy Peckham, editor, Recent De-
velopments and Applications of Natural Language

Processing, chapter 2, pages 8–22. Kogan Page Lim-
ited.

[Khwaja and Urban1993] Amir A. Khwaja and
Joseph E. Urban. 1993. Syntax-directed editing
environments: issues and features. In SAC ’93:
Proceedings of the 1993 ACM/SIGAPP symposium
on Applied computing, pages 230–237, New York,
NY, USA. ACM.

[Mahlow and Piotrowski2008] Cerstin Mahlow and
Michael Piotrowski. 2008. Linguistic support
for revising and editing. In Alexander Gelbukh,
editor, Computational Linguistics and Intelligent
Text Processing: 9th International Conference,
CICLing 2008, Haifa, Israel, February 17–23, 2008.
Proceedings, pages 631–642, Heidelberg. Springer.

[Mahlow et al.2008] Cerstin Mahlow, Michael Pi-
otrowski, and Michael Hess. 2008. Language-
aware text editing. In Robert Dale, Aurélien Max,
and Michael Zock, editors, LREC 2008 Workshop
on NLP Resources, Algorithms and Tools for
Authoring Aids, pages 9–13, Marrakech, Morrocco.
ELRA.

[McCutchen1996] Deborah McCutchen. 1996. A ca-
pacity theory of writing: Working memory in com-
position. Educational Psychology Review, 8(3):299–
325.

[McGee and Ericsson2002] Tim McGee and Patricia Er-
icsson. 2002. The politics of the program: MS
Word as the invisible grammarian. Computers and
Composition, 19(4):453–470, December.

[Neal1987] Lisa R. Neal. 1987. Cognition-sensitive de-
sign and user modeling for syntax-directed editors.
In CHI ’87: Proceedings of the SIGCHI/GI confer-
ence on Human factors in computing systems and
graphics interface, pages 99–102, New York, NY,
USA. ACM.

[Piolat1991] Annie Piolat. 1991. Effects of word pro-
cessing on text revision. Language and Education,
5(4):255–272.

[Sharples and Pemberton1990] Mike Sharples and Lyn
Pemberton. 1990. Starting from the writer: Guide-
lines for the design of user-centred document pro-
cessors. Computer Assisted Language Learning,
2(1):37–57.

[Taylor1987] Lee R. Taylor. 1987. Software views:
A fistful of word-processing programs. Computers
and Composition, 5(1):79–90.

[Vernon2000] Alex Vernon. 2000. Computerized gram-
mar checkers 2000: capabilities, limitations, and
pedagogical possibilities. Computers and Composi-
tion, 17(3):329–349, December.

18

http://www.lingured.info
http://www.lingured.info

	Introduction
	Language Awareness in Editors
	Language Awareness in Programmer's Editors
	Language Awareness in Word Processors

	Language-Aware Editing Functions in Word Processors
	Natural and Programming Languages
	Opportunities and Limits
	Opportunities
	Limits

	Conclusion

