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Abstract

The paper reconceptualizes Constraint
Grammar as a framework where the rules
refine the compact representations of lo-
cal ambiguity while the rule conditions are
matched against a string of feature vec-
tors that summarize the compact repre-
sentations. Both views to the ambiguity
are processed with pure finite-state oper-
ations. The compact representations are
mapped to feature vectors with the aid of a
rational power series. This magical inter-
connection is not less pure than a prevalent
interpretation that requires that the read-
ing set provided by a lexical transducer
is magically linearized to a marked con-
catenation of readings given to pure trans-
ducers. The current approach has several
practical benefits, including the inward de-
terministic way to compute, represent and
maintain all the applications of the rules in
the sentence.

1 Introduction

Constraint Grammar (CG) (Karlsson et al., 1995)
is a text parsing method with benefits over statis-
tical methods: a low memory footprint, run-time
speed, linguistic detail, data bootstrapping, incre-
mental development, and applicability to linguist’s
needs. Despite its wide use, the common under-
standing about its algorithms is still shallow. The
current work attempts to reduce this gap.

1.1 The Background

The dawn of CG was marked by a number of
related developments. Some resource sensitive
parsers (Marcus, 1980; Krauwer and des Tombe,
1981; Church, 1988; Blank, 1989) had started
to simplify over the parsers based on augmented
transition networks (Woods, 1970). The Taggit

program (Greene and Rubin, 1971; according to
Tapanainen 1999) was an early context-dependent
tagger. Some generative grammars were related
to automata and local constraints both in syntax
(Peters and Ritchie, 1969; Joshi and Levy, 1982),
and in phonology (Johnson, 1972; Koskenniemi,
1983). Their constraints were similar to local
grammars that describe word chain characteristics
(Gross, 1968; Maurel, 1989; Mohri, 1994). The
systems of hard constraints gave rise to consis-
tency enforcing methods (Huffman, 1971; Barton,
Jr., 1986; Maruyama, 1990).

The CG framework (Karlsson et al., 1995)
applies disjunctively ordered rules iteratively to
implement a system of soft constraints. Some
CG parsers have been described (Karlsson, 1990;
Tapanainen, 1996; Graña et al., 2003; Didriksen,
2010; Peltonen, 2011; Hulden, 2011).

The several later parsing methods bear similar-
ities to CG. These include Finite-State Intersec-
tion Grammar (FSIG) (Koskenniemi et al., 1992),
cascade parsing and chunking (Joshi and Hopely,
1996; Abney, 1991; Grefenstette, 1999), replace
rule sequences (Karttunen, 1997; Aı̈t-Mokhtar and
Chanod, 1997), lenient composition (Karttunen,
1998), voting constraints (Oflazer and Tür, 1997),
error-driven parsing (Brill, 1992; Lager, 2001), bi-
machines (Roche, 1994; Skut et al., 2004; Peikov,
2006), iterated finite transducers (Roche, 1997b;
Bordihn et al., 2006), restarting automata and con-
textual grammars (Plátek et al., 2003; Jurdziński et
al., 2005), and logic programming (Lindberg and
Eineborg, 1998; Lager and Nivre, 2001).

Throughout the paper, the discussion is made
more concrete by experiments on a version of the
Finnish Constraint Grammar (FINCG), a freely
available rule set developed originally for Finnish
by Fred Karlsson in Helsinki. The preliminary
experiments merely suggest the rough degrees of
cardinality in various aspects of processing com-
plexity.
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1.2 The Contributions

The current independent work of the author (Yli-
Jyrä, 2010) aims at reconceptualizing CG parsing
in the framework of finite automata. It describes
an efficient parsing procedure where the local am-
biguity is summarized with feature vectors. More-
over, a nearly complete CG rule compiler and a
partially implemented parser are briefly reported.

The presented approach is in strict contrast to
some prior parsers where the local ambiguity do-
mains are represented, tested and reduced by ma-
nipulating a linear representation of the set of
readings. The linear representation gives rise to
CG parsing as transducer sequences (proposed
by Lauri Karttunen; see Voutilainen 1994:39,
Koskenniemi 1997, Peltonen 2011, Hulden 2011),
but is likely to become a bottleneck if syntactic
functions and argument structures are provided in
the input. In contrast, the current proposal elim-
inates the distinct syntactic disambiguation rules
and compacts the representation of local ambigu-
ity domains.

The current work uses pure finite-state automata
that are described, at a high level, using ratio-
nal sets and series. On the other hand, the paper
involves schematic string matching and bidirec-
tional memoization when intersecting automata.
These low-level techniques are efficient but differ
from standard sequential processing models.

The paper transfers some techniques from the
author’s prior research on FSIG parsing to the CG
framework: (1) Indexing the transition labels of
a template automaton will compress the imple-
mentation of reading subsets (Yli-Jyrä, 1995). (2)
The split languages of the form L ⊆ Σ∗∆Σ∗

(Σ,∆ disjoint alphabets) will represent context
conditions (Yli-Jyrä, 2011a). (3) The position-
wise flag diacritics (Yli-Jyrä, 2011b) will post-
pone the computation of negation in negative con-
texts. (4) On-the-fly inward determinization (Yli-
Jyrä, 2010; Yli-Jyrä, 2011a) will facilitate the iter-
ated computation of product automata. (5) Prefer-
ence relations (Yli-Jyrä, 2007) will enable the or-
dering of rules and their potential applications. (6)
The infiltration operation (Sakarovitch, 2009) —
a natural implementation of simple multitape au-
tomata (Yli-Jyrä, 2005) — will elegantly compile
the rule conditions. (7) The string schemas (Yli-
Jyrä, 1995; Yli-Jyrä, 2005; Yli-Jyrä, 2011b) will
reduce the length of paths in automata. It is ex-
pected that the started CG implementation effort

will produce ideas that will reciprocally enrich the
FSIG framework.

2 The Primary Representation

The Tokens The natural language sentence – the
input of the parser – is preprocessed for parsing by
segmenting it into orthographic words aka tokens
t1, ..., tn. Thus, we obtain e.g. the orthographic
words "<It>", "<rains>", "<.>" from the sen-
tence “It rains.” for the lexical look-up. The re-
sulting segmentation must be unique.

The lexicon is a regular relation that relates the
orthographic words with strings consisting of lex-
emes, morphological labels, syntactic labels and
semantic labels – we will call all these symbols
naively just tags and their strings readings.

For every token ti (1 ≤ i ≤ n), the lexicon
provides a set of token-analysis pairs (ti, ai,j) that
are linearized to a set of strings tiai,j as in (1) — in
general, such linearization is not a regular relation,
and it would be purer to drop the orthographical
word in the analysis. Nevertheless, the set is not
converted to a linear string in the current work.
{

"<muuta>" "muu" Q PRON PTV SG
"<muuta>" "muuttaa" V IMPV ACT SG2
"<muuta>" "muuttaa" V PRES/IMPV ACT NEG

}
(1)

The Cohort Automata The purpose of the CG
parser is to reduce excessive readings through re-
movals and selections. By a metaphor, the group
of readings for each token is called a cohort and
the readings manipulated by the operations are
called targets.

The current parser contains a custom input func-
tion for cohorts. This produces deterministic
acyclic finite automata c1, ..., cn, called cohort au-
tomata (Figure 1), and minimizes them. The co-
hort automata constitute the primary representa-
tion of the cohorts.

s0 s1"<voi>"
s2"voida"

s10
"voi"

s3V

s4
PRES PAST

s6PRES/IMPV

s8
IMPV

s5ACT

s13

SG3

s7ACT NEG

s9ACT SG2

s11N

INTJ
s12NOM

SG

Figure 1: A cohort automaton.

The operators of the CG rules (Tapanainen,
1996) define how cohort automata change if the
rules are applied to them. Each operator is a regu-
lar relation. To avoid non-termination (Didriksen,
2010), we exclude all rule operators that replace
readings, shorten the readings (e.g. by removing
@-tags), and introduce readings. This leaves such
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operators that refine the cohort strictly monotoni-
cally: readings are removed with the REMOVE and
SELECT operators and new (irreversible) distinc-
tions are introduced with the ADD operator.

The Template Automaton A common experi-
ence is that the interface between the grammar and
the morphological component gets easily broken if
one component is changed. It is thus desirable that
CG grammars are augmented with a specification
that describes the possible readings by a template
automaton, a simple positional model (a linear fi-
nite automaton) for the tags.

The grammar distinguishes only a finite number
of different kinds of tags. In this sense, the tags
(the tag types) form a finite set, T . The interface of
FINCG needs some 1230 tags, slightly more than
are actually used by the rules.

A template automaton for the FINCG is given
by a regular expression (2). The special symbol
0 is interpreted as the empty string. This gives
an automaton with 1272 transitions (removing the
symbol 0 results in 3853 transitions).

("<>"|"<ajan>"|...) 0 ("<(.*)ja>"r|...)∗ 0

(""|"aamu"|...) 0 (DV-JA|...)∗ 0 (0|DEM|...)
(A|V|...) (0|PRES|...) (0|ACT|...) (0|SG1|...)
(0|CMP|...) (0|ALL|...) (0|SG|...) (0|P-3|...)

(ko|han|...)∗0 (0|@ADVL|@SUBJ|...). (2)

The Dynamic Aspects The expression (2) uses
two meta-symbols: "<>" matches any orthograph-
ical strings such as "<foo>", and "" matches any
lexemes. The tags such as "<(.*)ja>"r are in-
serted by the input function to the reading strings
when the regular expression in it matches the or-
thographical string such as "<opettaja>"r.

When the parser is used, the conformance of
the readings against the model (2) is checked on
the fly. The reported anomalies in the lexicon can
then be fixed in order to optimize the interoper-
ability between the lexicon and the grammar. In
addition, the tags in all readings are indexed with
the corresponding source states in the template au-
tomaton. The tag DEM, for example, thus becomes
DEM7. There are tags that can correspond to sev-
eral states — especially if the template automaton
is without the symbol 0.

[[(NOM OR (N SG))]]

subsumes������
���

���
���

�

subsumes �����
����

����
���

[[NOM]]

subsumes

�����
���

���
���

��
[[(N SG)]]

subsumes

������
����

����
��

[[(NOM (N SG))]]

Figure 2: An excerpt of the Boolean lattice.

3 Testing the Cohorts

3.1 The Features of Readings

The CG-2 rules refer to the abstract features of
complete readings through tags, combined tags,
lists, and sets (Tapanainen, 1996) — let us call
them set definitions. Each set definition α has
the denotation [[α]] that is a subset of the read-
ings recognized by the template automaton. Two
definitions are equivalent if their denotations co-
incide. The special expression (*) subsumes the
whole universe while expression (N SG) subsumes
all Singular Noun readings.

In the VISL CG-3 (Didriksen, 2010) system and
the current system, the order of tags does not mat-
ter i.e. [[(N SG)]] = [[(SG N)]]. The denotationally
equivalent set definitions form, thus, a Boolean
lattice (Figure 2) with denotational union (OR), de-
notational intersection ( ), and denotational com-
plement (\) operations. The implementation of
these operations benefits from the restrictions im-
posed by the template automaton.

The denotation S ⊆ T∗ of every set defini-
tion, i.e. a feature f , gives rise to a weighted
finite automaton (Sakarovitch, 2009) that recog-
nizes its characteristic series χf : T ∗ → N defined
by χf (x)=1 for all x ∈ S and χf (x)=0 other-
wise. We will call this automaton a feature au-
tomaton. A simple expression, (V), compiles into
an automaton with more than 1100 (logical) transi-
tions. To test a feature f against a reading r ∈ T∗,
we simply compute χf (r) with the automaton.

When extended to the set of all features F in the
grammar, the feature automaton recognizes a se-
ries T ∗ → NF whose coefficients are integer vec-
tors. The easiest implementation of this would be
the union of |F | feature automata. The size of this
automaton is a severe problem. In the FINCG rule
set, the set of tags (T ) and the set of features (F )
have roughly the same cardinality (respectively:
1133, 1216). Thus, more than a million (logical)
transitions are traversed to check all the readings
and features in the worst case (consider a cohort
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automaton that equals the template automaton). A
minimal deterministic automaton is not likely to
be any better solution as the deterministic union
of all feature automata requires, in the worst case,
O(2 |F |) different final states.

To reduce the complexity of the deterministic
union of feature automata, the parser uses a con-
traction technique (Yli-Jyrä, 1995; Yli-Jyrä, 1997;
Roche, 1997a) that hides transitions that are ir-
relevant to feature recognition. The resulting de-
terministic automaton will match indexed subse-
quences in the readings. Given that N and GEN

are labels that occur respectively in states 8 and
13 of the template automaton, the set definition (N
\GEN) corresponds to a 3-state automaton that rec-
ognizes the subsequences

N8(013|ABE13|ABL13|ACC13|ADE13|ALL13|CMT13|
ELA13|ESS13|ILL13|INE13|INS13|LAT13|LOC13|

MAN13|NOM13|PTV13|TRA13). (3)

3.2 The Features of Cohorts

In general, the cohorts may mix both readings
that satisfy a given feature and readings that do
not satisfy it. Therefore, the features become 3-
valued at the cohort level: they can be positive
(+), negative (-) or ambivalent (?). Testing the
cohorts corresponds to computing the function:
2T

∗ → {+, -, ?}F , where the domain 2T
∗

contains
all the possible cohorts and the range {+, -, ?}F
contains all combinations of the features.

For each cohort, the truth-value of a particular
feature f is determined by counting the number
of true readings in the domain of χ when it is re-
stricted to the set of readings S in the cohort au-
tomaton: the feature automaton is first restricted
with the cohort and then the sum of the success-
ful paths is computed e.g. by replacing all the
inputs with the empty string. Thus, we compute∑

x∈S χf (x).
In order to get the correct counts, the feature au-

tomata must be path unambiguous i.e. they assign,
at the most, one successful path to each tag se-
quence. Ensuring an unambiguous automaton for
set definitions like (C OR "että") requires special
attention, because the features C and "etẗa" are
non-exclusive and are separately true in the read-
ing ("<että>" "että" SUB C).

Finally, the integer vectors NF are mapped to
the vectors of (3-valued) truth values, {+, -, ?}F .
If the count of a feature equals the cardinality of
the cohort, the feature is positive +. Otherwise, it

is negative - if the cardinality is zero or ambivalent
? in other cases.

Simple Conditions A typical CG rule specifies
three things: an operation that tells how a cohort
will change if the rule is applied to it, the context
specification that tells where the rule can be ap-
plied, and a target that complements the operation
and the context specification. The context specifi-
cation is a conjunction of simple, possibly linked,
context conditions (Tapanainen, 1996).

A simple context condition in CG rules is, for-
mally, a 6-tuplet 〈origin, polarity, position, mode,
set definition, barrier condition〉 where

• the origin refers to the target cohort (nothing)
or to the hit of the previous positive condition
(LINK)

• the polarity is either negative (NOT), positive
(nothing), or ambivalent (MIX)

• the position is either an absolute po-
sition (@1, @2, ...), a relative position
(..., -2, -1, 0, 1, 2, ...) with 0 as the
origin, or an unbounded set of rela-
tive positions outwards from the origin
(..., *-2, *-1, *0, *1, *2, ...)

• the mode is careful (C) or normal (nothing)

• the barrier condition is either none (nothing)
or a set α (BARRIER α).

A condition such as 〈LINK, not, 0, C, N,
BARRIER CLB〉 is written simply as (LINK NOT 0C

N BARRIER CLB). The reader is referred to CG
manuals for a complete description of context con-
ditions (Karlsson et al., 1995; Tapanainen, 1996).

The combination of polarity and mode tells
how the cohort’s feature-values are converted back
to Boolean truth-values needed in the grammars.
This is illustrated in (4).

0C f

���
��

��
��

��
0 f

∨
�� ���

��
��

��
��

MIX 0 f

��

NOT 0C f

�����
���

���
��

∨
��

NOT 0 f

�����
���

���
��

Cohort f+

��

f?

�����
��
���

��

∨
��		

			
			

			
	 f-

��
Reading f+ f- (4)

The core CG grammar rules — those whose op-
erator is SELECT and REMOVE — specify a set def-
inition called a target. A target (NOM) is, in fact,
shorthand for condition (MIX 0 NOM). The condi-
tion matches cohorts where some readings contain
the NOM tag and some do not.
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4 The Secondary Representation

We will now see how the conjunction of the con-
textual conditions is represented in the parser.

4.1 Marking the Potential Applications

The Feature-Value Alphabet Internally, the set
definitions are mapped to feature numbers that
form the feature alphabet F . The numbers of
equivalent set definitions coincide. For example,
the current parser assigns the feature numbers 31

and 39 to set definitions (PTV)31 and ("yhtään"

ADV)39, respectively. We write 31.PTV when we
emphasize the feature number (the key) rather than
the set definition (the legend).

The core FINCG rules mention 1216 distinct
features (F ) and 1813 feature-value pairs such as
(5.NOM,+) and (11.SG,?).

The secondary representation for the co-
horts consists of the feature-value pairs
(P=F×{+, -, ?}) and cohort boundaries (•).
The pairs in P are written simply as 5.NOM+ and
11.SG?. The whole sentence is represented by the
•-marked concatenation of the cohort-wise lists
c′1, ..., c

′
n of |F | numerically ordered feature-value

pairs.

w = c′1•c′2•...•c′n. (5)

The Rule Marker Alphabet In order to talk
about rules and where they apply, we define a sym-
bol alphabet for the rules. First, the rules are num-
bered. The rule compiler assigns numbers 343 and
865 to the rules

SELECT("yhtään"ADV)39
IF(NOT *1 (PTV)31); (343)

SELECT(N SG)821
IF(1* (V SG3)820 BARRIER (CLB)3)
(NEGATE *-1(N NOM)715BARRIER(CLB)3). (865)

For every rule, there are two rule markers that
are used to indicate the satisfied context condi-
tions of the rules. The markers form the set R =
{@1.r@, @2.r@ | r is a rule in the grammar }. As to
FINCG, there are about 1380 SELECT/REMOVE rules
and 22 (1,6%) of them use both kinds of markers.

The marker @1.865@ will be used to indicate
the cohorts whose contexts satisfy the licensing
context conditions of the rule 865. The marker
@2.865@ will be used to indicate the cohorts
that satisfy a prohibiting context condition. The
prohibiting context conditions are stronger and

will prevent the application of the rule even if
the licensing context condition is true (Yli-Jyrä,
2011b).

The CG-3 syntax for rule conditions separates
the cohort-internal negation (NOT) from the global
negation (NEGATE) (Didriksen, 2010). The first
refers to negative features and the second starts
a prohibiting condition according to the CG rule
syntax. For example, the rule 343 selects the Ad-
verb (39.ADV) reading if the next word has no Par-
titive (31.PTV) readings. In contrast, the rule 865
selects the Nominative Singular (821.(NOM SG))
reading if the cohort is followed by potential (i.e.
positive or ambivalent) 3rd Person Singular Verb
(820.(V SG3)) within the same clause (BARRIER

(3.CLB)) unless (NEGATE) the cohort is followed
by potential Nominative Noun (715.(N NOM)) co-
hort within the same clause.

Split Languages The string w provides a matrix
structure against which the licensed and prohibited
applications of CG rules are indicated: for each
cohort where the rule r is licensed, we produce a
copy of w and insert the marker @1.r@ into the end
of the cohort’s feature-value list in this copy. The
marker @2.r@ is inserted in a similar way to other
copies that indicate prohibited contexts.

Let Σ = P ∪ {•}. A language of the shape
L ⊆ Σ∗RΣ∗ is called a split language1. To fa-
cilitate the formal account of the marking, de-
fine a mapping h : Σ∗RΣ∗ → Σ∗ by h =
{(vxy, vy) | v, y ∈ Σ∗, x ∈ R}. The inverse of the
image of w is h−1(w), the language of the possi-
ble ways to insert a rule marker into the string w.
This language is recognized by an automaton that
is very similar to the linear automaton recognizing
the string w. The automaton has O(n|F |) states
and O(n|F ||R|) transitions.

The union of the licensing and prohibiting con-
texts of each rule r forms a split regular language
Cr ⊆ Σ∗RrΣ

∗ where Rr = {@1.r@, @2.r@}. For
the rule, the marked copies of the string w are ob-
tained as the intersection Wr = Cr∩h−1(w). The
potential applications of all rules are obtained as
the union W =

⋃
r∈RCr ∩ h−1(w).

4.2 Controlling the Application Order

The prohibited applications are subtracted from
the licensed ones by computing W′ = {v@1.r@y |
v@1.r@y ∈ W,v@2.r@y /∈ W}. Such preference
restrictions can be implemented with a matching

1The term was proposed to me by J. Sakarovitch.
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method due to Dale Gerdemann and Gertjan van
Noord (see Yli-Jyrä, 2007, 2011b). The same
method implements application order modes.

The current system is flexible enough to support
any standard application mode. Normally, the ap-
plication of an earlier rule in the grammar is pre-
ferred over the later rules. On the other hand, it is
psycholinguistically motivated to process the sen-
tence from left to right. By emphasizing the left-
most position, for example, we get the following
restriction of W ′:

W ′′ = {v@1.r@y ∈ W ′ |
¬∃u@1.r@z ∈ W ′ s.t. vy = uz, |u| < |v|
¬∃v@1.q@y ∈ W ′ s.t. q < r}. (6)

The obtained set W ′′ contains (at the most) one
marked copy w′ of the sentence w. The marker
in this copy indicates which rule is applicable to
which cohort.

When given an m-state deterministic automaton
representing the set W , we can compute W′ and
W ′′ in O(m) time. It should be noted that the sub-
sets of {vxy | vy = w, x ∈ R}, where w is the
sentence and R is the rule marker alphabet, are al-
ways regular languages and their recognizers are
minimizable in linear time.

5 The Context Automata

For each rule r ∈ R, the intersection Cr ∩h−1(w)
is computed through the well-known product con-
struction (see Sakarovitch, 2009).

The constructed product may have a large num-
ber of states: Let the context language Cr be given
by an O(m)-state deterministic finite automaton.
The minimal automaton recognizing the language
h−1(w) has O(n|F |) states. The product of these
automata has, thus, O(nm|F |) states. When this
is repeated for all r ∈ |R| rules, the total state
complexity is O(nm|R||F |).

The product is potentially constructed several
times. A pathologically ambiguous cohort can
be refined separately by |R| rules if the targets
of the rules have disjoint denotations. There-
fore, the computation of the intersection is iterated
O(n|R|) times in the worst case. This means that
the total time complexity of the context testing is
O(n2m|R|2|F |) in the worst case.

We need optimizations that reduce the effects of
(1) the context states, (2) the iterations, (3) the fea-
tures, and (4) the parallel rules. The following will
sketch some important optimization strategies.

5.1 Reducing the Effect of Context States

The Baseline The deterministic automaton rec-
ognizing the context language Cr is deterministic
up to point where an R-transition is followed. Af-
ter this point, the product automaton contains, in
the worst case, O(m) parallel paths (Figure 3(i)).

O(|w|)︷ ︸︸ ︷

O
(m

)





→@→→→→→
↘@→→→→
↘@→→→

↘@→→
↘@→

→@↖
↘@↖

↘@↖
↘@↖

↘@↖

↘@↖
↘@↖

(i) (ii) (iii)

Figure 3: The benefits of inward processing.

Inward Processing It is desirable to find a
method that computes the product or it restriction
W ′′ in time that does not depend on the state com-
plexity of the context languages. Three solutions
that fulfill this condition are available:

1. The function returning W ′′ for each w is a has
a deterministic realization using determinis-
tic bimachines (Skut et al., 2004; Roche,
1994; Peikov, 2006; Hulden, 2011).

2. The context language Cr is recognized by an
inward deterministic automaton (IDA) (Yli-
Jyrä, 2011a). The approach allows for greater
flexibility in the application ordering.

3. An IDA can be factorized to possibly smaller
left- and right-sequential transducers (Roche,
1997a). Nondeterministic bimachines could
be used too (Santean and Yu, 2006).

An IDA is a nondeterministic automaton that
recognizes a split language L ⊆ Σ∗RΣ∗ and is
deterministic for all prefixes in Σ∗ and codeter-
ministic for all suffixes in Σ∗. When intersected
with the linear automaton representing the lan-
guage h−1(w), the restricted product approaches
the R-transitions deterministically from both sides
(Figure 3(ii)). As a result, each of O(n) positions
in w corresponds, at the most, to two states in
the restricted product (Figure 4). With one IDA
per rule, the total time complexity is bounded by
O(n2|R|2|F |).
State Explosion It would be nice to construct a
combined IDA that recognizes the split language
∪r∈RCr. This would reduce the total computation
time to O(n2|R||F |) if we assumed that parallel
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@1.35@ @1.35@

N+ • V+ • N+

N+ • V+ • N+

Figure 4: An inward deterministic product.

marker transitions are inserted into the result in
O(1) time. However, the whole grammar cannot
be combined to an IDA in general. Firstly, there
are simple context conditions that require a very
large number of IDA states. Secondly, the size of
a combined IDA would be O(m|R|) if each rule-
specific IDA had m states at the most.

5.2 Reducing the Effect of Iterations

Dynamic Programming The product automa-
ton is not constant, but reflects the changes in
the sentence w when rules are applied. With in-
ward deterministic contexts, the product is eas-
ier to keep up to date. Namely, the previously
computed product automaton can be refreshed lo-
cally around the changed cohort (Figure 3(iii)).2

If the distance between the successive refinements
is O(1) according to the amortized analysis over
the total of O(n|R|) refinements, the local refresh-
ing of the product improves the time complexity to
(n|R|2|F |).

On-the-fly Inward Determinization When
computing the intersection Cr ∩ h−1(w) with
a nondeterministic recognizer for Cr, the result
can be determinized easily on-the-fly due to the
special structure of the language h−1(w). The
result is still virtually deterministic from both
sides, allowing for the efficient refreshing of
the product after a cohort is refined and local
changes in w occur. Under the assumption of
O(1) distance between the refinements, the worst
case time complexity is now O(nm|R|2|F |).

5.3 Reducing the Effect of Features

The Path Length Problem A problem with all
intersection methods is that they process full-
length paths. The feature values in each cohort
are read one-by-one, resulting in many states and
transitions. Because the length of the string w is
O(n|F |), the path length is a practically signifi-
cant problem.

2The dynamics of the optimal refreshing of the product
has been studied by the author in a PSC submission (2010).

Contracted Contexts To address the path
length problem, the rule compiler of the parser
contracts the strings in a context language C into
the patterns in a contracted context language C ′

that retains just the necessary details. In the pat-
terns, the cohort boundaries are retained, while
the feature-value symbols in F are retained only
where the rule condition refers to them. For exam-
ple, the condition (-5 C) corresponds to the regu-
lar language •∗C•••••@1.r@•∗.

The intersection of the patterns is com-
puted against the image g(h−1(w)) where g ⊆
(Σ∪R)∗ × (Σ∪R)∗ is a regular relation de-
fined by g(ε)=ε, g(•)=•, g(r)=r, g(f)={f, ε},
g(xy)=g(x)g(y), for r∈R, p∈P , x, y∈(Σ∪R)∗.

The language C′ is a valid contraction of the
context language C if

C ∩h−1(w) = g−1(C ′∩ g(h−1(w)))∩ h−1(w). (7)

For CG rules, the valid contractions of context lan-
guages can be constructed easily because they do
not need to express negations through the absence
of features.

Compressed Sentence Automaton The lan-
guage g(h−1(w))) does not give rise to particu-
larly useful representations of the sentence. In-
stead, a good representation for the substrings of
w is obtained by an n-state sentence automaton
where each state contains the loops for the feature-
value symbols and are connected with the cohort
boundary symbols (Figure 5). Under the intersec-
tion C′∩ g(h−1(w))), this is a lossless compres-
sion because C′ still respects the order in P .

0 1 2 3 4 5 6
• • • • • •

F1 ∪ R F2 ∪ R F3 ∪ R F4 ∪ R F5 ∪ R F6 ∪ R F7 ∪ R

Figure 5: A compressed sentence automaton.

5.4 Reducing the Effect of Rules

The contracted context languages have, rulewise,
quite small minimal deterministic recognizers. For
example, the rules 343 and 865 give rise to the rec-
ognizers in Figure 6.

There are 1377 rules. The sum of the sizes of
the recognizers is 10529 states and 16707 arcs.
This means, on average, 7.6 states and 12.1 transi-
tions per rule.

A grammar automaton recognizes the union of
all contracted context languages. For FINCG,
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Figure 6: Two contracted context automata.

the obtained minimal deterministic grammar au-
tomaton has only 5277 states and 13445 transi-
tions. This saves some space because of the shared
states. On average, each rule corresponds to 3.8
states and 9.8 transitions.

A striking thing in this automaton is that 98%
of the states have 1 - 7 transitions and three states
have 887 - 919 transitions. This suggests that, in
the product construction, the computation of the
product can be optimized by taking advantage of
the size asymmetry inside the product states and
the probability of the transitions. If |F | is fixed,
the product is computed in O(ne) time where e is
the number of states in the grammar automaton.

The total complexity of iterated context testing
is bounded by O(n2|R|e). It is conjectured, how-
ever, that the average time complexity of a proper
implementation is close to O(ne log |R|) because
(i) the amortized O(1) proximity and refreshing
can eliminate the effect of O(n) iterations and (ii)
an average cohort is refined by partitioning it into
two halves (log |R| rather than |R|).

5.5 Compilation of Contracted Contexts

The Infiltration In formal language theory
(Sakarovitch, 2009), the infiltration of words
u, v ∈ Γ∗, denoted with u ↑ v, is defined as the set
of words w s.t. subwords u and v cover w com-
pletely. More formally, u ↑ v consists of strings
x1...xn ∈ Γ∗ for which

I = {i1, ..., in}, i1<i2<...<in, u = xi1 ...xin ,

J = {j1, ..., jn}, j1<j2<...<jn, v = xj1 ...xjn ,

I ∪ J = {1, ..., n}.

The set {ABC, ABBC, ABCB, BABC, BACB, BCAB} ⊆
Γ∗, for example, is given as AB ↑ BC.
The operation extends additively to lan-
guages U, V ⊆ Γ∗ by the definition
U ↑ V = {w ∈ u ↑ v |u ∈ U, v ∈ V }.
The infiltration operation is implemented by a
state pair construction over automata.

The Synchronization The CG compiler com-
bines conjunctive conditions through the synchro-
nized infiltration operation U ↑S,< V where
U, V ⊆ Σ∗. The infiltration is restricted in two
ways: First, we define a set of synchronization
symbols S that include the cohort boundary sym-
bol (•), and require that {i | xi ∈ S} ⊆ I ∩ J
holds for this set. Second, we require that the ad-
jacent letters xi, xi+1 are in a strictly increasing
order (<) if neither is the cohort boundary symbol
(•). Feature symbols SG+, SG− and SG?, for ex-
ample, are incomparable letters of Σ, which means
that they cannot be adjacent with each other.

The Anchors The relative conditions are an-
chored to the target cohort by a rule marker.
Therefore, rule markers @1.r@, @2.r@ ∈ R are
called anchors. The linked conditions use other
anchors whose shape is @LINK.n@ (n = 1, 2, ...).
Under the synchronized infiltration, the set of syn-
chronization symbols includes the anchors shared
by both U and V . The internal anchors are sup-
pressed after they have been used as synchroniza-
tion symbols. The application of synchronized in-
filtration to linked conditions is illustrated in Fig-
ure 7.

6 The Implementation

The current rule compiler has been created by
adapting the skeleton of the Foma tool (Hulden,
2009) to the purposes. The extensions include the
infiltration operation, the symbol tables and other
essential compiler logic. The compiler is inte-
grated into the parser, whose data structures and
algorithms were written from the scratch in order
to optimize the computations on cohort automata.
Some parts of the system are still under construc-
tion. Therefore, experiments on complete parsing
are not yet available.

The contracted grammar automaton of 1380
rules is constructed in 20 seconds by the rule com-
piler. In the parser, about 110 000 cohort automata
were read, minimized and mapped to the inte-
ger vectors of 1216 features in 1 second (2.2-Ghz
Core-2-Duo laptop).

7 Evaluation

The presented parser design has many advantages
that concern the space and time requirements and
possible extensions. On the other hand, having
two finite-state representations of the sentence is
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↘ ↙

↘ ↙

Figure 7: The contracted context for [SELECT (V) ((*1C X) (LINK 1C Y) (LINK 1C Z))]0 is computed
with synchronized infiltration and by removing the intermediate link anchors.

clearly a conceptual complication, requiring a spe-
cial parsing algorithm that ties the representations
to each other.

Space Advantages The automaton representa-
tion of the grammar is close to the original gram-
mar size, fitting easily into cache memories. The
product of the grammar automaton and the sen-
tence is small and easy to compute.

Speed Advantages The current design is a step
towards high-speed CG parsing. This is argued by
the following points: (i) The low space complexity
sets better lower bounds for the time complexity.
(ii) The iterations take advantage of the prior con-
textual tests. (iii) The cohort automata compress
ambiguity. (iv) The contractions optimize the con-
structions. (v) The rules share various common
parts, which makes the parallel testing of contexts
faster. (vi) The combined contextual tests are com-
piled for each rule.

Possible Extensions The current design in-
creases the flexibility of the CG rules: (i) The ap-
plication mode can be altered easily. (ii) Coor-
dinated disambiguation rules can be implemented
for syntagmatic patterns. (iii) The context con-
ditions can be arranged to levels of exceptions
(@1.r@, @2.r@, @3.r@,...). (iv) The rule formalism
can be extended. (v) The borderline between mor-
phological and syntactic rules can be removed by
lexicalizing the intermediate mapping.

8 Conclusions

The paper has described a nonconventional CG
parser architecture using finite-state methods. In
the approach, the list representation of the read-
ings is replaced with a cohort automaton and fea-
ture vectors. The readings and contexts are tested
with contracted patterns. Iterated testing is opti-
mized with inward processing. The presented ar-

chitecture and its prototype are expected to lead to
an efficient and flexible parser and enrich the re-
lated research.
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Université Paris 7, Paris, France.

59



Mehryar Mohri. 1994. Syntactic analysis by local
grammars automata: an efficient algorithm. In D. K.
Kiefer, G. Kiss, and J. Pajzs, editors, Proc. Interna-
tional Conference on Computational Lexicography
(COMPLEX 94), pages 179–191, Budapest, Hun-
gary.

Kemal Oflazer and Gökhan Tür. 1997. Morphological
disambiguation by voting constraints. In Proc. 35th
ACL / 8th EACL, pages 222–229, Madrid, Spain.
ACL, Stroudsburg, PA.

Ivan Petrov Peikov. 2006. Direct construction of a
bimachine for context-sensitive rewrite rule. Mas-
ter’s thesis, Sofia University St. Kliment Ohridski,
Faculty of Mathematics and Computer Science, De-
partment of Mathematical Logic and Applications,
Sofia.

Janne Peltonen. 2011. Rajoitekielioppien toteutuk-
sesta äärellistilaisin menetelmin. Master’s thesis,
University of Helsinki, Department of Modern Lan-
guages, Helsinki.

Paul Stanley Peters and Robert W. Ritchie. 1969.
Context sensitive immediate constituent analysis —
context-free languages revisited. In Proc. ACM
Symposium on Theory of Computing, pages 1–8,
Marina del Rey, California, May 5–7.

Martin Plátek, Markéta Lopatková, and Karel Oliva.
2003. Restarting automata: motivations and
applications. In M. Holzer, editor, Workshop
Petrinetze und 13. Theorietag Automaten und For-
male Sprachen, pages 90–96, Institut für Informatik,
Technische Universität München, München, Ger-
many.

Emmanuel Roche. 1994. Two parsing algorithms
by means of finite state transducers. In Proc. 20th
COLING, volume 1, pages 431–435, Kyoto, Japan.
International Committee on Computational Linguis-
tics (ICCL).

Emmanuel Roche. 1997a. Compact factorization
of finite-state transducers and finite-state automata.
Nordic Journal of Computing, 4(2):187–216.

Emmanuel Roche. 1997b. Parsing with finite-
state transducers. In Emmanuel Roche and Yves
Schabes, editors, Finite-state language processing,
chapter 8, pages 241–281. A Bradford Book, the
MIT Press, Cambridge, MA.

Jacques Sakarovitch. 2009. Elements of Automata
Theory. Cambridge University Press, Cambridge,
NY.

Nicolae Santean and Sheng Yu. 2006. On weakly
ambiguous finite transducers. In O.H. Ibarra and
Z. Dang, editors, DLT 2006, volume 4036 of LNCS,
pages 156–167. Springer-Verlag, Berlin, Germany.

Wojciech Skut, Stefan Ulrich, and Kathrine Hammer-
vold. 2004. A bimachine compiler for ranked
tagging rules. In Proc. 20th COLING, Geneva,

Switzerland. International Committee on Computa-
tional Linguistics (ICCL).

Pasi Tapanainen. 1996. The Constraint Grammar
Parser CG-2. Number 27 in Publications of the
Department of General Linguistics, University of
Helsinki. Yliopistopaino, Helsinki, Finland.

Pasi Tapanainen. 1999. Parsing in two frame-
works: finite-state and functional dependency gram-
mar. Ph.D. thesis. Department of General Linguis-
tics, University of Helsinki, Finland.

Atro Voutilainen. 1994. Three studies of grammar-
based surface parsing of unrestricted English text.
Ph.D. thesis, number 24 in Publications of the
Department of General Linguistics, University of
Helsinki. Yliopistopaino, Helsinki, Finland.

William A. Woods. 1970. Transition network gram-
mars for natural language analysis. Communica-
tions of the ACM, 13(10):71–87. Association for
Computing Machinery (ACM).
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Skadin, editors, NODALIDA 2011 Conference Pro-
ceedings, pages 262–269, Riga, Latvia.

60


