
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
29

SIZE-EFFICIENT INTERVAL
TIME STAMPS

JAN VILLEMSON

TARTU 2002

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
29

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
29

SIZE-EFFICIENT INTERVAL
TIME STAMPS

JAN VILLEMSON

TARTU UNIVERSITY

P R E S S

Department of Mathematics, University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of
Philosophy (PhD) on April 12, 2002, by the Council of the Department of
Mathematics, University of Tartu.

Opponents:

Pekka Orponen Helsinki University of Technology
Helsinki, Finland

Helger Lipmaa Helsinki University of Technology
Helsinki, Finland

Commencement will take place on June 17, 2002.

Publication of this dissertation is granted by the governmental financial
support to PhD students.

©Jan Villemson 2002 Tartu Ülikooli Kirjastuse trükikoda
Tiigi 78, 50410 Tartu
Tellimus nr. 300

CONTENTS

LIST OF ORIGINAL PUBLICATIONS 8

ABSTRACT 9

1 INTRODUCTION 10
1.1 Paper-based documents 10
1.2 Who is responsible for the document? 11
1.3 When was the document signed? 12
1.4 Absolute and linkage-based time stamps 14
1.5 Two scenarios of time-stamping 15
1.6 Objectives and outline of the thesis 17

2 STATE OF THE ART 19
2.1 Hash functions 19
2.2 Proving dependencies between the data items 20
2.3 Linkage-based time-stamping 21
2.4 Off-line comparability 22

3 LINKING SCHEMES 26
3.1 Basic requirements 26

3.1.1 General framework 26
3.1.2 Interval time-stamping 31

3.2 Optimization goal 33
3.3 Composition of linking schemes 34
3.4 Topologically sorted binary trees 35
3.5 Complete trees 36
3.6 Schemes with ß{G) — 1.5 + o(l) 37

4 OPTIMAL LINKING SCHEMES 42
4.1 Optimal family of schemes 42
4.2 Proof of Lemma 4 43
4.3 Proof of Lemma 5 46
4.4 Proof of Lemma 6 47
4.5 Proof of Lemma 7 48
4.6 Proof of Lemma 8 49

5 LINKING USING TREES 6* 53
5.1 Alternative description of the trees 6^ 53
5.2 The algorithm 60
5.3 Efficiency and further optimizations 65

6 INSTEAD OF THE CONCLUSIONS 67

REFERENCES 69

SISUKOKKUVÕTE 74

ACKNOWLEDGEMENTS 76

6

LIST OF FIGURES

1.1 The general model of time-stamping. . . 13

2.1 Example of Merkle's authentication tree 20
2.2 Example of linear linking scheme 22
2.3 Example of linking scheme of [BHS93] 23
2.4 Example of linking scheme of [BLLV98] 24

3.1 A simple example of time-stamping scheme 27
3.2 The construction G\ ® G2 34
3.3 Complete tree with an interval time stamp of size 2d — 1. . 37
3.4 The process of forming the trees 38

4.1 Transformations of a linking scheme 45
4.2 Transformation from an arbitrary tree to a binary tree. ... 47
4.3 Transformation from a binary tree to a sorted tree 48
4.4 Graph of the function $(a) 51

5.1 The graph 62,3 , 57

7

LIST OF ORIGINAL PUBLICATIONS

1. Ahto Buldas, Peeter Laud, Helger Lipmaa, Jan Villemson, Time-
Stamping with Binary Linking Schemes, Advances in Cryptology -
CRYPTO '98, Springer-Verlag 1998, pp 486-501.

2. Margus Freudenthal, Sven Heiberg, Jan Willemson, Personal Security
Environment on Palm PDA, in proceedings of ACS AC 2000, Decem­
ber 2000, New Orleans, Louisiana, USA.

3. Arne Ansper, Ahto Buldas, Meelis Roos, Jan Willemson, Efficient
long-term validation of digital signatures, Advances in Cryptology -
PKC 2001, Springer-Verlag, LNCS 1992, pp 402-415, presented on
PKC 2001, February 2001, Cheju Island, Korea.

4. Arne Ansper, Ahto Buldas, Märt Saarepera, Jan Willemson, Improv­
ing the availability of time-stamping services, Information Security
and Privacy - 6th Australasian Conference, ACISP 2001, Springer-
Verlag, LNCS 2119, pp 360-375, presented on ACISP 2001, July 11-13,
2001, Sydney, Australia.

5. Ahto Buldas, Meelis Roos, Jan Willemson, Undeniable replies for
database queries, accepted to Fifth International Baltic Conference
on DB and IS, June 2002, Tallinn, Estonia.

6. Kristo Heero, Uuno Puus, Jan Willemson, XML based document man­
agement in Estonian legislative system, accepted to Fifth Interna­
tional Baltic Conference on DB and IS, June 2002, Tallinn, Estonia.

8

ABSTRACT

In various applications of digital document management it is necessary to
determine different parameters of documents - e.g. the format, the author
or the time of creation. Determining the time can be unsuccessful since the
bits of a digital document look the same regardless of their exact incep­
tion moment. Hence, in practical applications instead of fixing the digital
document's creation time it is better to register the document at certain au­
thority and consider the registration time instead. Such a process is called
time-stamping and the corresponding authority is called Time-Stamping
Authority.

There are a number of occasions where one-time registration of the data
is enough. Registering a patent application is a good example of such a
scenario. Determining the time of digital signature creation, on the other
hand, differs substantially from the patent case. This is caused by the fact
that digital signatures are given using private keys that should remain under
the signers' sole control.

Hence, it is impossible to determine the exact moment of signing by any
third party. Nevertheless, it is possible to fix two moments - one before
and another after the signature creation. Using these moments we can later
prove that the signature was given during some time interval and this form
of time-stamping is called interval time-stamping.

The main idea of the current PhD thesis is to study interval time-
stamping schemes that allow us to decrease the size of the time stamps
as much as possible. While doing this, several restrictions must be taken
into account, the most important one being the ability to compare creation
times of the documents without help of any third party.

In the thesis, we state an explicit optimization goal, give an upper bound
to the size of time stamps, find a lower estimate for this bound and construct
a family of graphs approaching this (unachievable) estimate asymptotically.

The last chapter of the thesis is devoted to the questions of practical
implementation of the proposed schemes. The original recurrent definition
of the scheme family turns out to be unsuitable, so we will introduce an
alternative description. This solution enables storing the server's internal
state in a limited number of variables that can be efficiently back-upped.
The description is further used to design an efficient step-by-step time-
stamping algorithm.

3 9

1 INTRODUCTION

1.1 Paper-based documents

In many everyday applications there is a document involved to witness our
behavior. Bus tickets, diplomas, promissory notes, passports, wills, stu­
dent cards, driver's licenses, love-letters, stock shares, guarantee coupons,
business contracts etc. are all very common and well-known examples.

There are several components that help a document to prove things and
hence make it a document as we understand this notion today.

• Contents - this is the meaning of the document, stating that Mr. X
has some rights or obligations or that he has just stated something
(e.g. expressed love for Ms. Y). In other words, contents of the doc­
ument shows why it was created and in all the examples above the
contents were physically written on something that is called

• Medium - for usual documents, this is just paper or sometimes plas­
tic; from the history we also remember people writing their messages
on wood, on stone or even encoding them by making knots in ribbons.

• Means of authentication - a document can have no legal value if
nobody is responsible for it.1 Thus, in order to establish the person in
charge, there must be something added to the document contents to
enable an independent party {judge) to decide whether or not someone
is bound to it. Mostly, a hand-written signature does the job, some­
times people also use fingerprints, water-marks or just three crosses
attached.

It is important to note that in the case of conventional paper-based docu­
ments the contents are connected to the signature via the medium. Once a
text has been typed on paper and a signature written under it, there is no
way to erase either of them without leaving visible traces (at least it should
be very hard).

But in digital world we see that our familiar intuition behind documents
may break down. We no longer have any paper to take into our hands for

1Even more, the responsibility for document creation must be taken by a human. We
can not say "the computer wrote it" as it is pointless to put the computer behind the
bars if anything goes wrong. It is of course technically possible for a computer to create
messages automatically, but there must still be a human person responsible for that.

10

reading, suddenly a piece of information may have many identical originals
etc. It usually takes some time from people to get used to the new framework
and sometimes unexpected things can happen. Let us conclude this section
by a small real-world example of what happens if the conventional methods
are applied to digital data management.

In Tartu University, Estonia, somewhere at the end of 1990s
there was a regulation established concerning several aspects of
bureaucracy. One part of it was talking about destroying the old
and unnecessary documents. When the secretaries had collected
a pile of old documents, they had to write short notes about the
contents of all these documents, store those notes and then feed
the documents to the shredder. But when they needed to delete
some files from a computer hard disk, they first had to print
those files out and feed the printouts to the shredder! And no
word about actual deletion of files from hard disks!

A lesson to be learned: changing from paper to computers really changes
the notion document. One has to be cautious of what to say about digital
documents if one has only seen the paper ones — they act differently in
many important details!

1.2 Who is responsible for the document?

When dealing with paper documents, we are used to think that it is impor­
tant to establish, who wrote the document. This information is important
for contracts, wills, promissory notes etc. If a contract is signed and one of
the parties breaks it, we must be able to determine who is responsible for
the consequences. In many practical applications, finding out the creator
of a document also gives us the responsible person.

On the other hand, having a digital document at hand (or in the com­
puter), it is impossible to say who has created it, because the bits cannot
be distinguished by handwriting. Hence, the best we can do is to be sure
about who takes the responsibility for the document.

Technically, responsibility means potential repressions against a person,
possibility to apply penalties (financial or even death penalty) if something
goes wrong. Consequently, we must be able to determine the right person
by the document and possibly using some additional data.

The process of binding a person to a (digital) document is called giving
a digital signature and it is implemented via a signature scheme.

11

1. In order to be able to give digital signatures, the user A needs a key
pair consisting of a private signature key SA and a public verification
key VA- The private part is kept secret, whereas the public part is
made available to everybody.

2. The user A can apply signature creation procedure to a document X
and the private key SA to obtain the signature Sig^-fX}.

3. When the verifier B has a document X, a signature SigA{X} and a
public key VA, he can apply the verification procedure to them and
get "Yes" or "No" as the outcome, indicating the correctness of the
signature.

4. Knowing only the public key VA, it is computationally infeasible to
find its secret counterpart SA, or even produce a valid signature of A
to a new document X.

There are many signature schemes proposed, out of which RSA [RSA78]
and Digital Signature Standard (DSS) [NISOO] are two of the most popular
ones. You may also look at Birgit Pfitzmann's excellent PhD thesis [Pfi96]
for more information on digital signature schemes.

1.3 When was the document signed?

It is not always enough to know who created/signed the document, but
also when it was done. For an example, if Alice signs a promissory note
and makes her private key public right after that, she can later claim that
anybody could have given the signature instead of her. One possible solution
to this problem is to make Alice responsible for all signatures given with her
private key until she explicitly claims her private key compromised (revokes
her key). Hence, before accepting Alice's promissory note, the bank should
verify whether Alice has revoked her key and give her money only if the key
is still valid. For instance, if digital certificates (the framework of stating
the validity of signature keys proposed by Kohnfelder [Koh78]) are used, the
bank may consult an OCSP [MAM+99] server or a Notary server [ABRW01].

Nevertheless, in order to be able to prove later (e.g. in court) that
Alice's key was not revoked at the moment of signing, the bank has to
present some more convincing arguments than just the claim "We checked
that the signature key was valid". These extra arguments should at least say
what happened before — was it the act of signing or the act of revocation.

One of the most widely used ideas to overcome this problem is to in­
troduce a new party to the game. This party is responsible for attaching

12

TSA

<
>

TS Y

TSY

Verifier

Figure 1.1: The general model of time-Stamping.

time information (time stamps) to the documents (or to any other kind of
digital data, e.g. auction bids, patent claims etc.). Because of its role, he
is generally known as Time-Stamping Authority (TSA).

The general work model of TSA is explained in Figure 1.1. If a docu­
ment X is to be time-stamped, some communication is initiated with the
authority. During this communication the document is transmitted to the
TSA who computes the time stamp TSx and returns it. Of course, the
whole protocol can be much more complicated than just having one pass,
e.g. we might add client and/or server authentication, compute the time
stamp in several parts etc.

It is not enough only to issue time stamps. We must also have means of
comparing them and establishing which one was issued earlier (Figure 1.1,

3 13

below). Of course, in order to make the time-stamping system practical
there are several requirements to meet.

• The protocol should not take too long to run.

• The time stamps should be as small as possible to avoid unnecessary
overhead in communication and storage.

• It should not be necessary to invoke any parties (even the TSA) to the
verification procedure, i.e. time stamps should be comparable off-line.

The last two conditions are in a way controversial. The feature of off­
line comparison implies that time stamps must contain enough information
about all the other time stamps. As we want our time-stamping system to
allow potentially any number of time stamps, it is for instance very difficult
to make the time stamps having constant size. Hence, a tradeoff has to be
found and the question how small can off-line comparable time stamps be
needs an answer. Answering this question in case of time stamp for digital
signatures is the core of this thesis, but before reaching the core we still
need to discuss some details.

1.4 Absolute and linkage-based time stamps

The standard approach when building a time-stamping framework is to give
the TSA a (generally trusted) clock and let him sign the request together
with the clock's state at the moment the request is received. For exam­
ple, the IETF PKIX time-stamping standard [ACPZ01] is based on this
idea. Still, such an absolute time-stamping approach suffers from several
drawbacks.

1. The TSA is completely trusted. Among other things, this means that
the TSA can attach any time (not necessarily the correct one) to the
requests.

2. As the TSA signs its statements, the compromise of its private key
also becomes a problematic issue.

3. In a way, attaching absolute time to the documents gives too much
information. We are mostly not interested in exact time moments,
but rather in establishing the temporal relationship (earlier/later) of
several events. This was the case with Alice's signature and key revo­
cation. It also is when we need to compare patent registrations, or to
make sure that a job-application arrived before the deadline etc.

14

The last consideration leads to the question, whether it is possible to
establish temporal relationships by some other (less-demanding) means, and
if so, perhaps it could also be possible to reduce the trust requirements of
the TSA.

Such a framework can be built by using one-way functions to create un­
deniable causal relationships between digital events rather than assigning
physical time to them. As a result, all the time-stamped items form some­
thing like a chain of links where it is impossible to insert some new elements
or to delete any old ones. Because of this analogy the described approach is
called linkage-based time-stamping. It was first proposed in 1990 in [HS91]
and later improved in [BLLV98].

1.5 Two scenarios of time-stamping

Before starting to create a new time-stamping scheme we must analyze the
requirements the scheme has to meet. First, we will discuss the possible
settings where it makes sense to apply time-stamping. On a very general
level we can distinguish the following two basic scenarios.

First scenario: Who gets it first? In this scenario, there are several
participants who are interested in the same resource and they need to be
(among) the first ones to get it. There are many common examples of this
scenario.

• When several scientists make the same invention, only the first one to
reach the patent bureau is the one who can claim the rights for the
invention.

• If flights are booked internationally, the airline companies tend to
double-book some seats as their experience shows that many bookings
are often canceled. Still, from time to time, it happens that some
flights are over-booked and in this case only the first bookers should
get the seats.

• Temporal ordering of the requests can be applied for several kinds of
auctions, see [PSST01, RG95] for discussion.

In order to prove later to the patent-interested scientists that some of their
competitors were not favored unfairly, time-stamping is a natural tool to
use. It is also quite easy to organize time-stamping in cases like the ones
above as all the clients are obliged to express their interest directly anyway,
by pressing a button or running to the travel agent. Hence, it is enough

15

for the TSA to record the moment of the interest expression and to issue a
time stamp for that moment.

Second scenario: When did the cat die? Recall the Schrödinger's
famous mental cat experiment [Sch35] (the English translation used here is
due to John D. Trimmer [Tri80]):

A cat is penned up in a steel chamber, along with the following
device (which must be secured against direct interference by the
cat): in a Geiger counter there is a tiny bit of radioactive sub­
stance, so small, that perhaps in the course of the hour one of
the atoms decays, but also, with equal probability, perhaps none;
if it happens, the counter tube discharges and through a relay
releases a hammer which shatters a small flask of hydrocyanic
acid. If one has left this entire system to itself for an hour,
one would say that the cat still lives if meanwhile no atom has
decayed.

For us, the important question arising from this experiment is: if we open
the chamber and see a dead cat then how can we tell the exact moment of
death? The sad truth stated by Schrödinger is - we cannot.

A similar situation can be observed in the computer world if we need
to determine the time of some private digital action. One very important
example - signing - was already presented above. Note that the situation
of signing is substantially different from registering patents. As we saw
before, a scientist interested in the honor of invention can (and has to) show
his interest explicitly and publicly. Signing, on the other hand, involves
application of a private signature key that is known only to the signer and
to no-one else. Hence, no-one except for the signer knows the exact moment
when the signature was created.

So what can we do if we still need to determine the time somehow?
The answer is simple - if you cannot do it exactly, try to be as precise as
possible and prove that the event took place during some time interval. For
the Schrödinger's cat, this means saying that the cat died during the hour
when the chamber was closed; for digital signatures the very same approach
applies - if we can prove that a signature was created during some (relatively
short) time interval, one can be reasonably satisfied with the result. The
time stamps used for the proof are called interval time stamps from now
on.

16

Whereas the first scenario is pretty well studied [HS91, BLLV98, BL98,
BLSOO, Lip99], the second one has arisen only recently. Still, being appli­
cable for time-stamping digital signatures, it is by no means less important
than the patent scenario. There are also other possible applications of inter­
val time stamps. In principle, any computation that is carried out outside
of the direct sight of the TSA can be a subject to it. For example, com­
putation of message authentication codes (MACs, see [MvOV97], Section
9.5) also involves usage of secret keys and hence interval time stamps are to
be used. Another interesting application of this approach is time-stamping
other TSA's time stamps. This way, it is possible to create dependencies
between the "histories" "written" by different TSAs. These dependencies
can be used to

• synchronize the actions of TSAs and make items in different "histories"
comparable with each other; and

• increase the reliability and availability of the TSAs: when one TSA is
temporarily down, the other one still retains the continuity of the first
one's work (see [ABSW01] for a more detailed discussion on availabil­
ity issues).

1.6 Objectives and outline of the thesis

The basic motivation of this thesis was already stated in Section 1.3. Adding
the results of the discussions from Sections 1.4 and 1.5, we formulate the
following central problem of the thesis.

Find a linkage-based time stamping scheme that provides as
small interval time stamps as possible and enables off-line com­
parison.

When solving this problem we will mostly concentrate on the mathe­
matical side and postpone the discussion about practical implementations
to the end. Still, this discussion is by no means less substantial than the
rest of the thesis as the work of the TSA must also be efficient and reli­
able. Hence, when proposing some new schemes, one must also ask how
good algorithms can be designed based on mathematical descriptions of the
schemes.

The rest of the thesis is devoted to solving these two problems and is
organized as shown below. Several results presented in the thesis have not
yet been published on any conference nor in any journal, but rather in a

5 17

series of manuscripts and technical reports. The references can be found
below as well.

• Chapter 2 gives technical background and a brief historical overview
necessary to understand the rest of the thesis.

• Chapter 3 presents a general framework of linking schemes together
with detailed technical descriptions. Size-efficiency of the previous
best-known time-stamping system is considered for interval time stamps
and improved by 25%. This result was first obtained by Buldas and
Willemson and described in manuscript [BWOla].

• Chapter 4 presents a new family of linking schemes and proves its
asymptotical optimality with respect to an upper bound for the size of
time stamps. The new scheme family was defined first in [BWOla] and
further analyzed in [BWOlb] by Buldas and Willemson. The optimal
schemes were first found by the author of the thesis in [WilOlb].

• Chapter 5 discusses the restrictions that are set on the TSA's server
that uses new linking schemes. We give an efficient and reliable al­
gorithm for generating the schemes on the fly. The algorithm was
originally described by the author in [WilOla].

• Chapter 6 ends the thesis and draws some philosophical conclusions.

18

2 STATE OF THE ART

2.1 Hash functions

In order to build a linkage-based time-stamping scheme we use a collision
resistant hash function (see [MvOV97], chapter 9)1, i.e. a function h such
that it

• inputs bit-strings of arbitrary length and outputs bit-strings of fixed
length k, i.e. h : {0,1}* -> {0,1}fe;

• works efficiently (i.e. for any a?, h(x) is easy to compute);

• is collision resistant: it is computationally infeasible to find inputs
x x' such that h(x) — h(xr).

It can be easily seen (e.g. [Sti95], chapter 7) that (under some natu­
ral extra conditions) collision resistant hash functions also have the next
desirable properties:

• preimage resistance: for essentially all outputs y € {0, l}fc it is infea­
sible to find x E {0,1}* such that h(x) = y,

• 2nd preimage resistance: for given x 6 {0,1}*, it is infeasible to find
x' 7^ x such that h(x) = h(x').

Whereas the question of existence of such functions is still open, several
candidates have been tailored and they are believed to be good enough
for practical use. SHA-1 [NIS95] together with its improvements SHA-256,
SHA-384 and SHA-512 [NIS01] are the most popular ones at the time of
this writing.

Later on we will extensively use the notation h(xi,x2,... ,£/) and by
that we mean the value of the function h on some predefined data structure
from where all the "bit-strings X2,. • •, xi can be restored. One might e.g.
use concatenation of the strings or some container format.

1As the idea of the current thesis is not to make a deep contribution into the theory
of hash functions, our definition used here is rather informal and intuitive. For more
detailed discussion we refer the reader to [Pre93].

19

h$ = h(Jl2, /^4)

h,2 = h(h

X\ X2 X4 X5

Figure 2.1: Example of Merkle's authentication tree.

2.2 Proving dependencies between the data items

In what follows, we will consider a process where outputs of some hash
computations are used as inputs to others. This way we can make one
output value dependent on many input values and prove this dependence
by exposing some of the inputs or intermediate hash values. For instance,
if we are given X\,X2 such that

h(xuh(x2,x3)) = y (2.1)

then we say that y depends on the inputs xi,x2,xs in the sense that there
is no other way to obtain y as a result of some hash computations than
computing it by formula (2.1) (because otherwise we should be able to
find second preimages to the function h). Hence, in order to prove that y
depends on X2, it is sufficient to show the additional values x\ and X3 so
that anyone can compute hi = h(x2,2:3) and verify that y = h(xi^h\).

Such a reasoning can be generalized to quite complicated data struc­
tures, for instance to binary trees as done by Merkle [Mer80]. Figure 2.1
presents an example of resulting Merkle's authentication tree.

Similar to the above, for all the leaves labeled xi,... :xe it is possible
to prove that h$ depends on them. For instance, if the dependence of h5
on £3 is to be proven, one may add the vertices hi and /14 and the verifier
may compute /12 = h(hi,x$) and h§ — h(h2^h^).

Hence, if h$ is published in authentic and undeniable way, the presence
of the leaves xi,... :XQ at the time of forming the Merkle's authentication
tree can not later be denied (even by the party who formed the tree). If we
consider xi:..., ̂ 6 to be records in some database V, then h$ is the digest of

20

V and the proof methodology described above can be used to prove whether
for any particular Xi the condition Xi G V or the condition Xi # V holds.
We refer the reader to [BLLOO, BRW02] for more details.

2.3 Linkage-based time-stamping

As noted in Section 1.3, there are two security drawbacks in absolute-time
based time-stamping: the need to trust the TSA and TSA's potential key
compromise. Hence, in order to avoid these problems, the TSA should have
tools for time-stamping such that

1) he is not able to recompute his statements afterwards; and

2) his statements do not depend on any secret information.

It turns out that the cryptographic hash functions described in Section 2.1
can be successfully applied in order to meet the requirements above.

This idea was first proposed by Haber and Stornetta in [HS91] who
introduced linking schemes. They compare a linking scheme with a lab
notebook the entries of which are filled one after another and the sewn-in
pages of which make the record hard to tamper with.

The approach of Haber and Stornetta is (being a bit simplified) the
following. Let us have a collision resistant hash function h and let xn be
the next time-stamping request (later also called an item). The time stamp
for xn will be

(xn5 Ln),

where Ln is the linking information defined as

L n — { X n — l i h { L n — l)) -

Thus one-way dependencies are created between the linking information
strings Ln and through them also between the items xn, allowing us to
say that xn was time-stamped later than xn-i. As no-one knows how to
compute second preimages for the hash function, even the TSA can not
alter the time stamps after they are issued. Of course he can try to delay
some time-stamps, but if he delays too much he will be caught on cheating.
Because the linking information items form a linear chain, such scheme is
called linear; an example is depicted in Figure 2.2.

Though reliable in the sense of security, the linear linking scheme of
[HS91] is very impractical for two reasons.

6 21

Lx L '2 /
ft ^

'3 L
b

,4 L '5 L '6
\ f W
iL i

• «

W ^

I i

» <

L i

t 4

9
1 j

> i

f W
i i

> 4

f
i

•

Xl X2 x 3 X4 X 5 X 6

Figure 2.2: Example of linear linking scheme.

• Every time it is necessary to establish the temporal relationship be­
tween two items, the verifier must recompute the whole chain between
them and this requires a lots of time if the items are far apart.

• For the verification procedure it is necessary to have all the interme­
diate items available as well. They can be kept in a central server,
at the verifier or anywhere else, but the required storage space in­
creases linearly in time anyway. Besides, if for some reason the stor­
ing server becomes unavailable, time stamp dependencies can not be
verified anymore. Once again, we refer the reader more interested in
the availability issues to [ABSW01].

2.4 Off-line comparability

By off-line comparability we mean the property of the time-stamping scheme
to provide such time stamps that can be compared by the verifier without
connecting to any other parties, i.e. based on the time stamps only.

Is it possible to achieve this property? The answer is affirmative, as it
can be seen from the following naive time-stamping scheme:

• time stamp for the request Xi is the set T{ = {x\,x2^ • •. ,£»_ 1};2

• if it is necessary to compare the time stamps T{ and Tj of the items
xi and Xj, respectively, find out whether X{ 6 Tj or -Xj 6 Tj.

Another scheme providing off-line comparable time stamps, but also linear
time stamp size was proposed by Pinto and Freitas in [PF96].

There have been several attempts to decrease the size estimate for time
stamps based on Merkle's authentication trees, e.g. Benaloh and de Mare

2The time stamp T, may also be signed by the TSA in order to achieve authentication
and non-repudiation. In this case we also need off-line signature verification as done e.g.
in [ABRW01].

22

n-1 n r i+i

Figure 2.3: Example of linking scheme of [BHS93].

[BdM91] and Haber, Stornetta et. ai. [BHS93, HS97]. We consider here
briefly the scheme of Haber and Stornetta that lies on the foundation of
Surety Digital Notary and Timestamping Service [Sur].

Haber and Stornetta divide the work process of a time-stamping server
into rounds. All the items x[,... ,xl

ki obtained during the round I are used
as leaves for a Merkle's authentication tree. As explained in Section 2.2,
the tree's root value r; depends in undeniable way on all the items x\ and
this dependence can later be proven by exposing some additional items.
The number of extra items needed is logarithmic in k[. In order to create
dependencies between the root nodes of different rounds, linear linking is
used. An example of the Haber-Stornetta scheme is depicted in Figure 2.3.

Note that the items inside one round are actually not ordered in the
Haber-Stornetta scheme. In practice, we may accept incomparability of
two time-stamps, if they are close enough in time. This implies the need to
make the duration of one round short enough in the Haber-Stornetta scheme
but doing so we loose in logarithmic efficiency provided by the Merkle's
authentication trees used inside the rounds.

The first time-stamping scheme providing both logarithmic time stamp
sizes and undeniable linear ordering of the items was proposed by Bul­
das, Laud, Lipmaa, and Willemson in [BLLV98]. Their basic idea was to
link a new item to two older ones: the previous item and a specifically
selected item from (possibly very distant) past. Because of this property
these schemes are called binary linking schemes. An example of [BLLV98]
scheme is depicted in Figure 2.4

The research on size-optimal linking schemes was continued by Bul-

23

00 01
Ž3 J

<4-i O

CD

o TO
hO Ö
Ö

«+-< o

a cö X
w

cs
0) Vi 3 bO
£

das, Laud, Lipmaa and Schoenmakers [BL98, BLSOO]. The Buldas-Lipmaa-
Schoenmakers (BLS-) scheme [BLSOO] was proven to give size-optimal time
stamps for the patent scenario, but in this thesis we show that for interval
time-stamps more efficient solutions can be given. We present a new family
of schemes based on unbalanced trees which reduces the size of time stamps
about 28% compared to the BLS-scheme. We will also prove that with re­
spect to the best currently known estimates for the time-stamp sizes, this
family of schemes is asymptotically optimal.

7 25

3 LINKING SCHEMES

3.1 Basic requirements

3.1.1 General framework

In Chapter 2, we saw how several graphs1 (e.g. chains and trees) can be
used to create dependencies between different data items. In this chapter,
we consider the general case and assume a rooted directed acyclic graph
(with arcs heading towards the root) as a basis of our linkage-based time-
stamping schemes.

The items to be time-stamped are represented as nodes with in-valency
0 (by an analogy with trees they are also called leaves in this thesis) and arcs
refer to hash computations performed using a predefined hash function h.
In order to make statements about temporal relationships between different
items, we also assume that the leaves of the graph are linearly ordered.
There are n! possible orders for a graph with n leaves and not necessarily
all of them give rise to an equally good linking scheme. Hence, specifying
the order of leaves plays an important role in scheme construction.

Figure 3.1 shows a simple linking scheme with time-stamped items
^1)^25^3,^4 and with hash values h\ = h(x2,xs),h2 — h(xi,h\),hs —
h(h\, #3),....

Based on such a scheme the time-stamping server works as follows. The
server's work is divided into a sequence of steps. At each step i

• a new item X{ is obtained;

• several hash computations are performed on Xi and previously stored
values;

• for the next steps some old and some newly computed values are
stored.

An example of computations carried out on the graph of Figure 3.1 can be
seen in Table 3.1. Note that the set of values to compute and to store is
not necessarily uniquely determined by the graph. For example, on step 3
we could also compute the values ^4, h$ and store the value /15 only.

1The current thesis relies on graph theory quite heavily. It was the author's choice not
to include an introductory chapter about graphs into the thesis as there are many good
resources available in literature. A reader in need for more background should probably
start from some classical books like [Chr75] or [Har69].

26

h,2 /l5 ^6

X4

Figure 3.1: A simple example of time-stamping scheme.

Step Input Compute Store
1 Xi Xi
2 X2 Xi,X2
3 £3 ^1 = h(x2,x3), h2 = h(xi,h\) X3i hi, h2

4 £4 h3 — h(hi,xz), hi = h(h3,x3),
hb — h(h2,h±), he = h(h5,x4)

h6

Table 3.1: A simple example of time-stamping computations.

27

In what follows, we will use the labels X{ and hj in two different mean­
ings. First, they denote the actual values attached to the vertices and hence
we can perform hash computations using the values X{ and hj as arguments.
Second, we will usually speak about the vertices Xi and hj using the labels
as vertex references just like it is a general custom in graph theory.

Like in Chapter 2, we are able to prove one-way dependencies between
several items, e.g. we can say that h& depends on X2• As a proof of such
a statement, it is enough to give some extra items required to repeat the
hash computations that lead from X2 to h^. For example, we can compute

h(x2,x 3) = hi,

h{h\, x3) = h3,

h(h3,x 3) = h±,

h{h,2ih±) — h§,

h(h5,x 4) = hß,

and hence we may present the set of items {^3,^2,^4} (sometimes called
time certificate) as a proof. Note that these computations are performed
following the directed path

X2 —^ h\ —y h3 —^ /14 —y h§ —y h§. (3-1)

Such a path will be called an authentication path. Later we will also need
the arcs that are not parts of the authentication path but participate in the
computation process. E.g., for the path (3.1) in Figure 3.1 the necessary
additional arcs are

(x3, hi), (x3, h3), {x3, /i4), (^2, ̂ 5), (^4, K).

These arcs are called authentication path support arcs.
At the same time it is also possible to verify the necessary dependence

by computing

h{x2i x$) = hi,
h(xi,hi) = h2,

h(h2:h4) = h5,

hijh^^x^j hß.,

where the time certificate {x3, X\, ̂ 4, £4} is required for proof.
Later we will see that time certificate forms an important part of a

time-stamp. As the main objective of the thesis stated in Section 1.6 is

28

to decrease the size time stamps, we are also interested in reducing the
size of time certificates. The minimal set (in the sense of cardinality) of
extra nodes needed to prove the dependence of node y on node x is called
authenticator of node x (relative to node y) and is denoted by Auth(rr,?/).

In order to be precise we also give a formal definition of this notion.
First we define the operation of set hash.

Definition 1 Let G be a time-stamping graph and h be the hash function
in use. Let K C V(G). Then SHh is a set hash operation that works as
follows:

SUh : 2yW -* 2V^ : K ^ K U {x = h(xu ..., xk) :

xi,...,xk G K\ (xi,x),...,{xkix) £ E(G)}.

It is natural to denote S7i\(K) := Slih(K), S%\(K) := STihiSTiJ^K)),
etc. As G is a finite graph, for some natural number i it must happen that
SH l

h{K) — This set will be denoted as SH*h{K).
Now we are ready to define what it means to be able to prove depen­

dencies.

Definition 2 A subset K of V(G) is called a proof set (proving the depen­
dence of y on x) if

1)v<t SHZ(K);

2) ye SH'h(K U{»}).

One of the proof sets (chosen in some way) having the minimal cardinality
is called authenticator and is denoted as Auth(a;,?/).

Note that the set Auth(a;,?/) is not necessarily unique as there may be
several proof sets of minimal cardinality. For example, we may have both
Auth(/ii, hb) = {rc3, and Auth(/ii, /15) = {x\, /14} for the graph in Figure
3.1. Later on, we should be careful not to cause misinterpretations based
on this non-uniqueness. As we will mostly be interested in the cardinality
IAuth(rr,y)| only, this is not going to be too difficult.

As the notion of authentication path was important in the first informal
description of authenticators, it is interesting to ask, how this notion relates
to Definition 2. In order to answer this question, we first prove the following
lemma.

Lemma 1 If K is a proof set proving the dependence of y on x, then either
x — y or there exists a predecessor y' of y such that K is also a proof set
proving the dependence of y' on x.

8 29

Proof. If x = y then we are done. If re is a predecessor of y we are also
done by Definition 2.

Otherwise, consider all the predecessors 7/1, 7/2, • • •, yk °f V- As y G
S7ih(K U {rc}) then by Definition 1, for every index i it holds that yi G
SW.*h(K U {#}). On the other hand, if for every index i it would hold that
yi € Sli*h(K), it would also mean that y € SH*h(K) which is not possible.
Hence, for some predecessor yiQ the condition yi 0 SH*h(K) is satisfied.
Choosing y' — yi0 concludes the proof. •

Now we can carry on this process for several times: find a predecessor y'
of y, then a predecessor y" of y\ etc. As the graph G is finite and acyclic,
eventually we must arrive at the vertex x, obtaining hence the path from x
to y.

It is generally not the case that for any two vertices there exists a de­
pendence one way or another. The root node r (r = h§ in Figure 3.1) is an
exception: it depends on any other node and this way the whole "history"
of the scheme is captured into the root. This way we may say that the root
is younger than all the other items in the scheme, but we would also like to
compare the items inside the scheme as well.

For that purpose, we need to keep track of the "history" throughout the
formation of the scheme: after a new item Xj is added for time-stamping,
we perform some hash computations and output a set of items capturing
one-way information about all the items time-stamped this far. We give the
following definition.

Definition 3 Set Hj C V(G) is called a history set (for the item X j) if

1) \/i < j By G Hj such that y depends on (or is equal to) xi;

2) every y G Hj can be computed from the elements xi,x,2, • •. ,Xj.

Note that the choice of the set Hj is generally not unique. For example,
in Figure 3.1 we may take H3 = {.T3, hi, /12} or H3 = {^2,^4} or even
H3 = {h5}.

Next to the authenticators, the sets Hj form another important part of
the time-stamps, hence we are interested in minimizing the number of their
elements as well.

Definition 4 The set history set Hj having the smallest possible cardinality
is called freshness token and is denoted as FTj.

Just as it was the case with the authenticators, we must be careful when
operating with the sets FTj as they are not uniquely determined. Being
mostly interested in the cardinalities only, this will not be a big problem.

30

Note that the definition of authenticators does not depend on the order
of leaves, but the definition of freshness tokens does.

3.1.2 Interval time-stamping

Recall now our original task stated in Chapter 1. We need to prove that
some action C (e.g. creation of a digital signature) took place between two
events (which are not necessarily time moments, but can also be linking
events) t\ and £2• Such a proof must clearly consist of two parts:

a) proof that C happened after t\\ and

b) proof that C happened before £2-

Of course, in order for our time-stamping system to work properly, the
following transitivity-resembling condition has to hold as well:

c) if it is proven that C happened before t and D happened after t then
it is possible to prove that C happened before D.

Let the TSA have reached the state where the next item would be Xj+i
and the user A needs to sign a document X together with interval time
stamp. Then A needs some additional information that for any item Xi,
i < j lets him to prove that x^ occurred before the signature. Hence,
this additional information must depend on all the previous items X{ —
and freshness token FT j is sufficient for this purpose. The first steps of
obtaining a time stamp look like as follows2:

1. A —» TSA: request for the freshness token

2. TSA -> A: FT,

3. A: computes a = Sig^fX, FTj}

Now the signature a depends in one-way fashion on all the previous
requests X{. How can we give an upper bound to the time moment of
signing? This can be done simply by letting the signature to be the next
time-stamping item xk:

4. A -> TSA: a

5. TSA: adds xk — cr to the linking scheme, computes FT^ etc.

2Here we use standard cryptographic protocol syntax where the expression A —> B :
X means that the party A sends the party B message X and the expression A : Z means
that the party A takes action Z.

31

By the condition c) above, in future it may of course be necessary to
prove that all the later freshness tokens FT/, I > k depend on xk- This
holds also for the very last freshness token FTn = {r}. The smallest proof
of dependence of the root r on xk is given by the authenticator Auth(^/C, r);
later on, this set will also be called existence token (for xk)3. Clearly,
the existence token cannot be issued before the whole graph is completed.
Therefore, the time-stamping procedure is finished as follows:

6. TSA: completes the scheme by computing the root value r;

7. TSA-^A: Auth(£fc,r).

But what about the other freshness tokens FT/, r > I > kl Do we need
special authenticators for all of them? This would clearly be too resource-
consuming and hence we state a much simpler requirement. Namely, we
require that the very same authenticator Auth^/c, r) should be enough for
proving all the other necessary dependencies as well:

V/c < I By G FT/ : Auth^, y) C Auth(sjfc,r). (3.2)

The next theorem shows an important class of graphs that satisfy this
requirement.

Theorem 1 For any tree T with linearly ordered leaves the condition (3.2)
holds.

Proof. Let the leaves of T be ordered as x\, #2,..., xn and let xk be an
arbitrary leaf. As T is a tree, there exists the unique authentication path

Xk —y h\ —y h>2 —y... —y r, (3*3)

and also the authenticator Auth(£fc,r) is unique. Even more, for any vertex
v on the authentication path (3.3) it holds that

Auth(rrjfe,r) = Auth(xk,v) U Auth(t>,r)

(where U denotes disjoint union) which implies

Auth(a:jfc,ü) C Auth(£ji~,r).

3It was suggested to the author by several readers that a notation symmetric to FT,
should be used for this notion as well; so it could be something like ETi or ET(x;). Still,
this notation was not accepted in the current thesis as by the author's opinion this would
cause more loss than gain in understandability of Chapter 4.

32

Hence the theorem is proven if we can prove that for any freshness token
FTi (I > k) there is a vertex y G FT/ that belongs to the authentication
path (3.3). But this is a direct implication of Definitions 3 and 4. •

Running a bit ahead, we can say that all the particular time-stamping
schemes that will be proposed in the current thesis belong to the class
of graphs described in Theorem 1. In what follows, we will not refer to
the theorem explicitly but keep it in mind every time a new scheme is
constructed.

After doing all the work above, we are finally ready to define the notion
of interval time stamp.

Definition 5 Let G be a time-stamping scheme with leaves x\,..., xn and
1 < i < j < n- Interval time stamp for the interval [i,j] is the pair

(FT,-, Author)).

3.2 Optimization goal

When time stamps are used to establish relationships between digital signa­
tures, it is convenient to have the time stamps attached to the signatures.
Still, we do not want to add too much storage overhead because of the time
stamps. Hence, it is important to reduce the size of time stamps as much
as possible and this is the main goal of the current thesis.

In Section 3.1, we saw that interval time stamps consist of two parts -
freshness token FT^ and existence token Auth(xj,r). In order to estimate
the size of the whole time stamp, we will use the following definitions.

Definition 6 By the width of the computation graph G we mean the value

W(G) = max |FT*|.
i= l , . . . ,n

Definition 7 By the depth of the computation graph G we mean the value

D(G) = max |Auth(xj,r)|.

It is clear that W(G) and D(G) are the upper bounds for the sizes of
freshness and existence tokens, respectively.

It may happen that the freshness and existence tokens for some digital
signature have some elements in common, so we conclude that the size of
time stamps is upper bounded by the value

W{G) + D{G),

9 33

Figure 3.2: The construction G\®G2-

but this estimate is not necessarily sharp. It is an interesting open question
to obtain exact bounds for the size of time stamps.

As all the currently known efficient linking schemes provide time-stamp
sizes logarithmic in the number of items, we are interested in comparing
this value to log2 ||G|| where \\G\\ denotes the number of leaves of the graph
G. Hence, in what follows we will be optimizing the following quantity:

W(G) + D(G)
ß{G)

- iõgTPl (3'4)

3.3 Composition of linking schemes

In the construction of our new schemes we need the following composition
operation which is similar to that proposed in [BL98].

Definition 8 The graph with one vertex and no arcs is I.

Definition 9 Let G\ and G2 be two rooted directed acyclic graphs with root
vertices r\ and r2, respectively. Then by G\ ® G2 we denote the tree with
vertex set V{G\ ® G2) — V{G\) U V{G2) U {r} and arc set E{G\ 0 G2) —
E{G\) U E{G2) U {(ri,r), (r2,r)} ; where r is a new vertex. The subgraphs
G\ and G2 will be called left and right subgraphs, respectively.

The construction Gi <g> C2 is depicted in Figure 3.2.
It is clear that starting from the tree I and applying this construction

recursively, we obtain only binary trees, and even more, every rooted di­
rected binary tree can be constructed this way. In order to use these trees
as time-stamping schemes, a linear order has to be defined on their leaf set
(see Subsection 3.1.1).

34

3.4 Topologically sorted binary trees

Definition 10 We say that the binary tree T is topologically sorted if for
every non-leaf node one of its children is marked as left and the other one
as right child.

Note that this definition induces a natural linear order (which we will also
call topological) for all the leaves of the topologically sorted binary tree.
This order can be formalized in the following way.

1. Let the root be labeled by the empty string A.

2. For every vertex labeled by a string a let its left child be labeled by
the string oL and the right child by the string oR.

3. Order the leaves into the lexicographic order of their labels (note that
L precedes R in the alphabet).

It is clear that the leaves of all binary trees can be topologically sorted by
defining the right and the left children for every inner node in some way. In
what follows, we will assume such an order from the leaves of (^-constructed
trees, if not otherwise explicitly stated.

For topologically sorted binary trees the following lemma holds.

Lemma 2 Let T be a topologically sorted binary tree and T — T\ (&T2 (such
a presentation being obviously unique). Then the following equalities hold.

Proof. When the TSA builds the freshness tokens in the graph T, it first
generates the the ones corresponding to the left subtree T\ and then the
ones corresponding to the right subtree T<i- In the latter case we see from
Definition 3 that some of the nodes in the freshness tokens must capture all
the leaves of T\ as well. Definition 4 requires the number of these nodes to
be as small as possible (note that the freshness tokens for the two subtrees
are independent). Hence the best solution is to add the root of the subtree
T\ to all the freshness tokens of the subtree T2. This proves the first equality.

In order to prove the second equality, that let r, r\ and be the roots
of the trees T, T\ and T2, respectively. Then for any item Xj,

W(T) = max{^(Ti),^(T2) + l},
D(T) = max{D(Ti),£>(T2)} + l.

Auth(£j, r)

35

The proof is now straightforward. •

Remark. Some care has to be taken here in order to make sure what an
equation like

Auth^^r) = Auth(:E£,ri) U {r2}

actually means considering that the sets Auth(a^,r) and Auth(ir?;, ri) are
not, in general, uniquely determined. One should read this equation in the
following way: "For any possible authenticator Auth(£j,ri) we obtain an
authenticator Auth(a;i, r) by adding the node r2 to it". A similar clarification
is applicable for the freshness tokens as well. 4

It is interesting to note that the following lemma holds.

Lemma 3 IfT is a topologically sorted binary tree with leaves x\, £2,..., xn

and root r then for each index i

FTj C Auth(jCj, r)

holds.

As we do not need this lemma in the current thesis, we do not prove it
here but refer to [BLSOO] for the proof of a completely analogous result.

3.5 Complete trees

The complete (binary) tree €d of depth d is defined by the following recursive
scheme5:

pd f I, ifd = 0,
\ if d > 0.

Clearly, \\£d\\ = 2d and W(Cd) = D(<Cd) = d. Hence,

ß{(*) = ̂ = 2.

It is also easy to see that the estimate obtained does not change if we
consider the actual size of time stamps instead of the value W{Cd) +D{<ld).
This claim follows from the fact that interval time stamps in this tree can

4It is not difficult to see that in the case of topologically sorted binary trees both
authenticators and freshness tokens are in fact unique. Still the above remark must be

taken into account in future arguments.
5In this section and further on, the equality of graphs is actually an isomorphism.

The author will use both = and ~ to represent the isomorphism, whichever symbol

seems more suitable in a particular case.

36

X<2<1— 1 X2d-\j r\

Figure 3.3: Complete tree with an interval time stamp of size 2d — 1.

have size 2d — 1. Indeed, if the requests are xi,x2,-.. ,%2di the freshness
token for the item x2d-1 (i.e. the set FT2d-i_1) has size d — 1 and the
existence token of the item x2d-1+1 has size d, where the tokens are clearly
disjoint; see Figure 3.3.

Binary trees were used as the basis for BLS-scheme [BLSOO], and al­
though proven to be the optimal ones for time-stamping in case of patent
scenario, the estimate ß(£d) — 2 is not the best possible for interval time
stamps. In Section 3.6, we will see that the ratio ß(G) can be improved by
at least 25% by considering a different family of trees.

See Figure 3.4 for an illustration of this recursive process. It is not hard
to come up with the following hypothesis (which, as we will prove, is true)
looking at the figure.

Theorem 2 If w > d then ~

6The notation using Gothic capital S originates from the phrase "Signature time-
stamping scheme" having in mind the primary application of the defined family of trees
as time-stamping schemes for digital signatures.

Definition 11 Let the family of trees be defined as follows6

10 37

9—9

•—9

r

n—9—« T

O—t

,Hr

r

"T*

o—•—e—m :

rr

urne
I

T

r

T

4 1 — • T

CM F
r

r rr rr

r I—* r

CM CO

Proof. We use induction on d. For d — 0

6° = I = <Z°
J. ,

so the claim holds in this case. Assume now the claim of the Theorem is
true for some d and consider a tree ©^+1, where w > d + 1. By Definition
11, we have

&i+1 = ei <g> ©£-i = Cd <g> Cd = £d+1

by induction hypothesis, as w > d + 1 implies both w > d and w — 1 > d. •

The case of complete trees was already considered in Section 3.5. Next
we will look at the case w < d to try to locate trees G = Sd for which
ß(G) < 2. Assuming the inequality w < d, we now prove the following
theorem.

Theorem 3 If w < d then the following claims hold:

1. W(6dJ = w;

5- Il®wll = Eteo (*)•

Proof.

1. We use induction on d. If d = 1 then w = 0 and

W(6l) = W(I) = 0,

hence the claim holds for d = 1.

For the step of induction we first note that the trees ©^ are all topo­
logically sorted and hence Lemma 2 can be applied. We obtain

w(ei) = wiet1 ® ed
w-_\) = max{w(6£r l), w(6d

mz\) +1}.

If now w < d — 1, we have

W(6dj = w(et1 ® ed
w-_\) = max{iy(s^1), w(ed

w-_\) +1} =

— maxjry, (w — 1 4- 1)} = w

because of the induction hypothesis.

If w = d — 1 then ©^_1 = Cd_1, consequently

W(6i-1) = W(ad-1) = d - 1 = w

and hence the above computation holds for this case as well.

39

If w = 0 then
D(6dJ = D(I) = 0.

If w > 0 we once again we use induction on d. The induction basis
is verified exactly as above. For the induction step we obtain from
Lemma 2 that the equality

D(6dJ = maxptet-1),^©^)} + 1

holds. Now for d + 1 (under assumption w > 0) we have:

D(ed
w

+1) = max{D(6dJ,D(6d
w„1)} + l =

= max{d, (d V 0)} -1- 1 = d 4-1,

where the notation (dVO) means an entity with the value being equal
to d or 0 (depending on w). Note that the assumption w < d is not
actually needed for this part of the theorem.

First note that the claim holds for w — 0 as

n®oii = PII = I = E
0 'd

k~ 0

Straightforwardly, the claim holds also for w — d,

V
k

iiejii = IICII = 2 i = YJ'd

k=0

Now we use induction on d. For d — 1 we have w = 0 and the required
equality holds as shown above. For d > 1 and 0 < w < d + 1 we have

\\&t+1\\ = B®ill + liei-xl l=Ž(Ž) + E(f
i—n \ / i—n ^ k=0 N x k=0

d\ A fd\ (d,

k=l x / k—1

d

k) + U - l

Y) + ž (T) = ž ^ + r
' k-l v 7 k=0

40

•

Unfortunately, there is no known closed formula for J2k=o (Ž) • ^
d = 2w + 1 we can compute the exact value as follows:

lie?*1 II = E
k=0

1
2 '

2w +1

E
.k=0

2w+l
= IE

fc=o

2iu + 1
k

2w +1
k

E
-fc=0

2w+l
+ E

fc=l[; + l

2iu + 1A /2iü + 1
+ 2^

/c=0 k k

2w + 1
k

_ _ q2W+1 •)2w

So if we use %w — ©2u,+1 in a tree-based time-stamping scheme, the number
of elements in time certificate for a digital signature is upper bounded by

Hence,

W(%w) + D(ZW) = w 4- 2w + 1 = 3w + 1.

a/,
l0g2 IM

which about 25% less than in the complete tree scheme. The next chapter
shows that this estimate can be improved even further, but not too much.

l i 41

4 OPTIMAL LINKING SCHEMES

4.1 Optimal family of schemes

In order to find the optimal schemes in the sense of the ratio (3.4) we study
the situation in more detail. Let 0 be the class of all finite rooted directed
acyclic graphs. Our aim is to prove the following theorem.

Theorem 4 For the characteristic ß the following is true:

inf{ß(G) : G G ©} = — 1

log2
1 + V 5

This infimum is approached for the trees 6^ with

w 3 — \/5 .
— « and a —> oo.
d 2

We present a proof in several steps by proving a sequence of lemmas;
the proof methodology is similar to the one found in [BLSOO]. Each of the
first four lemmas shows one reduction from more general class of graphs to
more specific ones until we end up with the trees &fu. The crucial point
is to show how to carry all the reductions out without increasing the value
ß(G). The final lemma determines the optimal value of ß(&^). Note that
as the value

1

, (1 + ̂
!og2 —õ—

is irrational1, but all the values ß{G) are rational no graph G can have this
value for ß{G), it can only be approached asymptotically. The statements
of the lemmas are the following.

Lemma 4 For any rooted directed acyclic graph G there exists a tree T

such that ß{T) < ß(G).

1This claim is not difficult to prove by the following standard argument. If

log2 = I With a,b e N, we get = 2a'b and 1 + = 2^'b. Hence,

(1 + Vl)b — A + B\J5 (A, B e N\{0}) should be an integer, a contradiction.

42

Lemma 5 For any tree T there exists a binary tree T' such that ß{T') <
ß (T).

Lemma 6 For any binary tree T' there exists a topologically sorted binary
tree T" such that ß{T") < ß(T').

Lemma 7 For given non-negative integers w and d, any topologically sorted
binary tree T having the greatest number of leaves and W(T) = w, D(T) =
d, is isomorphic to 6^.

Lemma 8 The equality

inf{^(e^) : w < d} =

iog2

holds. This infimum is approached for

w 3 -V5 , ,
~ —-— ana a —)• oo.

d 2

4.2 Proof of Lemma 4

Assume first that we have any rooted directed acyclic graph G as our time-
stamping scheme. If it is not a tree (otherwise, the lemma is done), we
must have vertices with out-valency greater than 1. Let v be a vertex with
out-valency k > 2 such that all of its predecessors have out-valency 1; hence
v is the root of an induced subtree T of G (such a v exists because G is
acyclic).

Consider the authenticator Author). Let vi,...,vk be all the direct
successors of v and let the authentication path corresponding to Author)
start with the arc (^,^i). We will show that deleting the arcs (v,v2)r---,
{v,vk) (and possibly some other arcs and vertices) from G does not increase
the value of ß(G).

As a result of edge deletion, cardinalities of the sets FT,; cannot increase,
but cardinalities of the sets Auth(rcf,r), in principle, can. We study this
problem in more detail. The analysis will be carried out for two different
cases.

1. Consider first the items xi not belonging to the subtree rooted in v
together with their authentication paths and the corresponding au­
thentication path support arcs. It is clear that if none of the arcs

l-¥)

43

(v, v2), (u, V3),..., (v,vk) belongs to any of the sets of authentication
path support arcs then deleting the arcs (v, V2), (v, V3),..., (v, vk) does
not affect any of the sets Auth(a^,r). But if we deleted some authen­
tication path support arc then it may happen that the cardinalities of
some sets Auth(a;.i,r) increase. There are two closely connected cases
how this may be possible.

As none of the items xi under consideration belong to the subtree
rooted in v, then no authentication path support arc under considera­
tion belongs to this subtree. Hence, deleting the arcs (i>, v2),(vi V3),...,
(v,vk) essentially means that the vertex v is removed from some proof
sets. From Definitions 1 and 2 it follows that if we want to retain as
much as possible from an old proof set (say, proving the dependence of
r on the vertex Xi0), we must replace v with some (possibly several) of
its successors. This way the cardinality of one proof set can increase
and thus the same can happen to the corresponding authenticator as
well.

It is also possible that after the authenticator corresponding to some
authentication path has considerably increased, some other authenti­
cator corresponding to some other authentication path turns out to be
smaller (but still larger than the original authenticator Auth(xj0, r)).
Hence, this case may result in increase of the cardinality of Auth(ic;0, r)
as well.

In both cases, it is enough to show how to modify the graph some more
so that the new authenticators will either coincide with the original
ones or even have one element (namely v) less.

This modification will be done by removing some more vertices (and of
course the arcs that loose one end-vertex) from the graph. The nodes
to be removed will be the ones from the set {1)2,..., v*} that had no
other parents than just v in the original graph G; and recursively all
their successors that had no other predecessors than v and the ones
already deleted.

After such modification there are two possibilities.

(a) If (u,wi) was an authentication path support arc for some au­
thenticator Author) in the original graph, then v is not re­
moved from Author). Still, all the successors of v added to
authenticators in the meantime are deleted. Hence, all in all, the
cardinality of Auth(:ri,r) did not increase.

(b) If (v,v\) was not an authentication path support arc for some

44

xi h xi hi h3

" h2^

V4 9 V3 W M V\ U V2

X3

Figure 4.1: Transformations of a linking scheme.

authenticator Auth(xi,r) in the original graph then the new au­
thenticator has lost one element v.

It is possible that after such a transformation some nodes still have
in-valency 1. Then the corresponding edges can also be deleted if the
nodes are joined with their parent.

An example of all transformations is depicted in Figure 4.1. In the
figure, we have already denoted the successors of v so that v —» vi —> r
is the authentication path having one of the proof sets of the smallest
possible size, namely {^2,^3,^3}- As the vertices 1*3, V4 and /i2 de­
pend only on v they are deleted (together with the outgoing arcs, of
course). At the very last step, we also delete the nodes of in-valency
1. Note that finally, v is once again a member of the proof set for the
authentication path from 2:4 to r!

2. Let X{ be a leaf in the subtree with root v. It is clear that

12 45

(a) every authentication path from Xi to r must go through v, and

(b) every proof set (proving the dependence of r on Xi) consists of two
subsets of V((?) - a subset A of vertices of the subtree rooted in
v and a subset B of the vertices of the remaining graph. Besides
that, from observation (a) we see that v 0 A and v B.

The arc deletion process described above does not influence the set
A, but it may influence the set B. If we consider the proof set to
be Auth(£j,r) in the original graph G, then we must have \B\ =
|Auth(v,r)|. Disregarding for a moment the whole subtree rooted in v
and keeping only v, this vertex becomes a leaf in the modified graph.
Applying exactly the same argument as in the first part of the proof
we see that deletion of the arcs (v,V2),..., (v,Vk) does not increase
the cardinality of Author).

As a result of these transformations in the graph G we have decreased
the number of nodes with out-valency more than 1

• without increasing any of the sets Auth(a^,r);

• without increasing any of the sets FT;; and

• without changing the number of leaves.

By repeating the process with the remaining nodes of out-valency more than
1, we eventually arrive at a tree T with ß(T) < ß{G).

4.3 Proof of Lemma 5

If T is not a binary tree, there must be a vertex v with only one child or
more than two children.

In the first case, we may simply delete v and join its only child with its
only parent (if this vertex is the root, we simply delete it, leaving the child
as the new root). After such a vertex deletion the cardinalities of the sets
FTi and Author) can only decrease.

In the second case, we introduce some additional vertices as shown in
Figure 4.2.

These additional vertices contain information about several children of
v in the original tree. Hence, it may be possible to decrease the cardinalities
of FTi and Author). For example, in Figure 4.2 (left) the nodes 6,c,<2,e
are necessary in order to prove the dependence of v on a, but in Figure 4.2
(right) only the vertex u is enough.

46

a %-

+rß v

u

-*M> t

d •-

Figure 4.2: Transformation from an arbitrary tree to a binary tree.

By continuing this process we eventually arrive at tree T' where every
vertex has either 2 or 0 children, i.e. a binary tree. From the proof above
it is also clear that ß(T') < ß (T).

4.4 Proof of Lemma 6

Let T' be a binary tree with its leaves sorted in some (not necessarily topo­
logical) order. We show how to reorder the leaves without changing the
basic structure of the tree. By doing so, we do not change the size of au­
thenticators and neither the number of leaves. Hence, in order to complete
the proof, we must show that reordering can be done without changing the
size of freshness tokens.

First we label the nodes of T' in the fashion of Section 3.4.

1. Let the root be labeled with the empty string A.

2. For every vertex labeled with a string cr, label the child that has the
leftmost predecessor as oL and the other one as aR. We call aL the
left child and aR the right child of a.

From Definition 10 we get that the whole tree becomes topologically sorted.
Hence, we are only required to prove that this rearrangement does not
increase any freshness tokens. We do it by proving the following lemma.

Lemma 9 If the vertices are labeled as described above, the freshness token
FTj_i must have at least as many elements as there are letters R in the
label of the leaf X{.

47

LL L X LL
•—

RLL RL

LRL
LR

R
LRL RLL RL

LR R

m m
LRR RLR RR

RLR LRR RR

Figure 4.3: Transformation from a binary tree to a sorted tree.

Proof. The number of letters R in the label of the leaf Xi shows how
many times in the process of proving the dependence of the root node on
xi it is necessary to invoke information from earlier time, i.e. from the
"left" on the time-line of the items. As T' is a tree, these invocations are
independent and hence, the set FT^-i must contain separate elements for all
of the invocations. Consequently, FT;_i contains at least the same number
of elements as there are letters R in the label of the leaf X{. •

To conclude the proof it remains to note that for a topologically sorted
tree the sets FT; contain nothing but the necessary information and hence
resorting the tree topologically can only decrease their cardinalities.

The process of reordering is depicted in Figure 4.3.

4.5 Proof of Lemma 7

If d = 0 or w = 0 we must have T — I and hence the Lemma is proven in
this case.

Assume that for some w, d > 0 there exist topologically sorted binary
trees such that the claim does not hold. Let T be a tree among them such
that the sum w + d is the smallest possible; so ||T|| > ||6^||- Obviously,
T / I. Thus it is possible to represent T as T — T\ (g) T2. From Lemma 2
we get the following equalities:

w = W(T) - max{VF (Ti), W (T2) + 1},
d = D(T) — max{D(Ti), D(T2)} + 1.

48

Consequently, the inequalities

D(T,) < d- 1,
W(TX) < w,

D(T2) < d- 1,
W(T2) < w -• 1.

hold.
As w 4- (d — 1) < w + d and (w ~ 1) 4- {d — 1) < w 4- d, the Lemma holds

for both T\ and T2. Thus,

imi = irnil + ||T2|| < ne^ll +116^11 = liefr1 ®efr-ill = weil

a contradiction.

4.6 Proof of Lemma 8

In the light of Theorem 3, the ratio ß(G) to be estimated can be written as

w 4- d w + d

log2n log2(ELo(3)
(4.1)

In order to give a better upper bound to the expression (4.1) we need
an asymptotic formula for the sum it) (w^ich does not have a known
closed formula). In [GKP89], problem 9.42, it is proven that if ^ — a < \
then

k=0

where

~ 2d'-Fr(a)_0-5'loS2d+°(1)? (4.2)
l—n V^V

K(ot) = a • log2 - + (1 - a) • log2
1

a 1 — a

Substituting (4.2) into (4.1), we get

w + d ad + d
lim ——r— — lim

d~+oo log2(ELo (fc)) d _ > 0° d ' K~ °"5 ' loS2 d 4 0(1)

1 4" OL = lim T
-K>K(a)- 0.5-!2Sii + 0(i)

1 4" CK

kWY

13 49

For deriving the approximation formula for 0.5 < a < 1, we note first that
for such a and for sufficiently large d,

w d / j \ d,—w—l / ,

E® ^ E (/ ,) " ' - E
k—0 j=0

^ 2d _ 2<i-K{a')-0.b-\og2d+0{l)

where a' = (d—w — l)/d = 1 — a — l/d < 1 — a < 0.5. Hence, for 0.5 < a < 1
we get

w + d aaf + d
lim rj— = Inn

d->oo log2(Efc=0 (fc)) d_>0° loS2{2d • (! - 2[^(a')-l]-0.5-log2 d+o(1))}

1 + Q!
lim 1 + 1 . log2 (1 _ 2rf-[Ä"(l-a-l/rf)-l]-0.5-log2rf+O(l)j

— 1 -f O.

Therefore,

. w/ + d f if 0 < a < i;
$(a) — lim -T— — < ^ ^) i ^ (4.3)

^-iog2(ELo(S) I i + «, if § < « < i

Note that $ is continuous at \ because K (^) = 1. The graph of the
function $ is depicted in Figure 4.4.

For finding minima of <E>(a) we solve the equation

Hjsjkzisd.o.

Hence, 2 • log2 - log2 ^ = 0 which implies that (1 - a)2 = a. This
quadratic equation has a unique solution in the interval [0,0.5], namely

3-\/5
a° = 2 •

Let (f) = 1+./ ̂ denote the Golden ratio. It is easy to verify that

1 = 0 and — = <j)2 « 2.61803.
1 — «o ao

50

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.4: Graph of the function $(a).

Hence,

1 + a.0

K(a0)
1 4- Oi o

«0 • log2 ~ + (1 - ao) • log2 yz

1 \ !+a0 / 1
ao

log2

loS2

-l
2

-1 (f) 1+a0 • (f) 1+°o

«0

1

ao
l+a0

l0g2^
1.44042.

We conclude that based on the trees 6^, asymptotically optimal time-
stamping schemes are obtained if w 3-y/5 d 2 ^ 2.61803

In order to get some idea about the speed of convergence we provide
Table 4.1. The table shows the values of the ratio (3.4) for the previous
best schemes (with d = 2w + 1), for the schemes with w — [26f8] (where
[•] denotes the closest integer function) and for size-optimal schemes. The
numbers of leaves of size-optimal schemes are also shown.

51

d w = ratio w — *.«?«... : ratl° wopt: ratio ^opt

9 4: 1.62500 3: 1.70833 4: 1.62500 256
19 9: 1.55556 7: 1.57355 8: 1.55412 169766
27 13: 1.53846 10 1.54249 12 1.53015 47050564
29 14 1.53571 11 1.53353 12 1.52562 123012781
49 24 1.52083 19 1.50157 20 1.49946 7 • 1013

89 44 1.51136 34 1.48020 36 1.47902 3 • 1025

129 64 1.50781 49 1.47064 51 1.46970 7 • 1036

239 119: 1.50420 91 1.45907 93 1.45875 3 • 1068

589 294: 1.50170 225: 1.44947 227: 1.44943 3 • 10169

Table 4.1: Convergence of the linking scheme parameters.

52

5 LINKING USING TREES &d
w

In the previous chapters, we mainly concentrated on building linking schemes
that provide minimal sizes for time stamps. Still, in order to ensure suit­
ability for practical use, we must address the problem of efficiency in the
process of computation by following a particular scheme.

There are two main concerns we should address in more detail.

1. It is impractical for the TS A to construct first the whole scheme as
some empty data structure and then start filling it with data. This
data structure is in fact necessary only for keeping track of the com­
putations and not for storing all the values; only a very small number
of values are needed for further computations.

2. As noted in [ABSW01], the availability of time-stamping service is a
major issue. If the TSA's server crashes, it must be possible to restore
the last complete set FTi in order to ensure that the causal relation­
ships between the time stamps issued before and after the crash do not
break. Note that the original definition of the trees 6,^ is recursive
and hence the algorithm following this definition closely must be re­
cursive as well. Collecting the data necessary to restore the work of a
recursive-algorithm-based server basically means backuping the recur­
sion stack at every step. This in turn means implementing a recursion
stack independent of the compiler's one. The author is currently un­
aware of any compiler having primitives for generating recursion stack
dumps and restoring the processes later by these dumps.

The state of the algorithm presented in this chapter is stored in 21 + 3
variables where I is the largest number of nodes in the sets FT^. This is
much less than the storage space required to keep the whole empty data-
structure. These variables are also considerably easier to handle in the case
of server recovery than the recursion stack.

5.1 Alternative description of the trees

In this section, we are going to present a non-recursive description for the
graphs enabling us also to find an efficient algorithm for generating
these graphs.

14 53

Definition 12 The set is defined as the following set of words in the
alphabet {1,2,..., d}*0:

£W,d = {tfO : <7 = cti<72 ... o>| e {1,2,... ,d}*,|cr| < w,ai > a2 > • • • > &\a\}-

Here, if d — 0 we assume that {1,2,..., c?} = 0 and {1,2,..., d}* = {A};

where X is the empty word.

That is, the set consists of all strictly decreasing vectors of length
up to w + 1, having the elements from the set {0,1,..., d} and ending with
0. Note that every element occurs in every vector at most once, 0 occurs
exactly once. In the rest of the paper we will write the vectors as words,
without parentheses and commas. Greek lowercase letters will denote the
words and Latin lowercase letters x,y their elements.

Definition 13 For w, d > 0 let mw,d denote the vector

Denote also the set of the elements of the vector mw^ as Mw^.

Theorem 5 The set is linearly ordered with respect to lexicographic
order •<. It's least element is the vector 0 and the largest element is mw

Proof. Linearity of the lexicographic order is a well-known fact and mini­
mality of the vector 0 is obvious. Maximality of the vector mw^ can also be
easily established. If w = 0 or d — 0, then = {0} and also mw^ = 0.
Otherwise, it is clear that the largest vector has to start with the largest
element of the alphabet, d. As all the letters in the vectors of EWjd must be
unique, the next letter in the largest vector must be d- 1 etc. The length of
the vector is bounded by either the maximal allowed length w + 1 if d > w :

or by lack of possible elements if w > d. •

Theorem 6 For w,d > 1 the equality

^w,d — ^w,d—1 ^ dYjw — i)C£—1

holds.

54

Proof.

J w , d = { < t0 : a G { 1 , 2 , . . . ,d}*, |<r| < w, G\ > cr2 > ... > G\a\} =

= { < t0 : e r G { 1 , 2 , . . . , d - 1}*, |cr| < w, 0\ > < j 2 > . . . > cr\a\} U
U {crO : <7 G {1, 2,... , d}*, \G\ < w, d — G\ > <r2 > -. - > G\A\} =

= T,Wjd-1 U {G?TO : r G {1,2,... ,d - 1}*, |r| < w - 1, n > ... > rjr|}

— l U dYjw^i d—i

•

Definition 14 For each a G ^ we define the set

Cw,d((T) = {x E a : a — px-K,\/r G Ew,d [r — pxg =» r X a]}.

That is, CW^(G) consists of such elements x of the vector A that A is
the greatest vector among the vectors having the same initial segment up
to the element x as er does (recall form Definition 12 that each occurrence
of every element in a is unique).

Lemma 10 The following properties of function c hold.

1. Let a be presented in the form G — pr, where r — (x — l)(a: — 2)... yO
for some x,y € {1,..., d 4- 1} and r has maximal possible length (if
G = 0 we have p = A and r = 0). If (y = 1) V (|cr| — w -f 1) then
cw,d = {x - l,x - 2,... ,y,0} ? otherwise cW) d = {0}.

2. de CW 4(G) <£> C wJ (G) = M W } d & a = m W j d ;

3. G G Y!iw ^ d —i c w ^(G) = cW)(f—i(cr)/

G G =$• c x
(i \ f c w —l,d—l { ^) i ® m w—l ,d—l

' ~ \ MWID, G =

Proof.

1. The maximality condition on r implies that p does not end with x
and the condition (y = 1) V (|cr| = w + 1) essentially means that the
vector G can not be made longer by adding elements before the last
0. If the latter is not the case, there exists 2: G {1,2,..., rf} such that
p(x — 1)... yzO G T>w,d and as p(x — 1)... yO -< p(x — 1)... yzO, only
0 can be in the set cWjd by Definition 14. On the other hand, if we
can not add such an z, each element of the set {x — 1, x — 2,..., y, 0}
satisfies the condition given in Definition 14. It is also clear that no
element of p can be in Cw^(G) as px0 G T,wj and p{x — 1)... yO -< px0.

55

2. We will prove that d G cw 4(a) => cw 4(a) = Mw 4 =$• a = mw 4 d G
Cw,d{&)-
If <i G cW)(i(cr), we must have a = d and p = A in the previous claim
of the Lemma. If d = 0 the present claim is obvious. If w > d > 0,
we get the case 6=1 and cw>d(a) — {d, d - 1,..., 1,0}, if d > w > 0,
the length of a is bounded by w + 1 and we get cw 4(a) = {d, d —
1,..., d - w + 1,0}. In both cases we have cw 4(a) = Mw 4.
If cw 4(a) — MW idi we see that every element of Mw 4 also belongs to
cr, hence a = mw 4.
If a = mw 4, we obviously have d G cw 4(a), thus concluding the proof.

3. We know from the proof of Theorem 6 that i = {a G :
a\ ^ d}. As er G S|i;,d-ij we can write

cw,d(&) = G (7 : cr = pxiT, VT = pxc G ^ cr} =

= {rr G cr : cr = pa;7r, Vr = G E^-i t dt c} =

— Cw,d—1(<7)-

4. We know from Theorem 6 that dT>w-i^-i = {cr G E^ : oi = d}. For
a vector da G dE^-i^-i we can distinguish two cases.

(a) d G cw4(da). From the second claim of the Lemma this holds
iff Cw,d(d<j) = Mw4 and der == which is equivalent to cr =

7 Tlw — l , d—l -

(b) d ^ cWjd(da). From the second claim of the Lemma this is equiv­
alent to cr / mw_i,d_i. We compute:

cw,d{do) — {x e da : da — dpxir, Vr — dpxq G EW)dr < da} —

= {x € a : a — pxiT, W = pxc G Ey,_i)d-i 7r ^ cr} =

~ c w —l,d—l{&) -

Definition 15 The directed rooted graph Sw4 has the vertex set

V(SWyd) = (J {(cr, a:) : x G cw4(a)}

YD

and the edge set

E{Sw,d) = {((a,x1)(a,x2)) G {V{Sw4))2 : a = rx2x lP} U

U {{{rxp, x)(ryir, y)) G {V{Sw4))2 : y = x + 1}.

56

Figure 5.1: The graph ^2,3-

An example of the graph £2,3 is presented in Figure 5.1. The vectors
in the figure are depicted vertically and the elements of cw4(a) are circled.
The edges of Sw4 are of two kinds: the edges joining the vertices belonging
to the same vector cr and the edges joining the vertices belonging to different
vectors. The first ones will be called vertical and the second ones horizontal
edges (following the intuition of Figure 5.1).

Now we are ready to state the following theorem claiming that the trees
6^ and Sw4 are essentially the same implying that it is enough to give an
algorithm for building the graphs Sw4.

Theorem 7 6^ ~ Sw 4. The root of the graph Sw 4 is {mw 4 :d).

Proof. The proof will be given using induction by the definition of the
graph 6^ (see Definition 11). The basis of induction consists of the cases
where either w = 0 or d = 0. In both cases we see that Sw4 = {0} and
cw,d(0) — {0}. Hence V(Sw4) = {(0,0)} and there can be no edges in the
graph following Definition 15. Consequently SW4 — I = &W if ^ = 0 or
d = 0, with the root being obviously the only vertex of the graph.

Now assume that w,d > 1, ^ and 6^_1 — Sw 4-1. In
order to prove that

sw 4~6d
w = ed

w-1®ed
w-_\,

we first need to establish a one-to-one correspondence between the vertex
sets V(Sw4) and V(Sw4^\ (g) S^-i^-i). The necessary correspondence can

15 57

be easily derived from Theorem 6 and Lemma 10 as follows.

V(SW) d) = | J {(<r,x) : x e cw 4(cr) } =

= U '• x £ cw,d-l(a)}U U :
X

6
cw,d(a)} =

= V{SW j d-i) U [J {(o-,as) : x G cw 4(a)} =
— 1 ,c£ — 1

= V(Sw4— i) U {(da, a?) : a; £ cwd{do~)} ;

— l,d— 1

= V^tM-i) U (J {(da :x) : x e cw^14^i(a)}U {(mw4,d)} =

= V(5Wid_i) U {(rfcr, a?) : (a,x) G V^w-M-i)} U {(m^, d)}.

Hence we can conclude that the function <p : V(Swd) V(Swd-1 <8>
acting as follows

{(cr, re), ue Vi
(cr',ar), cr' G Su?_i)Ci_i) <j = der', x G cr'

{ j n ^ w , d i d>) i X — d

is a bijection.
Now it remains to prove that the mapping induced by ip between the

sets E(SWid) and E(Sw>d-\ <8> $u;-i,d-i) IS also a bijection. We will divide
the edges of SW}d into five categories and consider the categories separately.

• ((cr,x i)(cr,X2)) G E(Sw 4), a = rx2X\p and the first element of cr is not
d. By Theorem 6 we obtain a G SW;Cj-i and following the definition
of the mapping ip we see that

ip((cr,xi)(a,x2)) = ({cr,xi)(a,x2)) G (V(Su>,d-i))2.

As a = TX2X1P, we obtain ((cr,£i)(cr,x2)) G E(SW}d-i). Note also
that this way we get all the vertical edges of the graph SWjd-1-

• ({a :xi)(a, x2)) G E(SW j d), a — rx 2 X\p and the first element of 0 is d.
This case has two sub-cases.

* r = A, £2 = d. As (<7,0:2) € V(SW j d), by the definition of the set
V(Swd) we have d = £2 G cr. For this case Lemma 10 implies
cr = mW)£*. Hence, x\ = d - 1 or rci = 0, which can be the case

58

iff w = 1. We claim that the image of the edge ((er, xi)(a : #2))
under </? is the edge connecting the root of and the new
vertex g. From our definition of CP we know that </?(a,X\) —
(mw-i,rf—i,a?i) and (p{a,x2) = g. The vertex (raw_ 14-1,x\) is
the root of the graph Sw-1^-1- Indeed, for the case x\ — d— 1 we
use the induction hypothesis. For x\ — 0 and w = 1 we simply
have (raw_i5d_i, x\) = (0,0) and = I. We have proven
the claim.

* r / A . L e t r = dr' and cr = da ', then X\,X2 G a' G
Hence

<^((cr,a:i)(cr,a; 2)) = ((a ,xi)(a ,x2)) G (V(SW~ i,d-i))2-

As a' = T'X2X\P, we see that ((cr', £i)(cr', #2)) G E^S^-i^-i).
Note also that this way we get all the vertical edges of the graph

• ((rxp,x)(Ty7r,y)) G E(Sw 4), y = d, x = d — 1. This implies r = A
and y = d e cw 4(rdn). Hence, by Lemma 10 we have rdrc = dir —
mw4. Following the definition of ip, we see that (p(Tyir,y) = g. We
claim that the image of the edge ((rxp, x)(ryTT, y)) under 99 is the edge
connecting the root of the graph SWtd-1 and the new vertex g. So, it
only remains to prove that the image of the vertex (rxp, x) is the root
of the graph Sw4-\. By induction hypothesis, we need to show that
the equa l i ty (rxp ,x) = (m W i d-1, (d— 1)) ho lds . As (rxp ,x) G V(SW i d) ,
we know that x G c.w4(rxp). But as r = A and x = d — 1, Lemma 10
implies the necessary condition (rxp,x) — {mw.d-i, {d — 1)) and the
claim is proven.

• ((rxp, x)(ry7r, y)) G E(Sw 4), y = x 4- 1 and r / A does not start with
</. Then we claim that the edges (p((Txp,x)(ry7v,y)) are exactly all
the horizontal edges of the graph Sw4-\. First note that as r does
not start with d (but with something less), we have rxp, ryir G Ew,d-i
and consequently

(p{{Txp,x)(TyTT,y)) = ((Txp,x){ryTr,y)) G (^(S^d-i))2-

As y — x -f 1, by Definition 15 we obtain the required implication
(p((Txp,x)(ryn,y)) G E(SW i d-i)-

• ((rxp,x)(ryTT,y)) G E(SW j d), y = x + 1 and r starts with d. This
implies x,y < d and hence

ip{{rxp,x){TyK,y)) = {(r'xp,x)(r'yTr,y)) G (V^-i^-i))2,

59

where r = dr'. As y = x + 1, we obtain all the horizontal edges of the
graph Sw-i4-i this way.

Hence, we have proven a one-to-one correspondence between the sets E(Sw 4)
and E(SW7d-i <S> Sw-i,d-i) as well, thus concluding the proof. •

5.2 The algorithm

In this section we introduce an algorithm for building the graphs Sw4. We
will present the algorithm in three steps:

1) generation of all the vectors of the set EW)(f in their lexicographic
order;

2) finding the elements of the sets cw 4(a) (and hence creating the set
v(sWtd)y,

3) accomplishing the hash steps represented by the edges (and hence
completing the graph Sw 4).

It will be convenient to have all the vectors of the same length, so we will
pad all the vectors having length less than I = min{«; + 1, d + 1} (which is
the maximal length of the elements of Y,w4) with Os at the end. We also
introduce I integer variables oi, 02, • • •, and consider them as elements of
cr, thus a = (J\(T2 • • • cr/. Now we claim that Algorithm 1 produces all the
elements of the set Ew4 in lexicographic order.

In order to prove the correctness of the algorithm, we need the following
lemma describing consecutive vectors of the set (which we still consider
as padded with Os).

Lemma 11 Let the vector a G be represented in the form

a — p(x — l) (x — 2) . . . yO ... 0 ,

where x,y G { 1 , 2 , . . . , d+ 1 } and the substring (x - l) (a ; - 2) . . . y is as long
as possible (if <r = 00... 0 then p = (x — I) (x — 2)... y = X). If y = 1 or
Ip(x — l)(x — 2)... y\ = w then the vector directly succeeding a in terms of
t h e o r d e r < i s r = p x 0 . . . 0 , o t h e r w i s e i t i s r = p { x — l) (x — 2) . . . y 1 0 . . . 0 .

Proof. Consider first the case y = 1 V \p(x — l)(x — 2)... y\ — w. Note
that maximality of the substring (x - l){x - 2)...y implies that p does
not end with x and hence r = px0... 0 G Sw4 in this case. We also see

60

Algorithm 1 Generate the vectors of the set Ew4

Require: w > 0, d > 0
1 Set I := minjiu + 1, d + 1}
2 Set o o\G2 ... cr/ = 00... 0
3 for i = 1 to |£y,)Cj| — 1 do
4 Output cr
5 Set j to be the least index such that a j = 0
6 if j = I then

7 Set j := j - 1
8 end if
9 while j > 1 & (jj = <7j—i - 1 do

10 Set crj := 0
11 Set j :=j- 1
12 end while
13 Set a j := aj + 1
14 Reset cr
15 end for
16 Output <7

that a •< r, hence it remains to prove that there can be no vectors between
them. Suppose on the contrary that such a vector exists. It clearly must
begin with p(x — l)(x — 2) — It is not possible to increase any element in
the part (x — l)(x — 2)... y as it consists of consecutive elements, all the
elements in the vector must be unique and in this part less than x. Hence
the only way to create a vector between a and r is to append something
smaller than y at the end of this part. But this is not possible as we have
one of two cases: either y = 1 or the vector p(x — l)(x — 2)... yO already
has the maximal allowed length w + 1.

Now consider the other case y ̂ lk, \p(x — l){x — 2)... y\ < w (which
includes the case o — 00... 0). Reasoning exactly the way we did in the
previous case, we see that r = p{x — l)(rr — 2)... ylO... 0 £ E^^, cr < r
and that there can be no vectors between them. •

Now we can explain why Algorithm 1 generates all the elements of the
set Ew4 in lexicographic order. As the algorithm starts with the least vector
00... 0, it is enough to prove that each run of the algorithm (i.e. each step
in the for-cycle), taking vector cr as input, outputs its immediate successor.
Note that the algorithm makes |£W)d| — 1 runs, so the output of the last run
is exactly the greatest vector mw4 (see Theorem 5).

16 61

Of course we must know the value [EW)d| beforehand. This value can
be computed from Theorems 2 and 3 using the formula (see Section 5.3 for
efficiency considerations concerning this formula)

Now consider one run of the algorithm with input a. Following Lemma
11, in order to generate its immediate successor we first have to find the
representation of the vector a in the form p(x — 1) (x — 2)... yO ... 0 (where
the part (x — l)(x — 2)...y has maximal length possible). If y — 1 or
Ip(x — l)(x — 2)... y\ = w we must replace the part (x — l)(x — 2)... y
with :r00 ... 0 and otherwise just increase the first 0 by 1. Note that the
latter is exactly the same operation as the first one, if we consider the part
(x — 1)(x — 2)... y to be just the first 0.

In order to perform the necessary changes, we must find the first 0 in o
(line 5), as that is the last position where the change can occur. In what
follows, j will be the counter indicating the current position in a.

If cr has maximal allowed length I (i.e. j = I), we know we can not
change the last 0 of the vector, so we must start at the position I — 1. This
is what the lines 6-8 do.

The essential part of the algorithm is the while-loop on the lines 9-12.
If we haven't reached the beginning of the vector yet (i.e. j > 1) and the
current element is the predecessor of the element just before it, we are still
on the part (2; — l)(z — 2)... y. We set the current position to 0 and move a
step towards the beginning. If we reach the beginning of the vector or the
beginning of the part (x — 1) (x — 2)... we stop the loop and increase the
current element (which is equal to x) by 1 (line 13). If either

1) the first 0 was discovered at the position 1, or

2) the first 0 was discovered at a position later than 1 and earlier than
I, but the element just before it is greater than 1,

we just need to increase this first 0 to 1. In this case the while-loop is not
entered at all and the increase is once again performed on line 13.

Now we have created the next a and we can take the next run of the
algorithm. The algorithm is finished by outputting the result of the last
run, which we know, equals mw4.

Now we add vertex set generation to Algorithm 1, which by Definition
15 means generating the sets cw4[o). They can be generated at the same
time when producing at the next a in one run of Algorithm 1.

(5.1)

62

Algorithm 2 Generate the vertex set of the graph SW>D

Require: w > 0, d > 0
1 Set I := min{w + 1, d + 1}
2 Set G := G\G2 .. .GI — 00... 0
3 for i = 1 to ISm^l do
4 Set cw 4(o) = 0
5 Set j to be the least index such that oj = 0
6 Include the element Oj to the set cw 4(o)
7 if j = I then
8 Set j := j - 1
9 end if

10 while j > 1 & Gj = Oj-1 — 1 do
11 Set Gj := 0
12 Set j := j - 1
13 Include the element Oj to the set cw 4(o)
14 end while
15 Set GJ GJ + 1
16 Output the set cw 4(o) and reset o
17 end for

Consider Algorithm 2. Note that Algorithm 2 runs one more time than
Algorithm 1 does. The reason is that we also want to generate the set
cw4(o) for the last vector rnW]d as well.

In order to prove that Algorithm 2 generates the correct set cw 4{o)1

write o as above in the form p(x — l)(a; — 2)... yO... 0 (where the part
(x — l)(x — 2)... y is as long as possible). We need to show that if the
condition (y = 1) V (|p(x — l)(x — 2)... y0\ — w +1) holds then the elements
x — 1, x — 2,..., y, 0 are included into the set cWtd(o) and otherwise cw4(o) =
{0} (see Lemma 10).

As follows from the proof of Algorithm 1 presented above, the elements
x — 1, x — 2,..., y, 0 (or just 0, if y > 1 and |p(x — l)(x — 2)... y0\ < w + 1)
are exactly the ones set to 0 or increased by 1. This means that we must
add an element of o to the set cw4(o) every time right before we set it to
0 or increase by 1 - and this is exactly what Algorithm 2 does.

In order to complete the algorithm of generation of the graph SW,D we
still need to show how to draw the edges. As we remember from Definition
15, the edges can be of two kinds - vertical and horizontal. With vertical
edges there should be no problems, as they are drawn inside one set c(ow4),
i.e. during one run of our algorithm. Horizontal edges can cause more
problems as in order to complete a horizontal edge we need to know both

63

its end-vertices. So it is necessary to keep some information about the
started edges over several runs of the algorithm.

What kind of information is needed? Going back to the original moti­
vation behind the trees @£, we see that these trees are used to represent
certain hash computations and actually we are only interested in the hash
value attached to the root of the tree. In order to carry the necessary hash
values along the computations, we introduce I new variables hi, /12, • • •, hi
and let hi carry the last hash value attached to a vertex of the form (cr, Oi).

Let H be the hash function used for hash computations and consider
Algorithm 3.

Algorithm 3 Create the hash-edges of the graph Sw4

Require: w > 0, d > 0
1: Set I := min{w + 1, d -1-1}
2: Set (Ji = 02 = • •. = (Ji \= 0
3: for i — 1 to lEt^dl do
4: Set j to be the least index such that a j = 0
5: Set hj to be the next input data item
6: if j = I then
7: Set j := j - 1
8: Compute hj — H(hj : hj+i)
9: end if

10: while j > 1 & a j = Oj-i — 1 do
11: Set Gj := 0
12: Set j := j — 1
13: Compute hj = H(hj, hj+i)
14: end while
15: Set G j G j + 1
16: end for
17: Return hi

The vertices of the graphs <5^ are divided into two subsets: vertices
representing data items (leaves of the tree) and vertices representing the
computations. At each round exactly one data item is added and in the
construction of the tree Sw4 it must correspond to the leaf, i.e. vertex
(<7,0). This is expressed on line 5 of the algorithm.

All the other vertices we add represent hash computations. Hash com­
putations on lines 8 and 13 carry exactly the same character. As soon as the
algorithm has decided to move one step towards the beginning of the vector
g, the hash value corresponding to the new location in o (or the vertex of
the graph Sw4) is replaced by the hash of the value at the previous location

64

and the old value at the new location.
By Definition 15, there are two vertices that are sources for the edges

ending in the vertex (px(x — 1)t, X), they are (p(x — 1)r',x — 1) for some
vector R' and (px(x — 1)T,X — 1) (we assume x > 0, which is exactly the
case with non-data-item vertices). Hence, it remains to prove that the last
two vertices have the correct hash values attached to them. Let x be the
«th element of the vector px(x — l)r.

Consider first the vectors a — px(x — 1)r and <r' = p(x - 1)r'. As the
first part, p, is the same, it was not changed between the generation rounds
of vectors a' and cr. Moreover, the ith element was last changed at the time
of generation of cr', as a; and x — 1 differ by 1 and Algorithm 3 changes
elements of the vectors of by 1 at a time. Consequently the previous
value of hi, when processing the vertex (px(x — l)r, x), comes from the
correct vertex (p(x — 1)T',X — 1).

At last, consider the vertices (px(x — 1)r,x) and (px(x — 1)r,x — 1).
Following the algorithm we see that the vertex (px(x — 1)r,x — 1) was
processed just before (px(x — l)r,x), hence the hash value attached to it is
hi.j_i, which is the correct one.

Recalling that the root of the tree Sw4 is the vertex is {mw4, d) (see
Theorem 7) we see that the algorithm must output the last value of h\ after
the last step. As this is exactly the action taken on line 17, we conclude
that Algorithm 3 represents the hash computations of the graph Sw4 — ©4
correctly.

5.3 Efficiency and further optimizations

Despite its complicated look, Algorithm 3 is very efficient. The algorithm
runs |SW5d! times and on each run \cw4(a)\ steps are made. Hence the
obvious estimate to the complexity of the algorithm is 0(11/(5^)1). Even
more, the operations used in Algorithm 3 are "cheap": the only operations
used are additions-subtractions by 1 and hash computations (where the
latter ones can not be avoided anyway). Of course, we still need to take
care about the search directive on line 4 of Algorithm 3 that just states: Set
j to be the least index such that a j = 0. This search can be done in log21
steps, but it is also possible to introduce one extra variable and modify the
algorithm so that at the end of run it is set to the least 0 of the newly
generated cr.

Memory requirements of our algorithm are very low as well. We need
to store the following data in order to restore the computations after the
server's crash:

17 65

• I, j and lE^dl;

• h i j . . . , h i f o r h a s h v a l u e s ;

• e r i , . . . , o i a s c o u n t e r s .

As the counters Oj can contain values up to d, the corresponding required
storage space for the values of hi and Oj is I • log2 d + I • k, where k is the
output length of the hash function h. A recent unpublished result by Helger
Lipmaa [LipQ2] shows that this requirement can actually be decreased to
log2 d + I • k by using encoding of the leaves presented in Section 3.4.

One must also ask, how much resources does it take to compute lE^I
and how much storage space does this value need. Formula (5.1) does not
look promising at the first sight as it contains a sum of binomial coefficients.
Still, if we are satisfied with the estimate ß(G) ~ 1.5, we can use the trees
%w = 6^+1 from Section 3.6. For these graphs = 22w that
can be computed very efficiently in binary format. But if we want the
asymptotically optimal schemes described in Chapter 4 we can change the
algorithm a little and substitute the for-cycle in rows 3-16 of Algorithm 3
with a while-loop working if oi < d-f-1. The correctness of this substitution
is justified by the observation that on its last run the algorithm changes the
vector o — mw4 to the vector (d+1)00... 0. Note that such a modification
enables us to replace the need to store (a relatively large) value of |EW)d|
with the need to store only the value of d.

66

6 INSTEAD OF THE CONCLUSIONS

Almost every PhD thesis starts off with the author's dream to achieve some­
thing new (preferably revolutionary) and useful (preferably something that
could be sold right away). Of course there are exceptions, but I hope they
are rare. Why? Mainly because I believe that ambition is the most impor­
tant cause of every great discovery made on Earth and hence there is very
little hope to achieve anything without any ambitions.

Does this mean that every thesis achieves the high goals set by the
author (with the help of supervisor, of course)? Not at all, as it takes
something more to come up with revolutionary results than just the goals
themselves. This "something more" is hard to define, but for sure it contains

• a bit of talent needed to see deep under the core of things,

• a bit of luck to find the right problems to look at, and

• a lot of hard work (lasting approximately for 200 days without eating
nor sleeping in the case of Tartu University, Estonia).

Have I had all the necessary components? Most of them probably yes.
Talent and luck are of course difficult to measure, but at least the goals
were decent and the work was hard (well, I admit I ate and slept from time
to time, but the period of writing lasted considerably longer than just 200

How well have the original goals been met and what is the actual prac­
tical value of the thesis? To the first question, the answer can be stated
rather clearly and it consists of several parts.

• The thesis identified the need to look at the two separate time-stamping
scenarios: patents and digital signatures. It turned out that linking
schemes providing size-optimal time stamps for one scenario are not
optimal for another.

• It was shown that the size of time stamps can be estimated from
above by the value ß(G). It is not the best possible estimate but by
our current state of knowledge, the exact expression of the size of time
s t amps i s t oo compl i ca t ed t o dea l w i th . Maybe one day . . .

• We proved that the optimal value of ß(G) is

days).

1
1 44042

67

and it is approached (but never achieved as this value is irrational)
with the family of trees The effect gained in comparison with the
previous best-known BLS-scheme is 28% which is quite a remarkable
amount. Even more importantly we showed that just by estimating
the value of ß{G) the result can not be improved any more. Of course,
if one day the tools of dealing with the actual the size of time stamps
become available, the estimate may be improved some more, but the
author's wild guess is that not too much. At the moment, it seems that
the asymptotic size of time-stamps remains the same as mentioned
above.

• It turned out that the original definition of the optimum-providing
family was not too suitable for actual implementation of a TS A. In
order to improve the situation, the idea of representing the current
state of computations with some simple and efficient encoding was
proposed and one possible encoding designed.

The question of practical applicability is a bit more complicated. Of
course, we can build nice tools and try to sell them but people will only buy
them if they need to. Do they need time-stamping? At least in Estonia they
do as the Law of Digital Signatures requires it. But do the users actually
need linking? The answer is unfortunately - probably not at the moment.

Going back to Chapter 1, we recall that, the easiest way to implement
time-stamping is to let the TSA just sign the requests together with phys­
ical time. The solution is of course totally insecure as the TSA must be
unconditionally trusted. Is this a serious obstacle keeping people from us­
ing this solution? No, it is not. Looking at the atmosphere of suspicion
that we can see every day between different politicians, businessmen and
even nations, it is hard to believe how trusting people are deep in their
hearts. Why not to declare an authority trustworthy, if such a declaration
saves us from the trouble of setting up linkage-based time-stamping! And
there is really not much to do in order to change the human mind. The best
solution is probably to wait, see and hope that after the first few incidents
with cheating TS As the need for more secure solutions arises.

But before that computer scientists all over the world still have some
time to search for better solutions to propose when they will really be
needed. And in that light I can say I do not regret writing this thesis
even a bit.

68

REFERENCES

[ABRW01] Arne Ansper, Ahto Buldas, Meelis Roos, and Jan Willemson.
Efficient long-term validation of digital signatures. In Public
Key Cryptography - PKC'2001, volume 1992 of LNCS, pages
402-415, February 2001.

[ABSW01] Arne Ansper, Ahto Buldas, Märt Saarepera, and Jan Willem­
son. Improving the availiability of time-stamping services. In
Vijay Varadharajan and Yi Mu, editors, 6th Australasian Con­
ference, ACISP 2001, volume 2119 of LNCS, pages 360-375,
Sydney, Australia, July 2001. Springer-Verlag.

[ACPZ01] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. RFC3161:
Time Stamp Protocol (TSP). August 2001.

[BdM91] Josh Benaloh and Michael de Mare. Efficient broadcast time-
stamping. Technical Report 1, Clarkson University Department
of Mathematics and Computer Science, August 1991.

[BHS93] Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improv­
ing the efficiency and reliability of digital time-stamping. In
Sequences II: Methods in Communication, Security, and Com­
puter Science, pages 329-334. Springer-Verlag, 1993.

[BL98] Ahto Buldas and Peeter Laud. New linking schemes for digital
time-stamping. In Proc. 1st International Conference on Infor­
mation Security and Cryptology - ICISC'98, pages 3-13, Seoul,
Korea, December 1998.

[BLL00] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable
Certificate Management using Undeniable Attestations. In
Sushil Jajodia and Pierangela Samarati, editors, 7th ACM Con­
ference on Computer and Communications Security, pages 9-
18. ACM Press, November 2000.

[BLLV98] Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson.
Time-stamping with binary linking schemes. In Advances in
Cryptology - CRYPTO'98, volume 1462 of LNCS, pages 486-
501, Santa Barbara, 1998. Springer-Verlag.

18 69

[BLSOO] Ahto Buldas, Helger Lipmaa, and Berry Schoenmakers. Opti­
mally efficient accountable time-stamping. In Public Key Cryp­
tography - PKC'2000, volume 1751 of LNCS, pages 293-305,
Melbourne, Australia, January 2000. Springer-Verlag.

[BRW02] Ahto Buldas, Meelis Roos, and Jan Willemson. Undeniable
replies for database queries. To appear in the proceedings of
Fifth International Baltic Conference on DB and IS, June 2002.

[BWOla] Ahto Buldas and Jan Willemson. A new linking scheme for
interval time stamps. Manuscript, available from the authors,
2001.

[BWOlb] Ahto Buldas and Jan Willemson. On interval time stamps of
minimum size. Manuscript, available from the authors, 2001.

[Chr75] Nicos Christofides. Graph theory: an algorithmic approach.
Academic Press, New York, London, San Francisco, 1975.

[GKP89] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Math­
ematics. Addison-Wesley, Reading, MA, 1989.

[Har69] Frank Harary. Graph theory. Addison-Wesley, 1969.

[HS91] Stuart Haber and W.Scott Stornetta. How to time-stamp a
digital document. Journal of Cryptology, 3(2):99—111, 1991.

[HS97] Stuart Haber and W.Scott Stornetta. Secure names for bit-
strings. In Proc. J^th ACM Conference on Computer and Com­
munications Security, 1997.

[Koh78] Loren M. Kohnfelder. Toward a practical public-key cryptosys-
tem. 1978.

[Lip99] Helger Lipmaa. Secure and efficient time-stamping schemes.
PhD thesis, Tartu University, 1999.

[Lip02] Helger Lipmaa. On Optimal Hash Tree Traversal. Manuscript,
available from the author. First presented during the Esto­
nian Winter School on Computer Science, Palmse, Estonia, on
March 4th, 2002.

[MAM+99] Michael Myers, R. Ankney, A. Malpani, S. Galperin, and
Carlisle Adams. RFC2560: X.509 Internet Public Key Infras­
tructure Online Certificate Status Protocol - OCSP. June 1999.

70

[Mer80] Ralph C. Merkle. Protocols for public key cryptosystems.
In Proceedings of the 1980 IEEE Symposium on Security and
Privacy, pages 122-134, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, April 1980. IEEE Computer Society
Press.

[MvOV97] Alfred J. Menezes, Paul C. van Oorshot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, Boca Raton,
New York, London, Tokyo, 1997.

[NIS95] NIST. Secure hash standard. Federal Information Processing
Standards Publication 180-1, April 1995.

[NIS00] NIST. Digital Signature Standard (DSS). Federal Information
Processing Standards Publication 186-2, January 2000.

[NIS01] NIST. Secure hash standard. Federal Information Processing
Standards Publication 180-2, May 2001.

[PF96] Fernando Pinto and Vasco Freitas. Digital time-stamping to
support non repudiation in electronic communications. In Proc.
SECURICOM'96 - 14th worldwide Congress on Computer and
Communications Security and Protection, CNIT, pages 397-
406, Paris, June 1996.

[Pfi96] Birgit Pfitzmann. Digital Signature Schemes, volume 1100 of
LNCS. Springer-Verlag, Heidelberg, August 1996.

[Pre93] Bart Preneel. Analysis and design of cryptographic hash func­
tions. PhD thesis, Katholieke Universiteit Leuven (Belgium),
January 1993.

[PSST01] A. Perrig, S.W. Smith, D. Song, and J.D. Tygar. SAM: A
Flexible and Secure Auction Architecture using Trusted Hard­
ware. In ICEC01: First International Workshop on Internet
Computing and Electronic Commerce, April 2001.

[RG95] T. E. Rockoff and M. P. Groves. Design of an Internet-Based
System for Remote Dutch Auctions. Internet Research: Elec­
tronic Networking Applications and Policy, 5(4):10—16, 1995.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryp­
tosystems. Communications of the ACM, 21(2):120-126, Febru­
ary 1978.

71

[Sch35] Erwin Schrödinger. Die gegenwärtige Situation in der Quan­
tenmechanik. Die Naturwissenschaften, 23:807-812; 823-828;
844-849, 1935.

[Sti95] Douglas Ft. Stinson. Cryptography: Theory and Practice. CRC
Press, Boca Raton, New York, London, Tokyo, 1995.

[Sur] Surety digital notary and timestamping service homepage.
Available at http: //www. surety. com.

[Tri80] John D. Trimmer. The Present Situation In Quantum Mechan­
ics. Proceedings of the American Philosophical Society, 124:323—
338, 1980.

[WilOla] Jan Willemson. An algorithm for building efficient time-
stamping schemes on the fly. Manuscript, available from the
author, 2001.

[WilOlb] Jan Willemson. Optimal trees for interval time stamps.
Manuscript, available from the author, 2001.

72

INDEX

II • II, 34

Auth(), 29
authentication path, 28

support arcs, 28
authenticator, 29

ß(), 34

Cw,di 55
certificate, 12
£d, 36

D(), 33
depth, 33
digest, 20

edge
horizontal, 57
vertical, 57

FT, 30

G\ 6r2? 34
0, 42

hash function, 19
history set, 30

/, 34
item, 21

key pair, 12
key revocation, 12

leaf, 26
linking information, 21
linking scheme, 21

binary, 23
Haber-Stornetta, 23

linear, 21

Mw,d: 54
^w,ch 54

off-line comparability, 22

$(), 50
proof set, 29

^w,di 56
set hash, 29
ei, 37

^w,d> 54
signature scheme, 11

wi 41
time certificate, 28
time stamp, 13

interval, 16, 33
time-stamping

absolute, 14
linkage-based, 15

Time-Stamping Authority (TSA),
13

token
existence, 32
freshness, 30

tree
binary

complete, 36
topologically sorted, 35

Merkle's authentication, 20

w() , 33
width, 33

19 73

SUURUSE MÕTTES EFEKTIIVSED
INTERVALLAJATEMPLID

Sisukokkuvõte

Erinevates digitaalse asjaajamise rakendustes tekib vajadus määrata
digitaalse informatsiooni erinevaid parameetreid - millises vormingus on
info esitatud, kes ja kuna dokumendi lõi jne. Enamasti pole andmete tekke
täpset aega võimalik kindlaks teha, kasvõi sel põhjusel, et dokumendi looja
ei pruugi loomise aktist aastaid teatada. Nii asendataksegi digitaalse in­
formatsiooni tekkeaja kindlakstegemine tavaliselt registreerimisaja fikseeri­
misega, nõudes, et dokumendi looja peab dokumendi registreerima selleks
ette nähtud autoriteedi juures. Niisugust protseduuri nimetatakse ajatem-
belduseks ja autoriteeti ajatempliteenuse osutajaks.

On olemas rida stsenaariume, mille korral andmete ühekordsest regist­
reerimisest piisab. Töös nimetatakse seda tinglikult patendistsenaariumiks,
pidades silmas võimalikku rakendust patendivaidluste lahendamisel, kus
tuleb kindlaks teha, kes oma leiutisest esimesena teada andis. Sama ideo­
loogia abil saab ka välja selgitada, kes reserveeris esimesena lennukipileti
jne.

Digitaalallkirjade tekkeaja kindlakstegemisel on olukord aga põhimõt­
teliselt teistsugune. Nimelt on dokumendi digitaalne signeerimine seotud
privaatvõtme kasutamisega ja see operatsioon tuleb läbi viia võtmeomaniku
täieliku kontrolli all. Niisiis ei saa dokumendi allkirjastamise täpset mo­
menti mingi kolmanda osapoole juures fikseerida. Küll aga saab registreerida
kaks ajahetke - ühe kindlalt enne signeerimist ja teise kindlalt pärast seda.
Nii võime hiljem väita, et elektronallkiri on antud mingi kindla ajaintervalli
jooksul ning sellest johtuvalt nimetatakse kirjeldatud ajatembelduse vormi
intervallajatembelduseks.

Käesoleva doktoritöö eesmärk on uurida intervallajatembeldusskeeme,
mis võimaldaksid ajatemplite suuruse miinimumini viia. Väitekirjas for­
maliseeritakse vastav optimeerimisülesanne, antakse ajatemplite suurusele
(küllalt täpne) ülemine hinnang, leitakse antud hinnagu jaoks alampiir ning
näidatakse ära graafidepere, mis lähendab seda piiri kuitahes hästi (kusjuu­
res täpne piir on saavutamatu).

Töö viimane osa on pühendatud väljatöötatud graafipere praktilise rea­
liseerimise küsimustele ajatempliteenuse osutaja serveris. Algse rekurrentse
graafipere definitsiooni põhjal on küll võimalik luua vastav rekursiivne algo­
ritm, kuid esiteks ei vasta rekursioon linkimispõhise ajatembelduse ideoloo­
giale ning teiseks pole naiivne rekursiivne realisatsioon käideldavuse mõttes

74

turvaline. Lahendusena pakutakse töös välja alternatiivne samm-sammuline
algoritm, mis säilitab serveri töö jätkamiseks vajaliku informatsiooni efek­
tiivselt ning varundataval kujul.

75

ACKNOWLEDGEMENTS

There are many people without whom this thesis would not have been born
at all. I guess the first person to blame (or to thank) for dragging me into
the topic is Helger Lipmaa who asked me to join Cybernetica in 1997/98
and introduced me to several other beautiful minds. Besides this Helger
deserves some extra words of gratitude for reading preliminary versions of
my thesis and making a number of valuable suggestions.

It would take long to list all the good colleagues in Cybernetica who
have influenced me one way or another, and hence I just mention the most
important one of them all - my supervisor Ahto Buldas. If I know anything
about data security, time-stamping or paper writing at all, it's thanks to
him. An important role has also been played by Cybernetica as an organiza­
tion where beginning scientists and developers have found a fruitful ground
to grow.

It is very hard to write a computer science thesis without a computer
and its software, thus I would also like to thank the creators of heaps of great
free software like Linux operating system, I^T^X text preparation system,
Free Pascal Compiler, Nedit editor and others.

And last but not least - I have been happy to have an understanding
and supporting family, represented by my wife Kairi. I promise to have
more time for her when this thesis will be ready.

76

CURRICULUM VITAE

Jan Villemson

Citizenship: Estonian Republic
Born: July 30, 1974, Tartu, Estonia
Marital status: married
Address: Ravila 70-5, Tartu, Estonia
Contacts: phone: (+372 7) 302 667, e-mail: jan@ut.ee

Education

1981 - 1992 Tartu Secondary School No. 12
1992 - 1996 BSc, Faculty of Mathematics, Tartu University
1996 - 1998 MSc, Faculty of Mathematics, Tartu University

Professional updating stays

1996 — Eindhoven Technical University (TUE), Holland
1997 — Turku University, Finland
1998 — 3rd Estonian Winter School in Computer Science (EWSCS), Palmse,
Estonia
2000 — 5th EWSCS, Palmse, Estonia
2001 — 6th EWSCS, Palmse, Estonia
2001 — EIDMA minicourse on Cryptographic Multiparty Protocols, TUE,
Holland
2002 — 7th EWSCS, Palmse, Estonia

Professional employment

1998 - ... Research engineer, Cybernetica
2000 - ... Lecturer, Tartu University

20 77

Scientific work

The main fields of interest are combinatorial methods and their applications
in data security and digital document management.

Results have been presented at the conferences in Santa Barbara (USA,
1998), New Orleans (USA, 2000), Cheju Island (Korea, 2001), Sydney (Aus­
tralia, 2001) and Tallinn (Estonia, 2002).

78

CURRICULUM VITAE

Jan Villemson

Kodakondsus: Eesti
Sünniaeg ja -koht: 30. juuli 1974, Tartu, Eesti
Perekonnaseis: abielus
Aadress: Ravila 70-5, Tartu, Eesti
Kontaktandmed: telefon: (+372 7) 302 667, e-mail: jan@ut.ee

Haridus

1981 - 1992 Tartu 12. Keskkool
1992 - 1996 bakalaureus, Tartu Ülikooli matemaatikateaduskond
1996 - 1998 magister, Tartu Ülikooli matemaatikateaduskond

Erialane enesetäiendus

1996 — Eindhoveni Tehnikaülikool (TUE), Holland
1997 — Turu Ülikool, Soome
1998 — 3. Eesti Arvutiteaduse Talvekool (EATTK), Palmse, Eesti
2000 — 5. EATTK, Palmse, Eesti
2001 — 6. EATTK, Palmse, Eesti
2001 — EIDMA lühikursus "Cryptographic Multiparty Protocols", TUE,
Holland
2002 — 7. EATTK, Palmse, Eesti

Erialane teenistuskäik

1998 - ... teadur, Cybernetica
2000 - ... lektor, Tartu Ülikool

79

Teadustegevus

Peamisteks tegevusvaldkondadeks on kombinatoorsed meetodid ning nende
rakendused andmeturbes ja digitaalses dokumendihalduses.

Tulemused on publitseeritud konverentsidel Santa Barbaras (USA, 1998),
New Orleansis (USA, 2000), Cheju Island'il (Korea, 2001), Sydneys (Aus­
traalia, 2001) ja Tallinnas (Eesti, 2002).

80

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylin­
drical tubes and circular discs. Tartu, 1991. 23 p.

2. Boris Komrakov. Primitive actions and the Sophus Lie problem.
Tartu, 1991. 14 p.

3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence.
Tartu, 1992. 47 p.

4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order.
Tartu, 1992. 15 p.

5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992. 32 p.

6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in
the case of Von Mises yield condition. Tartu, 1992. 32 p.

7. Ants Aasma. Matrix transformations of summability and absolute
summability fields of matrix methods. Tartu, 1993. 32 p.

8. Helle Hein. Optimization of plastic axisymmetric plates and shells
with piece-wise constant thickness. Tartu, 1993. 28 p.

9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and
its generalizations. Tartu, 1994. 23 p.

10. Arne Kokk. Joint spectral theory and extension of non-trivial multi­
plicative linear functionals. Tartu, 1995. 165 p.

11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-
plastic structures. Tartu, 1995. 93 p. (in russian)

12. Sander Hannus. Parametrical optimization of the plastic cylindrical
shells by taking into account geometrical and physical nonlinearities.
Tartu, 1995. 74 p.

13. Sergei Tupailo. Hilbert's epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996. 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in tor­
sion. Tartu, 1996. 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999.
90 p.

16. Märt Põldvere. Subspaces of Banach spaces having Phelps' unique­
ness property. Tartu, 1999. 74 p.

21 81

17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz se­
quence spaces. Tartu, 1999. 72 p.

18. Krista Fischer. Structural mean models for analyzing the effect of
compliance in clinical trials. Tartu, 1999. 124 p.

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu,
1999. 56 p.

20. Jüri Lember. Consistency of empirical fc-centres. Tartu, 1999. 148 p.

21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000. 102
P-

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000.
107 lk.

23. Varmo Vene. Categorical programming with inductive and coinduc-
tive types. Tartu, 2000. 116 p.

24. Olga Sokratova. Q-rings, their flat and projective acts with some
applications. Tartu 2000. 120 p.

25. Maria Zeltser. Investigation of double sequence spaces by soft and
hard analitical methods. Tartu 2001. 154 p.

26. Ernst Tungel. Optimization of plastic spherical shells. Tartu 2001.
90 p.

27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühes-
tamine. Tartu 2001. 138 p.

28. Rainis Haller. M(r, ̂ -inequalities. Tartu 2002. 78 p.

ISSN 1024-4212
ISBN 9985-56-651-3

	CONTENTS
	LIST OF FIGURES
	LIST OF ORIGINAL PUBLICATIONS
	ABSTRACT
	1 INTRODUCTION
	2 STATE OF THE ART
	3 LINKING SCHEMES
	4 OPTIMAL LINKING SCHEMES
	5 LINKING USING TREES
	6 INSTEAD OF THE CONCLUSIONS
	REFERENCES
	INDEX
	SUURUSE MÕTTES EFEKTIIVSED INTERVALLAJATEMPLID. Sisukokkuvõte
	ACKNOWLEDGEMENTS

