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ABSTRACT 

In various applications of digital document management it is necessary to 
determine different parameters of documents - e.g. the format, the author 
or the time of creation. Determining the time can be unsuccessful since the 
bits of a digital document look the same regardless of their exact incep­
tion moment. Hence, in practical applications instead of fixing the digital 
document's creation time it is better to register the document at certain au­
thority and consider the registration time instead. Such a process is called 
time-stamping and the corresponding authority is called Time-Stamping 
Authority. 

There are a number of occasions where one-time registration of the data 
is enough. Registering a patent application is a good example of such a 
scenario. Determining the time of digital signature creation, on the other 
hand, differs substantially from the patent case. This is caused by the fact 
that digital signatures are given using private keys that should remain under 
the signers' sole control. 

Hence, it is impossible to determine the exact moment of signing by any 
third party. Nevertheless, it is possible to fix two moments - one before 
and another after the signature creation. Using these moments we can later 
prove that the signature was given during some time interval and this form 
of time-stamping is called interval time-stamping. 

The main idea of the current PhD thesis is to study interval time-
stamping schemes that allow us to decrease the size of the time stamps 
as much as possible. While doing this, several restrictions must be taken 
into account, the most important one being the ability to compare creation 
times of the documents without help of any third party. 

In the thesis, we state an explicit optimization goal, give an upper bound 
to the size of time stamps, find a lower estimate for this bound and construct 
a family of graphs approaching this (unachievable) estimate asymptotically. 

The last chapter of the thesis is devoted to the questions of practical 
implementation of the proposed schemes. The original recurrent definition 
of the scheme family turns out to be unsuitable, so we will introduce an 
alternative description. This solution enables storing the server's internal 
state in a limited number of variables that can be efficiently back-upped. 
The description is further used to design an efficient step-by-step time-
stamping algorithm. 
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1 INTRODUCTION 

1.1 Paper-based documents 

In many everyday applications there is a document involved to witness our 
behavior. Bus tickets, diplomas, promissory notes, passports, wills, stu­
dent cards, driver's licenses, love-letters, stock shares, guarantee coupons, 
business contracts etc. are all very common and well-known examples. 

There are several components that help a document to prove things and 
hence make it a document as we understand this notion today. 

• Contents - this is the meaning of the document, stating that Mr. X 
has some rights or obligations or that he has just stated something 
(e.g. expressed love for Ms. Y). In other words, contents of the doc­
ument shows why it was created and in all the examples above the 
contents were physically written on something that is called 

• Medium - for usual documents, this is just paper or sometimes plas­
tic; from the history we also remember people writing their messages 
on wood, on stone or even encoding them by making knots in ribbons. 

• Means of authentication - a document can have no legal value if 
nobody is responsible for it.1 Thus, in order to establish the person in 
charge, there must be something added to the document contents to 
enable an independent party {judge) to decide whether or not someone 
is bound to it. Mostly, a hand-written signature does the job, some­
times people also use fingerprints, water-marks or just three crosses 
attached. 

It is important to note that in the case of conventional paper-based docu­
ments the contents are connected to the signature via the medium. Once a 
text has been typed on paper and a signature written under it, there is no 
way to erase either of them without leaving visible traces (at least it should 
be very hard). 

But in digital world we see that our familiar intuition behind documents 
may break down. We no longer have any paper to take into our hands for 

1Even more, the responsibility for document creation must be taken by a human. We 
can not say "the computer wrote it" as it is pointless to put the computer behind the 
bars if anything goes wrong. It is of course technically possible for a computer to create 
messages automatically, but there must still be a human person responsible for that. 
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reading, suddenly a piece of information may have many identical originals 
etc. It usually takes some time from people to get used to the new framework 
and sometimes unexpected things can happen. Let us conclude this section 
by a small real-world example of what happens if the conventional methods 
are applied to digital data management. 

In Tartu University, Estonia, somewhere at the end of 1990s 
there was a regulation established concerning several aspects of 
bureaucracy. One part of it was talking about destroying the old 
and unnecessary documents. When the secretaries had collected 
a pile of old documents, they had to write short notes about the 
contents of all these documents, store those notes and then feed 
the documents to the shredder. But when they needed to delete 
some files from a computer hard disk, they first had to print 
those files out and feed the printouts to the shredder! And no 
word about actual deletion of files from hard disks! 

A lesson to be learned: changing from paper to computers really changes 
the notion document. One has to be cautious of what to say about digital 
documents if one has only seen the paper ones — they act differently in 
many important details! 

1.2 Who is responsible for the document? 

When dealing with paper documents, we are used to think that it is impor­
tant to establish, who wrote the document. This information is important 
for contracts, wills, promissory notes etc. If a contract is signed and one of 
the parties breaks it, we must be able to determine who is responsible for 
the consequences. In many practical applications, finding out the creator 
of a document also gives us the responsible person. 

On the other hand, having a digital document at hand (or in the com­
puter), it is impossible to say who has created it, because the bits cannot 
be distinguished by handwriting. Hence, the best we can do is to be sure 
about who takes the responsibility for the document. 

Technically, responsibility means potential repressions against a person, 
possibility to apply penalties (financial or even death penalty) if something 
goes wrong. Consequently, we must be able to determine the right person 
by the document and possibly using some additional data. 

The process of binding a person to a (digital) document is called giving 
a digital signature and it is implemented via a signature scheme. 
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1. In order to be able to give digital signatures, the user A needs a key 
pair consisting of a private signature key SA and a public verification 
key VA- The private part is kept secret, whereas the public part is 
made available to everybody. 

2. The user A can apply signature creation procedure to a document X 
and the private key SA to obtain the signature Sig^-fX}. 

3. When the verifier B has a document X, a signature SigA{X} and a 
public key VA, he can apply the verification procedure to them and 
get "Yes" or "No" as the outcome, indicating the correctness of the 
signature. 

4. Knowing only the public key VA, it is computationally infeasible to 
find its secret counterpart SA, or even produce a valid signature of A 
to a new document X. 

There are many signature schemes proposed, out of which RSA [RSA78] 
and Digital Signature Standard (DSS) [NISOO] are two of the most popular 
ones. You may also look at Birgit Pfitzmann's excellent PhD thesis [Pfi96] 
for more information on digital signature schemes. 

1.3 When was the document signed? 

It is not always enough to know who created/signed the document, but 
also when it was done. For an example, if Alice signs a promissory note 
and makes her private key public right after that, she can later claim that 
anybody could have given the signature instead of her. One possible solution 
to this problem is to make Alice responsible for all signatures given with her 
private key until she explicitly claims her private key compromised (revokes 
her key). Hence, before accepting Alice's promissory note, the bank should 
verify whether Alice has revoked her key and give her money only if the key 
is still valid. For instance, if digital certificates (the framework of stating 
the validity of signature keys proposed by Kohnfelder [Koh78]) are used, the 
bank may consult an OCSP [MAM+99] server or a Notary server [ABRW01]. 

Nevertheless, in order to be able to prove later (e.g. in court) that 
Alice's key was not revoked at the moment of signing, the bank has to 
present some more convincing arguments than just the claim "We checked 
that the signature key was valid". These extra arguments should at least say 
what happened before — was it the act of signing or the act of revocation. 

One of the most widely used ideas to overcome this problem is to in­
troduce a new party to the game. This party is responsible for attaching 
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Figure 1.1: The general model of time-Stamping. 

time information (time stamps) to the documents (or to any other kind of 
digital data, e.g. auction bids, patent claims etc.). Because of its role, he 
is generally known as Time-Stamping Authority (TSA). 

The general work model of TSA is explained in Figure 1.1. If a docu­
ment X is to be time-stamped, some communication is initiated with the 
authority. During this communication the document is transmitted to the 
TSA who computes the time stamp TSx and returns it. Of course, the 
whole protocol can be much more complicated than just having one pass, 
e.g. we might add client and/or server authentication, compute the time 
stamp in several parts etc. 

It is not enough only to issue time stamps. We must also have means of 
comparing them and establishing which one was issued earlier (Figure 1.1, 
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below). Of course, in order to make the time-stamping system practical 
there are several requirements to meet. 

• The protocol should not take too long to run. 

• The time stamps should be as small as possible to avoid unnecessary 
overhead in communication and storage. 

• It should not be necessary to invoke any parties (even the TSA) to the 
verification procedure, i.e. time stamps should be comparable off-line. 

The last two conditions are in a way controversial. The feature of off­
line comparison implies that time stamps must contain enough information 
about all the other time stamps. As we want our time-stamping system to 
allow potentially any number of time stamps, it is for instance very difficult 
to make the time stamps having constant size. Hence, a tradeoff has to be 
found and the question how small can off-line comparable time stamps be 
needs an answer. Answering this question in case of time stamp for digital 
signatures is the core of this thesis, but before reaching the core we still 
need to discuss some details. 

1.4 Absolute and linkage-based time stamps 

The standard approach when building a time-stamping framework is to give 
the TSA a (generally trusted) clock and let him sign the request together 
with the clock's state at the moment the request is received. For exam­
ple, the IETF PKIX time-stamping standard [ACPZ01] is based on this 
idea. Still, such an absolute time-stamping approach suffers from several 
drawbacks. 

1. The TSA is completely trusted. Among other things, this means that 
the TSA can attach any time (not necessarily the correct one) to the 
requests. 

2. As the TSA signs its statements, the compromise of its private key 
also becomes a problematic issue. 

3. In a way, attaching absolute time to the documents gives too much 
information. We are mostly not interested in exact time moments, 
but rather in establishing the temporal relationship (earlier/later) of 
several events. This was the case with Alice's signature and key revo­
cation. It also is when we need to compare patent registrations, or to 
make sure that a job-application arrived before the deadline etc. 
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The last consideration leads to the question, whether it is possible to 
establish temporal relationships by some other (less-demanding) means, and 
if so, perhaps it could also be possible to reduce the trust requirements of 
the TSA. 

Such a framework can be built by using one-way functions to create un­
deniable causal relationships between digital events rather than assigning 
physical time to them. As a result, all the time-stamped items form some­
thing like a chain of links where it is impossible to insert some new elements 
or to delete any old ones. Because of this analogy the described approach is 
called linkage-based time-stamping. It was first proposed in 1990 in [HS91] 
and later improved in [BLLV98]. 

1.5 Two scenarios of time-stamping 

Before starting to create a new time-stamping scheme we must analyze the 
requirements the scheme has to meet. First, we will discuss the possible 
settings where it makes sense to apply time-stamping. On a very general 
level we can distinguish the following two basic scenarios. 

First scenario: Who gets it first? In this scenario, there are several 
participants who are interested in the same resource and they need to be 
(among) the first ones to get it. There are many common examples of this 
scenario. 

• When several scientists make the same invention, only the first one to 
reach the patent bureau is the one who can claim the rights for the 
invention. 

• If flights are booked internationally, the airline companies tend to 
double-book some seats as their experience shows that many bookings 
are often canceled. Still, from time to time, it happens that some 
flights are over-booked and in this case only the first bookers should 
get the seats. 

• Temporal ordering of the requests can be applied for several kinds of 
auctions, see [PSST01, RG95] for discussion. 

In order to prove later to the patent-interested scientists that some of their 
competitors were not favored unfairly, time-stamping is a natural tool to 
use. It is also quite easy to organize time-stamping in cases like the ones 
above as all the clients are obliged to express their interest directly anyway, 
by pressing a button or running to the travel agent. Hence, it is enough 
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for the TSA to record the moment of the interest expression and to issue a 
time stamp for that moment. 

Second scenario: When did the cat die? Recall the Schrödinger's 
famous mental cat experiment [Sch35] (the English translation used here is 
due to John D. Trimmer [Tri80]): 

A cat is penned up in a steel chamber, along with the following 
device (which must be secured against direct interference by the 
cat): in a Geiger counter there is a tiny bit of radioactive sub­
stance, so small, that perhaps in the course of the hour one of 
the atoms decays, but also, with equal probability, perhaps none; 
if it happens, the counter tube discharges and through a relay 
releases a hammer which shatters a small flask of hydrocyanic 
acid. If one has left this entire system to itself for an hour, 
one would say that the cat still lives if meanwhile no atom has 
decayed. 

For us, the important question arising from this experiment is: if we open 
the chamber and see a dead cat then how can we tell the exact moment of 
death? The sad truth stated by Schrödinger is - we cannot. 

A similar situation can be observed in the computer world if we need 
to determine the time of some private digital action. One very important 
example - signing - was already presented above. Note that the situation 
of signing is substantially different from registering patents. As we saw 
before, a scientist interested in the honor of invention can (and has to) show 
his interest explicitly and publicly. Signing, on the other hand, involves 
application of a private signature key that is known only to the signer and 
to no-one else. Hence, no-one except for the signer knows the exact moment 
when the signature was created. 

So what can we do if we still need to determine the time somehow? 
The answer is simple - if you cannot do it exactly, try to be as precise as 
possible and prove that the event took place during some time interval. For 
the Schrödinger's cat, this means saying that the cat died during the hour 
when the chamber was closed; for digital signatures the very same approach 
applies - if we can prove that a signature was created during some (relatively 
short) time interval, one can be reasonably satisfied with the result. The 
time stamps used for the proof are called interval time stamps from now 
on. 
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Whereas the first scenario is pretty well studied [HS91, BLLV98, BL98, 
BLSOO, Lip99], the second one has arisen only recently. Still, being appli­
cable for time-stamping digital signatures, it is by no means less important 
than the patent scenario. There are also other possible applications of inter­
val time stamps. In principle, any computation that is carried out outside 
of the direct sight of the TSA can be a subject to it. For example, com­
putation of message authentication codes (MACs, see [MvOV97], Section 
9.5) also involves usage of secret keys and hence interval time stamps are to 
be used. Another interesting application of this approach is time-stamping 
other TSA's time stamps. This way, it is possible to create dependencies 
between the "histories" "written" by different TSAs. These dependencies 
can be used to 

• synchronize the actions of TSAs and make items in different "histories" 
comparable with each other; and 

• increase the reliability and availability of the TSAs: when one TSA is 
temporarily down, the other one still retains the continuity of the first 
one's work (see [ABSW01] for a more detailed discussion on availabil­
ity issues). 

1.6 Objectives and outline of the thesis 

The basic motivation of this thesis was already stated in Section 1.3. Adding 
the results of the discussions from Sections 1.4 and 1.5, we formulate the 
following central problem of the thesis. 

Find a linkage-based time stamping scheme that provides as 
small interval time stamps as possible and enables off-line com­
parison. 

When solving this problem we will mostly concentrate on the mathe­
matical side and postpone the discussion about practical implementations 
to the end. Still, this discussion is by no means less substantial than the 
rest of the thesis as the work of the TSA must also be efficient and reli­
able. Hence, when proposing some new schemes, one must also ask how 
good algorithms can be designed based on mathematical descriptions of the 
schemes. 

The rest of the thesis is devoted to solving these two problems and is 
organized as shown below. Several results presented in the thesis have not 
yet been published on any conference nor in any journal, but rather in a 
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series of manuscripts and technical reports. The references can be found 
below as well. 

• Chapter 2 gives technical background and a brief historical overview 
necessary to understand the rest of the thesis. 

• Chapter 3 presents a general framework of linking schemes together 
with detailed technical descriptions. Size-efficiency of the previous 
best-known time-stamping system is considered for interval time stamps 
and improved by 25%. This result was first obtained by Buldas and 
Willemson and described in manuscript [BWOla]. 

• Chapter 4 presents a new family of linking schemes and proves its 
asymptotical optimality with respect to an upper bound for the size of 
time stamps. The new scheme family was defined first in [BWOla] and 
further analyzed in [BWOlb] by Buldas and Willemson. The optimal 
schemes were first found by the author of the thesis in [WilOlb]. 

• Chapter 5 discusses the restrictions that are set on the TSA's server 
that uses new linking schemes. We give an efficient and reliable al­
gorithm for generating the schemes on the fly. The algorithm was 
originally described by the author in [WilOla]. 

• Chapter 6 ends the thesis and draws some philosophical conclusions. 
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2 STATE OF THE ART 

2.1 Hash functions 

In order to build a linkage-based time-stamping scheme we use a collision 
resistant hash function (see [MvOV97], chapter 9)1, i.e. a function h such 
that it 

• inputs bit-strings of arbitrary length and outputs bit-strings of fixed 
length k, i.e. h : {0,1}* -> {0,1}fe; 

• works efficiently (i.e. for any a?, h(x) is easy to compute); 

• is collision resistant: it is computationally infeasible to find inputs 
x x' such that h(x) — h(xr). 

It can be easily seen (e.g. [Sti95], chapter 7) that (under some natu­
ral extra conditions) collision resistant hash functions also have the next 
desirable properties: 

• preimage resistance: for essentially all outputs y € {0, l}fc it is infea­
sible to find x E {0,1}* such that h(x) = y, 

• 2nd preimage resistance: for given x 6 {0,1}*, it is infeasible to find 
x' 7^ x such that h(x) = h(x'). 

Whereas the question of existence of such functions is still open, several 
candidates have been tailored and they are believed to be good enough 
for practical use. SHA-1 [NIS95] together with its improvements SHA-256, 
SHA-384 and SHA-512 [NIS01] are the most popular ones at the time of 
this writing. 

Later on we will extensively use the notation h(xi,x2,... ,£/) and by 
that we mean the value of the function h on some predefined data structure 
from where all the "bit-strings X2,. • •, xi can be restored. One might e.g. 
use concatenation of the strings or some container format. 

1As the idea of the current thesis is not to make a deep contribution into the theory 
of hash functions, our definition used here is rather informal and intuitive. For more 
detailed discussion we refer the reader to [Pre93]. 
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h$ = h(Jl2, /^4) 

h,2 = h(h 

X\ X2 X4 X5 

Figure 2.1: Example of Merkle's authentication tree. 

2.2 Proving dependencies between the data items 

In what follows, we will consider a process where outputs of some hash 
computations are used as inputs to others. This way we can make one 
output value dependent on many input values and prove this dependence 
by exposing some of the inputs or intermediate hash values. For instance, 
if we are given X\,X2 such that 

h(xuh(x2,x3)) = y (2.1) 

then we say that y depends on the inputs xi,x2,xs in the sense that there 
is no other way to obtain y as a result of some hash computations than 
computing it by formula (2.1) (because otherwise we should be able to 
find second preimages to the function h). Hence, in order to prove that y 
depends on X2, it is sufficient to show the additional values x\ and X3 so 
that anyone can compute hi = h(x2,2:3) and verify that y = h(xi^h\). 

Such a reasoning can be generalized to quite complicated data struc­
tures, for instance to binary trees as done by Merkle [Mer80]. Figure 2.1 
presents an example of resulting Merkle's authentication tree. 

Similar to the above, for all the leaves labeled xi,... :xe it is possible 
to prove that h$ depends on them. For instance, if the dependence of h5 
on £3 is to be proven, one may add the vertices hi and /14 and the verifier 
may compute /12 = h(hi,x$) and h§ — h(h2^h^). 

Hence, if h$ is published in authentic and undeniable way, the presence 
of the leaves xi,... :XQ at the time of forming the Merkle's authentication 
tree can not later be denied (even by the party who formed the tree). If we 
consider xi:..., ̂ 6 to be records in some database V, then h$ is the digest of 
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V and the proof methodology described above can be used to prove whether 
for any particular Xi the condition Xi G V or the condition Xi # V holds. 
We refer the reader to [BLLOO, BRW02] for more details. 

2.3 Linkage-based time-stamping 

As noted in Section 1.3, there are two security drawbacks in absolute-time 
based time-stamping: the need to trust the TSA and TSA's potential key 
compromise. Hence, in order to avoid these problems, the TSA should have 
tools for time-stamping such that 

1) he is not able to recompute his statements afterwards; and 

2) his statements do not depend on any secret information. 

It turns out that the cryptographic hash functions described in Section 2.1 
can be successfully applied in order to meet the requirements above. 

This idea was first proposed by Haber and Stornetta in [HS91] who 
introduced linking schemes. They compare a linking scheme with a lab 
notebook the entries of which are filled one after another and the sewn-in 
pages of which make the record hard to tamper with. 

The approach of Haber and Stornetta is (being a bit simplified) the 
following. Let us have a collision resistant hash function h and let xn be 
the next time-stamping request (later also called an item). The time stamp 
for xn will be 

(xn5 Ln), 

where Ln is the linking information defined as 

L n  —  { X n — l i h { L n — l ) ) -

Thus one-way dependencies are created between the linking information 
strings Ln and through them also between the items xn, allowing us to 
say that xn was time-stamped later than xn-i. As no-one knows how to 
compute second preimages for the hash function, even the TSA can not 
alter the time stamps after they are issued. Of course he can try to delay 
some time-stamps, but if he delays too much he will be caught on cheating. 
Because the linking information items form a linear chain, such scheme is 
called linear; an example is depicted in Figure 2.2. 

Though reliable in the sense of security, the linear linking scheme of 
[HS91] is very impractical for two reasons. 
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Figure 2.2: Example of linear linking scheme. 

• Every time it is necessary to establish the temporal relationship be­
tween two items, the verifier must recompute the whole chain between 
them and this requires a lots of time if the items are far apart. 

• For the verification procedure it is necessary to have all the interme­
diate items available as well. They can be kept in a central server, 
at the verifier or anywhere else, but the required storage space in­
creases linearly in time anyway. Besides, if for some reason the stor­
ing server becomes unavailable, time stamp dependencies can not be 
verified anymore. Once again, we refer the reader more interested in 
the availability issues to [ABSW01]. 

2.4 Off-line comparability 

By off-line comparability we mean the property of the time-stamping scheme 
to provide such time stamps that can be compared by the verifier without 
connecting to any other parties, i.e. based on the time stamps only. 

Is it possible to achieve this property? The answer is affirmative, as it 
can be seen from the following naive time-stamping scheme: 

• time stamp for the request Xi is the set T{ = {x\,x2^ • •. ,£»_ 1};2 

• if it is necessary to compare the time stamps T{ and Tj of the items 
xi and Xj, respectively, find out whether X{ 6 Tj or -Xj 6 Tj. 

Another scheme providing off-line comparable time stamps, but also linear 
time stamp size was proposed by Pinto and Freitas in [PF96]. 

There have been several attempts to decrease the size estimate for time 
stamps based on Merkle's authentication trees, e.g. Benaloh and de Mare 

2The time stamp T, may also be signed by the TSA in order to achieve authentication 
and non-repudiation. In this case we also need off-line signature verification as done e.g. 
in [ABRW01]. 
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n-1 n r i+i 

Figure 2.3: Example of linking scheme of [BHS93]. 

[BdM91] and Haber, Stornetta et. ai. [BHS93, HS97]. We consider here 
briefly the scheme of Haber and Stornetta that lies on the foundation of 
Surety Digital Notary and Timestamping Service [Sur]. 

Haber and Stornetta divide the work process of a time-stamping server 
into rounds. All the items x[,... ,xl

ki obtained during the round I are used 
as leaves for a Merkle's authentication tree. As explained in Section 2.2, 
the tree's root value r; depends in undeniable way on all the items x\ and 
this dependence can later be proven by exposing some additional items. 
The number of extra items needed is logarithmic in k[. In order to create 
dependencies between the root nodes of different rounds, linear linking is 
used. An example of the Haber-Stornetta scheme is depicted in Figure 2.3. 

Note that the items inside one round are actually not ordered in the 
Haber-Stornetta scheme. In practice, we may accept incomparability of 
two time-stamps, if they are close enough in time. This implies the need to 
make the duration of one round short enough in the Haber-Stornetta scheme 
but doing so we loose in logarithmic efficiency provided by the Merkle's 
authentication trees used inside the rounds. 

The first time-stamping scheme providing both logarithmic time stamp 
sizes and undeniable linear ordering of the items was proposed by Bul­
das, Laud, Lipmaa, and Willemson in [BLLV98]. Their basic idea was to 
link a new item to two older ones: the previous item and a specifically 
selected item from (possibly very distant) past. Because of this property 
these schemes are called binary linking schemes. An example of [BLLV98] 
scheme is depicted in Figure 2.4 

The research on size-optimal linking schemes was continued by Bul-
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das, Laud, Lipmaa and Schoenmakers [BL98, BLSOO]. The Buldas-Lipmaa-
Schoenmakers (BLS-) scheme [BLSOO] was proven to give size-optimal time 
stamps for the patent scenario, but in this thesis we show that for interval 
time-stamps more efficient solutions can be given. We present a new family 
of schemes based on unbalanced trees which reduces the size of time stamps 
about 28% compared to the BLS-scheme. We will also prove that with re­
spect to the best currently known estimates for the time-stamp sizes, this 
family of schemes is asymptotically optimal. 
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3 LINKING SCHEMES 

3.1 Basic requirements 

3.1.1 General framework 

In Chapter 2, we saw how several graphs1 (e.g. chains and trees) can be 
used to create dependencies between different data items. In this chapter, 
we consider the general case and assume a rooted directed acyclic graph 
(with arcs heading towards the root) as a basis of our linkage-based time-
stamping schemes. 

The items to be time-stamped are represented as nodes with in-valency 
0 (by an analogy with trees they are also called leaves in this thesis) and arcs 
refer to hash computations performed using a predefined hash function h. 
In order to make statements about temporal relationships between different 
items, we also assume that the leaves of the graph are linearly ordered. 
There are n! possible orders for a graph with n leaves and not necessarily 
all of them give rise to an equally good linking scheme. Hence, specifying 
the order of leaves plays an important role in scheme construction. 

Figure 3.1 shows a simple linking scheme with time-stamped items 
^1)^25^3,^4 and with hash values h\ = h(x2,xs),h2 — h(xi,h\),hs — 
h(h\, #3),.... 

Based on such a scheme the time-stamping server works as follows. The 
server's work is divided into a sequence of steps. At each step i  

• a new item X{ is obtained; 

• several hash computations are performed on Xi and previously stored 
values; 

• for the next steps some old and some newly computed values are 
stored. 

An example of computations carried out on the graph of Figure 3.1 can be 
seen in Table 3.1. Note that the set of values to compute and to store is 
not necessarily uniquely determined by the graph. For example, on step 3 
we could also compute the values ^4, h$ and store the value /15 only. 

1The current thesis relies on graph theory quite heavily. It was the author's choice not 
to include an introductory chapter about graphs into the thesis as there are many good 
resources available in literature. A reader in need for more background should probably 
start from some classical books like [Chr75] or [Har69]. 
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h,2 /l5 ^6 

X4 

Figure 3.1: A simple example of time-stamping scheme. 

Step Input Compute Store 
1 Xi Xi 
2 X2 Xi,X2 
3 £3 ^1 = h(x2,x3), h2 = h(xi,h\) X3i hi, h2 

4 £4 h3 — h(hi,xz), hi = h(h3,x3), 
hb — h(h2,h±), he = h(h5,x4) 

h6 

Table 3.1: A simple example of time-stamping computations. 
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In what follows, we will use the labels X{ and hj in two different mean­
ings. First, they denote the actual values attached to the vertices and hence 
we can perform hash computations using the values X{ and hj as arguments. 
Second, we will usually speak about the vertices Xi and hj using the labels 
as vertex references just like it is a general custom in graph theory. 

Like in Chapter 2, we are able to prove one-way dependencies between 
several items, e.g. we can say that h& depends on X2• As a proof of such 
a statement, it is enough to give some extra items required to repeat the 
hash computations that lead from X2 to h^. For example, we can compute 

h(x2,x 3)  = hi, 

h{h\, x3) = h3, 

h(h3,x 3)  = h±, 

h{h,2ih±) — h§, 

h(h5,x 4)  = hß, 

and hence we may present the set of items {^3,^2,^4} (sometimes called 
time certificate) as a proof. Note that these computations are performed 
following the directed path 

X2 —^ h\ —y h3  —^ /14 —y h§ —y h§. (3-1) 

Such a path will be called an authentication path. Later we will also need 
the arcs that are not parts of the authentication path but participate in the 
computation process. E.g., for the path (3.1) in Figure 3.1 the necessary 
additional arcs are 

(x3, hi), (x3, h3), {x3, /i4), (^2, ̂ 5), (^4, K). 

These arcs are called authentication path support arcs. 
At the same time it is also possible to verify the necessary dependence 

by computing 

h{x2i x$) = hi, 
h(xi,hi) = h2, 

h(h2:h4) = h5, 

hijh^^x^j hß., 

where the time certificate {x3, X\, ̂ 4, £4} is required for proof. 
Later we will see that time certificate forms an important part of a 

time-stamp. As the main objective of the thesis stated in Section 1.6 is 
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to decrease the size time stamps, we are also interested in reducing the 
size of time certificates. The minimal set (in the sense of cardinality) of 
extra nodes needed to prove the dependence of node y on node x is called 
authenticator of node x (relative to node y) and is denoted by Auth(rr,?/). 

In order to be precise we also give a formal definition of this notion. 
First we define the operation of set hash. 

Definition 1 Let G be a time-stamping graph and h be the hash function 
in use. Let K C V(G). Then SHh is a set hash operation that works as 
follows: 

SUh  : 2yW -* 2V^ : K ^ K U {x = h(xu  ..., xk) : 

xi,...,xk  G K\ (xi,x),...,{xkix) £ E(G)}. 

It is natural to denote S7i\(K) := Slih(K), S%\(K) := STihiSTiJ^K)), 
etc. As G is a finite graph, for some natural number i it must happen that 
SH l

h{K) — This set will be denoted as SH*h{K). 
Now we are ready to define what it means to be able to prove depen­

dencies. 

Definition 2 A subset K of V(G) is called a proof set (proving the depen­
dence of y on x) if 

1)v<t SHZ(K); 

2) ye SH'h(K U{»}). 

One of the proof sets (chosen in some way) having the minimal cardinality 
is called authenticator and is denoted as Auth(a;,?/). 

Note that the set Auth(a;,?/) is not necessarily unique as there may be 
several proof sets of minimal cardinality. For example, we may have both 
Auth(/ii, hb) = {rc3, and Auth(/ii, /15) = {x\, /14} for the graph in Figure 
3.1. Later on, we should be careful not to cause misinterpretations based 
on this non-uniqueness. As we will mostly be interested in the cardinality 
IAuth(rr,y)| only, this is not going to be too difficult. 

As the notion of authentication path was important in the first informal 
description of authenticators, it is interesting to ask, how this notion relates 
to Definition 2. In order to answer this question, we first prove the following 
lemma. 

Lemma 1 If K is a proof set proving the dependence of y on x, then either 
x — y or there exists a predecessor y' of y such that K is also a proof set 
proving the dependence of y' on x. 
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Proof. If x = y then we are done. If re is a predecessor of y we are also 
done by Definition 2. 

Otherwise, consider all the predecessors 7/1, 7/2, • • •, yk °f V- As y G 
S7ih(K U {rc}) then by Definition 1, for every index i it holds that yi G 
SW.*h(K U {#}). On the other hand, if for every index i it would hold that 
yi € Sli*h(K), it would also mean that y € SH*h(K) which is not possible. 
Hence, for some predecessor yiQ the condition yi 0 SH*h(K) is satisfied. 
Choosing y' — yi0 concludes the proof. • 

Now we can carry on this process for several times: find a predecessor y' 
of y, then a predecessor y" of y\ etc. As the graph G is finite and acyclic, 
eventually we must arrive at the vertex x, obtaining hence the path from x 
to y. 

It is generally not the case that for any two vertices there exists a de­
pendence one way or another. The root node r (r = h§ in Figure 3.1) is an 
exception: it depends on any other node and this way the whole "history" 
of the scheme is captured into the root. This way we may say that the root 
is younger than all the other items in the scheme, but we would also like to 
compare the items inside the scheme as well. 

For that purpose, we need to keep track of the "history" throughout the 
formation of the scheme: after a new item Xj is added for time-stamping, 
we perform some hash computations and output a set of items capturing 
one-way information about all the items time-stamped this far. We give the 
following definition. 

Definition 3 Set Hj C V(G) is called a history set (for the item X j )  if 

1) \/i < j By G Hj such that y depends on (or is equal to) xi; 

2) every y G Hj can be computed from the elements xi,x,2, • •. ,Xj. 

Note that the choice of the set Hj is generally not unique. For example, 
in Figure 3.1 we may take H3 = {.T3, hi, /12} or H3 = {^2,^4} or even 
H3  = {h5}. 

Next to the authenticators, the sets Hj form another important part of 
the time-stamps, hence we are interested in minimizing the number of their 
elements as well. 

Definition 4 The set history set Hj having the smallest possible cardinality 
is called freshness token and is denoted as FTj. 

Just as it was the case with the authenticators, we must be careful when 
operating with the sets FTj as they are not uniquely determined. Being 
mostly interested in the cardinalities only, this will not be a big problem. 

30 



Note that the definition of authenticators does not depend on the order 
of leaves, but the definition of freshness tokens does. 

3.1.2 Interval time-stamping 

Recall now our original task stated in Chapter 1. We need to prove that 
some action C (e.g. creation of a digital signature) took place between two 
events (which are not necessarily time moments, but can also be linking 
events) t\ and £2• Such a proof must clearly consist of two parts: 

a) proof that C happened after t\\ and 

b) proof that C happened before £2-

Of course, in order for our time-stamping system to work properly, the 
following transitivity-resembling condition has to hold as well: 

c) if it is proven that C happened before t and D happened after t then 
it is possible to prove that C happened before D. 

Let the TSA have reached the state where the next item would be Xj+i 
and the user A needs to sign a document X together with interval time 
stamp. Then A needs some additional information that for any item Xi, 
i < j lets him to prove that x^ occurred before the signature. Hence, 
this additional information must depend on all the previous items X{ — 
and freshness token FT j is sufficient for this purpose. The first steps of 
obtaining a time stamp look like as follows2: 

1. A —» TSA: request for the freshness token 

2. TSA -> A: FT, 

3. A: computes a = Sig^fX, FTj} 

Now the signature a depends in one-way fashion on all the previous 
requests X{. How can we give an upper bound to the time moment of 
signing? This can be done simply by letting the signature to be the next 
time-stamping item xk: 

4. A -> TSA: a 

5. TSA: adds xk  — cr to the linking scheme, computes FT^ etc. 

2Here we use standard cryptographic protocol syntax where the expression A —> B : 
X means that the party A sends the party B message X and the expression A : Z means 
that the party A takes action Z. 
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By the condition c) above, in future it may of course be necessary to 
prove that all the later freshness tokens FT/, I > k depend on xk- This 
holds also for the very last freshness token FTn = {r}. The smallest proof 
of dependence of the root r on xk is given by the authenticator Auth(^/C, r); 
later on, this set will also be called existence token (for xk)3. Clearly, 
the existence token cannot be issued before the whole graph is completed. 
Therefore, the time-stamping procedure is finished as follows: 

6. TSA: completes the scheme by computing the root value r; 

7. TSA-^A: Auth(£fc,r). 

But what about the other freshness tokens FT/, r > I > kl Do we need 
special authenticators for all of them? This would clearly be too resource-
consuming and hence we state a much simpler requirement. Namely, we 
require that the very same authenticator Auth^/c, r) should be enough for 
proving all the other necessary dependencies as well: 

V/c < I By G FT/ : Auth^, y) C Auth(sjfc,r). (3.2) 

The next theorem shows an important class of graphs that satisfy this 
requirement. 

Theorem 1 For any tree T with linearly ordered leaves the condition (3.2) 
holds. 

Proof. Let the leaves of T be ordered as x\, #2,..., xn and let xk be an 
arbitrary leaf. As T is a tree, there exists the unique authentication path 

Xk —y h\ —y h>2 —y... —y r, (3*3) 

and also the authenticator Auth(£fc,r) is unique. Even more, for any vertex 
v on the authentication path (3.3) it holds that 

Auth(rrjfe,r) = Auth(xk,v) U Auth(t>,r) 

(where U denotes disjoint union) which implies 

Auth(a:jfc,ü) C Auth(£ji~,r). 

3It was suggested to the author by several readers that a notation symmetric to FT, 
should be used for this notion as well; so it could be something like ETi or ET(x;). Still, 
this notation was not accepted in the current thesis as by the author's opinion this would 
cause more loss than gain in understandability of Chapter 4. 
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Hence the theorem is proven if we can prove that for any freshness token 
FTi (I > k) there is a vertex y G FT/ that belongs to the authentication 
path (3.3). But this is a direct implication of Definitions 3 and 4. • 

Running a bit ahead, we can say that all the particular time-stamping 
schemes that will be proposed in the current thesis belong to the class 
of graphs described in Theorem 1. In what follows, we will not refer to 
the theorem explicitly but keep it in mind every time a new scheme is 
constructed. 

After doing all the work above, we are finally ready to define the notion 
of interval time stamp. 

Definition 5 Let G be a time-stamping scheme with leaves x\,..., xn  and 
1 < i < j < n- Interval time stamp for the interval [i,j] is the pair 

(FT,-, Author)). 

3.2 Optimization goal 

When time stamps are used to establish relationships between digital signa­
tures, it is convenient to have the time stamps attached to the signatures. 
Still, we do not want to add too much storage overhead because of the time 
stamps. Hence, it is important to reduce the size of time stamps as much 
as possible and this is the main goal of the current thesis. 

In Section 3.1, we saw that interval time stamps consist of two parts -
freshness token FT^ and existence token Auth(xj,r). In order to estimate 
the size of the whole time stamp, we will use the following definitions. 

Definition 6 By the width of the computation graph G we mean the value 

W(G) = max |FT*|. 
i= l , . . . ,n  

Definition 7 By the depth of the computation graph G we mean the value 

D(G) = max |Auth(xj,r)|. 

It is clear that W(G) and D(G) are the upper bounds for the sizes of 
freshness and existence tokens, respectively. 

It may happen that the freshness and existence tokens for some digital 
signature have some elements in common, so we conclude that the size of 
time stamps is upper bounded by the value 

W{G) + D{G), 
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Figure 3.2: The construction G\®G2-

but this estimate is not necessarily sharp. It is an interesting open question 
to obtain exact bounds for the size of time stamps. 

As all the currently known efficient linking schemes provide time-stamp 
sizes logarithmic in the number of items, we are interested in comparing 
this value to log2 ||G|| where \\G\\ denotes the number of leaves of the graph 
G. Hence, in what follows we will be optimizing the following quantity: 

W(G) + D(G) 
ß{G) 

- iõgTPl (3'4) 

3.3 Composition of linking schemes 

In the construction of our new schemes we need the following composition 
operation which is similar to that proposed in [BL98]. 

Definition 8 The graph with one vertex and no arcs is I. 

Definition 9 Let G\ and G2 be two rooted directed acyclic graphs with root 
vertices r\ and r2, respectively. Then by G\ ® G2 we denote the tree with 
vertex set V{G\ ® G2) — V{G\) U V{G2) U {r} and arc set E{G\ 0 G2) — 
E{G\) U E{G2) U {(ri,r), (r2,r)} ;  where r is a new vertex. The subgraphs 
G\ and G2 will be called left and right subgraphs, respectively. 

The construction Gi <g> C2 is depicted in Figure 3.2. 
It is clear that starting from the tree I and applying this construction 

recursively, we obtain only binary trees, and even more, every rooted di­
rected binary tree can be constructed this way. In order to use these trees 
as time-stamping schemes, a linear order has to be defined on their leaf set 
(see Subsection 3.1.1). 
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3.4 Topologically sorted binary trees 

Definition 10 We say that the binary tree T is topologically sorted if for 
every non-leaf node one of its children is marked as left and the other one 
as right child. 

Note that this definition induces a natural linear order (which we will also 
call topological) for all the leaves of the topologically sorted binary tree. 
This order can be formalized in the following way. 

1. Let the root be labeled by the empty string A. 

2. For every vertex labeled by a string a let its left child be labeled by 
the string oL and the right child by the string oR. 

3. Order the leaves into the lexicographic order of their labels (note that 
L precedes R in the alphabet). 

It is clear that the leaves of all binary trees can be topologically sorted by 
defining the right and the left children for every inner node in some way. In 
what follows, we will assume such an order from the leaves of (^-constructed 
trees, if not otherwise explicitly stated. 

For topologically sorted binary trees the following lemma holds. 

Lemma 2 Let T be a topologically sorted binary tree and T — T\ (&T2 (such 
a presentation being obviously unique). Then the following equalities hold. 

Proof. When the TSA builds the freshness tokens in the graph T, it first 
generates the the ones corresponding to the left subtree T\ and then the 
ones corresponding to the right subtree T<i- In the latter case we see from 
Definition 3 that some of the nodes in the freshness tokens must capture all 
the leaves of T\ as well. Definition 4 requires the number of these nodes to 
be as small as possible (note that the freshness tokens for the two subtrees 
are independent). Hence the best solution is to add the root of the subtree 
T\ to all the freshness tokens of the subtree T2. This proves the first equality. 

In order to prove the second equality, that let r, r\ and be the roots 
of the trees T, T\ and T2, respectively. Then for any item Xj, 

W(T) = max{^(Ti),^(T2) + l}, 
D(T) = max{D(Ti),£>(T2)} + l. 

Auth(£j, r) 
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The proof is now straightforward. • 

Remark. Some care has to be taken here in order to make sure what an 
equation like 

Auth^^r) = Auth(:E£,ri) U {r2} 

actually means considering that the sets Auth(a^,r) and Auth(ir?;, ri) are 
not, in general, uniquely determined. One should read this equation in the 
following way: "For any possible authenticator Auth(£j,ri) we obtain an 
authenticator Auth(a;i, r) by adding the node r2 to it". A similar clarification 
is applicable for the freshness tokens as well. 4 

It is interesting to note that the following lemma holds. 

Lemma 3 IfT is a topologically sorted binary tree with leaves x\, £2,..., xn 

and root r then for each index i 

FTj C Auth(jCj, r) 

holds. 

As we do not need this lemma in the current thesis, we do not prove it 
here but refer to [BLSOO] for the proof of a completely analogous result. 

3.5 Complete trees 

The complete (binary) tree €d of depth d is defined by the following recursive 
scheme5: 

pd f I, ifd = 0, 
\ if d > 0. 

Clearly, \\£d\\ = 2d and W(Cd) = D(<Cd) = d. Hence, 

ß{(*) = ̂  = 2. 

It is also easy to see that the estimate obtained does not change if we 
consider the actual size of time stamps instead of the value W{Cd) +D{<ld). 
This claim follows from the fact that interval time stamps in this tree can 

4It is not difficult to see that in the case of topologically sorted binary trees both 
authenticators and freshness tokens are in fact unique. Still the above remark must be 

taken into account in future arguments. 
5In this section and further on, the equality of graphs is actually an isomorphism. 

The author will use both = and ~ to represent the isomorphism, whichever symbol 

seems more suitable in a particular case. 
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X<2<1— 1 X2d-\j r\ 

Figure 3.3: Complete tree with an interval time stamp of size 2d — 1. 

have size 2d — 1. Indeed, if the requests are xi,x2,-.. ,%2di the freshness 
token for the item x2d-1 (i.e. the set FT2d-i_1) has size d — 1 and the 
existence token of the item x2d-1+1 has size d, where the tokens are clearly 
disjoint; see Figure 3.3. 

Binary trees were used as the basis for BLS-scheme [BLSOO], and al­
though proven to be the optimal ones for time-stamping in case of patent 
scenario, the estimate ß(£d) — 2 is not the best possible for interval time 
stamps. In Section 3.6, we will see that the ratio ß(G) can be improved by 
at least 25% by considering a different family of trees. 

See Figure 3.4 for an illustration of this recursive process. It is not hard 
to come up with the following hypothesis (which, as we will prove, is true) 
looking at the figure. 

Theorem 2 If w > d then ~ 

6The notation using Gothic capital S originates from the phrase "Signature time-
stamping scheme" having in mind the primary application of the defined family of trees 
as time-stamping schemes for digital signatures. 

Definition 11 Let the family of trees be defined as follows6 
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Proof. We use induction on d. For d — 0 

6° = I = <Z° 
J. ,  

so the claim holds in this case. Assume now the claim of the Theorem is 
true for some d and consider a tree ©^+1, where w > d + 1. By Definition 
11, we have 

&i+1 = ei <g> ©£-i = Cd <g> Cd = £d+1 

by induction hypothesis, as w > d + 1 implies both w > d and w — 1 > d. • 

The case of complete trees was already considered in Section 3.5. Next 
we will look at the case w < d to try to locate trees G = Sd for which 
ß(G) < 2. Assuming the inequality w < d, we now prove the following 
theorem. 

Theorem 3 If w < d then the following claims hold: 

1. W(6dJ = w; 

5- Il®wll = Eteo (*)• 

Proof. 

1. We use induction on d. If d = 1 then w = 0 and 

W(6l) = W(I) = 0, 

hence the claim holds for d = 1. 

For the step of induction we first note that the trees ©^ are all topo­
logically sorted and hence Lemma 2 can be applied. We obtain 

w(ei) = wiet1 ® ed
w-_\) = max{w(6£r l), w(6d

mz\) +1}. 

If now w < d — 1, we have 

W(6dj = w( et1 ® ed
w-_\) = max{iy(s^1), w(ed

w-_\) +1} = 

— maxjry, (w — 1 4- 1)} = w 

because of the induction hypothesis. 

If w = d — 1 then ©^_1 = Cd_1, consequently 

W(6i-1) = W(ad-1) = d - 1 = w 

and hence the above computation holds for this case as well. 
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If w = 0 then 
D(6dJ = D(I) = 0. 

If w > 0 we once again we use induction on d. The induction basis 
is verified exactly as above. For the induction step we obtain from 
Lemma 2 that the equality 

D(6dJ = maxptet-1),^©^)} + 1 

holds. Now for d + 1 (under assumption w > 0) we have: 

D( ed
w

+1) = max{D(6dJ,D(6d
w„1)} + l = 

= max{d, (d V 0)} -1- 1 = d 4-1, 

where the notation (dVO) means an entity with the value being equal 
to d or 0 (depending on w). Note that the assumption w < d is not 
actually needed for this part of the theorem. 

First note that the claim holds for w — 0 as 

n®oii = PII = I = E 
0 'd 

k~ 0 

Straightforwardly, the claim holds also for w — d, 

V 
k 

iiejii = IICII = 2 i = YJ'd 

k=0 

Now we use induction on d. For d — 1 we have w = 0 and the required 
equality holds as shown above. For d > 1 and 0 < w < d + 1 we have 

\\&t+1\\ = B®ill + liei-xl l=Ž(Ž) + E(f 
i—n \ / i—n ^ k=0 N x  k=0 

d\ A fd\ ( d, 

k=l x  /  k—1 

d 

k) +  U - l  

Y ) + ž ( T ) = ž ^ + r  
' k-l v  7  k=0 
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• 

Unfortunately, there is no known closed formula for J2k=o (Ž) • ^ 
d = 2w + 1 we can compute the exact value as follows: 

lie?*1 II = E 
k=0 

1 
2 ' 

2w +1 

E 
.k=0 

2w+l 
= IE 

fc=o 

2iu + 1 
k 

2w +1 
k 

E 
-fc=0 

2w+l 
+ E 

fc=l[; + l 

2iu + 1A /2iü + 1 
+ 2^ 

/c=0 k k 

2w + 1 
k 

_ _ q2W+1 •)2w 

So if we use %w — ©2u,+1 in a tree-based time-stamping scheme, the number 
of elements in time certificate for a digital signature is upper bounded by 

Hence, 

W(%w) + D(ZW) = w 4- 2w + 1 = 3w + 1. 

a/, 
l0g2 IM 

which about 25% less than in the complete tree scheme. The next chapter 
shows that this estimate can be improved even further, but not too much. 
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4 OPTIMAL LINKING SCHEMES 

4.1 Optimal family of schemes 

In order to find the optimal schemes in the sense of the ratio (3.4) we study 
the situation in more detail. Let 0 be the class of all finite rooted directed 
acyclic graphs. Our aim is to prove the following theorem. 

Theorem 4 For the characteristic ß the following is true: 

inf{ß(G) : G G ©} = — 1  

log2 
1 + V 5  

This infimum is approached for the trees 6^ with 

w 3 — \/5 . 
— « and a —> oo. 
d 2 

We present a proof in several steps by proving a sequence of lemmas; 
the proof methodology is similar to the one found in [BLSOO]. Each of the 
first four lemmas shows one reduction from more general class of graphs to 
more specific ones until we end up with the trees &fu. The crucial point 
is to show how to carry all the reductions out without increasing the value 
ß(G). The final lemma determines the optimal value of ß(&^). Note that 
as the value 

1 

, (1 + ̂  
!og2 —õ— 

is irrational1, but all the values ß{G) are rational no graph G can have this 
value for ß{G), it can only be approached asymptotically. The statements 
of the lemmas are the following. 

Lemma 4 For any rooted directed acyclic graph G there exists a tree T 

such that ß{T) < ß(G). 

1This claim is not difficult to prove by the following standard argument. If 

log2 = I With a,b e N, we get = 2a'b and 1 + = 2^'b. Hence, 

(1 + Vl)b — A + B\J5 (A, B e N\{0}) should be an integer, a contradiction. 
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Lemma 5 For any tree T there exists a binary tree T' such that ß{T') < 
ß (T). 

Lemma 6 For any binary tree T' there exists a topologically sorted binary 
tree T" such that ß{T") < ß(T'). 

Lemma 7 For given non-negative integers w and d, any topologically sorted 
binary tree T having the greatest number of leaves and W(T) = w, D(T) = 
d, is isomorphic to 6^. 

Lemma 8 The equality 

inf{^(e^) : w < d} = 

iog2 

holds. This infimum is approached for 

w 3 -V5  ,  ,  
~ —-— ana a —)• oo. 

d 2 

4.2 Proof of Lemma 4 

Assume first that we have any rooted directed acyclic graph G as our time-
stamping scheme. If it is not a tree (otherwise, the lemma is done), we 
must have vertices with out-valency greater than 1. Let v be a vertex with 
out-valency k > 2 such that all of its predecessors have out-valency 1; hence 
v is the root of an induced subtree T of G (such a v exists because G is 
acyclic). 

Consider the authenticator Author). Let vi,...,vk be all the direct 
successors of v and let the authentication path corresponding to Author) 
start with the arc (^,^i). We will show that deleting the arcs (v,v2)r---, 
{v,vk) (and possibly some other arcs and vertices) from G does not increase 
the value of ß(G). 

As a result of edge deletion, cardinalities of the sets FT,; cannot increase, 
but cardinalities of the sets Auth(rcf,r), in principle, can. We study this 
problem in more detail. The analysis will be carried out for two different 
cases. 

1. Consider first the items xi not belonging to the subtree rooted in v 
together with their authentication paths and the corresponding au­
thentication path support arcs. It is clear that if none of the arcs 

l-¥) 
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(v, v2), (u, V3),..., (v,vk) belongs to any of the sets of authentication 
path support arcs then deleting the arcs (v, V2), (v, V3),..., (v, vk) does 
not affect any of the sets Auth(a^,r). But if we deleted some authen­
tication path support arc then it may happen that the cardinalities of 
some sets Auth(a;.i,r) increase. There are two closely connected cases 
how this may be possible. 

As none of the items xi under consideration belong to the subtree 
rooted in v, then no authentication path support arc under considera­
tion belongs to this subtree. Hence, deleting the arcs (i>, v2),(vi V3),..., 
(v,vk) essentially means that the vertex v is removed from some proof 
sets. From Definitions 1 and 2 it follows that if we want to retain as 
much as possible from an old proof set (say, proving the dependence of 
r on the vertex Xi0), we must replace v with some (possibly several) of 
its successors. This way the cardinality of one proof set can increase 
and thus the same can happen to the corresponding authenticator as 
well. 

It is also possible that after the authenticator corresponding to some 
authentication path has considerably increased, some other authenti­
cator corresponding to some other authentication path turns out to be 
smaller (but still larger than the original authenticator Auth(xj0, r)). 
Hence, this case may result in increase of the cardinality of Auth(ic;0, r) 
as well. 

In both cases, it is enough to show how to modify the graph some more 
so that the new authenticators will either coincide with the original 
ones or even have one element (namely v) less. 

This modification will be done by removing some more vertices (and of 
course the arcs that loose one end-vertex) from the graph. The nodes 
to be removed will be the ones from the set {1)2,..., v*} that had no 
other parents than just v in the original graph G; and recursively all 
their successors that had no other predecessors than v and the ones 
already deleted. 

After such modification there are two possibilities. 

(a) If (u,wi) was an authentication path support arc for some au­
thenticator Author) in the original graph, then v is not re­
moved from Author). Still, all the successors of v added to 
authenticators in the meantime are deleted. Hence, all in all, the 
cardinality of Auth(:ri,r) did not increase. 

(b) If (v,v\) was not an authentication path support arc for some 
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Figure 4.1: Transformations of a linking scheme. 

authenticator Auth(xi,r) in the original graph then the new au­
thenticator has lost one element v. 

It is possible that after such a transformation some nodes still have 
in-valency 1. Then the corresponding edges can also be deleted if the 
nodes are joined with their parent. 

An example of all transformations is depicted in Figure 4.1. In the 
figure, we have already denoted the successors of v so that v —» vi —> r 
is the authentication path having one of the proof sets of the smallest 
possible size, namely {^2,^3,^3}- As the vertices 1*3, V4 and /i2 de­
pend only on v they are deleted (together with the outgoing arcs, of 
course). At the very last step, we also delete the nodes of in-valency 
1. Note that finally, v is once again a member of the proof set for the 
authentication path from 2:4 to r! 

2. Let X{ be a leaf in the subtree with root v. It is clear that 
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(a) every authentication path from Xi to r must go through v, and 

(b) every proof set (proving the dependence of r on Xi) consists of two 
subsets of V((?) - a subset A of vertices of the subtree rooted in 
v and a subset B of the vertices of the remaining graph. Besides 
that, from observation (a) we see that v 0 A and v B. 

The arc deletion process described above does not influence the set 
A, but it may influence the set B. If we consider the proof set to 
be Auth(£j,r) in the original graph G, then we must have \B\ = 
|Auth(v,r)|. Disregarding for a moment the whole subtree rooted in v 
and keeping only v, this vertex becomes a leaf in the modified graph. 
Applying exactly the same argument as in the first part of the proof 
we see that deletion of the arcs (v,V2),..., (v,Vk) does not increase 
the cardinality of Author). 

As a result of these transformations in the graph G we have decreased 
the number of nodes with out-valency more than 1 

• without increasing any of the sets Auth(a^,r); 

• without increasing any of the sets FT;; and 

• without changing the number of leaves. 

By repeating the process with the remaining nodes of out-valency more than 
1, we eventually arrive at a tree T with ß(T) < ß{G). 

4.3 Proof of Lemma 5 

If T is not a binary tree, there must be a vertex v with only one child or 
more than two children. 

In the first case, we may simply delete v and join its only child with its 
only parent (if this vertex is the root, we simply delete it, leaving the child 
as the new root). After such a vertex deletion the cardinalities of the sets 
FTi and Author) can only decrease. 

In the second case, we introduce some additional vertices as shown in 
Figure 4.2. 

These additional vertices contain information about several children of 
v in the original tree. Hence, it may be possible to decrease the cardinalities 
of FTi and Author). For example, in Figure 4.2 (left) the nodes 6,c,<2,e 
are necessary in order to prove the dependence of v on a, but in Figure 4.2 
(right) only the vertex u is enough. 
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Figure 4.2: Transformation from an arbitrary tree to a binary tree. 

By continuing this process we eventually arrive at tree T' where every 
vertex has either 2 or 0 children, i.e. a binary tree. From the proof above 
it is also clear that ß(T') < ß (T). 

4.4 Proof of Lemma 6 

Let T' be a binary tree with its leaves sorted in some (not necessarily topo­
logical) order. We show how to reorder the leaves without changing the 
basic structure of the tree. By doing so, we do not change the size of au­
thenticators and neither the number of leaves. Hence, in order to complete 
the proof, we must show that reordering can be done without changing the 
size of freshness tokens. 

First we label the nodes of T' in the fashion of Section 3.4. 

1. Let the root be labeled with the empty string A. 

2. For every vertex labeled with a string cr, label the child that has the 
leftmost predecessor as oL and the other one as aR. We call aL the 
left child and aR the right child of a. 

From Definition 10 we get that the whole tree becomes topologically sorted. 
Hence, we are only required to prove that this rearrangement does not 
increase any freshness tokens. We do it by proving the following lemma. 

Lemma 9 If the vertices are labeled as described above, the freshness token 
FTj_i must have at least as many elements as there are letters R in the 
label of the leaf X{. 
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Figure 4.3: Transformation from a binary tree to a sorted tree. 

Proof. The number of letters R in the label of the leaf Xi shows how 
many times in the process of proving the dependence of the root node on 
xi it is necessary to invoke information from earlier time, i.e. from the 
"left" on the time-line of the items. As T' is a tree, these invocations are 
independent and hence, the set FT^-i must contain separate elements for all 
of the invocations. Consequently, FT;_i contains at least the same number 
of elements as there are letters R in the label of the leaf X{. • 

To conclude the proof it remains to note that for a topologically sorted 
tree the sets FT; contain nothing but the necessary information and hence 
resorting the tree topologically can only decrease their cardinalities. 

The process of reordering is depicted in Figure 4.3. 

4.5 Proof of Lemma 7 

If d = 0 or w = 0 we must have T — I and hence the Lemma is proven in 
this case. 

Assume that for some w, d > 0 there exist topologically sorted binary 
trees such that the claim does not hold. Let T be a tree among them such 
that the sum w + d is the smallest possible; so ||T|| > ||6^||- Obviously, 
T / I. Thus it is possible to represent T as T — T\ (g) T2. From Lemma 2 
we get the following equalities: 

w = W(T) - max{VF (Ti), W (T2) + 1}, 
d = D(T) — max{D(Ti), D(T2)} + 1. 
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Consequently, the inequalities 

D(T,) < d- 1, 
W(TX) < w, 

D(T2) < d- 1, 
W(T2) < w -• 1. 

hold. 
As w 4- (d — 1) < w + d and (w ~ 1) 4- {d — 1) < w 4- d, the Lemma holds 

for both T\ and T2. Thus, 

imi = irnil + ||T2|| < ne^ll +116^11 = liefr1 ®efr-ill = weil 

a contradiction. 

4.6 Proof of Lemma 8 

In the light of Theorem 3, the ratio ß(G) to be estimated can be written as 

w 4- d w + d 

log2n log2(ELo(3) 
(4.1) 

In order to give a better upper bound to the expression (4.1) we need 
an asymptotic formula for the sum it) (w^ich does not have a known 
closed formula). In [GKP89], problem 9.42, it is proven that if ^ — a < \ 
then 

k=0 

where 

~ 2d'-Fr(a)_0-5'loS2d+°(1)? (4.2) 
l—n V^V 

K(ot) = a • log2 - + (1 - a) • log2 
1 

a 1 — a 

Substituting (4.2) into (4.1), we get 

w + d ad + d 
lim ——r— — lim 

d~+oo log2(ELo (fc)) d _ > 0° d '  K~ °"5 '  loS2 d  4 0(  1) 

1 4" OL = lim T 
*-K*>K(a)- 0.5-!2Sii + 0(i) 

1 4" CK 

kWY 

13 49 



For deriving the approximation formula for 0.5 < a < 1, we note first that 
for such a and for sufficiently large d, 

w d /  j \  d,—w—l / ,  

E® ^ E ( / , ) " ' -  E 
k—0 j=0  

^ 2d _ 2<i-K{a')-0.b-\og2d+0{l) 

where a' = (d—w — l)/d = 1 — a — l/d < 1 — a < 0.5. Hence, for 0.5 < a < 1 
we get 

w + d aaf + d 
lim rj— = Inn 

d->oo log2(Efc=0 (fc)) d_>0° loS2{2d • (! - 2[^(a')-l]-0.5-log2 d+o( 1))} 

1 + Q! 
lim 1 + 1 . log2 (1 _ 2rf-[Ä"(l-a-l/rf)-l]-0.5-log2rf+O(l)j 

— 1 -f O. 

Therefore, 

. w/ + d f if 0 < a < i; 
$(a) — lim -T— — < ^ ^ ) i ^ (4.3) 

^-iog2(ELo(S) I i + «, if § < « < i 

Note that $ is continuous at \ because K (^) = 1. The graph of the 
function $ is depicted in Figure 4.4. 

For finding minima of <E>(a) we solve the equation 

Hjsjkzisd.o. 

Hence, 2 • log2 - log2 ^ = 0 which implies that (1 - a)2 = a. This 
quadratic equation has a unique solution in the interval [0,0.5], namely 

3-\/5 
a° = 2 • 

Let (f) = 1+./  ̂ denote the Golden ratio. It is easy to verify that 

1 = 0 and — = <j)2 « 2.61803. 
1 — «o ao 
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Figure 4.4: Graph of the function $(a). 

Hence, 

1 + a.0 

K(a0) 
1 4- Oi o 

«0 • log2 ~ + (1 - ao) • log2 yz 

1 \ !+a0 / 1 
ao 

log2 

loS2 

-l 
2 

-1 (f) 1+a0 • (f) 1+°o 

«0 

1 

ao 
l+a0  

l0g2^ 
1.44042. 

We conclude that based on the trees 6^, asymptotically optimal time-
stamping schemes are obtained if w 3-y/5 d 2 ^ 2.61803 

In order to get some idea about the speed of convergence we provide 
Table 4.1. The table shows the values of the ratio (3.4) for the previous 
best schemes (with d = 2w + 1), for the schemes with w — [26f8 ] (where 
[•] denotes the closest integer function) and for size-optimal schemes. The 
numbers of leaves of size-optimal schemes are also shown. 

51 



d w = ratio w — *.«?«... : ratl° wopt: ratio ^opt  

9 4: 1.62500 3: 1.70833 4: 1.62500 256 
19 9: 1.55556 7: 1.57355 8: 1.55412 169766 
27 13: 1.53846 10 1.54249 12 1.53015 47050564 
29 14 1.53571 11 1.53353 12 1.52562 123012781 
49 24 1.52083 19 1.50157 20 1.49946 7 • 1013 

89 44 1.51136 34 1.48020 36 1.47902 3 • 1025 

129 64 1.50781 49 1.47064 51 1.46970 7 • 1036 

239 119: 1.50420 91 1.45907 93 1.45875 3 • 1068 

589 294: 1.50170 225: 1.44947 227: 1.44943 3 • 10169 

Table 4.1: Convergence of the linking scheme parameters. 
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5 LINKING USING TREES &d
w 

In the previous chapters, we mainly concentrated on building linking schemes 
that provide minimal sizes for time stamps. Still, in order to ensure suit­
ability for practical use, we must address the problem of efficiency in the 
process of computation by following a particular scheme. 

There are two main concerns we should address in more detail. 

1. It is impractical for the TS A to construct first the whole scheme as 
some empty data structure and then start filling it with data. This 
data structure is in fact necessary only for keeping track of the com­
putations and not for storing all the values; only a very small number 
of values are needed for further computations. 

2. As noted in [ABSW01], the availability of time-stamping service is a 
major issue. If the TSA's server crashes, it must be possible to restore 
the last complete set FTi in order to ensure that the causal relation­
ships between the time stamps issued before and after the crash do not 
break. Note that the original definition of the trees 6,^ is recursive 
and hence the algorithm following this definition closely must be re­
cursive as well. Collecting the data necessary to restore the work of a 
recursive-algorithm-based server basically means backuping the recur­
sion stack at every step. This in turn means implementing a recursion 
stack independent of the compiler's one. The author is currently un­
aware of any compiler having primitives for generating recursion stack 
dumps and restoring the processes later by these dumps. 

The state of the algorithm presented in this chapter is stored in 21 + 3 
variables where I is the largest number of nodes in the sets FT^. This is 
much less than the storage space required to keep the whole empty data-
structure. These variables are also considerably easier to handle in the case 
of server recovery than the recursion stack. 

5.1 Alternative description of the trees 

In this section, we are going to present a non-recursive description for the 
graphs enabling us also to find an efficient algorithm for generating 
these graphs. 
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Definition 12 The set is defined as the following set of words in the 
alphabet {1,2,..., d}*0: 

£W,d = {tfO : <7 = cti<72 ... o>| e {1,2,... ,d}*,|cr| < w,ai > a2  > • • • > &\a\}-

Here, if d — 0 we assume that {1,2,..., c?} = 0 and {1,2,..., d}* = {A}; 

where X is the empty word. 

That is, the set consists of all strictly decreasing vectors of length 
up to w + 1, having the elements from the set {0,1,..., d} and ending with 
0. Note that every element occurs in every vector at most once, 0 occurs 
exactly once. In the rest of the paper we will write the vectors as words, 
without parentheses and commas. Greek lowercase letters will denote the 
words and Latin lowercase letters x,y their elements. 

Definition 13 For w, d > 0 let mw,d denote the vector 

Denote also the set of the elements of the vector mw^ as Mw^. 

Theorem 5 The set is linearly ordered with respect to lexicographic 
order •<. It's least element is the vector 0 and the largest element is mw 

Proof. Linearity of the lexicographic order is a well-known fact and mini­
mality of the vector 0 is obvious. Maximality of the vector mw^ can also be 
easily established. If w = 0 or d — 0, then = {0} and also mw^ = 0. 
Otherwise, it is clear that the largest vector has to start with the largest 
element of the alphabet, d. As all the letters in the vectors of EWjd must be 
unique, the next letter in the largest vector must be d- 1 etc. The length of 
the vector is bounded by either the maximal allowed length w + 1 if d > w :  

or by lack of possible elements if w > d. • 

Theorem 6 For w,d > 1 the equality 

^w,d — ^w,d—1 ^ dYjw — i)C£—1 

holds. 
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Proof. 

J w , d  =  { < t0  :  a G  { 1 , 2 , . . .  ,d}*, |<r| < w, G\ > cr2 > ... > G\a\} =  

=  { < t0  :  e r  G  { 1 , 2 , . . . ,  d - 1}*, |cr| < w, 0\ >  < j 2  >  . . .  >  cr\a\} U  
U {crO : <7 G {1, 2,... , d}*, \G\ < w, d — G\ > <r2 > -. - > G\A\} = 

= T,Wjd-1 U {G?TO : r G {1,2,... ,d - 1}*, |r| < w - 1, n > ... > rjr|} 

— l U dYjw^i d—i 

• 

Definition 14 For each a G ^ we define the set 

Cw,d( ( T) = {x E a : a — px-K,\/r G Ew,d  [r — pxg =» r X a]}. 

That is, CW^(G) consists of such elements x of the vector A that A is 
the greatest vector among the vectors having the same initial segment up 
to the element x as er does (recall form Definition 12 that each occurrence 
of every element in a is unique). 

Lemma 10 The following properties of function c hold. 

1. Let a be presented in the form G — pr, where r — (x — l)(a: — 2)... yO 
for some x,y € {1,..., d 4- 1} and r has maximal possible length (if 
G = 0 we have p = A and r = 0). If (y = 1) V (|cr| — w -f 1) then 
cw,d = {x - l,x - 2,... ,y,0} ?  otherwise cW ) d  = {0}. 

2.  de CW 4(G) <£> C wJ ( G )  = M W } d  & a =  m W j d ;  

3. G G  Y!iw ^ d —i c w ^(G) = cW)(f—i(cr)/ 

G G =$• c x  
(  i  \  f  c w —l,d—l { ^ ) i  ® m w—l ,d—l  

'  ~ \  MWID, G = 

Proof. 

1. The maximality condition on r implies that p does not end with x 
and the condition (y = 1) V (|cr| = w + 1) essentially means that the 
vector G can not be made longer by adding elements before the last 
0. If the latter is not the case, there exists 2: G {1,2,..., rf} such that 
p(x — 1)... yzO G T>w,d and as p(x — 1)... yO -< p(x — 1)... yzO, only 
0 can be in the set cWjd by Definition 14. On the other hand, if we 
can not add such an z, each element of the set {x — 1, x — 2,..., y, 0} 
satisfies the condition given in Definition 14. It is also clear that no 
element of p can be in Cw^(G) as px0 G T,wj and p{x — 1)... yO -< px0. 
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2. We will prove that d G cw 4(a) => cw 4(a) = Mw 4  =$• a = mw 4  d G 
Cw,d{&)-
If <i G cW)(i(cr), we must have a = d and p = A in the previous claim 
of the Lemma. If d = 0 the present claim is obvious. If w > d > 0, 
we get the case 6=1 and cw>d(a) — {d, d - 1,..., 1,0}, if d > w > 0, 
the length of a is bounded by w + 1 and we get cw 4(a) = {d, d — 
1,..., d - w + 1,0}. In both cases we have cw 4(a) = Mw 4. 
If cw 4(a) — MW idi we see that every element of Mw 4  also belongs to 
cr, hence a = mw 4. 
If a = mw 4, we obviously have d G cw 4(a), thus concluding the proof. 

3. We know from the proof of Theorem 6 that i = {a G : 
a\ ^ d}. As er G S|i;,d-ij we can write 

cw,d(&) = G (7 : cr = pxiT, VT = pxc G ^ cr} = 

= {rr G cr : cr = pa;7r, Vr = G E^-i t dt c} = 

— Cw,d—1(<7)-

4. We know from Theorem 6 that dT>w-i^-i = {cr G E^ : oi = d}. For 
a vector da G dE^-i^-i we can distinguish two cases. 

(a) d G cw4(da). From the second claim of the Lemma this holds 
iff Cw,d(d<j) = Mw4 and der == which is equivalent to cr = 

7 Tlw  — l , d—l -

(b) d ^ cWjd(da). From the second claim of the Lemma this is equiv­
alent to cr / mw_i,d_i. We compute: 

cw,d{do) — {x e da : da — dpxir, Vr — dpxq G EW)dr < da} — 

= {x € a : a — pxiT, W = pxc G Ey,_i)d-i 7r ^ cr} = 

~  c w —l,d—l{&) -

Definition 15 The directed rooted graph Sw4 has the vertex set 

V(SWyd) = (J {(cr, a:) : x G cw4(a)} 

YD 

and the edge set 

E{Sw,d) = {((a,x1)(a,x2)) G {V{Sw4))2 : a = rx2x lP} U 

U {{{rxp, x)(ryir, y)) G {V{Sw4))2 : y = x + 1}. 
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Figure 5.1: The graph ^2,3-

An example of the graph £2,3 is presented in Figure 5.1. The vectors 
in the figure are depicted vertically and the elements of cw4(a) are circled. 
The edges of Sw4 are of two kinds: the edges joining the vertices belonging 
to the same vector cr and the edges joining the vertices belonging to different 
vectors. The first ones will be called vertical and the second ones horizontal 
edges (following the intuition of Figure 5.1). 

Now we are ready to state the following theorem claiming that the trees 
6^ and Sw4 are essentially the same implying that it is enough to give an 
algorithm for building the graphs Sw4. 

Theorem 7 6^ ~ Sw 4. The root of the graph Sw 4  is {mw 4 :d). 

Proof. The proof will be given using induction by the definition of the 
graph 6^ (see Definition 11). The basis of induction consists of the cases 
where either w = 0 or d = 0. In both cases we see that Sw4 = {0} and 
cw,d(0) — {0}. Hence V(Sw4) = {(0,0)} and there can be no edges in the 
graph following Definition 15. Consequently SW4 — I = &W if ^ = 0 or 
d = 0, with the root being obviously the only vertex of the graph. 

Now assume that w,d > 1, ^ and 6^_1 — Sw 4-1. In 
order to prove that 

sw 4~6d
w  = ed

w-1®ed
w-_\, 

we first need to establish a one-to-one correspondence between the vertex 
sets V(Sw4) and V(Sw4^\ (g) S^-i^-i). The necessary correspondence can 
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be easily derived from Theorem 6 and Lemma 10 as follows. 

V(SW ) d) =  | J  {(<r,x) : x e cw 4(cr ) }  = 

= U '• x  £ cw,d-l(a)}U  U : 
X  

6 
cw,d(a)} = 

= V{SW j d-i) U [J {(o-,as) : x G cw 4(a)} = 
— 1 ,c£ — 1 

= V(Sw4— i) U {(da, a?) : a; £ cwd{do~)} ; 

— l,d— 1 

= V^tM-i) U (J {(da :x) : x e cw^14^i(a)}U {(mw4,d)} = 

= V(5Wid_i) U {(rfcr, a?) : (a,x) G V^w-M-i)} U {(m^, d)}. 

Hence we can conclude that the function <p : V(Swd) V(Swd-1 <8> 
acting as follows 

{(cr, re), ue Vi 
(cr',ar), cr' G Su?_i)Ci_i) <j = der', x G cr' 

{ j n ^ w , d i  d>) i  X  — d 

is a bijection. 
Now it remains to prove that the mapping induced by ip between the 

sets E(SWid) and E(Sw>d-\ <8> $u;-i,d-i) IS also a bijection. We will divide 
the edges of SW}d into five categories and consider the categories separately. 

• ((cr,x i)(cr,X2)) G E(Sw 4), a = rx2X\p and the first element of cr is not 
d. By Theorem 6 we obtain a G SW;Cj-i and following the definition 
of the mapping ip we see that 

ip((cr,xi)(a,x2)) = ({cr,xi)(a,x2)) G (V(Su>,d-i))2. 

As a = TX2X1P, we obtain ((cr,£i)(cr,x2)) G E(SW}d-i). Note also 
that this way we get all the vertical edges of the graph SWjd-1-

• ({a :xi)(a, x2)) G E(SW j d), a — rx 2 X\p and the first element of 0 is d. 
This case has two sub-cases. 

* r = A, £2 = d. As (<7,0:2) € V(SW j d), by the definition of the set 
V(Swd) we have d = £2 G cr. For this case Lemma 10 implies 
cr = mW)£*. Hence, x\ = d - 1 or rci = 0, which can be the case 
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iff w = 1. We claim that the image of the edge ((er, xi)(a :  #2)) 
under </? is the edge connecting the root of and the new 
vertex g. From our definition of CP we know that </?(a,X\) — 
(mw-i,rf—i,a?i) and (p{a,x2) = g. The vertex (raw_ 14-1,x\) is 
the root of the graph Sw-1^-1- Indeed, for the case x\ — d— 1 we 
use the induction hypothesis. For x\ — 0 and w = 1 we simply 
have (raw_i5d_i, x\) = (0,0) and = I. We have proven 
the claim. 

*  r / A .  L e t  r  =  dr' and cr = da ', then X\,X2 G a' G 
Hence 

<^((cr,a:i)(cr,a; 2 ) )  =  ((a ,xi)(a ,x2)) G (V(SW~ i,d-i))2-

As a' = T'X2X\P, we see that ((cr', £i)(cr', #2)) G E^S^-i^-i). 
Note also that this way we get all the vertical edges of the graph 

• ((rxp,x)(Ty7r,y)) G E(Sw 4), y = d, x = d — 1. This implies r = A 
and y = d e cw 4(rdn). Hence, by Lemma 10 we have rdrc = dir — 
mw4. Following the definition of ip, we see that (p(Tyir,y) = g. We 
claim that the image of the edge ((rxp, x)(ryTT, y)) under 99 is the edge 
connecting the root of the graph SWtd-1 and the new vertex g. So, it 
only remains to prove that the image of the vertex (rxp, x) is the root 
of the graph Sw4-\. By induction hypothesis, we need to show that 
the  equa l i ty  ( rxp ,x)  =  (m W i d-1,  (d— 1) )  ho lds .  As  ( rxp ,x )  G V(SW i d ) ,  
we know that x G c.w4(rxp). But as r = A and x = d — 1, Lemma 10 
implies the necessary condition (rxp,x) — {mw.d-i, {d — 1)) and the 
claim is proven. 

• ((rxp, x)(ry7r, y)) G E(Sw 4), y = x 4- 1 and r / A does not start with 
</. Then we claim that the edges (p((Txp,x)(ry7v,y)) are exactly all 
the horizontal edges of the graph Sw4-\. First note that as r does 
not start with d (but with something less), we have rxp, ryir G Ew,d-i 
and consequently 

(p{{Txp,x)(TyTT,y)) = ((Txp,x){ryTr,y)) G (^(S^d-i))2-

As y — x -f 1, by Definition 15 we obtain the required implication 
(p((Txp,x)(ryn,y)) G E(SW i d-i)-

• ((rxp,x)(ryTT,y)) G E(SW j d), y = x + 1 and r starts with d. This 
implies x,y < d and hence 

ip{{rxp,x){TyK,y)) = {(r'xp,x)(r'yTr,y)) G (V^-i^-i))2, 
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where r = dr'. As y = x + 1, we obtain all the horizontal edges of the 
graph Sw-i4-i this way. 

Hence, we have proven a one-to-one correspondence between the sets E(Sw 4) 
and E(SW7d-i <S> Sw-i,d-i) as well, thus concluding the proof. • 

5.2 The algorithm 

In this section we introduce an algorithm for building the graphs Sw4. We 
will present the algorithm in three steps: 

1) generation of all the vectors of the set EW)(f in their lexicographic 
order; 

2) finding the elements of the sets cw 4(a) (and hence creating the set 
v(sWtd)y, 

3) accomplishing the hash steps represented by the edges (and hence 
completing the graph Sw 4). 

It will be convenient to have all the vectors of the same length, so we will 
pad all the vectors having length less than I = min{«; + 1, d + 1} (which is 
the maximal length of the elements of Y,w4) with Os at the end. We also 
introduce I integer variables oi, 02, • • •, and consider them as elements of 
cr, thus a = (J\(T2 • • • cr/. Now we claim that Algorithm 1 produces all the 
elements of the set Ew4 in lexicographic order. 

In order to prove the correctness of the algorithm, we need the following 
lemma describing consecutive vectors of the set (which we still consider 
as padded with Os). 

Lemma 11 Let the vector a G  be represented in the form 

a — p(x —  l ) ( x  —  2 ) . . .  yO ... 0 ,  

where x,y G  { 1 , 2 , . . . ,  d+ 1 }  and the substring (x - l ) ( a ;  -  2 ) . . .  y is as long 
as possible (if <r = 00... 0 then p = (x — I) (x — 2)... y = X). If y = 1 or 
Ip(x — l)(x — 2)... y\ = w then the vector directly succeeding a in terms of 
t h e  o r d e r  <  i s  r  =  p x 0 . . .  0 ,  o t h e r w i s e  i t  i s  r  =  p { x  —  l ) ( x  —  2 ) . . .  y  1 0  . . .  0 .  

Proof. Consider first the case y = 1 V  \p(x — l)(x — 2)... y\ — w. Note 
that maximality of the substring (x - l){x - 2)...y implies that p does 
not end with x and hence r = px0... 0 G Sw4 in this case. We also see 
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Algorithm 1 Generate the vectors of the set Ew4 

Require: w > 0, d > 0 
1 Set I := minjiu + 1, d + 1} 
2 Set o o\G2 ... cr/ = 00... 0 
3 for i = 1 to |£y,)Cj| — 1 do 
4 Output cr 
5 Set j to be the least index such that a j = 0 
6 if j = I then 

7 Set j := j - 1 
8 end if 
9 while j > 1 & (jj = <7j—i - 1 do 

10 Set crj := 0 
11 Set j :=j- 1 
12 end while 
13 Set a j := aj + 1 
14 Reset cr 
15 end for 
16 Output <7 

that a •< r, hence it remains to prove that there can be no vectors between 
them. Suppose on the contrary that such a vector exists. It clearly must 
begin with p(x — l)(x — 2) — It is not possible to increase any element in 
the part (x — l)(x — 2)... y as it consists of consecutive elements, all the 
elements in the vector must be unique and in this part less than x. Hence 
the only way to create a vector between a and r is to append something 
smaller than y at the end of this part. But this is not possible as we have 
one of two cases: either y = 1 or the vector p(x — l)(x — 2)... yO already 
has the maximal allowed length w + 1. 

Now consider the other case y ̂  lk, \p(x — l){x — 2)... y\ < w (which 
includes the case o — 00... 0). Reasoning exactly the way we did in the 
previous case, we see that r = p{x — l)(rr — 2)... ylO... 0 £ E^^, cr < r 
and that there can be no vectors between them. • 

Now we can explain why Algorithm 1 generates all the elements of the 
set Ew4 in lexicographic order. As the algorithm starts with the least vector 
00... 0, it is enough to prove that each run of the algorithm (i.e. each step 
in the for-cycle), taking vector cr as input, outputs its immediate successor. 
Note that the algorithm makes |£W)d| — 1 runs, so the output of the last run 
is exactly the greatest vector mw4 (see Theorem 5). 
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Of course we must know the value [EW)d| beforehand. This value can 
be computed from Theorems 2 and 3 using the formula (see Section 5.3 for 
efficiency considerations concerning this formula) 

Now consider one run of the algorithm with input a. Following Lemma 
11, in order to generate its immediate successor we first have to find the 
representation of the vector a in the form p(x — 1) (x — 2)... yO ... 0 (where 
the part (x — l)(x — 2)...y has maximal length possible). If y — 1 or 
Ip(x — l)(x — 2)... y\ = w we must replace the part (x — l)(x — 2)... y 
with :r00 ... 0 and otherwise just increase the first 0 by 1. Note that the 
latter is exactly the same operation as the first one, if we consider the part 
(x — 1)(x — 2)... y to be just the first 0. 

In order to perform the necessary changes, we must find the first 0 in o 
(line 5), as that is the last position where the change can occur. In what 
follows, j will be the counter indicating the current position in a. 

If cr has maximal allowed length I (i.e. j = I), we know we can not 
change the last 0 of the vector, so we must start at the position I — 1. This 
is what the lines 6-8 do. 

The essential part of the algorithm is the while-loop on the lines 9-12. 
If we haven't reached the beginning of the vector yet (i.e. j > 1) and the 
current element is the predecessor of the element just before it, we are still 
on the part (2; — l)(z — 2)... y. We set the current position to 0 and move a 
step towards the beginning. If we reach the beginning of the vector or the 
beginning of the part (x — 1) (x — 2)... we stop the loop and increase the 
current element (which is equal to x) by 1 (line 13). If either 

1) the first 0 was discovered at the position 1, or 

2) the first 0 was discovered at a position later than 1 and earlier than 
I, but the element just before it is greater than 1, 

we just need to increase this first 0 to 1. In this case the while-loop is not 
entered at all and the increase is once again performed on line 13. 

Now we have created the next a and we can take the next run of the 
algorithm. The algorithm is finished by outputting the result of the last 
run, which we know, equals mw4. 

Now we add vertex set generation to Algorithm 1, which by Definition 
15 means generating the sets cw4[o). They can be generated at the same 
time when producing at the next a in one run of Algorithm 1. 

(5.1) 
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Algorithm 2 Generate the vertex set of the graph SW>D 

Require: w > 0, d > 0 
1 Set I := min{w + 1, d + 1} 
2 Set G := G\G2 .. .GI — 00... 0 
3 for i = 1 to ISm^l do 
4 Set cw 4(o) = 0 
5 Set j to be the least index such that oj = 0 
6 Include the element Oj to the set cw 4(o) 
7 if j = I then 
8 Set j := j - 1 
9 end if 

10 while j > 1 & Gj = Oj-1 — 1 do 
11 Set Gj := 0 
12 Set j := j - 1 
13 Include the element Oj to the set cw 4(o) 
14 end while 
15 Set GJ GJ + 1 
16 Output the set cw 4(o) and reset o 
17 end for 

Consider Algorithm 2. Note that Algorithm 2 runs one more time than 
Algorithm 1 does. The reason is that we also want to generate the set 
cw4(o) for the last vector rnW]d as well. 

In order to prove that Algorithm 2 generates the correct set cw 4{o)1  

write o as above in the form p(x — l)(a; — 2)... yO... 0 (where the part 
(x — l)(x — 2)... y is as long as possible). We need to show that if the 
condition (y = 1) V (|p(x — l)(x — 2)... y0\ — w +1) holds then the elements 
x — 1, x — 2,..., y, 0 are included into the set cWtd(o) and otherwise cw4(o) = 
{0} (see Lemma 10). 

As follows from the proof of Algorithm 1 presented above, the elements 
x — 1, x — 2,..., y, 0 (or just 0, if y > 1 and |p(x — l)(x — 2)... y0\ < w + 1) 
are exactly the ones set to 0 or increased by 1. This means that we must 
add an element of o to the set cw4(o) every time right before we set it to 
0 or increase by 1 - and this is exactly what Algorithm 2 does. 

In order to complete the algorithm of generation of the graph SW,D we 
still need to show how to draw the edges. As we remember from Definition 
15, the edges can be of two kinds - vertical and horizontal. With vertical 
edges there should be no problems, as they are drawn inside one set c(ow4), 
i.e. during one run of our algorithm. Horizontal edges can cause more 
problems as in order to complete a horizontal edge we need to know both 
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its end-vertices. So it is necessary to keep some information about the 
started edges over several runs of the algorithm. 

What kind of information is needed? Going back to the original moti­
vation behind the trees @£, we see that these trees are used to represent 
certain hash computations and actually we are only interested in the hash 
value attached to the root of the tree. In order to carry the necessary hash 
values along the computations, we introduce I new variables hi, /12, • • •, hi 
and let hi carry the last hash value attached to a vertex of the form (cr, Oi). 

Let H be the hash function used for hash computations and consider 
Algorithm 3. 

Algorithm 3 Create the hash-edges of the graph Sw4 

Require: w > 0, d > 0 
1: Set I := min{w + 1, d -1-1} 
2: Set (Ji = 02 = • •. = (Ji \= 0 
3: for i — 1 to lEt^dl do 
4: Set j to be the least index such that a j = 0 
5: Set hj to be the next input data item 
6: if j = I then 
7: Set j := j - 1 
8: Compute hj — H(hj :  hj+i) 
9: end if 

10: while j > 1 & a j = Oj-i — 1 do 
11: Set Gj := 0 
12: Set j := j — 1 
13: Compute hj = H(hj, hj+i) 
14: end while 
15: Set G j  G j  +  1 
16: end for 
17: Return hi 

The vertices of the graphs <5^ are divided into two subsets: vertices 
representing data items (leaves of the tree) and vertices representing the 
computations. At each round exactly one data item is added and in the 
construction of the tree Sw4 it must correspond to the leaf, i.e. vertex 
(<7,0). This is expressed on line 5 of the algorithm. 

All the other vertices we add represent hash computations. Hash com­
putations on lines 8 and 13 carry exactly the same character. As soon as the 
algorithm has decided to move one step towards the beginning of the vector 
g, the hash value corresponding to the new location in o (or the vertex of 
the graph Sw4) is replaced by the hash of the value at the previous location 
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and the old value at the new location. 
By Definition 15, there are two vertices that are sources for the edges 

ending in the vertex (px(x — 1)t, X), they are (p(x — 1 )r',x — 1) for some 
vector R' and (px(x — 1 )T,X — 1) (we assume x > 0, which is exactly the 
case with non-data-item vertices). Hence, it remains to prove that the last 
two vertices have the correct hash values attached to them. Let x be the 
«th element of the vector px(x — l)r. 

Consider first the vectors a — px(x — 1 )r and <r' = p(x - 1 )r'. As the 
first part, p, is the same, it was not changed between the generation rounds 
of vectors a' and cr. Moreover, the ith element was last changed at the time 
of generation of cr', as a; and x — 1 differ by 1 and Algorithm 3 changes 
elements of the vectors of by 1 at a time. Consequently the previous 
value of hi, when processing the vertex (px(x — l)r, x), comes from the 
correct vertex (p(x — 1)T',X — 1). 

At last, consider the vertices (px(x — 1 )r,x) and (px(x — 1 )r,x — 1). 
Following the algorithm we see that the vertex (px(x — 1 )r,x — 1) was 
processed just before (px(x — l)r,x), hence the hash value attached to it is 
hi.j_i, which is the correct one. 

Recalling that the root of the tree Sw4 is the vertex is {mw4, d) (see 
Theorem 7) we see that the algorithm must output the last value of h\ after 
the last step. As this is exactly the action taken on line 17, we conclude 
that Algorithm 3 represents the hash computations of the graph Sw4 — ©4 
correctly. 

5.3 Efficiency and further optimizations 

Despite its complicated look, Algorithm 3 is very efficient. The algorithm 
runs |SW5d! times and on each run \cw4(a)\ steps are made. Hence the 
obvious estimate to the complexity of the algorithm is 0(11/(5^)1). Even 
more, the operations used in Algorithm 3 are "cheap": the only operations 
used are additions-subtractions by 1 and hash computations (where the 
latter ones can not be avoided anyway). Of course, we still need to take 
care about the search directive on line 4 of Algorithm 3 that just states: Set 
j to be the least index such that a j  = 0. This search can be done in log21 
steps, but it is also possible to introduce one extra variable and modify the 
algorithm so that at the end of run it is set to the least 0 of the newly 
generated cr. 

Memory requirements of our algorithm are very low as well. We need 
to store the following data in order to restore the computations after the 
server's crash: 
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• I, j and lE^dl; 

•  h i  j . . . ,  h i  f o r  h a s h  v a l u e s ;  

•  e r i , . . . , o i  a s  c o u n t e r s .  

As the counters Oj can contain values up to d, the corresponding required 
storage space for the values of hi and Oj is I • log2 d + I • k, where k is the 
output length of the hash function h. A recent unpublished result by Helger 
Lipmaa [LipQ2] shows that this requirement can actually be decreased to 
log2 d + I • k by using encoding of the leaves presented in Section 3.4. 

One must also ask, how much resources does it take to compute lE^I 
and how much storage space does this value need. Formula (5.1) does not 
look promising at the first sight as it contains a sum of binomial coefficients. 
Still, if we are satisfied with the estimate ß(G) ~ 1.5, we can use the trees 
%w = 6^+1 from Section 3.6. For these graphs = 22w that 
can be computed very efficiently in binary format. But if we want the 
asymptotically optimal schemes described in Chapter 4 we can change the 
algorithm a little and substitute the for-cycle in rows 3-16 of Algorithm 3 
with a while-loop working if oi < d-f-1. The correctness of this substitution 
is justified by the observation that on its last run the algorithm changes the 
vector o — mw4 to the vector (d+1)00... 0. Note that such a modification 
enables us to replace the need to store (a relatively large) value of |EW)d| 
with the need to store only the value of d. 
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6 INSTEAD OF THE CONCLUSIONS 

Almost every PhD thesis starts off with the author's dream to achieve some­
thing new (preferably revolutionary) and useful (preferably something that 
could be sold right away). Of course there are exceptions, but I hope they 
are rare. Why? Mainly because I believe that ambition is the most impor­
tant cause of every great discovery made on Earth and hence there is very 
little hope to achieve anything without any ambitions. 

Does this mean that every thesis achieves the high goals set by the 
author (with the help of supervisor, of course)? Not at all, as it takes 
something more to come up with revolutionary results than just the goals 
themselves. This "something more" is hard to define, but for sure it contains 

• a bit of talent needed to see deep under the core of things, 

• a bit of luck to find the right problems to look at, and 

• a lot of hard work (lasting approximately for 200 days without eating 
nor sleeping in the case of Tartu University, Estonia). 

Have I had all the necessary components? Most of them probably yes. 
Talent and luck are of course difficult to measure, but at least the goals 
were decent and the work was hard (well, I admit I ate and slept from time 
to time, but the period of writing lasted considerably longer than just 200 

How well have the original goals been met and what is the actual prac­
tical value of the thesis? To the first question, the answer can be stated 
rather clearly and it consists of several parts. 

• The thesis identified the need to look at the two separate time-stamping 
scenarios: patents and digital signatures. It turned out that linking 
schemes providing size-optimal time stamps for one scenario are not 
optimal for another. 

• It was shown that the size of time stamps can be estimated from 
above by the value ß(G). It is not the best possible estimate but by 
our current state of knowledge, the exact expression of the size of time 
s t amps  i s  t oo  compl i ca t ed  t o  dea l  w i th .  Maybe  one  day  . . .  

• We proved that the optimal value of ß(G) is 

days). 

1 
1 44042 
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and it is approached (but never achieved as this value is irrational) 
with the family of trees The effect gained in comparison with the 
previous best-known BLS-scheme is 28% which is quite a remarkable 
amount. Even more importantly we showed that just by estimating 
the value of ß{G) the result can not be improved any more. Of course, 
if one day the tools of dealing with the actual the size of time stamps 
become available, the estimate may be improved some more, but the 
author's wild guess is that not too much. At the moment, it seems that 
the asymptotic size of time-stamps remains the same as mentioned 
above. 

• It turned out that the original definition of the optimum-providing 
family was not too suitable for actual implementation of a TS A. In 
order to improve the situation, the idea of representing the current 
state of computations with some simple and efficient encoding was 
proposed and one possible encoding designed. 

The question of practical applicability is a bit more complicated. Of 
course, we can build nice tools and try to sell them but people will only buy 
them if they need to. Do they need time-stamping? At least in Estonia they 
do as the Law of Digital Signatures requires it. But do the users actually 
need linking? The answer is unfortunately - probably not at the moment. 

Going back to Chapter 1, we recall that, the easiest way to implement 
time-stamping is to let the TSA just sign the requests together with phys­
ical time. The solution is of course totally insecure as the TSA must be 
unconditionally trusted. Is this a serious obstacle keeping people from us­
ing this solution? No, it is not. Looking at the atmosphere of suspicion 
that we can see every day between different politicians, businessmen and 
even nations, it is hard to believe how trusting people are deep in their 
hearts. Why not to declare an authority trustworthy, if such a declaration 
saves us from the trouble of setting up linkage-based time-stamping! And 
there is really not much to do in order to change the human mind. The best 
solution is probably to wait, see and hope that after the first few incidents 
with cheating TS As the need for more secure solutions arises. 

But before that computer scientists all over the world still have some 
time to search for better solutions to propose when they will really be 
needed. And in that light I can say I do not regret writing this thesis 
even a bit. 
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SUURUSE MÕTTES EFEKTIIVSED 
INTERVALLAJATEMPLID 

Sisukokkuvõte 

Erinevates digitaalse asjaajamise rakendustes tekib vajadus määrata 
digitaalse informatsiooni erinevaid parameetreid - millises vormingus on 
info esitatud, kes ja kuna dokumendi lõi jne. Enamasti pole andmete tekke 
täpset aega võimalik kindlaks teha, kasvõi sel põhjusel, et dokumendi looja 
ei pruugi loomise aktist aastaid teatada. Nii asendataksegi digitaalse in­
formatsiooni tekkeaja kindlakstegemine tavaliselt registreerimisaja fikseeri­
misega, nõudes, et dokumendi looja peab dokumendi registreerima selleks 
ette nähtud autoriteedi juures. Niisugust protseduuri nimetatakse ajatem-
belduseks ja autoriteeti ajatempliteenuse osutajaks. 

On olemas rida stsenaariume, mille korral andmete ühekordsest regist­
reerimisest piisab. Töös nimetatakse seda tinglikult patendistsenaariumiks, 
pidades silmas võimalikku rakendust patendivaidluste lahendamisel, kus 
tuleb kindlaks teha, kes oma leiutisest esimesena teada andis. Sama ideo­
loogia abil saab ka välja selgitada, kes reserveeris esimesena lennukipileti 
jne. 

Digitaalallkirjade tekkeaja kindlakstegemisel on olukord aga põhimõt­
teliselt teistsugune. Nimelt on dokumendi digitaalne signeerimine seotud 
privaatvõtme kasutamisega ja see operatsioon tuleb läbi viia võtmeomaniku 
täieliku kontrolli all. Niisiis ei saa dokumendi allkirjastamise täpset mo­
menti mingi kolmanda osapoole juures fikseerida. Küll aga saab registreerida 
kaks ajahetke - ühe kindlalt enne signeerimist ja teise kindlalt pärast seda. 
Nii võime hiljem väita, et elektronallkiri on antud mingi kindla ajaintervalli 
jooksul ning sellest johtuvalt nimetatakse kirjeldatud ajatembelduse vormi 
intervallajatembelduseks. 

Käesoleva doktoritöö eesmärk on uurida intervallajatembeldusskeeme, 
mis võimaldaksid ajatemplite suuruse miinimumini viia. Väitekirjas for­
maliseeritakse vastav optimeerimisülesanne, antakse ajatemplite suurusele 
(küllalt täpne) ülemine hinnang, leitakse antud hinnagu jaoks alampiir ning 
näidatakse ära graafidepere, mis lähendab seda piiri kuitahes hästi (kusjuu­
res täpne piir on saavutamatu). 

Töö viimane osa on pühendatud väljatöötatud graafipere praktilise rea­
liseerimise küsimustele ajatempliteenuse osutaja serveris. Algse rekurrentse 
graafipere definitsiooni põhjal on küll võimalik luua vastav rekursiivne algo­
ritm, kuid esiteks ei vasta rekursioon linkimispõhise ajatembelduse ideoloo­
giale ning teiseks pole naiivne rekursiivne realisatsioon käideldavuse mõttes 
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turvaline. Lahendusena pakutakse töös välja alternatiivne samm-sammuline 
algoritm, mis säilitab serveri töö jätkamiseks vajaliku informatsiooni efek­
tiivselt ning varundataval kujul. 
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