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ABSTRACT  

The guide to the expression of uncertainty in measurement (GUM) describes the law of propagation 

of uncertainty for linear models based on the first-order Taylor series approximation of Y = f(X1, X2, 

…, XN). However, for non-linear models this framework leads to unreliable results while estimating 

the combined standard uncertainty of the model output [u(y)]. In such instances, it is possible to 

implement the method(s) described in Supplement 1 to GUM – Propagation of distributions using a 

Monte Carlo Method. As such, a numerical solution is essential to overcome the complexity of the 

analytical approach to derive the probability density functions of the output. In this paper, Monte 

Carlo simulations are performed with the aim of providing an insight into the analytical 

transformation of the probability density function (PDF) for Y = X2 where X is normally distributed 

and a detailed comparison of analytical and Monte Carlo approach results are provided. This paper 

displays how the used approach enables to find PDF of Y = X2 without the use of special functions. 

In addition, the singularity of the PDF and the nonsymmetric coverage interval are also discussed.  

 

Keywords: GUM; Uncertainty estimation; Monte Carlo method; Non-central non-

standard chi-squared distribution  

 

1. Introduction to uncertainty and chi-squared distribution 
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Any obtained quantity as a result of observations, measurements, modelling or prediction 

is associated with an uncertainty that emerges from the followed procedure. The concept 

of errors in measurement was established in the beginning of the 20th century (Wallis & 

Roberts, 1956; Traub, 1997; Lane, 2011). The misconception of attributing the term 

‘error’ on ‘measurement uncertainty’ was resolved with the publication of the Guide to 

the expression of uncertainty in measurement (GUM). GUM established a standard 

procedure for assessing uncertainty (GUM-1993; GUM-1995; JCGM:2008).  In addition, 

GUM states that evaluation of uncertainty is not a routine task, but it depends on the 

understanding and analysis of the performed method as well as the evaluation of the 

practitioner itself. GUM also accepts approaches to uncertainty evaluation, including 

analytical methods used to derive an exact algebraic form for the probability distribution 

for the output Y, or a Monte Carlo method (MCM) with controlled accuracy, etc. 

GUM is mainly concerned about the expression of uncertainty of the measurable 

quantity, called the ‘measurand’ – Y. The measurand is determined from N other input 

quantities, X1, X2, ..., XN, through a multivariate functional relationship, Y = f (X1, X2, X3, 

…, XN), where xi denote possible values of corresponding random variable Xi, 

respectively. Each input quantity in this relationship has its own uncertainty, expressed as 

u(x1), u(x2), u(x3), …, u(xN), whereby x1, x2,…xN are the best estimates of input quantities 

X1, X2,…XN. The standard uncertainties of input quantities are either evaluated as 

standard deviations of repeated measurement values (type-A uncertainties) or by standard 

deviations of the assumed probability density functions (type-B uncertainties).  GUM 

defines the standard uncertainty of the measurand as follows:  

 
𝑢2(𝑦) = ∑ ∑ (

𝜕𝑦

𝜕𝑥𝑖
) (

𝜕𝑦

𝜕𝑥𝑗
)

𝑁

𝑗=1

𝑢(𝑥𝑖, 𝑥𝑗)

𝑁

𝑖=1

 
(1) 
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= ∑ (

𝜕𝑦

𝜕𝑥𝑖
𝑢(𝑥𝑖))

2

+ ∑ (
𝜕𝑦

𝜕𝑥𝑖
) (

𝜕𝑦

𝜕𝑥𝑗
)

𝑁

𝑖,𝑗=1
𝑖≠𝑗

𝑢(𝑥𝑖, 𝑥𝑗)

𝑁

𝑖=1

 
(2) 

where the partial derivatives 
𝜕𝑦

𝜕𝑥𝑖
  stand as the sensitivity coefficients, 𝑢(𝑥𝑖, 𝑥𝑖) =

𝑢(𝑥𝑖) × 𝑢(𝑥𝑖) = 𝑢2(𝑥𝑖) as the estimated variance of xi, and 𝑢(𝑥𝑖, 𝑥𝑗); 𝑖 ≠ 𝑗 as the 

estimated covariance associated with xi and xj. The input quantities are often assumed to 

be mutually uncorrelated (𝑢(𝑥𝑖, 𝑥𝑗) = 0, when  𝑖 ≠ 𝑗), which helps simplify Eq. (2), 

considering only 𝑖 = 𝑗: 

 
𝑢2(𝑦) = ∑ (

𝜕𝑦

𝜕𝑥𝑖
)

2

𝑢2(𝑥𝑖)

𝑁

𝑖=1

 
(3) 

Equations (2) and (3), often called as the law of propagation of uncertainty, are based on 

a first-order Taylor series approximation of Y = f (X1, X2, ..., XN) and they express the 

basic GUM framework recommendation for evaluation of uncertainty of a multivariate 

system.  

However, there are situations where the application of the present GUM-framework leads 

to unreliable results. If the model is non-linear coupled with high relative uncertainties of 

input quantities the present GUM framework provides unreliable estimate for the 

combined standard uncertainty of model output u(y). Also, if the distribution of the 

output Y cannot be assumed to be a Gaussian or a Student’s t-distribution it is not correct 

to use the coverage factor k = 2 or corresponding Student’s t-coefficient to calculate the 

expanded uncertainty at P=95 % coverage probability. In these cases it can be 

recommended to use the Monte Carlo method (MCM) based on the Supplement 1 to 

GUM (GUM-S1, 2008). The shortcomings of the GUM are currently being dealt with a 

new revision of the GUM which is expected to be consistent with GUM supplements 

(Bich et al., 2012; Bich, 2014; Bich et al., 2016). All the distributions of input quantities 
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will be estimated from a Bayesian point of view eliminating the need to distinguish the 

uncertainties as type A and type B uncertainties (Bich et al., 2016). Besides some other 

important changes, the new GUM will also recommend using MCM if one has little 

knowledge about the distribution of the model output (Bich et al., 2016).   One good 

example about non-linear model is Y = X2: 

 𝑢2(𝑦) = (
𝜕𝑦

𝜕𝑥
)

2

𝑢2(𝑥) (4) 

 
𝑢(𝑦) =

𝜕𝑦

𝜕𝑥
𝑢(𝑥) = 2𝑥𝑢(𝑥) 

(5) 

Y = X2 stands as the simplest nonlinear model with widespread applications, for example 

its use in kinematics and in fluid mechanics with velocity profiles. However, it is also 

implemented in different measurement systems, e.g. in remote sensing, especially in the 

evaluation of coverage of areas with certain specification or with cloud cover, as well as 

measurements of irradiation from large territories. In addition, in electrical engineering, 

power meters actually detect X2 (Carobbi, 2014). A different perspective to problems of 

metrology in measurement systems was also presented in a very systematical manner by 

Danilov (2016). Moreover, another important application is for evaluating the Word 

Error Rate (WER) in automated measurement systems, e.g. speech recognition and 

Analog to Digital Converters, etc. (Catelani et al., 2010). 

The probability density function (PDF) of Y = X2 is asymmetric, as it cannot be negative 

and this leads to problems in constructing its coverage intervals. For a symmetric PDF 

output, symmetric coverage intervals are usually used, but in the case of an asymmetric 

PDF, the user must have an insight into the shape and properties of the PDF to proceed 

with design of coverage interval (Bich, 2014; Bich et al., 2012, 2016; Lira, 2019; Willink, 

2016).  
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For example, when X, a priori, follows a normal distribution with non-zero mean X and 

non-unit standard deviation x, X ~ N(X;  X),  then the X2 has non-central non-standard 

chi-squared distribution with one degree of freedom.  

The chi-squared distribution, derived from a set of n-independent standard normal 

variables, Xi ~ N(0;  1) with i = 1, 2, … , n, is widely used for evaluating the goodness of 

fit of an observed distribution to a theoretical one.  Unfortunately, a general case of Y = 

X2, for a single non-central non-standard input X ~ N(X  0;  X  1) is not studied in the 

books nor in the literature (Ventsel, 1969; Papoulis, 1990, 1991; Traub, 1997; Rice, 2007; 

Fornasini, 2008; Veerarajan, 2009; Lane, 2011; Suhov and Kelbert, 2014; Sahoo, 2015; 

Thomopoulos, 2017; Kelbert and Suhov, 2018).  There is however a comparative study in 

the literature focusing on the random measurement errors and indirect measurement 

errors by Monte-Carlo method by Labutin and Pugin (2000).   

The study of Kent & Hainsworth (1995) concludes that in the absence of any clear 

optimality criteria for choosing confidence intervals of the χ2-distribution, a ‘symmetric 

range’ interval is the best choice. Furthermore, in the study of Attivissimo et al. (2012) 

where the use of frequentist and the Bayesian approach to measurement uncertainty is 

discussed, the authors consider an electric circuit consisting only of a battery of voltage X 

and a noisy unit-value resistor consuming the power W = X2.  A thorough uncertainty 

analysis of the circuit requires the computation of a number of PDFs along with 

expectations and variances. This study involves uniform and normal distributions for 

input X, Bayesian, frequentist and Monte Carlo approaches and the results are compared. 

An interesting result from this study is the plot from which the PDF of X2 for normal 

noncentral input X can be depicted, although the analytical expression of PDF for W is 

given only in a general form of the Bayes’ formula. 
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The aim of this study is to present a comprehensive analysis of the PDF in the output of Y 

= X2 for non-central non-standard normal input X, supported with Monte Carlo simulation 

for extracting the PDF of the normal squared. 

A literature review on the PDF of Y = X2 reveals a series of publications by Cox & Harris 

(1999; 2003; 2006) and Cox & Siebert (2006), which show that numerical solution using 

MCM is an effective tool to approximate the output PDF by a frequency distribution. In 

addition, Cox & Siebert (2006) demonstrated that in the case of the simplest (i.e. 

uniform) input PDF, use of the Heaviside step function and the Markov formula allows to 

derive an analytic expression of the PDF of Y = X2.  

The aim of this study is to present a comprehensive analysis of the PDF in the output of Y 

= X2 for a priori known non-central non-standard normal input X ~ N(x, x) determined 

with Monte Carlo simulation for extracting the PDF of the squared normally distributed 

variable. This paper improves upon the findings of the previous studies presented above. 

It also introduces important information to help avoid potential mistakes while obtaining 

results, displays the key aspects of implementation, as well as a special emphasis on a 

simpler PDF equation for practical calculations. This paper also covers the singularity of 

the PDF which is the main problem of the Monte Carlo simulation and the nonsymmetric 

coverage interval. 

 

2. On the two Monte Carlo experiments  

The series of works carried out by Cox et al. (1999; 2003; 2006) on the univariate model 

Y = X2 can be considered as the basis of this problem with significant contributions to the 

area. Particularly, Cox & Harris (1999; 2003) considered Gaussian input X ~ N(0.5; 0.2), 

with mean X = 0.5, and standard deviation  σX = 0.2. The PDF of this input, although 
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symmetric, is right-shifted and narrowed compared to the standard normal distribution X 

~ N(0; 1). The authors ran M = 10 000 MCS trials to draw a rough PDF histogram of 20 

columns for output Y. Obtained set of output quantities yi enables a quick evaluation of 

the two main statistical output quantities, mathematical expectation Y and standard 

deviation σY, as well as the median, mode and coverage intervals. The PDF for output Y = 

X2 is asymmetric and includes only nonnegative values which reflect its non-Gaussian 

origin. It is not correct to represent a coverage interval for Y in a symmetric form, Y  k 

σY, where k is a coverage factor (usually, k = 1, 2 or 3). When the GUM framework 

cannot be applied, Monte Carlo simulation (MCS) presents itself as a good alternative 

(Cox & Harris, 2006; Cox & Siebert, 2006; GUM-S1; GUM-Introduction; GUM-S2). 

Rearrangement of yi into a non-decreasing order enables determining the quantiles to 

define the required expanded uncertainties through possible coverage intervals [ylow, 

yhigh], where the endpoints depend on the particular output PDF. For example, for the 

output 0.025 and 0.975 quantiles define a 95% coverage interval. Evidently, the set yi 

allows depicting the same value coverage interval using any another appropriate pair of 

quantiles such as 0.015 and 0.965, or 0.040 and 0.990, etc.   

Using MCS for the statistical description of output quantities of nonlinear models 

presents two possible problems:  

- MCS easily overlooks sharp peaks at possible singular points of an output PDF 

while using MCS-derived histograms for visualization of the shape of the PDF of 

an output quantity; 

- superficial analysis of empirical cumulative distribution functions (CDF) for Y 

can lead to erroneous generalizations about the median value for the set of yi. 

For instance, a histogram of 20 columns for Y = X2 with X ~ N(0.5; 0.2), obtained using 

10 000  MCS trials, did not reveal singularity in vicinity of y = 0 (Cox & Harris, 1999; 
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2003). However, this was solved when Cox & Harris (2006) readdressed the problem of 

Y = X2 by inserting X ~ N(1.2; 0.5), performing M = 50 000 MCS trials and drawing a Y 

histogram of 70 columns.  The enhanced resolution displayed discernible features in the 

histogram which was previously not evident. The more detailed PDF appeared to be 

bimodal with a sharp peak depicted by the first column. The authors also calculated for 

the output quantity the estimates of the mathematical expectation Y and the associated 

standard uncertainty 𝜎𝑌 as provided by the law of propagation of uncertainty: 

 𝜇𝑌 = 𝜇𝑋
2 = 1. 22 = 1.44 (6) 

 𝜎𝑌 = 2𝜇𝑋𝜎𝑋 = 2 × 1.2 × 0.5 = 1.20 (7) 

The Monte Carlo experiment resulted in different values y = 1.70, Y = 1.26. On the 

other hand, considered Y = X2 stands out as a relatively simple non-linear model and 

enables analytical explanation of discrepancies in calculation of Y and Y as well as the 

appearance of a sharp peak of the PDF.  

3. Expectation and variance of Y = X2 

In order to get the expectation of the output: 

 Y = EX2 (8) 

the relationship for variance DX of a random variable X, 

 𝜎𝑋
2 = 𝜇𝑌 − 𝜇𝑋

2  (9) 

gives the expectation for output Y: 

 𝜇𝑌 = 𝜇𝑋
2 + 𝜎𝑋

2 (10) 

The obtained formula is universal, regardless of which PDFs are assigned to X, 

unconstrained by the requirement of the Gaussian distribution as input. When (10) is 

applied to X ~ N(1.2; 0.5):  
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 𝜇𝑌 = 1. 22 + 0. 52 = 1.44 + 0.25 = 1.69 (11) 

which is in agreement with the Monte Carlo experiment cited above, Y = 1.70, but 

contradicts the result of Eq. (6), Y = 1.44. Derivation of a formula for variance (σ𝑌
2) of 

the output requires the calculation of the 4th noncentral moment for input X: 

 𝜎𝑌
2 = 𝐷𝑌 = 𝐸(𝑌 − 𝜇𝑌)2 = 𝐸𝑌2 − 𝜇𝑌

2 (12) 

considering Eq. (10) and since:  

 𝐸𝑌2 = 𝐸𝑋4 (13) 

equation (12) can be rewritten as: 

 𝜎𝑌
2 = 𝐸𝑋4 − (𝜇𝑋

2 + 𝜎𝑋
2)2 (14) 

here the 4th non-central moment of the normal distribution: 

 
𝐸𝑋4 = ∫ 𝑥4𝑝𝑋(𝑥)𝑑𝑥

∞

−∞

= 𝜇𝑋
4 + 6𝜇𝑋

2 𝜎𝑋
2 + 3𝜎𝑋

4 
(15) 

where pX(x) is the PDF for a Gaussian input, X.  Combining of Eqs. (14) and (15) gives 

for the variance of output, Y:  

 𝜎𝑌
2 = 4𝜇𝑋

2 𝜎𝑋
2 + 2𝜎𝑋

4 (16) 

which is only valid for the Gaussian input. Applying Eq. (16) applied to a normal 

quantity discussed above, X ~ N(1.2; 0.5):  

 𝜎𝑌
2= 4  1.22  0.52 + 20.54 = 1.565 (17) 

 𝜎𝑌 = √1.565 = 1.251 (18) 

matches the MCM result of Cox & Harris (2006), Y = 1.26, and proves the use of Eq. (7) 

less accurate.  

4. The PDF for Y = X2 
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There are two methods to derive the PDF for Y = X2. One is the PDF transformation 

technique which converts the input probability density function, pX(x), into output, pY(y), 

and the other one is the CDF differentiation technique that starts from the cumulative 

distribution functions, GX(y) and GY(y).  

The equality of probability elements at both sides of the model must consider both 

inverse functions (𝑥 = ±√𝑦) and are written as: 

 𝑝𝑋(−𝑥)𝑑𝑥 + 𝑝𝑋(𝑥)𝑑𝑥 = 𝑝𝑌(𝑦)𝑑𝑦 (19) 

 
𝑝𝑌(𝑦) = 𝑝𝑋(−√𝑦)

𝑑𝑥

𝑑𝑦
+ 𝑝𝑋(√𝑦)

𝑑𝑥

𝑑𝑦
 

(20) 

 𝑝𝑌(𝑦) =
1

2√𝑦
𝑝𝑋(−√𝑦) +

1

2√𝑦
𝑝𝑋(√𝑦) 

(21) 

(21) is the generic form and is valid for any PDF in the input (Papoulis, 1990; 1991). In 

the case of normal non-standard input, X ~ N(X; X): 

 
𝑝𝑋(𝑥) =

1

𝜎𝑋√2𝜋
𝑒

−
1
2

(
𝑥−𝜇𝑋

𝜎𝑋
)

2

 
(22) 

the general formula (22) for the output PDF transforms into:  

 
𝑝𝑌(𝑦) =

1

2𝜎𝑋√2𝜋√𝑦
𝑒

−
1
2

(√𝑦+𝜇𝑋
𝜎𝑋

)
2

+
1

2𝜎𝑋√2𝜋√𝑦
𝑒

−
1
2

(√𝑦−𝜇𝑋
𝜎𝑋

)
2

 
(23) 

In (23) the presence of √𝑦 in the denominators means that the obtained PDF has a 

singularity at y = 0:  

 lim
𝑦→0

𝑝𝑌(𝑦) = ∞ (24) 

For a central but non-standard normal distribution (X = 0, X  1), (23) equals to: 

 
 

(25) 

and for the standard normal distribution (X = 0, X = 1):  
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  (26) 

which is the chi-squared or χ2-distribution with one degree of freedom.  

Alternatively, the PDF for Y = X2 (for a non-centered X) is by definition:  

 
𝑝𝑌(𝑦) =

𝑑𝐺𝑌(𝑦)

𝑑𝑦
 

(27) 

where GY(y) is the CDF for output, defined as: 

 𝐺𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑋2 ≤ 𝑦) = 𝑃(−√𝑦 ≤ 𝑋 ≤ √𝑦) (28) 

 𝐺𝑌(𝑦) = ∫ 𝑝𝑋(𝑥)𝑑𝑥
√𝑦

−√𝑦

 (29) 

Splitting the area of integration at x = 0:  

 
𝐺𝑌(𝑦) = ∫ 𝑝𝑋(𝑥)𝑑𝑥

0

−√𝑦

+ ∫ 𝑝𝑋(𝑥)𝑑𝑥
√𝑦

0

 
(30) 

 
𝐺𝑌(𝑦) = − ∫ 𝑝𝑋(𝑥)𝑑𝑥

−√𝑦

0

+ ∫ 𝑝𝑋(𝑥)𝑑𝑥
√𝑦

0

 
(31) 

Differentiating with respect to y gives an interim result of: 

 𝑝𝑌(𝑦) =
𝑑𝐺𝑌(𝑦)

𝑑𝑦
= −

𝑑

𝑑𝑦
∫ 𝑝𝑋(𝑥)𝑑𝑥

−√𝑦

0

+
𝑑

𝑑𝑦
∫ 𝑝𝑋(𝑥)𝑑𝑥

√𝑦

0

 (32) 

here we denote the first and second integral as g1(y) and g2(y), respectively. Before using 

the rule of differentiating with respect to the upper limit of integration, changes in 

variables should be performed. For the first integral: 

 𝜏 = −√𝑦;   
𝑑𝜏(𝑦)

𝑑𝑦
=

−1

2√𝑦
 (33) 

 
𝑔1(𝑦) = −

𝑑

𝑑𝑦
∫ 𝑝𝑋(𝑥)𝑑𝑥

−√𝑦

0

= −(
𝑑

𝑑𝜏
∫ 𝑝𝑋(𝑥)𝑑𝑥) ×

−1

2√𝑦

𝜏

0

 
(34) 

 
𝑔1(𝑦) = 𝑝𝑋(𝜏) ×

1

2√𝑦
=

1

2√𝑦
𝑝𝑋(−√𝑦) 

(35) 
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using  = √𝑦  for the second integral in (32):  

 
𝑔2(𝑦) =

1

2√𝑦
𝑝𝑋(√𝑦) 

(36) 

both PDF parts, g1(y) and g2(y), given by (35) and (36), respectively, together equal again 

to equation (21), confirming the steps taken.  

By involving modified Bessel functions of the first kind, general formula (23) for PDF of 

Y = X2 can be represented in a form usually applied in theory of chi-squared distribution:  

 𝐴 =
1

2𝜎𝑋√2𝜋√𝑦
   and    𝑎 =

1

2𝜎𝑋
2  (37) 

Eq. (23) can be written as: 

 𝑝𝑌(𝑦) = 𝐴(𝑒−𝑎(√𝑦+𝜇𝑋)2
+ 𝑒−𝑎(√𝑦−𝜇𝑋)2

) (38) 

 𝑝𝑌(𝑦) = 𝐴𝑒−𝑎(𝑦+𝜇𝑋
2 ) (𝑒2𝑎√𝑦𝜇𝑋 + 𝑒−2𝑎√𝑦𝜇𝑋) (39) 

using (Andras, Baricz, 2008): 

 
cosh 𝑧 =

𝑒𝑧 + 𝑒−𝑧

2
= √

𝜋𝑧

2
𝐼−1/2(𝑧) 

(40) 

where I−1/2 is modified Bessel function with −1/2 degrees of freedom, Eq. (39) can be 

rewritten in a more desired form: 

 
𝑝𝑌(𝑦) =

1

2𝜎𝑋
2

√𝜇𝑋

√𝑦4
𝑒𝑥𝑝 (−

𝑦 + 𝜇𝑋
2

2𝜎𝑋
2 ) 𝐼−1/2 (√𝑦

𝜇𝑋

𝜎𝑋
2) 

(41) 

which, compared to (23), is not so convenient for practical calculations.  

The interpretation of the PDF for Y = X2 can be better understood by analyzing the two 

examples presented in the previous section. For both cases, it is assumed the input X is 

normally distributed, according to the two Monte Carlo experiments, X ~ N(0.5; 0.2) and 
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X ~ N(1.2; 0.5), respectively (Cox & Harris, 1999; 2003; 2006). The general formula for 

output PDF (24) transforms respectively into: 

 
𝑝𝑌(𝑦) =

2.5

√2𝜋

1

√𝑦
𝑒−12.5(√𝑦+0.5)2

+
2.5

√2𝜋

1

√𝑦
𝑒−12.5(√𝑦−0.5)2

 
(42) 

 
𝑝𝑌(𝑦) =

1

√2𝜋

1

√𝑦
𝑒−2(√𝑦+1.2)2

+
1

√2𝜋

1

√𝑦
𝑒−2(√𝑦−1.2)2

 
(43) 

Plots of the two input PDFs, and their outputs, Y = X2, according to (42) and (43), are 

presented in Fig. 1. Symmetric coverage intervals,   σ and   2σ, can be seen for the 

input and the output, but since Y is neither symmetrically distributed nor have any 

negative values, symmetric coverage intervals with respect to the expectation of the 

output do not present any valuable information. However, the output coverage intervals 

can be calculated by appropriate integration of a particular pY(y) both for the analytical 

approach and the MCS.  

 

 

Input: normal, X~N(0.5; 0.2) 

                    Output: Y = X2, 

𝜇𝑌 = 0.29, 𝜎𝑌 = 0.2078  

  

  

Input: normal, X~N(1.2; 0.5) Output: Y = X2, 𝜇𝑌 = 1.69, 𝜎𝑌 = 1.251 
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Fig. 1. On the left: probability density functions for two Gaussian input quantities, X ~ 

N(0.5; 0.2), and X ~ N(1.2; 0.5) respectively. On the right: probability density functions 

for corresponding output quantities, Y = X2. The dashed horizontal lines indicate the 

coverage intervals ( and  2). For Y the  2 intervals include infeasible negative X2 

values. The filled triangles indicate locations of mathematical expectations at the 

horizontal axes and the empty triangles of the medians for outputs. The continuous 

horizontal lines seen on the graphs on the right show the 95% coverage intervals, plotted 

according to 2.5% and 97.5% quantiles. 

5. The CDF for Y = X2 

The cumulative distribution functions (CDF) are essential for evaluating the 

normalization condition of the PDF for a random quantity, as well as for a rapid 

assessment of median and quantile values, peak-event probabilities and the coverage 

intervals. For Y = X2, in the case of a normal non-standard input, X ~ N(X; X), the CDF 

is defined as:  

 
𝐺𝑌(𝑧) = ∫ 𝑝𝑌(𝑦)

𝑧

0

𝑑𝑦 ==
1

2𝜎𝑋 √2𝜋
∫ 𝑒

−
1
2

(√𝑦+𝜇𝑋
𝜎𝑋

)
2

𝑑𝑦

√𝑦

𝑧

0

 
(44) 

where the first and second parts of the equation are denoted as Part I, G1(z), and Part II, 

G2(z), respectively. Applying the change in variables, from y to t, for Part I and Part II: 
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 𝑡 =
1

√2𝜎𝑋

(√𝑦 + 𝜇𝑋) (45) 

 𝑡 =
1

√2𝜎𝑋

(√𝑦 − 𝜇𝑋) (46) 

G1(z) and G2(z) are obtained as: 

 
𝐺1(𝑧) =

1

√𝜋
∫ 𝑒−𝑡2

𝐵1(𝑧)

𝐴

𝑑𝑡 =
1

2
erf(𝐵1) - 

1

2
erf(𝐴) 

 

(47) 

 𝐺2(𝑧) =
1

√𝜋
∫ 𝑒−𝑡2

𝐵2(𝑧)

−𝐴

𝑑𝑡 =
1

2
erf(𝐵2) + 

1

2
erf(𝐴) (48) 

where the new limits of integration:  

 𝐴 =
𝜇𝑋

√2𝜎𝑋

 (49) 

 𝐵1(𝑧) =
√𝑧 + 𝜇𝑋

√2𝜎𝑋

 (50) 

 𝐵2(𝑧) =
√𝑧 − 𝜇𝑋

√2𝜎𝑋

 (51) 

and the error function: 

 erf(𝑥) =
2

𝜋
∫ 𝑒−𝑡2

𝑥

0

𝑑𝑡 (52) 

The sum of (47) and (48) gives (after returning from z to y):  

 
𝐺𝑌(𝑦) =

1

2
erf(𝐵1) +

1

2
erf (𝐵2) 

(53) 

where the coefficients B1 and B2 depend on y, X and X. If the first particular input is 

considered again, X ~ N(0.5; 0.2), from Cox & Harris (1999; 2003), B1 and B2 become:  

 𝐵1(𝑦) =
√𝑦 + 𝜇𝑋

√2𝜎𝑋

= √12.5𝑦 + √3.125 
(54) 
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 𝐵2(𝑦) =
√𝑦 − 𝜇𝑋

√2𝜎𝑋

= √12.5𝑦 − √3.125 
(55) 

For the second input, X ~ N(1.2; 0.5), following Cox & Harris (2006), the CDF is:  

 𝐺𝑌(𝑦) =
1

2
erf(𝐵3) +

1

2
erf(𝐵4) (56) 

where: 

 𝐵3(𝑦) =
√𝑦 + 𝜇𝑋

√2𝜎𝑋

= √2𝑦 + 1.2√2 
(57) 

 

𝐵4(𝑦) =
√𝑦 − 𝜇𝑋

√2𝜎𝑋

= √2𝑦 − 1.2√2 

(58) 

The two obtained CDFs GY(y) are plotted in Fig. 2 and denoted as “Cumulative 1” and 

“Cumulative 2”, respectively.  

 

Fig. 2. Two examples of the cumulative distribution function of Y = X2:  

Cumulative 1 for X ~ N(0.5; 0.2);  Cumulative 2 for X ~ N(1.2; 0.5). 

 

6. Width of narrow peaks in the Y = X2 PDF curves  

In this section, the obtained CDFs are used for evaluating the contribution of a peak near 

the origin of the PDF Y = X2 (as seen on the right of the Fig. 1). The area under the peak 

is calculated for both cases. For the first input, X ~ N(0.5; 0.2) the local minimum is 
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located at y = 0.0145, which defines the range of the narrow peak as an interval, 0 < y  

0.0145. Contribution of this peak to the whole PDF is equal to GY(0.0145). Before 

performing (53), limits of integration, B1 and B2 are calculated: 

 
𝐵1(𝑦 = 0.0145) =

√0.0145 + 0.5

√2 × 0.2
= 2.19350 

(59) 

 𝐵2(𝑦 = 0.0145) =
√0.0145 − 0.5

√2 × 0.2
= −1.34203 (60) 

 
𝐺𝑌(0.0145) =

1

2
erf(2.19350) -

1

2
erf(1.34203) = 0.02789 

(61) 

The result indicates that a narrow peak near the origin covers approximately 2.8% of the 

area under the PDF curve of Y = X2 for the input condition of X ~ N(0.5; 0.2). For the 

second input, X ~ N(1.2; 0.5), the extension of the narrow peak is, 0 < y  0.100. The 

limits of integration, B3 and B4: 

 
𝐵3(𝑦 = 0.100) =

√0.100 + 1.2

√2 × 0.5
= 2.14427 

(62) 

 𝐵4(𝑦 = 0.100) =
√0.100 − 1.2

√2 × 0.5
= −1.24984 (63) 

substitution of these into (49): 

 𝐺𝑌(0.100) =
1

2
erf(2.14427) -

1

2
erf(1.24984) = 0.03736 

(64) 

indicating that the contribution of the narrow peak covers approximately 3.7% of the area 

under the PDF curve of Y = X2 for X ~ N(1.2; 0.5).  

 

7. Quantiles and coverage intervals for Y = X2  

Analytical presentation of the cumulative distribution function enables calculation for Y 

of quantiles and coverage intervals. Often the 95% coverage interval is defined between 
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the 0.025 and 0.975 quantiles of the PDF for Y. These quantiles for the first example, X ~ 

N(0.5; 0.2), using (49), (50) and (51) are found as: 

 𝐺𝑌(0.0125) = 0.025 (65) 

 𝐺𝑌(0.7957) = 0.975 (66) 

which means that the lower and upper quantiles are, y2.5%  = 0.0125 and y97.5%  = 0.7957, 

respectively.  

Quantiles for the second input, X ~ N(1.2; 0.5):  

 𝐺𝑌(0.0561) = 0.025 (67) 

 𝐺𝑌(4.7524) = 0.975 (68) 

which means that y2.5% = 0.0561 and y97.5% = 4.7524. These 95% of coverage intervals are 

displayed as continuous horizontal lines in Fig. 1 (on the right). The same coverage 

interval of 95% may be also given by any other appropriate pair of quantiles such as y1.5% 

and y96.5%, etc. 

 

8. About the median of Y = X2  

The cumulative distribution function is a useful visual aid to understanding the nature of 

a random quantity. The most important characteristic of a CDF itself is the median. A 

detailed examination of tabulated values for the cumulative distribution functions GY(y) 

gives the following results:   

 GY(y = 0.25) = 0.499999713,  for the input X ~ N(0.5; 0.2) (69) 

 GY(y = 1.44) = 0.499999207,  for the input X ~ N(1.2; 0.5) (70) 

from here, it appears that with a very high rate of accuracy the following statement can be 

written:  
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 median (𝑌 = 𝑋2) = 𝜇𝑋
2  (71) 

However, this statement cannot present the entirety of the variability of Y = X2 as the 

median should depend on both of the input quantities, X and X, not solely on X. 

Equation (53) clarifies this situation. With the substitution of: 

 𝑦 = 𝜇𝑋
2  (72) 

into (53), the coefficients B1, B2 and the CDF, 𝐺𝑌(𝑦 = μ𝑥
2), take the following values:   

 𝐵1(𝑦) = √𝑦+𝜇𝑋

√2𝜎𝑋
=

√2𝜇𝑋

𝜎𝑋
 𝐵2(𝑦) = √𝑦−𝜇𝑋

√2𝜎𝑋
= 0 

(73) 

 𝐺𝑌(𝑦 = 𝜇𝑋
2 ) =

1

2
erf(𝐵1) =

1

2
erf(

√2𝜇𝑋

𝜎𝑋
) (74) 

which means that the CDF, 𝐺𝑌(μ𝑥
2), actually depends on the ratio, X /X, and tends to the 

value 0.5 with X over X (Fig. 3). For X /X = 1.6, the CDF already becomes equal to 

0.499. 

 

Fig. 3. Cumulative distribution function GY (y) at 𝑦 = μ𝑥
2, as a function of the ratio of two 

input quantities, X /X.  

The validity of (71) can approximated from X /X = 1.6 towards larger values and the 

median Y = X2 as μ𝑥
2 can be calculated. The results of medians obtained with (71) can be 

explained by considering the same inputs, X ~ N(0.5; 0.2), and X ~ N(1.2; 0.5), for which 

the ratios X /X are 2.5 and 2.4 respectively. 
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9. Readdressing a Monte Carlo experiment 

As mentioned previously, MCS method is relatively easy to implement and therefore 

presents itself as a good alternative to the analytical derivation of output statistical 

quantities. However, MCS easily overlooks possible sharp narrow peaks in the shape of a 

PDF. The proper comprehension of PDF shape obtained with MCS can be achieved by 

considerably increasing the number of Monte Carlo trials and the number of histogram 

columns.  In this study, for the first input, X ~ N(0.5; 0.2), a series of M = 1 000 000 

Monte Carlo trials has been performed.  

The Monte Carlo run for Y = X2 resulted in the output mean of Y = 0.2902, and a 

standard deviation of Y = 0.2079. Both results stand close to the ones obtained from 

analytical method Y = 0.29 and Y = 0.2078. Additionally, the probabilistically 

symmetric coverage interval corresponding to 95 % coverage probability was found to lie 

between 0.0126 and 0.7962 while the corresponding analytically calculated coverage 

interval lies between 0.0125 and 0.7957 indicating a good match between the coverage 

intervals found by the two methods. The said-one million sets of xi and yi were 

reassembled into histograms of 50, 100, 300 and 1000 columns, and displayed in Fig. 4, 

respectively. It is obvious that 50 columns are not enough for proper visualization of the 

output PDF whereas 100 could be used but the output PDF is still not clearly evident. 

However, the histogram of 300 columns reveals the singularity near the origin while the 

histogram of 1000 columns only sharpens it.  

Input: normal, X ~ N(0.5; 0.2) 

Output: Y = X2, Y = 0.2902, Y = 

0.2079 
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Fig. 4. Results of a series of 1000000 MC trials as histograms of 50, 100, 300 and 1000 

columns. 
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10. Conclusions 

For reliable estimation of the model output uncertainty, the model input quantities should 

be specified in terms of probability density functions (PDFs). In order to determine the 

output PDF, the practitioner must choose between analytical and numerical methods. 

Analytical methods ask the user to have calculus and probability and statistics knowledge 

as prerequisites (Rice, 2007; Fornasini, 2008; Thomopoulos, 2017), but the user can 

always use certain softwares to help derive the analytical solutions.  

In this study, an analytic approach is described for a simple univariate model Y = X2 

where X is the Gaussian input with non-zero expectation and non-unit standard deviation. 

The analytic approach enabled a detailed description of singularity in Y near the origin as 

well as to reveal a peculiarity in calculation of the median for Y. However, for example in 

some cases of environmental modelling, either the set of input quantities (e.g. photons of 

solar rays, ionizing radiation from polluted territories, etc.) or the model itself (e.g. 

processes of light scattering on a single plant or in the entire plant cover, propagation of 

pollution in an environment, etc.) may be too complicated for an analytical 

representation. In these situations, Monte Carlo simulations (MCS) appear to be the only 

alternative method.  

This study also demonstrated that for a relatively simple model, Y = X2, there can be 

unexpected results, such as overlooking narrow peaks, and recommends that a 

sufficiently large number of trials should be chosen to obtain an adequate plot of the 

output histogram. For Y = X2, a plot with the sufficient details that enables detection of 

singularity in the output, was achieved using 300 histogram columns on the basis of 1 

million MC trials.  
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