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INTRODUCTION 

Dietary intake is known to affect individuals’ health by influencing disease in-
cidence and mortality. However, the exact mechanisms of these associations have 
in many cases remained unclear. This lack of understanding can in turn result in 
conflicting dietary recommendations and advice. These questions would be best 
answered by randomized clinical trials (RCT), but RCTs are often expensive, 
unethical, or difficult to pursue on large samples. To overcome these issues, we 
assess the effects of dietary items on health-related traits using Mendelian 
Randomization (MR) analysis, which has the potential to indicate which 
associations are possibly causal. In its essence MR is an instrumental variable 
analysis, and thus one of the most important prerequisites for pursuing MR are 
valid instruments. In the current context the instruments are single nucleotide 
polymorphisms (SNPs) directly associated with variables that indicate dietary 
choices. These SNPs can be detected with a genome-wide association study 
(GWAS) of dietary items. 

One possible way to investigate the effect of dietary choices on health is to 
examine the metabolic profile of blood, which could be mediating the effect. 
Blood metabolites are known to be associated with several health conditions such 
as cardiovascular diseases (CVD), type II diabetes (T2D), and mortality, and have 
previously shown to elevate or lower the risk of these. Thus, determining how 
dietary choices affect blood metabolic profile will be instrumental in unravelling 
the possible mechanisms of how diet influences health. 

I investigate the interactions between diet and health from three different 
perspectives. First, by studying the effect of dietary choices on blood metabolic 
profile with MR analysis. Second, by assessing how a systematic lack of dietary 
variety expressed as food neophobia affects blood metabolome. Third, by 
examining whether the blood metabolic profile can be indicative of underlying 
biological age (BA), and whether the excess of such BA over the chronological 
age (chronAge) is predictive of some disease groups and subsequently indicative 
of the health of a specific bodily system. 

Thus, the overarching aim of the studies presented in this thesis is to shed 
more light on how diet affects health. The findings also form a basis for future 
RCTs, which could ultimately lead to (personalized) dietary recommendations. 
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1. REVIEW OF THE LITERATURE 

1.1. Dietary studies in health context –  
metabolites as possible explanators 

Diet is a widely studied human behavior due to its essential role on individuals’ 
health and general well-being. It has been shown to have an important role in the 
development and progress of several medical conditions, such as obesity (Popkin, 
2001), CVD (Schaefer, 2002; Boeing et al., 2012; Dilis et al., 2012), T2D 
(Schwingshackl et al., 2017) and cancer (Key et al., 2004; Johnson and Lund, 
2007). Due to the high burden these diseases create for individuals, society, 
healthcare and economy, their prevention is of great interest and importance. 
However, oftentimes the mechanisms by which diet affects health are still un-
clear. In this case, blood metabolites might be of help to at least partly provide 
explanations. Metabolites are small molecules that participate in human meta-
bolism, and include omega-3 and omega-6 fatty acids, high density lipoprotein 
cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), citrate, 
glycose etc. In the recent years, there has been immense progress in the quanti-
fication of such metabolites. This has provided the basis for investigating on the 
one hand how diet affects blood metabolites and on the other hand, which meta-
bolites are indicative of diseases. 

Several studies have researched the relationship between diet and the levels of 
metabolites in blood or urine. These investigations have identified associations 
between the metabolic profile and coffee (Guertin et al., 2015), alcohol (Würtz 
et al., 2016), fruit and vegetable consumption (Menni et al., 2013), and a wide 
range of dietary patterns, such as Western and Prudent (Chandler et al., 2020), 
Mediterranean (Li et al., 2020), and healthy diet measured with several Healthy 
Eating indexes (Kim et al., 2021). Further, other studies have shown metabolites 
to be important in the onset of several diseases, such as T2D (Suhre et al., 2010; 
Wang et al., 2011), CVD (Holmes et al., 2014; Würtz et al., 2015), colorectal 
cancer (Guertin et al., 2015; Shu et al., 2018), dementia (Lee et al., 2018; 
Tynkkynen et al., 2018) and increase the risk of mortality (Fischer et al., 2014; 
Deelen et al., 2019). Since blood metabolites are subject to change by diet and 
are often indicative or risk factors of several diseases, they represent a promising 
candidate for at least partly providing explanations to the mechanisms of diet-
disease interplay.  

Successful endeavors have been made in pursuing randomized trials for 
investigating the effect of dietary patterns on blood metabolites and health (Esko 
et al., 2017; Michielsen et al., 2019). One of the largest of such studies was the 
Prevención con Dieta Mediterránea (PREDIMED) trial (Estruch et al., 2018), 
which primarily aimed to assess the effect of Mediterranean diet on cardio-
vascular health, but also on mortality, diabetes, various cancers, and neuro-
degenerative diseases as secondary outcomes (Ros et al., 2014). PREDIMED has 
received critique of the sample size being not large enough and follow-up not 
long enough to draw firm conclusions about mortality (Guasch-Ferré et al., 2017), 
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and with regards issues with the randomization (Agarwal and Ioannidis, 2019). 
Further, another important aspect that concerns the generalizability of the 
PREDIMED results is that the sample consisted of elderly people at high risk of 
CVD. However, to date it is the largest randomized dietary trial systematically 
assessing the effect of a dietary pattern on cardiovascular health. The results after 
5 years of follow-up showed a 30% reduction in the relative risk of CVD in people 
following a Mediterranean diet compared to a group that was advised to simply 
reduce dietary fat intake (Estruch et al., 2018). Furthermore, as part of the study, 
blood metabolites were quantified in a subset of participants. Analysis identified 
a particular metabolic signature of the Mediterranean diet and subsequently 
confirmed the association of this signature with CVD (Li et al., 2020). Fernández-
Lázaro et al. (2021) stated that the findings by Li et al. (2020) open up a new era 
for personalized nutrition. This further confirms that investigating blood meta-
bolites is a plausible strategy when the effect of diet on health is of interest. 

Besides main endpoint of CVD, there have been several other studies pub-
lished using PREDIMED data, such as investigating dairy intake on plasma meta-
bolites and subsequently the association between these metabolites and risk of 
incident T2D (Drouin-Chartier et al., 2021), and detecting plasma metabolites 
associated with consumption of red wine (Hernández‐Alonso et al., 2019). Thus, 
studies such as PREDIMED are of great value in understanding better the 
mechanisms of how diet acts on health. 

Although an extremely valuable study, PREDIMED only investigated the effect 
of one specific dietary pattern over a limited amount of time with limited number 
of individuals. Pursuing such study in a longer term (>10 years) on a large sample 
investigating a wide variety of different dietary items would be rather complex 
and expensive. Therefore, some alternative ideas could be considered. Namely, 
one option would be the method of Mendelian Randomization, which is based on 
the concept that individuals were randomized into groups at conception and this 
information is in their genomes (Davey Smith and Ebrahim, 2003). A comprehen-
sive description of MR is given in chapter 1.4. Briefly, it enables to utilize the 
information from GWASs pursued in large biobanks in order to infer possibly 
causal relationships between variables of interest. GWAS is an observational 
method, where associations between the trait of interest and genetic variants are 
tested across the whole genome. It has gained rapid popularity in the last two 
decades, with GWAS Catalog currently reporting the results of more than 5000 
GWASs. In our study we use MR to assess the possible causal effect of dietary 
intake on blood metabolites. 

 
 

1.2. Food neophobia: characteristics and quantification 

Dietary items are usually consumed together and form dietary patterns or can be 
described by a broader dietary behavior. An example of the latter is the food 
neophobia (FN), which can result in a diet with low variety and thereby affect 
blood metabolic profile and disease outcomes. Food neophobia is a term that 



12 

characterizes the behavior in which individual is reluctant to taste or eat new or 
unfamiliar foods. FN is a highly heritable trait, with heritability estimates up to 
69% in adults (Knaapila et al., 2007) and up to 78% in children (Cooke, Haworth 
and Wardle, 2007; Faith et al., 2013). FN can be reliably measured with the Food 
Neophobia Scale (FNS) questionnaire (Pliner and Hobden, 1992). This question-
naire comprises of ten statements (Table 1) that have to be rated on a 7-point scale 
indicating how much the person agrees with the statement (1 – “strongly dis-
agree” up to 7 – “strongly agree”). Half of the statements reflect the lack of FN, 
therefore the points of these questions have to be reversed (the score subtracted 
from 8) prior to calculating the sum of the scores. The sum can range between 
10–70 with higher scores indicating more severe FN. 
 
Table 1. The statements in the Food Neophobia Scale questionnaire. 

Statement Reverse scoring 
I am constantly sampling new and different foods. + 
I don’t trust new foods.  

If I don’t know what is in a food, I won’t try it.  

I like foods from different countries. + 
Ethnic food looks too weird to eat.  

At dinner parties, I will try a new food. + 
I am afraid to eat things I have never had before.  

I am very particular about the foods I will eat.  

I will eat almost anything. + 
I like to try new ethnic restaurant + 

The score for each of the questions ranges from 1 to 7: 1 – “strongly disagree”, 2 – “moderately 
disagree”, 3 – “slightly disagree”, 4 – “neither agree, nor disagree”, 5 – “slightly agree”, 6 – 
“moderately agree”, 7 – “strongly agree”. When a question is marked with “reverse scoring”, 
the score is subtracted from 8 prior to calculating the final score.  

 
Previous research has shown FN to be associated with several factors, age, 
education level, living area and socioeconomic status among others (Tuorila et al., 
2001; Dovey et al., 2008; Meiselman, King and Gillette, 2010). Thus, these factors 
have to be taken into account when analyzing the association of FN with other 
traits. More specifically, FN has been shown to be lower in individuals with 
higher income, higher education and those living in urban areas (Tuorila et al., 
2001; Flight, Leppard and Cox, 2003; Meiselman, King and Gillette, 2010; 
Rabadán and Bernabéu, 2021). Furthermore, children tend to have higher FN 
compared to adults and the level of FN varies during childhood and adolescence 
(Dovey et al., 2008). However, this does not affect the analyses for the current 
thesis, since the focus is on adults, and FN has been considered to be relatively 
stable during adulthood (Dovey et al., 2008). The latter holds with an exception 
of some studies showing that among elderly population the levels of FN are 
increased (Tuorila et al., 2001; Hazley et al., 2022). 
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FN has been associated with reduced dietary quality (Knaapila et al., 2015; 
Rabadán and Bernabéu, 2021), dietary variety (Hazley et al., 2022) and lower 
adherence to the healthy Mediterranean diet (Predieri et al., 2020). Reduced 
dietary quality and lower adherence to the Mediterranean diet have in turn been 
associated with an elevated risk for chronic diseases such as coronary heart 
disease (CHD) and T2D, and inflammation (Esposito et al., 2004; Sofi et al., 
2010; Dilis et al., 2012; Kanerva et al., 2014; Ros et al., 2014; Jannasch, Kröger 
and Schulze, 2017). Therefore, higher FN may be a risk factor for CHD and T2D, 
but there are no studies investigating this hypothesis to date. Furthermore, as 
discussed in the previous chapter, blood metabolic profile is affected by dietary 
choices and indicative of health outcomes. However, the effect of FN on blood 
metabolic profile has not been investigated before. Thus, this thesis aims to 
examine the effect of FN on blood metabolites, CHD and T2D. 

 
 

1.3. NMR molecular profile  

Blood metabolic profile can be measured with different techniques. A popular 
method for metabolic profiling is the nuclear magnetic resonance (NMR) spec-
troscopy (Soininen et al., 2009; Würtz et al., 2017). This comprises mostly of 
lipid measurements, such as levels of cholesterol, phospholipids, free cholesterol 
and triglycerides in lipoproteins of different densities and sizes, fatty acids, 
apolipoproteins, amino acids and inflammation biomarkers. Consequently, the 
inferences in this thesis are limited to the metabolites measured by NMR and 
could be further broadened by future studies with metabolites measured by some 
other platform. 

NMR metabolites are predictive of a wide range of diseases, such as CVD 
(Würtz et al., 2015; Joshi et al., 2020; Vojinovic et al., 2021), T2D (Ahola-Olli 
et al., 2019), severe COVID-19 and severe pneumonia (Julkunen et al., 2021), and 
increased mortality (Fischer et al., 2014; Deelen et al., 2019). They are also asso-
ciated with dementia (Lee et al., 2018) and depression (Bot et al., 2020). Several 
randomized trials have investigated the effect of dietary interventions on meta-
bolic profile measured by NMR. For example, the effect of dietary counseling as 
intervention (Lehtovirta et al., 2018), effect of monounsaturated fatty acid rich 
diet, Mediterranean diet and saturated fatty acid rich diet (Michielsen et al., 
2019), effect of different dairy products (Hansson et al., 2019), and different fish 
oils (Rundblad et al., 2017). However, the sample sizes of such studies are rather 
small compared to large-scale biobank cohorts, while assessing very limited 
number of different dietary interventions. As stated above, one possible way to 
utilize large biobanks in order to draw possibly causal associations between long-
term dietary habits and blood metabolic profile would be by using the method of 
MR. Previously, MR has been successfully used for detecting potentially causal 
effect of body mass index (BMI) on NMR metabolites (Würtz et al., 2014), but 
no studies have yet utilized MR to assess the effect of a wide range of dietary 
traits on blood metabolites. 
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1.4. Mendelian Randomization:  
possible causal associations 

Mendelian Randomization is a term for instrumental variable analysis that aims 
to estimate causal effect of an exposure variable on an outcome variable, while 
using SNPs associated with the exposure variable as the instruments (see Figure 1 
for a schematic representation). In other words, MR can be seen in a way as a 
randomized trial, where alleles associated with exposure are randomized by 
nature. In the context of this thesis, the exposure variables are reflecting the 
dietary consumption, outcome variables are blood metabolites, and instrumental 
variables are SNPs associated with dietary traits. The latter can be detected with 
a GWAS of dietary items. 

 

 
Figure 1. Schematic representation of MR-analysis and accompanying assumptions. 
Green arrow indicates the assumption of an association that has to be present, and red 
arrows indicate the assumptions of associations that are not allowed to be present. Under 
the boxes written in gray are the more general terms. Inside the boxes written in black are 
general examples in the context of this thesis and in blue are more specific examples. 
 
 
In an epidemiological setting, unmeasured confounders could bias the effect 
estimation or create a spurious association, and consequently causality cannot be 
inferred. To illustrate it in simplified mathematics, let us assume, that there is a 
confounder C that has simultaneously an effect on exposure E and outcome O, 
while “error terms” u and v are independent of C: 

 
 𝐸 = 𝑎𝐶 + 𝑢 (1)

 
 𝑂 = 𝑏𝐶 + 𝑣 (2)
 
 
 

 

Genetic variant(s) 
associated with dietary 

consumption

Reported consumption of a 
dietay item Blood metabolite level

Environmental/behavioural 
confounders

Fish consumption
Omega-3 levelSNPs associated with 

fish consumption

Instrument Exposure Outcome
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It follows that: 𝑎𝐶 = 𝐸– 𝑢 
Therefore: 𝐶 = 1𝑎 𝐸– 1𝑎 𝑢 

 
Substituting confounder C in the outcome-variable equation (2) gives: 

 𝑂 = 𝑏𝑎 𝐸– 𝑏𝑎 𝑢 + 𝑣 
 

From this we can see that if there were an unobserved confounder C, it would 
create an association between outcome O and exposure E and we would not be 
able to obtain an unbiased estimate for the direct causal effect of exposure on 
outcome. However, in the case of instrumental variable estimation, when the 
assumption of no association between the instrument and confounder is satisfied 
(marked with red arrow on Figure 1), then the effect of instrument on E is not 
affected by C. To illustrate it mathematically, let us assume that there is an 
instrument Z that is independent of C (confounder) and v (error term for O). When 
we add Z to (1) we get: 

 𝐸 = 𝑎𝐶 + 𝑑𝑍 + 𝑢 (3)
 
which we could simplify as:  
 𝐸 = 𝑑𝑍 + 𝑢∗ (4)
 
where 𝑢∗ = 𝑎𝐶 + 𝑢 is independent of Z. Further, we assume that O does not 
directly depend on Z (marked with red arrow on Figure 1). Now, suppose that 
there is a causal effect of E on O, marked with 𝑔: 
 𝑂 = 𝑔𝐸 + 𝑏𝐶 + 𝑣 
 
Then substituting E in this formula with E from (3) leads to: 
 𝑂 = 𝑔ሾ𝑎𝐶 + 𝑑𝑍 + 𝑢ሿ + 𝑏𝐶 + 𝑣 = 𝑔𝑎𝐶 + 𝑔𝑑𝑍 + 𝑔𝑢 + 𝑏𝐶 + 𝑣 
 
which we could simplify as:  
 𝑂 = 𝑔𝑑𝑍 + 𝑤∗ (5)
 
where 𝑤∗ = 𝑔ሺ𝑎𝐶 + 𝑢 + 𝑏ሻ + 𝑣 is independent of Z.  
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Now, when we regress E on Z (see (4)), we estimate 𝑑 as 𝑑መ, and when we regress 
O on Z (see (5)), we estimate 𝑔𝑑෢ . From these two estimates we can estimate 𝑔 as: 
 𝑔ො = 𝑔𝑑෢𝑑መ  (6)

 
Here 𝑔ො is the estimated causal effect of E on O and is not confounded by C. Thus, 
instrumental variable regression allows us to estimate unbiasedly causal effect of 
E on O even when there is an unobserved confounder C affecting E and O.  

As RCTs for dietary variables are often too expensive, burdensome or 
unethical to conduct and conventional observational studies do not allow causal 
inferences because of unmeasurable confounding, MR is a promising and cost-
effective alternative for disentangling causal association structures. Moreover, 
MR can prove extremely useful as a step between an observational association 
study and an RCT by helping to find potentially causal relationships while ruling 
out the ones where there likely is none. This, on the one hand, draws attention to 
potentially causal associations and on the other hand helps to save resources by 
narrowing down the number of potential associations to be investigated with 
RCTs. 

One example of the latter is the case of HDL-C and its potential cardio-
protective effect. Epidemiological studies have shown that low HDL-C is 
associated with higher CVD risk (Toth et al., 2013). Since this had a potential to 
help prevent CVD, clinical trials with HDL-C raising drugs were conducted to 
investigate the potentially beneficial effect of HDL-C on cardiovascular out-
comes. The results of these RCTs were that despite the medications successfully 
raising HDL-C levels, there was no clinical benefit for cardiovascular health 
(Barter et al., 2007; The AIM-HIGH Investigators, 2011). Later, MR studies 
showed that indeed, HDL-C does not seem to have any causal beneficial effect 
on CVD (Burgess and Harshfield, 2016; Vitali, Khetarpal and Rader, 2017). 
Thus, by conducting such MR study prior to clinical trial could save time, money, 
and individuals from possible harmful side-effects. An example where ran-
domized trials can be unethical, but MR could still be used, is investigating the 
effects of alcohol or smoking on health (Rosoff et al., 2019). Now, that the results 
of an overwhelmingly large amount of GWASs are available, MR could in 
several cases be pursued prior to RCT, or for assessing the possible causality of 
associations detected with observational studies. 

In order to pursue MR, the SNPs significantly associated with the exposure 
variable need to be identified using a large-scale GWAS. For the SNPs to be valid 
instruments, three assumption need to be satisfied: “1) The variant is associated 
with the exposure; 2) The variant is not associated with any confounder of the 
exposure-outcome association; 3) The variant does not affect the outcome, except 
possibly via its association with the exposure” (Burgess and Thompson, 2015, 
p. 29).  
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To bring an example of these assumptions in the context of the current thesis, 
let us assume that we are interested whether fish consumption has a causal effect 
on omega-3 fatty acid levels (see Figure 1). In this case our valid instruments 
would be the SNPs that are: 1) associated with fish consumption; 2) not asso-
ciated with any confounders of the fish consumption – omega-3 association (an 
example of confounder: doctor telling the person to simultaneously consume fish 
and take omega-3 supplement); 3) affecting the omega-3 levels only via fish 
consumption, not via other pathways or directly. Continuing with this example, 
if these assumptions hold then the instrument can be seen as a variable that 
randomizes large groups of individuals to be prone to consume more or less fish. 
Consequently, if the group of individuals who are “randomized” to consume more 
fish also have significantly higher omega-3 levels compared to the group that are 
prone to consume less fish, we can infer that fish consumption causally raises 
omega-3 levels. In brief, under the assumptions stated, a statistical association 
between the instrument and the outcome can only be present, if both, an effect of 
the instrument on the exposure and a causal effect of the exposure on the outcome 
are present. 

 
 

1.4.1 Methods of Mendelian Randomization 

Several methods can be used for estimating causal effects with MR. Suppose we 
are interested in using MR to estimate the effect of variable X on variable Y. In 
this example, our instruments are the SNPs associated with variable X. When 
there is only one SNP present as an instrument, then the effect of the exposure on 
the outcome can be estimated with the ratio estimator, also called Wald ratio, as 
(Burgess and Thompson, 2015): 

 
 𝛽መ௑௒ = 𝛽መ௒𝛽መ௑  (7)

 
where 𝛽መ௑௒ represents the estimated causal effect of exposure on outcome, 𝛽መ௑ is 
the regression coefficient from linear regression of the instrument on exposure 
and 𝛽መ௒ is the regression coefficient from linear regression of the instrument on 
outcome (similarly to (6)). 

However, since the assumption of pleiotropy (assumption number 3) cannot 
be assessed when only one or two SNPs are present, there are more aspects that 
need to be taken in account. With a single SNP as an instrument, the MR estimator 
will be biased if the assumption of no pleiotropy is violated, in other words, if the 
instrument either has a direct causal effect on the outcome itself or on any of the 
confounders. Possible option to mitigate this problem is to use several instru-
ments simultaneously and combine their effects. This way, one is not dependent 
on only one instrument. One popular option for using several SNPs as instruments 
is the Inverse-Variance Weighted (IVW) method that combines the ratio estimates 
(Burgess, Butterworth and Thompson, 2013). Suppose there are m instruments, 
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where 𝛽መ௒௞ and 𝛽መ௑௞ are the estimated regression coefficients for the k-th instru-
ment from outcome and exposure regressions, respectively. To combine the esti-
mates, the fixed-effect meta-analysis idea is used, where estimates 𝜃෠௞ for para-
meter 𝜃 are combined as (Harrer et al., 2021): 

 
 𝜃෠ = ∑ 𝜃෠௞ ∗ 𝑤௞௞∑ 𝑤௞௞  

 
(8)

where 𝑤௞ represents the weight of corresponding estimate 𝜃෠௞ and can be written 
as 1/𝜎௞ଶ. The variance of a ratio estimate is (Burgess and Thompson, 2015): 
 
 𝜎௒௞ଶ𝛽መ௑௞ଶ  

 
(9)

When substituting in equation (8) the 𝜃෠௞ with the ratio estimate from (7) and with 
the corresponding variance (9), we get the IVW estimate for the ratio estimates: 
 

𝛽መூ௏ௐ = ∑ 𝛽መ௒௞𝛽መ௑௞ ∗ 𝛽መ௑௞ଶ𝜎௒௞ଶ௞∑ 𝛽መ௑௞ଶ𝜎௒௞ଶ௞ = ∑ 𝛽መ௒௞𝛽መ௑௞𝜎௒௞ଶ௞∑ 𝛽መ௑௞ଶ𝜎௒௞ଶ௞ =  ∑ 𝛽መ௒௞𝛽መ௑௞௞ 𝜎௒௞–ଶ∑ 𝛽መ௑௞ଶ 𝜎௒௞–ଶ௞  

 
Using the IVW estimate can help mitigate the issue of a biased estimate due to 
pleiotropy by combining the estimates of several SNPs, but it does not eliminate 
the problem of pleiotropy itself. One option to overcome the latter issue is to use 
MR-Egger method, which tackles the bias caused by pleiotropy as similar to so-
called small study bias (Bowden, Davey Smith and Burgess, 2015). In this case 
the intercept of the meta-analysis of several instruments is not constrained to zero. 
Consequently, when the intercept is estimated to be significantly different from 
zero, there is an indication of pleiotropy and effect estimate from MR-Egger 
regression should be used as the causal effect estimate (Bowden, Davey Smith 
and Burgess, 2015). However, although the MR-Egger estimate is more robust 
than the IVW estimate, it suffers from power issues, and therefore can be con-
sidered more as a sensitivity analysis method rather than the main method for MR 
analysis. 

 
 

1.4.2 Two-sample Mendelian Randomization 

The methods described above – Wald ratio, IVW, MR-Egger – can be used in the 
Two-sample Mendelian Randomization (2-sample MR) setting. This means that 
we do not need all three variables (instrument, exposure, outcome) to be available 
as individual-level data in one cohort. In contrary, the 2-sample MR can be 
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performed by utilizing GWAS summary statistics from two different non-over-
lapping samples, whereby the sizes of these samples do not need to be equal 
(Pierce and Burgess, 2013). In this case, the summary statistics from the exposure 
GWAS (in the current context, the dietary item GWAS) and outcome GWAS 
(here, a GWAS of metabolites) can be utilized to obtain a causal effect estimate 
of exposure on outcome (dietary item on a metabolite). To continue with the 
previous example of fish consumption and omega-3, the simplified workflow 
would be the following: detect the SNPs that are significantly associated with fish 
consumption; extract the effect estimates for these SNPs from the fish con-
sumption GWAS; extract the effect estimates for the same SNPs from the omega-
3 GWAS. If we were to look only at one instrument at a time, the effect estimate 
from the omega-3 GWAS divided by the effect estimate from the fish GWAS 
would be the causal estimate (Wald ratio). 

As discussed in the previous section, when there is more than one instrument 
available, one can use the IVW 2-sample MR method, whereas MR-Egger could 
be used as a sensitivity analysis in case of potential pleiotropy. Furthermore, there 
are several other 2-sample MR methods developed that can be used as sensitivity 
analyses. These are for example: MR-Radial (Bowden et al., 2018), which helps 
to detect outlying SNPs and consequently mitigate the problem of pleiotropy; 
MR-Median (Bowden et al., 2016), which can estimate the effect when up to half 
of the information comes from invalid instruments; and MR-RAPS (Zhao et al., 
2019), which can handle weak instruments. All these 2-sample MR methods can 
be implemented using the MR-base via the R-package TwoSampleMR (Hemani 
et al., 2018, https://www.mrbase.org/). 

As stated, an important prerequisite for performing such analyses are valid 
instruments. In the current context these would be the SNPs significantly asso-
ciated with various dietary consumption traits in the dietary items GWAS. How-
ever, until recently there were no such studies available. To this end, we detected 
several SNPs associated with various dietary items in UK Biobank (UKBB) in 
our previous study (Pirastu et al., 2019). There are several aspects that need to be 
considered when one wants to obtain valid dietary SNPs. Since the ideas of how 
to avoid possible biases when valid dietary SNPs are of interest is important in 
the context of current thesis, a brief summary of some methodological aspects 
based on Pirastu et al. (2019) is presented in the next section. 

Lastly, another prerequisite for assessing the effect of diet on blood meta-
bolites with 2-sample MR is a GWAS for NMR metabolites. For this we use the 
summary statistics of the GWAS of 123 NMR-metabolites by Kettunen et al. 
(2016). 

 
 

1.4.3 Valid instruments for dietary traits 

MR has been successfully implemented in nutritional epidemiology for assessing 
the possibly causal effects of several dietary phenotypes, such as for example the 
consumption of alcohol (Chen et al., 2008; Andrews, Goate and Anstey, 2020; 
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Larsson et al., 2020), coffee (Nordestgaard, Thomsen and Nordestgaard, 2015; 
Lee, 2018) and milk (Bergholdt, Nordestgaard and Ellervik, 2015; Yang et al., 
2017). However, up until recently there was a lack of large-scale GWASs of 
dietary traits. This is an issue also highlighted in a review assessing MR scenery 
in nutrition research (Larsson, 2021). To fill this void, two large studies reporting 
GWAS significant SNPs of a wide range of dietary items in the UKBB were 
recently published (Pirastu et al., 2019; Cole, Florez and Hirschhorn, 2020). 
Besides reporting a variety of dietary SNPs and assessing subsequently the effect 
of diet on health, both of these studies detected reverse causality from health to 
diet, such as CHD and education affecting dietary choices. An important 
difference in the methodology of these two papers is that Pirastu et al. (2019) 
accounted for the bias originating from reverse causality by correcting the effect 
estimates for potential health-related confounders. 

When identifying SNPs associated with dietary items, there are several pitfalls 
to account for. Firstly, the biases resulting from self-reported dietary data, such 
as recall bias and reporting bias, and lack of accuracy. And secondly, mediation 
of instrument-exposure relationship by health-related traits that dietary advice is 
given to. Moreover, these mediating traits could potentially affect the reporting 
of dietary consumption while not affecting actual consumption. This would mean 
that we would obtain an invalid instrument, since the SNP would actually not be 
associated with the dietary consumption trait (Pirastu et al., 2019). In order to 
mitigate these issues, Pirastu et al. (2019) proposed the idea of corrected-to-
uncorrected ratio (CUR). The main goal of using CUR is to try to identify the 
SNPs that have only the direct effect on the dietary traits of interest and are not 
mediated via the traits that cause changes in the reporting of dietary consumption. 

The idea of CUR is that if a SNP is directly associated with a dietary item, 
then its effect estimate should not alter when adjusting for potential confounders. 
For the latter, the following list was considered: BMI, diastolic and systolic blood 
pressure, T2D, CHD, ulcerative colitis, Crohn’s disease, educational attainment, 
LDL-C, HDL-C and triglycerides. Further, the ratio between the adjusted (cor-
rected) estimate and raw (uncorrected) estimate is expressed as CUR. When this 
ratio is close to 1, it means that the corrected and uncorrected effects do not 
largely differ and therefore the SNP effect of dietary item is direct and such SNP 
can thus be considered a valid instrument (Pirastu et al., 2019). Furthermore, the 
issue of recall bias with Food Frequency Questionnaire (FFQ) data has been 
previously tackled by Bradbury et al., (2018) in UKBB, showing that FFQ was 
able to reliably rank individuals’ intakes of main food groups. 

Thus, using the results from Pirastu et al. (2019) and  Kettunen et al. (2016) 
in a 2-sample MR setting, the possibly causal effect of diet on blood metabolites 
can be detected. In addition, by observing the effect of FN on blood metabolites, 
the effect of a systematic lack of dietary variety can be observed. When elabo-
rating further, blood metabolites can be indicative of diseases or general health 
status. The latter can be examined when assessing whether blood metabolites can 
be used for describing individual’s biological age and whether this BA is indi-
cative of health outcomes. 
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1.5. Biological age and omics aging clocks 

Age as a phenotype that is inevitably affecting every human being, is a risk factor 
for a wide range of diseases and health outcomes. Several observable changes 
often accompany higher chronological age, such as lowered physical strength, 
greying hair, worsening posture and wrinkles. Even though every person encoun-
ters such changes, these phenotypes vary notably between individuals with same 
chronAge. Further, it has been shown that aging is associated as well with mole-
cular markers, such as cellular senescence, telomere shortening, loss of pro-
teostasis, and genomic instability (López-Otín et al., 2013). Much alike as the 
phenotypes that person can easily observe, these molecular changes vary between 
individuals with same chronAge. Based on the fact that individuals with the same 
chronAge vary greatly in terms of age-related diseases and mortality, it has been 
hypothesized that there is an underlying BA, that is characterized by molecular 
hallmarks and that affects age-related disease risk (Levine et al., 2018). Con-
sequently, BA might be even more indicative of disease risk than chronAge, and 
unlike chronAge it might be reversible (Horvath et al., 2020; Noroozi et al., 
2021). 

Several endeavors using a variety of biomarkers and statistical methods have 
been pursued in order to construct models that could describe the BA. These 
models are often called the omics clocks (OCs). From a methodological point of 
view, OCs that aim to track BA are usually trained on chronAge, while the goal 
is to identify the set of omics variables with corresponding weights/coefficients 
that best predict chronAge. This is often done using machine learning methods, 
more precisely penalized regression methods. One of the most popular approaches 
for constructing an omics clock is the elastic net regression (Zou and Hastie, 
2005) that combines the ridge regression and the lasso regression methods. To 
put it in a nutshell, assessing BA with an OC built with elastic net regression 
serves the aim of detecting a set of biological measurements and corresponding 
parameters that would result in a BA estimation that would correlate strongly 
with chronAge. 

As stated, such models using various types of omics data to estimate BA are 
called omics clocks. Consequently, the BA estimates can be called omics clocks 
ages (OCAs). The first OCs describing BA were the epigenetics clocks by 
Hannum (Hannum et al., 2013) and Horvath (Horvath, 2013). These were based 
on the DNA methylation (DNAme) data across the genome. When it was shown 
that the Horvath’s clock associates with mortality (Marioni et al., 2015), it was 
confirmed that such clock is a meaningful measure of BA. After the first epi-
genetics clocks by Hannum and Horvath were published, several other OCs that 
aim to track BA have been designed using various types of omics data, such as 
telomere length (Zhang et al., 2014; Jansen et al., 2021), proteomics (Enroth et 
al., 2015; Lehallier et al., 2019, 2020; Jansen et al., 2021), glycomics (Krištić et 
al., 2014) and recently as well metabolomics (van den Akker et al., 2020; Jansen 
et al., 2021). The study by van den Akker et al. (2020) used the data of 56 NMR 
metabolites of 18 716 individuals from 24 community- and hospital-based 
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cohorts from Dutch Biobanking and BioMolecular Resources and Research 
Infrastructure in the Netherlands (BBMRI.nl) to train OC named metaboAge. The 
correlation between the predicted metaboAge and chronAge was estimated in the 
test-set to be around 0.65 (van den Akker et al., 2020). The study by Jansen et al. 
(2021) used the data of 231 NMR metabolites of 2910 individuals from the 
Netherlands Study of Depression and Anxiety cohort to train a metabolomic OC 
that was estimated to have a correlation coefficient of 0.7 with chronAge. The 
performance of neither of these clocks have yet been assessed outside of initial 
study populations, and current author is not aware of any other published OCs 
based on NMR blood metabolites. 

Since BA can be measured using various different omics assays, which can in 
turn be indicative of different bodily systems, it has been pondered whether there 
is one single BA for a person measured with varying accuracy depending on the 
omics data or whether there are actually several different BAs that refer to dif-
ferent bodily systems (Belsky et al., 2017; Jylhävä, Pedersen and Hägg, 2017; 
Cole et al., 2019; Jansen et al., 2021). One option to assess whether an OC refers 
to specific aspects of BA is to assess the difference between OCA and chronAge, 
which we refer to as omics clock age acceleration (OCAA). Thus, if a person’s 
OCA is 45 and chronAge is 40, then the OCAA is 5 – therefore indicating that 
the person has similar functional capacity and age-related disease risks as the 
average 5 calendar years older individual. However, if different OCs track dif-
ferent underlying BA, then this comparison would only hold for that specific 
bodily system. 

Further, if there are several underlying BAs, then looking at the correlation 
between OCAAs of different OCs would tell us whether two OCs describe BAs 
referring to same or different bodily systems. In theory it is possible for example, 
that one OC refers more to cardiovascular health, while other refers more to general 
immune system. For example, the difference between NMR-metabolomics based 
metaboAge and chronAge was associated with several cardiometabolic risk factors 
and diseases, such as BMI, total cholesterol, HDL-C, Triglycerides, alcohol 
usage, high-sensitivity C-reactive protein (CRP), prevalent metabolic syndrome, 
prevalent T2D, incident cardiovascular events, vascular mortality, and all-cause 
mortality (van den Akker et al., 2020). Yet, it is important to note that the incident 
cardiovascular outcomes and mortality were assessed in a cohort of elderly adults 
(70–82 years) at risk of CVD (van den Akker et al., 2020) and therefore warrant 
further confirmation in other cohorts prior to generalizing to wider public. Further-
more the metabolomic aging (excess age of metabolomics clock over chronAge) 
in Jansen et al. (2021) was found to be associated with BMI, cardiometabolic 
diseases and metabolic syndrome. Thus, based on current evidence, NMR meta-
bolites-based clock is potentially indicative of cardiometabolic-related health and 
aging. 

The comparison of other OCs with NMR-based OC is very limited. To date 
there is only one study comparing NMR-based clock with BAs estimated based 
on telomere length, DNAme, gene expression and proteomics (Jansen et al., 2021). 
They observed a small correlation of 0.19 between metabolomic and proteomic 
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aging, whereas correlations with other OCs were negligible. Furthermore, studies 
have shown that the correlations between OCAAs of different OCs tend to be 
rather modest, suggesting that they are indicative of different aspects of aging 
(Belsky et al., 2017; Jansen et al., 2021). However, it has remained unanswered 
how NMR-based OC compares with a wider range of OCs, and how the NMR-
based OCs perform in other populations. Further, since there is limited evidence 
assessing the effect of OCAA of NMR-metabolomic clock on health outcomes, 
studies confirming previous findings and detecting new aspects are instrumental 
for assessing the utility of such clock as an indicator of the health of specific 
bodily systems. 

 
 

1.6. Future directions 

The developments of recent years have brought countless options for assessing 
the interplay between diet, blood metabolites, and health. With biobanks continu-
ously growing larger and gathering more data, subsequently allowing GWASs 
with larger samples, several dietary GWASs have been recently published (Cole, 
Florez and Hirschhorn, 2020; Meddens et al., 2021; May-Wilson et al., 2022; 
Merino et al., 2022). Consequently, this opens new options for following MR 
studies regarding the effect of diet. 

Furthermore, the affordability of metabolite profiling opens up a wide range 
of research options. NMR is rather cost-effective way (Würtz et al., 2017) (current 
price 18€ per sample, https://research.nightingalehealth.com/key-benefits-nightin-
gale) of quantifying the metabolic profile and can thus prove useful when tracking 
changes in metabolome or assessing current health status is of interest. In such 
way the NMR metabolic profile is utilized for example by Nightingale Health 
(https://nightingalehealth.com/). Metabolic profile might have the potential in 
tracking the effect of dietary changes on health. For example, a person with low 
dietary variety could receive blood metabolic analysis prior to starting treatment 
(diet change) and after following new diet for 6 months. In this way the potential 
benefit of dietary changes could be better quantified and such data can be utilized 
for further research that aim to enhance people’s health via dietary changes. On 
the other hand, seeing the actual measured benefit in blood metabolic profile 
could motivate people to follow dietary advice. Thus, assessing the effect of diet 
on NMR metabolites can provide basis for future intervention studies and dietary 
recommendations. 

The studies regarding FN have been with rather limited sample size. Probably 
this is the reason why to date no GWAS reporting the results of FN is available. 
Since RCTs assessing the effect of FN on health are not feasible due to the nature 
of it, the GWAS of FN would have much utility in further investigating the 
possibly causal effects of FN on health using 2-sample MR. The validated FNS 
questionnaire is rather short and simple with only 10 statements that have to be 
rated on a 7-point scale. Moreover, FN has shown to be highly heritable trait 
(Cooke, Haworth and Wardle, 2007; Knaapila et al., 2007; Faith et al., 2013), 
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which proves the potential of detecting GWAS significant hits. Adding the FNS 
questionnaire to the data measured in any of the large biobanks, such as UKBB 
or Estonian Biobank (EstBB), GWAS and subsequent downstream analyses 
would become possible. This would help to better assess how severe the effect of 
FN is on health and could possibly highlight the need to treat FN. 

Another exciting field is the one of OCs. Especially of interest are the 
associations between OCAA and dietary traits. Even though such studies are 
scarce, there are a few papers reporting that OCAA of DNAme-based clocks is 
associated with fish intake and blood carotenoid levels (indicator of fruit and 
vegetable intake) (Quach et al., 2017), and heavy alcohol consumption (Beach et 
al., 2015; Luo et al., 2020). Moreover, even more enthralling is the question 
whether it is possible to reduce BA with dietary interventions. This question has 
been recently tackled with an RCT showing that one-year Mediterranean diet was 
able to significantly reduce BA measured by DNAme-based Horvath’s ageing 
clock (Gensous et al., 2020). Thus, there is evidence of diet affecting BA. How-
ever, current author is not aware of any studies assessing how diet affects NMR-
metabolomics based BA and corresponding OCAA. Since NMR-metabolomics 
based OCs have been associated with cardiometabolic risk factors and diseases 
(van den Akker et al., 2020; Jansen et al., 2021), there might be considerable 
scope in assessing the interplay between diet and NMR-based BA. Of greatest 
interest would be whether it is possible to reduce such BA with dietary inter-
ventions. 

In summary, the developments in -omics research can potentially contribute to 
better understanding of the causal effects of dietary choices on health, removing 
some of the existing controversies and paving paths towards more efficient dietary 
interventions. 
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2. AIMS OF THE STUDY 

The aim of this thesis is to examine the interplay between diet, blood metabolites, 
and health in order to shed more light to the possible mechanisms of how dietary 
choices affect health. 
 
To fulfill that aim, the specific objectives of the thesis are: 

• To establish possibly causal relationships between dietary traits and blood 
metabolites, using the framework of Mendelian Randomization 

• To investigate how systematic lack of dietary variety expressed as food 
neophobia affects blood metabolic profile, type II diabetes and coronary heart 
disease. 

• To assess to what extent the biological age constructed based on blood meta-
bolic profile correlates with chronological age, and whether the excess of such 
biological age over the chronological age is predictive of specific disease 
groups and subsequently indicative of the health of a specific bodily system. 
Furthermore, how the biological age based on blood metabolites compares to 
the biological ages that are based on proteomics and DNA methylation data 
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3. RESULTS AND DISCUSSION 

3.1. Mendelian randomization identifies  
the potential causal impact of dietary patterns  

on circulating blood metabolites (Ref. I) 

The aim of this paper was to detect the potentially causal effects of dietary con-
sumption traits on blood metabolic profile measured by NMR. The main method 
of this paper was the 2-sample MR, which utilized the data of two different large 
GWASs. The results of this study provide grounds for future RCTs that aim to 
establish the effect of various dietary items on blood metabolome.  
 

 
3.1.1 Description of cohorts and methods 

The MR method is more thoroughly described in chapter 1.4. Briefly, the instru-
ments for using in MR were obtained from a GWAS of 25 individual and 15 
principal-component (PC) dietary traits performed in UKBB (Pirastu et al., 
2019). The estimates for the same SNPs on the outcomes (the blood metabolites) 
were obtained from a large GWAS of 123 NMR blood metabolites performed in 
Estonia and Finland (Kettunen et al., 2016). The workflow of performing the 
analysis for this paper is described in Figure 2 (adapted from Ref. I Figure 1). This 
figure presents the relevant steps performed and reported in previous studies 
(Kettunen et al., 2016; Pirastu et al., 2019), and the main 2-sample MR methods 
along with sensitivity analyses methods performed in Ref. I. 

The valid instruments were available for 25 individual dietary traits: con-
sumption of beef, pork, processed meat, poultry, lamb, beer, champagne/ white 
wine, red wine, spirits, tea, ground coffee, decaffeinated coffee, instant coffee, 
water adjusted for coffee, bread, cheese, cooked vegetables, salad, dried fruit, 
fresh fruit, non-oily fish, oily fish, salt, and vegetarianism and drink temperature. 
Since dietary items are often consumed together, we also looked at 15 PC-traits 
that were obtained in Pirastu et al. (2019). To obtain PCs, items were first 
clustered together using iCLUST hierarchical clustering algorithm (Revelle, 
1979; Revelle and Zinbarg, 2009) on genetic correlation matrix of the dietary 
traits. Thereafter, the clusters were formed based on splitting the resulting tree 
dendrogram into several layers. The PC-traits obtained and used for later analysis 
were: Fish PC1, Fruit PC1, Vegetables PC1, Alcohol PC1-2, Coffee PC1, Meat 
PC1, Healthy PC1-3, Psychoactive PC1-2, All PC1-3. Some examples of the 
composition of the PC-traits: oily fish and non-oily fish were clustered together 
as Fish PC1 describing the overall fish consumption, while different categories 
of coffee and alcohol were clustered together as psychoactive drinks. The 
composition of each PC-trait can be viewed in Ref. I Figure 2. Due to splitting 
the tree dendrogram to several layers, one item can participate in PCs from 
different layers. For example, beer was included in Alcohol PCs, Psychoactive 
PCs and All PCs (the latter includes all dietary items of interest). 
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Figure 2. Workflow and selection of instrumental variables. Black boxes describe the 
relevant steps performed and reported in previous studies (Kettunen et al., 2016; Pirastu 
et al., 2019) and green box describes the 2-sample MR main methods and sensitivity 
analyses pursued in Ref. I. 

 
After defining groups based on clustering, the next step was to perform PC-
analysis for each group in order to obtain the SNP effect estimates for the PC-
traits. For that, the PC-analysis was applied on the genetic correlation matrix of 
the traits that comprised the corresponding group. Subsequently the SNP effects 
for the PC-traits were estimated based on the SNP effects on each of the 
components and corresponding loadings from PC-analysis. 

The loadings of the PC-traits usually help to interpret the meaning of the cor-
responding PC. For the main PC traits of interest, the loadings can be observed 
from Ref. I Figure 3. For many of the PC-traits the loadings are with the same 
direction and self-explanatory. For example, the Alcohol PC1 has positive 
loadings from all alcohol-related traits. This means that if a SNP has a positive 
effect on any of the alcohol traits, it has also a positive effect on the Alcohol PC1. 
However, some PCs were more difficult to interpret. For example, All PC1 has 
positive loadings from fish, fruits, salad, vegetables and negative loadings from 
different meats, coffees and alcohols. Therefore, one could interpret All PC1 as 
partly describing healthy-unhealthy axis of dietary consumption, with higher 
values referring to more healthy diet in general. 

The GWAS results of the traits described above provided instruments for 
pursuing 2-sample MR. More precisely, for using as instruments we chose the 
independent (r2<0.001) SNPs that were significantly (p-value < 5 × 10–8) 
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associated with the traits in the dietary (the exposure) GWAS (Pirastu et al., 
2019), whereas additionally the CUR=1±0.05 filtering was applied (see section 
1.4.3 for description of CUR). The effect estimates for the same SNPs for the 
metabolites (the outcomes) were obtained from the GWAS results of 123 
metabolites in 24 925 individuals (Kettunen et al., 2016). 

We used IVW method as the main method for the 2-sample MR analysis (see 
section 1.4.1 for description of MR methods). To address the issue of horizontal 
pleiotropy, we used the method of MR-Radial (Bowden et al., 2018). As sensi-
tivity analyses we used MR-Median (Bowden et al., 2016), MR-RAPS (Zhao 
et al., 2020), and MR-Egger (Bowden, Davey Smith and Burgess, 2015). In a 
situation where only one instrument was available, we used the method of Wald 
ratio. 

We corrected the results for multiple testing by using the false discovery rate 
(FDR<0.05) via Storey’s q-values (Storey, 2003). After this correction, 413 po-
tentially causal relationships remained statistically significant. Most of the signi-
ficant effects of dietary items on blood metabolites were related to atherogenic 
lipoproteins: very-low density lipoproteins (VLDL), intermediate-density lipo-
proteins (IDL), and low-density lipoproteins (LDL). These all contain Apolipo-
protein B, a particle whose higher amount is considered to be indicative of 
elevated CVD risk (Leslie, 2017; Ference et al., 2019). The heatmaps describing 
the results of the metabolites that showed significant associations with the food 
items or groups are depicted in Ref. I Figure 4 and Ref. I Figure 5. In these figures, 
darker red corresponds to stronger positive association whereas darker blue corre-
sponds to stronger negative association. The FDR-significant results are marked 
with “*” in the middle of the corresponding square. The most interesting findings 
are described in the following subsections. 

 
 

3.1.2 Alcohol and coffee 

Very clear patterns emerged regarding alcohol and coffee (Ref. I Figure 4). It can 
be noted that for most of the atherogenic lipoproteins measurements alcohol and 
coffee posed similar elevating effects, especially with regards the components of 
IDL and LDL particles and serum total cholesterol. However, the association 
patterns were clearly distinct for VLDL-related measurements: the components 
of medium VLDL and small VLDL particles were significantly affected by coffee 
consumption, whereas no clear effect by alcoholic beverages were observed. 
Moreover, even the effect directions of the two groups of drinks were not 
coherent, indicating that this difference is not due to power issues. In this case 
Coffee PC1 shows elevating effect, whereby the betas of all the coffee subgroups 
agree with the direction of the effect. One reason for such effect of coffee on 
VLDL-related measurements could be that cafestol – a common ingredient in 
coffee – has been shown to increase VLDL particle assembly rate in the liver (de 
Roos et al., 2001). Therefore, this mechanism could be specific to coffee, while not 
applying to alcohol. Furthermore, our results replicate the previously consistently 
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shown LDL-C elevating effect of coffee (Poole et al., 2017). In contrary, the 
effect of coffee and alcohol on IDL particles – where we saw consistent strong 
elevating effects – has previously not been shown, and therefore our results 
provide basis for future research aiming to understand the effect of coffee and 
alcohol on atherogenic lipoproteins. 

An interesting outcast appeared when examining the results of alcoholic 
beverages and levels of high-density lipoprotein (HDL) related measurements 
and 22:6 docosahexaenoic acid (DHA) (Ref I Figure 5). Namely, beer was clearly 
the odd one out compared to other alcoholic beverages by having significant posi-
tive effects on several HDL-related measurements and DHA. This pattern was 
especially clear in terms of DHA, which is a subgroup of omega-3 fatty acids. 
DHA has been shown to possess anti-inflammatory properties (Calder, 2010) and 
be protective of CVD (Bernasconi et al., 2021). While DHA is considered 
beneficial for cardiovascular health, the evidence regarding the effect of HDL-
related measurements is conflicting. Several epidemiological and observational 
studies have proposed that moderate alcohol intake could have a cardioprotective 
effect (Brien et al., 2011; Ronksley et al., 2011) and this positive effect has 
mostly been associated with elevated HDL-C levels (Brien et al., 2011). Even 
though our results seem to indicate a positive impact of alcohol on HDL-related 
measurements, with the effect of beer being statistically significant, it is currently 
not possible to confirm that this would have a beneficial outcome on cardio-
vascular health since the results regarding the actual benefit of higher HDL-C on 
cardiovascular health are conflicting (Briel et al., 2009). While recent epidemio-
logical studies demonstrate that HDL-C has a U-shaped association with CVD, 
the actual role of HDL in the context of CVD is unclear (Casula et al., 2021; Yi 
et al., 2022). 

It is important to note that our results regarding alcohol and the lipid profile 
agree with another recent MR-study (Rosoff et al., 2019), while elaborating the 
findings further in terms of alcohol subgroups. In addition, our findings conflict 
with some observational studies (Würtz et al., 2016; Du et al., 2020) with regards 
to the effect on IDL-related measurements. 
 
 

3.1.3 Vegetarianism 

Our results showed that vegetarianism raises the levels of omega-6 fatty acids 
and 18:2 linoleic acid (LA), which is a subgroup of omega-6 fatty acids. Of note, 
these results were based only on one instrument and therefore one should remain 
cautious with a definite interpretation. However, the effect of vegetarianism on 
omega-6 fatty acids confirms a previous observational finding by Kornsteiner, 
Singer and Elmadfa (2008), and expands the knowledge further by proposing 
causality. Moreover, the elevating effect of vegetarianism on 18:2 linoleic acid 
has been previously shown with a randomized clinical trial on a subset of 
individuals with T2D (Kahleova et al., 2013), whereas our findings propose that 
this association holds as well for the general population. 
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3.1.4 Discussion 

The aim of Ref. I was to detect potentially causal relationships between diet and 
blood metabolites. A total of 413 detected relationships remained significant after 
FDR-correction. These findings provide a good starting point for future RCTs 
that aim to establish causal effects of diet on health. In addition, our results demon-
strate the utility of MR in the context of dietary studies by replicating previously 
known causal relationships, such as positive effect of oily fish consumption on 
omega-3 fatty acids and DHA (Horrocks and Yeo, 1999) and the lowering effect 
of vegetarianism on LA (Kahleova et al., 2013), while conflicting with previous 
observational findings of alcohol on IDL-related measurements (Würtz et al., 
2016; Du et al., 2020). To the best of our knowledge, our results did not conflict 
with any previous RCTs. Consequently, our results not agreeing with some obser-
vational studies while confirming previously known causal relationships validates 
the utility of MR approach for dietary studies and demonstrates its strength as an 
intermediate step between observational studies and clinical trials.  

In addition, we detected several associations that are of interest in health con-
text. The results regarding alcohol and coffee on the levels and constituents of 
VLDL, IDL and LDL can be important in the context of cardiovascular health. 
Higher levels of atherogenic lipoprotein particles and their components is 
associated with elevated risk for several cardiovascular diseases (Carmena, Duriez 
and Fruchart, 2004; Ference et al., 2017) and is therefore part of a less favorable 
lipoprotein profile. However, previously published results regarding the effect of 
coffee on cardiovascular health are controversial with studies showing that coffee 
either has beneficial or neutral effects (Chrysant, 2015) or that moderate con-
sumption is not likely to cause adverse effects (Rebello and van Dam, 2013). In 
our results there was no indication of a beneficial effect of coffee. Thus, the total 
effect of coffee on cardiovascular health remains unclear, but our results suggest 
that a potentially harmful effect exists and it possibly is mediated by VLDL, IDL 
and LDL.  

Coffee consists of a wide variety of components and it is plausible that some 
components pose harmful effects, while others are beneficial. Our results encom-
pass mostly the lipid profile and therefore we cannot exclude the possibility of 
coffee having beneficial effects on metabolites measured with other assays. In any 
case, our results add to the ongoing discussion of the effects of coffee on health 
and provide further basis for future RCTs. A possible study design that is feasible 
due to the cost-efficiency of NMR, would be to randomize study groups as fol-
lows: participants who continue their regular coffee consumption and participants 
who will reduce or quit drinking coffee for a period of time. Measuring NMR 
metabolites before and after this period could answer the question whether the 
possibly causal effects we detected are indeed causal. Our results need to be con-
firmed by such RCTs before it is possible to give dietary advice, but our findings 
propose that coffee consumption should be limited in people who are at higher 
risk of cardiovascular diseases. 
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The effect of beer on HDL-related measurements and DHA is also interesting 
in the context of cardiovascular health. Since other alcoholic beverages did not 
show such positive effect on HDL-related measurements and DHA, it possibly 
originates from other components in beer rather than alcohol. Therefore, these 
results pose an interesting hypothesis for future studies to investigate whether 
alcohol-free beer has the same potentially beneficial effects as beer, while not 
having the harmful effects of alcohol. 

In order to provide dietary suggestions, our results need to be confirmed with 
RCTs. However, our findings provide strong basis for such RCTs and have the 
potential to contribute to future dietary guidelines. Furthermore, we demonstrated 
the utility of using MR in dietary studies, which is important in the context of 
several new dietary GWASs published recently (Cole, Florez and Hirschhorn, 
2020; Meddens et al., 2021; May-Wilson et al., 2022; Merino et al., 2022). The 
study by Cole, Florez and Hirschhorn (2020) reports the GWAS results of 85 single 
dietary traits and 85 PC-traits corresponding to dietary patterns. A possible next 
step from our study would be to confirm our results by using their findings when 
defining the instruments for 2-sample MR. In addition, a recent study presented 
results of a food-liking GWAS, where they detected 1401 significant associations 
(May-Wilson et al., 2022). Subsequently, another future direction would be to 
pursue the same analysis as we performed, but use food-liking SNPs as instru-
ments instead of the ones associated with food consumption.  
 
 

3.2. Food neophobia associates with poorer  
dietary quality, metabolic risk factors,  

and increased disease outcome risk in population-based 
cohorts in a metabolomics study (Ref. II) 

The primary aim of this paper was to detect whether food neophobia associates 
with blood metabolic profile measured by NMR. The secondary aim was to 
analyze the effect of FN on disease outcomes, such as T2D and CHD. 

 
 

3.2.1 Description of cohorts and methods 

The analyses of this study were conducted in the Finnish Dietary Lifestyle, and 
Genetic determinants of Obesity and Metabolic syndrome (DILGOM) cohort and 
replication was performed in the EstBB cohort. The study design and samples are 
described in Figure 3 (adapted from Ref. II Figure 1). More precisely, the 
analyses were performed on the subsamples of Finnish DILGOM (N=2982, age 
range 18–83) and EstBB (N=1109; age range 25–74) for which the data regarding 
FN and metabolic profile were present. FN was assessed with the validated FNS 
questionnaire (see more detailed description of questionnaire in chapter 1.2). 
A higher score indicates a greater level of FN. Since there are no official cut-off 
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scores, we divided the individuals artificially into three groups for the descriptive 
analysis: food neophilics (score from 10 to 24), median group (25 to 39), and food 
neophobics (40 to 70). The descriptive statistics for both DILGOM and EstBB 
cohorts by FNS categories and total can be viewed in Ref. II Table 1. Consistent 
with previous research (Tuorila et al., 2001; Meiselman, King and Gillette, 2010; 
Rabadán and Bernabéu, 2021), in both cohorts the food neophobics group, com-
pared to other groups, was with older age, lower education level and higher pro-
portion of individuals living in rural areas.  
 

 
Figure 3. Flowchart of the study design and participant selection. 

 
In this study, the same set of NMR blood metabolites as described in chapter 1.3 
and analyzed in Ref. I was of interest. However, for this paper the set of variables 
was larger, additionally containing a wide variety of ratios describing lipoprotein 
compositions. The exclusion criteria for the metabolomic analysis was preg-
nancy. Prior to analysis, the outliers (standard deviation >4 threshold) were re-
moved and the scaled logarithmic transformation was applied for all metabolites. 
Linear regression was used for assessing the association between FNS score and 
blood metabolite levels. All analyses assessing metabolite levels in EstBB were 
adjusted for following confounders: age, BMI, living region (urban/rural), edu-
cation level, smoking status, prevalence of diabetes, and sex. 

Population-based Finnish and 
Estonian cohorts
• DILGOM  (N=5024)
• EstBB (N=52 000)

1) Association between food 
neophobia and NMR-
metabolome

Participant inclusion criteria:
• Quantified NMR-metabolome
• Filled FNS-questionnaire information
Participant exclusion criteria:
• Pregnancy

Eligible samples:
• The DILGOM cohort (N=2982)
• The EstBB cohort (N=1109)

2) Association between food neophobia 
and CHD and T2D incidence during ca 8 
year follow-up
• Extra exclusion criteria: prevalent 

CVD, CHD and/or T2D

Eligible samples:
• The DILGOM cohort (N=2655)
• The EstBB cohort (N=877)



33 

The disease outcomes of CHD and T2D were collected from national health 
registries: the Finnish Hospital Discharge Registry and the Estonian Health 
Insurance Fund. The end-point of interest were the incident diseases diagnosed 
during follow-up (average follow-up was approximately 8 years in both cohorts; 
see the exact follow-up times in Ref. II Table 4). The disease outcomes were 
analyzed using the Cox proportional hazards model, whereas the prevalent cases 
of T2D, CVD and CHD were excluded prior to analysis. All survival analyses in 
EstBB were adjusted for sex, BMI, smoking status and statin treatment, whereas 
age was used as the time-scale. 

Bonferroni correction was used to account for the family-wise error rate. 
However, many of the assessed metabolites correlate highly with each other, with 
24 principal components explaining >95% of the variance of the data. Therefore, 
we set p<0.0021 (0.05/24) as the threshold for the corrected p-value in the 
analyses of the metabolome. 

 
 

3.2.2 The association of food neophobia with NMR-metabolites 

We found that higher FN associates with adverse metabolic profiles. There were 
several significant associations between FN and metabolic profile in Finnish 
DILGOM cohort and in EstBB cohort after correcting for multiple testing. In 
DILGOM cohort, higher FN was positively associated with: the ratio of MUFA 
to total fatty acids, α1-acid glycoprotein and citrate; and negatively associated 
with: the ratio of omega-3 fatty acids to total fatty acids, cholesterol esters in very 
large HDL, total cholesterol in very large HDL, and the concentration of very 
large HDL. In EstBB cohort, higher FN was negatively associated with: the ratio 
of omega-3 fatty acids to total fatty acids, the level of omega-3 fatty acids, the 
ratio of DHA to total fatty acids, and the level of DHA. Thus, the association 
between the severity of FN and the ratio of omega-3 fatty acids to total fatty acids 
replicated in the EstBB cohort. Since DHA belongs to the group of omega-3 fatty 
acids, the findings that were significant in both Finnish and Estonian cohorts, are 
related to omega-3 fatty acid associated metabolites. 

In general, more severe FN was associated with adverse cardiometabolic 
outcomes on lipid metabolites (e.g. lower levels of omega-3 related fatty acids in 
both cohorts, lower concentration of very large HDL particles in DILGOM) and 
inflammation-related biomarker (higher levels of α1-acid glycoprotein in 
DILGOM). Consequently, lower levels of FN were associated with more favor-
able levels of these biomarkers. Since this study is the first to broadly investigate 
the association between FN and NMR-metabolites, there are no other studies to 
directly compare the results to. However, the results can be interpreted in terms 
of health context. 
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3.2.3 The association of food neophobia with disease outcomes 

We assessed the effect of FN on the incidence of T2D and CHD in both, the 
DILGOM and EstBB cohorts. The results of these analyses are presented in 
Ref. II Table 4. Higher levels of FN predicted higher incidence of T2D in the 
DILGOM cohort, but not in the EstBB cohort. Furthermore, higher levels of food 
neophobia associated with higher incidence of CHD in the EstBB cohort, but not 
in the DILGOM cohort. Since the effect of FN on CHD and T2D had not been 
researched before and our results show conflicting evidence between the two 
cohorts, further studies are needed in order to establish the effect of FN on T2D 
and CHD risk. 
 
 

3.2.4 Discussion 

In general, our analysis demonstrated that FN has an adverse effect on metabolic 
profile, and potential risk-elevating effect on T2D and CHD incidence. However, 
since the results regarding disease associations were conflicting between the two 
samples analyzed, further studies are needed before firm conclusions can be made. 

We observed significant associations consistently between FN and several 
omega-3 fatty acids related measurements. One explanation for this could be that 
FN has been associated with lower adherence to the Mediterranean diet (Predieri 
et al., 2020) and less frequent intake of fish (Helland et al., 2017). Both of these 
have been shown to associate with altered levels of omega-3 fatty acid and its 
subgroup DHA (Horrocks and Yeo, 1999; Mantzioris, Muhlhausler and Villani, 
2022). The positive effect of higher fish consumption on omega-3 fatty acids and 
DHA can also be observed in the results of Ref. I. 

In addition, omega-3 fatty acids have anti-inflammatory properties (Calder, 
2010), and supplementation with omega-3 has been found to be effective in the 
prevention of CHD (Bernasconi et al., 2021). In contrary, the effect of omega-3 
on T2D is not clear, with epidemiologic studies associating higher levels of  
omega-3 with lower T2D risk (Qian et al., 2021), while meta-analysis of RCTs 
concluded that there is little or no effect (Brown et al., 2019). Since there is a 
consistent negative association between FN and omega-3 related measurements, 
one could expect to see elevated CHD risk with higher FN. We witnessed this 
effect in EstBB, but not in DILGOM cohort. Whether there is a pathway of FN 
leading to lower omega-3 related measurements subsequently leading to higher 
risk of CHD is an interesting and important hypothesis to test in future studies. 

Furthermore, negative associations with HDL-related measurements were 
observed in the DILGOM cohort. As discussed, HDL-C has been consistently 
associated with CVD in epidemiological studies, but the causal effect has not 
been proven and the actual role of HDL in the context of CVD is not clear (Casula 
et al., 2021). Despite the missing causal link, higher levels of HDL-related mea-
surements are indicative of better cardiovascular health. Moreover, higher levels 
of omega-3 fatty acids have been associated with lower risk of mortality (Harris 
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et al., 2021), indicating that lower levels of omega-3 associate with higher risk. 
Therefore, the negative association we observed between FN and omega-3 
related and HDL-related measurements are indicative of adverse health effects of 
higher FN. 

Despite the fact that our study was not designed in a way that would allow to 
provide dietary advice, it suggests that FN should be addressed and further studied 
in order to prevent unwanted outcomes on health. As randomized trials with FN 
are not feasible due to the nature of it, future perspectives regarding possibly 
causal effects of FN on health will become possible when FN is recorded in larger 
biobank samples, for example entire UKBB or entire EstBB. Thereafter the FN 
GWAS would be possible and would open the option to pursue MR studies 
assessing the effect of FN on blood metabolites, CHD and T2D. This would grant 
us a better indication of the possibly causal effect of FN on health and disease. 
 
 

3.3. A catalogue of omics biological ageing  
clocks reveals substantial commonality  

and associations with disease risk (Ref. III) 

The general aim of this study was to investigate whether there is one single 
biological age for individuals, which could be tracked with different omics clocks 
with varying accuracy, or whether different OCs are tracking different underlying 
BAs. This paper considers a wide range of OCs: fifteen clocks, out of which eleven 
were newly developed and four were previously published. However, in the 
current thesis the ones that were calculated also on EstBB cohort are discussed, 
and specifically of interest is the one related to NMR metabolites. The latter is 
based on the same platform of blood metabolites as Ref. I and Ref. II. Con-
sequently, the aims of this paper in the context of current thesis are: to assess 
whether the BA measured by NMR-metabolites based OC correlates with 
chronAge; to investigate whether NMR-based OC tracks the same BA as other 
OCs; to study whether the difference between the NMR-based BA and chronAge 
is predictive of diseases and risk factors; and to determine whether the associated 
health outcomes are related to some specific bodily system. These findings could 
further elaborate the knowledge of the impact of diet on health via the changes in 
the blood metabolome. 
 
 

3.3.1 Description of cohorts and methods 

The simplified workflow is depiceted on Figure 4. Very broadly, eleven out of 
the fifteen omics clocks presented in Ref. III were developed in Orkney Complex 
Disease Study (ORCADES) cohort using elastic net regression, with the mixing 
parameter of α = 0.5. The clocks were trained on 75% of the sample (training 
sample) and evaluated on 25% of the sample (testing sample). Tenfold cross 
validation was used in the training sample to select the shrinkage parameters λ 
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for the penalized regression. Four out of the fifteen OCs presented in Ref. III were 
calculated based on previously developed OCs to enable comparison with already 
established OCs. These four are: Hannum 2013 (Hannum et al., 2013), Horvath 
2013 (Horvath, 2013), MetaboAge (van den Akker et al., 2020) and GlycanAge 
(Krištić et al., 2014).  

Figure 4. Description of the general workflow. General steps of the analysis workflow 
are described in black boxes connected with arrows. In blue are additional explanations 
about corresponding step. 

 
The performance of some OCs developed on ORCADES cohort was sub-
sequently validated in independent validation cohorts, among others also in EstBB. 
More specifically, EstBB was utilized to validate the following clocks: “PEA 
Proteomics” on a subset of proteins, measured with Olink CVDII (cardio-
vascular 2), CVDIII (cardiovascular 3), INF1 (inflammation 1) and ONCII (onco-
logy 2) panels; “DNAme Horvath CpGs”; “DNAme Hannum CpGs”; and “NMR 
Metabolomics”. Of note, DNAme Horvath CpGs and Horvath 2013 refer to 
different OCs, whereby Horvath 2013 is calculated using the already established 
published clock (Horvath, 2013), while DNAme Horvath CpGs is a DNAme-
based clock developed on ORCADES cohort while using the CpG sites of 
Horvath’s epigenetic clock as potential set of predictors. The same holds for 
Hannum DNAme CpGs and Hannum 2013. The validation procedure in EstBB 
consisted of estimating OCA for every individual in EstBB who had corre-
sponding data available. This was carried out using the weights obtained from the 
elastic net regression that was pursued in ORCADES cohort. Thereafter the 
performance of each of the four clocks was assessed by calculating the Pearson 
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fixed alpha of α=0.5

Data for a set of available 
predictors from each omics 
assay in ORCADES cohort

Obtain a set of weights for 
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age and chronological age informative in 

terms of disease outcomes

Age predicted by 
biomarkers, can be 

different from chronAge

Use weights from 
previous step
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correlation coefficient between the OCA and chronAge of the sample, and 
inspected visually with scatterplots of OCA and chronAge. The same assessment 
of performance was conducted in ORCADES cohort testing sample. 

 
 
3.3.2 The performance of the omics clocks in ORCADES and EstBB 

For each of the four clocks validated in EstBB the sample sizes and the corre-
lations between chronAge and OCA in ORCADES and in EstBB are presented 
in Table 2 (adapted from Ref. III Table 1, where characteristics of all other OCs 
in ORCADES can also be observed. For visual inspection of the performance of 
the OCs in ORCADES see Ref III. Figure 1). It can be seen that the proteomics- 
and DNAme-based clocks, which correlated extremely strongly with chronAge 
in ORCADES (r from 0.93 to 0.96), had comparable performance in EstBB (0.91 
to 0.98). This indicates that proteomics and DNAme data can objectively estimate 
chronAge with very high accuracy. However, the NMR metabolomics clock, 
which had rather strong correlation (r=0.74) with chronAge in ORCADES, did 
not perform well in EstBB (r=0.26), possibly meaning that NMR metabolomics 
clock is more cohort-specific compared to for example DNAme- and proteomics-
based clocks. 

 
Table 2. Description of omics clocks that were validated in EstBB cohort. 

ORCADES EstBB 
N r N r 

NMR metabolomics 1643 0.74 6704 0.26 
PEA proteomics 805 0.93 247 0.91 
DNAme Hannum CpGs 1033 0.96 282 0.98 
DNAme Horvath CpGs 957 0.93 229 0.97 

N corresponds to number of individuals that the omics clock was assessed with. r corresponds to 
the correlation between omics clock predicted age and chronological age 

 
Assessing the correlation between OCA and chronAge can provide a measure of 
how well the clock performs, but achieving extremely strong correlation might 
not always be the ultimate goal. One of our aims was to assess whether the 
OCAA, that describes the difference between OCA and chronAge, is predictive 
of diseases and risk factors. An OC that is extremely accurate in predicting 
chronAge has consequently OCAA with very small variability. This means that 
individuals with same chronAge would not differ much in their OCA. Con-
sequently, such OCAA could have too little variation for predicting health out-
comes, whereas OCAA with a slightly larger variability might convey more infor-
mation for that purpose. 

Consecutively, the next aim was to assess whether there is one underlying BA 
that is tracked with varying accuracy, or whether different OCs track BAs 
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referring to different bodily systems. Observing the correlation of the OCAAs of 
different OCs could provide a measure to what extent they describe similar BA. 
 
 

3.3.3 Correlations between the omics clocks 

The correlation structure between the OCAAs of all fifteen clocks assessed in 
Ref. III are presented in Ref. III Figure 3. It can be noted that the age acceleration 
of NMR-based OC correlates weakly with those of proteomics- and DNAme-
based OCs (r up to 0.28), indicating that they describe different underlying BAs. 
A plausible reason behind this can be the earlier described low variability of the 
OCAAs of proteomics- and DNAme-based clocks. In contrary, the OCAA of the 
NMR-based OC correlates moderately to strongly with the OCAAs of all other 
investigated clocks (r ranging from 0.5 to 0.7). This indicates that despite NMR-
based OC describing different underlying BA compared to proteomics- and 
DNAme-based OCs, it describes partly the same underlying BA with several 
other clocks. The strongest correlation of NMR-based OCAA is with MS Fatty 
Acid Lipidomics OCAA. Since NMR-metabolomics platform comprises mostly 
of lipid measurements and MS Fatty Acid Lipidomics describes plasma lipidome, 
the correlation of the OCAAs of these two OCs is plausible. 

The correlations between OCAAs of different OCs can provide a measure to 
examine whether they describe similar of distinct underlying BA. However, one 
of the utilities of such ageing clocks could be to provide information about a 
person’s health when we know whether his/her OCA is considerably younger/ 
older compared to chronAge. Therefore, it is of interest to detect whether the 
OCAAs are predictive of diseases and risk factors.  

 
 

3.3.4 OCAA in disease prediction, comparison with chronAge 

The effect of OCAAs was assessed on those diseases and risk factors that were a 
priori thought to associate with age. For the disease outcomes this comprises of 
the ICD-10 blocks C (Neoplasms), E (Endocrine, nutritional and metabolic 
diseases), I (Diseases of the circulatory system) and J (Diseases of the respiratory 
system). For the disease risk outcomes this comprises of BMI, systolic blood 
pressure (SBP), CRP, total cholesterol, cortisol, creatinine, and expiratory volume 
in 1 second. The disease outcomes are measured as hospitalization with corre-
sponding disease in the ORCADES cohort.  

In order to observe how OCAA compares to chronAge, the first step was to 
assess the effect of chronAge on the chosen outcomes. Thereafter, the diseases and 
risk factors that did not associate significantly with chronAge were filtered out 
(FDR>10%). Additional exclusion criteria of having less than 5 incident cases was 
applied for the disease outcomes. After such exclusions, 32/44 disease groups 
(see list of groups analyzed in Ref. III Supplementary Table 4) and all risk factors 
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were taken forward to the next step, which was analyzing the effect of OCAA on 
these outcomes. All the OCAA models were adjusted for chronAge and sex. 

The results of the relative effects of OCAAs on disease outcomes in ORCADES 
cohort are described in Ref. III Figure 5. It should be noted that overall there were 
not many associations that would have passed FDR-corrections, whereas the 
NMR metabolomics OCAA did not have any associations below the FDR-cor-
rection threshold. However, there were several interesting associations with  
p-value lower than the nominal significance level (p<0.05). Namely, the risk 
elevating effect that NMR-based OCAA had on the disease groups of “E50-E64 
Other nutritional deficiencies”, “E10-E14 Diabetes mellitus”, and “C15-C26 
Malignant neoplasms of digestive organs”. This indicates that the NMR-based 
OC tracks partly the BA that is related to dietary behavior.  

The associations of OCAAs with disease risk factors are depicted on Ref. III 
Figure 6. Since the NMR metabolomics platform contains the measurements of 
total cholesterol and creatinine, the association of NMR metabolomics OCAA 
with these two risk factors was not assessed. Among other risk factors, NMR 
Metabolomics OCAA was significantly associated after FDR-correction with 
CRP, BMI and SBP. The effect of OCAA on CRP was notably above 1, meaning 
that one year of OCAA had larger effect than one year of chronAge. All these 
three risk factors are known to be associated with dietary choices (Appel et al., 
1997; Neale, Batterham and Tapsell, 2016), further supporting the idea that NMR 
Metabolomics clock tracks the BA that is partly related to dietary intake. 
 
 

3.3.5 Discussion 

In Ref. III, fifteen OCs were presented, whereas for four of these the validation 
was sought in EstBB. Of particular interest in the context of this thesis is the 
NMR metabolomics OC that uses the same platform of metabolites as Ref. I and 
Ref. II. We found that the NMR metabolomics OC correlated strongly with 
chronAge in ORCADES cohort (r=0.74), but not in EstBB cohort (r=0.26). 
Contrary to that, the PEA proteomics, DNAme Hannum CpGs and DNAme 
Horvath CpGs clocks correlated extremely strongly with chronAge in both 
ORCADES and EstBB (all correlations >0.9). This raises the question whether 
the NMR metabolomics OC is more population specific. The same phenomenon 
can be observed when we look at the performance of the previously developed 
metaboAge (van den Akker et al., 2020) in ORCADES cohort (Ref. III Table 1). 
The correlation between metaboAge OCA and chronAge is 0.21 in the 
ORCADES cohort, whereas in the original metaboAge paper the corresponding 
correlation in the study sample was estimated around 0.65 (van den Akker et al., 
2020). These results indicate that one must be cautious when interpreting the 
NMR metabolomics OC results, since it might reflect partly the peculiarities of 
specific cohorts. This can be especially the case with ORCADES cohort, since it 
represents a population isolate.  
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The specific reason behind NMR metabolites-based ageing clocks not showing 
good replication yet warrants further investigation. The studies that try to validate 
previous NMR OCs are scarce and it could also be that the low replications seen 
in this paper are due to the specifics of ORCADES cohort. Future studies com-
paring NMR OCs derived on different populations might shed more light into 
this. One possible study-design for this would be to develop NMR OC on several 
different populations and thereafter assess the performance of each population-
specific clock on other samples. As measuring the NMR metabolome has been 
gaining popularity in the recent years, NMR-based studies with larger popu-
lations and new samples might become feasible in the near future. 

Furthermore, we saw that NMR-based OCAA correlates rather weakly with 
proteomics- and DNAme-based OCAAs, which is in line with Jansen et al. (2021), 
where a small correlation of 0.19 between metabolomics and proteomics aging 
was observed. One interpretation for such results can be that NMR-based OC 
tracks different BA compared to proteomics and DNAme assays. However, one 
must note here that the proteomics- and DNAme-based OCs were extremely 
accurate in predicting chronAge and therefore corresponding OCAAs are with 
very low variability. 

The NMR-based OCAA has previously been associated with several cardio-
metabolic risk factors and diseases, such as BMI, HDL-C, alcohol usage, CRP, 
prevalent metabolic syndrome, prevalent T2D, incident cardiovascular events, 
vascular mortality, and all-cause mortality (van den Akker et al., 2020; Jansen 
et al., 2021). Our NMR metabolomics OC results are partly in line with those 
studies by showing significant associations with CRP and BMI. However, NMR 
metabolomics OCAA associated significantly with SBP in our results, whereas 
in van den Akker et al. (2020) such association was not seen. Further, we saw 
nominally significant p-values for the disease groups of “E10-E14 Diabetes 
mellitus” and “E50-E64 Other nutritional deficiencies”, confirming that NMR 
OC is reflecting metabolic health. However, in the ICD-10 block describing 
diseases of the circulatory system, only the group of hypertensive diseases had 
nominally significant association with NMR OCAA, which was unexpected 
given the previous results regarding cardiovascular health and given that there 
were significant associations with cardiometabolic risk factors. Of note, the 
associations between the incident cardiovascular outcomes and metaboAge OCAA 
were assessed in a cohort of elderly adults at risk of CVD (van den Akker et al., 
2020), which might have affected the results. Therefore, further studies are needed 
to clearly establish the associations between NMR OCAA and disease outcomes. 

Despite the need for further confirmation of the associations with disease out-
comes by future studies, the present evidence suggests that NMR OC tracks partly 
the BA that is related to cardiometabolic health and could consequently reflect as 
well dietary behavior. Previously, the association between BA and dietary 
behavior has been investigated for the BA characterized by DNAme data. More 
specifically, the OCAA of DNAme-based OC has been found to be associated 
with fish intake and blood carotenoid levels (indicator of fruit and vegetable 
intake) (Quach et al., 2017), and heavy alcohol consumption (Beach et al., 2015; 
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Luo et al., 2020). Moreover, results of a randomized trial detected that one-year 
Mediterranean diet was able to significantly reduce BA (Gensous et al., 2020). 
Current author is not aware of any similar studies regarding NMR-based OCs, 
but there seems to be considerable potential for using NMR-based OC for 
assessing the usefulness of dietary interventions with regards to aging related to 
cardiometabolic health. However, before that, the associations with disease out-
comes need further confirmation. This should be feasible in the near future, when 
larger NMR-samples become available. Finally, it would be very interesting to 
assess whether the intervention with Mediterranean diet is able to reduce NMR-
based BA. 
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CONCLUSIONS 

Understanding the mechanisms of how dietary choices affect health has the 
potential to provide grounds for personalized health-improving dietary advice. 
NMR blood metabolic profile measurements are a valuable resource for further 
elucidating the diet-disease relationships. In addition, recent large-scale GWASs 
provide great asset for pursuing MR analyses. New knowledge regarding the diet, 
metabolites and health interplay forms a basis for future dietary RCTs that can 
ultimately lead to well-informed and personalized dietary recommendations. 
 
The main conclusions drawn from this thesis are as follows: 

• MR approach can be used for detecting possibly causal effect of dietary traits 
on blood metabolites. This was confirmed by our results agreeing with previous 
RCTs and conflicting with some observational studies. In total we detected 
413 potentially causal associations. For example, we found that coffee and 
alcohol traits pose similar elevating effects on LDL- and IDL-related measure-
ments, whereas the VLDL-related measurements seem to be elevated by 
coffee consumption and not by alcohol consumption. Furthermore, beer con-
sumption appeared to have an elevating effect on DHA, while we observed a 
potential elevating effect of vegetarianism on omega-6 fatty acids. 

• Lack of dietary variety expressed as FN has adverse effects on blood meta-
bolic profile. More precisely, higher level of FN is negatively associated with 
several omega-3 related measurements. The effect of FN on T2D and CHD 
warrants further investigation with larger samples, since our results were 
conflicting. Namely, FN elevated the risk of CHD in EstBB cohort, but not in 
DILGOM cohort, whereas FN elevated the risk of T2D in DILGOM cohort, 
but not in EstBB cohort. These results highlight that FN is harmful for health 
and there is need for further studies with larger samples. 

• The NMR OC developed in ORCADES training sample correlated strongly 
(r=0.74) with chronological age in ORCADES testing sample and weakly 
(r=0.26) in EstBB sample. This indicates that the NMR-based omics clock 
may be population-specific. Further, NMR-based OC seems to describe dif-
ferent underlying biological age compared to proteomics- and DNAme-based 
OCs. The excess of NMR-metabolites based biological age over the chrono-
logical age is associated with cardiovascular risk factors. In addition, the 
associations with nutritional and metabolic diseases were nominally signifi-
cant, but not after correcting for multiple testing. Larger samples could con-
firm these findings. If the associations with nutritional and metabolic diseases 
are confirmed, NMR metabolomics clock has the potential to be associated 
with and affected by dietary behavior. 
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SUMMARY IN ESTONIAN 

Toitumine, vere metaboliidid ja tervis 

Toitumisvalikute seoseid tervisega on laialdaselt erinevates teadustöödes käsit-
letud ning on näidatud, et need avaldavad mõju haigusriskidele, erinevatele riski-
faktoritele ja ka suremusele. Kuigi teemat on mitmekülgselt uuritud, on siiski 
kohati selgusetu, milliste täpsete mehhanismide läbi toitumine tervist mõjutab. 
Parema teadmise puudumine võib aga omakorda kaasa tuua vastuolulised 
toitumissoovitused.  

Kõige parem oleks toitumise mõju tervisele uurida randomiseeritud kliiniliste 
uuringutega (RCT), kuid neid on tihtipeale väga keeruline suurtel valimitel läbi 
viia. Lisaks on mõningate tunnuste, näiteks alkoholitarbimise, puhul sellised 
uuringud ebaeetilised. Viimaste kümnendite tormilised arengud DNA järjestuste 
määramises ja analüüsimises on toonud kaasa uued võimalused potentsiaalsete 
põhjuslike seoste uurimiseks, seda ka toitumist kirjeldavate tunnuste ning tervise-
näitajate vahel. Nimelt on võimalik kasutada Mendeli Randomiseerimise (MR) 
meetodit, mis oma olemuselt on instrument-tunnuse analüüs. MR eripära on 
seejuures, et instrumentidena kasutatakse geeniandmetest saadavat informat-
siooni. Siinkohal ongi oluline nimetatud kiire areng DNA uurimises, mille tule-
musel on viimastel aastatel väga mitmed teadustööd raporteerinud ülegenoomsete 
assotsiatsioonanalüüside (GWAS) tulemusi. GWAS on hüpoteesivaba testimine 
üle terve genoomi, mille abil on võimalik leida, millised ühenukleotiidsed polü-
morfismid (SNP) on seotud huvipakkuvate tunnustega. Nimetatud SNPd ongi 
instrumentideks MR analüüsis. 

Teisalt on viimasel aastakümnel hoo sisse saanud verest metaboliitide määra-
mine suurematel valimitel ning erinevad biopangad hõlmavad endas muuhulgas 
ka vere metaboliite kirjeldavaid andmestikke. Korraga määratakse suur hulk eri-
nevaid metaboliite – mõningad näited nendest on HDL-kolesterool, LDL-koleste-
rool, omega-3 ja omega-6 rasvhapped. Sääraste metaboliitide määramiseks verest 
on mitmeid meetodeid. Antud töös käsitletavad metaboliidid on määratud tuuma-
magnetresonants (NMR) tehnoloogial, mis on viimastel aastatel üha levinumaks 
meetodiks saanud biopankade andmestike loomisel. Kuna vere metaboliidid on 
mõjutatud toitumisest ning on ise omakorda erinevate haiguste ennustajateks, 
võib nende uurimise kaudu olla võimalik osaliselt selgitada, kuidas toitumine 
tervisele mõju avaldab. 

Uurides toitumise mõju vere metaboliitidele, saame antud tulemusi tõlgen-
dada varasemate tervisenäitajaid ja haiguseid kirjeldavate teadusuuringute taustal. 
Samas laiema pildi huvides on oluline teada, kas NMR metaboliitide profiil 
suudab kirjeldada tervise hetkeseisukorda, ning veel täpsemalt mõne kindla elund-
konna tervist. Selle osas on viimastel aastatel palju põnevust tekitanud bioloogi-
lise vanuse uurimine kasutades selleks oomika kellasid. Need on inimese bio-
loogilise vanuse arvutamiseks loodud algoritmid, mis tuginevad masinõppe 
meetodite rakendamisel erinevatel -oomika andmetel (näiteks metaboloomika, 
proteoomika, DNA metülatsioon). Sealjuures on inimese bioloogilise vanuse ja 
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kronoloogilise vanuse vaheline erinevus (tähistatud antud töös OCAA) potent-
siaalselt informatiivne tema tervise hetkeseisu kohta. 

Käesolev doktoritöö uurib toitumise mõju tervisele kolmest vaatenurgast. 
Esiteks uurib MR analüüsi abil, milline on toitumise potentsiaalselt põhjuslik 
mõju vere metaboliitidele. Seejärel analüüsib, millist mõju omab vere meta-
boliitidele dieedi süsteemne väike variatiivsus kirjeldatult toidu neofoobia abil 
(käitumine, kus inimene keeldub söömast või maitsmast uusi või võõraid toite). 
Ning viimaks uurib, kas NMR metaboliitide profiil kirjeldab inimese bioloogilist 
vanust ning kas erinevus säärase bioloogilise vanuse ja kronoloogilise vanuse 
vahel ennustab tervisenäitajaid. Nimetatud uuringud on käsitletud doktoritöö 
eksperimentaalosas. Kokkuvõtvalt on antud doktoritöö üldisemaks eesmärgiks 
anda lisateadmisi toitumise, vere metaboliitide ja tervise omavaheliste seoste kohta, 
et aidata astuda samm lähemale tulevikule, kus on teadlikumad ja personaliseeritud 
tervist edendavad toitumissoovitused. 

Töö esimene osa annab teaduskirjandusele toetudes ülevaate, milliste uurin-
gutega on siiani vaadeldud toitumise, vere metaboliitide ja tervise omavahelisi 
seoseid. Lisaks kirjeldab toidu neofoobia olemust ning selle seoseid muude tun-
nustega. Seejärel selgitab, kuidas töötab MR analüüs, millised on selle levinumad 
meetodid, ning millised on MR rakendamise eripärad toitumistunnuste mõju 
uurimise korral. Samuti toob välja, mida mõeldakse oomika kellade all, millistele 
andmetele tuginedes neid on konstrueeritud ning milliste tervisenäitajatega on 
seostatud NMR metaboliitide põhjal arvutatud bioloogilist vanust. Kirjanduse 
ülevaate viimane osa sisaldab mõtisklusi võimalike tulevikuväljavaadete osas 
olukorras, kus viimaste aastatega on toitumise, metaboliitide ja tervise omavahe-
liste seoste uurimiseks avanenud rohkelt uusi võimalusi. 

Doktoritöö eksperimentaalosa esimene artikkel otsis erinevate toitumist kirjel-
davate tunnuste põhjuslikku mõju vere metaboliitidele. Kuna antud töö on teada-
olevalt esimene, mis kasutas MR-analüüsi, et laialdaselt uurida erinevate toitumis-
tunnuste ja vere metaboliitide vahelisi seoseid, on oluline välja tuua, et artikli 
tulemused ühtisid varasemate teadaolevate põhjuslike seostega ning varasemate 
RCTdega. Autoritele teadaolevalt ei olnud artikli tulemused vastuolus mitte ühegi 
RCTga. Küll aga leidus vastuolusid mõningate vaatlusuuringutega, mis annab 
põhjust arvata, et vaatlusuuringute tulemused võisid olla segajate poolt mõju-
tatud. Seega kinnitas antud artikkel, et MR-analüüs on sobiv ja kasulik meetod 
toitumise mõju metaboliitidele uurimiseks. Antud töö tulemusel leiti 413 potent-
siaalselt põhjuslikku seost. Muuhulgas selgus, et kohv ja alkohoolsed joogid 
avaldavad võrdlemisi sarnast mõju mitmetele vaadeldud metaboliitidele. Eriti 
silmatorkav selline muster madala ja keskmise tihedusega lipoproteiinidega seotud 
mõõtmiste osas, kus suurem kohvi ja alkohoolsete jookide tarbimine seostub 
kõrgemate vaadeldud metaboliitide tasemetega. Täiesti erinev oli nende jookide 
mõju aga väga madala tihedusega lipoproteiinidega seotud mõõtmistele: nimelt 
seostus suurem kohvi tarbimine oluliselt kõrgemate metaboliitide tasemetega 
samas kui alkoholil märgatavat mõju ei olnud. Huvipakkuv on ka õlle positiivne 
mõju DHA’le, mis on üks omega-3 rasvhapetest ning mille kõrgem tase on vara-
sema kirjanduse põhjal tervisele kasulik. Samas oli alkohoolsetest jookidest see 
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mõju vaid õllel, näidates, et mõju polnud tõenäoliselt põhjustatud alkoholist endast, 
vaid mõnest muust komponendist. Lisaks leidsime, et taimetoitlus tõstab omega-6 
rasvhapete tasemeid veres. Kuna see tulemus oli leitud vaid ühe instrument-
tunnuse baasil, vajab see enne kindlamaid järeldusi järgnevate uuringute poolt 
kinnitamist. Kokkuvõtvalt, antud artikkel tõestas, et MR on sobiv ja kasulik 
vahend, millega uurida toitumistunnuste mõju vere metaboliitidele ning leidis 
mitmeid seoseid, mis millisel moel toitumine tervist mõjutab. 

Järgnevalt näitab eksperimentaalosa teine artikkel, et toidu neofoobial on vere 
metaboolsele profiilile ebasoodne mõju. Täpsemalt, kõrgem tulemus FN skaalal 
assotsieerub madalamate omega-3’ga seotud mõõtmistega. Samas FN mõju 
südameveresoonkonna haigustele (CHD) ja tüüp II diabeedile (T2D) jäi osalt 
selgusetuks. Seda seetõttu, et FN tõstis CHD riski eestlaste kohordis, aga mitte 
soomlaste kohordis, samas kui FN tõstis T2D riski soomlaste kohordis, aga mitte 
eestlaste kohordis. Seega on küll põhjust arvata, et FN on tervisele kahjulik, aga 
täpsema selguse saamiseks CHD ja T2D osas on vaja tulevasi uurimusi suurema 
valimiga. 

Eksperimentaalosa kolmas peatükk uuris oomika kellasid, mis väljendavad 
inimese bioloogilist vanust. Täpsemalt keskenduti NMR metaboliitide profiili 
põhjal konstrueeritud oomika kellale. Tulemuste põhjal on põhjust arvata, et 
NMR andmetel baseeruv oomika kell on osalt populatsiooni-spetsiifiline, erinevalt 
näiteks nendest, mis tuginevad proteoomika ja DNA metülatsiooni andmetel. 
Lisaks näitasid tulemused, et NMR andmetel baseeruv bioloogiline vanus on 
seotud kardiovaskulaarsete riskifaktoritega ning toitumise ja ainevahetusega 
seotud haigustega. Koos varasematest uuringutest saadud teadmistega, kus on 
näidatud, et NMR andmetel baseeruv bioloogiline vanus on seotud erinevate 
kardiometaboolsete haigustega ja riskifaktoritega, on põhjust arvata, et NMR 
oomika kell võib eelkõige olla kasulik kardiometaboolse tervise kirjeldamiseks. 
Nähtud seosed erinevate haigustega ei olnud küll pärast mitmesele testimisele 
korrigeerimist statistiliselt olulised ning vajavad enne kindlamaid järeldusi uute 
ja suuremate uuringute poolt kinnitamist. Kui need tulemused leiavad kinnituse, 
on võimalik, et NMR andmetel baseeruv bioloogiline vanus on potentsiaalselt 
mõjutatav toitumiskäitumisest. 

Käesolev doktoritöö vaatles toitumise, vere metaboliitide ja tervise omavahelisi 
seoseid kolmest erinevast küljest ning leidis mitmeid assotsiatsioone, mis aitavad 
kirjeldada toitumise ja tervise vaheliste seoste mehhanisme. Leitud seosed on 
aluseks tulevastele randomiseeritud uuringutele, mille järel on võimalik saada 
tugevam alus tervist edendavatele teadlikutele ja personaliseeritud toitumis-
soovitustele.   
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