
1
Tartu 2020

ISSN 2613-5906
ISBN 978-9949-03-439-0

DISSERTATIONES 
INFORMATICAE  
UNIVERSITATIS 

TARTUENSIS
21

A
R

D
I TA

M
PU

U
	

N
eural N

etw
orks for A

nalyzing B
iological D

ata

ARDI TAMPUU

Neural Networks
for Analyzing Biological Data



DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS 

21 



DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS 

21 

 

 

 

 

ARDI TAMPUU 
 

Neural Networks  
for Analyzing Biological Data



Copyright c© 2020 by Ardi Tampuu

University of Tartu Press
http://www.tyk.ee/

ISSN 2613-5906
ISBN 978-9949-03-439-0 (print)
ISBN 978-9949-03-4 - (pdf)40 6

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in informatics on 26th of August, 2020 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisor

Prof. Dr. Raul Vicente Zafra
Computational Neuroscience Lab
Institute of Computer Science
University of Tartu, Tartu, Estonia

Opponents

Dr. Oliver Stegle
European Molecular Biology Laboratory
Genome Biology Unit, Heidelberg, Germany

Divison of Computational Genomics and Systems Genetics,
German Cancer Research Center (DKFZ), Heidelberg, Germany

Prof. Dr. Aušra Saudargienė
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ABSTRACT

Deep learning, i.e. the application of artificial neural networks, has become the
prevalent machine learning approach in some fields of data science. Significant
improvements in computer vision and natural language processing can be at-
tributed to the recent re-discovery of neural networks. In this thesis we investigate
if deep learning methods can help solve problems also in the fields of bioinfor-
matics and neuroinformatics.

In particular, we first apply fully-connected neural networks and convolutional
neural networks to data derived from metagenomic experiments. We show that
convolutional networks can reliably separate viral DNA from non-viral DNA,
without the need to query a genome database. This facilitates the identification
of new, yet unknown viral species from the samples.

Secondly, we show that recurrent neural networks (RNNs) can effectively de-
code information from single-neuron recordings. In particular, our RNN-based
decoder outperforms baseline Bayesian models on the task of decoding an ani-
mal’s location from its hippocampal neural activity. Recurrent neural networks
possess the ability to accumulate information over a series of inputs, i.e. build a
context over past inputs. This allows them to deal more efficiently with noisy and
scarce data.

Compared to the baseline methods used, neural networks required less input
pre-processing, made fewer explicit assumptions about the data and allowed to
use more of the data. Effectively, our approaches were able to better access the
information contained in the data, which in turn led to better performance. We
believe that such ability is likely to prove useful in many other applications in
bioinformatics, neuroinformatics and elsewhere.
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PREFACE

This section contains a personal discussion about how and why I ended up doing
the research that is summarized in this thesis. I will begin with a short description
of my path to data science. Later, in a deeper, philosophical discussion, I aim to
illustrate the importance of interdisciplinary research.

When I started my PhD studies, my thesis topic was ought to be much more
related to neuroscience and much less associated with data science or machine
learning. I was working with detailed simulations of populations of thalamo-
cortical neurons. Diverse and intricately interconnected these neurons formed
the most complex neural network I have ever worked with. With thousands of
parameters to tune, little knowledge of how to optimize them or even what the
desired outcome is (how should this brain area behave?), the project stalled. At
the same time, early 2014, a new challenge emerged - our group of young re-
searchers decided to replicate the work of DeepMind from the article “Playing
Atari with Deep Reinforcement Learning”. In essence, the article describes how
to teach computers, artificial intelligence if you wish, to play computer games by
trial and error. Accompanied by the authors’ explanations how this is the way
to reach truly intelligent machines (artificial general intelligence), it seemed (and
still does) like an important breakthrough. We wanted to understand this work,
replicate it and maybe do something cool with it. The only problem was that the
article was packed with terms and methods that we did not understand. What is
reinforcement learning? What is deep learning? Back-propagation? RMSProp
optimizer?

In a year, to understand this one paper, I obtained from scratch a decent under-
standing of machine learning, artificial neural networks and reinforcement learn-
ing. Despite not reaching our goal of replicating DeepMind’s results before they
released their own codebase, this work eventually led to my most successful sci-
entific article "Multiagent cooperation and competition with deep reinforcement
learning". This article is not included in this thesis, as I want to put empha-
sis on what followed - using the machine learning and neural networks expertise
(gained only thanks to this "DeepMind replication" project) for analyzing biolog-
ical datasets. Since my previous diplomas are on “Bioinformatics and modelling”
and “Mathematics and informatics of life”, working on biological data, rather than
AI playing computer games, is a more natural environment for me.

In the second part of this Preface, I want to discuss how exporting existing
methods from one scientific field to another (i.e. interdisciplinary research) can
be more worthwhile than tinkering and tweaking to come up with new, better
methods. To do that, however, I need to talk about human knowledge in its en-
tirety.

At least for me, it is impossible to grasp the extent of human knowledge, let
alone describe or quantify it. To talk about it, one needs to use extreme level of
abstraction hoping that the point does not get lost due to simplifications. In here,
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Figure 1. A zoomed in section on the sphere of human knowledge. Consider that
the red area corresponds to data science in general. (a) I propose to think of the im-
pact made by Deep Learning to human knowledge as a small bump on the surface of
the very huge "sphere of human knowledge". Notice that the surface area of the bump
can be increased by making it wider. This corresponds to interdisciplinary research
where knowledge is spread out by transferring it to other fields. Figures adapted from
http://matt.might.net/articles/phd-school-in-pictures/

I gratefully use the illustrations made by Matt Might in his blog post on how to
think about PhD. The point of his “The illustrated guide to PhD”1 is to soothe
the young researchers for not making huge impact during their PhD studies. It is
normal that after years of specialization one adds just a tiny bump to the surface
of human knowledge. In here, I want to re-purpose these figures to illustrate the
importance of interdisciplinary research.

Consider the impact that deep learning has had on the sphere of human knowl-
edge. In my imagination, it forms a bump on the surface of "the sphere of knowl-
edge of mankind" as a PhD work did in Matt Might’s illustrations (obviously a
bump of a lot larger scale). Interdisciplinary work, including this thesis, that ap-
plies the methods of deep learning to all kinds of different fields - may it be neu-
roscience, astrophysics or art - widens this bump. Such research helps to spread
the knowledge. Notice that if the bump is very deep, but very narrow - a lot of
advanced methods without a wide range of applications - the gained surface is
smaller than in the case of a less pronounced but wider bump. This is what I
believe - spreading the knowledge of these powerful and very useful algorithms
to other fields is oftentimes more impactful, more important than minor improve-
ments to the algorithms.

It is impossible for anyone to single-handedly introduce a method to a field.
The main goal must be to inspire and encourage people already in the field to
learn and start using the method. To do this, one does not only need to show
good results, but also make the method look simple, understandable and easy
to use. For this reason it is not always crucial to use the most advanced, most

1http://matt.might.net/articles/phd-school-in-pictures/
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complicated methods that will remain obscure to the uninitiated reader. In short,
I imagine that the more deep-learning related articles a researcher encounters in
his/her field and the more understandable they are, the more likely he/she is to
invest time in learning the methods. Or to include a student with this knowledge
in their research group. This is where I see my thesis’ contribution to science -
through showing the methods work and they are accessible, promote the usage of
them in more fields.
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1. INTRODUCTION

Interdisciplinary research combines the knowledge, methods and data from two
or more scientific fields. The goal of this research is to tackle problems that would
not be solvable with the tools of only one of the involved fields. Often, just the
overall way of doing things varies from field to field, for example in some fields
quantitative measures are more heavily relied on than in others. Frequently the
methods applied and the metrics to compare results differ.

Deep learning, i.e. the application of multi-layer neural networks, has revolu-
tionized many sub-fields of computer science, including machine learning, com-
puter vision and natural language processing [36, 46, 55]. The goal of this thesis
is to export this very powerful machine learning algorithm to new scientific fields.
It is likely that neural networks would perform equally well also on many bio-
logical datasets [3]. In this thesis, we apply deep learning methods to data from
neuroscience and from metagenomics.

In the Background section we will first describe the biological fields that the
data originates from. We will then introduce the machine learning terminology
and the methods that we apply on the datasets. Clearly, a particular emphasis is
put on artificial neural networks. Hopefully the included formulas will allow the
reader to understand the internal functioning of these networks in detail.

Chapter 3 summarizes the work done in the article "Machine Learning for
detection of viral sequences in human metagenomic datasets" [16]. We apply
the rather easy-to-understand fully-connected neural networks to tackle the prob-
lem of detecting viral DNA sequences. Random forest (using scikit-learn Python
package [74]) is used as a baseline method. Given extracted features from DNA
sequences of unknown origin, the machine learning tools are required to estimate
the likelihood of each sequence being of viral origin. The results are satisfactory,
with performance well above chance level. Using the proposed model as a recom-
mendation system to determine which sequences are more likely viral and should
be studied further, the user noticeably improves the chances of finding viruses.

Chapter 4 we further improve on the work done for viral identification. We
apply convolutional neural networks (CNNs) directly on raw DNA sequences,
without any prior feature-extraction steps (which were used in Chapter 3). The
proposed CNN models achieve a significantly improved classification ability com-
pared to baseline models and compared to the results in the previous chapter. The
difference in performance is likely to originate from CNNs being able to learn by
themselves the features that are extracted from the data, instead of using a pre-
defined feature extraction. This allows to find, through optimization, the most
efficient representation of the inputs for the classification task.

Chapter 5 we change topic and apply artificial neural networks to decode in-
formation from the activity of real neurons. Neuroscientists have discovered that
certain type of cells in CA1 region of rat hippocampus contain information about
the location of the animal [70,71]. We apply recurrent neural networks (RNNs) to
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decode the location of the animal based on single-neuron recordings from a tiny
subset of cells in the CA1 region. Given a timeseries of neural activity our RNN
model is able to learn how to use past activity as contextual information. This
ability - to flexibly learn from data how to build and use context - is rare among
machine learning tools. We believe that using context plays a vital role in the
brain and is useful for decoding variables from neural data. Indeed, the proposed
RNN decoder outperforms the baseline methods, including an advanced Bayesian
model that also has access to past activity.

We finalize by drawing a few overall conclusions. The work done covers three
major types of neural networks - fully-connected, convolutional and recurrent
neural networks. We discuss their performance on their respective tasks, their
strengths and limitations. With these publications we have taken a small step
in introducing these powerful methods to the fields of metagenomics and neuro-
science (more particularly, single-cell recordings).

14



2. BACKGROUND

In this chapter we first introduce the types of biological data that were used in this
thesis. We will then give some background to the methods that were applied. We
aim to introduce and explain the core terminology, so that we can use the terms
without confusion in later chapters. Hopefully this chapter helps the reader to put
the methods and the work done into a larger context. As applying neural networks
to biological data (including brain data) is at the center of this thesis, we also
discuss how biologically plausible and brain-like different network types are.

2.1. Background on metagenomics

Sequencing the genomes of animal and microbial species has hugely improved
our understanding of how life works. Understanding the human genome - what
it consists of, how it is regulated and how it might malfunction - is clearly an
important scientific study that has helped identify and cure diseases. For under-
standing the processes happening inside our body the sequencing, classifying and
understanding the genomes of bacteria, fungi and viruses is as important as un-
derstanding the human genome [103]. In fact, there are more bacterial cells in
our body than there are our own cells [87]. Most of these bacteria are friendly
and not pathogenic - they help and protect our body. Imbalance or malfunction
in such “good” bacterial populations can cause health issues ranging from mild
upset in digestion up to misregulation of the entire immune system [62, 95, 99].
Similarly, many viruses are present in our body, roughly 380 trillion [65]. Some
are harmless, some infect our good bacteria, some infect our own cells. To under-
stand if some of these bacteria or viruses cause diseases we need to first identify
and characterize them. It is clearly not sufficient to just know that there are lots of
viruses, without knowing what they are like and what they can do.

The problem when trying to learn about the microbes living inside and on
the surface of our body is that 99% of them cannot survive outside that specific
environment [51, 65]. That means one cannot grow them on a petri dish. The
classical microbial method of cultivating clean clonal cultures cannot be used.
Unable to cultivate the microbes in the lab one is restricted to just taking samples
from the environment of interest and sequencing all the DNA material in that
sample. This sequencing of all DNA in an environment is called metagenomics
[41, 102].

The pipeline of extracting DNA from an environmental sample is the following
- we randomly cut all genomes found in the sample into smaller pieces and then
sequence these pieces. The shearing of the genomes is done because the high-
throughput sequencing machines can only sequence up to a few hundred base
pairs (bp) in a row. The next step is to reconstruct longer sequences by methods
known as sequence assembly [102]. Essentially we align the short sequences,
find sequences that have sufficiently long overlapping parts and merge them into
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a longer sequence. The overlapping regions might disagree in some nucleotides
and conflicts must be resolved in some way. The simplest option is to replace
the conflicting nucleotides with N (meaning “unknown nucleotide”). Because of
containing letters other than ATCG the result of assembly is not really like a real
DNA sequence and we refer to it as “contig” in our work (short for “contiguous
sequence”, a term introduced in 1980 by Staden [94]).

The contigs can then be aligned with known genomes with BLAST [2] or
other tools. In short, the basic local alignment search tool (BLAST) compares
a nucleotide sequence (called the query sequence) with a library (i.e. database)
of known sequences, and identifies the library sequences that resemble the query
sequence above a certain threshold. This allows to taxonomically classify part
of the contigs (the ones that align well with some known sequence). However,
many of the contigs are left unclassified as they come from new species that have
not been studied and sequenced before and are therefore not found in the genome
database [65]. Finding and characterizing these new species as well as estimating
the total diversity in the environment is one one the major goals of metagenomics.
With cultivation-based methods we would not know that there are millions of
bacterial and viral species living inside our body. With metagenomics we can
estimate the amount of unknown species, try to identify and characterize them,
understand their function and investigate if they might cause diseases.

Human papilloma virus causing cervical cancer is the most famous, but not
the only proven case of carcinogenic viruses. For example, Epstein-Barr virus,
Kaposi’s sarcoma herpes virus and human T-cell lymphotropic are also associated
with cancer development [12]. There might be many other cancer-related viruses
undiscovered. It has been observed that immunodeficient patients develop some
cancers (e.g. non-mealanoma skin cancers, lip, bladder, eye, lung, colon, etc.)
with noticeably higher rate, while certain other cancer types (e.g. brain, breast,
prostate) do not show any increase in incidence. It gives rise to the hypothesis,
that many carcinogenic viruses are yet undiscovered.

In the fist and second contributions of this thesis, we build and improve a rec-
ommendation system that helps to more easily discover the yet unknown viruses
in human metagenomic samples. These viruses can then be studied further by
virologists and their possible relations to diseases investigated.

2.2. Background on place cell recordings

Brain is one of the most complex structures in the known universe and solely this
fact makes it a fascinating study. Moreover, understanding the brain can help fight
brain-related illnesses. These illnesses do not only include degenerative diseases
such as Parkinsons, but also mental disorders that influence our daily life such
as depression and addictions. OECD estimates the cost of mental illnesses to
the economies of EU member states to be above 500 billion euros per year [69].
Hence, both intellectually and economically there are not many more worthwhile
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scientific endeavours than studying the brain.
To understand what is happening inside the brain when we think and act, var-

ious recording methods have been designed. As there are around 80 billion neu-
rons in the human brain [6], it is unrealistic to record the state changes of all of
them at the same time. Instead, many methods record activation level of pop-
ulations of neurons. For example, electro-encelography, magento-encelography,
near-infrared spectroscopy and functional magnetic resonance imaging all provide
population based measures of brain activity at different spatial and temporal pre-
cisions. These measuring techniques have helped us understand the structure and
the large-scale connectivity of the brain. They tell us where and when computa-
tions happen as we see populations getting activated in response to stimuli. From
other sources, we also know the neuron-level anatomy of each region (from brain
slices), and how the particular neuron types roughly function (from growing and
testing them on a plate). By combining these pieces of knowledge we can make
hypothesis on how the specific area performs the operation we have attributed to
it by population-level imaging techniques. However, without recording what in-
dividual cells do in a living (!) animal, it is tricky to confirm any such hypothesis.

As stated before, it is unfeasible to record all neurons in the brain. Further-
more, the brain is very tightly packed and inserting electrodes to measure each
and every cell is equally unrealistic, even in some relatively small population.
There would be no space for that many electrodes and we have no guiding mech-
anism to aim an electrode to specific cells. In fact, the best we can do is insert
electrodes with multiple measuring points into a brain area and hope that the cells
we can measure from there happen to be informative. Even though at each mea-
suring point we can detect and separate (using “spike sorting” [59]) the activity of
multiple surrounding cells, we end up with at most a few hundred cells recorded
(maximum a few thousand with special hardware [67]). This is a tiny randomly
selected fraction of the cells in an area. These sparse and random measurements
are nevertheless an interesting source of information about the brain.

In the third contribution of this thesis we analyze the activity of neurons in
CA1 area of hippocampus of 5 rats. The rats have electrodes fixed into their
brains and they can move around freely in environments that we place them in.
We simultaneously record their position and their brain activity. The electrodes
can detect between 26 and 72 neurons depending on the animal. From the activity
of these few neurons we aim to predict (decode) where the animal is located in
the environment. With 70 random neurons from a random part of the brain this
task would be unfeasible, but the CA1 region is special. In 1971 O’Keefe and
Dostrovsky discovered that there are cells in the hippocampus that get activated
every time the animal is located in a specific part of space [70]. Elsewhere the
neuron is inactivated. These cells are called "place cells" and the region where
they get activated is their "place field"(see example on Figure 2). A combination
of many place cells makes up a map of the environment [28,71] - by observing the
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Figure 2. Example place field from the data used in Publication III. The x and y axis
represent locations in 1x1 m area. The color code reflects the activity of the example
neuron in spikes per second averaged over the periods of time the animal was in the
corresponding location. A cell with a clearly visible localized area of higher activity is
called a "place cell", the zone with more activity is called the "place field" of this cell.
Only around 1/10-th of cells in CA1 (and in our recordings) are place cells.

firing patterns of these neurons the rest of the brain can know where the animal is.
Our task is similar- to decode the animal’s location, but based on only the subset
of neurons we managed to record (as opposed to all CA1 neurons).

I would like to stress further the absurd difficulty of this position decoding task.
We place some electrodes inside an area we know contains the necessary infor-
mation. Each electrode measures the change in electric potential. Using existing
tools we cut out the time periods where this electric signal looks to correspond to
a spike in a nearby neuron. This is not simple, because the distance of that neu-
ron from the electrode and its orientation matter. Some spikes might get thrown
away, if the outside noise made them unrecognizable. For example, if two nearby
neurons spike in quick succession the measured electric signal is a combination
of their effects and might no longer be recognizable as a spike. We then cluster
the detected spikes to group together spikes likely to have come from the same
neuron. Clusters with too few spikes are discarded. After this the experimenter
can verify and clean the results of clustering -for example separate a cluster that
actually corresponds to two neurons or merge two clusters that are actually the
same neuron. We will then declare that each of these clusters is one neuron and
the spikes in the cluster are the times when this neuron fired. This is the input
data to all further processing - visualizations of the firing patterns, extracting fir-
ing statistics or decoding the animal’s position via machine learning. With so few
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neurons recorded and so many noisy processing steps, it is amazing that we can
decode anything at all.

2.3. Biological and historical origins of artificial neural
networks

Before explaining the inner workings of modern neural networks used in this the-
sis, we wish to give credit to the long history of methods aiming to mimic the
brain’s computations. Neural networks might seem a recent technology, but they
have been around since computers were invented. In here we wish to inform the
reader of the seminal works that underlie the modern success. Also, we wish to
discuss in which ways neural networks are inspired by the brain and how this has
been beneficial.

The human brain is the most powerful computer that we know of [60, 66]. It
can detect objects, plan actions and give the commands to execute these actions in
a fraction of a second. It is capable of highly abstract thought, absurdly complex
motor control and amazing levels of creativity. It can solve tasks it has never
seen before via generalizations and knowledge transfer from one task to another.
It is constantly learning and so plastic (adaptable) that it can function without
noticeable behavioural deficits even if half of it has been lost [7, 27, 105]. It is no
surprise that for as long as computers and computing have existed brain has been
the baseline computers want to beat - from the first computers that could add and
multiply faster than humans, to today’s algorithms that trade on stock markets or
detect objects.

Whereas there are more glial cells than neurons in the brain [6], and glial cells
have been shown to participate in certain computations [4, 68], the main comput-
ing power of the brain can be accredited to the 80 billion neurons and hundreds
of trillions of synapses formed between them. These neurons present a huge di-
versity – every cubic millimeter of the brain contains neurons with extremely dif-
ferent morphology and function. The same can be said about the synapses - they
vary in strength, duration and type (inhibitory or excitatory) of the stimulation.
As a neuron is activated only by a combination of multiple co-occurring excita-
tory signals, the timing of incoming signals and their location (for example, how
far from cell body) also matters. This extreme complexity is the reason why we
still do not understand the brain. We do not even know what is the computation
performed by cortical columns, the repeated structure in the cerebral cortex [76].
Cortex, especially the relative increase of its frontal regions, is suspected to be a
major source of our species’ intelligence [25, 86, 93].

When making algorithms mimicking how the brain computes, people have
usually found it necessary to get rid of this confusing amount of diversity. As we
will see below, in artificial neural networks (both historical and modern) we do not
consider the diversity of neurons nor the importance of timing and spatial location
of connections. There has been some increase in the complexity considered over
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time, but artificial neural networks remain a caricature of the biological brain.
The first noteworthy computational (mathematical) model aiming to imitate

the brain is not much younger than the Turing machine, having been proposed
by McCulloch and Pitts already in 1943 [61]. The activation of McCulloch-Pitts
(MC) neurons is represented as a binary variable (1 or 0, for active vs inactive),
while synapse strengths between neurons are 1 or -1 (positive or negative meaning
if the synapse is excitatory or inhibitory). In a MC neuron, the weighted sum
of incoming synapses (sum on ones and minus ones) is compared to a threshold
(usually set at zero), which determines the activation state of the neuron. With this
extremely simple model, all logical operations can be implemented (XOR needs
more than one neuron) [61]. Sounds good, however, the authors did not propose
how to come up with an optimal network of neurons and connections to perform
a task - i.e. there is no learning algorithm and one needs to build the networks by
hand.

In 1958 by Frank Rosenblatt proposed a learning algorithm and introduced
non-integer connection weights, calling the resulting algorithm the Perceptron
[79]. Using real numbered weights made the system more flexible and was a
step (albeit tiny) closer to the biological complexity in the brain. The Perceptron
ideas were fine-tuned by Minsky and Papert [63]. However, as the perceptron
learning algorithm can only “teach” networks with one layer of weights, Minsky
and Papert proved that not-linearly-separable functions (such as XOR) could not
be learned by it [63]. The discovery of this major limitation caused the scien-
tific world to lose interest in Perceptrons and in neural networks as a whole for a
decade [82].

The interest in artificial neurons and networks of these neurons was revived in
the 80ies. Kunihiko Fukushima’s 1980 neocognitron [34] was ahead of its time.
Directly inspired by Hubel and Wiesel’s work on visual cortex [50], Fukushima
essentially invented convolutional neural networks. However, the learning al-
gorithms were still not good enough to make this -in hindsight revolutionary-
invention catch on immediately. A major breakthrough by Rummelhart, Hinton
and Williams [80] was the proposal of an efficient way to backpropagate error
gradients through multiple layers of neurons. This allowed to train “multilayer
perceptrons”, which had more than one weight layer. Multiple layers of thresh-
olded (or otherwise non-linear) neurons can represent non-linear functions and
overcome the limitations discovered by Minsky and Papert [49, 80]. Today we
still use layers exactly like the ones in multilayer perceptrons, but we call them
fully-connected layers as the neurons of consecutive layers are all-to-all con-
nected [36]. These layers are present in vast majority of neural networks. The
backpropagation algorithm marked the beginning of modern deep learning- deep
refers to the depth, i.e number of layers in the networks. Deep, multi-step process-
ing is also preformed in the brain - for example visual information goes through
a series of brain regions in the ventral stream before reaching deeper, hierarchi-
cally higher regions where objects, faces, words etc. are detected. Indeed, recent
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research shows that the hierarchical processing of visual information in brain and
in deep convolutional networks is highly similar [21, 40, 56, 104].

The currently familiar form of convolutional neural networks (as opposed to
neocognitron) was proposed in 1989 by Yann LeCun [58]. As mentioned above,
convolutional networks mimic known properties of visual cortex where simple
and complex cells combine to achieve space invariance [34, 50, 58]. CNNs are
traditionally used to process images - find objects, letters or faces from them.
The original 1989 CNN was designed to recognize hand-written ZIP codes [58].
A decade later an improved version of this network, LeNet-5 [57], was used to
recognize digits on bank cheques.

With the algorithms reaching industry-level reliability by late 90ies (LeNet-
5 [57]), it is surprising to discover that the next remarkable application of CNNs
was in 2012 [55], more than a decade later. Whereas the loss of interest in neu-
ral networks after 1969 Minsky and Papert’s critique is clearly understandable,
the loss of interest in the 90ies and 00’s is more obscure. It is claimed that the
methods were over-hyped and did not live up to the expectations, hence becom-
ing a synonym for empty promises [20]. Also, other machine learning methods
emerged that were simpler and as powerful. The negative attitude towards neural
networks was ended by Alex Krizhevsky’s AlexNet winning the ImageNet 2012
object recognition competition [24, 55, 81]. With a combination of convolutional
and fully-connected layers AlexNet learned to classify objects into 1000 differ-
ent categories with precision way above (15% errors compared to 25%) all other
methods. Such huge improvement over existing methods immediately sparked
new interest in CNNs and by extension to other types of neural networks. Today
the best CNNs can achieve 2% TOP-5 error in the ImageNet task [97], which is
claimed to be better than human performance.

A more complex type of neural networks, recurrent neural networks, was
also proposed in Rummelhart’s 1986 groundbreaking “Learning representations
by back-propagating errors” article [80]. This type of network is designed to
deal with a series of inputs, such as time series. In particular, these networks
are able to use contextual information from past inputs to process the current
input [36, 80]. Hochreiter and Schmidhuber proposed “long-short term mem-
ory”(LSTM), a more powerful version of RNNs, in 1997 [48]. However, once
again it took more than a decade from the original invention of LSTMs to see
the real impact. Since the end of 00’s [37], more pronouncedly since 2012 [46],
LSTMs have become essential in natural language processing and speech recog-
nition [18, 46, 47, 83]. In many image processing tasks, just a glimpse, a snapshot
is often enough to understand the scene, so the vision models often get away with
not considering time, i.e. not considering the sequence of consecutive frames.
In language and speech, however, a single word or sound carries little meaning
and how the input changes over time is crucial, hence the need for RNNs. Our
brains also accumulate and use context to make decisions in response to stimuli
that change over time. In this sense, recurrent neural networks are perhaps the
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closest model of the brain among the artificial neural networks introduced here.
In all, neural networks have always been brain-inspired, though hugely simpli-

fied compared to the real complexity of the brain. Nevertheless, important ideas,
such as space-invariant cells and recurrent computation are similar in both artifi-
cial and neural networks. Researchers are still looking for aspects of the brain that
could be instilled into the networks (e.g. attention, explicit memory or prioritized
memory replaying).

2.4. General machine learning terms

2.4.1. Machine learning

Machine learning refers to studying and using the set of algorithms that allow
computers to learn to solve specific tasks solely based on empirical data. The
algorithms are not provided with specific instructions (are not pre-programmed)
how to solve the task. Instead, by observing a set of “training data points” the
algorithms discover useful regularities that help solve the task [9]. Iterating over
training samples to discover and fine-tune the set of patterns and rules that allow to
solve the task with maximal performance is called "training” of the model. Once
the model is trained (training has converged to a good set of rules) it can be applied
to new data points that were not part of the original training data (validation and
testing, covered in a later subsection).

2.4.2. Supervised learning - classification and regression

Machine learning (ML) can solve a variety of tasks. In this thesis we work solely
with supervised learning. In all three articles considered here, we have datasets
containing not only input data, but also the desired outputs. The goal in supervised
learning tasks is to learn a function that maps the training inputs to the correspond-
ing outputs as precisely as possible. The precision is measured according to some
metric (often called “loss function”). Notice that it might not be possible to map
all inputs to their correct outputs - either due to the limitations of the model or due
to the errors or stochasticity in the desired outputs. The ML algorithm’s aim is
simply to minimize the sum error (sum loss) across all training input-output pairs.

Depending on the type of desired outputs the machine learning tasks are fur-
ther divided into classification and regression tasks [1]. In classification tasks the
outputs can take a limited set of values (categorical values). For example, classi-
fication task might correspond to answering the question: to which class does the
input belong to? In this thesis we only see a binary classification problem - does
a given DNA sequence (the input) originate from a virus or not.

In regression tasks, the desired outputs are real numbered values. These tasks
can answer questions when? where? how much? and so on. In the third article of
this thesis we decode the location of an animal from its neural activity. It means
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we answer the question where the animal is. Or, what are the X and Y coordinate
values of the animal’s position.

Classification and regression tasks demand the use of different learning algo-
rithms and distinct sets of loss measures. Not all ML algorithms are equally useful
in classification and regression tasks [1, 9], but artificial neural networks can be
successfully applied to both [36]. The loss functions and metrics are discussed in
a later subsection.

2.4.3. Train-val-test splitting, generalization and overfitting

As mentioned above, supervised machine learning algorithms learn a set of rules
based on observing the training examples and the corresponding desired outputs.
One way of achieving the lowest possible error on training examples is to simply
memorize them - learn to identify the training input and memorize its correspond-
ing output. While such approach does exactly what is asked of it - minimizes the
training loss, we see empirically that it tends to perform badly on new samples
that the model was not trained on. In such case we say that the model lacks the
ability to generalize and that it has overfitted to the training set [1, 44]. General-
ization is important because usually the goal is not to just classify already known
data points correctly, but rather build a model that can classify unknown points.
To measure how well a model performs on data it has not seen during the training
process we set aside part of the data points and call them the validation set. Per-
formance on validation set is a much more accurate estimation of the model’s true
capabilities than performance on training set [9].

In most cases we do not know beforehand the model hyper-parameters that
are best suitable for solving the task. For example how deep and wide the neural
network should be, what optimizer and regularization to use. Hyper-parameter
tuning consists in training many models with different configurations on the same
training data set and then picking the best model according to the validation per-
formance [1, 54]. Notice that because our validation set is just a subset of all pos-
sible data points, two equally good (but not identical) models might show slightly
different performance. It just happens that the data points in our limited validation
set were favourable for a given model. Hence the “best” model is not only best
because it is good, but because it got lucky. It is unlikely to get as lucky on future
data points. So the validation accuracy of the best model is likely to overestimate
the true generalization ability. We need a further set of data points, called the test
set [1]. Test set samples are not used neither in training nor in picking the best
model. The performance on test samples is the most fair estimate of a model’s
ability to generalize that we can get [54].

Notice, however, that given a limited amount of data, we need to choose how
much of the data to use in each set. Using more training data is likely to yield bet-
ter models. At the same time, leaving less data for validation makes the general-
ization estimation noisy and we might accidentally pick a sub-optimal model [1].
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Similarly, small test set might - due to randomness - either over or underestimate
the actual ability of the model. It is common to randomly split the data in a way
that training set contains 80% and other sets both 10% of the data points. How-
ever, in different tasks, the optimal trade-off might be different.

2.4.4. Losses and metrics

For training machine learning models we need to select the measure we want to
optimize (minimize or maximize). For example one could minimize the risk or
maximize the gains. Also, we need to decide what are the metrics we report as
results. The measures that we optimize and those that we actually care about and
report are not always the same. [36]

For example, accuracy is an easily understandable measure, however, it is not
differentiable. When optimizing a model (e.g. neural network) with gradient
descent, the loss function must be differentiable. We cannot use accuracy as the
loss function, but we can still use it as the metric to evaluate a trained model’s
performance.

Binary classification tasks, Chapters 3 and 4. In the binary classification
tasks, as in Chapters 3 and 4, our neural networks’ loss function is binary cross-
entropy (BCE) loss. Given N samples, the predictions by the model pi and the
true values ti, the BCE is given by:

BCE =
N

∑
i
[−ti · log(pi)− (1− ti) · log(1− pi)] (2.1)

where pi is the probability of the i-th sample belonging to the positive class
according to the model. If the correct answer for i-th datapoint was positive, then
ti = 1, and if correct answer was negative, then ti = 0. Training of the model con-
sists in minimizing, across all training points, the BCE value between the model’s
predicted probabilities pi and the ground truth ti. However, reporting this loss
value (on validation or test set) as the final result is not very informative. We
know that smaller value is better, but saying that the average BCE loss was 0.001
is not intuitively informative. Therefore we need to turn to other metrics to de-
scribe the performance.

Precision and recall are metrics that are immediately understandable to the
reader. One can report the overall precision and recall, or provide values for each
class separately. Due to imbalanced class distribution (discussed in the next sub-
section), in our work we report the precision and recall of the positive class, not
the overall measures. Precision of the positive class corresponds to “what pro-
portion of the samples labelled as positive by the model were actually positive”.
Recall corresponds to “what proportion of positive samples did the model label as
positive” (i.e. recovery rate). Both of these measures are immediately understand-
able and are exactly what we want to know. While useful and understandable, we
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are still not satisfied with these measures. First of all, the precision of positive
class depends on the prevalence (proportion of positive classes in the dataset) in
the dataset. Hence this precision is data-set specific, not a universal measure of
model capability. Secondly, when calculating precision and recall a hidden param-
eter intervenes - the classification threshold, usually set at 0.5. If pi > threshold,
the model labels the sample as positive. With a stricter threshold we get higher
accuracy and lower recall, with lower thresholds the other way round [22, 33].
As we have no a priori assumption (or cost function) of how this precision-recall
trade-off should be solved, in our work (Chapters 3 and 4) we plot the precision
and recall values at all possible thresholds (0 to 1).

Importantly, we also provide the Receiver Operator Characteristic (ROC) curve
[31]. The curve is obtained by plotting recall (i.e. true positive rate) against
the probability of false alarm (i.e. false positive rate) at all possible (relevant)
threshold values.

precision =
true positives

true positives+ f alse positives

recall =
true positives

true positives+ f alse negatives

f alse alarm rate =
f alse positives

f alse positives+ true negatives

(2.2)

Neither recall nor false alarm rate depend on prevalence (proportion of positive
classes in the dataset) and the plot summarizes behaviour over all possible thresh-
olds. Hence the area under the ROC curve (AUROC) is a metric that does not
depend on prevalence nor a threshold. If we downsampled or upsampled one of
the classes (changing prevalence), AUROC would stay the same except for some
noise due to sampling. In our particular case, AUROC allows us to directly com-
parable model performance on datasets of different prevalence. AUROC is the
main metric in Chapters 3 and 4.

Regression task, Chapter 5. In the regression task of predicting rat’s lo-
cation based on its neuronal activity the training minimizes mean squared error
(MSE) of both coordinates simultaneously. With N samples, px

i and py
i the predic-

tions for X and Y coordinates at i-th data point, and tx
i and ty

i the corresponding
true coordinate values, the loss is given by:

MSE =
1
N

N

∑
i
[(tx

i − px
i )

2 +(ty
i − py

i )
2] (2.3)

In Chapter 5, the main reported results are, however, measured in mean euclidean
distance (MED) between true and predicted locations.

MED =
1
N

N

∑
i

√
(tx

i − px
i )

2 +(ty
i − py

i )
2 (2.4)
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Again, the optimized and reported measures are slightly different. Minimizing
MSE of the coordinates monotonically minimizes MED, but when optimizing for
the entire training set the trade-offs (between data points) made for minimal MSE
might not always minimize MED. One could actually directly optimize MED loss
when training, but this loss is not available in the Keras neural networks toolbox
[19] and the expected gain is small. Hence, we used the more common MSE loss
for simplicity.

2.4.5. Imbalanced classes problem

In our metagenomic datasets there are a lot more DNA sequences originating from
non-viruses than from viruses. The proportion is roughly 98 to 2. This class im-
balance makes the classification task harder [30, 52], because there is a strong
incentive to predict the more populated class whenever in doubt. In fact, always
predicting the non-viral class in our metagenomic dataset would lead to 98% over-
all accuracy, which might sound really good. However, a model always giving the
same output is useless for distinguishing viruses from non-viruses. The metrics
we employ in Chapters 3 and 4 (positive class precision-recall values and AU-
ROC, discussed above) would reveal the weakness of such deceptively "accurate"
model.

Notice that preferring to predict the more populated class is not wrong in
essence. Given a noisy data point containing no information about its true class,
labelling it as the majority class is the best solution. However, it might unfortu-
nately happen that the model learns to rely only on this class-bias and disregards
the weak signal in the data. In response, many techniques have been invented
to force the model to use the information in the samples, not only the bias in
labels [30, 52]. Oversampling consists in reducing class imbalance by adding du-
plicates of the minority class samples. However, using the same samples many
times is likely to lead to overfitting and bad generalization ability. Undersam-
pling just discards part of the data points from the more prominent class, but this
means throwing away potentially crucial information. As a third alternative, in
case of loss-based methods we can artificially increase the cost of misclassifying
the minority class items, effectively forcing the model to pay more attention to
getting them right. This is the most common method for dealing with imbalanced
classes for neural networks [107]. However, as per our experiments, none of the
three methods mentioned improved the results in terms of area under the receiver-
operating characteristic curve, neither for baselines nor for neural networks.

2.5. Neural networks methods

In the following subsections we will introduce the basic concepts of modern neural
networks and the types of networks used in the articles that are part of this thesis.
The articles are ordered by increasing complexity of the networks, so we can start
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Figure 3. Fully connected neural network with multiple layers. The inputs are inserted
as the activations of the input layer neurons. Each neuron in the second layer (first hidden
layer) is connected with all the input neurons. Each neuron in the third layer is connected
with all neurons in the second layer and each neuron in the output layer is connected
with all neurons in the third layer. Connections have real-numbered weights. Output is
the activation of last layer neurons or is calculated based on it. Image originates from
http://cs231n.github.io/neural-networks-1/

with simpler architectures to introduce basic concepts and then build on them to
describe more complex networks.

2.5.1. Fully-connected neural networks

The term “artificial neural networks” (ANN) refers to a versatile machine learning
algorithm or rather a family of algorithms. There are indeed very different neural
networks out there, with very different structure and learning mechanisms [36].
For example the learning algorithm for restricted Boltzmann machines is con-
trastive divergence [84], while for most other ANNs it is backpropagation. Neu-
ral Turing machines [38] have an extremely complicated internal structure and
connectivity patterns, while the most common type of artificial neural networks,
fully-connected neural networks (FCNNs), are relatively simple. In the remainder
of this subsection we describe what a FCNN looks like and how it learns from
examples.

FCNNs are composed of layers of artificial neurons, with consecutive layers
all-to-all connected (i.e. fully-connected) with each other (Figure 3). The connec-
tions are weighted with real numbers.

Each layer performs the same basic (linear) operation: given a row-vector of
inputs i the layer multiplies this vector with a weight matrix W and adds a bias
vector b to return an activation vector a:

a = i∗W +b (2.5)

The values in the matrix W and biases in vector b are the learnable parameters
of the layer. Notice also that the desired length of the resulting activation vector
also determines the second dimension of W and the length of b, hence influencing
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the number of parameters introduced. This output size is a hyperparameter (also
called layer size or layer width).

As the next processing step, an activation function (usually non-linear func-
tion) can be applied to each element of the activation vector a. The most common
activation functions include ReLU (rectified linear unit, g(z) : max(0,z)), sigmoid
and tanh [36]. The non-linearity of activation functions is important for learning
complicated, non-linear functions. Hence, the output of the layer becomes:

h = elementwise_activation_ f unction(a) (2.6)

As h is a row-vector, a subsequent FC-layer can be applied to it, again multiply-
ing h with a weight matrix W2, adding bias b2 applying activation function and
returning a vector of outputs h_2. Many layers can be stacked this way, making
the network “deep”. This depth is where the name “deep learning” comes from.

a1 = i∗W1 +b1

h1 = activation(a1)

a2 = h1 ∗W2 +b2

...

hn−1 = activation(an−1)

an = hn−1 ∗Wn +bn

(2.7)

If there are no further layers, the output of the last FC layer is the output of the
FCNN model.

Notice there are no cyclic connections in the network and the information
moves layer by layer from the inputs towards output nodes. Such networks with
no cycles are referred to as feedforward neural networks.

FCNNs in regression tasks. Consider the well-known regression task of
predicting the housing prices in Boston [43]. In this case we expect one real-
numbered output - the price. Hence the last layer’s weight matrix is of dimensions
(D_incoming,1) and there is just one output. In the case of such unbounded real-
numbered output usually no activation function is applied (notice no hn added to
the equations above) and the result of the last matrix multiplication (+bias) is the
output. In the supervised learning settings, we can then compare this output with
the desired output (the true price) and calculate the size of the error (loss) our
network made, for example in terms of mean squared error (MSE).

FCNNs in classification tasks. In contrast to regression tasks, in classifica-
tion the desired output is a vector of probabilities, pn, with one value per possible
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class. Each element represents how likely the input is to belong to one of the
classes. If the classes are mutually exclusive the sum of these probabilities should
be 1. To achieve this, the final layer activation an (of length num_classes) is
passed through softmax activation function [36]. This gives pn = so f tmax(an).
However, in the case of binary classification, as in articles 1 and 2 of this the-
sis, just one node in the last layer suffices (even though we have 2 classes). The
real-numbered an is transformed into a probability (to range [0,1]) by sigmoid
activation function. This number is interpreted as the probability of the positive
class P_pos (P_virus). The probability of the input belonging to negative class is
simply 1−Ppos. In the cases of multi-class classification and binary classification
the size of error (loss) is usually measured by cross-entropy loss and binary cross
entropy (Eq 2.1 above) loss respectively.

Learning in FCNNs. To learn from examples we find the gradients of the
loss (MSE, BCE or any other differentiable function) with respect to each param-
eter in each of the weight matrices and bias vectors used [36, 80]. By changing
each parameter value by a small step in the direction opposite to the respective
gradient we are likely to decrease the error a little bit. This is the idea behind
gradient descent [17, 80]. Iterating over all the training samples we optimize the
weights to minimize the errors made in all training points. Minimizing sum error
across training data points is the goal of the learning process.

However, different training data points might pull the parameter values in dif-
ferent directions and such noisiness might make the learning progress slower. In
full batch training the gradients in all training points are calculated and averaged
before a learning step is taken, assuring that we change the parameter values to
a direction that, on average, improves performance. This is however computa-
tionally costly - lots of gradient calculations for one learning step. In mini-batch
training we calculate the gradients for all parameters for each data sample in a
mini-batch (relatively small subset of points) and average over the samples. These
averages are a decent estimate of the gradient values we would get by using full-
batch. We use these averaged gradient values to update the parameters. By assign-
ing the data points into batches randomly, we reach the stochastic gradient descent
(SGD) optimization algorithm [11], where the size of each update is simply the
averaged gradient times a learning rate (LR):

∆parameter =−LR ·avg(
δL

δ parameter
) (2.8)

More efficient optimization algorithms can reach better results and faster by mak-
ing the parameter update depend on the history of gradient values over many
past mini-batches. Such methods include SGD with momentum, RMSProp [96],
Adam [53] and others. These methods help to further reduce noisiness, but also
allow to adapt learning speed for each parameter separately depending on the con-
sistency and magnitude of the gradients. RMSprop and Adam optimizers, that are
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used in this work, use past gradient magnitudes to amplify the updates in param-
eters where the updates are otherwise small (meaning the learning is slow) and
to reduce updates where the updates are otherwise large (risk leading to instabil-
ity). The Adam optimizer makes use of a concept similar to momentum, making
it in theory, but not always in practice, the more efficient. However, depending on
model architecture and dataset even the more simple SGD with momentum can in
practice still sometimes outperform the other methods [77]. Hence, the choice of
optimizer is either quite arbitrary or subject to hyperparameter search. In the con-
tributions presented in this thesis, we have chosen to not hyper-parameter search
the most optimal optimizer, due to such search being time-consuming. To save
computational effort, we accept the possibility that a slightly more optimal model
might be achieved with another optimizer.

Until now we have not mentioned why the learning method of ANNs is often
called “backpropagation”. First of all notice that in some of the modern networks,
such as the famous object-detection networks AlexNet [55], VGG-Net [90] and
ResNet [45], the number of trainable parameters reaches tens or hundreds of mil-
lions. To train the network we usually iterate multiple times over the entire train-
ing set (a million images in case of these networks). This means the number of
gradient calculations needed to train a network might reach billions. Finding these
gradients is made computationally more affordable by noticing that to find gradi-
ents of the loss w.r.t layer N-1, one only needs to know the gradients in layer N
and the relation that ties these two layers.
In particular, using the chain rule:

δL
δWn

=
δL
δan
∗ δan

δWn

δL
δbn

=
δL
δan
∗ δan

δbn

δL
δan−1

=
δL
δan
∗ δan

δan−1

(2.9)

so knowing
δL
δan

, we just need to find the derivatives of the local relationships

δan

δan−1
,

δan

δWn
and

δan

δbn
and multiply them. If the function tying the layers is a

simple matrix multiplication plus bias (and no activation function), getting these
derivatives is very simple:
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Given that an = an−1 ∗Wn +bn, we have

δL
δan−1

=
δL
δan
∗ δan

δan−1
=

δL
δan
∗W T

n

δL
δWn

=
δL
δan
∗ δan

δWn
= (an−1)

T ∗ δL
δan

δL
δbn

=
δL
δan

(2.10)

Using activation functions slightly complicates things, but the idea stays the
same - we just have another term in the chain rule:

δL
δan−1

=
δL
δan
∗ δan

δhn−1
∗ δhn−1

δan−1
(2.11)

In summary, to find the gradients we can start by calculating the derivatives
in the last layer and then move layer by layer back towards the inputs, finding all
gradients (w.r.t. all Wi and bi) needed for learning on the way. This backward
propagation gives the name to the algorithm.

2.5.2. Convolutional neural networks

Convolutional neural networks (CNNs), used in Chapter 4 of this thesis, are a
type of feedforward neural networks similarly to FCNNs. This means there are no
cyclic connections in the network and the information moves layer by layer from
the inputs towards output nodes. The first notable difference with FCNNs is that
CNNs are not fully-connected. While a CNN model might contain FC layers, by
definition it also contains convolutional layers. In a convolutional layer each node
is influenced by only a subset of nodes in the previous layer [36,58]. Furthermore,
each parameter of the convolutional layer is shared - it is used repeatedly for a
series of calculations (explained in detail below) [36,58]. This allows to reduce the
number of learnable parameters and reduce the risk of overfitting to the training
data [36].

The particular way of reusing weights consist in convolving a set of weights
over the inputs. This set of weights is always used together and is called a filter.
Convolving a filter over inputs means calculating dot products between the param-
eter values in the filter and different possible regions/areas of the input. Each dot
product, i.e. each application of the filter, results in one output value (one output
node/neuron).

While CNNs are most often used in image processing, here we use them to
analyze DNA sequences. Hence to avoid explaining it repeatedly, let us explain
the convolution operation by showing it on DNA data. Let us consider a short
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Figure 4. Example of 1D convolution. We are given (a) a 4x9 dimensional input array
derived from a DNA sequence, and (b) a 4x3 dimensional convolutional filter. Applying
this filter to all possible locations of the input yields a 1x7 feature vector given in (f).
(c-e) The elements of the feature vector are obtained by dot products between the filter
and different subsets of the input.

random sequence ATTGCATGA as input. The network needs numbers as input,
not letters, so we use one-hot encoding of the letters. This means each letter is
made to correspond to a vector containing one 1 and bunch of 0s. The position of
this 1 is different for each of the possible letters. For example, we can map:

A->(1,0,0,0) C->(0,1,0,0) G->(0,0,1,0) T->(0,0,0,1)
With this mapping the original short DNA sequence is seen as a matrix of size

4x9, given in Figure 4a.
Now let us consider a set of weights, called a filter, organized also in a matrix

form (4x3), as given in Figure 4b. Applying the 4x3 filter to the 4x9 input consists
in elementwise multiplying the filter weights with different possible 4x3 areas of
the input and summing the results (i.e. dot product, examples shown in Figure
4c-e). In here we apply the filter to all possible locations along the input, but it is
possible to skip some if needed [36]. This results in a row-vector given in Figure
4f. In particular, we see that input triplets map to the output as

ATT -> 2, TTG -> 2, TGC -> 0, GCA -> 0,
CAT -> 0, ATG -> 3, TGA -> 0 ,
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Figure 5. Multiple convolutional filters form a convolutional layer. (a) The input to
the layer is the same as in the figure above - a 4x9 matrix. (b) A set of N filters, 4x3
dimensional, are applied. (c) The output in the presented case is Nx7 dimensional, where
each row is calculated using one of the N filters. Notice that a next convolutional layer
can be applied directly to this output, with filters of size NxM (where M is the width).

so this example filter gives the largest output in case of ATG, but also triplets with
some similarity to ATG (ATT, TTG) result in positive values. Essentially this filter
is a sort of ATG detector. We could hand-craft similar detectors for all possible
triplets, or for all 4-mers (4x4 filters), 5-mers (4x5) and so on. In practice, a
convolutional layer indeed applies many filters (all of the same size though) to the
input, not just one. So the output of a convolutional layer is not one vector of filter
activations, but a matrix of activations, with one row per filter. This is illustrated
on Figure 5 below.

In this example we used a pre-defined filter that gave maximal output in case
of detecting ATG as input. The point of CNNs, however, as all ANNs, is to learn
the parameters from examples. Hence, in practice we randomly initialize these
filters and learn the optimal values via gradient descent, similarly to what was
described for FCNNs. The only added difficulty in learning is the fact that each
weight influences multiple output values (all values in the feature vector, entire
row of output activations) and the gradient calculation needs to sum the gradients.
Therefore gradient backpropagation algorithm can still be applied to convolutional
layers, despite partial connectivity and re-use of parameters.

Convolutional neural networks often also contain pooling layers. Pooling lay-
ers directly follow convolutional layers and decrease the size of feature vectors,
but do not decrease their number [36]. The decrease is achieved by summarizing
multiple neighbouring values in the feature vector by some fixed (not learnable)
function, most often the max function or average function. Using max pooling
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with pool size 2 and step size 2 on feature vectors, as is often done in literature,
means we just take the maximal value from consecutive non-overlapping pairs of
activation values. The other value is discarded. This way we would be left with
half the amount of nodes after pooling. However, instead of pooling over local
pairs it is also possible to pool over all the elements in the feature vector. This
leaves just one value per filter (per feature vector) and is called global pooling.
We use both global average pooling and global max pooling in different parts of
the network in Chapter 4.

In conclusion, a convolutional neural network is a feedforward neural network
that contains convolutional layers and might also contain fully-connected layers,
pooling layers and other types of layers not mentioned here. The network param-
eters, including the weight values in convolutional filters, can be optimized via
gradient descent.

2.5.3. Recurrent neural networks

Recurrent Neural Networks (RNNs) [80] are the most complicated type of neural
networks used in this thesis. Similarly to CNNs they reuse their weights, but in a
different manner, i.e. across time (on sequential inputs) rather than across space
(as in CNN). As a second difference, the input to an RNN is a type of series - e.g.
a series of words in a sentence or, for example, a time series of neuron activations
as in the third article of this thesis. The final and the most defining difference with
CNNs is that RNNs have cyclic connections. Due to these recurrent connections
the state of the network after processing one input influences the way the next
input is treated [36, 80].
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To understand the basic concepts, let us look at the simplest type of RNNs
(often called “simple RNN”), illustrated in Figure 6. In the figure, each circle
corresponds to a layer of neurons - i.e. a vector of activations (length >=1).

In the left side of the Figure 6 the RNN is depicted in a condensed form. At
each timestep the network receives an input vector xt and uses weight matrices
Winput and Wrecurrent to calculate hidden state ht . The looping connection on ht

means that ht also depends on the previous value of h, the ht−1. Similarly, ht will
influence the value of ht+1. However, ht can at the same time also be used as input
for further computations, marked with F(ht) yielding an output ot .

In the right panel of Figure 6 the same RNN is “unrolled in time” - instead of
summarizing the values at each timestep by xt and ht we illustrate each timestep
individually and show the connections between them. It can now be clearly seen
that h1 does not only depend on x1, but also h0. In can also be clearly seen that
the same weight matrices Wrecurrent and Winput are used at each timestep (weight-
sharing). Also the function F(.) is the same in all timesteps. Notice that this
function can be, and usually is, a neural network. All but the last application
of F(.) and all but the last output o are dotted and grayed because they can be
removed. With them we have t inputs and t outputs. Without them we have t
inputs and 1 output. These two variations of RNN are called many-to-many and
many-to-one architecture. In this thesis we use only many-to-one type of RNNs.

In "simple RNNs" the exact formula for calculating the hidden state ht at
timestep t, given the weight matrices Wrecurrent and Winput and the state at previous
time step ht−1 is the following:

h(t) = tanh(Winput · xt + Wrecurrent · ht−1 + bias) (2.12)

where tanh is the most commonly used activation function, but one could also
choose to use other functions [36].

As for FCNNs and CNNs, the training of this network can be done with gra-
dient descent, using backpropagation algorithm to find the gradients (assuming
the loss function and the function F are differentiable) [80]. When looking at
the network structure in its unrolled form, it looks simply like a very deep fully-
connected network with not one input, but a series of inputs added to consecutive
layers. Also, the structure is very regular - layer widths are the same and the
weights are shared. Especially in the case of many-to-one type of network it is
easy to see the equivalence between unrolled RNN and a very deep FCNN. There
is only one output from the last timestep, corresponding to the top layer when
looking at it as FCNN. The only complicating factor for calculating the gradients
is, like it was for convolutional layers, that we need to add up the contributions
of the shared weights over all the places they were used in. The fact that there
are multiple inputs at different layers does not hinder backpropagation algorithm.
Even in many-to-many variation, the comparison with FCNN is valid and back-
propagation can be applied. Simply there are multiple outputs, multiple losses
and hence multiple sources of gradients that need to be added.
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Long short-term memory (LSTM) networks. The simple RNN described
above was introduced already in the 80ies by Rummelhart and Hinton [80]. How-
ever, researchers soon discovered that these networks are very difficult to opti-
mize [47]. In particular, the simple RNN learns short-term interactions much bet-
ter than long-term dependencies. So, for example in many-to-one type of network,
the model struggles to learn dependencies between the output and the first inputs
in the series (far away in terms of timesteps, long-term), but is able to discover
dependencies between outputs and the latest inputs (fewer timesteps away, short-
term). This effect is mainly caused by vanishing-gradient problem [47] - i.e. gra-
dients getting weaker and weaker the further we go (in terms of layers/timesteps)
from the output. To clarify, the model might still be able to learn the long-term
dependencies, but the learning is very very slow, so much so that that no-one can
actually afford to wait for this learning to happen.

Being unable to learn longer-term interactions means the model is much less
useful. Imagine you train a network on a time-series where each input corresponds
to one day - simple RNN might manage to discover weekly patterns (7 timesteps),
but will fail to detect monthly or yearly patterns. This is a major limitation that
was discovered and investigated already in the beginning of 1990ies [8, 26, 73].
In 1997 Hochreiter et al. suggested a more complicated architecture for RNNs,
called Long short-term memory (LSTM) [48]. This architecture is famed for mak-
ing learning of long-term dependencies easier. In simple RNN, essentially, impor-
tant information contained in the first timesteps is likely overridden by noise in
later timesteps [36]. LSTM architecture introduces specific weight matrices that
control at each timestep to what extent the network should keep previous informa-
tion and to what extent overwrite it with new. This way, the network can learn to
almost completely ignore some "not-interesting" inputs and instead maintain the
information already accumulated.

Introducing these specific weight matrices makes the calculations within a re-
current layer more complicated:

f t = sigmoid(Wf xt +U f ht−1 +b f )

it = sigmoid(Wi xt +Ui ht−1 +bi)

ot = sigmoid(Wo xt +Uo ht−1 +bo)

c̃t = sigmoid(Wc xt +Uc ht−1 +bc)

ct = f t · ct−1 + it · c̃t

ht = ot · tanh(ct)

(2.13)

There are now 8 weight matrices, marked with W and U, this is 4 times more
than for simpleRNN (Winput ;Wrecurrent). The intermediate values have the follow-
ing interpretation:
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– f t is the forget gate, it controls how much of each element in previous c
value (ct−1) is included in ct ;

– it is the input gate, controlling how much of a new candidate value c̃t is
included in ct ;

– ot is the output gate, controlling how the internal cell state c is mapped to
the hidden state ht ;

– c̃t is the candidate value for ct based on current input and current hidden
state ht−1;

– ct is the internal cell state;
– ht is the hidden state - this is the output value that subsequent layers and

subsequent timesteps (gates f,i and o) receive.

As can be seen, the latest hidden state and the current input are combined to
decide the states of input and forget gates. The network can learn weights such
that given a particular input or particular state of the network, all past information
can be forgotten and the new input considered maximally; or all past information
can be preserved and input disregarded; or any intermediate combination. This
gives the network a lot of freedom to learn what information and how to accumu-
late to form the internal representation of context.

During learning of an LSTM network, the presence of multiple sources con-
tributing to the cell state ct (cf. Eq 13) means that the vanishing of the gradients
is less likely to happen and is more controllable by the network itself. It has been
shown that for the gradients to neither vanish nor explode when backpropagating

through many timesteps, the magnitude of the derivative
δct

δct−1
(in the case of sim-

ple RNN
δht

δht−1
) needs to equal to 1 (or be very close to 1) on average [73]. It has

been shown that this is very hard to achieve in the case of simple RNNs [47,73]. In
LSTMs this derivative has proven to take more suitable values more often, leading
to better learning of long-term effects, while usually also avoiding gradient explo-
sion. Nevertheless, neither vanishing nor exploding is not explicitly guaranteed to
never happen in LSTMs [35, 39, 73], it just happens less often or slowly enough
(over more timesteps).

In LSTMs, this partial derivative takes an additive form:

δct

δct−1
= ft + ct−1

δ ft
δct−1

+ it
δ c̃t

δct−1
+ c̃t

δ it
δct−1

(2.14)

The fact that the sum contains the term f t means that if the gradients are too
weak or too strong (vanish or explode), the model can control the strength of

δct

δct−1
easily by just changing the scale of the forget gate activations, ft , which
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are defined positive in range (0,1). Secondly, the additive nature of the deriva-
tive makes it easier to achieve not-too-low values when backpropagating through
many timesteps [35, 39].
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3. ANALYZING CODON-BASED METAGENOMIC
DATA WITH FEEDFORWARD NEURAL NETWORKS

ON METAGENOMIC DATA (PUBLICATION I)

This chapter describes the application of feedforward neural networks on a dataset
derived from metagenomic sequencing experiments. This work was done in col-
laboration with Zurab Bzhalava and Joakim Dillner from Karolinska Institute in
Stockholm, Sweden. They provided the datasets and the expertise in bioinformat-
ics, needed for the processing steps preceding the application of machine learning
methods. As experts in the field, they provided the background knowledge and
put the work into larger context in the field of human metagenomics.

The supervised learning goal in this task is to learn a classifier that can sepa-
rate viral DNA sequences from non-viral. We compare the network’s performance
with a baseline model - random forest (RF) [13]. We see that the proposed feed-
forward network does not outperform RF. The eventual error analysis and sensi-
tivity analysis is performed on the RF model, as it is the more well-known and
understandable for the readers.

3.1. Biological question

In the "Background on Metagenomics" section we briefly mentioned that sequenc-
ing and assembling the DNA found in an environment yields many sequences
(called contigs). Some of these contigs we can map to existing genomes by using
BLAST (or other methods) - if a contig aligns well with a known sequence, we
can say from which organism it originates from. However, many of the contigs do
not align well with the genome of any known species. These contigs are marked
"unknown" and we literally do not know what they are - even if they belonged to
a virus, a bacteria or an eukaryote.

In and on the human body there are many viral species that we do not know
yet [65] and in human metagenomic experiments the DNA fragments from these
viruses get marked as "unknown". As these yet unknown viruses might be the
the hidden causes of some illnesses, virologists are interested in identifying and
characterizing them [14, 15, 29]. To learn more about the viruses, the first step
is to figure out which of the "unknown" contigs might belong to viruses. Having
identified a potentially viral contig, methods exist to go and retrieve the entire
genome from the environment. However, these virological methods are expensive
and time-consuming (lab-work). One cannot afford to apply them to all "un-
known" contigs. It is necessary to narrow down the search and first identify some
candidate sequences that we have reason to believe are viral.

In this work we build a recommendation system to find such candidate se-
quences for further investigation. We create a machine learning model that could
tell for any contig, including those marked "unknown" by BLAST, how likely it
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has belonged to a virus.

3.2. Data and models

3.2.1. Data aquisition and pre-processing

In the genetic code some amino acids are encoded by several, synonymous codons.
Usage of these codons is not random and differs among species. This phenomenon
is called Codon Usage Bias [5, 89]. How often each possible synonym is used in
a given open reading frame (ORF) is measured by relative synonymous codon us-
age [88]:

RSCU =
Ci

1
Ni

∑
Ni
j=1C j

, (3.1)

where i is a codon, Ni is the number of synonyms it has and Ci and C j are counts.
Hence, in case all synonyms are equally used, the RSCU value will tend towards
1. RSCU values cannot me calculated for codons with no synonyms, so while
there are 64 codons, there are 59 RSCU values.

In this work we used RSCU values extracted from contigs as the input to our
machine learning algorithms. In particular, given a set of contigs:

1. we label the contigs with BLAST and HHMER3 [92] models, as "virus"
or "non-virus". There are many contigs originating from human genome,
bacteria and phages. These are removed. Also, sequences too similar to
each other (duplicates) are removed.

2. we generate the reverse strand for each contig and use it as an independent
sample

3. all sequences with an open reading frame (ORF) of length at least 120 bp
(base pairs) are kept, other contigs are discarded

4. we calculate the RSCU values in the ORFs of each contig. This means we
summarize each DNA sequence in 59 RSCU values

5. the RSCU value vector and the label given by BLAST/HMMER3 make up
a data point.

We apply this procedure to contigs originating from 19 metagenomic sequenc-
ing experiments. In these experiments human metagenome in different parts of
human body (serum, prostate, skin, cervix, etc) was sequenced. The sequencing
was done with MiSeq, NextSeq and HiSeq (Illumina) sequencing platforms. The
amount of obtained data points and the prevalence of viral sequences varies a lot
from experiment to experiment. In total we have roughly 200 000 data points,
5000 of which are labelled as virus.
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3.2.2. Data partitioning

Despite removing very similar sequences (duplicates) in the pre-processing phase,
we noticed that sequences originating from the same metagenomic experiment
still share more similarity with each other than with sequences from other exper-
iments (measured by Hamming distance between sequences, cosine distance be-
tween RSCU vectors). Consider a pair of highly similar data points (originating
from the same experiment) one in training set and one in validation set. The vali-
dation performance on this validation point is likely high, as a very similar sample
was used during training. In the context of building a recommendation system that
can be applied to new data from any new metagenomic sequencing run (that an
user might have), however, this performance would be an overestimation. As said,
another metagenomic experiment would not contain such easy-to-classify similar
data points. Hence, to give an honest estimation of our model’s generalization
ability, we partition the data in a way that the validation set never contains data
points from the same metagenomic experiment as train set.

In particular we use so called "leave-one-experiment-out" (LOEO) cross val-
idation procedure. We have 19 metagenomic experiments. We train 19 models,
each time leaving one of the experiments out of the training set and using it as the
validation set. The training is done on the 18 remaining sets. The validation sets
are of different size and prevalence and their results need to be combined to give
a unique measure of generalization ability. For completeness, we use both micro
and macro averaged measures.

3.2.3. Machine Learning algorithms used

To learn the function that maps RSCU values to the probability of viralness of the
sequence, we first trained a random forest (RF) classifiers [13]. We tested vari-
ous sizes of forests and also experimented with other hyperparametes, including
class weight balancing and up/down sampling. However, the only improvement
in validation set AUROCs was achieved by increasing forest size to 1000 trees.
Further increase in size improved performance only marginally, with increased
computational cost. Other changes in hyperparameters either lowered AUROC or
just changed the precision-recall trade-off with AUROC staying the same.

We then investigated if fully-connected neural networks (FCNN) can outper-
form random forests in this prediction task. We varied network depth, layer
sizes, dropout rate, learning rate, activation function, batch size and optimization
method. Also, as for random forest, we tried using class weight balancing and
up/down sampling. In all, a network with two hidden layers (relatively shallow)
proved to perform the best. The model was not very sensitive to hyperparameters
and many other model configurations performed almost equally well. The exact
model used is summarized in the Appendix.
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Figure 7. ROC curves of the 19 models of the leave-one-experiment-out procedure on
their respective validation sets (gray dotted lines). The micro and macro averaged ROC
curves are given in blue and red, respectively.

3.3. Viral nature can be predicted

For each of the 19 datasets, with both random forest and FCNNs, the model
achieved predictive performance clearly above random level. This means that
RSCU values contain at least some information about if the sequence is viral or
not. However, the results varied a lot from validation set to validation set (re-
member, each dataset was left as validation set once). With random forest the
highest validation AUROC among the 19 models (validation sets) was 0.98 and
the lowest 0.59. Averaging the results by merging all test sequences and predic-
tions into one big dataset (micro-averaging), we achieved AUROC 0.789 with RF
and 0.790 with FCNN. Macro-averaged (averaged over the 19 mean results, one
per test set) are also similar (around AUROC 0.785). We conclude that the results
are essentially equal with the two ML methods. We decided to present random
forest results as the main results, because RF algorithm is more established and
easier to understand and interpret for a wider audience. The ROC curves for all
19 validation sets, the micro and macro averages are drawn on Figure 7.

As mentioned in the "Losses and metrics" subsection in the Background, the
precision and recall values depend on prevalence and the choice of classification
threshold. Also, we argued that due to high class imbalance we care about the
precision and recall of the viral class, not the overall measures. Our RF models
can, with different thresholds, achieve for the positive class (viruses) [precision,
recall] pairs [0.95, 0.055], [0.9, 0.086] and [0.75, 0.105]. We expect the intended
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Figure 8. Precision-recall curves for the viral class. Gray dotted lines illustrate the per-
formance of the 19 models on their respective validation sets. Blue and red lines are the
micro and macro averages.

users to be more interested in fewer (low recall) but more accurate results, but
it might depend on use-case. Hence the full precision-recall curve is provided
(Figure 8).

Sensitivity analysis of RF model revealed that codons TCG, CGC, CGA, GCG,
GTA and CCG stand out as more important than others. All of these codons were
relatively more prevalent among viruses (higher RSCU) than among non-viral
samples. Also in absolute terms, these codons were among the least commonly
found codons (as per RSCU values) in non-viral sequences. Why such differences
in codon usage exist and how to further exploit this is an interesting future research
topic for virologists.

3.4. Discussion

In this work, we used RSCU values extracted from metagenomic contigs as input
to binary(viral/non-viral) classifiers based on fully-connected neural networks and
random forests. When extracting features from some input, we make decisions
what information to keep and what to discard. For example, in RSCU values most
of positional information is lost, because we count the codons and do not pay
attention to their order. Also, as we only count the relative frequency of codons
(3mers), we do not consider longer patterns. In short, we have a priori decided
that RSCU values is a good representation of the input sequences and the models
do not have freedom to change that decision.

However, notice that the most quoted ability that sets neural networks apart
from other algorithms is the ability to learn useful hierarchical representations
of the data [10, 36, 80]. Indeed, the seminal Rummelhart and Hinton paper in
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1986 was named "Learning representations by back-propagating errors" [80]. In
consecutive layers, the networks can transform the original input in non-linear
fashion and map it to some feature space, where the final classification layer can
more easily separate the classes [36]. In here, the input sequences are already pre-
processed and mapped to a certain feature space (RSCU-space), hence the ability
to find good representations is less useful. With this observation in mind, it is not
surprising that FCNN did not significantly outperform random forests. In fact,
having optimized both methods extensively and having reached the same result,
it is possible that both methods have used the information contained in RSCU
values near optimally. It is possible that based on this high-level input, no other
model could do much better.

The RSCU values can be extracted from all ORF-containing contigs found
in the metagenomic experiments, including the ones marked "unknown" by con-
ventional methods. The proposed RF and FCNN models can be applied to these
sequences (these RSCU value-vectors). The predictions they return, even if not
perfectly reliable, can be used to order the unknown sequences by likelihood of
being viral. This way, virologists can prioritize the study of sequences that are
more likely to be viruses, saving time and money compared to randomly picking
the sequences to be studied further.
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4. ANALYZING RAW DNA SEQUENCES FROM
METAGENOMIC EXPERIMENTS WITH

CONVOLUTIONAL NEURAL NETWORKS
(PUBLICATION II)

In this section we investigate further the problem of identifying viral sequences
among metagenomic contigs. In particular, having assessed the weaknesses of the
methods used in the previous chapter (Publication I), we propose to use convolu-
tional neural networks to tackle this prediction task.

As for the previous chapter, the work was done in collaboration with Zurab
Bzhalava and Joakim Dillner from Karolinska Institute in Stockholm, Sweden.

4.1. Biological question

In the first publication we demonstrated that machine learning models can learn to
detect the viral nature of a DNA sequence based on only the information contained
within that sequence (without using an external database, see also [78]). In here,
we ask if the prediction accuracy can be further improved by changing the way
the inputs are pre-processed.

In particular, we hypothesize that by reducing a DNA sequence (contig) to 59
RSCU values (or k-mer counts, as in [78]), as was done above, one discards a lot of
information that could be useful for the classification task. Instead, in this second
publication we propose an approach where the machine learning model can access
all information within the sequence and can decide by itself what information
to extract and use. We use convolutional neural networks that apply learnable
filters directly one the "raw" DNA sequence. These filters are optimized through
gradient descent and can learn to extract more diverse information than k-mer
counts or RSCU values.

4.2. Data preprocessing

Our CNN models will work on "raw" sequences, so the pre-processing pipeline
does not contain any feature extraction:

1. we label the contigs with BLAST and HHMER3 models, as "virus" or "non-
virus". There are many contigs originating from human genome, bacteria
and phages. These are removed. Also, sequences too similar to each other
(duplicates) are removed

2. all sequences shorter than 300 bp are discarded. All longer sequences are
cut into pieces of length 300, with the remainders discarded. E.g. a se-
quence of length 700 yields two non-overlapping sequences of length 300
and a remainder of 100 bp that is discarded.

46



3. a 300 bp sequence and the label given by BLAST/HMMER3 forms a data
point

The baseline models use k-mer frequencies as inputs, in that case an additional
step of k-mer counting is included (i.e. feature extraction).

In contrast to the previous publication, in this work we did not generate the
complementary sequence for each contig for using it as an independent sample.
First of all, we had sufficient data and did not need this data augmentation tech-
nique. Secondly notice that there is no new information in the complementary
sequence compared to the original one. In terms of information content, the com-
plementary sequence is a duplicate of the original data point. With random data
partitioning, used in this work, such duplicates would be split between training
validation and test. This could lead to overestimating the generalization ability.
As for the main results of this chapter we use 80/10/10 split of the data, we judged
safest not to include the complementary sequences (to avoid reporting overesti-
mated results).

4.3. CNN model and baseline ML algorithms

When deciding the CNN architecture to use, we analyzed the weaknesses of
count-based (k-mer, RSCU) models. First of all, notice that the number of possi-
ble k-mers grows exponentially with increasing k. In this work we allow 5 possible
values for each position (including "N" for "unknown"). The highest k value used
was 7, which transforms a 300 bp input sequence to a vector of length 78125.
Such representation is very sparse and introduces many parameters to any ma-
chine learning model built on it, which in turn can lead to overfitting. Also, having
so many inputs makes any model computationally more costly (which is why we
stopped at k=7). Furthermore, notice that despite using 78125 input features, the
presence of patterns longer than 7 bp is not directly readable from this represen-
tation. While the presence of a certain 8-mer can almost always be deduced from
observing the two 7-mers it contains, needing to learn such "AND" rule makes the
learning task more complicated for the machine learning algorithm. We hypothe-
size that a more efficient representation of the input sequence exists and propose
that a CNN might be able to learn it.

We also hypothesize that for some particular patterns detecting just the pres-
ence, not the exact count, is enough. Whereas presence can always be deducted
from count (count > 0), an algorithm might or might not be able to learn to con-
sider just the presence and not the magnitude of the count. Hence, we hypothesize
that bestowing a CNN model with the ability to detect just the presence of a pat-
tern, not its usage frequency, might be beneficial.

In this work we designed a two-branched CNN, called ViraMiner, that is ca-
pable of extracting both pattern frequency information and pattern presence in-
formation. This network receives as input 300 base-pair long DNA sequences
(contigs) encoded in one-hot format (example given in Figure 9).
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Figure 9. Example of one-hot encoding transforming a DNA sequence of length L base-
pairs into 5xL matrix.

The overall structure of this proposed ViraMiner model is illustrated in Figure
10. In here, we do not specify the layer hyperparameter values (layer sizes) as
they will be subject to hyperparameter tuning. The model receives the one-hot
encoded DNA sequence and returns one real number - the probability of this input
sequence being of viral origin. During optimization, the binary cross-entropy (Eq
2.1 in Methods) loss is minimized between the output probabilities and the true
labels.

The "frequency branch" contains a 1D convolutional layer followed by global-
average-pooling layer. While the convolutional layer outputs multiple values per
convolutional filter (each filter is applied to multiple places along the input), the
global averaging reduces these to just the average value per filter. As a result,
this pair of layers measures the average presence of a pattern similarly to k-mer
frequency extraction, only that the patterns are more complex and the matching in
each position is a continuous measure, not binary. In fact, the frequency branch is
also capable of learning to just count k-mers if it deems it necessary. In such case
the filters would have one-hot vectors as columns.

The "pattern branch" contains a 1D convolutional layer followed by global-
max-pooling operation. Due to using maximum operation instead of averaging,
this combination of layers detects how well (maximally) a learned pattern can be
matched with the input sequence.

To conclude, the proposed approach is able to learn by itself the complex pat-
terns the layers should look for in the data and is able to detect both presence
and usage frequency. As an additional benefit, the number of used parameters in
the convolutional layers grows linearly with the filter-size used, not exponentially.
This means we can experiment with very high filter sizes (up to 40 bp, as opposed
to k=7 with k-mer counts) and decide empirically if considering longer patterns
matters for the classification task.
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Figure 10. ViraMiner architecture without exact hyperparameter values. The hyperpa-
rameters are tuned for each branch separately.

In hyperparameter search we find the optimal values for the number and size of
the convolutional filters, as well as other tunable parameters (dropout rate, learn-
ing rate, FC-layer sizes, etc). However, to reduce the number of possible hyper-
parameter combinations, we tune the sizes of each branch separately. Notice that
by just removing one of the branches (and half of the concatenated layer), we still
have a fully functioning classifier. We call these one-branched models "frequency
model" and "pattern model". We fit many instances of these partial models with
a wide range of filter sizes and counts. We then pick for both partial architectures
the models that yielded the highest validation AUROC. We can use these partial
models to produce the full two-branched ViraMiner model in different ways:

1. we use the best hyperparameters for each partial model to set the sizes of
the branches in ViraMiner model. We then randomly initialize the weights
and fit the entire two-branched model from scratch

2. we use the best hyperparameters to set the sizes of branches in ViraMiner
model. In addition, we initialize the weights in the branches to be the
weights from the best partial models. The last fully-connected layer (af-
ter concatenation) is randomly initialized. We can then train the ViraMiner
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model in three different ways:

(a) optimize all the weights together, both the randomly initialized last
layer and the branches

(b) optimize only the last layer of the model (leaving the parameter values
in branches fixed)

(c) optimize the weights in two steps. First only optimize the last layer.
In a second step fine-tune all weights of the model together

All tunable hyperparameters are defined by the partial models, the only choice
made at the full model level is evaluating which of the three above-mentioned
ways of using partial model is the most effective.

The ViraMiner model’s exact shape (layer, filter sizes etc.), as defined by best
partial model shapes, is given in the Appendix A.

As the main, most competitive baseline algorithm we used Random Forest. To
demonstrate that RFs are unable to learn from the raw sequence, we first trained
them with one-hot encoded sequences as input. We attribute RF’s inability to work
with raw sequences to the fact that RF has no built-in mechanism to achieve space-
invariance (such as global pooling in our CNN model). This means that shifting
a sequence by one value (removing one value from the beginning and placing it
to the end) makes it unrecognizable for random forest, as all input values will
change. To have a more competitive baseline, we also trained RF models using
k-mer counts as input.

4.4. Improved performance in viral classification task

Trained on a 80/10/10 split of the data, CNN-based models clearly outperform
random forest models (Figure 11). Random forest trained with raw sequences as
input only achieved AUROC 0.573. The best random forest model trained on ex-
tracted k-mers reached AUROC 0.875. The one-branched pattern and frequency
CNN models surpassed this performance, reaching 0.905 and 0.917 AUROC re-
spectively. The best result, AUROC 0.923, was reached with the two-branched
ViraMiner architecture. The best ViraMiner model’s branches were initialized
with weights from the best partial models and only the last layer was optimized
(option 2b from previous subsection). When used as recommendation system,
this performance translates into getting 166 out of 200 top predictions correct,
whereas the top 20 are all correct.

Using CNN-based classifiers clearly improves the performance over models
with k-mer counts as inputs. This supports our initial hypothesis that more optimal
representations of DNA sequences exist and that CNNs can learn them.

50



Figure 11. Area under ROC curve for baseline random forest models, partial CNN mod-
els and the two-branched ViraMiner model. CNN-based models (blue) outperform RF
baselines (red).

4.4.1. Additional measures of generalization ability

The additional experiments described in this section were performed to demon-
strate i) that ViraMiner’s high performance is not due to hidden biases in our
dataset and ii) that the model can generalize to outside its training domain, i.e. to
extrapolate.

We ran the following experiments:
• Training the model on simulated data, using simulated validation set for

early stopping and simulated test data for performance estimation. The test
results are equivalent (AUROC 0.93) with the main results on real data.
This shows the methods work on a dataset that we know exactly how it was
generated and that should be bias-free.
• Training a model on data originating from 18 metagenomic experiments

and testing it on the 19th. We repeated it 5 times, each time leaving out
one of the metagenomic sets from human serum. The results consistently
show that models trained on 18 experiments generalize very well on the
19th (AUROCs range from 0.84 to 0.98, micro-average equals 0.94).
• Training a model on data from all 19 experiments, but with a certain viral

class, anelloviruses, removed from the training and validation sets. We test
this model on a test set containing non-viral samples and only anellovirus
samples (all other viral samples were moved to train and validation). A
significant performance, AUROC 0.78, shows that the model can identify
even viral samples that are very distant from the training viral contigs. This
performance translates to getting 11 of the top 20 "most viral" predictions
correct.
• Training a ViraMiner model on the 19 real metagenomic datasets and test-
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ing it on simulated data. The resulting AUROC=0.78 is similar to the results
on unseen viral class (the previous item in this list). This similarity is likely
due to the simulated data containing viruses from randomly selected viral
families, including those not present in the training data.

In all, the model generalized to all tested cases. It is not uncommon for a model
to not generalize at all outside its training domain (only interpolate, not extrapo-
late), hence it is particularly pleasing that ViraMiner obtains a useful performance
on sequences from completely unseen viral class.

4.5. Discussion

4.5.1. Discussion of results

The appeal of using k-mer counts as input features is the fact they are so universal
- they are used in very different DNA-decoding tasks and are generally seen as a
reasonable set of features to extract. In contrast, the features that our model’s con-
volutional layers extract are task-specific. They have been optimized to maximize
performance in this specific task of virus identification on this specific data type.
If applied to another task (e.g. for predicting if the contig contains a coding gene)
or different data (e.g. to discover bacterial or plant viruses), the learned-features
of our model are probably sub-optimal. Task-specific means less general, but also
gives the possibility of being more efficient, if the architecture and optimization
allow it. As an additional benefit, using convolution allows to consider longer
patterns - the number of possible k-mers grows exponentially, while the number
of parameters in our filters increases linearly with the pattern length (i.e. value of
k). Our model’s strength lies in allowing to detect longer and more task-specific
patterns than k-mer counting.

The improved classification performance allows us to indeed claim that CNNs
were able to extract more optimal features from the raw input than k-mer counts
or RSCU values. The AUROCs achieved here were also superior to the results in
Chapter 3, where we used relative synonymous codon usage as the model input.

We also demonstrated that the ViraMiner model generalizes well to unseen
data of different types. First of all, it achieves 0.923 AUROC on test set samples.
Secondly, we see that even on data originating from a new metagenomic experi-
ment, the performance remains very high (0.94 average AUROC across serum ex-
periments). Thirdly, even when applied to viruses from an unseen viral family, the
performance is well beyond chance level with AUROC 0.755. This ability to gen-
eralize to viral types not present in the training and validation data is surprising,
because machine learning models are often not good in extrapolation. Finally, we
also confirmed that the ViraMiner methodology performs well on simulated data
generated via a controllably unbiased mechanism.

Coming up with a CNN architecture that has such good performance and gen-
eralization ability on our task was not straight-forward. In an initial stage of
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this project we also experimented with a convolutional architecture originally de-
signed for text-classification based on character-level inputs. While proven good
at understanding natural language, this architecture performed equally with k-mer
based random forest models in our DNA classification task, i.e. clearly worse
than our two-branched ViraMiner model. In contrast to just exporting an archi-
tecture from another domain, ViraMiner model was designed based on biological
expertise. First, we consider convolution followed by average pooling (frequency
branch) as a direct generalization of k-mer counting - instead of counting exact
letter-by-letter matches we measure average match with complex, learned pat-
terns (the filters). Second, we consider convolution followed by max pooling
(pattern branch) important to remedy the limitations of averaging in the frequency
branch. Specific patterns such as regulatory sequences might appear only once in
any given sequence, but carry a lot of information as they can be different across
organisms. The averaging would dilute the information about a very good match
in one position and make it indistinguishable from a simply slightly above average
match in many positions. In contrast, maximum pooling preserves the information
about extremes and allows the network to look for some patterns very specifically.
Ablation studies show that indeed both of these branches matter for obtaining the
best results. We consider the ViraMiner architecture itself a main contribution that
can be re-used in other DNA-analysis tasks.

The other main output of our work is the trained ViraMiner model. It is in-
tended to be used as a recommendation system applied to the "unknown" se-
quences. Methods that compare metagenomics contigs with a reference database
(BLAST, HMMER3) will remain the default first step when trying to separate vi-
ral sequences from non-viral. These methods can identify known sequences and
their not very distant homologues, but still leave many contigs unlabeled. These
contigs contain DNA from the truly unknown species. ViraMiner model can be
applied to these contigs - the viralness probability can be computed for all suffi-
ciently long (at least 300b) sequences. We envision that ViraMiner will be used
as a recommendation system to sort the "unknown" sequences by their likelihood
of being viral. The most probably viral sequences can then be further studied by
computational methods or in the lab.

4.5.2. Future work

The capability of the recommendation system based on our trained ViraMiner
model can be further improved. First of all, the complementary sequence can be
generated for each of our test sequences and the model applied to that sequence.
The two probability estimates for the same 300bp long input contig can be av-
eraged or combined in some other way. In the complementary strand there is
no new information that is not contained in the original sequence and an optimal
model should give equal probabilities for the two strands. However, in practice
all models are noisy as they have been trained on incomplete, noisy data and by
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using optimization that is not guaranteed to converge to the global minima. We
assume also our model is noisy at least to some extent and ensembling over the
two estimates - on the two strands - could average out the noise and improve per-
formance. Measuring the difference of the estimates would also give us a better
understanding of the uncertainty in our model’s predictions and if there is room
for improvement (via training on more data for example, or ensembling over many
instances of the model).

The second potential performance improvement also relies on ensembling. In
our pipeline, a longer sequence is cut into 300bp pieces and can yield mutliple data
points to our data set. At the moment, the fact that certain data points actually re-
fer to the same original contig is ignored. However, when ensembling the results
over all pieces originating from the same original sequence, a performance gain
can be expected. This step was not implemented in the current work, because the
number of such longer sequences is low and the overall performance gain is ex-
pected to be small. However, such analysis helps us understand how information
is distributed along a longer sequence. If the information about viralness is not
equally distributed, the output probabilities for individual 300 bp regions would
differ significantly. It might help reveal what are the characteristics that make a
part of the sequence more informative than others. In this sense, it can result in a
type of sensitivity analysis or error analysis.

Error and sensitivity analysis were not performed in the present work, because
we decided the main results were convincing enough alone. Adding such analysis
would have shifted attention from the main results. However, to understand better
what sets viral and non-viral sequences apart, such analysis can be performed in
a future publication.

In the field of natural language processing, different types of sensitivity anal-
ysis have been developed to interpret the inner workings of structurally similar
models with similar type of inputs (one-hot). For example gradient-based and
counterfactual-based approaches might help reveal which patterns matter most
for accurate classification in our model. Changing the model to include attention
layers opens another avenue for revealing the most influential sub-sequences.

A type of sensitivity analysis is also possible by studying the convolutional
filters our model learned. By looking at the maximal and minimal values of
each column in a filter, the filter weights directly reveal what input pattern would
maximally and minimally activate it. However, there are 2200 filters in the two
branches of ViraMiner in total and it is unfeasible to visualize them all. Even if
these extreme patterns could all be studied, they are tricky to interpret. The effect
of one filter’s output on the final prediction depends on the context of all other
filters’ outputs - there are two more hidden layers after convolution. As the inter-
pretation of such study of filter weights is not straight-forward, we judged it to be
more confusing than useful and decided not to include it in our work.

Applying our trained model or the model architecture to new data types is
another avenue for future work. Recently, the research group where our data orig-
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inates from in Karolinska Institute turned their attention on RNA-metagenomics,
which reveals not all DNA in the environment, but the active genes that get tran-
scribed. Our DNA-trained model might or might not generalize to the RNA se-
quences. An evaluation if DNA model is transferable to RNA data must be per-
formed. If needed, a new model on RNA data must be trained. We see no reason
why the model architecture is not suitable for RNA data and should not work well.

Similarly, the model could be evaluated or a new model trained on unprocessed
reads of the sequencing machines, that in some cases are not much shorter com-
pared to the 300 bp contigs used here. A model capable of predicting the origin of
raw reads might help speed up assembly and reduce assembly errors. However, if
only a small fraction of reads are viral (prevalence was 2% here, but is probably
even lower on read level), these speed benefits might be minimal. Nevertheless,
showing the virus identification ability on raw reads level would be an interesting
proof of concept that could inspire multi-class discriminators specifically aimed
for being helpful for assembly. In this work we used assembled data, not raw
reads, as it was available to us and we assumed that longer sequences are more
informative and result in a more precise model.

4.5.3. Limitations

We present ViraMiner architecture itself as a contribution in this work. No model
is universally useful and we wish to define more clearly the area of applicability
of our proposed architecture.

We did not endow our model with the ability to consider the long-scale order
of patterns in the sequence. In particular, using global pooling on convolutional
feature vectors, we lose information about how well the filter matched in different
areas of the input. The order and distance between functional regions might ac-
tually matter for our task or other classification tasks, but our approach is unable
to consider it. The decision to not consider this information in our model was
conscious. When using local pooling in order to keep more than one value per
convolutional filter, the number of output nodes and number of parameters grows
linearly. Considering that we work with random pieces from genomes (not nec-
essarily coding or regulatory regions) we judged this source of information is not
crucial for the current task and does not justify the growth in model complexity
(number of parameters).

This limitation demonstrates that the ViraMiner architecture is not the uni-
versal approach for all tasks of decoding information from DNA. In other tasks
the positioning of patterns along the sequence might matter more. Consider the
case where input data corresponds to a cut-out area just before the start codon.
The area contains specific regulatory regions and the exact position of them might
matter. For extracting such location information, the ViraMiner architecture could
be modified by replacing global pooling with local pooling or no pooling at all.
It would however be more reasonable to start from scratch and build a specific
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architecture for the task at hand.
Recurrent neural networks are useful for another distinct set of decoding tasks,

where ViraMiner architecture would probably not be optimal. RNNs receive in-
puts in a sequence and by construction rely on the most recent information more
heavily. Hence, recurrent networks should be applied if we have reason to be-
lieve the latest inputs are somehow more relevant. Such problems are, for exam-
ple, predicting methylation levels or predicting single-nucleotide polymorphisms
- obviously the base we are predicting for and its immediate neighbours are more
relevant than the more distant values that just help form a context. In contrast
to RNNs, ViraMiner by construction considers the entire input sequence equally
relevant, due to global pooling layers.

There is a diversity of prediction problems in bioinformatics and the choice of
neural network to apply must rely on previous knowledge about what type of mod-
els have been successful in the past and what type of information matters. While
not generalizable to all tasks, we believe that ViraMiner architecture is a direct
improvement and replacement for k-mer counting. It is reasonable to believe Vi-
raMiner would improve performance in tasks where currently k-mer counts are
used as the default inputs. In future work, a more generalized claim could be
made about the information extraction ability of ViraMiner, k-mers and other fea-
ture extraction methods by comparing their capabilities on simulated data. Some-
thing similar was done in the early stages of this work (unpublished) to test our
architecture.
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5. APPLYING RECURRENT NEURAL NETWORKS
ON SINGLE-NEURON RECORDINGS (PUBLICATION

III)

In this section we describe the application of recurrent neural networks (RNNs) to
decoding information from neural recordings. This is the technically most com-
plicated contribution, both because the data type is challenging and because the
applied model is hard to understand without background knowledge. Neverthe-
less, the aim of this work was to demonstrate that despite its apparent complexity,
applying recurrent neural networks on neuronal activity timeseries is worthwhile.

This work was done in collaboration with Caswell Barry and Freyja Ólafsdóttir
from University College London. Their side recorded the data and preprocessed
it into a list of spiking times of each neuron (spike detection and sorting). They
performed the extensive baseline analysis using Bayesian models. As expert in
the field, Caswell wrote most of the neuroscience-related sections.

5.1. Neuroscience question

In this work we decode the locations of 5 rats from the activation patterns of their
hippocampal region CA1 neurons. The rats are trained to cover a lot of ground
during the recording sessions, so that they would visit all possible locations, an
example trajectory in 1x1 m arena is given in Figure 12.

From existing publications it is known that such decoding can be done, and that
it can be done with good accuracy [100, 106]. It is not known how precisely the
animal itself knows where it is located - so the accuracy with which self-location

Figure 12. Locations visited (the trajectory) by the rat R2192 in 1x1 m arena during the
20 minutes recorded.
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can be decoded from the brain places a useful lower limit on the amount of in-
formation present [100, 106]. Assuming the animal’s brain is as efficient as our
model, the animal knows its position at least as precisely as our model. However,
in this work our main goal goes beyond simply improving on the prediction accu-
racy compared to previous publications - with different input data, the results are
not directly comparable anyway.

Instead of minimizing error at all costs, the primary goal of this project was to
show that a relatively standard RNN model is capable of efficiently using the very
noisy single neuron recording data. In particular, we hypothesized that the past
neuronal activity can be accumulated in the network and acts as a context to help
decode the current location. This is in sharp contrast with the most commonly
used decoding method in the field on single neuron recordings, Bayesian decod-
ing [23, 98, 106]. In Bayesian approaches the context is either not considered or
considered via building a complicated prior [106]. The former (no context) means
using a flat prior, resulting in the maximum likelihood estimation (MLE) baseline
model. The latter (with complicated prior) requires a good understanding of the
data we work with and the mathematics used. We call the resulting second base-
line model "Bayesian with memory".

By demonstrating that RNNs can outperform both of these baseline models,
we aimed to showcase that the ability to use contextual information free of any
prior choices and restrictions (that RNN does) can be more practical than opti-
mally using the current information (that Bayesian does, supposing we got the
assumptions right [64]). The brain functions in time and undeniably uses con-
text in some form, so the models we use to study the brain should do that too.
Otherwise we leave an important source of information unused.

As more directly neuroscience-related goals we also aimed to investigate which
neurons contribute most to the position-decoding and if there are common descrip-
tors for the most informative neurons (neuron type, firing rate, receptive field). We
analyze the errors our RNN models make to find where (e.g. near the walls?) and
when (e.g. when animal moves fast?) the errors increase.

5.1.1. Baseline Bayesian models

When decoding some variable from the activity of neurons, one usually has no
clear idea what prior distribution to use. Hence a flat prior is applied and the
Bayesian decoding is equivalent to to maximum likelihood estimation with the
activity within some time window as input. This model does not consider any
past neuronal activity and hence cannot use contextual information.

The likelihood of observing a spike count vector K = (k1, . . . ,ki, . . . ,kN) from
the N neurons in a timewindow of length T given position (x) is:

P(K|x) =
N

∏
i=1

Poisson(ki,T αi(x)) =
N

∏
i=1

(T ×αi(x))ki

ki!
× e−T αi(x) (5.1)
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Considering a flat prior and using the Bayes rule, we can derive the probability
of the animal being in location x, given the observed firing pattern K:

P(x|K) = R
N

∏
i=1

Poisson(ki,T αi(x)) (5.2)

where R is a normalizing constant depending on T and firing rate. See for
further details in the publication.

Notice that in here we have decided to model neurons’ firing as a Poisson
process, which pre-defines how noise affects the result (and which is probably not
perfectly correct [106]). In contrast, a RNN is free to choose how to interpret its
inputs - e.g. ignore some inputs if they are unreliable. This MLE approach (also
called "simple Bayesian" in our work) is our first and most important baseline
model, as it is the standard approach in the field.

Additionally, in the second baseline model called "Bayesian with memory" we
endow the Bayesian model with ability to use context. We compute an informed
prior distribution using:

• knowledge about the locations the animal most often visits (during the en-
tire trial, using also future locations) summarized in p(x),
• a continuity constraint based on the position decoded in previous timestep

x̂t−1 and the recent average movement speed.
This constraint ensures the previous and current position predictions are not

further apart than what could be expected considering the animal’s movement
speed. As it considers past (predicted) position, it acts as a temporal context for
the current prediction.

The formula for the "Bayesian with memory" baseline is:

P(x|K) =C ×p(x)×normDist(x̂t−1, σ)×
N

∏
i=1

Poisson(ki,T αi(x)) (5.3)

where C is a normalizing constant and the two added terms are colored. The
continuity constraint is a 2D Gaussian distribution defined as:

P(x|x̂t−1) = normDist(x̂t−1,σ) = L× exp(
−||x̂t−1− x||2

2σ2 ) (5.4)

where L is the normalizing constant and σ =M×velocity. M is a scaling constant
and velocity is computed as the average over last 5 timesteps.

Notice that while a RNN learns by itself how exactly to use the past activity, in
here we need to decide beforehand how the previous activity is translated into an
additional constraint. Also, in here we explicitly provide the model with informa-
tion about most often visited locations in the environment (p(x)), whereas RNN
might or might not learn this distribution from training data.
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5.2. Data and Methods

5.2.1. Single-cell recordings

The extensive pre-processing to extract the activities of individual neurons from
the raw electric signal recorded in electrodes is described in the Background sec-
tion on place cell recordings . The machine learning part of this project assumes
we have for each animal a data matrix where each row corresponds to one neu-
ron and the columns to non-overlapping 20 ms timewindows. Each value in this
matrix corresponds to the spike count of a neuron in a given timewindow (the
count of times the neuron was activated). The number of neurons (rows) and
timewindows (columns) depends on the recording session (animal; environment),
as the recording quality and duration varies. The locations of the animals are also
provided with 20 ms precision.

We have recordings for the same 5 rats in two different environments, a 2D
arena of size 1m x 1m and a Z-shaped linear track of total length 6 m. These
original data matrices are further processed to get the exact inputs we want the
models to receive.

5.2.2. Input data to the RNNs and baseline models

Starting from the simplest baseline model, in here we describe the type of inputs
each of the applied models receives.

The "simple Bayesian" model (MLE) receives as input the spike counts in
a single timewindow. The length of these timewindows is varied from 200 ms
to 4000 ms in steps of 200 ms to find the most efficient timewindow size. The
consecutive data points have a 50% overlap, meaning for example that in case of
1000 ms windows the first and second data point correspond to 0-1000 ms and
500-1500 ms intervals of the recording. A fixed temporal step of 200 ms between
consecutive data points was also tested (leading to the second data point being
from interval 200 ms to 1200 ms), but the results were weaker. The desired output
is the location at the center of the time-window.

"Bayesian with Memory" gets as input spike counts from two timewindows.
The first of these input vectors is used for computing the continuity constraint.
The second is used for the likelihood estimation as in the simple Bayesian model.
The model is also informed by the distribution of visited locations over the entire
trial and the current movement speed. All this information is combined to get
the posterior distribution, which is the output of the model. Time-window sizes,
speed calculation and other hyperparameters are tuned. The desired output is the
location at the center of the second time-window.

RNN gets as input a series of spike counts from 100 consecutive time win-
dows (Figure 13). The time-windows are overlapping and consecutive widows
are shifted by 200 ms in time. This means that, for example, when using 400 ms
time windows the overlap is 50% (200 ms), whereas with 1000 ms the overlap is
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Figure 13. Input for RNN models. (a) First we count the spikes for each neuron in
overlapping periods of time, consecutive windows are shifted 200 ms. Each window
yields a spike count vector of length equal to number of recorded neurons. (b) we take 100
consecutive spike count vectors as the sequence of inputs that the RNN model receives.

80% (800 ms). In total, across the 100 time windows roughly 20 seconds of neu-
ronal activity is used as input. After observing the inputs, the model is expected
to return coordinate values (1 value in Z-track, 2 in 2D arena). Hence, a data point
for RNN consists in 100 spike-count vectors and the true coordinate values at the
center of last time window. Consecutive data points overlap by 99 time windows.

For all models 10-fold cross validation was used. The input data was cut into
10 pieces along the time-axis, meaning each fold contained data from consecutive
time points. Notice that random assigning of data points to folds would have led
to temporally overlapping (highly similar) data points ending up in train and test
folds. This would have led to an overestimation of our models’ predictive ability.
Additionally, also data points in the beginning of a fold that have overlapping
timewindows (in case of RNN) with previous fold are removed.

5.2.3. RNN model

We experimented with LSTM (long short-term memory [48]) and GRU (gated re-
current unit [18]) networks of different depth and width, various number of fully
connected layers, dropout rate, optimizer, learning rate and learning rate sched-
ule, activation functions, etc. Despite achieving the lowest prediction error with
a bi-directional LSTM ( [85]), for the simplicity of the methods, we eventually
decided to use a simpler LSTM model. This model contained just two LSTM lay-
ers and the fully-connected output layer with two nodes (for X and Y coordinate
predictions). The model architecture is given in Appendix A.
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5.3. Results

In the following we describe the results obtained with our 2-layer LSTM decoder
and with baseline models.

5.3.1. High position decoding accuracy with RNNs

The RNN decoder achieved equal or better results than simple Bayesian (MLE)
and Bayesian with memory models for all 10 datasets (5 animals, 2 environments
each). This difference in performance was especially pronounced when com-
paring mean euclidean distance between predicted and true locations, while in
median errors Bayesian methods were more competitive. The difference between
mean and median performance originates from Bayesian models making more
very large mistakes. The large mistakes push the mean up, leaving median un-
touched. The results are summarized in the Figure 14. For each dataset and each
model different time window sizes were tested and the optimal time window size
was used for the figure.

When investigating the errors made by the RNN and Bayesian models at dif-
ferent time window sizes (for rat R2192 and 2D environment), we saw that RNN
outperforms the baselines for all window sizes, with the difference being more
pronounced with small window sizes. Also, the optimal window sizes for all
datasets are smaller with RNN compared to baselines. We hypothesize that ef-
ficiently using context allows RNNs to combat the noise in spike counts. This
allows RNN to successfully use smaller windows.

Analyzing the performance differences across the datasets, we noticed that the
benefits of RNNs over Bayesian models are more pronounced when data is scarce
- when there are fewer neurons recorded. To verify this claim we randomly down-
sampled the neurons in the 2D recording of rat R2192 and retrained the models.
The results depicted in Figure 15 show that the difference between models is in-
deed accentuated by having fewer neurons available.

5.3.2. Detailed analysis of the RNN model

Having deomnstrated our 2-layer LSTM model’s benefits over baseline models
we next perform error and sensitivity analysis. We consider the results in 2D en-
vironments as the more interesting, because almost all prior work on decoding
animal location has been done in 1D environments (T-shaped track, linear track).
Hence, decoding position in 2D is somewhat novel even though the firing patterns
of neurons with respect to 2D location - called place fields - have been investi-
gated already for decades [70, 71]. As animals normally navigate in 2D surfaces
(sometimes even 3D spaces) investigating the neuron types, neuron characteris-
tics, model sensitivity, etc., on this task carries more behavioural meaning. We
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Figure 14. Spatial decoding across animals in 2D and 1D environments. (a-b) De-
coding results in a 1m square environment. The RNN consistently outperforms the two
Bayesian approaches in all 5 data sets. Mean and median errors across cross-validation
folds, respectively. (c-d) Decoding errors from a 600 cm long Z-shaped track. RNN
consistently yields lower decoding errors than the Bayesian approaches, the difference is
more marked when mean (c) as opposed to median (d) errors are considered.
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Figure 15. Downsampling analysis demonstrates the RNN decoder is more robust to
small dataset sizes. Data from R2192 was downsampled and all three decoders were
trained with a random subset of the available neurons. For each sample size, 10 random
sets of neurons were selected and independent models trained as before using 10-fold
cross validation. Dots represents (b) mean and (c) median error for each downsampled
dataset. Lines indicate the (b) mean of means and (c) mean of medians over sets of the
same size.

use the 2D dataset with most recorded neurons, originating from rat R2192, for
error and sensitivity analysis.

When analyzing where the model makes the largest errors we discovered the
following correlations:
• the more training data for a certain region of space we have, the more pre-

cise the model is in that region. This is an expected effect in all machine
learning approaches.
• the more neuronal activity (sum of spike counts) there is, the more pre-

cise the model is. In short, this correlation shows that with more recorded
neurons (yielding more spikes) we’d get better prediction accuracy. To ex-
plain, the place cells are activated only if the animal is in a certain region of
space - i.e. within the place field of that cell. With few neurons recorded,
the place fields do not cover the space uniformly. Recording more neurons
would increase the chance that all zones are sufficiently covered.
• when the animal is near a wall, the error in the direction perpendicular to

the wall decreases (Figure 16). The error in the direction parallel to the
wall does not improve by being near that wall. This is a previously known
effect [42] that we wanted to further demonstrate - the animal’s brain uses
spatial cues to know where it is. Walls are one of such cues.

• the decoding errors are larger if the animal stands still, as opposed to mov-
ing around. This is supposedly due to the animal not being actively engaged
in movement and hence not actively using the brain area we record from.
Also, in resting state the brain is known to replay previous experiences - i.e.
CA1 activity might reflect previous paths, not current location [23,72,101].
In addition we found that, interestingly, the decoding accuracy does not
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Figure 16. Decoding error decreases near the walls, but only in the direction perpendic-
ular to the wall.

worsen at high movement speeds.
We also performed different types of sensitivity analysis to figure out what

types of inputs and which aspects of the inputs are most informative for our model
in this decoding task.
• According to knockout analysis, where all inputs from a neuron are set

to zero, the firing rate of a neuron correlates strongly (r=0.50) with its
knock-out importance. Indeed, the prediction error increased the most when
knocking out the neuron with by far the highest firing rate. Interestingly,
this neuron was an inhibitory neuron. Prior work has suggested that in-
hibitory neurons are not important for location-decoding. Other most influ-
ential neurons were excitatory cells with clear place fields and high firing
rate, as expected.
• Gradient sensitivity analysis captures a different type of sensitivity to noise

than knock-out analysis. Whereas in knock-out we remove an input com-
pletely, in gradient analysis we perturb it by an infinitely small amount. The
neurons listed as most influential according to the two measures are simi-
lar (correlation r=0.57), but with clear differences. For example, according
to gradient sensitivity inhibitory neurons do not show up among the most
important cells. The knock-out and gradient sensitivity measures are com-
plementary to each other and to the commonly used Skaggs information-
theoretical measure [91].
• Gradient sensitivity analysis reveals that small perturbations in the firing

rate of a given neuron influence the model less if the animal is at the center
of that neuron’s place field. This concurs with theoretical predictions stating
that, in general, neural responses are most informative in the regions of their
coding space where the firing rate changes most rapidly for a given change
in the encoded variable [75] (in our case position). Also, the sensitivity is
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lower outside the place field, as expected.

5.4. Discussion

5.4.1. Discussion of results

In this work we have shown that RNNs are a flexible and efficient machine learn-
ing tool to analyze neural recordings. Similarly to biological neuronal networks,
RNNs are capable of efficiently using prior activity as context when processing
the latest inputs. For all of the 10 datasets the location of the rat was decoded from
its hippocampal activity with good accuracy.

The results were an improvement over the two Bayesian approaches used as
baseline models. Bayesian decoders are known to be optimal decoders when us-
ing appropriate priors [64]. In here (and generally in neuroscience), it is difficult
to determine what these appropriate priors are. In contrast, the suggested RNN ap-
proach allows to use contextual information without pre-defining any complicated
priors.

As an additional advantage, the RNN model was more robust to noise than
the baseline models. In particular, it achieved good prediction accuracy even with
short time windows where the noise in spike counts is more pronounced. Further-
more, the RNN model also demonstrated higher robustness to scarce data than the
baseline models. In particular, with fewer neurons recorded, the RNN model’s
performance deteriorated slower than the Bayesian models’. Consider that things
happen fast in the brain and using 200ms and smaller time-windows is in many
cases not a choice but a necessity. Decision-making, response to stimuli and many
other tasks are performed in such small timescales. Similarly, it is often not pos-
sible to record more than a few informative neurons at the same time, especially
if the brain region responsible for the task is small and lies deep in the brain.

Using neural networks as the machine learning model also opens new avenues
for sensitivity analysis. Gradient sensitivity analysis was shown to be complemen-
tary to knock-out analysis and Skaggs information measure [91]. These "impor-
tance" or "informativeness" measures capture very different types of sensitivity.
We believe that gradient-type of sensitivity, i.e. sensitivity to small perturbations,
noise, is very interesting and relevant in neuroscience.

Prior work has claimed that inhibitory neurons do not participate in location
encoding. Our knock-out analysis showing an inhibitory neuron with high firing
rate as the most important cell for decoding accuracy might be a bias introduced
by our model. However, the prior studies might have used less powerful decoders
and there is a possibility this neuron is actually informative. Despite not having a
clear place field, there are ways for such cell to participate in location encoding.
When not considering all neurons independent, the firing rate of this neuron can be
combined with others and might carry information in a way not visible on firing-
rate-in-space plots. Also, if this cell somehow carries contextual information, e.g.
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information about past location, its importance for the decoding task might not
be visible on place-field plots. In all, our result suggests that inhibitory neurons
might participate in location decoding in some yet unspecified way.

Error analysis allowed to confirm some hypothesis about the internal processes
inside a rat’s brain during behaviour. It has been proposed that when the rat is not
navigating and is attending to some other behaviour, the CA1 region of hippocam-
pus replays previous experiences (for memory consolidation). The fact that our
model’s decoding accuracy goes down when the animal stands still helps to sup-
port such argument - amount of information about the current location decreases
in those moments. Similarly, it has been shown that visual cues matter for ac-
curate navigation. We support this claim by showing there is more information
(or more precise information) about location in CA1 neurons when the animal is
near a wall. Beyond further proving these two known effects (memory replay and
effect of visual cues), the fact we discover these correlations in our model’s error
strengths adds value to our approach. Similar models could be used to discover
completely unknown aspects or find evidence for less-proved claims about when
and how information is present in some region of the brain.

In all, we believe that the field of neuroscience will benefit from the improved
performance and additional sensitivity measures that recurrent neural networks
allow.

5.4.2. Future work

During the investigation of the data recorded in rat R2192 in 2D task, we obtained
many additional results that did not fit into the publication. We take our chance to
mention them here. Many of these results open new questions and directions of
research:
• We trained a model receiving not 100 timesteps of past neural activity, but

instead spike counts from 100 time windows to the future. These future
measures were fed into the RNN the last one first, so that the 100th input
was the time window centered around location measurement. Such model
trained on future activity had higher decoding errors than a model trained
based on past activity. From this we can conclude that CA1 cells contain
more information about future locations (e.g. they might participate in path
planning) than about past location (e.g. when remembering where one has
been). If there was no future or past information and the cells reflected just
the momentary location, we’d expect the two models to yield very similar
results.
Designing a reliable way to identify neurons that contain information about
future locations and that might participate in path planning is an interesting
future direction.
• Including neurons recorded from entorhinal cortex (region containing grid

cells that also participate in location encoding) significantly improves the
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decoding accuracy. For rat R2192 there were 37 additional cells recorded
from that area (there were 63 recorded from CA1). Adding them to the
analysis improved mean accuracy by approximately 2 cm. However, we
decided to concentrate only on neurons within CA1 in this work.
Reporting the results when combining the recordings from the two areas
might be of interest to set a new lower bound on how much the animal itself
knows about its location. Predicting location based on only entorhinal cells
is also a potential future direction.
• We can also improve decoding accuracy by using as "neurons" the results of

spike clustering before manual verification of the clusters. During manual
verification the clusters that do not look like one neuron are removed from
further analysis. This removes spikes (i.e. information) from the analysis,
but allows all inputs to be interpreted as individual neurons. In this work
we decided to use only neurons and not clusters of unclear composition,
despite 2 cm lower mean error if using the raw clusters.
The spikes in these "other clusters" are an actual signal existing in the brain.
There is actually no reason other than interpretability why not to include
them. A future direction is to compare if the baselines can also benefit from
such non-conventional inputs or they fail due to the built-in assumptions
about the data. If they cannot benefit from such noisy data, it is another
argument in favour of using RNNs.
• In contrast to the "raw clusters", including the "garbage cluster" (i.e. a

cluster containing all spikes that did not match any cluster/neuron) as an
additional input row (another "neuron") did not significantly influence per-
formance. Changes in mean error were less than standard deviation in all
cases, mostly lowering validation accuracy rather than improving it.
While this observation does not open any avenues for future research, it
helps to confirm that just adding noise is not beneficial and that the "raw
clusters" are more meaningful that the "garbage cluster".
• We experimented with bidirectional LSTM model that can simultaneously

consider past and future spike activity. This improved prediction accuracy
by around 1cm. We excluded this model type because 1) it is a complicated
architecture to understand for someone not familiar with neural networks
(our aim was to keep it understandable) and 2) we decided to use only
past neural activity, as this is what the brain can rely on in real life. An-
other architecture was also slightly superior to the final approach, but was
too complicated to explain to an uninitiated reader. Complicated methods
would give the false impression that RNNs work better than baselines only
if one uses a highly advanced approach. Our published approach does not
use future data and can be presented as a natural extension of approaches
considering just one time-window or two time windows.
Nevertheless, in the future applying the most effective model type with the
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most informative data type might be of interest in this decoding task or
others.

We conclude that there are open research topics in the study on position en-
coding in the brain. Our colleagues in University College London are indeed
continuing this line of research.
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6. CONCLUSION

What part of the available information to present to the algorithm? In all ma-
chine learning tasks there is theoretically an infinite amount of information that
we could include. For any measurement/image/data point we could include addi-
tional information such as the time of the measurements, the temperature, identify
of the experimenter and so on. In specific cases these factors could indeed influ-
ence the results - the brain activity and behaviour of the rats (in Publication 3)
might indeed change due to any of the aforementioned three factors. However,
in most cases we exclude information that we deem (1) not likely to be useful,
or (2) too difficult to work with. The former contains an unverified assumption,
the latter strongly depends on the methods used. In this thesis we argue for using
artificial neural networks and more generally, representation learning, because in
the biological data applications here studied they allow to use (1) a larger amount
of available information (2) without adding much extra difficulty.

In particular, Publications 1 and 2 taken together reveal that applying convo-
lutional neural networks (CNNs) on raw DNA sequences is more effective than
constructing models based on pre-defined features extracted from the same se-
quences. For the models in Publication 1 and the baseline models of Publication
2, the input DNA sequence was reduced to a set of extracted features (k-mers,
RSCU values). In Publication 2 we show that a CNN with raw sequences as in-
puts outperforms these models by a large margin.

Despite rarely explicitly stating it, by extracting features one acknowledges
that the extraction loses some information, but assumes that the relevant informa-
tion is mostly maintained (assumption (1) from above). The researcher knows that
some alternative more-information-preserving set of features might exist, but they
might not suit the intended machine learning models ( (2) too difficult to work
with). CNNs have the capacity to work with raw DNA sequences (more informa-
tion) and learn by themselves what information to extract (no added difficulty).
This eliminates the need to pre-define what might be the maximally informative
representation of the data. In the task of predicting whether a DNA contig origi-
nates from a virus or not, this benefit translates into a significant improvement of
predictive power (AUROC 0.93 vs AUROC 0.79).

Similarly, in Publication 3 we demonstrate that by using a recurrent neural net-
work (RNN) based approach, considering more information - in this case the past
neural activity - is beneficial for the position decoding performance. Moreover,
with RNNs, using more information is in fact rather natural (no added difficulty).
In contrast, with the first baseline method, maximum likelihood estimation, past
activity is not considered at all. The second baseline model, Bayesian with mem-
ory, is capable of using a small part of past information in a highly predefined
manner. Using more of the past information with Bayesian approach would be-
come increasingly complicated. Hence, again we claim that our neural network
approach allows to use more information more easily.
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Also we want to point out that when using maximum likelihood and Bayesian
approaches, we need to make explicit assumptions about the brain. Most strik-
ingly, we assume that given a certain stimuli, each neuron’s firing rate is an inde-
pendent Poisson process (not necessarily true in case of place cells [32]). While it
is a common assumption, by doing this we essentially pre-define how the model
reacts to noise. The proposed RNN-based approach might also make implicit as-
sumptions due to its internal structure, activation functions used, the trade-offs
that the chosen optimizer takes to minimize the chosen loss function and so on.
However, it is much more flexible and can learn to deal with noise in more vari-
able ways. For example, contrarily to baseline approaches, an RNN might learn
to not consider certain neuron at all if it is too noisy; consider all activation values
above 1 as equivalent; consider the mutual effects of signals; etc. Hence the RNN
model uses more information, with less effort and fewer built-in assumptions.

In the future, the predicting self-location could be done on even more "raw"
(unprocessed) inputs. Unpublished results we obtained during the analysis of
the hippocampal recordings showed that classification on raw clustering results -
before the step of an expert merging similar clusters and removing clusters that
do not look right or have too few spikes - yield even better prediction accuracy.
For the ease of interpreting sensitivity analysis results, we used the expert-revised
clusters in our publication. In contrast, if one wishes to set a new lower bound
on the amount of information contained about self-location in CA1 neurons, we
suggest to use un-corrected clusters. Or, predict the location directly from the raw
electrical signals recorded by the electrodes, skipping also the spike-sorting step.
RNNs are well-suited for such tasks.

More globally for the field of neural decoding, it is useful to know that for
recurrent neural networks the noisiness of the inputs is often not a problem - more
of raw inputs is better than less of cleaner inputs. In many interesting problems
we just want to know if some variable can be decoded from brain activity, no
matter how. For example, if the person is lying. Or if the person has a neural
disease. It is also crucial to stress that we only had roughly 5000-6000 datapoints
in each dataset (per animal, per environment). We trained a model with more than
3 million parameters on each of these sets. The false belief that deep learning
methods require millions of annotated training points to succeed is hindering the
spreading of these powerful methods to this fascinating field.

Similarly, in publications 2 and 3, we worked with a dataset with roughly 5000
positive (viral) samples (there were 200 000+ negative samples, but downsam-
pling it significantly yielded similar results). It is likely that similar amounts of
data can be collected for other problems in (meta)genomics. Most immediately,
as for viruses, there are unidentified bacterial species living in our bodies and in
our environment. Work for identifying them is ongoing.

To conclude, there are thousands of scientists all over the world working on
similar problems of extracting information from biological data similar to the
datasets used in this work. We are confident that in a non-trivial part of these
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tasks, using appropriate neural network models would increase the performance
significantly over the more traditional approaches that use pre-defined features
instead of data-driven, learned features.

72



BIBLIOGRAPHY

[1] Ethem Alpaydin. Introduction to machine learning. MIT press, 2009.
[2] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and

David J Lipman. Basic local alignment search tool. Journal of molecular
biology, 215(3):403–410, 1990.

[3] Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver Ste-
gle. Deep learning for computational biology. Molecular systems biology,
12(7):878, 2016.

[4] Alfonso Araque and Marta Navarrete. Glial cells in neuronal network func-
tion. Philosophical Transactions of the Royal Society B: Biological Sci-
ences, 365(1551):2375–2381, 2010.

[5] John Athey, Aikaterini Alexaki, Ekaterina Osipova, Alexandre Rostovtsev,
Luis V Santana-Quintero, Upendra Katneni, Vahan Simonyan, and Chava
Kimchi-Sarfaty. A new and updated resource for codon usage tables. BMC
bioinformatics, 18(1):391, 2017.

[6] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg,
José Marcelo Farfel, Renata EL Ferretti, Renata EP Leite, Wilson Jacob
Filho, Roberto Lent, and Suzana Herculano-Houzel. Equal numbers of
neuronal and nonneuronal cells make the human brain an isometrically
scaled-up primate brain. Journal of Comparative Neurology, 513(5):532–
541, 2009.

[7] Antonio Battro. Half a brain is enough: The story of Nico. Odile Jacob,
2003.

[8] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neu-
ral networks, 5(2):157–166, 1994.

[9] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[10] Christopher M Bishop et al. Neural networks for pattern recognition. Ox-
ford university press, 1995.

[11] Léon Bottou. Large-scale machine learning with stochastic gradient de-
scent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[12] Véronique Bouvard, Robert Baan, Kurt Straif, Yann Grosse, Béatrice Sec-
retan, Fatiha El Ghissassi, Lamia Benbrahim-Tallaa, Neela Guha, Crystal
Freeman, Laurent Galichet, et al. A review of human carcinogens–part b:
biological agents. The Lancet. Oncology, 10(4):321, 2009.

[13] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[14] Davit Bzhalava, Hanna Johansson, Johanna Ekström, Helena Faust, Bir-

gitta Möller, Carina Eklund, Peter Nordin, Bo Stenquist, John Paoli, Bengt

73



Persson, et al. Unbiased approach for virus detection in skin lesions. PLoS
One, 8(6):e65953, 2013.

[15] Davit Bzhalava, Laila Sara Arroyo Mühr, Camilla Lagheden, Johanna Ek-
ström, Ola Forslund, Joakim Dillner, and Emilie Hultin. Deep sequencing
extends the diversity of human papillomaviruses in human skin. Scientific
reports, 4, 2014.

[16] Zurab Bzhalava, Ardi Tampuu, Piotr Bała, Raul Vicente, and Joakim Dill-
ner. Machine learning for detection of viral sequences in human metage-
nomic datasets. BMC bioinformatics, 19(1):336, 2018.

[17] Augustin Cauchy. Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[18] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[19] François Chollet et al. Keras. https://keras.io, 2015.
[20] Kenneth Church. A pendulum swung too far. Linguistic Issues in Language

Technology, 6(5):1–27, 2011.
[21] Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Tor-

ralba, and Aude Oliva. Comparison of deep neural networks to spatio-
temporal cortical dynamics of human visual object recognition reveals hi-
erarchical correspondence. Scientific reports, 6:27755, 2016.

[22] Cyril W Cleverdon. On the inverse relationship of recall and precision.
Journal of documentation, 28(3):195–201, 1972.

[23] Thomas J Davidson, Fabian Kloosterman, and Matthew A Wilson. Hip-
pocampal replay of extended experience. Neuron, 63(4):497–507, 2009.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE con-
ference on computer vision and pattern recognition, pages 248–255. Ieee,
2009.

[25] Chad J Donahue, Matthew F Glasser, Todd M Preuss, James K Rilling, and
David C Van Essen. Quantitative assessment of prefrontal cortex in humans
relative to nonhuman primates. Proceedings of the National Academy of
Sciences, 115(22):E5183–E5192, 2018.

[26] Kenji Doya. Bifurcations of recurrent neural networks in gradient descent
learning. IEEE Transactions on neural networks, 1(75):164, 1993.

[27] David A Drachman. Do we have brain to spare?, 2005.
[28] Arne D Ekstrom, Michael J Kahana, Jeremy B Caplan, Tony A Fields,

Eve A Isham, Ehren L Newman, and Itzhak Fried. Cellular networks un-
derlying human spatial navigation. Nature, 425(6954):184, 2003.

74

https://keras.io


[29] Johanna Ekström, Davit Bzhalava, Daniel Svenback, Ola Forslund, and
Joakim Dillner. High throughput sequencing reveals diversity of human
papillomaviruses in cutaneous lesions. International journal of cancer,
129(11):2643–2650, 2011.

[30] Shaza M Abd Elrahman and Ajith Abraham. A review of class imbalance
problem. Journal of Network and Innovative Computing, 1(2013):332–
340, 2013.

[31] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[32] André A Fenton and Robert U Muller. Place cell discharge is extremely
variable during individual passes of the rat through the firing field. Pro-
ceedings of the National Academy of Sciences, 95(6):3182–3187, 1998.

[33] Peter Flach and Meelis Kull. Precision-recall-gain curves: Pr analysis done
right. In Advances in neural information processing systems, pages 838–
846, 2015.

[34] Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in po-
sition. Biological cybernetics, 36(4):193–202, 1980.

[35] Felix Gers. Long short-term memory in recurrent neural networks. PhD
thesis, Verlag nicht ermittelbar, 2001.

[36] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[37] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami,
Horst Bunke, and Jürgen Schmidhuber. A novel connectionist system for
unconstrained handwriting recognition. IEEE transactions on pattern anal-
ysis and machine intelligence, 31(5):855–868, 2008.

[38] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
arXiv preprint arXiv:1410.5401, 2014.

[39] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and
Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions on
neural networks and learning systems, 28(10):2222–2232, 2016.

[40] Umut Güçlü and Marcel AJ van Gerven. Deep neural networks reveal
a gradient in the complexity of neural representations across the ventral
stream. Journal of Neuroscience, 35(27):10005–10014, 2015.

[41] Jo Handelsman, Michelle R Rondon, Sean F Brady, Jon Clardy, and
Robert M Goodman. Molecular biological access to the chemistry of un-
known soil microbes: a new frontier for natural products. Chemistry &
biology, 5(10):R245–R249, 1998.

[42] Kiah Hardcastle, Surya Ganguli, and Lisa M Giocomo. Environmen-
tal boundaries as an error correction mechanism for grid cells. Neuron,
86(3):827–839, 2015.

75

http://www.deeplearningbook.org


[43] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the
demand for clean air. Journal of environmental economics and manage-
ment, 5(1):81–102, 1978.

[44] Douglas M Hawkins. The problem of overfitting. Journal of chemical
information and computer sciences, 44(1):1–12, 2004.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[46] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, and Brian Kingsbury. Deep neural networks for acoustic mod-
eling in speech recognition. IEEE Signal processing magazine, 29, 2012.

[47] Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[49] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural networks, 2(5):359–
366, 1989.

[50] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex. The Journal of
physiology, 160(1):106–154, 1962.

[51] Philip Hugenholtz, Brett M Goebel, and Norman R Pace. Impact of culture-
independent studies on the emerging phylogenetic view of bacterial diver-
sity. Journal of bacteriology, 180(18):4765–4774, 1998.

[52] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A
systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[53] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[54] Kristjan Korjus, Martin N Hebart, and Raul Vicente. An efficient data par-
titioning to improve classification performance while keeping parameters
interpretable. PloS one, 11(8):e0161788, 2016.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[56] Ilya Kuzovkin, Raul Vicente, Mathilde Petton, Jean-Philippe Lachaux,
Monica Baciu, Philippe Kahane, Sylvain Rheims, Juan R Vidal, and Jaan
Aru. Activations of deep convolutional neural networks are aligned with
gamma band activity of human visual cortex. Communications biology,
1(1):107, 2018.

76



[57] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[58] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[59] Michael S Lewicki. A review of methods for spike sorting: the detection
and classification of neural action potentials. Network: Computation in
Neural Systems, 9(4):R53–R78, 1998.

[60] Abninder Litt, Chris Eliasmith, Frederick W Kroon, Steven Weinstein, and
Paul Thagard. Is the brain a quantum computer? Cognitive Science,
30(3):593–603, 2006.

[61] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[62] A Mercalli, V Lampasona, K Klingel, L Albarello, C Lombardoni, Johanna
Ekström, V Sordi, A Bolla, A Mariani, Davit Bzhalava, et al. No evidence
of enteroviruses in the intestine of patients with type 1 diabetes. Diabetolo-
gia, 55(9):2479–2488, 2012.

[63] Marvin Minsky and Seymour Papert. Perceptron: an introduction to
computational geometry. The MIT Press, Cambridge, expanded edition,
19(88):2, 1969.

[64] Tom M Mitchell et al. Machine learning. wcb, 1997.
[65] John L Mokili, Forest Rohwer, and Bas E Dutilh. Metagenomics and future

perspectives in virus discovery. Current opinion in virology, 2(1):63–77,
2012.

[66] Hans Moravec. When will computer hardware match the human brain.
Journal of evolution and technology, 1(1):10, 1998.

[67] Elon Musk et al. An integrated brain-machine interface platform with thou-
sands of channels. BioRxiv, page 703801, 2019.

[68] Eric A Newman. New roles for astrocytes: regulation of synaptic transmis-
sion. Trends in neurosciences, 26(10):536–542, 2003.

[69] OECD. HEALTH AT A GLANCE: Europe 2018. ORGANIZATION FOR
ECONOMIC, 2018.

[70] John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map.
preliminary evidence from unit activity in the freely-moving rat. Brain
research, 34(1):171–175, 1971.

[71] John O’keefe and Lynn Nadel. The hippocampus as a cognitive map. Ox-
ford: Clarendon Press, 1978.

77



[72] H Freyja Ólafsdóttir, Francis Carpenter, and Caswell Barry. Task demands
predict a dynamic switch in the content of awake hippocampal replay. Neu-
ron, 96(4):925–935, 2017.

[73] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International conference on machine
learning, pages 1310–1318, 2013.

[74] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12(Oct):2825–2830, 2011.

[75] Alexandre Pouget, Sophie Deneve, Jean-Christophe Ducom, and Peter E
Latham. Narrow versus wide tuning curves: What’s best for a population
code? Neural computation, 11(1):85–90, 1999.

[76] Pasko Rakic. Confusing cortical columns. Proceedings of the National
Academy of Sciences, 105(34):12099–12100, 2008.

[77] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of
adam and beyond. arXiv preprint arXiv:1904.09237, 2019.

[78] Jie Ren, Nathan A Ahlgren, Yang Young Lu, Jed A Fuhrman, and Fengzhu
Sun. Virfinder: a novel k-mer based tool for identifying viral sequences
from assembled metagenomic data. Microbiome, 5(1):69, 2017.

[79] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[80] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[81] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015.

[82] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. Malaysia; Pearson Education Limited„ 2016.
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Appendix A. NEURAL NETWORK ARCHITECTURES
IN DETAIL

A.1. Publication I: feedforward neural network architecture

The network receives as input 59-element vector (the RSCU values). The last
layer is the sigmoid activation layer, that returns a probability. Other layers have
ReLU non-linearity. Binary cross-entropy loss between the output and true label
is optimized.
______________________________________________________________________
Layer (type) Output Shape Param # Connected to
======================================================================
dense_1 (Dense) (None, 1024) 61440 dense_input_1[0][0]
______________________________________________________________________
dropout_1 (Dropout) (None, 1024) 0 dense_1[0][0]
______________________________________________________________________
dense_2 (Dense) (None, 1024) 1049600 dropout_1[0][0]
______________________________________________________________________
dropout_2 (Dropout) (None, 1024) 0 dense_2[0][0]
______________________________________________________________________
dense_3 (Dense) (None, 1) 1025 dropout_2[0][0]
______________________________________________________________________
activation_1 (None, 1) 0 dense_3[0][0]
(Activation)
======================================================================
Total params: 1,112,065
Trainable params: 1,112,065
Non-trainable params: 0

A.2. Publication II: ViraMiner convolutional neural network
architecture

Input is the one-hot encoded DNA sequence. Output is a probability (last Dense
layer uses sigmoid activation, not shown as separate layer here). Binary cross-
entropy loss between the output and true label is optimized. All fully-connected
and convolutional layers, except the output layer, use ReLU activation function.

In the Keras summary below, it is important to notice which layers each layer
is connected to (i.e. receives input from) - there are two branches and the concate-
nate layer receives input from both of them.
________________________________________________________________________
Layer (type) Output Shape Param # Connected to
========================================================================
input_1 (InputLayer) (None, 300, 5) 0
________________________________________________________________________
conv1d_1 (Conv1D) (None, 293, 1000) 41000 input_1[0][0]
________________________________________________________________________
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conv1d_2 (Conv1D) (None, 290, 1200) 67200 input_1[0][0]
________________________________________________________________________
gl_avg_pool_1d_1 (None, 1000) 0 conv1d_1[0][0]
(GlobalAveragePooling1D)
________________________________________________________________________
gl_max_pool_1d_1 (None, 1200) 0 conv1d_2[0][0]
(GlobalMaxPooling1D)
________________________________________________________________________
dropout_1 (Dropout) (None, 1000) 0 gl_avg_pool_1d_1[0][0]
________________________________________________________________________
dropout_2 (Dropout) (None, 1200) 0 gl_max_pool_1d_1[0][0]
________________________________________________________________________
fc_layer1 (Dense) (None, 1000) 1001000 dropout_1[0][0]
________________________________________________________________________
fc_layer2 (Dense) (None, 1200) 1441200 dropout_2[0][0]
________________________________________________________________________
concatenate_1 (None, 2200) 0 fc_layer1[0][0]
(Concatenate) fc_layer2[0][0]
________________________________________________________________________
drop_fc1 (Dropout) (None, 2200) 0 concatenate_1[0][0]
________________________________________________________________________
dense_1 (Dense) (None, 1) 2201 drop_fc1[0][0]
========================================================================
Total params: 2,552,601
Trainable params: 2,552,601
Non-trainable params: 0

A.3. Publication III: Recurrent neural network architecture for
decoding self-location

The model was formalized as Sequential type of model, using an earlier version of
Keras. There is no "connected to" column as, by definition of "sequential model"
in Keras, each layer is connected to the previous layer and previous layer only.

The first layer is the input sequence - the spike count vectors from 100 timewin-
dows. The last dimension of the input (and hence number of parameters) depends
on the animal, as it depends on the number of neurons recorded. The outputs are
two real numbers. Mean squared error between the outputs and true location is
minimized during optimization.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 100, 63) 0
_________________________________________________________________
lstm_1 (LSTM) (None, 100, 512) 1179648
_________________________________________________________________
dropout_1 (Dropout) (None, 100, 512) 0
_________________________________________________________________
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lstm_2 (LSTM) (None, 512) 2099200
_________________________________________________________________
dropout_2 (Dropout) (None, 512) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 1026
=================================================================
Total params: 3,279,874
Trainable params: 3,279,874
Non-trainable params: 0

We used dropout rate 0.5, batch size 64, learning rate 0.001 with RMSProp,
trained for 50 epochs with no early stopping. The loss function was mean squared
error.
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Tehisnärvivõrgud bioloogiliste andmete analüüsimiseks

Tehisnärvivõrgud on üsna hiljuti (alates 2012. aasta AlexNeti artiklist [55]) po-
pulaarseks saanud masinõppe algoritm. Nagu ka teised masinõppe meetodid on
tehisnärvivõrgud võimelised muuhulgas näidete põhjal õppima (juhendamisega
õpe). Iga näide koosneb sisendist ja sellele sisendile vastavast oodatavast (õigest)
vastusest. Tehisneuronite vahelisi ühendusi optimeeritakse nii, et mudeli õpeta-
miseks kasutatavete näidete (treeningandmepunktide) puhul annaks mudel või-
malikult täpseid vastuseid.

Erinevad variatsioonid tehisnärvivõrkudest on oma kasulikkust tõestanud mit-
metes arvutiteaduse harudes. Näiteks konvolutsioonilised närvivõrgud (CNN, con-
volutional neural networks) on täielikult asendanud senised meetodid masinnäge-
mises. Konvolutsioonilised võrgud on väga efektiivsed näiteks objektituvastuses
ja näotuvastuses. Rekurrentsed närvivõrgud (RNN, recurrent neural networks) on
väga efektiivsed kõnetuvastuses ja keeletehnoloogias (lausete mõtte, emotsioo-
ni jne mõistmiseks). Need näited aga ei ole ainsad võimalikud tehisnärvivõrkude
rakendamise valdkonnad. Teadusmaailmas, ja ka ärimaailmas ja ühiskonnas üldi-
selt, on veel tohutu hulk andmestikke ja probleeme, mille puhul tehisnärvivõrkude
rakendamine võiks anda väga häid tulemusi. Tulemusi, mis seniste meetoditega
võimalikud pole.

Selles doktoritöös näitasime me tehisnärvivõrkude kasulikkust kahe bioloogi-
lise probleemi lahendamisel. Esiteks rakendasime me konvolutsiooonilisi närvi-
võrke metagenoomikast tulenevatele DNA andmetele. Probleemipüstitus oli järg-
nev: kas ainult DNA järjestuses sisalduva info põhjal on võimalik ennustada, kas
see järjestus pärineb viiruse genoomist ja mitte mõnda muud tüüpi organismi ge-
noomist. Võrdluseks, enimlevinud DNA lõikude klassifitseerimiseks kasutatavad
meetodid (näiteks BLAST) võrdlevad uuritavat DNA järjestust (või sellest transk-
ribeeritud aminohapete järjestust) andmebaasiga, mis sisaldab kõiki juba teada
olevaid genoome (või aminohapete järjestusi). Leides, et uuritav DNA lõik sobi-
tub üsna hästi mõne teadaoleva genoomiga, võib järeldada, et tegu on sama või
vähemalt samat tüüpi organismiga. DNA jupid, mis ühegi teadaoleva genoomiga
hästi ei joondu, jäävad märgendamata - me lihtsalt ei tea, mis tüüpi organismist
nad pärinevad. Käesolevas doktoritöös välja pakutud meetodid, mis ei kasuta and-
mebaasi ja teevad otsuse vaid DNA jupis endas sisalduva info põhjal, võimaldavad
ennustada ka nende, muidu "märgendamata"jäävate DNA lõikude, päritolu. See
omakorda võimaldab viroloogidel tuvastada seni täiesti tundmatuid viiruseliike,
millel võib olla oluline mõju inimese tervisele.

Teine käesolevas doktoritöös käsitletud bioloogiline andmestik pärineb neuro-
teadusest. On teada, et imetajate hippokampuses esineb teatud tüüpi rakke, mis
on "koha-tundlikud". Need nn. koharakud aktiveeruvad vaid juhul, kui loom (sh
inimene) asub teatud kindlas ruumipunktis. Mujal viibides on rakk mitte-aktiivne.
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Seega sisaldab nende rakkude aktiivsus infot looma asukoha kohta. Käesoleva töö
kolmandas publikatsioonis näitasime me, et rekurrentsed närvivõrgud võimalda-
vad väga efektiivselt dekodeerida looma asukohta tema hippokampuse neuronite
aktiivsuse põhjal. Mõõtes vaid mõnekümne raku aktiivsust roti hippokampuses,
õnnestus rekurrentseid võrke kasutades ennustada roti asukohta 1x1m alal ligi
10cm täpsusega. Rekurrentsed võrgud osutusid täpsemaks dekodeerijaks kui neu-
roteaduses hetkel enim kasutatud Bayesi meetodid. Samuti näitas tulemuste ana-
lüüs, et rekurrentsed võrgud saavad müraste andmetega paremini hakkama kui
Bayesi meetodid. Rekurrentsete tehisnärvivõrkude peamine eelis on võime rak-
kude eelnevat aktiivsust meeles pidada ja kasutada seda kontekstina, mis piirab
ja täpsustab "käesoleva"hetke asukoha ennustust "käesolevaäjaperioodi aktiivuse
põhjal. Samuti võimaldab väljapakutud meetod uurida, milliste neuronite aktiiv-
suse muutumine toob kaasa suurima muutuse ennustustes - ehk kui tundlik on
mudel müra suhtes erinevates neuronites.

Ka teiste neuroteaduses uuritavate stiimulite puhul võib eelnev ajuaktiivsus
peegeldada konteksti, mis omakorda võib sisaldada olulist infot hetkel toimuva
kohta. Seega võivad rekurrentsed tehisnärvivõrgud osutuda ajusignaalide mõist-
misel ülimalt kasulikuks. Samuti on bioinformaatikas kindlasti veel lugematul ar-
vul andmestikke ja probleeme, kus on alust arvata, et konvolutsioonilised võrgud
võiksid osutuda efektiivsemaks kui senised meetodid. Loodame, et käesolev dok-
toritöö julgustab ja innustab teadlasi uusi meetodeid proovima ka oma andmesti-
kel.
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