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INTRODUCTION 

Microbes are found virtually everywhere on Earth, from the ocean floor and 
deep mines to hot springs, even on our skin and in our gut. They are essential to 
life on our planet as the primary source for nutrients and also the primary re-
cyclers of dead matter. Many industries harness bacteria, such as food pro-
duction, biotechnology, medicine and agriculture. 

Still, some of the bacterial species can be pathogenic and cause diseases, 
from mild diarrhea to life-threatening conditions like sepsis. For example, the 
Black Death pandemics in the Middle Ages were caused by the bacterium 
Yersinia pestis. Nowadays, antibiotics help us against pathogenic bacteria, but a 
new threat is looming – widespread antibiotic resistance. This is partly faci-
litated by plasmids, extra-chromosomal DNA sequences readily transferable 
between bacteria. Plasmids often encode antibiotic resistance genes, which 
makes them beneficial to bacteria. 

This large phenotypic variety among bacterial species raises interest in their 
identification, either for their commercial potential or pathogenicity. The 
growing number of sequenced microbial genomes in public databases has pro-
vided an invaluable resource for comparative genomics, microbiome research, 
genetic engineering (Clustered Regularly Interspaced Short Palindromic 
Repeats, CRISPR/Cas system) and clinical microbiology, to name a few. How-
ever, the progress is hindered by the huge amount of complex data. Most of the 
raw data produced by various studies is in the form of millions of short reads, 
50–300 base pairs long. This is because the widely used second-generation 
sequencing technology (also referred in literature as “next-generation” or “next-
gen”) has short read lengths and novel single-molecule sequencing approaches 
are still in active development. Precisely identifying bacterial strains from short 
sequencing reads is a difficult task, albeit a necessary one for many appli-
cations. 

The first part of the thesis provides an overview of methods used to identify 
bacteria. Due to the different nature of the methods used, identification of 
isolated bacteria and identification of bacteria from environmental samples is 
presented separately. The second major topic focuses on bacterial plasmids – 
their importance and a review of methods of the identification of plasmids, both 
sequencing-based and other methods. 

In the research part of the thesis I describe k-mer based methods for the 
identification of microbes: (i) analyzing 16S rRNA gene sequencing data to 
reveal microbial community dynamics in potato tubers in response to infection 
with Pectobacterium atrosepticum; (ii) developing a novel algorithm for strain-
level identification of bacteria from whole genome sequencing data without 
assembly and (iii) developing a tool for the detection of known plasmids from 
bacterial whole genome sequencing data without assembly. 
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1. REVIEW OF THE LITERATURE 

1.1. Identification of bacteria – a history 
Identification of bacteria is one of the cornerstones of microbiology and critical 
in many areas, from food safety monitoring to clinical diagnosis (Emerson et 
al., 2008; Janda and Abbott, 2002). Identification per se comprises both the 
discovery of novel organisms and the detection of known bacteria. Thanks to a 
multitude of advances in sequencing, microbiology and bioinformatics, there is 
now a wealth of information about most of the common bacterial species, 
available to everyone through public databases maintained by the National 
Center of Biotechnology Information (NCBI), European Bioinformatics 
Institute (EBI) and DNA Data Bank of Japan (DDBJ). In case of common 
bacteria, the identification process nowadays often consists of finding just the 
closest match from a database. 

Historically, coming up with suitable taxonomic classification schemes has 
been challenging in case of bacteria as the classical definition of species as “a 
group of organisms that can interbreed and produce fertile offspring” does not 
apply to them (Emerson et al., 2008). Generally, bacteria can be classified 
according to their phenotypic traits, genome sequence or a combination of both. 
Early studies dating back to the 19th century separated bacteria into groups 
based on their morphology, size and motility (Janda and Abbott, 2002). Later, 
biochemical reactions were used, such as gram staining. Combining different 
biochemical tests into a single kit gave rapid and accurate results that could also 
be used in clinical microbiology. As an example, the API 20E test strip, 
invented in the 1970-s, consists of 20 various biochemical tests and is still in 
use (Janda and Abbott, 2002). With the advent of DNA sequencing, genotyping 
methods were rapidly developed, ranging from bacterial 16S rRNA gene 
analysis to whole genome sequencing (WGS). Still, there is much controversy 
in what exactly constitutes a bacterial species. This problem is exacerbated by 
the fact that bacterial species have a set of genes common in most of the strains 
(core genome) and individual strains also have their own unique set of genes 
(constituents of accessory genome) (Konstantinidis et al., 2006; Rouli et al., 
2015). 

Bacterial identification can be broadly divided in two, based on the type of 
the sample. Firstly, bacteria can be isolated and grown in a culture, so that a 
sample would only consist of clones from the isolated bacterial strain. The 
second option is taking a sample straight from the environment, so it contains 
all representative species of a certain habitat. Environmental samples may 
contain anywhere from a few to hundreds of different bacterial species, viruses 
and other organisms (Wooley et al., 2010), making them much more complex to 
analyze compared to isolated bacteria. Identification techniques applicable for 
bacterial isolates often cannot be used in case of environmental samples, 
therefore the identification of bacteria from environmental samples is reviewed 
as a separate topic. 
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1.2. Identification of isolated bacteria 
In case of isolated bacteria, we can assume that the sample consists of clones. 
Provided no contamination is present, all the DNA, RNA, proteins and bio-
chemical traces should point to a single strain, simplifying the identification 
process. However, there are some disadvantages of studying isolated bacteria, 
most being tied to the culturing process itself. Firstly, only a small fraction of 
bacterial species can be cultured in laboratory settings (Wooley et al., 2010). 
Secondly, the culturing step takes extra time, which can be critical when dealing 
with pathogenic bacteria. Culturing times can range from 12 hours for rapidly 
growing bacteria to more than two weeks for Mycobacterium tuberculosis 
(Bradley et al., 2015). 

The methods used to identify isolated bacteria can be divided into two main 
categories – either phenotypic or genotypic. Phenotypic methods deal with 
morphology, biochemical makeup and metabolic attributes while genotypic 
techniques are based on profiling the genetic material (primarily DNA) of the 
bacterium. Genotypic methods are not affected by the state of the organism, the 
phase of growth or the culturing medium (Emerson et al., 2008). They can be 
either based on sequencing or detecting specific DNA profiles or fingerprints. 
 
 

1.2.1. Phenotypic methods 

Phenotypic methods help to distinguish between bacteria based on their 
physical properties (size, motility), metabolic properties (such as an ability to 
degrade lactose), biochemical makeup (proteins produced) or any other attribute 
that could be readily measured or detected (Emerson et al., 2008). Various 
methods offer different identification resolutions. Gram staining, for example, 
can only provide a very broad level of classification as it is based on just a 
single attribute – the composition of bacterial cell wall. On the other hand, 
proteomics – analyzing all the proteins produced by a bacterium – offers a 
multitude of different reference points, enabling species-level classification. 
Most proteomics tools are based on mass spectrometry (MS), a technology that 
separates molecules based on their mass-to-charge ratio. Among these, matrix-
assisted laser desorption/ionization time-of flight (MALDI-TOF) MS is the 
most commonly used to identify bacterial species, mainly because of its 
reproducibility and the ability to analyze whole bacterial cells directly (Emerson 
et al., 2008). There are specialized platforms for clinical microbiology use, such 
as the MALDI Biotyper Systems by Bruker. 

Every additional step in the identification process takes extra time, which 
can be critical in case of severe conditions caused by pathogenic bacteria, such 
as sepsis. Compared to a few hours at best for DNA sequencing (Fournier et al., 
2014), MS is several times faster, taking only minutes. It has been shown that 
MALDI-TOF MS can accurately identify bacteria directly from blood cultures 
of patients with sepsis and the information obtained could have been used to 
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administer appropriate antibiotics earlier, improving the outcome for a patient in 
many cases (French et al., 2016). 

 
 

1.2.2. DNA fingerprinting methods 

DNA can be analyzed as a sequence of nucleotides, but also by breaking it into 
multiple shorter fragments and analyzing their length and abundance. Orga-
nisms that are closely related to each other usually produce similar or identical 
fragment profiles or fingerprints. However, it is important that these fragments 
are not created randomly, but in a certain, reproducible manner, so that a 
reference database could be used to compare fingerprints and find the closest 
match. To date, two main approaches have been used. 

The first is to design a set of primers and use polymerase chain reaction 
(PCR) to amplify certain sections of DNA, such as repetitive elements. Multi-
plex PCR can be used to amplify more than a single region or to test for several 
different species. 

The second option is to use restriction enzymes that cleave DNA at re-
cognition sites specific to the enzyme and separate the fragments by pulsed-
field gel electrophoresis (PFGE) (Emerson et al., 2008). For the fingerprinting 
methods to be useful, large and comprehensive databases are necessary as a 
profile itself does not give much information. In case of PFGE, the United 
States of America has a country-wide network for sharing and using PFGE data 
called PulseNet, which has already been operating for more than 20 years. Its 
many success stories highlight the importance of standardization and effective 
data sharing between laboratories (Boxrud et al., 2010). 

 
 

1.2.3. 16S rRNA gene and multilocus sequence typing 

First sequencing experiments involving the 16S rRNA gene took place more 
than four decades ago and sequence comparisons have shown that 16S rRNA 
genes are highly conserved on the species/genus level, but differ on higher 
taxonomic levels (Woo et al., 2008). This made the 16S rRNA gene very useful 
for both phylogenetic and identification purposes. 16S rRNA analysis brought 
with it a paradigm shift as prokaryotes were divided into different domains – 
bacteria and archae (Woese and Fox, 1977). 

Since 1990s, 16S rDNA sequencing has been widely used for routine 
bacterial identification, especially in case of species for which phenotypic 
methods were unreliable (Janda and Abbott, 2002; Woo et al., 2008). A 
characteristic that makes the 16S rRNA gene so amenable for analysis is that 
every bacterial genome has at least one copy of the gene (Klappenbach, 2001). 
PCR can be used to amplify variable regions in the 16S rRNA gene, which are 
sequenced afterwards (Land et al., 2015). For sequence comparison, there are 
several publicly available 16S rRNA gene databases such as GreenGenes 
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(http://greengenes.secondgenome.com) (DeSantis et al., 2006), SILVA 
(https://www.arb-silva.de/) (Quast et al., 2013) and Ribosomal Database Project 
(RDP) (https://rdp.cme.msu.edu) (Cole et al., 2014). However, as 16S rDNA is 
very similar in closely related species, for example the Mycobacterium genus, it 
does not help to differentiate between them, even as it may be necessary for 
making clinical decisions (Woo et al., 2008). For more precise, strain-level 
identification, other supplementary methods are necessary. 

Multilocus sequence typing (MLST) approach is similar to 16S rDNA se-
quencing, but several different genes are used instead of just a single one, 
creating more combinations and thereby increasing the identification resolution. 
Originally developed as a tool in clinical microbiology, it has been used also in 
bacterial population genetics. Each MLST scheme consists of several MLST 
alleles – fragments of highly conserved housekeeping genes about 350–600 bp 
long (Maiden, 2006). In order to facilitate MLST analysis, the number of loci is 
kept at a minimum level, usually just enough to distinguish between pathogenic 
and non-pathogenic strain groups. Most MLST schemes use between 6–10 loci, 
depending on the bacterial species (Maiden, 2006). A unique combination of 
MLST alleles is called a sequence type and knowing it can provide valuable 
information. For example, Escherichia coli with sequence type 131 is a highly 
virulent type, responsible for most urinary tract and bloodstream infections 
(Petty et al., 2014). 

In order to obtain a sequence type for an isolate, there are different ap-
proaches. The traditional way was to first use PCR to amplify MLST alleles and 
then apply Sanger sequencing on the amplicons (Larsen et al., 2012). As se-
quencing prices have decreased, WGS is nowadays a more feasible option as it 
can also shed light on the resistance genes and many other attributes that can be 
obtained from the full genome sequence. Online tools with a graphical user 
interface, such as the MLST server (www.cbs.dtu.dk/services/MLST) (Larsen et 
al., 2012), make it possible to identify the sequence types of strains of interest 
without bioinformatics skills. The largest and most used online resource for 
MLST schemes is the PubMLST database (http://pubmlst.org) (Maiden, 2006). 

 
 

1.2.4. Whole genome sequencing 

Bacterial whole genome sequencing, as the name suggests, signifies the se-
quencing of the full-length bacterial genome, instead of a set of specific markers 
or regions. It is also called “whole genome shotgun sequencing”, as most of the 
sequencing approaches involve randomly fragmenting long chromosomal 
sequences of isolated bacteria, which are then sequenced and assembled into 
longer stretches known as contigs (Kwong et al., 2015). WGS represents the 
ultimate step in the bacterial genetic analysis as it captures everything in the 
genome with the exception of epigenetic markers. On top of the taxonomic 
label, WGS can give a wealth of other information about the isolate, such as its 
antibiotic resistance genes and plasmids. 
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In 2008, Emerson et al. discussed whether one day it would be feasible to 
just sequence the genome of an isolate instead of using MLST, the 16S rRNA 
gene analysis or phenotypic tests as means for the identification (Emerson et al., 
2008). A decade later, WGS is now much more widespread and the costs 
associated with WGS are have come down, thanks to the rapid advancement of 
high-throughput second-generation sequencing technologies (Land et al., 2015). 
The number of sequenced prokaryotic genomes in the NCBI GenBank database 
has almost doubled every year since 2010 (Land et al., 2015), from less than 
1,000 genomes to almost 120,000 in 2017. The problem has shifted from the 
lack of data to an overabundance of data. 

Along with the very welcome reduction in price, second-generation se-
quencing technologies also reduced the length of reads. Sanger sequencing 
provided reads up to 1000 bp in length, but read lengths produced by the 
commonly used Illumina MiSeq platform range from 150 to 300 bp (Kwong et 
al., 2015; Land et al., 2015). Assembly of these short reads is a complex task 
and high sequencing coverage is needed to get a complete bacterial genome 
without gaps, which again raises the overall cost. Because of this, it is often 
feasible just to produce draft genomes as they still contain most of the usable 
information, even as they consist of many contigs with gaps in between (Mavro-
matis et al., 2012).  

In the last several years, third-generation sequencing technologies have also 
become more widespread. Third-generation refers to single molecule se-
quencing, in which the DNA is not fragmented, but analyzed as a continuous 
strand, enabling unprecedented read lengths of up to 150 kbp (Jain et al., 2016). 
The flagship of third-generation sequencing solutions is currently Oxfond 
Nanopore Technologies, but nano-scale devices made of graphene are also 
showing promise (Heerema and Dekker, 2016). Nanopore devices are based on 
biological pores that are able to detect the change in electrical current as the 
DNA passes through the pore. MinION, the most popular third-generation 
sequencer, is the size of a large USB stick and enables live transmission of se-
quencing data, which means that reads can be analyzed even as the sequencing 
process in still underway (Jain et al., 2016). However, MinION has its own 
drawbacks, the most serious one being inaccurate base calling due to the rapid 
pace of the DNA passing through pores. Initially, only 66% of called bases were 
successfully aligned to matching bases in reference sequences (Jain et al., 
2015). This has now been improved to 92% (Jain et al., 2017). Still, this is low 
compared to 99.6–99.8% that the widely used Illumina sequencing platforms 
can achieve (Schirmer et al., 2016). 

 
 

1.2.5. Assembly-based vs assembly-free methods for  
WGS data analysis  

First, it is necessary to introduce the k-mer, a ubiquitous concept in the field of 
modern bioinformatics. Simply put, a k-mer is an oligomer of DNA or other 
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cessing of reads, optimization of parameters for the assembly program and com-
paring different results to find the best one (Inouye et al., 2014). Also, 
assemblers are strongly affected by the choice of parameters and the nature of 
the data, making it harder to pick the right option for the task at hand (Koren et 
al., 2014). 

There is a variety of different tools available for prokaryotic genome as-
sembly. Some are able to assemble genomes de novo, like SPAdes and Velvet. 
However, if high-quality genome sequences of similar strains are available, they 
can be used as a reference to facilitate the assembling process, such as the 
Ragout tool does (Kolmogorov et al., 2014). The quality of an assembly ranges 
from a draft genome made of many contigs separated by gaps to a complete 
genome, in which a chromosome is captured in a single contig. Multiple contigs 
of draft genomes are usually ordered against a close reference genome 
(Edwards and Holt, 2013). 

A genome assembly can be used for many purposes. An important part of 
genome annotation is the identification of genes. While it is feasible to detect 
known genes or mutations even from unassembled WGS reads (Inouye et al., 
2014; Steiner et al., 2014), ab initio gene prediction usually requires assembled 
reads (Delcher et al., 2007). Also, an assembly can give information about the 
layout of the genes on the chromosome. 

For decades, sequence analysis has mainly been done by comparing an un-
known sequence to known ones by arranging them in a way that similar parts of 
the sequences are next to each other. This is called sequence alignment. For a 
long time, alignment of sequencing reads to a reference genome or with each 
other has been a prerequisite of genome-level sequence analysis. Nowadays, the 
general trend is towards k-mer based, alignment-free sequence analysis methods 
as they are much faster, but provide a level of accuracy similar to their counter-
parts that require assembling (Bradley et al., 2015; Gupta et al., 2017; Inouye et 
al., 2014). Compared to the complex sequence alignment process which in-
volves the selection of a suitable scoring matrix and finding the optimal align-
ment out of many possible alignments, the exact matching of k-mers is very fast 
as it is essentially a yes–no question. 

As an example, we can take the tasks of MLST and the prediction of anti-
biotic resistance, both of which give important information about a bacterial 
isolate. Due to the low cost of WGS, MLST is now increasingly performed on 
WGS data as it is cheaper than the traditional MLST described above. The 
MLST server web tool assembles user-submitted WGS reads and identifies the 
sequence type using a BLAST search (Larsen et al., 2012). A novel program, 
stringMLST, achieves the same goal, but does not require assembly and is 
thereby several times faster, without any loss in accuracy (Gupta et al., 2017). 
Instead of searching for alignments between the input data and MLST loci, 
StringMLST counts k-mers that are present in any of the MLST alleles and the 
final sequence type is derived from alleles with highest number of k-mer hits.  

The detection of antibiotic resistance is important for both surveillance and 
effective clinical treatment purposes. Along with the traditional antibiotic disk-
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based methods, in silico phenotype prediction from WGS data is becoming 
more widely adopted. ResFinder is a web tool that identifies antibiotic 
resistance genes in a manner similar to MLST server – the input WGS reads are 
assembled and queried with BLAST against a curated database of antibiotic 
resistance genes (Zankari et al., 2012). A few years later, the authors of 
ResFinder developed KmerResistance, a tool that examines the co-occurrence 
of k-mers between the WGS data and a database of resistance genes and is both 
faster and more accurate than ResFinder (Clausen et al., 2016). Another tool, 
KvarQ, can also detect known single nucleotide polymorphisms (SNPs), in-
cluding phylogenetic markers and resistance-causing mutations (Steiner et al., 
2014). Both KvarQ and KmerResistance are based on k-mers and do not require 
an assembly. 

 
 

1.2.5.1 Strain identification from WGS data 

However, there are few assembly-based or assembly-free methods specifically 
designed for precisely identifying the bacterial isolate itself. The 16S rRNA 
gene sequence resolution is generally limited to species level (Woo et al., 2008) 
and so are tools that use the 16S rRNA gene as the marker (Saputra et al., 
2015). MLST is more discriminative, but even strains with the same sequence 
type may have differences of thousands of SNPs (Petty et al., 2014).  

One solution is to design custom probe sequences targeting a panel of genes 
other than the the 16S rRNA gene (Bradley et al., 2015). While this can be 
effective for a few chosen species, it is very time-consuming to construct and 
validate the probes for all clinically relevant bacteria. Another option is to 
determine the phylogenetic relationship of the isolate in regard to other strains 
of the same species, as was done by Petty et al. with E. coli sequence type 131 
strains (Petty et al., 2014). This can distinguish between very similar strains, but 
it needs high sequencing coverage and read assembling. Tools meant for identi-
fying bacteria from metagenomic shotgun sequencing (MGS) samples (men-
tioned below in detail) can be also used for identifying isolates as most of them 
assign a taxonomic label to each read (Saputra et al., 2015). 
 
 
1.3. Identification of bacteria from environmental samples 
Studying bacteria in different habitats can give us valuable information and 
answer many important questions – which bacteria are there, what are they 
doing, how do they interact with each other and their environment. Bacteria are 
present almost anywhere, from the human gut to the ocean floor. In order to get 
an unbiased view on bacterial communities, they have to be studied directly 
from environmental samples because many bacterial species cannot be culti-
vated in the laboratory conditions and most bacterial communities do not 
consist of a single species (Wooley et al., 2010). Due to the fact that environ-



17 

mental samples require no culturing, identifying bacteria directly from environ-
mental samples also holds great promise for the field of clinical microbiology, 
especially in the cases where the infection is severe and requires immediate action 
(Hasman et al., 2014). Compared to bacterial isolate samples, which contain 
clones of a single strain, environmental samples can be much more complex and 
contain bacteria from many different taxa (Huttenhower et al., 2012).  

Phenotypic methods that are well suited to identify bacterial isolates by their 
specific DNA or peptide fingerprints, such as PFGE and MALDI-TOF MS, 
cannot be used to identify bacteria from environmental samples as the finger-
prints can originate from multiple bacteria, muddling the overall sample profile. 
Therefore, most of the studies have analyzed DNA sequences to shed light on 
bacteria in complex samples, hence the term “metagenomics” as the study of 
sequence data obtained directly from the environment (Wooley et al., 2010). 

There are two main approaches for environmental sample sequencing. The 
first option is based on the assumption that every bacterium has at least one 
copy of the 16S rRNA gene and the respective sequences can be amplified with 
PCR using universal primers. Then, the 16S rRNA gene amplicons are se-
quenced and analyzed (Wooley et al., 2010). Due to the length of the 16S rRNA 
gene (~1.5 kbp), only a few variable regions in the gene are usually sequenced 
(Li et al., 2012). The second option is to use shotgun sequencing, in which the 
whole DNA is extracted from all organisms, sheared into fragments and se-
quenced. Both approaches have their strengths and weaknesses and numerous 
tools have been published to facilitate the analysis of either type of data. 

 
 

1.3.1. 16S rRNA gene sequencing 

The analysis of the 16S rRNA gene sequence data usually begins with the pre-
processing of reads – filtering low-quality bases and removing adapter sequen-
ces used in the PCR amplification step. Afterwards, sequences are clustered into 
operational taxonomic units (OTU), conventionally with a 97% similarity 
threshold, with each OTU having its own consensus sequence (Li et al., 2012). 
This is done in order to remove errors caused by sequencing, which would other-
wise create many false-positive 16S rRNA gene sequences. Many clustering tools 
have been published, CD-HIT-OTU being one of the better supported ones, which 
also has a web server available (Li et al., 2012). The 16S rRNA gene databases 
mentioned above can be used to identify OTU consensus sequences and 
bioinformatics pipelines like QIIME (Caporaso et al., 2010) to visualize the final 
results. Also, there are packages consisting of several programs to cover all the 
steps of the 16S rRNA gene analysis (Schloss et al., 2009). 

Compared to MGS, the 16S rRNA gene sequencing is more sensitive in 
detecting species with low abundance, both because of the PCR amplification 
step and the fact that not all MGS reads are specific to a bacterial species. 
Overall, the 16S rRNA gene sequencing provides a robust approach for species-
level bacterial identification from environmental samples and has been shown 
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to correlate well with MGS (Zhernakova et al., 2016). However, when calcu-
lating abundance values for OTUs it must be kept in mind that the copy number 
of the 16S rRNA gene in different species can range from 1 to 15 (Klappen-
bach, 2001), which could lead to biased results if not taken into account.  

 
1.3.2. Metagenomic shotgun sequencing 

Compared to the 16S rRNA gene sequencing, MGS can potentially give much 
more information as all the DNA in the sample is randomly sequenced, not only 
a single gene. However, this also means that the sensitivity is worse as there 
may be only a few reads from species with lower abundances, which in turn 
may not contain enough information for accurate classification. MGS data can 
be very complex as reads are often short and from random genome locations of 
an unknown number of organisms. As with WGS, the first question is whether 
to assemble the reads or not. For simple taxonomic profiling or even functional 
analysis, it is often unnecessary, but required for deeper insights into the com-
munity, such as connecting specific metabolic functions to certain bacterial 
taxa. This is because a single short read does not usually contain both the gene 
of interest and taxonomical info. However, assembling MGS data is more 
complex than WGS data as reads originate from many organisms. 

Like the 16S rRNA gene sequencing, MGS is used for taxonomical profiling 
of samples, answering the “who is there?” question. However, functional analysis 
of the community or the “what are they doing?” question can only be found out 
by MGS. By examining the repertoire of genes represented in a MGS sample, we 
can predict functions and pathways represented in the community, such as 
photosynthesis and metabolism of various compounds (Silva et al., 2015).  

 
1.3.3. Bioinformatics tools for taxonomical profiling 

Most of the bioinformatics tools developed to identify bacteria from un-
assembled MGS data assign a taxonomic label to each read separately, using a 
reference database. The assignment can be done in different ways. First, a read 
can be aligned to all reference sequences and assigned the label of the best 
match. BLAST is a well-known and still very widely used method to identify a 
sequence by finding the best alignment from a database of sequences (Altschul 
et al., 1997). Second approach is mapping, which is faster than BLAST align-
ment (Truong et al., 2015) due to novel algorithms being used (Li and Durbin, 
2009). Third option, now increasingly used, is k-mer based tools. 

Interpolated Markov Models (Brady and Salzberg, 2009) and Bayesian 
statistics (Rosen et al., 2008) have also been employed for the classification of 
MGS reads and although they have shown very good sensitivity and precision, 
their classification speed is many times slower than BLAST, making them 
unusable for large data sets. In the recent years, several studies have bench-
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marked many different MGS analysis tools, aiding potential users in selecting 
the right tool for the job (Lindgreen et al., 2016; Peabody et al., 2015). 

 
 

1.3.3.1 Alignment and mapping-based tools 

BLAST has been shown to be a sensitive and precise method for identifying 
bacteria from MGS data. Numerous MGS analysis tools have relied on BLAST 
for read identification. A good example is MEGAN, developed in 2007, that 
required reads aligned by BLAST (or a similar tool) (Huson et al., 2007). 
However, the number of bacterial species in public databases has been growing 
constantly and with sequencing instruments generating larger amounts of data, 
BLAST has become too slow for practical use. It is able to identify only 5–10 
thousand reads per minute, whereas MGS samples contain millions of reads and 
would take many hours or days to analyze. This had led to various other algo-
rithms and heuristics to speed up the search, namely reducing the database size 
and using more efficient aligners. 

A well-known MGS data analysis tool, MetaPhlAn, was used by the Human 
Microbiome Project consortium (Huttenhower et al., 2012). MetaPhlAn still 
makes use of BLAST, but in order to speed up the identification process, a 
reduced reference database is used, thereby decreasing the search space (Segata 
et al., 2012). Instead of full-length bacterial genomes, only unique clade-speci-
fic marker genes are kept in the database. From 2,887 bacterial genomes avail-
able at the time, the authors selected 400,411 genes that best represented each 
taxonomic unit. The search process consists of mapping reads to the marker 
genes in the database and taxon abundances are based on the read coverage of 
each marker. Due to the smaller database size, MetaPhlAn is 50–100x faster 
than BLAST (Segata et al., 2012; Wood and Salzberg, 2014). 

The authors of MetaPhlAn have since augmented their program with more 
than half a million markers to support the identification of many more bacterial 
species and also viruses and eukaryotic microbes. The new tool, MetaPhlAn2, is 
also able to identify bacteria on the strain level and uses a faster mapping tool 
for better performance (Truong et al., 2015). Also, the authors of MEGAN have 
published a novel version of the tool that uses a novel aligner, which is 20,000x 
faster than translated nucleotide to protein BLAST (BLASTX) and also able to 
perform functional analysis of samples (Huson et al., 2016). 

Parallel computing is another option to speed up the analysis. Read align-
ment/mapping is usually the most time-intensive part of the analysis. A power-
ful computing cluster with many CPU cores may reduce the time spent more 
than a hundredfold (Ahn et al., 2015). Most of the k-mer based tools described 
below can be also parallelized, usually in the k-mer counting step. 
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1.3.3.2 K-mer based tools 

A widely adopted approach is searching for exact matches of short k-mers 
instead of searching for regions with 1–2 mismatches or searching for the best 
scoring alignment. This greatly improves the search speed as alignment is a 
complex process that involves searching for an initial seed, extending it and 
calculating the scores (Altschul et al., 1997). In contrast, exact matching is just 
detecting the presence or absence of a search string. As long marker genes 
might easily be missed by exact matching due to sequencing errors and random 
mutations, exact matching is only suitable for short sequences. In most cases, k-
mers up to 32 bp are used for this purpose as they can take advantage of the 64-
bit architecture of computers, requiring less memory. 

Kraken is a well-known example of a k-mer based metagenome identifi-
cation tool (Wood and Salzberg, 2014). It breaks every read into its constituent 
k-mers and for every k-mer, it finds the last common ancestor of all the geno-
mes that contain this k-mer. This is done using the NCBI taxonomy tree. The 
read is classified as belonging to the taxon supported by the highest number of 
k-mers. The authors used k=31 as the default k-mer length. Compared to 
BLAST, Kraken is more than 100 times faster, even though its sensitivity and 
precision are similar. CLARK works in a way similar to Kraken, but instead of 
using a taxonomy tree, it simply classifies a read according to the bacterium 
with the highest number of matching k-mers (Ounit et al., 2015). Compared to 
MetaPhlAn described above, both Kraken and CLARK are able to identify 
more reads as MetaPhlAn only looks for specific markers that may not be 
present in every read (Lindgreen et al., 2016). 

The choice of k-mer length is always an important question regarding k-mer 
based tools. Shorter k-mers are more sensitive and allow more reads to be 
classified as they are less prone to containing mutations and sequencing errors. 
On the negative side, they also cause more misclassifications. Longer k-mers 
are more specific, but less sensitive (Kim et al., 2016; Ounit et al., 2015). In 
most cases, the authors of a tool have tested it on different datasets using va-
rious k-mer lengths and suggest an optimal “default length” for k, which is 
essentially a tradeoff between specificity and sensitivity. 

For rapid access, the reference database is usually stored in RAM, in the 
form of a k-mer list (Wood and Salzberg, 2014). As the number of reference se-
quences increases, so does the database and its RAM requirements. This can be 
a constraint, especially for users with access only to a desktop computer, most 
equipped with 4–16 GB of RAM. The database of Kraken, containing the 
genomes of ~4,300 prokaryotes, along with human and viral genomes, takes 
over 93 GB of disk space, compared to 4.2 GB of Centrifuge. Even with the 
much smaller database, Centrifuge is almost as sensitive and accurate as 
Kraken, albeit 2x slower (Kim et al., 2016). 

In MGS data analysis, a large fraction of reads may remain unclassified. 
This is because many organisms are not yet sequenced and DNA-level com-
parisons with reference sequences do not yield any results with significant iden-
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tity (Menzel et al., 2016). It is known that protein sequences are more conserved 
than the underlying DNA, due to the redundancy of the genetic code. Also, 
prokaryotic genomes are densely packed with genes. This has led to the idea of 
using protein-based markers instead of DNA, as they should be more sensitive 
(Menzel et al., 2016).  Increased sensitivity and ability to classify more reads is 
especially important in case of complex environmental samples, like the ones 
taken from the soil, gut or raw sewage, where many reads, often more than 50% 
of the total, remain unclassified (Menzel et al., 2016; Wood and Salzberg, 
2014). The idea of using protein-based markers has been implemented in a tool 
named Kaiju, which translates MGS reads into all six possible reading frames 
and searches for maximum exact matches, using its reference protein database. 
Authors have shown that Kaiju is more sensitive and able to classify con-
siderably more reads than Kraken (Menzel et al., 2016). 

 
 

1.3.4. Bioinformatics tools for functional profiling 

Two main characteristics of an environmental sample are usually its taxonomic 
composition (“who is there?”) and metabolic functions and networks (“what do 
they do?”). In case of the human microbiome, bacterial communities may differ 
a lot in their taxonomical makeup, but still have very similar functional profiles, 
as shown by the Human Microbiome Project (Huttenhower et al., 2012). In 
contrast, the analysis of coral reef samples has shown that taxonomies remain 
similar, but functions adapt to local conditions (Silva et al., 2015). As bacterial 
species may fulfill different metabolic roles depending on the community, 
metabolic functions cannot be reliably inferred from the species present in the 
sample and should be discovered separately. Methods for metagenome functio-
nal profiling can be broadly broken in two – those that require assembled reads 
and those that work on raw reads. 

The workflow of assembly-free functional profiling tools is similar to the 
bacterial identification tools described above, but instead of giving a taxonomic 
label to a read, it is assigned to a metabolic system or process. In order to 
decrease the search space, most tools use the taxonomic composition of the 
sample to only look for functions that species detected in the sample can fulfill, 
based on their repertoire of genes. To find whether a sequencing read contains a 
gene fragment, BLASTX has been used, for example by the HUMAnN (HMP 
Unified Metabolic Analysis Network) tool to metabolically profile the Human 
Microbiome Project data (Abubucker et al., 2012). With the advent of faster 
protein alignment tools, novel functional profiling tools have been published 
that facilitate the analysis of large data sets (Silva et al., 2015). For example, 
RAPSearch2 is about 100 times faster than BLASTX, thanks to a reduced 
amino acid alphabet of 10 symbols, each representing a group of  amino acids 
(Zhao et al., 2012). 

While it is important to identify metabolic functions represented in the bacte-
rial community, the question of which organism is responsible for a specific 
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role remains. Also, as many species in environmental samples may be novel, 
there may be a number of genes and functions not represented in the reference 
databases. Short reads contain just gene fragments, making it hard to predict 
novel genes and connect genes to certain taxa. MGS data assembly requires 
special assembling tools, which do not assume that all reads are from a single 
genome. MetaSPAdes (Nurk et al., 2017) is a recently published metagenome 
data assembler that builds on the SPAdes assembler, but is also based on de 
Bruijn graphs. Still, even state-of-the-art metagenome assemblers often fail to 
produce full-length genomes (Kang et al., 2015). As a close substitute to a full 
genome, contigs are binned – all contigs predicted to belong to a strain (or a 
group of similar strains) are put together, containing most of the genes of the 
strain. Binning can be either supervised (based on similarity to reference ge-
nomes) or unsupervised (using sequence composition) (Kang et al., 2015). For 
example, the unsupervised binning tool MetaBAT (Kang et al., 2015) uses tetra-
nucleotide frequencies and the read coverage to cluster contigs with similar 
composition. The last step is to predict open reading frames and potential genes. 
For this, many tools are available, such as FragGeneScan (Rho et al., 2010) and 
Glimmer (Delcher et al., 2007), both of which incorporate Markov models. 
Also, there is a novel variant of Glimmer (Glimmer-MG) dedicated to handling 
MGS data (Kelley et al., 2012). 

 
 

1.4. Bacterial plasmids 
Plasmids are extra-chromosomal genetic elements, ranging from 1 to 1000 kbp 
(Nyberg et al., 2016), which are capable of autonomous replication and transfer-
able between host cells (Orlek et al., 2017). Often, cells contain multiple 
plasmids in different copy numbers. Plasmids are important vectors of hori-
zontal gene transfer between bacteria and can directly contribute to the disse-
mination of genes involved in antibiotic resistance and virulence. Such genes 
may confer phenotypes that are subject to positive selection in the bacterial 
community, possibly making multidrug-resistant bacteria more prevalent. The 
rapid emergence of widespread antibiotic resistance (Ventola, 2015) makes the 
identification of bacterial plasmids an important task. However, this is compli-
cated by the tendency of plasmids to readily gain, lose and rearrange genetic 
information (Orlek et al., 2017). 
 
 

1.4.1. Plasmid identification methods 

A variety of methods have been used for plasmid detection and identification, 
all with their own merits and drawbacks. PCR can be used to amplify certain 
regions in plasmids that are conserved enough to be reliably found from most 
plasmids. PCR-based replicon typing targets either the conserved replicon sites 
(Carattoli et al., 2014) or relaxase proteins (Alvarado et al., 2012) of plasmids, 
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and it can be expanded to target many replicons by using multiplex PCR. Also, 
PCR can be used to detect plasmids from environmental samples (Smalla et al., 
2015). Compared to sequencing, PCR is less labor-intensive and faster. How-
ever, there are also numerous drawbacks: multiplex PCR is difficult to extend to 
cover all novel plasmid groups (Carattoli et al., 2014), assays take time to 
optimize and the result contains no sequence information about the plasmid 
itself. Also, PCR-based typing requires previous knowledge of the targeted 
sequence (Müller et al., 2016). 

A novel approach to identify intact plasmids is optical DNA mapping. It is 
based on the visualization of plasmid DNA stretched on a surface or in nano-
fluidic channels. With the help of fluorescent dyes that bind to either AT or GC-
rich regions of DNA, a unique barcode roughly depicting the DNA sequence of 
a plasmid can be made visible by using fluorescence microscopy. Barcodes can 
be also calculated in silico for known plasmids, simplifying reference database 
creation (Nyberg et al., 2016). Moreover, optical mapping can be combined 
with CRISPR/Cas9 to identify various genes located on the plasmid. A guide-
RNA, complementary to the gene of interest, cuts the plasmid at the location of 
the gene, which can be visualized with optical maps (Müller et al., 2016). While 
overall a very promising approach, optical mapping may not yet be suitable for 
the detection of short (<50 kbp) plasmids (Nyberg et al., 2016). 

As with bacteria, lower sequencing costs and the increasing number of 
plasmids in the public databases has made sequencing a viable option also for 
the detection and identification of plasmids (Smalla et al., 2015). Most of the 
studies have dealt with bacterial WGS data (Orlek et al., 2017; Smalla et al., 
2015), MGS data being too complex due to short reads coming from a variety of 
organisms, some of which may be unknown. WGS data is either assembled or 
mapped to reference sequences. Read mapping with tools such like SRST2 can 
help to rapidly detect loci of interest, such as antibiotic resistance genes, but 
whether they are located on the plasmid or the bacterial chromosome remains 
unknown (Orlek et al., 2017). 

The assembly of plasmids from bacterial WGS reads requires a different ap-
proach than assembling bacterial genomes as reads may originate from multiple 
plasmids and the bacterial chromosome. PlasmidSPAdes (Antipov et al., 2016), 
based on the SPAdes assembler, uses the read coverage of contigs to distinguish 
between plasmid and bacterial sequences. The result is given as a list of 
detected plasmids, each with their respective contigs. As reads are assembled de 
novo, without any reference database, PlasmidSPAdes is able to detect novel 
plasmids. Carattoli et al. developed the plasmidfinder web tool (Carattoli et al., 
2014), which searches for conserved replicon sites using BLAST and compares 
them to a curated database of plasmid replicons. As a prerequisite, reads must 
be assembled as the targeted replicon sites are often longer than 300–400 bp. 
Plasmidfinder is able to detect only plasmids which contain targeted replicons. 
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2. AIMS OF THE STUDY 

The aim of this thesis was to explore the feasibility of k-mer based algorithms to 
identify microbial strains using DNA sequences. We started out with the 16S 
rRNA gene sequencing data and then focused on bacterial whole genome se-
quencing data. We set out to solve two important questions – how to provide 
quick strain-level identification of bacteria based on sequencing data and how to 
detect and identify any accompanying plasmids. From the start, we concentrated 
on methods that work on raw, unassembled reads to avoid potential biases 
related to genome assembly. 
 
The specific aims of this study were: 

 To develop a k-mer based method capable of identifying bacteria on the 
strain level from unassembled bacterial whole genome sequencing 
reads. 

 To develop a k-mer based method to detect known plasmids from 
unassembled bacterial whole genome sequencing reads. 
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3. RESULTS AND DISCUSSION 

3.1. Microbial population dynamics in potato tubers (Ref. I) 
Although potato is an important food item consumed globally, the studies on the 
microbial population dynamics within stored potato tubers have been sparse, 
last one being conducted in 1979. In this study, we shed light on the microbial 
population dynamics in response to Pectobacterium atrosepticum infection in 
potato tubers. 

Experiments were conducted with two batches of potatoes – harvested in 
2012 (Experiment 1) and 2013 (Experiment 2). Each potato was infected with 
P. atrosepticum and samples taken from the macerated tissue after two, five and 
eight days post-infection (Figure 1, ref. I). Bacteria were cultivated from the 
samples and subjected to the 16S rRNA gene Sanger sequencing. As many 
bacterial species are not cultivable, several samples from each time-point were 
chosen for 16S rDNA amplification and sequencing to follow bacterial com-
munity dynamics. Sequenced amplicons from Experiment 2 were ~300 bp, 
spanning the variable regions V1 and V2 of the 16S rRNA gene. Amplicons 
from Experiment 1 were from the same region, but only ~100 bp long and from 
random locations. From the cultivated bacteria, a ~1,500 bp long 16S rRNA 
gene fragment was amplified and Ribosomal Database Project classifier (Cole 
et al., 2014) was used for species identification. 

The identification of bacterial community composition from 16S rDNA ampli-
cons was more complex as they had to be first clustered into OTUs. As reads 
from Experiment 1 were from random locations, we only clustered sequences 
from Experiment 2. First, we tried to use the mothur package (Schloss et al., 
2009). Its authors were able to analyze a set of 222,000 sequences in a few hours. 
However, our dataset consisted of more than 4 million sequences and mother was 
unable to handle it. Therefore, we chose another tool, AbundantOTU (Ye, 
2010). It is based on a consensus alignment algorithm, which first searches for 
an abundant k-mer seed and then extends it to form an OTU consensus se-
quence. Nucleotides for the extension are chosen based on which one would 
result in the most abundant sequence. After removing chimeric sequences, we 
got a total of 294 OTUs. Experiment 1 reads were clustered by using BLAST 
with all 294 OTU consensus sequences of Experiment 2 as the database. Raref-
action analysis with Experiment 2 data showed that deeper sequencing would 
have given more OTUs, especially in the case of uninfected potatoes (Figure 5, 
ref. I). 

Overall, the results from both experiments showed that P. atrosepticum was 
dominant in the beginning of the infection, but was taken over by resident 
endophytic bacteria as the infection progresses (Figure 4, ref. I). A reason for 
this may be that as P. atrosepticum breaks down the plant cell wall, it generates 
a large amount of free sugars. These are consumed by Enterobacteriaceae and 
Pseudomonadaceae, which have an advantage in the early phase of the 
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infection. Later, bacteria that specialize in consuming less energetic substances, 
such as Comamonadaceae, took over (Figure 6, ref. I). 
 
 

3.2. StrainSeeker (Ref. II) 
Pathogenic bacteria represent a world-wide problem to human health. Due to 
lowering sequencing costs, WGS is being increasingly used to identify bacteria. 
Bioinformatics tools help to analyze large amounts of data generated by WGS 
and are able to detect clinically relevant alleles and mutations, provided the 
sample coverage is high enough (Bradley et al., 2015; Inouye et al., 2014). 
However, for sub-species classification of pathogens from WGS data, the 
choice of tools is limited as mostly MLST or specially designed probe sequen-
ces are used (Bradley et al., 2015). We set out to develop a program that is able 
to classify bacterial isolates into clonal groups or clades directly from un-
assembled WGS reads by using clade-specific k-mers. 
 
  

To be able to place unknown isolates into clades with known bacteria, we first 
needed to create a reference database of bacterial strains and determine relation-
ships between them using a guide tree (Figure 1, ref. II). The database is built 
by recursively moving k-mers into parent nodes if they are present in lower 
nodes. Therefore, k-mers of a single strain are spread along the path from root 
node to the strain. Final database consists of k-mer lists specific to each node 
and strain. 

Previously published programs have used the NCBI taxonomy tree (Wood 
and Salzberg, 2014), but we wanted StrainSeeker to be independent of existing 
taxonomic systems. Therefore, we decided to allow any Newick-format tree as 
the guide tree. We downloaded all 4,324 bacterial genome sequences from the 
NCBI Refseq database, which were available at the time. We could not use the 
traditional approach of creating the guide tree from a multiple sequence align-
ment in case of all 4,324 strains due to the lack of common genes able to discri-
minate between close strains. Instead, we used the k-mer based, alignment-free 
tool Mash (Ondov et al., 2016) to create a matrix of pairwise distances between 
strains and MEGA6 (Tamura et al., 2013) to build the guide tree of 4,324 
strains. We also built two small guide trees, consisting of all 74 E. coli strains 
available from the NCBI Refseq database. The purpose of these was to analyze 
the effect of different guide trees on the results as one of the small trees was 
based on a Mash-derived distance matrix and the other was based on a multiple 
alignment of 126 common E. coli genes. 

Next step was to create the algorithm that identifies the clade where the 
unknown isolate belongs to. We used the assumption that the fractions of k-
mers shared between a strain and each node on the path from the root to the 

  
3.2.1. Database, guide trees and search algorithm 
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strain on the guide tree are similar to each other and higher than the k-mer 
fractions shared with other nodes. The search algorithm starts from the root of 
the guide tree and calculates both the observed and expected k-mer fractions for 
each node, the latter calculated from the child nodes (Figure 2, ref. II). The ratio 
of observed/expected fractions is used to detect where the isolate branches off 
the guide tree (Figure 3, ref. II). 

 
 

To find an optimal k-mer length and the best guide tree for StrainSeeker, we 
used a test set of 100 E. coli isolates. Their clades were first determined by the 
“gold standard” approach, building a multiple alignment-based phylogenetic 
tree that contained both them and 74 E. coli strains from Refseq (Figure 4A, ref. 
II). All strains separated by less than 0.001 nucleotide substitutions per site 
were considered a clade. Then, we used StrainSeeker to identify the clades of 
the test strains. Tests were conducted with the large and two smaller guide trees 
using k-mers with lengths varying from 14 to 32 bp. The results showed that the 
Mash distance matrix-based guide tree of 4,324 strains and k=16 were optimal 
for StrainSeeker, giving the clade-level accuracy 92% (Figure 5C, ref. II). Also, 
we determined that 25,000 Illumina reads (length 101 bp) are sufficient for 
clade identification, because the accuracy is not improving with higher sample 
coverages. 

Finally, we benchmarked StrainSeeker against other tools using five samples 
of different bacterial species. Kraken, Sigma and Reads2Type were chosen for 
comparisons. All tools except Sigma were based on exact k-mer matching and 
had run times in the range of a few minutes. Sigma is based on read mapping 
and it spent several hours per sample, illustrating that read alignment is signifi-
cantly more computationally expensive than exact matching of short k-mers 
(Table 1, ref. II). Clade identification accuracy was only tested in case of 
Kraken and StrainSeeker, as Sigma was excessively slow and Reads2Type was 
limited to species level. Compared to Kraken, StrainSeeker was more accurate 
in determining the clades of 100 E. coli isolates. This might be because 
StrainSeeker does not identify each read separately, but analyzes all the k-mers 
in the sample together. If the exact isolate is not in the reference database, 
which is usually the case, individual reads may be assigned to multiple different 
genomes. 

To date, StrainSeeker has been used in multiple research projects for identi-
fication of strains from either bacterial WGS data or from low-complexity MGS 
data. Also, StrainSeeker is frequently used for detection of contamination 
(sequences from another strain or species) in sequencing samples.  
 
 
 
 

3.2.2. Performance testing and benchmarking 
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Plasmids are double-stranded DNA molecules capable of autonomous repli-
cation and conjugation. Bacterial plasmids often carry genes that confer bene-
ficial traits to their hosts, such as antimicrobial resistance or increased virulen-
ce. This has directly contributed to the rapid dissemination of multidrug-resis-
tant bacteria. Bacterial WGS data, widely used to identify and characterize 
bacterial pathogens, also contains sequences from plasmids. However, plasmid 
detection from bacterial WGS data is complicated as the reads are often short 
and plasmid sequences may be similar to bacterial sequences. Because of this, 
plasmid detection tools, such as plasmidfinder and plasmidSPAdes, assemble 
reads as longer contigs are easier to identify. Our goal was to develop a tool for 
the detection of plasmids from unassembled bacterial WGS reads, similar to 
StrainSeeker. 
 
 

First, we collected all 9,351 available plasmid sequences from the NCBI RefSeq 
database for our reference database. As some of these sequences were fragments 
or contained individual genes instead of full plasmids, our final reference set 
consisted of 8,514 plasmids. The database consists of k-mer list files for each 
reference plasmid and a text-format index file connecting the name of each 
plasmid to its k-mer list. FASTA identifiers are used as plasmid names. The 
required input for building a database is a multi-FASTA file with plasmid se-
quences, which is also the format that can be downloaded from the NCBI 
RefSeq database. 

Next, we developed the search algorithm. We considered an approach 
similar to StrainSeeker, namely finding specific k-mers for each plasmid in our 
reference database. However, this proved unfeasible due to the small size of 
many plasmids and their high similarity to bacterial sequences. We decided to 
use all plasmid k-mers and compare the median k-mer abundances of each 
tested plasmid to the median k-mer abundance of the isolated bacterium. This 
approach is based on the assumption that the copy number of a plasmid, and 
therefore its coverage, is different (usually higher) than that of the bacterial 
chromosome. The search algorithm of plasmidSPAdes is based on the same 
assumption, but instead of analyzing read coverage of contigs, which requires 
assembly, we compare k-mer abundances to distinguish between plasmid and 
chromosomal k-mers. 

 
A brief overview of the PlasmidSeeker search algorithm: 
1. Input sample file (raw WGS reads) is converted to a k-mer list, and all k-

mers that occur only once are discarded, as these are mostly due to sequen-
cing errors. 

3.3. PlasmidSeeker (Ref. III) 

3.3.1. Database, search algorithm and optimal k-mer length 



29 

2. Algorithm finds the approximate genome coverage of the isolated bacterium. 
For this, a full genome sequence of a reference bacterium, as closely related 
to the isolate as possible, must be provided by the user. 

3. The fraction of detected unique plasmid k-mers is found for all reference 
plasmids. Only reference plasmids with the fraction above a threshold 
(default 80%) are analyzed further and reported in the output. 

4. The average plasmid copy number per bacterial cell is estimated by dividing 
the median k-mer abundance of the given plasmid with the median k-mer 
abundance of chromosomal k-mers. 

5. Similar plasmids are clustered together in the results. The output is a tab-
delimited text file. 

 
For the last part of developing the algorithm, we had to find optimal values for 
the k-mer length and an optimal threshold of the fraction of detected unique 
plasmid k-mers. The latter was necessary because some of the plasmid k-mers 
may be shared with the bacterial isolate and detecting a plasmid k-mer might 
not mean that the plasmid itself is really present in the sample. 

As sequences originating from plasmids are distinguished from chromo-
somal sequences based on their k-mer abundances, it is preferable that most 
chromosomal k-mers are unique and not present in any plasmids. Therefore, we 
analyzed the effect of k-mer length on the uniqueness of chromosomal k-mers 
and on the fraction of k-mers shared between plasmids and chromosomes 
(Figure 1, Ref. III). The test showed that k-mer length should be at least 20 as 
shorter k-mers have much higher chances of being present in both plasmids and 
the chromosomal sequence. 

Plasmids found in real samples are seldom 100% identical to reference se-
quences. We assessed how mutations in a plasmid sequence affect the fraction 
of plasmid k-mers detected, using various k-mer lengths (Figure 2, Ref. III). 
Results indicated that longer k-mers are less sensitive. Taking all this into con-
sideration, we decided to use k=20 as the default value. 

To find an optimal threshold of the fraction of detected unique plasmid k-
mers, we analyzed six bacterial WGS samples, both simulated and real (Table 1, 
Ref. III). Values of 0.8 and over resulted in no false positives (Figure 4, Ref. 
III). As higher values decrease sensitivity, we used 0.8 as the default value, 
meaning that at least 80% of all plasmid k-mers must be detected to report it. 
 
 

To evaluate the performance of PlasmidSeeker, we compared it to plasmidSPAdes. 
First, we analyzed both simulated and real WGS samples in which the plasmid 
content was known (Table 1, Ref. III). PlasmidSeeker detected all the correct 
plasmids and predicted their copy numbers accurately. 
 Second, we used both tools to detect plasmids from three E. coli samples, for 
which the plasmid content was unknown (Table 2, Ref. III). The tools seem to 

3.3.2. Performance testing and benchmarking 
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complement each other as PlasmidSeeker was unable to detect putative plasmids 
which either had very low copy numbers or were not very similar to reference 
plasmids. PlasmidSPAdes, on the other hand, failed to detect some of the puta-
tive plasmids with high copy numbers. 
 To sum up, we have developed a novel tool to detect plasmids from  
bacterial whole genome sequencing data without the need to assemble reads. 
PlasmidSeeker is suitable to use as a first step in the analysis of plasmid content 
and it complements tools that assemble reads and are thus able to detect novel 
plasmids. 
  



31 

CONCLUSIONS 

Pathogenic bacteria present a considerable danger to human health. The situa-
tion is made worse by the rapid emergence and dissemination of antibiotic resis-
tance, which is partly mediated by bacterial plasmids. Meanwhile, sequencing 
costs have continuously decreased and WGS is being increasingly used to 
identify and analyze bacteria. 

We developed two k-mer based tools for bacterial WGS data analysis, 
StrainSeeker and PlasmidSeeker. StrainSeeker identifies bacterial strains by 
assigning them to a clade of the user-provided guide tree. This enables a higher 
resolution than MLST based identification and is faster than approaches using 
read mapping. In order to make StrainSeeker accessible also to users without 
bioinformatics skills, we created a web server with a visual user interface. 

PlasmidSeeker detects known plasmids from WGS data by searching for 
plasmid k-mers and comparing their frequency to the frequency of bacterial k-
mers. As the number of fully sequenced plasmids in public databases is already 
over 8,000 and growing each year, it is plausible to perform quick monitoring 
for known plasmids instead of always assembling plasmid sequences de novo. 

Both tools are able to work with unassembled, raw reads, meaning no pre-
processing steps are necessary. Together, they form a comprehensive resource 
for identifying the isolated bacterial strain and any known plasmids harbored by 
it, an essential task for both research and clinical purposes. 
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SUMMARY IN ESTONIAN 

K-meeridel põhinevad meetodid bakterite ja  
plasmiidide tuvastamiseks 

Mikroorganismid on meie planeeti asustanud juba miljardeid aastaid ning neid 
leidub peaaegu kõikjal. Neid on avastatud ookeanisüvikutes olevatest mustadest 
suitsetajatest, kõrvetavkuumadest allikatest ning sadade meetrite sügavuselt 
kaevandustest. Isegi meie oleme nendega lahutamatult seotud – baktereid elab 
nii meie nahal kui ka soolestikus ning nende arv on võrreldav meie enda keha-
rakkude arvuga. Eluslooduse aineringes on mikroorganismidel väga oluline osa 
orgaanilise aine lagundamises. Paljud tööstusharud kasutavad baktereid oma 
hüvanguks, rakendused ulatuvad kaevandustes maagi puhastamisest geenide 
manipuleerimiseni CRISPR/Cas süsteemi abil. 

Siiski, bakteritel on ka oma varjukülg – osad neist võivad olla patogeensed ja 
põhjustada haigusi, kergest kõhulahtisusest eluohtlikeni. Näiteks oli keskajal 
suure hulga elanikkonnast tapnud Musta Surma põhjustajaks katkubakter Yersi-
nia pestis. Tänapäeval aitavad meid bakterite vastu antibiootikumid, kuid järjest 
suurem probleem on antibiootikumiresistentsuse laialdane levik. Sellele aitavad 
kaasa plasmiidid – bakterites olevad DNA järjestused, mis on bakteri enda 
kromosoomist eraldiseisvad ning mida bakterid võivad kiirelt üksteisele edasi 
anda. Plasmiidid kodeerivad tihti geene, mis annavad resistentsuse mõne anti-
biootikumi suhtes ning nende omamine võib seetõttu olla bakterile kasulik. 

Bakterite tohutu varieeruvus ja nende potentsiaal nii tööstusliku rakendamise 
osas kui ka haiguste põhjustajatena on tekitanud väga suure huvi bakterite 
tuvastamise ja määramise osas. Selleks on kasutatud väga palju erinevaid mee-
todeid, mis jagunevad laias laastus kaheks. Ühed põhinevad bakteri väliste tun-
nuste analüüsil, nagu näiteks bakteriraku kuju, suurus, selle liikuvus ja erinevad 
biokeemilised omadused (fenotüüp). Teised meetodid võtavad määramise 
aluseks bakteri DNA järjestuse (genotüüp). 

Viimasel aastakümnel on sekveneerimistehnoloogia väga kiirelt arenenud 
ning hinnad sedavõrd langenud, et bakteri genotüübi uurimiseks on täiesti 
mõeldav mitte ainult mõningate DNA-põhiste markerite järjestuse määramine, 
vaid täisgenoomi sekveneerimine. See on avanud täiesti uued võimalused – 
näiteks saab ennustada bakteritüve resistentsust erinevatele antibiootikumidele 
ja kindlaks määrata haiguspuhangute põhjustajaid ning kaardistada nende leviku 
teid. Uueks probleemiks on aga sekveneerimisandmete analüüs – seninägema-
tult suured andmemahud ning lühikesed lugemid teevad toorandmetest info 
kätte saamise aeganõudvaks ja keeruliseks. Üheks levinud abinõuks on lugemite 
assambleerimine ehk kokkupanek pikemateks järjestusteks, kuid see on ajakulu-
kas ning aldis vigadele. 

Antud uurimistöö põhiliseks eesmärgiks oli luua bakterite ja plasmiidide 
tuvastamiseks meetodid, mis ei vajaks eelnevat lugemite assambleerimist ning 
võimaldaksid töötada sekveneerimiskeskuste poolt toodetud toorandmetega. 
Ülesande lahendamiseks otsustasime kasutada k-meeridel põhinevat analüüsi. 
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K-meer tähistab lühikest DNA oligomeeri pikkusega k nukleotiidi. Pikema 
DNA järjestuse, näiteks bakterigenoomi, saab jagada lühemateks k-meerideks 
ning vaadelda seda kui k-meeride kogumit. Sellise lähenemise eeliseks on sõltu-
matus lugemi pikkusest – nii pikad kui ka lühikesed lugemid sisaldavad k-meere 
ning analüüsides k-meeride hulki, on võimalik määrata algse proovi koostist. 

StrainSeeker on meie töögrupis loodud programm bakteritüvede ja liikide 
määramiseks. Me arendasime välja uudse algoritmi, mis näitab proovis esineva 
bakteri eeldatavat asukohta kasutaja poolt ette antaval fülogeneetilisel puul. 
Meie fülogeneetilisel puul põhineva lähenemise üheks suureks eeliseks on see, 
et uuritav bakter ei pea olema programmi poolt kasutatavas andmebaasis esin-
datud. StrainSeekeri andmebaas koosneb igale referentsbakterile ja nende grup-
pidele spetsiifilistest k-meeridest. Analüüs põhineb proovis nähtud ning 
StrainSeekeri andmebaasi põhjal arvutatud eeldatud k-meeride hulga suhtel. Me 
testisime StrainSeekerit saja Escherichia coli isolaadi täisgenoomi sekve-
neerimisandmetega ning tüvede määramise täpsus selles andmestikus oli 92%. 
Võrreldes teiste programmidega, nagu Kraken ja Reads2Type, oli StrainSeeker 
täpsem. Lõime ka visuaalse kasutajaliidesega veebiserveri, kus saavad 
StrainSeekeriga analüüse teostada ka kasutajad, kellel puudub ligipääs arvutus-
serverile või vajalikud oskused. 

Bakterite täisgenoomi sekveneerimisel saadavad andmed sisaldavad tihti ka 
lugemeid, mis pärinevad bakteris olnud plasmiididest. Plasmiidide tuvastamise 
ja nende tüübi määramise muudavad keeruliseks nende lühike järjestus ning 
osaline sarnasus peremeheks oleva bakteri genoomiga. Seetõttu ei õnnestunud 
StrainSeekeri algoritmi rakendada plasmiidide puhul ning tuli välja töötada uus 
meetod, mis sai nimeks PlasmidSeeker. Plasmiidset päritolu järjestuste erista-
miseks kromosomaalsetest järjestustest kasutasime eeldust, et plasmiidide 
koopiaarv on tavaliselt suurem bakteri kromosoomi omast, seega võiks ka plas-
miidi k-meeride keskmine esinemissagedus olla suurem kui bakteri kromosoomi 
k-meeride puhul. Sellise lähenemisega on võimalik bakteritüve täisgenoomi 
sekveneerimisel saadud järjestustest tuvastada kõiki varasemalt teadaolevaid 
plasmiide, mida on PlasmidSeekeri andmebaasis kokku 8514. Me testisime 
PlasmidSeekerit nii simuleeritud kui ka reaalsete bakteri täisgenoomi sekve-
neerimisandmestikega, millede puhul oli teada proovide tegelik koostis. 
PlasmidSeeker leidis üles kõik proovides olnud plasmiidid ning määras täpselt 
ka nende koopiaarvu. Võrdlesime PlasmidSeekerit ka ühe teise programmiga 
(plasmidSPAdes), mis assambleerib eelnevalt lugemid ja suudab leida ka täiesti 
uusi plasmiide. Kolme analüüsitud E. coli proovi puhul oli teatud osa plasmiide, 
mille leidsid mõlemad programmid, kuid mõningad plasmiidid leiti vaid ühe 
programmi poolt. Näiteks ei suutnud PlasmidSeeker tuvastada väga madala 
koopiaarvuga või andmebaasis olevast referentsist väga erinevaid plasmiide, 
kuid see-eest tuvastas ta paremini kõrge koopiaarvuga plasmiide. 

Kokkuvõttes oleme oma tööga andnud panuse arvutuslikku mikrobio-
loogiasse, luues uued võimalused bakteriaalsete proovide analüüsiks.  
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