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ABSTRACT 

Replication of some HPV types is modulated by cAMP-dependent protein kinase activity 

Human papillomaviruses (HPVs) are dsDNA viruses infecting basal keratinocytes of the 

cutaneous and mucosal epithelia. Some HPVs are tumorigenic; therefore, studies of the viral 

life cycle may help to develop novel treatment strategies. Protein kinases are important enzymes 

that regulate numerous cellular processes. HPV E1 and E2 regulatory proteins have several 

putative consensus sites for many kinases including cAMP-dependent protein kinase (PKA). 

The main focus of this thesis was to generate the constructs encoding the FLAG-tagged PKA 

catalytic subunit α (PKACα) and its two catalytically deficient mutants, and to investigate the 

influence of the over-expressed PKA proteins on replication of HPV types 5, 11, and 18 in 

U2OS cells. Additionally, PKA activator IBMX and inhibitor H89 were used to demonstrate 

the impact of the endogenous PKA catalytic activity on the replication efficiency of the HPV5 

genome. Finally, the mechanism of the PKA-mediated stimulation of the HPV18 replication 

was studied.  

Keywords: human papillomavirus (HPV), replication, transcription, protein kinase A (PKA)  

CERCS: B230 Microbiology, bacteriology, virology, mycology 

 

Mõnede HPV tüüpide replikatsioon on moduleeritud cAMP-sõltuva proteiinkinaasi 

aktiivsuse poolt 

Inimese papilloomiviirused (HPV) on kaheahelalise DNA genoomiga viirused, mis nakatavad 

basaalseid keratinotsüüte nahas ja limaskestades. Mõned HPV tüübid omavad kõrget 

onkogeenset potentsiaali, seetõttu on viiruse elutsükli uurimine tähtis uute ravistrateegiate 

arendamiseks. Proteiinkinaasid modifitseerivad oma märklaudvalkude aktiivsust ning seega 

reguleerivad paljusid bioloogilisi protsesse rakkudes. HPV E1 ja E2 on viiruslikud 

regulatoorsed valgud, mis sisaldavad mitu oletatavat cAMP-sõltuva proteiinkinaasi (PKA) 

konsensus saiti. Selle töö eesmärk oli luua plasmiidid, mis kodeerivad FLAG-märgisega PKA 

katalüütilist subühikut α (PKACα) ja tema kahte katalüütiliselt inaktiivset mutanti, ja uurida 

PKA valkude üle-ekspressiooni mõju HPV tüüp 5, 11, 18 replikatsioonile U2OS rakkudes. 

Lisaks, testiti PKA aktivaatori IBMX ja inhibiitori H89 mõju HPV5 replikatsioonile ning 

selgitati välja PKA-st sõltuva HPV18 replikatsiooni aktivatsiooni mehhanism.  

Märksõnad: inimese papilloomiviirus (HPV), replikatsioon, transkriptsioon, proteiinkinaas A 

(PKA) 

CERCS: B230 Mikrobioloogia, bakterioloogia, viroloogia, mükoloogia  
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LIST OF ABBREVIATIONS 

AKAP - A-kinase anchoring proteins 

Amp – ampicillin 

AP – alkaline phosphatase 

BCC – basal cell carcinoma 

BPV – bovine papillomavirus 

BS – binding site 

C – catalytic (subunit) 

CDK – cyclin-dependent kinase 

CK2 – casein kinase II 

cDNA – complementary DNA 

CREB - cAMP-responsive element binding protein 

dsDNA – double-stranded DNA 

E2Fs - transcription factors involved in cell cycle regulation 

E2-TA – full-length E2 protein 

E – early (genomic region or protein) 

FGFR3 - fibroblast growth factor receptor 3 

H89 - n-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide 

HPV – human papillomavirus 

HR – high-risk (papillomavirus) 

HSPG - heparan sulfate proteoglycan 

IBMX - 3-isobutyl-1-methyl-xanthene 

K72R – lysine residue at position 72 mutated to arginine 

KAB – kinase assay buffer 

L – late (genomic region or protein) 
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LR – low-risk (papillomavirus) 

MAPK – mitogen activated protein kinase 

NGM – normal growth medium 

ORF – open reading frame 

PDE – phosphodiesterase 

PEI – polyethyleneimine 

PKA - cAMP-dependent protein kinase 

PKC - protein kinase C 

PKACα - catalytic subunit α of PKA 

PKA C – catalytic subunits of PKA 

PKG - cGMP-dependent protein kinase 

pRb – retinoblastoma protein  

PV – papillomavirus 

R – regulatory (subunit) 

RT – room temperature 

SB – southern blot 

SCC – squamous cell carcinoma 

T197A - threonine residue at position 197 mutated to alanine 

URR – noncoding upstream regulatory region 

WB – western blot 

WR – working reagent  
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INTRODUCTION 

Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) viruses infecting 

epithelial keratinocytes of mucosa or skin. HPV infection is among the most common sexually 

transmitted diseases worldwide. Different types of HPVs are divided into high- and low-risk, 

depending on presence or absence of an oncogenic potential (Rosa et al., 2013). The medical 

importance of studying the life cycle of HPVs and their interactions with host cells is 

attributable to the absence of drugs against HPV infections.  

Inhibition of HPV replication is one of the promising therapeutic strategies for the treatment of 

HPV-related diseases. However, in order to interfere with viral life cycle and avoid damaging 

the host cells, it is essential to understand the interplay between HPV and the host cell in 

molecular terms. Protein kinases are important regulators of diverse biological processes in the 

cells. HPV key replication proteins E1 and E2 are found to be substrates for many cellular 

kinases, including cAMP-dependent protein kinase (PKA). Many of these kinases are known 

to regulate HPV replication in a HPV type-dependent manner (Ma et al., 1999; Piirsoo et al., 

2019; Xie et al., 2017; Yu et al., 2007; Zanardi et al., 1997).  

The aim of this study was to investigate the impact of the catalytic subunit α of PKA (PKACα) 

on replication of HPV types 5, 11 and 18. The chosen HPV types belong to different genera 

and risk groups. In order to prove that PKA acts in a kinase activity-dependent manner, we 

generated plasmids encoding for PKACα and its two catalytically deficient mutants, 

PKA(T197A) and PKA(K72R). The first part of this thesis provides an overview of the HPV 

infection cycle and functions of the viral proteins, and describes the roles of PKA in both host 

cells and viral life cycle. The experimental part describes the generation of the FLAG-tagged 

PKA expression constructs and the analysis of the viral genome replication in the presence of 

the over-expressed PKA proteins, and provides an explanation of the possible mechanisms of 

the PKA-mediated activities. We show that the over-expressed catalytically active PKA has a 

different impact on the viral replication depending on the type of the HPV. Furthermore, the 

present study demonstrates that efficiency of the viral genome replication may be affected by 

endogenous PKA activity, either potentiated with 3-isobutyl-1-methyl-xanthene (IBMX) or 

suppressed with n-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide (H89). This 

study was performed in the molecular virology research group, Institute of Technology, 

University of Tartu. 
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1. LITERATURE OVERVIEW 

1.1. Papillomaviruses and human papillomaviruses 

Papillomaviruses (PVs) are small non-enveloped icosahedral viruses with circular dsDNA 

genomes approximately 5-8 kb in size typically containing up to eight genes. PVs belong to 

Papillomaviridae family, and according to the International Committee on the Taxonomy of 

Viruses, there are two subfamilies Firstpapillomavirinae, which includes over 50 genera (from 

Alpha- to Zetapapillomavirus) and more than 130 species, and Secondpapillomavirinae with a 

single genera and a unique specie (Van Doorslaer et al., 2018). The classification is based on 

pairwise sequence alignment identity across the open reading frame (ORF) of L1, which 

encodes the major capsid protein L1 is one of the most conserved genes among PVs. In order 

to be classified as a novel PV type, the nucleotide sequence of L1 must be at least 10% dissimilar 

from that of any other PV (de Villiers et al., 2004).  

PVs infect epithelial keratinocytes in large variety of animals, where they can persist 

asymptomatically or cause neoplasms (Bernard et al., 2010). Wide range of vertebrate species 

can be infected by PVs: mammals, birds, reptiles and fish (Herbst et al., 2009; López-Bueno et 

al., 2016; Terai et al., 2002; de Villiers et al., 2004). HPVs are a diverse group of PVs with 

over 200 different types being described, and new HPV types being continuously found 

(Papillomavirus Episteme database). HPV types are phylogenetically organized into five major 

genera: alpha- (α), beta- (β), gamma- (γ), mu- (μ), and nu- (ν) PVs (de Villiers et al., 2004). 

HPVs infect mucosal and cutaneous epithelia: the members of the α genus are associated with 

infections of oral and genital mucosal surfaces and external genitalia, while β, γ, μ, and ν genera 

HPVs infect non-genital mucosa and skin (Rosa et al., 2013). HPVs can be additionally divided 

into high- and low-risk (HR and LR, respectively) types according to their ability to induce 

benign hyperplasia and trigger their progression to malignancy (Cubie, 2013).  

HR HPV types include 16, 18, 31, 33, 35, 39, 45, 51, 52, 55, 56, 58, 59, 68, 73, 82, 83. HR 

HPVs are found in different invasive cancer specimens (Gillison and Shah, 2003). For example, 

mucosal types of HPV α genus are a major cause of cervical cancer (Walboomers et al., 1999) 

with HPV16 accounting for over 50% and HPV16 and 18 for >70% found in invasive cervical 

cancer histological specimens worldwide (Li et al., 2011). In addition, types from α genus are 

associated with head and neck cancers (Leemans et al., 2011), increased risk of oral cavity and 

oropharyngeal cancer (Anantharaman et al., 2013). HPVs are also associated with other 

anogenital cancers such as anal, vulvar and penile cancers with the prevalence of HPV16 and 

HPV18 (Daling et al., 2004; McCance et al., 1986; de Sanjosé et al., 2013).  
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Keratinocytes-derived non-melanoma skin cancers (Small et al., 2016) can be divided into basal 

cell carcinoma (BCC) and squamous cell carcinoma (SCC) (El-Abaseri et al., 2006). It was 

previously shown that genus‐β HPV infections may contribute to SCC (Iannacone et al., 2014) 

and BCC development (Iannacone et al., 2013). DNA of cutaneous HPV types was found in 

biopsies from patients with SCC of the conjunctiva (Ateenyi-Agaba et al., 2010). HPVs from 

this genus are also associated with skin cancer in patients with epidermodysplasia verruciformis 

– a rare autosomal recessive skin disorder that increases the risk of developing HPV-induced 

SCC (Orth, 2006).  

HPVs of γ, μ, and ν genera cause warts or cutaneous papillomas (de Villiers et al., 2004), and 

there is little to no evidence of their involvement in tumorigenesis. HPVs can also be found in 

healthy skin: DNA of β HPV types can be detected in babies after a few days of life (Antonsson 

et al., 2003). One of the articles suggests that the prevalence of β HPVs increases with age in 

healthy individuals without inducing SCC (de Koning et al., 2009).  

 

1.2. HPV genome and viral proteins 

Different HPV types have similar genome organization. Schematic representation of HPV 

genomes used in the present study are shown in Figure 1. Although the viral genome can vary 

in size between different types, it typically contains around 8000 bp (Doorbar, 2006). The 

genomes can be divided into three different regions: early (E), late (L) and noncoding upstream 

regulatory region (URR) also called long control region (LCR) located between them. Most 

types of HPVs contain eight ORFs coding 6 early and 2 late proteins. Furthermore, HPVs 

encode several truncated forms of proteins translated from alternatively spliced transcripts (e.g. 

E1^E4 and E8^E2C). The early proteins mostly play regulatory role, for example, participate 

in viral replication and transcription. The late proteins are involved in virus capsid formation 

(Graham, 2010). 

URR is approximately 500 to 1000 bp region located upstream of the coding region. It contains 

the replication origin (ori), transcriptional enhancer and promoter elements, binding sites (BSs) 

for cellular transcription factors and viral proteins E1 and E2, which are all involved in the 

control of the viral gene expression (McBride, 2008). Polycistronic transcripts are synthesized 

from only one DNA strand, then undergo alternative splicing and may be subjected to 

alternative polyadenylation resulting in a huge variety of different functional mRNAs. URR 

contains also early and late promoters - regions in which the synthesis of early or late transcripts, 
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respectively, is initiated, and polyadenylation sites for the late transcripts (Baker and Calef, 

1996). 

 

Figure 1. Schematic representation of HPV5, HPV11 and HPV18 reference genomes. Early ORFs (E1, E2, E5, 

E6, and E7 – indicated by green), late ORFs (L1 and L2 - shown in blue) and URR region (yellow). HPVs encode 

truncated forms of proteins using alternatively spliced pre-mRNAs (E1^E4 and E8^E2C - orange and pink). URR 

contains regulatory sequences and binding sites (BSs) for viral and cellular proteins (shown in red, blue and purple) 

(Papillomavirus Episteme database). 

1.2.1 Early region proteins 

The E1 protein is approximately 70 kDa ATP-dependent helicase that binds specifically to the 

ori and initiates replication (Yang et al., 1993). The E1 protein consist of the N-terminal 

domain, central domain and the C-terminal domain (McBride, 2008). The N-terminal domain 

is a regulatory region essential for optimal replication; the central domain recognizes specific 

sites in the ori and binds to the DNA; the C-terminus is an enzymatic domain, which is 

necessary for self-assembly into hexamers and for unwinding short DNA duplexes. E1 interacts 

with E2 and specific host factors to coordinate the assembly of a functional viral replisome 

(Bergvall et al., 2013). 

The E2 is around 50 kDa regulatory protein (Rajkumar, 2016). E2 gene products vary in size 

as a result of expression from different promoters and/or alternative RNA splicing. These 

alternatively named proteins (E8^E2, E8^E2C, E1^E2, E1M^E2 and E9^E2) function as 

repressors of viral transcription and replication (McBride, 2013). The full-length E2 (E2-TA) 

can influence the transcription of HPV genes both positively and negatively (Steger and 

Corbach, 1997). The E2 proteins play an important role in the maintenance of the viral genome 

as an independent episomal element (Ilves et al., 1999). E2 directs E1 to the ori region by 

increasing the E1 ori-binding specificity (Sedman and Stenlund, 1995). It regulates pre-mRNA 

processing (possibly via interacting with cellular splicing factors); induces cell apoptosis and 
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suppresses cellular growth through modulation of the E6 and E7 expression (Dowhanick et al., 

1995; Lai et al., 1999; Webster et al., 2000).  

The E4 protein is usually expressed from E1^E4 spliced transcript. E4 ORF is located in E2 

gene and also contains few nucleotides and the initiation codon of E1 (Doorbar, 2013). The E4 

protein influences the cell cycle along with E5, E6 and E7 oncoproteins (Davy et al., 2002). E4 

interacts with E2 and promotes its relocation to the cytoplasm changing the availability at 

different times during the viral life cycle (Davy et al., 2009). The Abovementioned mechanisms 

are important for effective amplification of viral DNA. E4 also increases the egress of PV 

virions (Doorbar et al., 1991).  

E5 is a short membrane-associated protein with transforming activity, typically mediating 

specific protein-protein interactions (DiMaio and Petti, 2013). The majority of HPV types 

encodes distinct forms of E5 protein: HR HPVs encode E5 α, which is associated with the 

progression of tumor development, whereas LR HPVs either lack E5 or express different 

polymorphic types of the protein (E5 β, -γ, -δ) and most likely lead to non-tumoral outcomes 

(Bravo and Alonso, 2004). The E5 protein is also associated with modulation of the host 

immune response (Grabowska and Riemer, 2012), and has the ability to enhance signal 

transduction from epidermal growth factor to the nucleus resulting in increased cell 

proliferation (Bouvard et al., 1994; Leechanachai et al., 1992; Stöppler et al., 1996). 

The E6 is one of the PV oncoproteins with transforming abilities. E6 consists of approximately 

150 amino acids and contains two zinc-finger binding motifs (Lipari et al., 2001). The E6 

protein promotes cell proliferation through degradation of p53 tumor suppressor protein 

(Scheffner et al., 1990). The E6 proteins produced by HR HPVs has higher affinity to p53 than 

LR ones (Li and Coffino, 1996), which can be one of the reasons of the high oncogenic activity 

of HR HPVs. One of the targets of HR E6 is the tumor suppressor protein DLG, which 

participates in regulation of cell adhesion, polarity, proliferation in epithelial tissues and 

formation of junctions between cells (Bilder et al., 2000). Deregulation of the DLG protein 

leads to invasive cell growth (Kiyono et al., 1997).  

E7 is also PV oncoprotein with transforming properties. E7 is approximately 10-14 kDa 

(Rajkumar, 2016). E7 induces cellular proliferation through association with the tumor 

suppressor protein pRb (retinoblastoma protein) (Dyson et al., 1989). E7 disrupts natural 

formation of pRb and the cellular transcription factor (E2F) complex, resulting in increased 

production of active E2Fs (Chellappan et al., 1992). This mechanism suggests that HPVs are 

able to reactivate host DNA replication machinery in already differentiated cells (Cheng et al., 
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1995). The E6 and E7 oncoproteins were shown to induce mitotic defects, genomic instability 

and centrosomal abnormalities in host cells by coupling with pRb-related proteins (p107 and 

p130) (Duensing et al., 2000). 

The E8^E2 is a fusion protein generated by splicing a short E8 exon to the major splice acceptor 

in the middle of the E2 ORF. As the E2-TA protein, E8^E2 also inhibits transcription of the 

viral major early promoter but more efficiently: it represses not only the expression of the HPV 

E6 and E7 oncoproteins, but also E1 and E2 replication proteins (Stubenrauch et al., 2000).  

1.2.2 Late region proteins 

Icosahedral PV virions consist of two proteins: L1 and L2 (Buck et al., 2008). L1 is the major 

capsid antigen, which is displayed on the surface of the virion (Buck et al., 2013). The L1 

protein can self-assemble into virus-like particles, forming the native structure of PV virions 

(Kirnbauer et al., 1992). L2 or minor capsid protein, is hidden inside the mature capsid, whereas 

only a part of its N-terminus is exposed on the surface, playing role in the interactions with the 

host cell (Joyce et al., 1999; Liu et al., 1997). In addition, L2 is essential in the process of virion 

assembly (Holmgren et al., 2005). 

 

1.3. HPV infection cycle 

HPV infection occurs in basal keratinocytes of the stratified epithelium, which is able to 

proliferate constantly. Therefore, HPV cycle is tightly linked to the normal differentiation 

process of the host keratinocytes. The viral particle invades the basal layer through micro-

wounds of the skin surface or via hair follicles (Kines et al., 2009; Schmitt et al., 1996). Virions 

interact with the heparan sulfate proteoglycans (HSPGs) and yet uncharacterized secondary 

specific receptors on the surface of basal keratinocytes, and then enter the cell (Kines et al., 

2009). The hypothetical model suggests that the initial interaction between L1 and the host cell 

surface HSPGs causes conformational change in L1 and exposure of the N-terminus of L2, 

allowing its cleavage and interaction with the host cell secondary and, probably, entry receptors 

(Day et al., 1998; Joyce et al., 1999). Conformational changes in the viral capsid allow viral 

DNA to be transported to the nucleus (Kämper et al., 2006; Li et al., 1998), where the HPV 

genome is amplificated, then maintained at a low-copy number, and later, in the vegetative 

replication phase, is amplified to a high-copy number, in order to be packed into new virions 

and egress from the host cell (Figure 2) (Fisher, 2015).  
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Figure 2. The phases of the replication of HPV (Fisher, 2015).  

1.3.1 Initiation of viral DNA replication and genome maintenance  

The E1 protein has an ATPase and helicase activity: it unwinds dsDNA, recruits host replication 

factors (DNA polymerase α/primase, replication protein A and topoisomerase I) and initiates 

viral replication (Burley et al., 2020; Wilson et al., 2002). E2-TA binds to BSs - 12 bp 

(ACCGN4CGGT) palindromic sequences, which are present in multiple copies within the URR 

(Hirochika et al., 1988) and loads E1 protein onto the ori site; however, E2 must dissociate 

from the complex for the viral DNA replication to start (Sanders and Stenlund, 1998). 

Oligomerization of E1 and dissociation of E2 from the E1-E2-ori complex is stimulated by ATP 

(Titolo et al., 2000). The replication is initiated bidirectionally via theta model (Flores and 

Lambert, 1997). 

E2-TA can act as an activator of HPV gene transcription or as a repressor depending on the 

dose of E2 product, context of BS and nature of associated cellular factors, which are recruited 

by the virus (Muller and Demeret, 2012; Steger and Corbach, 1997). Low amounts of E2 bind 

to the most distal BS with high-affinity (BS-4) and activate the early promoter of HPV18 (p105) 

generating early proteins. In high concentrations, E2 binds also to the sites with the reduced 

affinity (BS-1, 2, 3) resulting in early promoter repression (Steger and Corbach, 1997). Binding 

of E2 proteins to its multiple BSs and chromatin is required for maintenance of the viral DNA 

as an episome or independent cell element and segregation of the HPV genome evenly among 

daughter cells during mitosis (Ilves et al., 1999).  

The E8^E2 protein is one of the proteins, which regulate viral cycle and is also important for 

the maintenance of low-copy number strategy. It inhibits transcription of the viral major early 

promoter, additionally recruiting cellular corepressors such as histone deacetylases 

(Ammermann et al., 2008; Stubenrauch et al., 2000). E8^E2 is able to form a complex with E2-

TA and to bind to E2 BS in the URR (Kurg et al., 2010). Formation of the E8^E2/E2 complex 
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excludes the E1 protein from the ori, which strongly represses HPV replication. The E8 

promoter region can be either inhibited by E8^E2 or weakly activated by E2 suggesting that 

this promoter can act as a modulator for viral copy number (Straub et al., 2015).  

1.3.2 Viral genome amplification  

After leaving the basal membrane, cells initiate the differentiation program, exit from the cell 

cycle and suppress DNA replication activity. Since the virus does not encode DNA polymerase, 

it requires host DNA replication machinery to replicate its DNA, and therefore HPV must 

reactivate cell division (Figure 3). 

 

 

Figure 3. The key events and viral gene expression in a differentiating epithelium during the life cycle of HPV. 

Virus is shown as red pentagon and its genome as black circle. Shading on the arrows represents the quantity of 

expression of each protein during the viral replication cycle (Burley et al., 2020).  

Active HPV DNA amplification occurs not only in the S but also in the G2 phase of cell cycle, 

to avoid competing with host DNA replication during S phase. The E4 protein targets the host 

cell machinery arresting the cell cycle progression in G2 phase (Davy et al., 2002). In addition, 

E7 activates DNA damage repair pathways to use it for its own genome replication purposes 

(Moody and Laimins, 2009). Vegetative replication phase progresses to active phase and theta 

structures change to unidirectional rolling-circle mode, which allows to generate large amounts 

of viral DNA copies (Flores and Lambert, 1997). 

1.3.3 Genome packaging and egress of the virions 

The late stages occur in the upper layers of the stratified epithelium, where the viral copy 

number increases to several thousand copies per cell (Bedell et al., 1991). The E7 proteins are 

important for HPV late promoter activation (Bodily et al., 2013). The expression of genes 

involved in replication is accelerated in order to provide high number of viral copies to be 

packed in newly synthesized virions (Hummel et al., 1992; Ozbun and Meyers, 1997). The E8 
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promoter, however, remains active in the late stages of viral cycle, which means that the E8^E2 

protein can still act as a repressor and modulate HPV genome amplification (Dreer et al., 2017).  

The whole cascade of events triggers the synthesis of capsid proteins, while L2 synthesis occurs 

prior to L1 (Becker et al., 2003). At the same time, E2 recruits viral genomes to the sites of 

virus assembly (Day et al., 1998). The evidence suggests that L2 affects the viral DNA 

encapsidation process and recruits L1 protein for efficient packaging (Holmgren et al., 2005). 

Then, the progenitor virions are released externally with peeled keratinocytes. The E4 protein 

increases the egress of PV virions by remodeling the cytokeratin network of the cell and even 

inducing disruption, when overexpressed (Doorbar et al., 1991).  

1.3.4 Phosphorylation of HPV proteins and host-provided viral cycle regulation 

Protein kinases are enzymes that modify other proteins in the cell by transferring the phosphate 

from ATP to amino acid side chains. In eukaryotes, most protein kinases phosphorylate either 

Ser/Thr or Tyr, and a few of them phosphorylate all three amino acids. Phosphorylation usually 

triggers functional changes in the target proteins (referred in literature as substrates) such as 

changes of their enzymatic activity, cellular location, or their ability to interact with other 

proteins. The catalytic domain contains an active site with ATP binding pocket, where ATP is 

bounded and then hydrolyzed. In addition, most protein kinases have other domains required 

for the regulation of catalytic activity, interactions with other proteins or subcellular localization 

(Pollard et al., 2017).  

Both E1 and E2 are phosphorylated by host protein kinases. Casein kinase II (CK2) plays a role 

in regulation of cell cycle, cellular division, survival and apoptosis (Litchfield, 2003). 

Interestingly, CK2 phosphorylates the N-terminal domain in the E1 protein and the hinge region 

in the E2 protein. Phosphorylation of E1 of HPV11 and HPV31 and E2 of BPV1 (bovine 

papillomavirus) resulted in inactivation of their DNA binding activity that imply CK2 as a 

negative regulator of viral replication (Schuck et al., 2013). In contrast, CK2-mediated 

phosphorylation of BRD4 (cellular chromatin-binding factor) is required for its interaction with 

HR HPV E2 proteins being critical for viral life cycle: replication initiation, gene transcription, 

viral genome segregation and maintenance during mitosis (Iftner et al., 2017). Also, 

knockdown of CK2α or inhibition of its catalytic activity was shown to downregulate HPV5, 

HPV11 and HPV18 replication indicating that CK2 activity is required for the life cycles of 

some HPV types (Piirsoo et al., 2019). 

Mitogen-activated protein kinases (MAPKs) participate in different signal transduction 

pathways that control numerous intracellular events (Pearson et al., 2001). Phosphorylation of 
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the HPV11 E1 nuclear localization sequences by MAPK is required for the protein import to 

the nucleus to support viral DNA replication. This mechanism is suggested to be important for 

the establishment of persistent HPV infection (Yu et al., 2007).  

Cyclin-dependent kinases (CDKs) regulate cell division and transcription in response to extra- 

and intracellular stimuli, and are characterized by requirement of cyclin – a separate unit 

providing domains for enzymatic activity (Malumbres, 2014). The E1 protein was previously 

shown to be able to interact with cyclins and therefore with CDK. E1 nuclear export signal is 

inactivated while phosphorylated by CDK, and therefore the protein remains in the nucleus, 

allowing for regulation of viral DNA replication (Deng et al., 2004; Ma et al., 1999). 

Fibroblast growth factor receptor 3 (FGFR3) regulate cell growth, differentiation and migration, 

depending on cell type and its developmental stage. Interestingly, mutations activating FGFR3 

kinase activity are associated with different tumor types including skin and cervix (Logié et al., 

2005). FGFR3 colocalize with HPV E2 protein in the nucleus and phosphorylates it, restricting 

viral replication during early stages of infection. As cell differentiates, FGFR3 expression 

decreases, permitting viral genome amplification (Xie et al., 2017).  

The AGC group of kinases and in particular PKA was shown to have an effect on PV proteins. 

The serine residue 109 of BPV E1 protein is a target for PKA, and mutation of this position 

reduces viral replication. However, the exact mechanism remained unclear (Zanardi et al., 

1997). The serine 253 of the forced-expressed HPV8 E2 protein is most likely phosphorylated 

by PKA. The Phosphorylated protein has longer half-life, being stabilized by binding to host 

chromatin, from S-phase and through mitosis (Sekhar and McBride, 2012). However, this 

phosphorylation seemed to be useless for HPV8 replication in U2OS cells. 

 

1.4. Protein kinase A 

The AGC group is a subgroup of the Ser/Thr kinases named after 3 representative families: the 

cAMP-dependent protein kinase (PKA), the cGMP-dependent protein kinase (PKG) and the 

protein kinase C (PKC) (Hanks and Hunter, 1995). In addition, each family has multiple 

isoforms and splice variants, making the system of regulatory kinases even more complex.  

1.4.1 PKA structure and regulation of activation 

The PKA holoenzyme exists as a tetramer, comprised of two regulatory (R) subunits and two 

catalytic subunits (C) (Krebs and Beavo, 1979). The catalytic subunits Cα and Cβ are encoded 

by PRKACA and PRKACB genes, while Cγ (encoded by PRKACG) is expressed only in germ 
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cells in the human testis (Reinton et al., 1998; Søberg et al., 2013). The PKA subunits have 

several isoforms due to alternative splicing. There are two distinct types of PKA, type I and II, 

each of them contains either RI or RII type of R subunit, respectively. In addition, each of type 

of R subunit has two isoforms: RIα, RIβ, RIIα, and RIIβ (Corbin et al., 1977, 1978). The RI 

and RII classes have different sensitivity to cAMP, phosphorylation patterns and subcellular 

localization (Cadd and McKnight, 1989). 

A-kinase anchoring proteins (AKAP) are functionally related family of proteins, containing 

“anchoring motifs”, which binds R subunit of PKA, and “targeting domain”, which associates 

PKA-AKAP complex with cellular organelles, membranes or structural proteins. AKAPs allow 

to place PKA closely to target substrates and enzymes, which regulate its activation and 

inactivation (Dell’Acqua and Scott, 1997). AKAP function is essential for controlling PKA 

function as PKA itself lacks localization domains. 

As it is described in the name, PKA activity depends on cellular levels of cAMP, a second 

messenger synthesized by adenylate cyclase from ATP, which is able to modulate many cellular 

functions and the activation of PKA in particular (Kamenetsky et al., 2006). The release of 

cAMP occurs in response to stimulation of the receptor by a first messenger. The cAMP binds 

to the R subunits of the enzymatically inactive PKA holoenzyme localized in the cell cytoplasm, 

thereby liberating the catalytically active C subunits for phosphorylation of the protein 

substrates in cytosol and nucleus (Hunter, 2000). Activity of the PKA is regulated by the level 

of cAMP in the cytosol, and any change in concentration directly influences the PKA activity. 

Modulation of PKA activity occurs by a complex feedback mechanism. The level of cAMP can 

be decreased by phosphodiesterases (PDEs), which hydrolyze cAMP and therefore have a 

negative impact on PKA activity (Plattner and Bibb, 2012). Phosphatases have an ability to 

modulate both the phosphorylation of PKA subunits and counteract to PKA by 

dephosphorylating the target proteins (Burdyga et al., 2018). In addition, activation of PKA is 

regulated by complex phosphorylation events, such as autophosphorylation and 

phosphorylation by other regulatory kinases (for example, phosphoinositide-dependent kinase 

- PDK1) (Byrne et al., 2016; Cheng et al., 1998).  

PKA core consists of N-lobe and C-lobe, forming a cleft for both ATP and target substrate 

binding (Figure 4). The N-terminus accommodates the ATP molecule, and conserved lysine 72 

(K72) was shown to be important for stabilization of both the hydroxyl group of the substrate 

and the phosphate. Highly conserved DFG motif forms contact with all three ATP phosphates 

through Mg2+ ions and conserved D184 position. The DFG phenylalanine forms contact with 

HRD motif in the C-lobe, where conserved D166 position corrects the orientation of peptide 
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substrate. One of the main conserved positions in the core is phospho-threonine 197 (T197), 

which helps to secure the contact of the substrate and ATP molecule (Johnson et al., 2001; 

Kornev et al., 2006; Meharena et al., 2013).  

 

Figure 4. PKA core structure with associated ATP and substrate. The right part of the picture can be referred as 

the activation or catalytic segment. The phosphates are shown in red; hydroxyl group of the protein substrate is 

shown in brown; important contacts are shown by dashed lines (Kornev et al., 2006). 

The cleft also contains glycin-rich loop, which is essential for γ-phosphate transfer from ATP 

to the substrate (Kornev et al., 2006). Typically, each protein kinase has a strict number of 

substrates. All of them have a consensus target sequence, which consists of similar residues 

surrounding the target Ser/Thr. The PKA C subunits phosphorylate these residues in the 

sequence context of R-R/K-X-S/T (X represents any amino acid) (Kemp et al., 1977; Kennelly 

and Krebs, 1991). Hydroxyl group of the Ser/Thr residue of the target peptide should be facing 

the γ-phosphate of the ATP. Lastly, the terminal phosphate is transferred to the recipient 

substrate, and both phosphorylated substrate and ADP are released from the kinase (Kornev et 

al., 2006).  

1.4.2 PKA role in cell  

Major physiological functions of PKA include glucose homeostasis and triglyceride storage 

(Czech et al., 2013). PKA pathway interacts with other pathways and influences different signal 

mechanisms (Robinson‐White and Stratakis, 2002), for example, PKA acts as a feedback 

inhibitor for cAMP through phosphorylation of cAMP-responsive element binding protein 

(CREB) in the nucleus, activating CREB pathway (Shabb, 2001; Xia et al., 2009). PKA 

pathway influences proliferation of different cell types (Bacallao and Monje, 2013; Cheadle et 

al., 2008; Kim et al., 2012) and regulates cell migration due to the ability of PKA to interact 

with cell factors that control Ca2+ flux (Howe, 2011). Also, that the inflammatory response is 

regulated PKA-dependently through localization and coordination of macrophages (Wall et al., 

2009). 
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1.5. Reasons to study 

HPV is considered to be one of the most widespread sexually transmitted infections worldwide, 

suggesting that more than 80% of men and women acquire HPV by age 45 years (Chesson et 

al., 2014; de Sanjosé et al., 2007). Pap test (Papanicolau test) is routinely performed screening 

method, which can be used to detect atypical cells in cervicovaginal smears, and is considered 

to be the most important preventive measure for cervical carcinoma. However, co-testing with 

other methods is recommended in order to decrease the rate of false-negative results. Therefore, 

molecular tests to detect HPV DNA, RNA or proteins are being developed and becoming 

available (Kroupis and Vourlidis, 2011).  

Nowadays, vaccination is the main strategy for prevention of the HPV-related cancers. The 

vaccine is produced by inserting the L1 gene into a host (either yeast or baculovirus vector) to 

produce L1 major capsid proteins, which then self-assemble into virus like particles. Several 

prophylactic vaccines are available and approved for use, such as bivalent vaccine produced by 

GlaxoSmithKline (Cervarix) containing HPV16 and HPV18 antigens, and the quadrivalent 

vaccine produced by Merck (Gardasil) containing HPV6, HPV11, HPV16, and HPV18 

antigens. Both Gardasil and Cervarix were shown to provide nearly 100% protection against 

persistent cervical infections with HPV16 and HPV18. Expanded nonavalent vaccine Gardasil 

9 was recently approved by FDA. The vaccine is preventive against HPV types 6, 11, 16, 18, 

31, 33, 45, 52, and 58 (Herrero et al., 2015). 

At the moment, very little is known about the role of PKA in the life cycle of different HPV 

types; however, the information obtained from various articles suggests that PKA may 

somehow modulate HPV replication and, if proceed from this premise, this study can contribute 

to the better understanding of this interplay.  
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2. EXPERIMENTAL PART 

2.1. Aims of the study 

The general aim of this thesis was to investigate the influence of the PKACα on replication of 

HPV types 5, 11, 18 in U2OS cells. In order to achieve this purpose, the following step-by-step 

goals were set: 

 generation of the plasmids encoding the FLAG-tagged wild-type PKACα and its two 

mutants carrying the point mutations in the amino acid residues T197 and K72; 

 control of the kinase activities and the expression levels of the PKA C proteins; 

 analysis of the replication efficiencies of HPV types 5, 11 and 18 in the presence of the 

over-expressed PKA C proteins in the U2OS cells; 

 testing the influence of potentiation or inhibition of the endogenous PKA catalytic 

activity on the replication efficiency of HPV5; 

 investigation of the possible mechanisms involved in the PKA-mediated alterations of 

the HPV18 replication. 
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2.2. Materials and methods  

2.2.1. Plasmids 

 pJET1.2/blunt vector (2974 bp) – linearized cloning vector, which is suitable for 

cloning of DNA fragments with blunt ends (CloneJET PCR Cloning Kit, Thermo Fisher 

Scientific). The vector contains multiple cloning sites (MCS), eco47IR (lethal gene, 

enables positive selection of the recombinants) and -lactamase gene containing 

resistance to ampicillin (Amp). 

 pFLAG-CMV-4 vector (6271 bp) - FLAG epitope (DYKDDDDK) containing vector 

(Sigma-Aldrich). 

 pFLAG-PKAwt – a plasmid encoding for the protein kinase A catalytic subunit α 

transcript variant 1 (PRKACA, Gene ID 5566, NCBI accession number NM_002730.4, 

referred later as PKA). The coding region of the gene was amplified using RT-PCR, 

U2OS cells derived complementary DNA (cDNA) and primers 1 and 2 (Appendix 1. 

Primers used in the study). 

 pFLAG-PKA(T197A) - a plasmid encoding the protein kinase A catalytic subunit α 

transcript variant 1 with the threonine residue at position 197 mutated to alanine.  

 pFLAG-PKA(K72R) - a plasmid encoding the protein kinase A catalytic subunit α 

transcript variant 1 with the lysine residue at position 72 mutated to arginine.  

Numbering of the mutated amino acid residues of the pFLAG-PKA(T197A) and -PKA(K72R) 

constructs is given relative to the 1st methionine of PKACα (NCBI accession number 

NP_002721.1). The mutations were introduced using PCR mutagenesis and oligonucleotides 3 

and 4 (Appendix 1. Primers used in the study). All above-mentioned PKA encoding sequences 

were cloned into pFLAG-CMV-4 vector between HindIII and NotI restriction sites. 

 pCI-GFP – a plasmid expressing Green Fluorescence Protein (GFP) (Promega, kind 

gift of Lagle Kasak, Tallinn University of Technology). 

 HPV5 minicircle (m.c.) (7756 bp) – HPV5 genome containing plasmid (Sankovski et 

al., 2014). 

 HPV11 m.c. (7931 bp) – HPV11 genome containing plasmid (Orav et al., 2013). 

 HPV18 m.c. (7893 bp) – HPV18 genome containing plasmid (Orav et al., 2013). 

 HPV5-Nluc m.c. was generated on the basis of the HPV5 wt genome by inserting the 

sequences encoding the codon optimized Nluc and the self-processed 2A region of the 

foot-and-mouth disease virus (FMDV) after the 59nd nucleotide of the E2 ORF, which 



 22 

corresponds to the E1 stop codon. The full-length wt E2 ORF begins next to the 2A 

sequence (Piirsoo et al., 2019). 

 HPV18-Nluc m.c. was generated on the basis of the HPV18 wt genome by inserting 

the sequences encoding the codon optimized Nluc and the 2A region of the FMDV after 

the 72nd nucleotide of the E2 ORF, which corresponds to the E1 stop codon. The full-

length wt E2 ORF begins next to the 2A sequence (Piirsoo et al., 2019). 

 HPV18E1- m.c. – a plasmid encoding HPV18 wt genome containing a point mutation 

in the E1 first AUG and therefore being deficient for the E1 expression (Geimanen et 

al., 2011). 

 HPV18E8- m.c. - a plasmid encoding HPV18 wt genome containing a point mutation 

in the E8 first AUG and therefore being deficient for the E8^E2 expression (Geimanen 

et al., 2011). 

The abovementioned HPV genomes come from the laboratory collection of the Chair of 

Virology, University of Tartu. The genomes were generated as covalently closed minicircle 

plasmids in E. coli strain ZYCY10P3S2T using minicircle DNA technology and pMC.BESBX 

vector for generation of the respective parental plasmids (Kay et al., 2010; Orav et al., 2013; 

Sankovski et al., 2014). The pMC.BESBX vector contains attB and attP sites for binding of 

bacteriophage ФC31 integrase, 32 restriction sites of SceI endonuclease, MCS, kanamycin 

resistance gene, and ColE1 origin of replication.  

2.2.2 Isolation of total RNA and synthesis of cDNA 

Total RNA was isolated from U2OS cells using the Quick RNA MiniPrep Kit (Zymo Research). 

Cells were lysed in the RNA Lysis Buffer. Majority of genomic DNA was removed from the 

sample using a column containing DNA-binding resin. RNA was washed with Wash Buffer 

and eluted in DNase/RNase free water. Approximately 10 μg of the total RNA was treated with 

8 U of Turbo DNase (Thermo Fisher Scientific) for 2 h at 37 ˚C. Turbo DNase was inactivated 

by incubation at 75 ˚C for 10 min in the presence of 15 mM EDTA. The total RNA was 

precipitated with 7.5 M LiCl by centrifugation at 4 ̊ C and 15000 rpm for 15 min using MicroCL 

21R Microcentrifuge (Thermo Fisher Scientific). The samples were washed with ice-cold 75% 

ethanol and centrifuged at 4 ˚C 15000 rpm for 5 min. The pellets were resuspended in 15 μl of 

nuclease-free water.  

cDNA was synthesized using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher 

Scientific), oligo(dT) and either 5 μg of total RNA in the case of subsequent amplification of 

the sequence encoding for PKA or 2 μg of total RNA for analysis of the HPV18 transcripts. 
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The appropriate amount of the total RNA was mixed with 1 µl of oligo(dT), incubated for 5 

min at 65 ˚C and chilled on ice. cDNA was synthesized at 45 ˚C for 1 h in total volume of 20 

μl in the presence of 4 µl of 5x Reaction Buffer, 20 U of RiboLock RNase Inhibitor, 2 μl of 10 

mM dNTP Mix and 200 U of RevertAid M-MuLV RT. The cDNA synthesis was terminated 

by heating the mix at 70 ˚C for 5 min.  

2.2.3 PCR and gel extraction of PCR products 

Reactions for qPCR were held in total 10 μl containing 0.5 μl of cDNA, 1 μM primers 5-9 

(Appendix 1. Primers used in the study) and 2 μl of 5x EvaGreen (Solis Biodyne) on MicroAmp 

96-well plates (Thermo Fisher Scientific). The qPCR was performed in triplicates using 

QuantStudio Real-Time PCR System (Thermo Fisher Scientific) and the following program: 

denaturation at 95 ˚C for 12 min, 40 cycles of amplification (denaturation 95 ˚C 15 s, annealing 

60 ˚C 15 s, synthesis 72 ˚C 15 s). 

The PKA encoding sequences were amplified using reverse transcription PCR method (RT-

PCR) and Phusion High-Fidelity DNA Polymerase Kit (Thermo Fisher Scientific). Reagents 

for the PCR included 28.5 μl of nuclease-free water, 5 μl of 10 mM dNTP mix, 10 μl of 5x 

Phusion HF or GC buffer, 1 μl of cDNA template, 0.75 μl of Phusion DNA polymerase and 1 

μM primers. Expression of the different C subunits of PKA was analyzed using primers 10-15 

(Appendix 1. Primers used in the study). Sequence encoding the PKA was amplified using 

primers 1 and 2 (Appendix 1. Primers used in the study). The constructs encoding PKA mutants 

(T197A, K72R) were generated using oligonucleotides 3 and 4 (Appendix 1. Primers used in 

the study) on the basis of the construct encoding for the PKA. 

Reaction was performed with PCR Mastercycle (Eppendorf Scientific) using the following 

program: initial denaturation of template DNA for 30 s at 98 ˚C, 32 cycles of the synthesis: 

(DNA denaturation at 98 ˚C for 8 s, annealing of the primers at 59 ˚C for 20 s, and extension at 

72 ˚C for 45 s), final extension at 72 ˚C for 5 min and cooling to 10 ˚C. The program of the 

PCR mutagenesis for generation of the sequences encoding the PKA mutants involved 20 

cycles of the synthesis with extension time 6 min. 

The PCR products were separated using the gel electrophoresis method and 0.8% agarose gel 

containing 0.3 μg of ethidium bromide in 1xTAE buffer (40 mM Tris-acetate, 1 mM EDTA) 

and in the presence of 0.6 μg of O’GeneRuler 1kb DNA ladder (Thermo Fisher Scientific). The 

required fragments were cut out from the gel with a scalpel under UV (260 nm). 

The DNA was extracted from the gel using Zymoclean™ Gel DNA Recovery Kit (Zymo 

Research) according to manufacturer`s instructions. The gel pieces with DNA were mixed with 
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ADB Buffer Gel in ratio 1:3 and incubated at 55 ˚C until the gel slices were completely 

dissolved. Melted agarose solution was transferred to the DNA-binding columns, centrifuged 

at 13000 rpm for 1 min and the flow-through was discarded. The DNA was washed two times 

with 200 μl of DNA Wash Buffer and centrifugated for 30 seconds at 13000 rpm. The column-

bound DNA was eluted in 20 μl of pure water. The DNA was additionally precipitated with 2 

μl of 5 M NaCl and 40 μl of 96% ethanol with subsequent centrifugation at 4 ˚C 15000 rpm for 

15 min. The pellets were washed with cold (−20 ˚C) 75% ethanol, centrifuged at 4 ˚C 15000 

rpm for 5 min and resuspended in 15 μl of nuclease-free water. The concentrations of nucleic 

acids were measured using a Nanodrop-1000 spectrophotometer (Thermo Fisher Scientific) at 

260 nm wavelength. 

2.2.4 Cloning of the PCR products into pJET1.2/blunt vector and transformation 

The obtained RT-PCR product was cloned into pJET1/2 cloning vector (CloneJET PCR 

Cloning Kit (Thermo Fisher Scientific)) between HindIII and NotI restriction sites. Reagents 

for the reactions included 4 μl of 5x Reaction Buffer, 350 ng of the gel-purified PCR product, 

9 U of T4 DNA Ligase and 35 μg of pJET1.2/blunt vector. The reactions were incubated at 

room temperature (RT) for 3 h.  

Competent cells of nonpathogenic E. coli strain DH5α were used for the transformation. The 

bacteria were thawed on ice for 20 min. Ligation mixes were added to 200 μl of the competent 

cells and incubated on ice for 30 min. After that, the reaction mixes were incubated at 37 ˚C for 

4 min and then transferred on ice for 1 min. Next, 800 μl of LB broth (10 g/L tryptone, 5 g/L 

yeast extract, 10 g/L NaCl) was added to each tube, and mixes were incubated at 37 ˚C for 40 

min. The tubes were centrifuged at RT and 5000 rpm for 3 min. The pellet was resuspended in 

100 μl of LB broth and plated using the spread plate technique on the LB agar supplemented 

with 50 μg/ml of Amp. The plates were incubated at 37 ˚C for 24 h. The growth of colonies 

was observed.  

The presence of the insert in the cloning vector was verified using the colony PCR method. The 

reaction mix consisted of 2 μl of 5x HOT FIREPol PCR mix (Solis BioDyne), 6.5 μl of nuclease-

free water and 1 μM of primers 1 and 2 (Appendix 1. Primers used in the study). Bacteria from 

each separate colony were transferred to the LB agar supplemented with Amp and then into the 

PCR mix using pipette tips. 

Reaction was performed using PCR Mastercycle (Eppendorf Scientific) according to the 

following program: the polymerase activation at 96 ˚C for 12 min 30 s, 25 cycles of the 
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synthesis: (denaturation at 96 ˚C for 15 s, annealing of the primers at 59 ˚C for 15 s and 

extension at 72 ˚C for 45 s).  

The obtained PCR products were analyzed on 1.2% agarose gel as described in 2.2.3. The 

correct colonies were transferred from the plates to 3 ml of LB broth containing 200 μg/ml of 

Amp and incubated at 37 ˚C and 220 rpm for 18 h in Orbital Incubator MIR-220RU (Sanyo). 

2.2.5 Plasmid DNA extraction and control with restriction and sequencing 

Plasmid DNA was extracted from bacteria using Plasmid Extraction Mini Kit (Flavoprep) or 

using Endotoxin-free Plasmid DNA Purification Midi Kit (Thermo Fisher Scientific) according 

to manufacturers’ protocol and using 3 ml or 200 ml of bacteria culture, respectively. All 

procedures were performed at RT. First, bacteria culture was centrifuged at 5000 rpm for 5 min 

and the supernatant was removed. The pellet was resuspended in the appropriate buffer (FAPD1 

or RES-EF) containing RNase A and lysed in the respective lysis buffer (FAPD2 or LYS-EF) 

for 5 min. Reactions were neutralized with FAPD3 or NEU-EF buffers, respectively, and 

centrifuged at 13000 rpm for 5 min. Supernatant containing DNA was transferred to the DNA-

binding columns. Beforehand, the NucleoBond Xtra Column (Midi kit) was equilibrated with 

EQU-EF Buffer. The column-bound DNA was washed with the appropriate washing buffers, 

eluted either with nuclease-free water or ELU-EF buffer (Midi kit). Next, the DNA extracted 

using Midi kit was precipitated with 3 ml of isopropanol, washed with 75% ethanol and 

dissolved in 1 ml of nuclease-free water. 

The obtained constructs were verified by restriction analysis using restriction endonucleases 

HindIII and BamHI (Thermo Fisher Scientific) with subsequent sequencing of the correct 

clones using pJET1/2 primers 16 (Appendix 1. Primers used in the study). For each restriction 

reaction, the following components were used: 0.5 μl of each restriction enzyme (10 U/μl), 400 

ng of each DNA sample and 2 μl of 10x FastDigest green Buffer. Total volume of a reaction 

was 20 μl. The restriction reactions were incubated at 37 ˚C for 1 h. The DNA was visualized 

under UV (260 nm) using the gel electrophoresis method as described in section 2.2.3. 

DNA sequencing was performed in Estonian Institute of Genomics Core Facility, Tartu, 

Estonia.  

2.2.6 Generation of the pFLAG-PKA constructs  

The coding sequences the PKAwt and its mutants were excised from pJET1.2/blunt vector using 

HindIII and NotI restriction enzymes, purified from agarose gel and ligated with the pre-cleaved 

with the same enzymes and gel-purified pFLAG-CMV-4 vector. The ligation reactions 
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containing 70 ng of the pFLAG-CMV-4 vector, 500 ng of the gel-purified PCR product, 1.2 μl 

of 10x reaction Buffer and 1.2 μl of T4 DNA Ligase were incubated at 16 ˚C overnight. The 

ligation mixes were transformed to competent DH5α as described in section 2.2.4. 

2.2.7 Cell culture and transfection 

The human osteosarcoma cell line U2OS were propagated in the normal growth medium 

(NGM): Iscove’s Modified Dulbecco’s Medium (IMDM, Pan Biotech), 10% fetal calf serum 

(FCS) and 1% penicillin/streptomycin (PEST, Sigma-Aldrich). A derivative of human 

embryonic kidney cell line HEK293 - 293T cells were maintained in the NGM containing 

Dulbecco’s Modified Eagle Medium (DMEM, Pan Biotech), 10% FCS and 1% PEST. The cells 

were propagated in incubator at 37 ˚C and 5% CO2.  

U2OS cells were transfected by electroporation using approximately 106 cells for each 

transfection. Confluent U2OS cells were subcultured on 10 cm cell culture dishes (Corning Inc) 

approximately 24 h before transfection. Prior electroporation, NGM was removed; the cells 

were washed with PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, and 1.47 mM KH2PO4) 

and detached using 0.25% Trypsin-EDTA (Sigma-Aldrich). The detached cells were transferred 

into 8 ml of fresh NGM, centrifuged at 1000 rpm and RT for 5 min using Eppendorf Centrifuge 

5810R (Thermo Fisher Scientific) and then resuspended in the fresh NGM using 250 μl of 

medium per one transfection. Approximately 106 U2OS cells were mixed with 50 μg of salmon 

sperm DNA and the following amounts of the HPV genomes and PKA encoding plasmids: 

HPV5 and HPV5-Nluc (1500 ng), HPV11 (750 ng), HPV18, HPV18E1-, HPV18E8- and 

HPV18-Nluc (1000 ng), pFLAG-PKAwt (240 ng), pFLAG-PKA(T197A) (1000 ng), pFLAG-

PKA(K72R) (1500 ng). Transfection mixtures containing pFLAG-PKAwt and mutant pFLAG-

PKA(T197A) were compensated up to 1500 ng with the respective amounts of the pFLAG-

CMV-4 vector. Suspension of the cells with DNA was transferred into an electroporation 

cuvette with gap size of 4 mm. The electroporation was performed using a Gene Pulser XCell 

machine (Bio-Rad Instruments) at 220 V and 975 μF. After electroporation, approximately 260 

μl of NGM was immediately added to the cells. The transfected cell suspensions and NGM 

were transferred to appropriate plates. The cells were incubated for 2, 3 and 4 days. For the 

experiment with IBMX and H89 (both purchased from Sigma-Aldrich), the cells were incubated 

for 2 or 3 days after transfection and then treated with 500 μM IBMX or 5 μM H89 for 2 days 

in NGM. The NGM containing IBMX, H89 or DMSO (used as a vehicle in dilution 1:1000), 

was replenished every 24 h. 
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The 293T cells were transfected with using polyethyleneimine (PEI) (Inbio). The cells were 

plated on 10 cm cell culture dishes approximately 24 h prior transfection. Different amounts of 

the PKA encoding constructs were used for transfection of 293T cells: pFLAG-PKAwt (2500 

ng), pFLAG-PKA(T197A) (8000 ng), pFLAG-PKA(K72R) (16000 ng per two plates) and pCI-

GFP (8000 ng) for control. Transfection mixture containing pFLAG-PKAwt was compensated 

with 6500 ng of the pFLAG-CMV-4 vector. PEI stock solution was diluted in sterile water to 

final concentration 1 mg/ml and mixed with DNA in ratio 3:1 in 100 μl of pure DMEM. The 

mixture was incubated for 5-10 min at RT. The cells were washed with PBS, and 8 ml of pure 

DMEM and DNA/PEI complexes were added to the cells followed by incubation for 

approximately 2 h. Afterwards, 12 ml of NGM was added to the cells, and the cells were 

incubated for 48 h.  

2.2.8 Isolation of total DNA from U2OS cells 

U2OS cells were washed with PBS and lysed in 500 μl of Sol IV buffer (20 mM Tris pH 8.0, 

100 mM NaCl, 0.1 g/L mM EDTA, 0.2% SDS). The lysates were homogenized using insulin 

syringe and 24G needle and incubated in the presence of 200 μg/ml of Proteinase K at 56 ˚C 

overnight. Next, 500 μl of phenol-chloroform mixture (1:1) was added to each lysate. The 

samples were mixed by vortexing for 10-15 s and centrifuged at RT and 13000 rpm for 3 min. 

Upper phase containing DNA was transferred to a new microtube. Two volumes of 96% ethanol 

were added to each tube for DNA precipitation. The samples were centrifuged at 4 ˚C 15000 

rpm for 15 min using MicroCL 21R Microcentrifuge (Thermo Fisher Scientific). Supernatant 

was removed, and dry precipitate was resuspended in 100 μl of TE (10 mM Tris, 1 mM EDTA 

pH 8.0) containing 40 ng of RNase A. The mixtures were incubated at 37 ̊ C for 1 h. Total DNA 

was additionally precipitated using 10 μl of 5 M NaCl and 200 μl of 96% ethanol as described 

in 2.2.3 and resuspended in 30 μl of nuclease-free water. 

2.2.9 Luciferase assay 

U2OS cells were washed with PBS solution and lysed in 40 μl of Passive Lysis Buffer 

(Promega) for 10 min at RT. The lysates were transferred in two replicates to different 96-well 

plates for analysis of Nluc and alkaline phosphatase (AP) activities. Nluc activity was measured 

using Nano-Glo Luciferase Assay System Kit (Promega) and 20 μl of the furimazine substrate 

diluted with the Luciferase Assay Buffer in ratio 1:300. AP was measured by adding 20 μl of 

CSPD substrate (Applied Biosystems, Tropix) to 10 μl of the lysates with further incubation for 

10 min. Chemiluminescence of both substrates was measured using GloMax 96 Microplate 

Luminometer (Promega). For each sample, Nluc activity was normalized by AP activity. 
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2.2.10 Southern blot and hybridization 

The following amounts of the total DNA were used for analysis of different HPV replication 

efficiencies: 6 μg for HPV5, 3 μg for HPV11, and 5 μg for HPV18. The total DNA was digested 

with 0.8 μl of DpnI enzyme to cut the palindromic sequence (5’-Gm6A^TC-3’) of the bacterially 

methylated input DNA and 1.5 μl of SacI, HindIII and BglI enzymes (Thermo Fisher Scientific) 

to linearize the HPV5, HPV11 and HPV18 genomes, respectively. Reactions were held in total 

volume 30 μl in the presence of 3 μl of 10x FastDigest Green Buffer per one reaction at 37 ˚C 

overnight. The DNA fragments produced during the restriction reaction were separated on 0.8% 

agarose gel. 

Afterwards, the gel was incubated in Solution A (0.5 M NaOH, 1.5 M NaCl) at RT for 40 min, 

washed with distilled water and neutralized in Solution B (1 M Tris pH 8.0, 1.5 M NaCl) at RT 

for 30 min. The DNA was transferred from the gel to a nylon membrane (Millipore) using 

upward capillary transfer method in 10x saline-sodium citrate buffer (10x SSC: 1.5 M NaCl, 

150 mM Na3C6H5O7) for 18 h. 

After transfer, DNA was cross-linked to the membrane using UV light (Stratalinker). In order 

to prevent nonspecific binding, the membranes were incubated in prehybridization solution at 

67 ˚C for 45 min in rolling tubes. Prehybridization solution for one membrane consisted of 16 

ml of water, 9 ml of 20x SSC, 3 ml of 50x Denhardt’s solution, 1.5 ml of 10% SDS and 6000 

μg of salmon sperm DNA denaturated at 100 ˚C. 

For synthesis of hybridization probes, 150 ng of the linearized and gel purified HPV5, HPV11 

and HPV18 m.c. DNAs and DecaLabel TM DNA Labeling Kit (Thermo Fisher Scientific) were 

used. The linearized genomes were obtained as described in section 2.2.3. For the synthesis, 10 

μl of decanucleotide primers were added to the DNA template in a total volume of 30 μl. The 

samples were incubated at 100 ˚C for 10 min and placed on ice. Then, 3 μl of mixC (mixture of 

all dNTPs except dCTP), 4 μl of α-32P-dCTP isotope (Hartman Analytics) and 1 μl of Klenow 

Fragment lacking 5’-3’ exonuclease activity were added. After incubation of the samples at 37 

˚C for 15 min, 4 μl of dNTP were added. The reaction mixtures were incubated at 37 ˚C for 

additional 15 min. Denaturation was performed at 100 ˚C for 10 min.  

Hybridization of the membranes with the radiolabeled probes was performed in the 

prehybridization solution at 67 ˚C overnight. Next day, the membranes were washed with pre-

heated washing solutions I, II and III at 67 ˚C. The wash step was repeated twice with solution 

I (10x SSC, 0.1% SDS) for 5 min each, then once with solution II (5x SSC, 0.1% SDS) for 15 

min and twice with solution III (0.5x SSC, 0.1% SDS) for 10 min. Thereafter, the membranes 
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were exposed to the X-ray film at −80 ˚C for about 10 h. The X-ray films were developed and 

fixed using AGFA Developer and Rapid Fixer solutions.  

2.2.11 Western blot and immunoprecipitation 

U2OS cells were lysed in 500 μl of RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 2 mM 

EDTA, 0.1% SDS and 0.1% Triton X-100) supplemented with protease inhibitor cocktail (PIC, 

Sigma-Aldrich) for 10 minutes on ice. The amount of total protein was measured using BCA 

Protein Assay Kit (Pierce). The working reagent (WR) was prepared by mixing Reagent A with 

Reagent B in ratio 50:1, and 40 μl of the WR was added to 4 μl of each BSA standard or a 

sample of interest in the microplate. The plate was incubated at 37 ˚C for 30 min. The 

absorbance was measured at 562 nm on an absorbance microplate reader Sunrise using 

Magellan data analysis software (Tecan). 

293T cells were lysed in 5 ml of Sigma Lysis Buffer (50 mM Tris HCl pH 7.4, 150 mM NaCl, 

1 mM EDTA, 1% Triton X-100 and PIC) on ice for 15 min. The lysates were cleared by 

centrifugation at 4 ˚C 15000 rpm for 5 min, and supernatant was transferred to the new tubes. 

The over-expressed proteins containing the FLAG epitope were precipitated using 20 μl of 

ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich), previously washed 2 times with PBS solution 

and one time with Sigma Lysis Buffer. Precipitation was carried out at 4 ˚C under slow end-to-

end rotation overnight. The immunocomplexes were washed with 2 ml of the Sigma Lysis 

buffer 3 times for 10 min and resuspended in 100 μl of PBS.  

Next, 15 μg of total proteins obtained from U2OS cells or 10 μl of immunoprecipitated proteins 

from 293T were mixed with the respective amount of 3X Laemmli Sample Buffer (0.125 M 

Tris-Cl, pH 6.8, 4% SDS, 20% glycerol, 100 μM DDT, 0.004% bromophenol blue). The 

samples were denaturated at 100 ˚C for 5 min.  

Proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to PVDF 

membrane (Millipore). The membrane was blocked in PBS solution containing 0.1% Tween-

20 (PBS-T) and 5% of non-fat dry milk for 30 min at RT. Afterwards, the membrane was 

incubated with a primary antibody at 4 ˚C overnight. The following procedures were performed 

at RT. The membrane was washed in PBS-T 3 times for 15 min, incubated with a secondary 

antibody (if appropriate) for 1 h with subsequent washing with PBS-T 3 times for 15 min. The 

following antibodies were used: Monoclonal ANTI-FLAG M2−HRP antibody (Sigma-Aldrich, 

1:3000), anti-GAPDH (Sigma-Aldrich, 1:5000) and goat anti-mouse IgG conjugated with HRP 

(Invitrogen, 1:10000). Antibodies were diluted in PBS-T solution containing 2.5% of non-fat 

dry milk. Enhanced chemiluminescence substrate for HRP (SuperSignal™ West Dura 
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Extended Duration kit, Pierce) was added to membrane for 1 min. The membrane was rinsed 

in PBS-T, exposed to X-ray film and developed as described in 2.2.10. 

2.2.12 In vitro kinase assay 

For the assay, 10x PKA kinase assay buffer (KAB) containing 400 mM Tris-HCl pH 7.5, 200 

mM MgCl2, 500 µM DTT in nuclease-free water was prepared. Solutions containing 200 µM 

“cold” ATP and 400 µM γ32-ATP in 1x KAB were made. Next, 10 µl of PKAwt and 

PKA(T197A), PKA(K72R) immunoprecipitants and bacterially purified PKA substrate Nth1 

(86 kDa, kind gift from M. Loog laboratory) were mixed in 40 µl of 1X KAB on ice.  

Ten µl of each reaction was immediately transferred to another microtube for running a separate 

SDS-PAGE gel and subsequent staining of the gel with Coomassie Brilliant Blue to visualize 

the Nth1 substrate.  

Then, 3.4 µl of the γ32-ATP solution (0.4 µl of γ32-ATP per sample) was added to the “cold” 

ATP solution, and 10 µl of the mixture was transferred to each immunocomplex. In vitro kinase 

reactions were carried out at RT for 30 min and stopped by adding the Laemmli Sample Buffer 

and incubation at 100 ˚C for 5 min. After this, the proteins were separated using SDS-PAGE 

on 12% gel. The gel was transferred to filter paper and dried using Gel Vacuum Dryer Heto 

Dry GD-2 (HETO) for 45 min at 70 ˚C. Autoradiogram of the gel was obtained using the 

cassette with intensifying screen and Typhoon FLA 9500 (GE Healthcare) after overnight 

exposure at RT. 
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2.3. Results 

2.3.1 Selection of PKA subunit 

It has been established that at least three different PKA catalytic subunits (PKA C) are encoded 

by human genome: PRKACA (NCBI accession numbers for different isoforms 

NM_001304349.1; NM_002730.4; NM_207518.3), PRKACB (NCBI accession numbers for 

different isoforms NM_001242857.2; NM_001242858.2; NM_001242859.2; 

NM_001242860.2; NM_001242861.2; NM_001242862.2; NM_001300915.2; 

NM_001300916.2; NM_001300917.2; NM_002731.3; NM_182948.4; NM_207578.3) and 

PRKACG (NCBI accession number NM_002732.3). An expression pattern of different PKA C 

was analyzed in two different human cell lines capable for supporting HPV replication: HPV31-

positive human primary keratinocytes CIN612E and osteosarcoma cell line U2OS. Expression 

of PKA C mRNAs was analyzed using RT-PCR and 2 independent pairs of primers for each 

gene (primers 10-15, Appendix 1. Primers used in the study). Also, mRNA expression of the 

house keeping gene GAPDH was analyzed as a positive control. Our analysis (Figure 5) 

revealed that PRKACA and PRKACB mRNAs were expressed in both cell lines. However, 

expression of PRKACG mRNA was detected only in U2OS cells using one pair of primers. 

Therefore, feasibility of the PRKACG-encoded protein to be involved in regulation of HPV 

replication proteins was considered as insignificant. 

Bioinformatic analysis of the PKA C proteins was performed using NCBI blast algorithm. 

PKACα and PKACβ proteins were approximately 92% identical, while PKACα and PKACγ 

had 84% identity; PKACβ and PKACγ had approximately 79% identity. Between the two 

isoforms, PKACα was chosen for further research because of its evident expression level in the 

target cells and high identity percent with PKACβ protein, suggesting possible similarity of the 

biological activities of these proteins. 

Next, the sequence of the PRKACA transcript variant 1 (NCBI accession number 

NM_002730.4) encoding the PKACα1 protein (NCBI accession number NP_002721, further 

referred as PKAwt) was amplified using RT-PCR and primers 1-2 (Appendix 1. Primers used 

in the study) and cloned into the pFLAG-CMV-4 vector. The resulted construct is further 

referred as pFLAG-PKAwt. On the basis of the pFLAG-PKAwt construct, the constructs 

encoding PKACα mutants (referred as pFLAG-PKA(T197A) and pFLAG-PKA(K72R)) were 

generated using PCR mutagenesis. 
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Figure 5. RT-PCR analysis of the expression of PKA C in CIN612E and U2OS cells. Expression of the 

housekeeping gene GAPDH was analyzed as a positive control. (1) CIN612E cDNA; (2) U2OS cDNA; (3) 

CIN612E-RT*; (4) U2OS-RT*. Probes (3) and (4) were identical to the samples (1) and (2), respectively, but they 

did not contain reverse transcriptase (RT) during cDNA synthesis; these samples were analyzed to confirm absence 

of contamination with genomic DNA. To estimate the size of the obtained PCR products, O’GeneRuler 1kb DNA 

ladder was used. 

2.3.2 Control of expression level of PKA C proteins in U2OS cells 

It has been suggested that the proteins can be stabilized through (auto)phosphorylation 

processes, which may influence their expression levels and biological activity in cells. 

Therefore, immunoblotting analysis was required to determine the amounts of the PKA-

encoding constructs expressing similar levels of the wt and mutant PKA C proteins in the U2OS 

cells in order to further compare their biological effects.  

Approximately 106 U2OS cells were transfected with different amounts of the generated 

PKACα-encoding constructs. Expression levels of the PKAwt and PKA(T197A), PKA(K72R) 

were analyzed 48 h post-transfection using Western blot (WB) and Monoclonal ANTI-FLAG 

M2−HRP antibody. Eventually, the following ratio of the constructs were found to be optimal 

to produce similar levels of the wt and mutant PKA C proteins: pFLAG-PKAwt 240 ng, 

pFLAG-PKA(T197A) 1000 ng, and pFLAG-PKA(K72R) 1500 ng (Figure 6, upper panel). The 

total amount of the transfected DNA was compensated with the respective amount of the empty 

vector to achieve similar transfection conditions. Amount of total protein was measured prior 

to SDS-PAGE to ensure the equal loading of the lysates, which was additionally controlled via 

immunoblotting analysis of the housekeeping protein GAPDH (Figure 6, lower panel). The WB 
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showed that the generated constructs encoded approximately 42 kDa proteins. Also, the analysis 

revealed that the levels of PKAwt and mutant proteins expressed using the indicated amounts 

of the plasmids were similar. Therefore, this ratio of the PKA-encoding plasmids was used in 

the further experiments.  

 

Figure 6. Over-expression studies of the FLAG-tagged proteins PKAwt, PKA(T197A), and PKA(K72R). U2OS 

cells were transfected with the following amounts of the plasmids: 240 ng pFLAG-PKAwt, 1000 ng pFLAG-

PKA(T197A), 1500 ng pFLAG-PKA(K72R) and 1500 ng pFLAG-CMV-4 vector as a negative control. The cells 

were incubated for 2 days, lysed and subjected to immunoblotting assay. Detection of FLAG-tagged proteins was 

made using ANTI-FLAG antibody. GAPDH was analyzed as a loading control and detected with anti-GAPDH 

and goat anti-mouse IgG conjugated with HRP antibodies. 

2.3.3 Control of kinase activity of the subunits encoded by the pFLAG-PKA constructs  

The mutated PKACα subunits encoded by the generated pFLAG-PKA(T197A) and pFLAG-

PKA(K72R) constructs should have severely reduced catalytic activity in contrast to pFLAG-

PKAwt. Mutation of T197 to alanine (referred as dephosphorylated mutant) was previously 

shown to reduce PKA catalytic function, suggesting that the hydroxyl group of the threonine 

residue may play a significant role in stabilizing the active site and promoting the phosphoryl 

transfer reaction (Adams et al., 1995; Cheng et al., 2006). Mutation of K72 to arginine with so-

called “bulkier residue”, prevents the catalytic cleft from assuming its proper conformation 

needed for the kinase activity (Iyer et al., 2005). In vitro kinase assay with γ32-ATP was 

performed in order to analyze the ability of the PKAwt and mutant subunits to catalyze the 

phosphorylation reaction.  

In order to obtain the target FLAG-tagged proteins, 293T cells were transfected with pFLAG-

PKAwt (2500 ng), pFLAG-PKA(T197A) (8000 ng), pFLAG-PKA(K72R) (16000 ng per two 

10 cm plates) and pCI-GFP (8000 ng) for negative control. Proteins PKAwt, PKA(T197A), and 

PKA(K72R) were immunoprecipitated 48 h after the transfection and used for subsequent in 

vitro kinase assay and immunoblotting. The first set of the kinase reactions contained only the 
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target PKA C proteins. The second set of the reaction mixes (lanes 5-8) contained also the Nth1 

protein (86 kDa) - one of the substrates for PKA. The kinase assay reactions were loaded on 

two separate acrylamide gels. One of the gels was exposed to phosphor imager to detect the 

radioactive signals (Figure 7, upper panel). Another gel was stained with Coomassie Brilliant 

Blue to visualize the Nht1 protein (Figure 7, lower panel).  

The results of the assay demonstrate that, in contrast to the PKAwt, both PKA(T197A) and 

PKA(K72R) have hardly visible residual catalytic activity: very faint signals of Nth1 

phosphorylation were detected. Therefore, the PKA C mutants can be considered as “kinase-

dead” ones. These data ensure that the effects observed using these mutant proteins are 

associated with their inability to catalyze the phosphorylation reaction. Besides, only PKAwt 

was able to phosphorylate itself generating a radioactive signal at approximately 42 kDa that 

corresponds to the molecular mass of the PKA C (Figure 6). 

 

Figure 7. In vitro kinase activity of FLAG-tagged proteins PKAwt, PKA(T197A), and PKA(K72R). The proteins 

were immunoprecipitated 48 h after the transfection of 293T cells and subjected to in vitro kinase assay (upper 

panel). The bottom panel depicts the PKA substrate Nth1 stained with Coomassie Brilliant Blue. Bands marked 

with an asterisk show an unknown substrate phosphorylated by PKAwt in the cell lysate. 

2.3.4 Effects of the over-expressed PKA C proteins on the replication of HPV5, HPV11, 

HPV18 

The association between the phosphorylation activity of kinases and the replication of different 

HPV types has been previously established. Catalytic activity of CK2 subunit is required for 

the stability of E1 regulatory protein of HPV11 and 18, while MAPKs, CDKs, FGFR3 kinases 

play an important role in E1 and E2 nuclear localization of different HPV types, thereby 
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participating in regulation of the viral genome replication (Deng et al., 2004; Ma et al., 1999; 

Piirsoo et al., 2019; Xie et al., 2017; Yu et al., 2007). Considering that several HPV proteins 

contain putative phosphorylation sites for PKA, it has been hypothesized that PKA activity 

influences the replication efficiency of different HPV types. 

In order to examine this hypothesis, the U2OS cells were transfected with wild type HPV 

genomes (LR β type HPV5, LR α type HPV11 and HR α type HPV18), pFLAG-PKA constructs 

in the optimal concentrations, as described above, and pFLAG-CMV-4 vector as a control. 

Total DNA was isolated 48 h, 72 h and 96 h after the transfection and treated with the respective 

linearizing restriction enzyme (SacI for HPV5, HindIII for HPV11, and BglI for HPV18) and 

DpnI for the digestion of the input HPV DNA purified from bacteria. The DNA was 

subsequently analyzed using southern blot (SB). All the experiments were repeated three times. 

Data of representative experiments are shown in Figure 8 for HPV5 (A), HPV11 (B) and 

HPV18 (C). SB signals of three independent experiments were quantified using GelQuantNet 

program. The signals obtained in the samples transfected with the respective genome and empty 

vector and incubated for 48 h were set as 100%. Data for other samples were calculated relative 

to the control (Figure 8A-C, right panels). 

Eight kb bands detected on the autoradiograms correspond to the replicated HPV5, HPV11 and 

HPV18 DNA. Over-expression of PKAwt was accompanied with strong (approximately 29-

fold) reduction of HPV5 replication (Figure 8A, lanes 4-6). In contrast to PKAwt, the mutant 

PKA C proteins demonstrated reduced ability to down-regulate HPV5 replication, 

approximately 1.5- and 3-fold for PKA(T197A) and PKA(K72R), respectively (Figure 8A, 

lanes 7-12). These data suggest that PKA down-regulates HPV5 replication in a kinase activity-

dependent manner. Results of HPV18 replication assay were the opposite to the ones observed 

with HPV5: over-expression of PKAwt resulted in increased HPV18 DNA amount, more than 

12-fold in 48 h and up to 3-fold in 72 h (Figure 8B, compare lanes 1-3 and 4-6). Quantification 

showed that replication signal of HPV18 in the presence of PKAwt reached its maximum level 

in 48 h and did not change substantially during the prolonged incubation (Figure 8B, right 

panel). Compared to “kinase-dead” mutants (Figure 8B, lanes 7-12), it is clearly visible that 

any impairment in PKA catalytic activity eventuated in reduced ability of HPV18 for 

replication.  

The results in Figure 8C, otherwise, showed only slight increase in the amount of the replicated 

HPV11 DNA in the presence of the over-expressed kinase-competent or kinase-deficient PKA 

C proteins. These data indicate that in contrast to HPV5 and HPV18, HPV11 replication cycle 

was not extensively affected by PKA kinase activity. Therefore, study of HPV11 replication 
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was excluded from the further research. The obtained results demonstrate that PKA activity 

influences differently the replication efficiency of different HPV types.  

 

Figure 8. Replication signal of HPV types 5, 18, 11 in the U2OS cells transfected with 1500 ng pFLAG-CMV-4 

vector, 240 ng pFLAG-PKAwt, 1000 ng pFLAG-PKA(T197A), 1500 ng pFLAG-PKA(K72R) constructs. Total 

DNA was extracted 48 h, 72 h and 96 h after the transfection, treated with restriction enzymes DpnI and 

SacI/BglI/HindIII linearizing HPV5, HPV18 and HPV11 genomes, respectively, and subjected to SB. Quantified 

signals are shown in the right panels. The signal of the control sample transfected with HPV genome and empty 

vector and extracted at 48 h was set as 100%. Data from other samples are shown as a percentage of the control 

(the average mean +/- SD (n=3)). A: co-transfection with 1500 ng of HPV5; B: co-transfection with 1000 ng of 

HPV18; C: co-transfection with 750 ng of HPV11. 
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2.3.5 IBMX, H89 and over-expressed pFLAG-PKAwt construct effects on HPV5 

replication 

The results of our over-expression experiments showed that HPV5 replication was inhibited in 

the presence of PKAwt. However, it was restored to some extent when PKA(T197A) and 

PKA(K72R) were added instead of PKAwt. These data suggest that PKA regulates HPV5 

replication in a kinase activity-dependent manner. PKA activity can be regulated by special 

agents, which can affect the enzyme activity or the function of other essential compounds of 

the PKA-activating signaling cascade. One of the PKA activators is IBMX, which increases 

cellular cAMP levels by inhibiting PDE activity (Chen et al., 1998). H89 is an inhibitor of PKA, 

competitive for ATP binding site on the C subunit, and thereby preventing phosphorylation 

reaction of target proteins (Murray, 2008). In order to support our findings, it was decided to 

conduct bioluminescent reporter assay with subsequent SB analysis to test the effects of IBMX 

and H89 on the replication of the HPV5-Nluc genome. 

For the first part of the experiment, U2OS cells were transfected with the HPV5-Nluc genome, 

pFLAG-CMV-4 empty vector and the pFLAG-PKA constructs. Next day, H89 or DMSO were 

added to the cells. For the second part of the experiment, U2OS cells were transfected with the 

HPV5-Nluc plasmid only and treated with IBMX, H89 and DMSO (as a negative control). The 

cells were incubated for 3 days and analyzed using Nluc assay and SB. It has been established 

that the amount of emitted light is proportional to Nluc gene expression levels and also it 

correlates well with HPV5-Nluc copy number in cells. Nluc activity was normalized to AP 

levels in order to correct for probable variations caused by factors such as possible toxicity of 

the used chemicals resulting in reduced amount of the treated cells. For SB assay, 5 μg of total 

DNA was linearized with SacI and treated with DpnI. Filter with the transferred from agarose 

gel DNA was hybridized with the radioactively labelled HPV5 probe and exposed to the X-ray 

film. The experiment was repeated twice. 

The results from the first part of the experiment are shown in Figure 9A. Over-expression of 

PKAwt suppressed HPV5-Nluc genome replication more than 90%, while PKA(T197A) and 

PKA(K72R) were less efficient inhibiting HPV5-Nluc replication approximately 50% probably 

due to their residual catalytic activity. Interestingly, H89 slightly stimulated the replication of 

HPV5-Nluc inhibited by the mutant PKA C proteins but could not overcome the influence of 

the over-expressed catalytically active PKA C protein. However, inhibition of the endogenous 

PKA catalytic activity with H89 resulted in increased HPV5-NLuc replication (Figure 9A, 

column 1 and 2). Generally, the levels of the normalized Nluc activity correlated with the results 

obtained using HPV5 genome and SB assay (Figure 8A). 
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The second part of the experiment allowed to evaluate the influence of the endogenous PKA 

activity on HPV5-Nluc replication efficiency. The results of Nluc assay showed approximately 

2-fold decrease in HPV5-Nluc copy number, when endogenous PKA catalytic activity was 

potentiated with IBMX (Figure 9B). In contrast, endogenous PKA activity inhibition with H89 

resulted in increased replication of the viral genome. These results demonstrate that the absence 

of active PKA benefits successful HPV5 replication. 

In order to additionally check, if Nluc activity measurements correlate with the replicated HPV5 

DNA amount in cells, SB analysis was conducted. The obtained SB results are entirely 

congruent with Nluc assay findings (Figure 9C). 

 

Figure 9. Replication signal of HPV5-Nluc. U2OS cells were transfected with HPV5-Nluc genome and pFLAG-

CMV-4 vector, pFLAG-PKA, pFLAG-PKA(T197A), or pFLAG-PKA(K72R) constructs, if indicated. Next day 

after transfection, the cells were treated with DMSO, 5 μM H89 or 500 μM IBMX. The treatment was repeated 

every day. The cells were incubated for 3 days.  

A, B: Nluc activity was measured in triplicates and normalized to AP phosphatase activity. Normalized Nluc 

activity of the control cells was set as 100%, and the data of other samples are presented as percentage of the 

control (the average mean +/- SD (n=2)). RLU: relative luminescence unit.  

C: DNA was extracted, linearized with SacI and treated with DpnI. Pictures were captured with short and long 

exposure time to better distinguish the differences in the signals. 
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The results obtained in these experiments suggest that both treatments, either activation of 

endogenous PKA with IBMX or PKAwt over-expression, inhibited HPV5 genome replication 

in U2OS cells, which can be observed as decreased Nluc signals or decreased replicated HPV5 

DNA amount. It can be concluded that PKA kinase activity regulates negatively HPV5 

replication. Taken together, our data suggest the PKA activators as a potential tool for 

modulating HPV5 infection.  

2.3.6 Mechanism of activation of HPV18 replication in response to over-expression of 

PKAwt protein 

It is known that HPV itself encodes protein for the repression of viral replication, such as 

regulatory protein E2 and its truncated form E8^E2, which is a powerful transcriptional 

repressor, with even stronger repressive effect than E2-TA protein (Stubenrauch et al., 2000). 

Taking into account the data of the previous studies showing that some cellular kinases are able 

to regulate the viral replication process and the results of our SB assay showing the increase in 

the amount of HPV18 DNA in U2OS cells in response to PKAwt over-expression, one of the 

possible mechanisms of the over-expressed PKAwt-mediated activation of HPV18 replication 

could be linked to a down-regulation of E8^E2 transcript. 

To test this hypothesis, it was essential to analyze the level of the viral transcripts synthesized 

in response to over-expressed PKA C proteins. U2OS cells were transfected with the 

appropriate amount of pFLAG-CMV-4 vector, pFLAG-PKA constructs and the HPV18E1- 

genome. Due to deficiency of the E1 expression, HPV18E1- genome is transcriptionally active 

but not able to replicate and produce replicons that can later interfere with RT-PCR. In 48 h 

after the transfection, total RNA was extracted, treated with Turbo DNase and used for cDNA 

synthesis. The quantitative RT-PCR (qPCR) was performed using primers 6-9 (Appendix 1. 

Primers used in the study). The mRNA expression levels of the viral E1, E2, E1^E4 and E2^E8 

transcripts were analyzed in triplicates and normalized to GAPDH mRNA expression levels 

measured using primers 5 (Appendix 1. Primers used in the study). The experiment was 

repeated two times. 

The results of qPCR are shown in Figure 10. Expression levels of the transcripts encoding the 

full-length viral replication proteins E1 and E2 remained similar to the control in all samples. 

In addition, the amount of E1^E4 - alternative transcript shown to be essential for effective 

amplification of viral DNA (Davy et al., 2002; Doorbar et al., 1991) is increased in the presence 

of the over-expressed PKAwt. In addition, the amount of E8^E2 transcript decreased more than 

95%, while PKAwt was over-expressed. It can be concluded that PKA activity may influence 
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the splicing, stability or production of E8^E2 transcript, which encodes the powerful 

transcriptional repressor, and the lack of the E8^E2 repressor results in increased HPV18 

replication. 

 

Figure 10. HPV18 transcripts synthesized in 48 h in U2OS cells. U2OS cells were transfected with HPV18E1- 

genome and pFLAG-CMV-4 vector, pFLAG-PKAwt and pFLAG-PKA(K72R) plasmids. Total RNA was 

extracted, and cDNA was synthesized. Expression levels of HPV18E1- transcripts were analyzed using qPCR in 

triplicates and normalized to GAPDH mRNA expression levels. Expression level of each transcript was set as 1 in 

the control cells transfected with the empty vector, and the data from other samples were calculated relative to the 

control. The data are presented as the average mean +/- SD of two independent experiments.  

To test, whether the reason for the increased HPV18 replication in response to PKAwt over-

expression is only due to down-regulation of the E8^E2 transcripts or it is a combined effect of 

some independent mechanisms, the replication efficiency of HPV18E8- genome in the presence 

or absence of over-expressed PKAwt was analyzed and compared with that of the HPV18 

genome. U2OS cells were transfected with different amounts of HPV18 or HPV18E8- 

minicircles (250 and 400 ng) and pFLAG-PKAwt plasmid or empty vector. The HPV18E8- 

genome contains a point mutation in the E8^E2 ATG and therefore it is deficient for E8^E2 

expression and allows to monitor the viral replication in the absence of E8^E2 repressor. Total 

DNA was extracted from U2OS cells 3 d after the transfection, linearized with BglI, treated 

with DpnI restriction enzymes and subjected to SB analysis (Figure 11A). The SB signals were 

quantified (Figure 11B). The experiment was repeated twice. 

The obtained results showed that PKAwt over-expression up-regulated the HPV18 replication 

approximately 22-fold. HPV18E8- replication signal was approximately 30-fold higher than 

that of HPV18. Interestingly, PKAwt over-expression was able to enhance HPV18E8- genome 
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replication, but only 1.5-fold. Taken together, it can be concluded that PKA activity may be 

involved in positive regulation of HPV18 replication because it decreases the amount of E8^E2 

transcript. However, it appears to be a mixed-type mechanism because of additional PKA-

mediated positive effect on HPV18E8- replication. Further research is needed for the better 

understanding of the PKA-mediated regulation of HPV18 replication. 

 

Figure 11. A: Replication signal of the HPV18 and HPV18E8- in the U2OS cells transfected with 250 and 400 ng 

of HPV18 or HPV18E8- genomes, pFLAG-CMV-4 vector or pFLAG-PKAwt construct. DNA was extracted 3 d 

after the transfection, linearized with BglI and treated with DpnI, and analyzed using SB.  

B: SB signals shown in the panel A were quantified. The signal of the control sample transfected with HPV18 and 

empty vector was set as 100%. Data from other samples are shown as a percentage of the control. 
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2.4. Discussion 

HPV infections cause approximately 600000 cases of cervical, vulvar, vaginal, penile, anal and 

oropharyngeal cancers every year, as well as benign diseases such as genital warts (Arbyn et 

al., 2012). HPV infections are strongly associated with sexual transmission but the nonsexual 

modes (e.g. skin-to-skin contacts) are also common (Sun‐Kuie et al., 1990). The connection 

between host cell protein kinases and HPV life cycle has been previously demonstrated (Piirsoo 

et al., 2019; Sekhar and McBride, 2012; Xie et al., 2017). It was shown that phosphorylation 

may influence viral replication both negatively and positively. An ubiquitously expressed 

kinase PKA has many targets for phosphorylation. Bioinformatic analysis suggests that 

replication proteins E1 and E2 of different HPV types has several putative PKA consensus sites 

R-R/K-X-S/T (Kennelly and Krebs, 1991). These data suggest that PKA can affect activity of 

viral proteins and participate in regulation of HPV replication. The characterization of potential 

association between PKA and HPV proteins may help to learn more about the regulation of the 

HPV life cycle in host cells and give a clue for developing new drugs against HPV infections. 

Uncovering the correlation between PKA activity and viral replication, and particularly, 

understanding if there is any HPV type-specificity, can help to get deeper insight of replication 

strategies of LR and HR HPVs.  

The research of viral replication generally requires sophisticated, expensive and time-

consuming methods; therefore, obtaining that kind of information is complicated. This study 

uses the advantages of easily cultured U2OS cells that support replication of many HPV types 

(Geimanen et al., 2011). In the present study, we have found that two different PKA C, 

PRKACA and PRKACB, are expressed in the U2OS cells as well as in HPV31-positive human 

keratinocytes. Since the proteins encoded by these genes share very high rate of homology 

(92%) that suggest their functional similarity, only one of them, PKACα, has been chosen for 

further experiments.  

This study introduces plasmids, to express FLAG-tagged PKACα wild type and its two 

catalytically deficient mutants (T197A, K72R), and compares the influence of their over-

expression on replication levels of different HPV types. The following HPVs have been chosen 

for analysis: HPV5 as an oncogenic β HPV associated with different types of skin cancers, 

HPV11 as one the most frequent LR α-HPVs responsible for development of genital warts, and 

HPV18 as a widespread oncogenic or HR α-HPV associated with cancers of mucosal epithelia. 

As a result, the replication of HPV5 and HPV18 was found to be PKA-dependent, while the 

HPV11 replication was found to be independent of PKA activity in U2OS cells. HPV5 
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replication level was severely decreased, while PKAwt was over-expressed or endogenous 

PKA activity was potentiated with PKA activator IBMX. We have also described that 

suppression of PKA activity with H89 resulted in increased level of the HPV5 replication. 

Therefore, PKA activators and inhibitors can be considered as a possible tool for the regulation 

of the HPV5 replication.  

According to Sekhar and McBride (Sekhar and McBride, 2012), PKA may be a positive 

regulator of the HPV8 E2 protein phosphorylating it in the highly conserved serine residue at 

position 253 (S253). HPV8 and HPV5 both belong to β genus and, according to the Multiple 

Sequence Alignment, both have conserved R-XX-S kinase motif with the serine in 253rd 

position. Therefore, the results of this article somewhat contradict our findings. HPV8 E2 

protein has increased half-life due to the phosphorylated S253. This phosphorylation also 

promotes partition of the viral genome to daughter cells due to more efficient binding of the 

phosphorylated E2 (S253) to cellular chromatin. However, the authors failed to demonstrate 

convincingly that this phosphorylation is mediated by PKA because of the presence of some 

residual amount of the phosphorylated E2 in the CV-1 cells treated with PKA inhibitor H89. In 

addition, this study failed to find the connection between the phosphorylated S253 and HPV8 

replication, showing that S253 mutation to alanine (S253A) did not influence the ability of E2 

protein to support viral replication in U2OS cells. Therefore, although the S253 

phosphorylation might be crucial for regulation of E2 proteins of β HPVs, direct association of 

this phosphorylation with PKA and HPV replication efficiency has not been demonstrated. 

Taken together the results of both Sekhar and McBride and our study, it can be concluded that 

either another protein kinase may be responsible for the S253 phosphorylation or PKA-

mediated regulation of HPV5 and HPV8 replication differs, since PKA inhibits the HPV5 

replication. However, further studies are required to investigate the exact molecular mechanism 

of PKA-mediated suppression of the HPV5 replication. 

In contrast to HPV5, PKA catalytic activity intensifies HPV18 replication suggesting that PKA 

may be a positive regulator of the HPV18 life cycle. We have shown that up-regulation of the 

HPV18 replication in response to PKAwt over-expression is associated with decreased amount 

of the E8^E2 transcript. However, the replication of HPV18E8- mutant genome deficient for the 

E8^E2 expression was also stimulated by the over-expressed PKA, but to less extent compared 

to wt HPV18. PKA-mediated up-regulation of HPV18E8- replication suggests the involvement 

of some yet unknown additional mechanism(s) along with the observed down-regulation of the 

E8^E2 expression.  
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It can be hypothesized that PKA acts via activation of CREB-, ATF-1- or CREM-mediated 

pathway, which either inactivates or blocks the promoter p1193 required for the synthesis of 

HPV18 E8^E2 transcript. This group of transcription factors (CREB family) participate in 

activation or inhibition of their target gene expression via binding to either palindromic full 

(TGACGTCA) or half CRE (TGACG/CGTCA) sites (Montminy, 1997). The activated PKA 

phosphorylates and promotes the binding of CREB family transcription factors to the CRE 

region, which regulates the expression of its downstream targets (Sakamoto and Frank, 2009). 

There are three CRE half-sites in the HPV18 genome (PaVE accession number: gi|60975): 761 

(CGTCA), 1015 and 3440 (TGACG) nucleotides (numbering is given from the 1st 5` nucleotide 

of the CREB consensus site). The E8^E2 transcript is initiated from p1193 promoter (ranging 

1142-1319 nucleotides) and is spliced as -1357/3434 (Toots et al., 2014). One of the CRE half-

sites is located near the p1193 promoter. Binding of the CREB family transcription factors in 

the proximity of this promoter may influence it activity and somehow interfere with the 

expression of E8^E2 transcriptional repressor. 

In the HPV5 genome, there are four CRE half-sites (PaVE accession number: gi|333071): 

nucleotides 962, 1386, 3241 (TGACG) and 6588 (CGTCA) (numbering is given from the 1st 5` 

nucleotide of the CREB consensus site). One of these sites locates near the p840 promoter 

mapped to 708-915 nucleotides. It has been demonstrated that the HPV5 promoter p840 is 

involved in expression of the early genes encoding the E1 and E2 replication proteins 

(Sankovski et al., 2014). It can be hypothesized that inhibition of the HPV5 replication in 

response to the catalytically active PKA occurs because of the binding of the CREB family 

transcription factors to p840 promoter that in turn inhibits the expression of the regulatory 

proteins E1 and E2. In contrast to HPV5 and HPV18, no CRE consensus sequences have been 

found in the HPV11 genome, which can explain the observed inability of PKA to regulate the 

HPV11 replication. Also, PKA can influence HPV replication via direct phosphorylation and 

regulation of the viral E1 and E2 proteins or their interacting partners involved in regulation of 

HPV replication. However, to make these kinds of conclusions, further research is needed. 

The obtained results are important for better understanding the life cycle of different types of 

HPVs. Furthermore, it can be speculated that the PKA effects are HPV type-dependent (if PKA-

mediated effects are different in LR and HR types) or tropism-dependent (if PKA-mediated 

effects are different in mucosal and cutaneous HPVs); however, more experiments are needed 

to make this kind of conclusions. Most certainly, the long-term goal of this project is to get 

deeper insight the interactions between the host cell factors such as PKA, and different HPV 

types to develop novel strategies for effective treatment of HPV infections. 
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CONCLUSION 

The present research was focused on the ability of PKACα subunit to influence the level of 

replication of HPV5, HPV11 and HPV18. The study resulted in the following conclusions: 

 The mutant PKACα subunits carrying the point mutations in the amino acid residues 

T197 and K72 exhibit only minimal residual catalytic activity, and therefore may be 

used as a negative control for over-expression studies investigating the PKA catalytic 

activity-dependent processes. 

 IBMX-mediated stimulation of the endogenous PKA catalytic activity or over-

expression of catalytically active PKA results in strong inhibition of the HPV5 genome 

replication.  

 The replication of HPV11 is not PKA-dependent. 

 The over-expressed PKA up-regulates the HPV18 genome replication in a kinase 

activity-dependent manner.  

 PKA phosphorylation activity influences HPV18 replication using a mixed-type 

activation mechanism. We show that PKA-mediated activation of the HPV18 

replication occurs mainly due to down-regulation of the E8^E2 transcript expression 

that encodes the strong transcriptional repressor negatively regulating the HPV18 

replication.  

 

  



 46 

Mõnede HPV tüüpide replikatsioon on moduleeritud cAMP-sõltuva proteiinkinaasi 

aktiivsuse poolt 

Olga Sahharov 

RESÜMEE 

Inimese papilloomiviirused (HPV) on kaheahelalise DNA genoomiga viirused, mis nakatavad 

basaalseid keratinotsüüte nahas või limaskestades ja levivad mikrokahjustuste kaudu. HPV 

kodeerib tüüpiliselt kuute varajast ja kahte hilist valku. Varajased valgud vastutavad viiruse 

replikatsiooni regulatsiooni ja nakatunud raku rakutsükli muutuste eest. Hilised valgud 

moodustavad kapsiidi ja vastutavad rakust väljumise eest. HPV alatüüpe jagatakse kahte 

kategooriasse vastavalt viiruse onkogeensele potentsiaalile: „madalariski“ tüübid põhjustavad 

tüükaid, „kõrge riskiga“ HPV-d tekitavad kaela-, pea-, naha- ja anogenitaalpiirkonna vähki, 

millest kõige levinum on emakakaelavähk.  

Üheks terapeutiliseks sihtmärgiks on HPV replikatsioonitsükli inhibeerimine, aga selle 

strateegia kasutamiseks on vaja lähemalt uurida molekulaarseid interaktsioone peremeesraku ja 

viiruse vahel. Proteiinkinaasid reguleerivad erinevaid bioloogilisi protsesse rakkudes, muutes 

märklaudvalkude aktiivsust. HPV E1 ja E2 regulaator-valgud sisaldavad mitut 

proteiinkinaaside konsensus saiti, sealhulgas ka proteiinkinaas A (PKA) oma. Antud 

magistritöö eesmärgiks oli teada saada, kuidas PKA katalüütiline subühik α (PKACα) mõjutab 

erinevate HPV alatüüpide replikatsiooni efektiivsust U2OS rakkudes. Valitud tüüpideks oli 

HPV5, HPV11 ja HPV18, mis kuuluvad erinevatesse klassidesse ja riskirühmadesse.  

Uurimistöö raames loodi plasmiidid, mis kodeerivad FLAG-märgisega PKACα subühikut 

(PKAwt) ja tema kahte katalüütiliselt inaktiivset mutanti (PKA(T197A) ja PKA(K72R)). Töö 

esimene osa kirjeldab viiruse elutsüklit, HPV valkude funktsioone ja PKA rolli raku- ja viiruse 

elutsüklis. Eksperimentaalne osa kirjeldab plasmiidide loomist, PKA valkude ekspressiooni 

taseme ja bioloogilise aktiivsuse analüüsi ja nende üle-ekspressiooni mõju erinevate HPV 

tüüpide replikatsioonile. Leiti, et PKA aktiivsus ei mõjuta HPV11 replikatsiooni U2OS 

rakuliinis, kuid HPV5 ja HPV18 replikatsioonid sõltuvad PKA aktiivsusest. Endogeense PKA 

aktivaatori IBMX (3-isobutüül-1-metüül-ksanteen) või aktiivse PKA üle-ekspressiooni 

tagajärjel oli HPV5 replikatsioon inhibeeritud, kuid üle-ekspresseeritud PKA suurendas HPV18 

replikatsiooni aktiivsust. Töö selgitab ka, et PKA fosforüleemine mõjutab HPV18 

replikatsiooni segatüüpi mehhanismi kaudu, kus üheks osaks on E8^E2 transkriptsioonilise 

repressori ekspressiooni vähendamine. Antud töö on tehtud Tartu Ülikooli 

Tehnoloogiainstituudis molekulaarse viroloogia uurimisrühmas. 
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SUPPLEMENTARY DATA 

Appendix 1. Primers used in the study 

№ Gene Gene bank 

accession number 

Primer Sequence 5’-3’ Product 

length 

1 PRKACA NM_001304349.1 

NM_002730.4 

NM_207518.3 

PKA A1 

F HindIII 

AAGCTTGGCAACGCCGC

CGCCGCCAAGA 

 

1064 

2 PKA A1 

R 

BamHI 

GGATCCCTAAAACTCAG

AAAACTCCTTG 

3 

 

PRKACA NM_001304349.1 

NM_002730.4 

NM_207518.3 

PKA A1 

T197A F 

GAAGGGCCGCACTTGGG

CCTTGTGCGGCACCCCT 

PKA A1 

T197A R 

AGGGGTGCCGCACAAGG

CCCAAGTGCGGCCCTTC 

4 PKA A1 

K72R F 

GAACCACTATGCCATGA

GGATCCTCGACAAACAG 

PKA A1 

K72R R 

CTGTTTGTCGAGGATCCT

CATGGCATAGTGGTTC 

5   GAPDH 

F 

CTCTCTGCTCCTCCTGTT

CGAC 

 

GAPDH 

R 

TGAGCGATGTGGCTCGG

CT 

6   HPV18 

E2 F 

GATAGTGGCTATGGCTG

TTC 

 

HPV18 

E2 R 

GCTGTTGTTGCCCTCTGT

G 

7   HPV18 

E1^E4 F 

CATTTACCAGCCCGACG

AG 

 

HPV18 

E1^E4 R 

GACGTCTGGCCGTAGGT

CTTTGC 
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8   HPV18 

E8^E2 

MIX1 F 

GATAGTGGCTATGGCTG

TTC 

 

HPV18 

E8^E2 

MIX 1 R 

GACGTCTGGCCGTAGGT

CTTTGC 

9   HPV18 

E8^E2 

MIX 2 F 

CTGAAGTGGAAGCAACA

CAG 

 

HPV18 

E8^E2 

MIX 2 R 

GACGTCTGGCCGTAGGT

CTTTGC 

10 PRKACA NM_001304349.1 

NM_002730.4 

NM_207518.3 

PKA A 

F1 and 

R1 

CTTATACATGGTCATGG

AGTAC and 

CTGTAGATGAGATCCAG

CGAG 

149 

11 PKA A 

F2 and 

R2 

CTACCCGCCCTTCTTCGC

AGAC and 

CAAAGCGCTTGGTGAGA

TCTAC 

142 

12 PRKACB 

 

NM_001242857.2 

NM_001242858.2 

NM_001242859.2 

NM_001242860.2 

NM_001242861.2 

NM_001242862.2 

NM_001300915.2 

NM_001300916.2 

NM_001300917.2 

NM_002731.3 

NM_182948.4 

NM_207578.3 

 

PKA B 

F1 and 

R1 

GGGTGAAATGTTTTCAC

ATC and 

GATCTCTGTAGATGAGG

TCTAG 

124 

13 PKA B 

F2 and 

R2 

GGCAGAACTTGGACATT

ATGTG and 

GGTTGGTCTGCAAAGAA

TGG 

151 
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14 PRKACG 

 

NM_002732.3 PKA G 

F1 and 

R1 

CTGCAGGTGGACCTCAC

CAAG and 

CGTCAAAGTTACTGGCA

TCCC 

168 

15 PKA G 

F2 and 

R2 

CTACAGCGCGTCGGAAG

GTTTAG and 

GAAGTCCGTCACCTGCA

GGTAG 

161 

16   pJET 1 F CGACTCACTATAGGGAG

AGCGGC 

 

pJET 2 R AAGAACATCGATTTTCC

ATGGCAG 

 

Explanatory note: yellow indicates the restriction sites.  
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