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Chapter 1

Introduction

1.1 Background

Some geometric phenomena of Banach spaces appear only in the infinite-
dimensional spaces. For example, there exist Banach spaces where every
slice of the unit ball has a diameter of 2; such spaces are said to have the
slice diameter 2 property (briefly, slice-D2P). Properties which imply that
all specific subsets of the unit ball, e.g., slices, nonempty relatively weakly
open subsets, and finite convex combinations of slices, have diameter 2 are
usually referred to as diameter 2 properties. Banach spaces with diame-
ter 2 properties reside on the other end of the spectrum from those with the
Radon–Nikodým property. This is because the unit ball of a Banach space
with the Radon–Nikodým property has slices of arbitrarily small diameter.
All reflexive Banach spaces, including all finite-dimensional spaces, have the
Radon–Nikodým property.

Moving even further away from the Radon–Nikodým property, we find the
diameter 2 property (briefly, D2P), the strong diameter 2 property (briefly,
SD2P), and the symmetric strong diameter 2 property (briefly, SSD2P). A
Banach space is said to have the D2P if every nonempty relatively weakly
open subset of the unit ball has diameter 2, it is said to have the SD2P if
every convex combination of slices of the unit ball has diameter 2, and it is
said to have the SSD2P if, given a finite number of slices of the unit ball,
there exists a direction such that all these slices contain a line segment of
length almost 2 in this direction. If a Banach space is a dual space, then
we also consider the weak˚ versions of these diameter two properties (w˚-
slice-D2P, w˚-D2P, w˚-SD2P, and w˚-SSD2P), where slices and weakly open
subsets in the above definitions are replaced by weak˚ slices and weak˚ open
subsets, respectively.

9



10 CHAPTER 1. INTRODUCTION

It was shown in [3] that every Banach space with the SSD2P has the SD2P.
An immediate consequence of Bourgain’s Lemma is that every Banach space
with the SD2P has the D2P. A Banach space with the D2P has the slice-D2P
because slices of the unit ball are relatively weakly open subsets of the unit
ball.

To the best of our knowledge, the study of the diameter 2 properties was
started in [30] by Nygaard and Werner, who showed that nonempty relatively
weakly open subsets of the unit ball in uniform algebras have diameter 2,
meaning that the uniform algebras have the D2P. Later, it was shown in [7]
that all M-embedded spaces have the D2P. A more systematic treatment of
diameter 2 properties can be found in [3] where also a survey of previous
results regarding this topic was given.

One of the most well-studied diameter 2 properties was derived from a
result by Daugavet, who showed in [11] that every compact operator T on
Cr0, 1s satisfies the equality }I ` T } “ 1 ` }T }, where I is the identity
operator. This equality is also known as the Daugavet equation. Other
examples of Banach spaces, for which the Daugavet equation holds for all
compact operators, followed shortly, e.g., L1r0, 1s (see [29]). A Banach space
is said to have the Daugavet property if every rank 1 operator on the space
satisfies the Daugavet equation. It is known (see [35]) that a Banach space
with the Daugavet property has the SD2P. However, there exist Banach
spaces with the Daugavet property but without the SSD2P and vice versa.

A Banach space has the SD2P if and only if its dual space is octahedral
(see [12] and [15], see also [8]). In [21], similar dual characterisations were
given for the D2P and the slice-D2P. A similar dual characterisation for the
SSD2P is currently unknown.

In this thesis, we study diameter 2 properties in the spaces of Lipschitz
functions with an emphasis on the (w˚-)SSD2P. One of the first papers to
appear on this topic was by Ivakhno, who showed in [23] that the space
of Lipschitz functions has the slice-D2P if the underlying metric space is
unbounded, not uniformly discrete, or Kn with n “ 2 or n “ 3. The latter
space Kn is the metric subspace of ℓ8 where the terms of the sequences
are nonnegative integers not greater than n. In [34], Procházka and Rueda
Zoca showed that the space of Lipschitz functions has the w˚-SD2P if and
only if the underlying metric space has a property they named the long
trapezoid property. In [20], the w˚-SSD2P was studied in the spaces of
Lipschitz functions. In that paper, the authors asked whether every space
of Lipschitz functions with the w˚-SD2P has even the w˚-SSD2P. In [10], it
was shown that the space of Lipschitz functions has the SSD2P whenever the
underlying metric space has infinitely many limit points or if it is discrete but
not uniformly discrete. A significant result in [13] gives a characterisation
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for the Daugavet property in the spaces of Lipschitz functions. Namely, it
was shown that the space of Lipschitz functions has the Daugavet property
if and only if the underlying metric space is a length space.

1.2 Summary of the thesis

The main aim of this thesis is to investigate diameter 2 properties in spaces of
Lipschitz functions with an emphasis on the (w˚-)SSD2P. A characterisation
of the w˚-SSD2P will be given for the space Lip0pMq in terms of the under-
lying metric space M and also in terms of the Lipschitz-free space FpMq.
The diameter 2 property, the strong diameter 2 property, and the symmet-
ric strong diameter 2 property are shown to be different for the spaces of
Lipschitz functions.

The thesis consists of four chapters which are organised as follows.
Chapter 1 gives historical background and a summary of the thesis, fol-

lowed by the notation and preliminaries used throughout the thesis.
In Chapter 2, we characterise the w˚-SSD2P for Lip0pMq in terms of the

metric of the underlying space M . We apply this characterisation to show
that the w˚-SSD2P is different from the w˚-SD2P for spaces of Lipschitz
functions, thereby answering a question posed in [20, Question 6.3]. This
chapter is mainly based on [32].

In Chapter 3, we characterise the w˚-SSD2P for Lip0pMq by a property
of its predual, the Lipschitz-free space FpMq. We call this new property
decomposable octahedrality and study its duality with the SSD2P in the
general context of Banach spaces. We show that, for a Banach space to
be decomposably octahedral, it is sufficient that its dual space has the w˚-
SSD2P. We give necessary and sufficient conditions for the absolute sum of
two Banach spaces to be decomposably octahedral and show that the space
CpKq of all continuous functions on a compact Hausdorff space K is never
decomposably octahedral. This chapter is mainly based on [33].

In Chapter 4, we solve some open problems regarding diameter 2 proper-
ties in spaces of Lipschitz functions by using the de Leeuw’s transform. We
show that the D2P, the SD2P, and the SSD2P are all different properties
for the spaces of Lipschitz functions and that the space Lip0pKnq has the
SSD2P for every n P N; these results answer two questions posed in [28]. We
also show that every local norm-one Lipschitz function is a Daugavet point,
thereby answering a question posed in [25]. This chapter is mainly based on
[22].
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1.3 Notation

In this thesis, we use standard Banach space notation.
We consider only nontrivial Banach spaces over the field of real numbers.

Given a Banach space X, we denote the closed unit ball, the unit sphere,
and the dual space of X by BX , SX , and X˚, respectively. For a subset A of
Banach space X, we denote the linear span and the closed linear span of A
by spanA and spanA, respectively.

Given a metric space M , a point x in M , and r ě 0, we denote by
Bpx, rq the open ball in M centred at x of radius r (we use the convention
Bpx, rq “ ∅ if r “ 0).

1.4 Preliminaries

We introduce some main notions and results used throughout the thesis. We
start by giving an overview of diameter 2 properties and their dual notions
in Banach spaces.

Diameter 2 properties in Banach spaces

Let X be a Banach space.

Definition 1.1. A slice of BX is a set of the form

Spx˚, αq – tx P BX : x˚
pxq ą 1 ´ αu

where x˚ P SX˚ and α ą 0.

If X is a dual space, then slices whose defining functional comes from
(the canonical image of) the predual of X are called weak˚ slices .

Definition 1.2 ([3] and [4], see also [9]). A Banach space X is said to have
the

p1q slice diameter 2 property (briefly, slice-D2P) if every slice of BX has
diameter 2;

p2q diameter 2 property (briefly, D2P) if every nonempty relatively weakly
open subset of BX has diameter 2;

p3q strong diameter 2 property (briefly, SD2P) if every convex combination
of slices of BX has diameter 2, i.e., the diameter of

řn
i“1 λiSi is 2

whenever n P N, λ1, . . . , λn ě 0 with
řn

i“1 λi “ 1, and S1, . . . , Sn are
slices of BX ;
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p4q symmetric strong diameter 2 property (briefly, SSD2P) if, for every
n P N, every family tS1, . . . , Snu of slices of BX , and every ε ą 0, there
exist f1 P S1, . . . , fn P Sn, and g P BX with }g} ą 1 ´ ε such that
fi ˘ g P Si for every i P t1, . . . , nu.

The following implications hold for these properties:

SSD2P ùñ SD2P ùñ D2P ùñ slice-D2P

The third implication holds because every slice of BX is a relatively weakly
open subset of BX . The second implication is a consequence of Bourgain’s
Lemma (see, e.g., [14, Lemma II.1]), which, in particular, says that every
nonempty relatively weakly open subset of BX contains a convex combination
of slices of BX . The first implication was proved in [3, Lemma 4.1].

The reverse implications do not hold in general, e.g., the space c0‘2c0 has
the D2P but not the SD2P (see, e.g., [5], [19], or [31]); a renorming of c0 with
the D2P but without the slice-D2P was constructed in [9]; the space L1r0, 1s

has the SD2P but not the SSD2P (see [4], for a proof see [20, Theorem 3.1
and Remark 3.3]).

If X is a dual space and the slices and weakly open subsets in Definition
1.2 are replaced by weak˚ slices and weak˚ open subsets, respectively, then
we consider the weak˚ versions of the defined properties (w˚-slice-D2P , w˚-
D2P , w˚-SD2P , and w˚-SSD2P). It is easy to see that if a dual Banach
space has an above-mentioned (non-weak˚) diameter 2 property then it also
has the corresponding weak˚ diameter 2 property. The reverse implication
does not hold in general. In [21], it was shown that the dual space of Cr0, 1s

has the w˚-SD2P but not the slice-D2P. Whether there exists a dual Banach
space which has the w˚-SSD2P but not the SSD2P is currently unknown to
us.

By similar reasoning to the one after Definition 1.2, it can be shown that
the following implications hold:

w˚-SSD2P ùñ w˚-SD2P ùñ w˚-D2P ùñ w˚-slice-D2P

Again, the reverse implications do not hold in general. This is due to the
known fact that a Banach space X has the slice-D2P (respectively, D2P,
SD2P, SSD2P) if and only if its bidual X˚˚ has the w˚-slice-D2P (respectively,
w˚-D2P, w˚-SD2P, w˚-SSD2P).

Some diameter 2 properties have a useful dual characterisation.

Definition 1.3 (see [12] and [21]). A Banach space X is said to be octahedral
(briefly, OH ) if, whenever n P N, x1, . . . , xn P SX , and ε ą 0, there exists a
y P SX such that

}xi ` y} ą 2 ´ ε.
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It is known (see [12] and [15], for a detailed proof see, e.g., [8] or [21]) that a
dual Banach space X˚ has the w˚-SD2P if and only if X is OH. The following
properties were introduced in [21] to give a similar predual characterisation
for the w˚-D2P and the w˚-slice-D2P.

Definition 1.4 (see [21, Definition 2.2]). A Banach space X is said to be

p1q locally octahedral (briefly, LOH ) if, for every x P SX and every ε ą 0,
there exists a y P SX such that

}x ˘ y} ě 2 ´ ε;

p2q weakly octahedral (briefly, WOH ) if, for every finite-dimensional sub-
space E of X, every x˚ P BX˚ , and every ε ą 0, there exists a y P SX

such that, for all x P E,

}x ` y} ě p1 ´ εq
`

|x˚
pxq| ` }y}

˘

.

In [21, Theorem 3.1], it was shown that X˚ has the w˚-slice D2P if and only
if X is LOH. In [21, Theorem 3.3], it was shown that X˚ has the w˚-D2P if
and only if X is WOH. It follows that

p1q X has the SD2P if and only if X˚ is OH;

p2q X has the D2P if and only if X˚ is WOH;

p3q X has the slice-D2P if and only if X˚ is LOH.

Clearly

OH ùñ WOH ùñ LOH,

and the reverse implications do not hold in general.
One of the most well-studied diameter 2 properties is the following.

Definition 1.5. A Banach space X is said to have the Daugavet property if,
for every rank 1 operator T : X Ñ X, one has

}I ` T } “ 1 ` }T } (1.1)

where I denotes the identity operator.
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This property stems from a remarkable result by Daugavet, who showed in
[27] that the Banach space Cr0, 1s has this property. In fact, the result
by Daugavet stated that the equality (1.1), also known as the Daugavet
equation, holds for every compact operator T . It was shown in [26] that
if every rank 1 operator satisfies the equation, then so does every weakly
compact operator. Other examples of Banach spaces with the Daugavet
property followed shortly after Daugavet’s paper, e.g., L1r0, 1s (see [29]).
The following geometric characterisation of the Daugavet property was given
by Werner in [37]: X has the Daugavet property if and only if, for every
x P SX , every slice S of BX , and every ε ą 0, there exists a y P S such
that }x ´ y} ě 2 ´ ε. This characterisation was the inspiration behind the
following notion: an element x P SX is a Daugavet-point , if, given a slice S
of BX and an ε ą 0, there exists a y P S with }x ´ y} ą 2 ´ ε (see [1]). A
Banach space with the Daugavet property has the SD2P and is also OH (see
[35, proof of Lemma 3], see also [3, Theorem 4.4]). The Daugavet property
does not imply the SSD2P because, as previously stated, the space L1r0, 1s

does not have the SSD2P.
The study of diameter 2 properties is closely related to that of almost

square Banach spaces.

Definition 1.6 ([2, Definition 1.1]). A Banach space X is said to be

p1q locally almost square (briefly, LASQ) if, for every x P SX and every
ε ą 0, there exists a y P SX such that

}x ˘ y} ď 1 ` ε;

p2q weakly almost square (briefly, WASQ) if, for every x P SX , there exists
a sequence pynq in SX such that }x ˘ yn} Ñ 1, }yn} Ñ 1, and yn Ñ 0
weakly;

p3q almost square (briefly, ASQ) if, for every finite subset tx1, . . . , xnu of
SX and every ε ą 0, there exists a y P SX such that

}xi ˘ y} ď 1 ` ε

for every i P t1, . . . , nu.

In [2, Theorem 2.8], it was shown that every ASQ Banach space is WASQ.
The reverse implication does not hold in general, for instance, the space
L1r0, 1s (more generally, every Cesàro function space) is WASQ but not ASQ
(see [2, Example 3.3]). Every WASQ Banach space is clearly LASQ. Whether
the converse of the latter statement holds is currently unknown to us.
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In [27], it was shown that every LASQ Banach space has the slice-D2P,
and that every WASQ Banach space has the D2P. In [2], it was shown that
every ASQ Banach space has the SD2P. In fact, by [4], every ASQ Banach
space even has the SSD2P. On the other hand, the Banach space Cr0, 1s has
the SSD2P (see, e.g., [4]) but is not LASQ (to see this, check the condition
for the constant function 1).

The relations between the above-mentioned diameter 2 properties and
almost square spaces can be summed up with the following diagram:

ASQ WASQ LASQ

SSD2P

Daugavet
property SD2P D2P slice-D2P

Spaces of Lipschitz functions and Lipschitz-free spaces

The main aim of this thesis is to study diameter 2 properties in the spaces
of Lipschitz functions with an emphasis on the (w˚-)SSD2P.

Recall that, given metric spaces pM,dMq and pN, dNq, a function f : M Ñ

N is a Lipschitz function if there exists an L ě 0 such that, for all x, y P M
with x ‰ y, one has

dN
`

fpxq, fpyq
˘

ď LdMpx, yq;

the smallest such L is called the Lipschitz constant of f .
Let M be a pointed metric space, that is, a metric space with a fixed

point 0. The space of Lipschitz functions Lip0pMq is the Banach space of all
Lipschitz functions f : M Ñ R with fp0q “ 0 equipped with the norm

}f} “ sup
␣ |fpxq ´ fpyq|

dpx, yq
: x, y P M, x ‰ y

(

,

i.e., }f} is the Lipschitz constant of f .
It is known that Lip0pMq is a dual space whose predual, the Lipschitz-free

space, also known as the Arens–Eells space, can be defined as the subspace
FpMq “ spantδx : x P Mu of Lip0pMq˚ where xf, δxy “ fpxq for every f P

Lip0pMq. The mapping δ : M Ñ FpMq,

δpxq “ δx for all x P M ,
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is an isometric embedding. The Lipschitz-free space is uniquely characterised
(up to linear isometry) by the following universal property.

Proposition 1.7. Let M be a pointed metric space. For every Banach space
X and every Lipschitz function f : M Ñ X with fp0q “ 0, there exists a
unique linear mapping rf : FpMq Ñ X such that rf ˝ δ “ f and } rf} is equal
to the Lipschitz constant of f .

Using this universal property, one can see that Lipschitz-free spaces pro-
vide a canonical linearisation of Lipschitz functions between (pointed) met-
ric spaces. More precisely, let M and N be pointed metric spaces and let
f : M Ñ N be a Lipschitz function with fp0q “ 0, then there exists a unique
linear map rf : FpMq Ñ FpNq such that } rf} is equal to the Lipschitz constant
of f and the following diagram commutes:

M N

FpMq FpNq

δM

f

δN

rf

For x, y P M , it is known that }δx ´ δy} “ dpx, yq. If x, y P M with x ‰ y,
then we will denote by mx,y the norm-one element δx´δy

dpx,yq
; we will often refer

to such elements as elementary molecules . It is not hard to verify that if
µ P spantδx : x P Mu, then

}µ} “ inf
␣

n
ÿ

i“1

λi : µ “

n
ÿ

i“1

λimxi,yi , xi, yi P M, xi ‰ yi, n P N
(

where the infimum is taken over all expressions of µ as a linear combination
of elementary molecules mx,y.

An important and well-known result in the theory of Lipschitz functions
is McShane’s extension theorem which says that if N is a subset of M and
f : N Ñ R is a Lipschitz function with the Lipschitz constant L, then there
is an extension to a Lipschitz function M Ñ R with the same Lipschitz con-
stant L. Moreover, there exists the smallest and the greatest such extensions
qf and pf , respectively; they are given by the formulae

qfpyq “ suptfpxq ´ Ldpx, yq : x P Nu for all y P M

and
pfpyq “ inftfpxq ` Ldpx, yq : x P Nu for all y P M.
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For a thorough treatment of spaces of Lipschitz functions and Lipschitz-
free spaces, we refer the reader to [16], [17], and [36].

The diameter 2 properties of spaces of Lipschitz functions have been stud-
ied in a number of papers. In [23], Ivakhno proved that if a metric space M is
unbounded or not uniformly discrete, or M “ K2 or M “ K3, then the space
Lip0pMq has the slice-D2P. Recall that M is said to be uniformly discrete if
inftdpx, yq : x, y P M, x ‰ yu ą 0. The space Kn is the metric subspace of ℓ8

where the terms of the sequences are nonnegative integers not greater than
n. In [34], Procházka and Rueda Zoca characterised the octahedrality of the
Lipschitz-free space FpMq by the following property of the metric space M .

Definition 1.8. A metric space M is said to have the long trapezoid property
(briefly, LTP) if, for every ε ą 0 and every finite subset N of M , there exist
elements u, v P M with u ‰ v satisfying, for all x, y P N ,

p1 ´ εq
`

dpx, yq ` dpu, vq
˘

ď dpx, uq ` dpy, vq.

More precisely, they showed that the following theorem holds.

Theorem 1.9 ([34, Theorem 3.1]). Let M be a pointed metric space. The
following statements are equivalent:

(i) Lip0pMq has the w˚-SD2P;

(ii) FpMq is OH;

(iii) M has the LTP.

The Daugavet property in the spaces of Lipschitz functions and Lipschitz-
free spaces has been extensively studied. The following is a recent result by
Avilés and Martínez-Cervantes.

Theorem 1.10. Let M be a complete metric space. Then the following
assertions are equivalent:

(i) M is length;

(ii) Lip0pMq, i.e., FpMq˚, has the Daugavet property;

(iii) FpMq has the Daugavet property;

(iv) FpMq has the strong diameter 2 property;

(v) FpMq has the diameter 2 property;

(vi) FpMq has the slice diameter 2 property;
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(vii) the unit ball of FpMq does not have strongly exposed points;

(viii) M has property pZq.

This result appears in [6, Theorem 1.5]. In fact, the main contribution of [6]
was the implication (viii)ñ(i). The implications (iii)ñ(i) and (vii)ô(viii)
were already obtained in [13], and (i)ñ(ii) and (i)ñ(viii) were obtained in
[24]. The implications (ii)ñ(iii)ñ(iv)ñ(v)ñ(vi)ñ(viii) hold in the more
general setting when FpMq is replaced with any Banach space.

It was shown in a recent preprint that the Lipschitz-free space FpMq is
LASQ if and only if M is length, but that FpMq is never ASQ [18, Theo-
rems 3.1 and 4.1]. It is unknown to us if the Lipschitz-free space FpMq is
WASQ whenever M is length. It is also unknown to us if there are Lipschitz-
free spaces with the SSD2P.





Chapter 2

Weak-star symmetric strong
diameter two property in spaces
of Lipschitz functions

The symmetric strong diameter 2 property first appeared in [3] but was
studied more extensively in [4], [21], [10], and [28]. We give a brief overview
of the results pertaining to our study of the property for the space Lip0pMq

in terms of the underlying metric space M . This chapter is based on [32].
Let M be a pointed metric space. It is well known that a dual Banach

space X˚ has the w˚-SD2P if and only if (the norm of) X is octahedral ([12],
[15], for a proof, see, e.g., [8] or [21]). Therefore, the space Lip0pMq has
the w˚-SD2P if and only if the norm of FpMq is octahedral. Recall that a
metric space M is said to have the long trapezoid property (briefly, LTP) if,
for every finite subset N of M and every ε ą 0, there exist elements u, v P M
with u ‰ v satisfying, for all x, y P N ,

p1 ´ εq
`

dpx, yq ` dpu, vq
˘

ď dpx, uq ` dpy, vq.

In [34, Theorem 3.1], it was shown that the norm of FpMq is octahedral if
and only if the metric space M has the LTP. Therefore, the space Lip0pMq

has the w˚-SD2P if and only if M has the LTP. In this chapter, we give a
similar characterisation to the weak˚ symmetric strong diameter 2 property.

Definition 2.1. A dual Banach space X˚ is said to have the weak˚ symmetric
strong diameter 2 property (briefly, w˚-SSD2P) if, for every n P N, every
family tS1, . . . , Snu of w˚-slices of BX , and every ε ą 0, there exist f1 P

S1, . . . , fn P Sn, and g P BX˚ with }g} ą 1 ´ ε such that fi ˘ g P Si for every
i P t1, . . . , nu.

21
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It is known that in general the w˚-SSD2P is a strictly stronger property than
the w˚-SD2P (see, e.g., [20]). In [20, Theorem 5.7] it was shown that the
space Lip0pMq has the w˚-SSD2P if at least one of the following conditions
holds for space M :

(1) M is unbounded;

(2) M is not uniformly discrete;

(3) M is a discrete metric space;

(4) M “ Kn, where n P N and the space Kn is the metric subspace of ℓ8

where the terms of the sequences are from the set t0, 1, . . . , nu.

However, it remained open whether the w˚-SD2P and the w˚-SSD2P
are indeed different for the spaces of Lipschitz functions [20, Question 6.3].
We answer this question by defining a metric space M for which the space
Lip0pMq has the w˚-SD2P but not the w˚-SSD2P. Moreover, we characterise
the w˚-SSD2P for the space Lip0pMq in terms of the metric of the underlying
space M . More precisely, we prove Theorem 2.3, which says that Lip0pMq

has the w˚-SSD2P if and only if M enjoys the following property.

Definition 2.2. We say that a metric space M has the strong long trapezoid
property (briefly, SLTP) if, for every finite subset N of M and every ε ą 0,
there exist u, v P M with u ‰ v satisfying, for all x, y P N ,

p1 ´ εq
`

dpx, yq ` dpu, vq
˘

ď dpx, uq ` dpy, vq. (2.1)

and, for all x, y, z, w P N ,

p1 ´ εq
`

2dpu, vq ` dpx, yq ` dpz, wq
˘

ď dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.
(2.2)

We then apply Theorem 2.3 to show that, for spaces of Lipschitz functions,
the w˚-SSD2P is a strictly stronger property than the w˚-SD2P: Examples
2.5 and 2.6 provide metric spaces which have the LTP but not the SLTP.

A question that arises from the definition of the SLTP is whether the
inequality (2.2) implies (2.1). Example 2.7 shows that this is not the case:
it provides a metric space M for which (2.2) holds for every finite subset N ,
but which fails the LTP.

We finish the chapter by showing that any infinite subset of ℓ1, viewed as
a metric space, has the SLTP (Example 2.8).
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2.1 Main result

Theorem 2.3. Let M be a pointed metric space. The following statements
are equivalent:

(i) Lip0pMq has the w˚-SSD2P;

(ii) M has the SLTP.

For part (ii)ñ(i) of the theorem it is convenient to use the following
lemma, which we will also make use of in Chapter 4 in the proof of Theorem
4.7.

Lemma 2.4. Let N be a subset of M , let ε ą 0, and let h1, . . . , hn P Lip0pMq

with }hi} ď 1 ´ ε for every i P t1, . . . , nu. If there exist u, v P M with
u ‰ v satisfying inequalities (2.1) and (2.2) for all x, y P N , then there exist
functions f1, . . . , fn, g P Lip0pMq satisfying

• fi|N “ hi|N for every i P t1, . . . , nu;

• g|N “ 0 and }g} ě 1 ´ ε;

• }fi ˘ g} ď 1 for every i P t1, . . . , nu.

Proof. Assume that there exist u, v P M with u ‰ v, satisfying the inequali-
ties (2.1) and (2.2) for all x, y, z, w P N . Setting

r0 “
1

2
inf

x,yPN

`

dpx, uq ` dpy, uq ´ p1 ´ εqdpx, yq
˘

and
s0 “

1

2
inf

z,wPN

`

dpz, vq ` dpw, vq ´ p1 ´ εqdpz, wq
˘

,

one has r0 ` s0 ě p1 ´ εqdpu, vq. Thus, there exist r, s ě 0 with r ď r0 and
s ď s0 such that

r ` s “ p1 ´ εqdpu, vq.

We may assume that r ą 0. Define a function g : M Ñ R by

gpxq “

$

’

&

’

%

r ´ dpx, uq if x P Bpu, rq;
´s ` dpx, vq if x P Bpv, sq;
0 otherwise.

Set B “ Bpu, rq Y Bpv, sq and observe that g|N “ 0 because N X B “ H.
One has }g} ď 1 (here we use that, whenever x P Bpu, rq and y P Bpv, sq,
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one has gpyq ď 0 ď gpxq, and thus |gpxq ´ gpyq| “ gpxq ´ gpyq). One also has
}g} ě p1 ´ εq, because

|gpuq ´ gpvq| “ gpuq ´ gpvq “ r ` s “ p1 ´ εqdpu, vq.

Fix i P t1, . . . , nu. We first define fi on the set L “ N Y B. Let fi|N “

hi|N . We next show that there is a ci P R such that, by defining fi|B “ ci,
one has }fi ˘ g}Lip0pLq ď 1 and }fi ˘ |g|}Lip0pLq ď 1.

Set

qai “ sup
xPN

`

hipxq ´ dpx, uq
˘

, pai “ inf
xPN

`

hipxq ` dpx, uq
˘

,

qbi “ sup
xPN

`

hipxq ´ dpx, vq
˘

, pbi “ inf
xPN

`

hipxq ` dpx, vq
˘

.

Whenever x, y P N , since }hi} ď 1 ´ ε, one has

hipxq ` dpx, uq ´
`

hipyq ´ dpy, uq
˘

ě dpx, uq ` dpy, uq ´ p1 ´ εqdpx, yq ě 2r,

and, by (2.1),

hipxq ` dpx, uq ´
`

hipyq ´ dpy, vq
˘

ě dpx, uq ` dpy, vq ´ p1 ´ εqdpx, yq

ě p1 ´ εqdpu, vq “ r ` s.

Thus, pai ´ r ě qai ` r and pai ´ r ě qbi ` s. Similarly, one observes that
pbi ´ s ě qbi ` s and pbi ´ s ě qai ` r. It follows that there exists a ci P
“

qai ` r,pai ´ r
‰

X
“

qbi ` s,pbi ´ s
‰

. This ci does the job.
Indeed, let x P N and y P Bpu, rq. In order to see that

ˇ

ˇfipxq ˘ gpxq ´
`

fipyq ˘ gpyq
˘
ˇ

ˇ “

ˇ

ˇ

ˇ
hipxq ´

´

ci ˘
`

r ´ dpy, uq
˘

¯ˇ

ˇ

ˇ
ď dpx, yq,

it suffices to show that

hipxq ´ dpx, yq ˘ dpy, uq ď ci ˘ r ď hipxq ` dpx, yq ˘ dpy, uq. (2.3)

These inequalities hold:

hipxq ´ dpx, yq ´ dpy, uq ď hipxq ´ dpx, uq

ď qai ď ci ´ r ď pai ´ 2r

ď hipxq ` dpx, uq ´ 2dpy, uq

ď hipxq ` dpx, yq ´ dpy, uq
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and

hipxq ´ dpx, yq ` dpy, uq ď hipxq ´ dpx, uq ` 2dpy, uq

ď qai ` 2r ď ci ` r ď pai

ď hipxq ` dpx, uq

ď hipxq ` dpx, yq ` dpy, uq.

The inequalities
ˇ

ˇfipxq ˘ |gpxq| ´
`

fipyq ˘ |gpyq|
˘
ˇ

ˇ “

ˇ

ˇ

ˇ
hipxq ´

´

ci ˘
`

r ´ dpy, uq
˘

¯
ˇ

ˇ

ˇ
ď dpx, yq

follow from (2.3).
Set

fipyq “ sup
xPL

`

fipxq ` |gpxq| ´ dpx, yq
˘

for every y P MzL.

Note that, on MzL, the function fi agrees with a norm preserving extension
of pfi ` |g|q|L. It remains to show that }fi ˘ g} ď 1. To this end, it suffices
to show that, whenever x, y P M , one has

´ dpx, yq ď fipxq ˘ gpxq ´
`

fipyq ˘ gpyq
˘

ď dpx, yq. (2.4)

For the cases when x, y P L or x, y P MzL, or x P N (or y P N) and y P MzL
(or x P MzL), the inequalities (2.4) follow from what has been proven above.
So, in fact, it suffices to consider the case when x P Bpu, rq Y Bpv, sq and
y P MzL. In this case, (2.4) means that

´dpx, yq ď ci ˘ gpxq ´ sup
zPL

`

fipzq ` |gpzq| ´ dpz, yq
˘

ď dpx, yq.

Thus, it suffices to show that

p1q there is a z P L such that

ci ˘ gpxq ´ dpx, yq ` dpz, yq ď fipzq ` |gpzq|;

p2q for every z P L,

fipzq ` |gpzq| ď ci ˘ gpxq ` dpx, yq ` dpz, yq.

For (1), one may take z “ x, so it remains to prove (2). By symmetry,
it suffices to consider only the case when x P Bpu, rq. In this case gpxq “

r ´ dpx, uq ě 0. Thus, it suffices to prove that, for every z P L,

fipzq ` |gpzq| ď ci ´ r ` dpx, uq ` dpx, yq ` dpz, yq.
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One has to look through the following cases:

paq z P Bpu, rq; pbq z P Bpv, sq; pcq z P N.

(a). If z P Bpu, rq, then fipzq “ ci and |gpzq| “ r ´ dpz, uq. Thus, one has
to show that

2r ď dpx, uq ` dpz, uq ` dpx, yq ` dpz, yq.

This inequality holds, because, since y R Bpu, rq, one has dpy, uq ě r, and
thus

2r ď dpy, uq ` dpy, uq ď dpx, uq ` dpx, yq ` dpz, uq ` dpz, yq.

(b). If z P Bpv, sq, then fipzq “ ci and |gpzq| “ s´ dpz, vq. Thus, one has
to show that

r ` s ď dpx, uq ` dpz, vq ` dpx, yq ` dpz, yq.

This inequality holds, because, since y R Bpu, rq and y R Bpv, sq, one has
dpy, uq ě r and dpy, vq ě s, and thus

r ` s ď dpy, uq ` dpy, vq ď dpx, uq ` dpx, yq ` dpz, vq ` dpz, yq.

(c). If z P N , then

fipzq ` |gpzq| “ fipzq “ hipzq ď qai ` dpz, uq

ď ci ´ r ` dpx, uq ` dpx, yq ` dpz, yq.

Proof of Theorem 2.3. (i)ñ(ii). Assume that Lip0pMq has the w˚-SSD2P,
let N be a finite subset of M and let 0 ă ε ă 1. Choose α ą 0 such that
2α ă ε and, for all x, y P N with x ‰ y,

α ď
1

dpx, yq
and 2α ď dpx, yq.

For all x, y P N with x ‰ y, define a weak˚-slice Sx,y “ S
` δx´δy
dpx,yq

, α3
˘

of
BLip0pMq. Since Lip0pMq has the w˚-SSD2P, we can find fx,y P Sx,y and
g P BLip0pMq with }g} ě 1 ´ α, such that }fx,y ˘ g} ď 1. For x, y P N with
x “ y, define fx,y “ 0 P Lip0pMq.

For all x, y P N , one has

xfx,y, δx ´ δyy “ fx,ypxq ´ fx,ypyq ě p1 ´ α3
qdpx, yq,
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therefore, keeping in mind that }fx,y ˘ g} ď 1,

|xg, δx ´ δyy| “ |gpxq ´ gpyq| ď α3dpx, yq ď α2.

Since }g} ě 1 ´ α, there exist u, v P M with u ‰ v, such that

xg, δu ´ δvy “ gpuq ´ gpvq ě p1 ´ αq dpu, vq.

Now, for any x, y P N , again using that }fx,y ˘ g} ď 1,

|xfx,y, δu ´ δvy| “ |fx,ypuq ´ fx,ypvq| ď αdpu, vq.

Letting x, y, z, w P N be arbitrary, it remains to verify (2.1) and (2.2).
Since }fx,y ˘ g} ď 1, we get

p1 ´ εq
`

dpu, vq ` dpx, yq
˘

ď p1 ´ 2αqdpu, vq ` p1 ´ 2α3
qdpx, yq

ď xg, δu ´ δvy ´ xfx,y, δu ´ δvy ` xfx,y, δx ´ δyy ´ xg, δx ´ δyy

“ xg ´ fx,y, δu ´ δxy ´ xg ´ fx,y, δv ´ δyy

ď dpx, uq ` dpy, vq.

Thus, (2.1) holds. If x “ y and z “ w, then (2.2) follows from (2.1) with y
replaced by z. If x ‰ y or z ‰ w, then

α
`

dpx, yq ` dpz, wq
˘

ě 2α2
ě |xg, δz ´ δx ` δw ´ δyy|,

and thus, since }fx,y ˘ g} ď 1,

p1 ´ εq
`

2dpu, vq ` dpx, yq ` dpz, wq
˘

ď 2
`

gpuq ´ gpvq
˘

` p1 ´ α3
´ αq

`

dpx, yq ` dpz, wq
˘

ď 2xg, δu ´ δvy ` xfx,y, δx ´ δyy ` xfz,w, δz ´ δwy

` xg, δz ´ δx ` δw ´ δyy

“ xg ´ fx,y, δu ´ δxy ` xg ` fx,y, δu ´ δyy

´ xg ` fz,w, δv ´ δzy ´ xg ´ fz,w, δv ´ δwy

ď dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.

(ii)ñ(i). Assume that M has the SLTP. Let n P N, let Si “ Spµi, αiq,
i “ 1, . . . , n, be weak˚ slices of BLip0pMq, and let 0 ă ε ă 1. It suffices to find
fi P Si, i “ 1, . . . , n, and g P BLip0pMq with }g} ě p1´ εq such that fi ˘ g P Si

for every i P t1, . . . , nu. We may assume that, for every i P t1, . . . , nu, one has
µi “

řni

j“1 λijδxij
for some ni P N, λij P Rzt0u, and xij P M , j “ 1, . . . , ni.
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Now N – t0u Y
Ťn

i“1txi1, . . . , xini
u is a finite subset of M . We may also

assume that 2ε ă min1ďiďn αi. This enables, for every i P t1, . . . , nu, to pick
an hi P Si with }hi} ď 1 ´ ε.

By the SLTP, there exist u, v P M with u ‰ v satisfying (2.1) and (2.2) for
all x, y, z, w P N . By Lemma 2.4 there exist functions f1, . . . , fn, g P Lip0pMq

satisfying

• fi|N “ hi|N for every i P t1, . . . , nu;

• g|N “ 0 and }g} ě 1 ´ ε;

• }fi ˘ g} ď 1 for every i P t1, . . . , nu.

Fix such functions and notice that fi P Si and fi ˘ g P Si for every i P

t1, . . . , nu. Therefore, the space Lip0pMq has the w˚-SSD2P.

2.2 Examples

We give two examples of metric spaces M that have the LTP but fail the
SLTP. By [34, Theorem 3.1] and Theorem 2.3, this implies that the corre-
sponding Lipschitz spaces Lip0pMq have the w˚-SD2P but fail the w˚-SSD2P.
We also show that, in the definition of the SLTP, the inequality (2.2) (for
all x, y, z, w P N) does not imply the inequality (2.1) (for all x, y P N). We
finish by showing that every infinite metric subspace of ℓ1 has the SLTP.

Example 2.5. Let M “ ta1, a2, b1, b2uYtum, vm : m P Nu be the metric space
where, for all i, j P t1, 2u and all m P N,

dpai, bjq “ dpai, umq “ dpbi, vmq “ dpum, vmq “ 1,

and the distance between two different elements is 2 in all other cases (see
Figure 2.1).

We first show that M has the LTP. Letting N be a finite subset of M and
m P N be such that um, vm P MzN , it suffices to show that, for all x, y P N ,
one has

dpx, yq ` dpum, vmq ď dpx, umq ` dpy, vmq.

If dpx, umq`dpy, vmq ě 3, then the desired inequality holds because dpum, vmq

“ 1. If dpx, umq`dpy, vmq “ 2, then x P ta1, a2u and y P tb1, b2u, and therefore
dpx, yq “ 1.

It remains to show that M fails the SLTP. Take N “ ta1, a2, b1, b2u. Then,
for all u, v P M with u ‰ v, there exist x, y, z, w P N such that

2dpu, vq ` dpx, yq ` dpz, wq ě dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq ` 1.
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a1
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b1

b2

uk
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vk
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Figure 2.1: A representation of the metric space M in Example 2.5. The
distances between points connected by a straight line segment are 1, the
distances between other different points are 2.

Indeed, set U “ tum : m P Nu and V “ tvm : m P Nu, and suppose that u, v P

M with u ‰ v. If u, v P U or u, v P V , then, respectively, for x “ z “ a1,
y “ w “ a2, and for x “ z “ b1, y “ w “ b2,

2dpu, vq ` dpx, yq ` dpz, wq “ 8 ą 4

“ dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.

If u P U and v P V , or u P V and v P U , then, respectively, for x “ a1,
y “ a2, z “ b1, w “ b2, and for x “ b1, y “ b2, z “ a1, w “ a2,

2dpu, vq ` dpx, yq ` dpz, wq ě 6 ą 4

“ dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.

Finally, if u P N or v P N , then, respectively, for x “ y “ u and z, w P N
with dpz, wq “ 2 and dpz, vq “ dpw, vq “ 1, and for z “ w “ v and x, y P N
with dpx, yq “ 2 and dpx, uq “ dpy, uq “ 1,

2dpu, vq ` dpx, yq ` dpz, wq ě 4 ą 2

“ dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.

It is straightforward to verify that the metric space in the following ex-
ample also has the LTP but not the SLTP.

Example 2.6. Let M “ N be the metric space, where the distance between
two integers with different parity is 1, and the distance between two distinct
integers with the same parity is 2.
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The following example shows that the inequality (2.2) in the definition of
the SLTP does not imply (2.1).

Example 2.7. Let M “ ta, buYtum, vm : m P Nu be the metric space where,
for all m P N,

dpa, umq “ dpb, vmq “ dpum, vmq “ 1

and the distance between two different elements is 2 in all other cases (see
Figure 2.2).

a b
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Figure 2.2: A representation of the metric space M in Example 2.7. The
distances between points connected by a straight line segment are 1, the
distances between other different points are 2.

For any finite subset N of M , we can find an m P N such that um, vm P

MzN . We first show that, for all x, y, z, w P N ,

dpx, yq ` dpz, wq ` 2dpum, vmq “ dpx, yq ` dpz, wq ` 2

ď dpx, umq ` dpy, umq ` dpz, vmq ` dpw, vmq.

By symmetry it suffices to show that, for all x, y P Mztum, vmu,

dpx, yq ` 1 ď dpx, umq ` dpy, umq.

This inequality holds trivially if dpx, umq ` dpy, umq ě 3. It remains to
note that if dpx, umq ` dpy, umq ă 3, then dpx, umq “ dpy, umq “ 1. Thus,
x “ y “ a, and the desired inequality trivially holds.

We now show that M does not have the LTP. Take N “ ta, bu. Then, for
all u, v P M with u ‰ v, there exist x, y P N such that

dpx, yq ` dpu, vq ě dpx, uq ` dpy, vq ` 1.
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Indeed, set U “ tum : m P Nu and V “ tvm : m P Nu, and suppose that
u, v P M with u ‰ v. If u, v P U or u, v P V , then, for x “ a, y “ b,

dpx, yq ` dpu, vq “ 4 ą 3 “ dpx, uq ` dpy, vq.

If u P U and v P V , or u P V and v P U , then, respectively, for x “ a, y “ b,
and for x “ b, y “ a,

dpx, yq ` dpu, vq ě 3 ą 2 “ dpx, uq ` dpy, vq.

Finally, if u P N or v P N , then, respectively, for x “ u, y P Nztxu, and for
y “ v, x P Nztyu,

dpx, yq ` dpu, vq ě 3 ą 2 ě dpx, uq ` dpy, vq.

In [34, Proposition 4.7], it was shown that every infinite subset M of ℓ1,
viewed as a metric space, has the LTP. It turns out that every such M has
even the SLTP.

Example 2.8. Every infinite subset M of ℓ1, viewed as a metric space, has
the SLTP.

Indeed, from [20, Theorem 5.6] combined with our Theorem 2.3 it follows
that every unbounded metric space and every not uniformly discrete metric
space M has the SLTP (this can also, without too much effort, be verified
directly). Thus it suffices to consider the case when M is a bounded and
uniformly discrete subset of ℓ1. In this case there exist R, r ą 0 such that,
for all x, y P M with x ‰ y, one has

r ă dpx, yq ă R.

Let N be a finite subset of M and let ε ą 0. Choose δ ą 0 such that εr ě

6δ. Since N is finite, there exists an n P N such that for any x “ pxmq P N
ÿ

mąn

|xm| ď δ.

Since M is infinite and bounded, there exist u “ pumq, v “ pvmq P M with
u ‰ v, such that

ÿ

mďn

|um ´ vm| ď δ.

For all x “ pxmq, y “ pymq P N and a “ pamq, b “ pbmq P tu, vu,
ÿ

m

|xm ´ ym| ď
ÿ

mďn

`

|xm ´ am| ` |ym ´ bm| ` |am ´ bm|
˘

`
ÿ

mąn

|xm ´ ym|

ď
ÿ

mďn

`

|xm ´ am| ` |ym ´ bm|
˘

` 3δ
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and
ÿ

m

|um ´ vm| ď
ÿ

mąn

|um ´ vm ´ xm ` ym| `
ÿ

mąn

|xm ´ ym| `
ÿ

mďn

|um ´ vm|

ď
ÿ

mąn

`

|xm ´ um| ` |ym ´ vm|
˘

` 3δ.

Therefore, for all x “ pxmq, y “ pymq, z “ pzmq, w “ pwmq P N ,

p1 ´ εqpdpx, yq ` dpu, vqq ď dpx, yq ` dpu, vq ´ 6δ

“
ÿ

m

|xm ´ ym| `
ÿ

m

|um ´ vm| ´ 6δ

ď
ÿ

mďn

`

|xm ´ um| ` |ym ´ vm|
˘

` 3δ

`
ÿ

mąn

`

|xm ´ um| ` |ym ´ vm|
˘

` 3δ ´ 6δ

“
ÿ

m

`

|xm ´ um| ` |ym ´ vm|
˘

“ dpx, uq ` dpy, vq

and

p1´εq
`

2dpu, vq ` dpx, yq ` dpz, wq
˘

ď 2dpu, vq ` dpx, yq ` dpz, wq ´ 12δ

“ 2
ÿ

m

|um ´ vm| `
ÿ

m

|xm ´ ym| `
ÿ

m

|zm ´ wm| ´ 12δ

ď
ÿ

mąn

`

|xm ´ um| ` |zm ´ vm| ` |ym ´ um| ` |wm ´ vm|
˘

` 6δ

`
ÿ

mďn

`

|xm ´ um| ` |ym ´ um| ` |zm ´ vm| ` |wm ´ vm|
˘

` 6δ ´ 12δ

“
ÿ

m

`

|xm ´ um| ` |ym ´ um| ` |zm ´ vm| ` |wm ´ vm|
˘

“ dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.



Chapter 3

On the duality of the weak-star
symmetric strong diameter two
property in spaces of Lipschitz
functions

We continue the study of the w˚-SSD2P for the spaces of Lipschitz functions.
We characterise the w˚-SSD2P property in spaces of Lipschitz functions by a
property of its predual, the Lipschitz-free space. We introduce the notion of
decomposable octahedrality and study its duality with the symmetric strong
diameter 2 property in general. This chapter is based on [32].

Let M be a pointed metric. Recall that the Lipschitz space Lip0pMq has
the w˚-SD2P if and only if the norm of the Lipschitz-free space FpMq is oc-
tahedral. In [34], it was shown that these properties can also be characterised
via a property of the metric space M , namely the LTP.

Theorem 3.1 ([34, Theorem 3.1]). Let M be a pointed metric space. The
following statements are equivalent:

(i) Lip0pMq has the w˚-SD2P;

(ii) FpMq is OH;

(iii) M has the LTP.

In the previous chapter, we showed that the properties w˚-SD2P and
w˚-SSD2P are different for the spaces of Lipschitz functions and gave a char-
acterisation of the w˚-SSD2P for the space Lip0pMq via a property of the
metric space M , namely the SLTP. In this chapter, we give a characterisation

33
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of the latter properties in terms of the Lipschitz-free space FpMq. To do so,
we introduce the following property.

Definition 3.2. We say that a Banach space X is decomposably octahedral
(briefly, DOH ) if, whenever E is a finite subset of SX and ε ą 0, there exists
a y P SX such that, for all y1, . . . , yn P X with

řn
i“1 yi “ y, and, for all

x1, . . . , xn P E and a1, b1, . . . , an, bn ě 0, one has

n
ÿ

i“1

`

}aixi ` yi} ` }bixi ´ yi}
˘

ě p1 ´ εq
`

n
ÿ

i“1

pai ` biq ` 2
˘

.

It is easy to verify that OH follows from DOH. We show that the Lipschitz
space Lip0pMq has the w˚-SSD2P if and only if FpMq is DOH. More gener-
ally, we show that a Banach space X is DOH whenever the dual space X˚

has the w˚-SSD2P. We look through examples of octahedral Banach spaces
whose duals are known not to have the w˚-SSD2P. All of these examples also
fail the DOH.

3.1 Main results

We now show that if a dual Banach space X˚ has the w˚-SSD2P, then X is
DOH. Whether the reverse implication holds, in general, is unknown to us.
However, in the following, we prove that the reverse implication holds if X
is a Lipschitz-free space.

Proposition 3.3. Let X be a Banach space. If X˚ has the w˚-SSD2P, then
X is DOH.

Proof. Assume that X˚ has the w˚-SSD2P. Let E be a finite subset of SX

and let ε ą 0. For every x P E, define a w˚-slice Sx “ S
`

x, ε
2

˘

of BX˚ .
Since X˚ has the w˚-SSD2P, we can find fx P Sx and g P BX˚ such that
}fx ˘ g} ď 1 for every x P E and }g} ě 1 ´ ε. Then, for every x P E,

fxpxq ě 1 ´
ε

2
and |gpxq| ď

ε

2
.

Let y P BX be such that gpyq ě 1´ε. For all y1, . . . , yn P X with
řn

i“1 yi “ y,
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and, for all x1, . . . , xn P E and a1, b1, . . . , an, bn ě 0, one has

n
ÿ

i“1

`

}aixi ` yi} ` }bixi ´ yi}
˘

ě

n
ÿ

i“1

`

pfxi
` gqpaixi ` yiq ` pfxi

´ gqpbixi ´ yiq
˘

“

n
ÿ

i“1

`

pai ` biqfxi
pxiq ` pai ´ biqgpxiq ` 2gpyiq

˘

ě p1 ´ εq

n
ÿ

i“1

pai ` biq ` 2
n
ÿ

i“1

gpyiq

“ p1 ´ εq

n
ÿ

i“1

pai ` biq ` 2gpyq

ě p1 ´ εq
`

n
ÿ

i“1

pai ` biq ` 2
˘

.

Therefore, X is DOH.

Theorem 3.4. Let M be a pointed metric space. The following statements
are equivalent:

(i) Lip0pMq has the w˚-SSD2P;

(ii) FpMq is DOH;

(iii) M has the SLTP.

Proof. (i)ô(iii) is Theorem 2.3.
(i)ñ(ii) holds by Proposition 3.3.
(ii)ñ(iii). Assume that the Lipschitz-free space FpMq is DOH. Let N be

a finite subset of M and let 0 ă ε ă 1
2
. Define E “

␣ δp´δq
dpp,qq

: p, q P N
(

and let
0 ă δ ă rε

2R
, where r, R ą 0 are such that, for all p, q P N with p ‰ q, one has

r ă dpp, qq ă R.

Since FpMq is DOH, there exists a ν P spantδp ´ δq : p, q P Mu with }ν} ă 1,
such that, for all ν1, . . . , νn P FpMq with

řn
i“1 νi “ ν, and, for all µ1, . . . , µn P

E and a1, b1, . . . , an, bn ě 0, one has

n
ÿ

i“1

`

}aiµi ` νi} ` }biµi ´ νi}
˘

ě p1 ´ δq
`

n
ÿ

i“1

pai ` biq ` 2
˘

.
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Since

}ν} “ inf
␣

n
ÿ

i“1

|λi|dppi, qiq : ν “

n
ÿ

i“1

λipδpi ´ δqiq, pi, qi P M
(

,

there exist n P N, λ1, . . . , λn ą 0, and u1, v1, . . . , un, vn P M with ui ‰ vi for
every i P t1, . . . , nu, such that ν “

řn
i“1 λipδui

´ δviq and
řn

i“1 λidpui, viq “ 1.
It suffices to show that there exists an i P t1, . . . , nu such that, taking

u “ ui and v “ vi, one has

p1 ´ εq
`

dpx, yq ` dpu, vq
˘

ď dpx, uq ` dpy, vq

for all x, y P N , and

p1 ´ εq
`

2dpu, vq ` dpx, yq ` dpz, wq
˘

ď dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq

for all x, y, z, w P N . Suppose that, contrary to our claim, for every i P

t1, . . . , nu, there exist xi, yi P N such that

p1 ´ εq
`

dpxi, yiq ` dpui, viq
˘

ą dpxi, uiq ` dpyi, viq, (3.1)

or there exist x1
i, y

1
i, zi, wi P N such that

p1 ´ εq
`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

ą dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq.
(3.2)

Let I be the subset of indexes t1, . . . , nu for which there exist xi, yi P N such
that (3.1) holds, and let J be the set t1, . . . , nuzI. By our assumption, for
every i P J , there exist x1

i, y
1
i, zi, wi P N such that x1

i ‰ y1
i or zi ‰ wi, and

(3.2) holds. Fix such xi, yi P N for every i P I, and x1
i, y

1
i, zi, wi for every

i P J . Then

ÿ

iPI

λi

´

dpxi, uiq ` dpyi, viq ´ p1 ´ εq
`

dpxi, yiq ` dpui, viq
˘

¯

`
ÿ

iPJ

λi

`

dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq
˘

´ p1 ´ εq
ÿ

iPJ

λi

`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

ă 0.
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To prove that this cannot be the case, we show that the following inequal-
ity holds,

ÿ

iPI

λi

´

dpxi, uiq ` dpyi, viq ´ p1 ´ εq
`

dpxi, yiq ` dpui, viq
˘

¯

`
ÿ

iPJ

λi

`

dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq
˘

´ p1 ´ εq
ÿ

iPJ

λi

`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

ě
ÿ

iPI

λi

`

dpxi, uiq ` dpyi, viq ` dpui, viq
˘

´ p1 ´ δq
ÿ

iPI

λi

`

dpxi, yiq ` 2dpui, viq
˘

`
ÿ

iPJ

λi

`

dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq ` δdpy1
i, ziq

˘

´ p1 ´ δq
ÿ

iPJ

λi

`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

,

and that the right hand side of this inequality is nonnegative.
The inequality holds because, since 2δ ď ε, for every i P I, one has

dpxi, uiq ` dpyi, viq ´ p1 ´ εq
`

dpxi, yiq ` dpui, viq
˘

ě dpxi, uiq ` dpyi, viq ´ p1 ´ 2δq
`

dpxi, yiq ` dpui, viq
˘

ě dpxi, uiq ` dpyi, viq ` dpui, viq ´ p1 ´ δq
`

dpxi, yiq ` 2dpui, viq
˘

,

and, for every i P J , since δdpy1
i, ziq ď ε

2

`

dpx1
i, y

1
iq ` dpzi, wiq

˘

, one has

dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq

´ p1 ´ εq
`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

ě dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq

´ p1 ´ δ ´
ε

2
q
`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

ě dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq ` δdpy1
i, ziq

´ p1 ´ δq
`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

.
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It remains to prove that
ÿ

iPI

λi

´

dpxi, uiq ` dpyi, viq ` dpui, viq ´ p1 ´ δq
`

dpxi, yiq ` 2dpui, viq
˘

¯

`
ÿ

iPJ

λi

`

dpx1
i, uiq ` dpy1

i, uiq ` dpzi, viq ` dpwi, viq ` δdpy1
i, ziq

˘

´ p1 ´ δq
ÿ

iPJ

λi

`

dpx1
i, y

1
iq ` dpzi, wiq ` 2dpui, viq

˘

ě 0.

To this end, note that
ÿ

iPI

λi

`

dpxi, uiq ` dpyi, viq ` dpui, viq
˘

`
ÿ

iPJ

λi

`

dpx1
i, uiq ` dpy1

i, uiq ` dpy1
i, ziq ` dpzi, viq ` dpwi, viq

˘

ě
ÿ

iPI

λi

`

}δxi
´ δyi ´ pδui

´ δviq} ` }δui
´ δvi}

˘

`
ÿ

iPJ

λi

`

}δx1
i

´ δy1
i

´ pδui
´ δy1

i
q} ` }δui

´ δy1
i
}
˘

`
ÿ

iPJ

λi

`

}δy1
i

´ δzi ´ pδy1
i

´ δziq} ` }δy1
i

´ δzi}
˘

`
ÿ

iPJ

λi

`

}δzi ´ δwi
´ pδzi ´ δviq} ` }δzi ´ δvi}

˘

ě 2p1 ´ δq ` p1 ´ δq
ÿ

iPI

λidpxi, yiq

` p1 ´ δq
ÿ

iPJ

λi

`

dpx1
i, y

1
iq ` dpy1

i, ziq ` dpzi, wiq
˘

“ p1 ´ δq
ÿ

iPI

λi

`

dpxi, yiq ` 2dpui, viq
˘

` p1 ´ δq
ÿ

iPJ

λi

`

dpx1
i, y

1
iq ` dpy1

i, ziq ` dpzi, wiq ` 2dpui, viq
˘

,

where the second inequality holds by our choice of ν because

ν “
ÿ

iPI

pδui
´ δviq `

ÿ

iPJ

pδui
´ δy1

i
` δy1

i
´ δzi ` δzi ´ δviq.

This completes the proof.
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3.2 Decomposable octahedrality
in Banach spaces

In this section, we look at examples of octahedral Banach spaces for which
it is known that the dual space does not have the w˚-SSD2P. These Banach
spaces also fail to be decomposably octahedral. This leaves open the question
of whether the reverse implication of Proposition 3.3 holds.

We start by looking at decomposable octahedrality in absolute sums of
Banach spaces. Recall that a norm N on R2 is absolute if

Npa, bq “ Np|a|, |b|q for all pa, bq P R2,

and normalised if
Np1, 0q “ Np0, 1q “ 1.

If N is an absolute normalised norm on R2 (see [14, Lemmata 21.1 and 21.2]),
then

(a) }pa, bq}8 ď Npa, bq ď }pa, bq}1 for all pa, bq P R2;

(b) if pa, bq, pc, dq P R2 with |a| ď |c| and |b| ď |d|, then

Npa, bq ď Npc, dq;

(c) the dual norm N˚ on R2 defined by

N˚
pc, dq “ max

Npa,bqď1
p|ac| ` |bd|q for all pc, dq P R2

is also absolute and normalised. Note that pN˚q˚ “ N .

For 1 ď p ď 8, we denote the ℓp norm on R2 by } ¨ }p. Every ℓp norm is
an absolute normalised norm.

For Banach spaces X and Y , we denote by X ‘N Y the product space
X ˆ Y equipped with the norm N , where

Npx, yq “ Np}x}, }y}q for all x P X, y P Y .

In case N is an ℓp norm we write X‘pY . Note that pX‘N Y q˚ “ X˚ ‘N˚ Y ˚.
It can be shown that X˚ ‘N Y ˚ has the w˚-SSD2P if and only if N is the

ℓ8 norm and X˚ or Y ˚ has the w˚-SSD2P (the proof is similar to the one of
[20, Theorem 3.1]).

We give necessary and sufficient conditions for the absolute sum of Banach
spaces to be DOH. Note that Proposition 3.5 (a) does not extend to infinite
sums because, by [20, Proposition 3.4] and Proposition 3.3, the space ℓ1pXnq

is DOH for all sequences of Banach spaces pXnq8
n“1.
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Proposition 3.5. Let X and Y be Banach spaces.

(a) The space X ‘1 Y is DOH if and only if X or Y is DOH.

(b) If N is an absolute normalised norm different from the ℓ1 norm, then
the space X ‘N Y is not DOH.

Proof. (a). First, assume that X is DOH. Let E be a finite subset of SX‘1Y

and let ε ą 0. Since X is DOH, there exists a z P SX such that, for
all z1, . . . , zn P X with

řn
i“1 zi “ z, and, for all a1, b1, . . . , an, bn ě 0 and

px1, y1q, . . . , pxn, ynq P E, one has

n
ÿ

i“1

`

}aixi ` zi} ` }bixi ´ zi}
˘

ě p1 ´ εq
`

n
ÿ

i“1

pai ` biq}xi} ` 2
˘

.

Notice that Npz, 0q “ 1. Let pz1, w1q, . . . , pzn, wnq P X ‘1 Y be such that
řn

i“1pzi, wiq “ pz, 0q. Then, for all a1, b1, . . . , an, bn ě 0 and px1, y1q, . . . ,
pxn, ynq P E, one has

n
ÿ

i“1

`

}aipxi, yiq ` pzi, wiq} ` }bipxi, yiq ´ pzi, wiq}
˘

“

n
ÿ

i“1

`

}aixi ` zi} ` }aiyi ` wi} ` }bixi ´ zi} ` }biyi ´ wi}
˘

ě p1 ´ εq
`

n
ÿ

i“1

pai ` biq}xi} ` 2
˘

`

n
ÿ

i“1

pai ` biq}yi}

ě p1 ´ εq
`

n
ÿ

i“1

pai ` biq ` 2
˘

.

Therefore, X ‘1 Y is DOH.
Assume now that X and Y are not DOH. Then there exist finite subsets

E1, E2 of SX and SY , respectively, and ε ą 0, such that, for all z P SX ,
w P SY , there exist n P N and zi P X, wi P Y , ai, bi, ci, di ě 0, xi P E1,
yi P E2, i “ 1, . . . , n, such that

řn
i“1 zi “ z,

řn
i“1wi “ w,

n
ÿ

i“1

`

}aixi ` zi} ` }bixi ´ zi}
˘

ă p1 ´ εq
`

n
ÿ

i“1

pai ` biq ` 2
˘

,

and
n
ÿ

i“1

`

}ciyi ` wi} ` }diyi ´ wi}
˘

ă p1 ´ εq
`

n
ÿ

i“1

pci ` diq ` 2
˘

.
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Now, take E “ tpx, 0q, p0, yq : x P E1, y P E2u. This is a finite subset
of SX‘1Y . However, for all pz, wq P SX‘1Y , there exist n P N and zi P X,
wi P Y , ai, bi, ci, di ě 0, pxi, 0q, p0, yiq P E, i “ 1, . . . , n, such that

řn
i“1 zi “ z,

řn
i“1wi “ w, and

n
ÿ

i“1

`
›

›}z}aipxi, 0q ` pzi, 0q
›

›`
›

›}z}bipxi, 0q ´ pzi, 0q
›

›

˘

`

n
ÿ

i“1

`
›

›}w}cip0, yiq ` p0, wiq
›

›`
›

›}w}dip0, yiq ´ p0, wiq
›

›

˘

“

n
ÿ

i“1

`
›

›}z}aixi ` zi
›

›`
›

›}z}bixi ´ zi
›

›

˘

`

n
ÿ

i“1

`
›

›}w}ciyi ` wi

›

›`
›

›}w}diyi ´ wi

›

›

˘

ă p1 ´ εq
`

}z}pai ` biq ` }w}pci ` diq ` 2
˘

.

Therefore, X ‘1 Y is not DOH.
(b). Take x P SX and w P SY . Then px, 0q, p0, wq P SX‘NY . Notice

that, for every y P SX‘NY , there exist y1 P BX , y2 P BY such that y “

py1, 0q ` p0, y2q. Since N is not the ℓ1 norm, there exists an ε ą 0 such that
Np1, 1q ă 2p1 ´ 2εq. Thus

›

›}y1}px, 0q ` p0, y2q
›

›`
›

›}y2}px, 0q ´ p0, y2q
›

›

`
›

›}y1}p0, wq ` py1, 0q
›

›`
›

›}y2}p0, wq ´ py1, 0q
›

›

“ Np}y1}, }y2}q ` Np}y2}, }y2}q ` Np}y1}, }y1}q ` Np}y2}, }y1}q

“ 2 ` }y2}Np1, 1q ` }y1}Np1, 1q

ă 2 ` 2p1 ´ 2εq
`

}y1} ` }y2}
˘

ď p1 ´ εq
`

2}y1} ` 2}y2} ` 2
˘

.

Therefore, X ‘N Y is not DOH.

Note that, by Proposition 3.5, the space ℓ1 ‘8 ℓ1, which is known to be
OH (see [21]), is not DOH.

Let K be a compact Hausdorff space. It is known and straightforward
to prove that the space CpKq of all continuous functions on K is OH if and
only if K does not have isolated points.

We finish the chapter by noting that the space CpKq is not DOH. It
suffices to find f1, f2 P SCpKq such that, for every g P SCpKq, there exist
g1, g2 P CpKq with g “ g1 ` g2 and

}f1 ` g1} ` }f1 ´ g1} ` }f2 ` g2} ` }f2 ´ g2} ď 4.
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Fix x, y P K with x ‰ y, and let Gx and Gy be disjoint closed neighbour-
hoods of x and y, respectively. By Urysohn’s lemma, there exist continuous
functions f1, f2 : K Ñ r0, 1s such that

f1pzq “

#

1 if z “ x;

0 if z R Gx,
f2pzq “

#

1 if z “ y;

0 if z R Gy,

and a continuous function h : K Ñ r0, 1s such that

hpzq “

#

0 if z P Gx;

1 if z P Gy.

For every g P SCpKq, define g1 : K Ñ R by g1pzq “ gpzqhpzq, and set g2 “

g ´ g1. Then g “ g1 ` g2 and f1 ˘ g1, f2 ˘ g2 P SCpKq. Therefore,

}f1 ` g1} ` }f1 ´ g1} ` }f2 ` g2} ` }f2 ´ g2} “ 4.



Chapter 4

Diameter two properties in spaces
of Lipschitz functions

In this chapter, we study diameter 2 properties in the spaces of Lipschitz
functions and solve some open problems. Namely, we show that: the D2P,
the SD2P, and the SSD2P are three different properties for these spaces of
Lipschitz functions; the space Lip0pKnq has the SSD2P for every n P N,
including the case of n “ 2; every local norm-one Lipschitz function is a
Daugavet-point. This chapter is based on [22].

Recall that the Banach space X has the

• slice diameter 2 property (briefly, slice-D2P) if every slice of BX has
diameter 2;

• diameter 2 property (briefly, D2P) if every nonempty relatively weakly
open subset of BX has diameter 2;

• strong diameter 2 property (briefly, SD2P) if every convex combination
of slices of BX has diameter 2, i.e., the diameter of

řn
i“1 λiSi is 2

whenever n P N, λ1, . . . , λn ě 0 with
řn

i“1 λi “ 1, and S1, . . . , Sn are
slices of BX ;

• symmetric strong diameter 2 property (briefly, SSD2P) if, for every
n P N, every family tS1, . . . , Snu of slices of BX , and every ε ą 0, there
exist f1 P S1, . . . , fn P Sn, and g P BX with }g} ą 1 ´ ε such that
fi ˘ g P Si for every i P t1, . . . , nu.

If X is a dual space, then we also consider the weak˚ versions of these diam-
eter 2 properties (w˚-slice-D2P, w˚-D2P, w˚-SD2P, and w˚-SSD2P), where
slices and weakly open subsets in the above definitions are replaced by weak˚

slices and weak˚ open subsets, respectively.

43
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In this chapter we continue studying diameter 2 properties in the space
Lip0pMq. Diameter 2 properties of Lip0pMq have been studied in [23], [34],
[20], [33], [10], and [28]. In [23], Ivakhno proved that if a metric space M is
unbounded or not uniformly discrete, then the space Lip0pMq has the slice-
D2P. In [10], Cascales et al. proved that if a metric space M has infinitely
many cluster points or M is discrete but not uniformly discrete, then the
space Lip0pMq has even the SSD2P. In [28], Langemets and Rueda Zoca
generalised this result by proving that the same is true if M is unbounded
or not uniformly discrete.

Theorem 4.1 (see [28, Theorem 2.2]). If the metric space M is unbounded
or not uniformly discrete, then the space Lip0pMq has the SSD2P.

Theorem 4.1 leaves open for which bounded but not uniformly discrete metric
spaces M the space Lip0pMq has the SSD2P (or SD2P or D2P or slice-D2P).
In [28], Langemets and Rueda Zoca proved that the space Lip0pKnq has the
SSD2P whenever n P N zt2u. Recall that Kn is the metric subspace of ℓ8

where the terms of the sequences are from the set t0, 1, . . . , nu. In this chapter
(see Theorem 4.7 and Proposition 4.10 below), we show that, in fact, this is
true for every n P N, including the case of n “ 2.

Theorem 4.2 (cf. [28, Propositions 2.7 and 2.8]). For every n P N, the
space Lip0pKnq has the SSD2P.

In most cases, it seems to be unknown whether for Lip0pMq the above-
mentioned diameter 2 properties differ from each other. For example, in [28,
Introduction], the authors say that it is not known whether the slice-D2P
implies the SSD2P within the class of spaces of Lipschitz functions, and it
is not known whether the SSD2P and the w˚-SSD2P coincide in general.
Our Example 4.17, combined with Theorem 4.15, shows that the SD2P does
not follow from w˚-SSD2P for the spaces of Lipschitz functions. Our Exam-
ple 4.19, combined with Lemma 4.18, shows that the D2P does not follow
from the w˚-SD2P for the spaces of Lipschitz functions. Therefore, we have
the following result.

Theorem 4.3. The SSD2P, the SD2P, and the D2P are three different prop-
erties for the spaces of Lipschitz functions. In fact, the w˚-SSD2P and the
SD2P are different, and the w˚-SD2P and the D2P are different for the spaces
of Lipschitz functions.

It remains open whether, for the spaces of Lipschitz functions, any of the
above-mentioned (non-weak˚) diameter 2 properties coincides with its weak˚

version. In fact, we do not even know if, for the spaces of Lipschitz functions,
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the w˚-SSD2P implies the slice-D2P. It also remains open whether there
exists a metric space M such that Lip0pMq has the slice-D2P but not the
D2P.

In [25], Jung and Rueda Zoca studied Daugavet-points in Lip0pMq in
connection with locality properties of Lipschitz functions. They posed and
addressed the question of whether every local norm-one f in Lip0pMq is a
Daugavet-point. We answer that question with the following theorem.

Theorem 4.4 (cf. [25, Proposition 3.4 and Theorem 3.6]). Let M be a
pointed metric space. If f P SLip0pMq is local, then f is a Daugavet-point.

In general, one faces difficulties when dealing with the dual space
Lip0pMq˚ due to the lack of a useful characterisation of this space. Our
results will heavily rely on the following observation. Set

ĂM “ pM ˆ Mqztpx, xq : x P Mu. (4.1)

Then the mapping, also called the de Leeuw’s transform (see, e.g., [36]),

Lip0pMq Q f ÞÝÑ rf P ℓ8pĂMq where rfpx, yq “
fpxq ´ fpyq

dpx, yq
,

is linear and isometric. Recall that the dual space of ℓ8pĂMq is canonically iso-
metrically isomorphic to the Banach space bapĂMq of all bounded and finitely
additive signed measures µ on ĂM with the total variation as the norm, that
is }µ} “ |µ|pĂMq. Thus, whenever F P Lip0pMq˚, by the Hahn–Banach ex-
tension theorem, there is a µ P bapĂMq such that |µ|pĂMq “ }F } and

F pfq “

ż

ĂM

rf dµ for every f P Lip0pMq. (4.2)

We are going to use the following notation. For a subset A of M , we write

Γ1,A “ tpx, yq P ĂM : x P Au and Γ2,A “ tpx, yq P ĂM : y P Au.

4.1 The SSD2P in spaces of
Lipschitz functions

We start this section by giving two sufficient conditions for the space Lip0pMq

to have the SSD2P. The first one is a consequence of identifying the dual space
of Lip0pMq via the de Leeuw’s transform. From this, we derive the second
one, which involves only conditions on the metric of the space M and which
we will then use to prove Theorems 4.1 and 4.2.



46 CHAPTER 4. DIAMETER 2 PROPERTIES IN LIPSCHITZ SPACES

Lemma 4.5. Let M be a pointed metric space and let ĂM be as in (4.1).
Suppose that, whenever δ ą 0, n P N, h1, . . . , hn P Lip0pMq with }hi} ď 1´ δ

for every i P t1, . . . , nu, and µ P bapĂMq with only non-negative values, there
exist a subset A of M and functions f1, . . . , fn, g P Lip0pMq satisfying

• µpΓ1,Aq ă δ and µpΓ2,Aq ă δ;

• fi|MzA “ hi|MzA for every i P t1, . . . , nu;

• g|MzA “ 0 and }g} ě 1 ´ δ;

• }fi ˘ g} ď 1 for every i P t1, . . . , nu.

Then the space Lip0pMq has the SSD2P.

Proof. Let n P N, let F1, . . . , Fn P SLip0pMq˚ , and let ε ą 0. It suffices to
find fi P SpFi, εq, i “ 1, . . . , n, and g P Lip0pMq with }g} ą 1 ´ ε such that
fi ˘ g P SpFi, εq for every i P t1, . . . , nu.

For every i P t1, . . . , nu, let µi P bapĂMq with |µi|pĂMq “ 1 satisfy (4.2)
with F and µ replaced by Fi and µi, respectively. Define µ “ |µ1|`¨ ¨ ¨`|µn|.
Fix a real number δ ą 0 satisfying 8δ ď ε. For every i P t1, . . . , nu, pick a
function hi P SpFi, 2δq with }hi} ď 1 ´ δ.

Let a subset A of M and functions f1, . . . , fn, g P Lip0pMq satisfy the
conditions in the lemma. Setting ΓA “ Γ1,A Y Γ2,A, one has µpΓAq ă 2δ,
hence, whenever i P t1, . . . , nu,

|Fipgq| “

ˇ

ˇ

ˇ

ˇ

ż

ĂM

rg dµi

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

ΓA

rg dµi

ˇ

ˇ

ˇ

ˇ

ď |µi|pΓAq ă 2δ

and (observing that rfi|ĂMzΓA
“ rhi|ĂMzΓA

)

Fipfiq “

ż

ĂM

rfi dµi “

ż

ĂM

rhi dµi `

ż

ΓA

`

rfi ´ rhi

˘

dµi

“ Fiphiq `

ż

ΓA

`

rfi ´ rhi

˘

dµi

ą 1 ´ 2δ ´ 2|µi|pΓAq ą 1 ´ 6δ,

and thus

Fipfi ˘ gq ě Fipfiq ´ |Fipgq| ą 1 ´ 6δ ´ 2δ ě 1 ´ ε.
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One can prove Theorems 4.1 and 4.2 by directly applying Lemma 4.5.
However, we prefer to first prove (and then use) a further sufficient condition
for Lip0pMq to have the SSD2P, which involves only conditions on the metric
of the space M and is therefore easy to handle.

Definition 4.6. We say that a metric space M has the sequential strong
long trapezoid property (briefly, seq-SLTP) if, for every ε ą 0, there exist
pairwise disjoint subsets A1, A2, . . . of M such that, for every m P N, there
are um, vm P Am with um ‰ vm satisfying, for all x, y P MzAm,

p1 ´ εq
`

dpx, yq ` dpum, vmq
˘

ď dpx, umq ` dpy, vmq, (4.3)

and, for all x, y, z, w P MzAm,

p1 ´ εq
`

dpx, yq ` dpz, wq ` 2dpum, vmq
˘

ď dpx, umq ` dpy, umq ` dpz, vmq ` dpw, vmq.
(4.4)

Theorem 4.7. Let M be a pointed metric space. If M has the seq-SLTP,
then Lip0pMq has the SSD2P.

Remark 4.8. We do not know whether the converse of Theorem 4.7 holds.
However, the seq-SLTP is strictly stronger than the SLTP (see Example 4.12).

Proof of Theorem 4.7. Assume that M has the seq-SLTP. Let δ ą 0, n P N,
h1, . . . , hn P Lip0pMq with }hi} ď 1 ´ δ for every i P t1, . . . , nu, and let
µ P bapĂMq with only non-negative values where ĂM is as in (4.1).

By the seq-SLTP, there exist subsets A1, A2, . . . of M and points um, vm P

Am as in Definition 4.6 with ε “ δ. By Lemma 2.4 there exist functions
f1, . . . , fn, g P Lip0pMq satisfying

• fi|N “ hi|N for every i P t1, . . . , nu;

• g|N “ 0 and }g} ě 1 ´ ε;

• }fi ˘ g} ď 1 for every i P t1, . . . , nu.

By Lemma 4.5, the space Lip0pMq has the SSD2P.

Theorems 4.1 and 4.2 are immediate corollaries of Theorem 4.7 teamed
with the following Propositions 4.9 and 4.10, respectively.

Proposition 4.9. An unbounded or not uniformly discrete metric space has
the seq-SLTP.

Proposition 4.10. For every n P N, the metric space Kn has the seq-SLTP.
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In the proof of Proposition 4.9, we make use of the following lemma.

Lemma 4.11. Let ε ą 0, p P M , 0 ď s ă r, and u, v P Bpp, rqzBpp, sq be
such that

4s ď εdpu, vq

and, for every x P MzBpp, rq, one has

2dpu, vq ď εmin
␣

dpx, uq, dpx, vq
(

.

Then, for all x, y, z, w P MzA, where A “ Bpp, rqzBpp, sq, one has

p1 ´ εq
`

dpx, yq ` dpu, vq
˘

ď dpx, uq ` dpy, vq (4.5)

and
p1 ´ εq

`

dpx, yq ` dpz, wq ` 2dpu, vq
˘

ď dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.
(4.6)

Proof. We first consider the inequality (4.5). Let x, y P MzA. If at least one
of them, say x, does not belong to Bpp, rq, then

dpx, uq ` dpy, vq ě dpx, uq ` dpy, uq ´ dpu, vq

ě p1 ´ εqdpx, yq ` εdpx, uq ´ dpu, vq

ě p1 ´ εqdpx, yq ` 2dpu, vq ´ dpu, vq

ě p1 ´ εq
`

dpx, yq ` dpu, vq
˘

.

If x, y P Bpp, rq, then x, y P Bpp, sq, and therefore

dpx, uq ` dpy, vq ě dpu, vq ´ dpx, yq

“ p1 ´ εqdpu, vq ` εdpu, vq ´ dpx, yq

ě p1 ´ εqdpu, vq ` 4s ´ dpx, yq

ě p1 ´ εqdpu, vq ` 2dpx, yq ´ dpx, yq

ě p1 ´ εq
`

dpu, vq ` dpx, yq
˘

.

We now consider the inequality (4.6). Let x, y, z, w P MzA. If at least
one of them, say x, does not belong to Bpp, rq, then

dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq ě p1 ´ εq
`

dpx, yq ` dpz, wq
˘

` εdpx, uq

ě p1 ´ εq
`

dpx, yq ` dpz, wq ` 2dpu, vq
˘

.

If x, y, z, w P Bpp, rq, then x, y, z, w P Bpp, sq, and therefore

dpx, uq ` dpz, vq ě dpu, vq ´ dpx, zq

“ p1 ´ εqdpu, vq ` εdpu, vq ´ dpx, zq

ě p1 ´ εqdpu, vq ` 2s

ě p1 ´ εq
`

dpu, vq ` dpx, yq
˘
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and, similarly,

dpy, uq ` dpw, vq ě p1 ´ εq
`

dpu, vq ` dpz, wq
˘

.

Proof of Proposition 4.9. Let M be a pointed metric space, and let ε ą 0.
First, assume that M is unbounded. Letting r0 “ 1, we can induc-

tively define points um, vm P MzBp0, rm´1q with um ‰ vm and real num-
bers rm ą 0, m “ 1, 2, . . . , satisfying, for every m P N, the inequalities
4rm´1 ď εdpum, vmq, rm ą rm´1, and

2dpum, vmq ď εmin
␣

dpx, umq, dpx, vmq
(

for every x P MzBp0, rmq. (4.7)

Now the sets Am – Bp0, rmqzBp0, rm´1q, m “ 1, 2, . . . , are pairwise disjoint.
For every m P N, Lemma 4.11 with p “ 0, r “ rm, s “ rm´1, u “ um, and
v “ vm implies that, for all x, y, z, w P MzAm, the inequalities (4.3) and (4.4)
hold.

Assume now that M is not uniformly discrete. We first consider the
case when M has a limit point p. Starting with r1 “ 1, we can inductively
define points um, vm P Bpp, rmqztpu with um ‰ vm and real numbers rm ą 0,
m “ 1, 2, . . . , satisfying, for every m P N, the condition (4.7), rm`1 ă rm, and
4rm`1 ď εdpum, vmq. Now the sets Am – Bpp, rmqzBpp, rm`1q, m “ 1, 2, . . . ,
are pairwise disjoint. For every m P N, Lemma 4.11 with r “ rm, s “ rm`1,
u “ um, and v “ vm implies that, for all x, y, z, w P MzAm, the inequalities
(4.3) and (4.4) hold.

Finally, consider the case when M has no limit points. Since M is not
uniformly discrete, there exist points um, vm P M with um ‰ vm, m “

1, 2, . . . , such that dpum, vmq Ñ 0. Since M has no limit points, we may
assume, after passing to subsequences if necessary, that there is an r ą 0
such that dpum, unq ě 2r whenever m,n P N with m ‰ n. Furthermore, we
may assume that vm P Bpum, rq and 4dpum, vmq ď ε r for every m P N. Now
the sets Am – Bpum, rq, m “ 1, 2, . . . , are pairwise disjoint. For every m P N
and every x P MzBpum, rq, one has

ε dpx, umq ě ε r ą 2dpum, vmq

and

ε dpx, vmq ě ε
`

dpx, umq ´ dpum, vmq
˘

ą ε
`

r ´ 1
2
r
˘

“ 1
2
ε r ě 2dpum, vmq,

thus Lemma 4.11 with p “ u “ um, s “ 0, and v “ vm implies that, for all
x, y, z, w P MzAm, the inequalities (4.3) and (4.4) hold.
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Proof of Proposition 4.10. Let n P N. For every m P N, define

Am “
␣

pxjq
8
j“1 P Kn : max

j
xj “ n and xj ă n for every j R t2m ´ 1, 2mu

(

,

um “ ne2m´1 ` pn ´ 1qe2m, and vm “ pn ´ 1qe2m´1 ` ne2m. Note that the
sets A1, A2, . . . are pairwise disjoint. Fix an m P N. Clearly, um, vm P Am

and dpum, vmq “ 1. We show that, for all x, y P KnzAm,

dpx, yq ` dpum, vmq ď dpx, umq ` dpy, vmq,

and, for all x, y, z, w P KnzAm,

dpx, yq ` dpz, wq ` 2dpum, vmq

ď dpx, umq ` dpy, umq ` dpz, vmq ` dpw, vmq.

Fix x “ pxjq
8
j“1, y “ pyjq

8
j“1 P KnzAm. It suffices to show that the following

inequalities hold:

dpx, yq ` dpum, vmq ď dpx, umq ` dpy, vmq,

dpx, yq ` dpum, vmq ď dpx, umq ` dpy, umq,

dpx, yq ` dpum, vmq ď dpx, vmq ` dpy, vmq.

To this end, let j P N be such that dpx, yq “ |xj ´ yj|. Without loss of
generality, we assume that xj ě yj. Notice that, if j R t2m ´ 1, 2mu, then
xj ě dpx, yq, and therefore dpx, umq ě dpx, yq and dpx, vmq ě dpx, yq. If
j P t2m ´ 1, 2mu, then yj ď n ´ 1 ´ dpx, yq because xj ď n ´ 1, and hence
dpy, umq ě dpx, yq and dpy, vmq ě dpx, yq. Since dpum, vmq “ 1, the desired
inequalities hold.

We end this section by giving an example of a metric space M with the
SLTP but without the seq-SLTP. In fact, this M does not even have the
seq-LTP (see Definition 4.14 below). By Theorem 2.3, the space Lip0pMq

has the w˚-SSD2P. It remains unknown whether Lip0pMq has the SSD2P.

Example 4.12. Let M “ tak, bk, ck : k P Nu be the metric space where, for
every k P N,

dpak, ckq “ 2,

and, for all k, l P N with k ă l,

dpak, blq “ dpbk, blq “ dpck, blq “ 2,

and the distance between two different elements is 1 in all other cases (see
Figure 4.1).
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ak

bk

ck

al

bl

cl

Figure 4.1: A representation of the metric space M in Example 4.12. The
distances between points connected by a straight line segment are 1, the
distances between other different points are 2.

We first show that the space M has the SLTP. To this end, let N be a finite
subset of M . Then there exists a K P N such that N Ă tak, bk, ck : k ă Ku.
Let u “ bK and v “ bK`1. Then, for every x P N , one has dpx, uq “ 2 and
dpx, vq “ 2, and therefore, for all x, y P N ,

dpx, yq ` dpu, vq ď 4 “ dpx, uq ` dpy, vq,

and, for all x, y, z, w P N ,

dpx, yq ` dpz, wq ` 2dpu, vq ď 8 “ dpx, uq ` dpy, uq ` dpz, vq ` dpw, vq.

Now suppose for contradiction that M has the seq-SLTP. Then there
exist pairwise disjoint subsets A1, A2, and A3 of M such that, for every
m P t1, 2, 3u, there are um, vm P Am with um ‰ vm such that the inequality
(4.3) with ε ă 1{3 holds for all x, y P MzAm. Let K P N be such that
u1, v1, u2, v2, u3, v3 P tak, bk, ck : k ă Ku. For every m P t1, 2, 3u, one has
`

1 ´ ε
˘`

dpaK , cKq ` dpum, vmq
˘

ě 3p1 ´ εq ą 2 “ dpaK , umq ` dpcK , vmq,

which implies aK P Am or cK P Am. It follows that A1, A2, and A3 are not
pairwise disjoint, a contradiction.

4.2 The SSD2P, SD2P, and D2P are different
properties for spaces of Lipschitz functions

In this section, we give an example of a metric space M such that the corre-
sponding space Lip0pMq has the SD2P but fails the SSD2P, and of a metric
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space M such that the corresponding space Lip0pMq has the D2P but fails
the SD2P, thus showing that the SSD2P, SD2P, and D2P are three different
properties for the spaces of Lipschitz functions. This answers an implicit
question in [28, Introduction]. For these two examples, we first give suffi-
cient conditions for the space of Lipschitz functions to have the SD2P, and
the D2P, as we did for the SSD2P in the previous section. We start with an
analogue of Lemma 4.5 for the SD2P.

Lemma 4.13. Let M be a pointed metric space and let ĂM be as in (4.1).
Suppose that, whenever δ ą 0, n P N, h1, . . . , hn P Lip0pMq with }hi} ď

1 ´ δ for every i P t1, . . . , nu, and µ P bapĂMq with only non-negative values,
there exist a subset A of M , elements u, v P A with u ‰ v, and functions
f1, . . . , fn P BLip0pMq satisfying

• µpΓ1,Aq ă δ and µpΓ2,Aq ă δ;

• fi|MzA “ hi|MzA for every i P t1, . . . , nu;

• fipuq ´ fipvq ě p1 ´ δqdpu, vq for every i P t1, . . . , nu.

Then the space Lip0pMq has the SD2P.

Proof. Let n P N, let F1, . . . , Fn P SLip0pMq˚ , and let ε ą 0. By [8, Corollary
2.2] and [21, Proposition 2.2], it suffices to find u, v P M such that }Fi `

mu,v} ě 2 ´ ε for every i P t1, . . . , nu.
For every i P t1, . . . , nu, let µi P bapĂMq with |µi|pĂMq “ 1 satisfy (4.2)

with F and µ replaced by Fi and µi, respectively. Define µ “ |µ1|`¨ ¨ ¨`|µn|.
Fix a real number δ ą 0 satisfying 7δ ď ε. For every i P t1, . . . , nu, pick a
function hi P SpFi, 2δq with }hi} ď 1 ´ δ.

Let a subset A of M , elements u, v P A with u ‰ v, and functions
f1, . . . , fn P Lip0pMq satisfy the conditions in the lemma. Setting ΓA “

Γ1,A Y Γ2,A, one has µpΓAq ă 2δ, hence, whenever i P t1, . . . , nu, (observing
that rfi|ĂMzΓA

“ rhi|ĂMzΓA
)

Fipfiq “

ż

ĂM

rfi dµi “

ż

ĂM

rhi dµi `

ż

ΓA

`

rfi ´ rhi

˘

dµi

“ Fiphiq `

ż

ΓA

`

rfi ´ rhi

˘

dµi

ą 1 ´ 2δ ´ 2|µi|pΓAq ą 1 ´ 6δ,

and thus

pFi ` mu,vqpfiq “ Fipfiq `
fipuq ´ fipvq

dpu, vq
ą 1 ´ 6δ ` 1 ´ δ ě 2 ´ ε.
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We next prove (and then use) a further sufficient condition for Lip0pMq to
have the SD2P—an analogue of Theorem 4.7—which involves only conditions
on the metric of the space M and is therefore easy to handle.

Definition 4.14 (cf. [34, Theorem 3.1, (3)]). We say that a metric space M
has the sequential long trapezoid property (briefly, seq-LTP) if, for every ε ą

0, there exist pairwise disjoint subsets A1, A2, . . . of M such that, for every
m P N, there are um, vm P Am with um ‰ vm satisfying, for all x, y P MzAm,

p1 ´ εq
`

dpx, yq ` dpum, vmq
˘

ď dpx, umq ` dpy, vmq. (4.8)

Clearly every metric space with the seq-SLTP has the seq-LTP as the condi-
tions (4.3) and (4.8) are the same.

Theorem 4.15 (cf. [32, Theorem 3.1, (3)ñ(1)]). Let M be a pointed metric
space. If M has the seq-LTP, then Lip0pMq has the SD2P.

Remark 4.16. We do not know whether the converse of Theorem 4.15 holds.
Note that the seq-LTP is strictly stronger than the LTP (see Example 4.12
above).

Proof of Theorem 4.15. Assume that M has the seq-LTP. Let δ ą 0, let
n P N, let h1, . . . , hn P Lip0pMq with }hi} ď 1 ´ δ for every i P t1, . . . , nu,
and let µ P bapĂMq with only non-negative values where ĂM is as in (4.1).
By Lemma 4.13, it suffices to find a subset A of M , elements u, v P A with
u ‰ v, and functions f1, . . . , fn P Lip0pMq satisfying the conditions of that
lemma.

By the seq-LTP, there exist subsets A1, A2, . . . of M and points um, vm P

Am, m “ 1, 2, . . . , as in Definition 4.14 with ε “ δ. Since the sets A1, A2, . . .
are pairwise disjoint, there exists an m P N such that µpΓ1,Amq ă δ and
µpΓ2,Amq ă δ. Let A “ Am, u “ um, and v “ vm.

Fix i P t1, . . . , nu. Define the function fi by fi|MzA “ hi|MzA,

fipuq “ inf
xPMzA

`

fipxq ` dpx, uq
˘

,

and
fipyq “ sup

xPtuuYMzA

`

fipxq ´ dpx, yq
˘

for every y P Aztuu.

Since }fi} ď 1, it remains to show that fipuq ´ fipvq ě p1 ´ δqdpu, vq. If
fipvq “ fipuq ´ dpu, vq, then the inequality holds. Suppose now that this is
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not the case. Then

fipuq ´ fipvq “ inf
x,yPMzA

`

fipxq ` dpx, uq ´ fipyq ` dpy, vq
˘

ě inf
x,yPMzA

`

´ p1 ´ δqdpx, yq ` dpx, uq ` dpy, vq
˘

ě p1 ´ δqdpu, vq.

In Chapter 2, we gave an example of a metric space M with the LTP but
without the SLTP (see Example 2.5). We now recall that metric space M to
further show that it even has the seq-LTP. Therefore, Lip0pMq has the SD2P
but not the w˚-SSD2P. To our knowledge, this is the first known example
of such a Lipschitz function space, showing that the properties SD2P and
(w˚-)SSD2P are really different for the class of Lipschitz function spaces.

Example 4.17. Let M “ ta1, a2, b1, b2u Y tum, vm : m P Nu be the metric
space where, for all i, j P t1, 2u and all m P N,

dpai, bjq “ dpai, umq “ dpbi, vmq “ dpum, vmq “ 1,

and the distance between two different elements is 2 in all other cases.
We show that M has the seq-LTP. To this end, it suffices to show that,

whenever m P N, one has, for all x, y P MzAm,

dpx, yq ` dpum, vmq ď dpx, umq ` dpy, vmq,

where Am “ tum, vmu. Fix an m P N and let x, y R Am. If dpx, umq `

dpy, vmq ě 3, then the desired inequality holds because dpum, vmq “ 1. If
dpx, umq ` dpy, vmq “ 2, then x P ta1, a2u and y P tb1, b2u, and therefore
dpx, yq “ 1; thus the desired inequality holds.

Our second aim in this section is to give an example of a metric space
M such that the corresponding space Lip0pMq has the D2P but fails the
SD2P. For this example, we need a sufficient condition for the space Lip0pMq

to have the D2P. Here we do not have a condition which involves only the
metric of the underlying space M as we did with Theorems 4.7 and 4.15 for
the SSD2P and the SD2P, respectively. However, the following analogue of
Lemmata 4.5 and 4.13 for the D2P is suitable for our purposes.

Lemma 4.18. Let M be a pointed metric space and let ĂM be as in (4.1).
Suppose that, whenever δ ą 0, h P Lip0pMq with }h} ď 1´ δ, and µ P bapĂMq

with only non-negative values, there exist a subset A of M , elements u, v P A
with u ‰ v, and functions f, g P BLip0pMq satisfying
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• µpΓ1,Aq ă δ and µpΓ2,Aq ă δ;

• f |MzA “ g|MzA “ h|MzA;

• fpuq ´ fpvq ě p1 ´ δqdpu, vq and gpuq ´ gpvq ď ´p1 ´ δqdpu, vq.

Then the space Lip0pMq has the D2P.

Proof of Lemma 4.18. Let n P N, let F1, . . . , Fn P SLip0pMq˚ , let ε ą 0, and
let ϕ P BLip0pMq. It suffices to find f, g P Lip0pMq with }f} ď 1 and }g} ď 1
such that |Fipf ´ ϕq| ă ε and |Fipg ´ ϕq| ă ε for every i P t1, . . . , nu, and
}f ´ g} ą 2 ´ ε.

For every i P t1, . . . , nu, let µi P bapĂMq with |µi|pĂMq “ 1 satisfy (4.2)
with F and µ replaced by Fi and µi, respectively. Define µ “ |µ1|`¨ ¨ ¨`|µn|.
Fix a real number δ ą 0 satisfying 5δ ď ε. Let h “ p1 ´ δqϕ.

Let a subset A of M , elements u, v P A with u ‰ v, and functions
f, g P Lip0pMq satisfy the conditions in the lemma. Setting ΓA “ Γ1,A YΓ2,A,
one has µpΓAq ă 2δ, hence, for every i P t1, . . . , nu (observing that rf |

ĂMzΓA
“

rh|
ĂMzΓA

),

|Fipf ´ ϕq| ď |Fipf ´ hq| ` δ “

ˇ

ˇ

ˇ

ˇ

ż

ĂM

`

rf ´ rh
˘

dµi

ˇ

ˇ

ˇ

ˇ

` δ “

ˇ

ˇ

ˇ

ˇ

ż

ΓA

`

rf ´ rh
˘

dµi

ˇ

ˇ

ˇ

ˇ

` δ

ď 2|µi|pΓAq ` δ ă 5δ ď ε.

Similarly, |Fipg ´ ϕq| ă ε for every i P t1, . . . , nu. It remains to observe that

}f ´ g} ě
pf ´ gqpuq ´ pf ´ gqpvq

dpu, vq
“

fpuq ´ fpvq ´ gpuq ` gpvq

dpu, vq

ě
2p1 ´ δq dpu, vq

dpu, vq
“ 2p1 ´ δq ą 2 ´ ε.

We now introduce a space M for which the corresponding Lipschitz func-
tion space Lip0pMq has the D2P but not the (w˚-)SD2P. To our knowledge,
this is the first such example in the class of Lipschitz function spaces.

Example 4.19. Let M “
␣

ai, u
i
m, v

i
m : i P t1, 2, 3u,m P N

(

be the metric
space where, for all i, j P t1, 2, 3u with i ‰ j and all m P N,

dpai, u
j
mq “ dpai, v

j
mq “ 1,

and, for all j P t1, 2, 3u and all m P N,

dpuj
m, v

j
mq “ 1,
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k

Figure 4.2: A representation of the metric space M in Example 4.19. The
distances between points connected by a straight line segment are 1, the
distances between other different points are 2.

and the distance between two different elements is 2 in all other cases (see
Figure 4.2).

We first show that the space Lip0pMq has the D2P. We make use of
Lemma 4.18. Let δ ą 0, let h P Lip0pMq with }h} ď 1, and let µ P bapĂMq

with only non-negative values. We may assume that hpa1q ď hpa2q ď hpa3q.
Set L “ inf hpMq. If hpa2q ď L ` 1, then let k “ 3 and c “ L; otherwise, let
k “ 1 and c “ L ` 1. Choose an m P N so that µpΓ1,Aq ă δ and µpΓ2,Aq ă δ
where A “ tuk

m, v
k
mu. Let u “ uk

m and v “ vkm, and define f, g : M Ñ R by

fpxq “

$

’

&

’

%

hpxq if x P MzA;

c ` 1 if x “ u;

c if x “ v,

and gpxq “

$

’

&

’

%

hpxq if x P MzA;

c if x “ u;

c ` 1 if x “ v.

Then
fpuq ´ fpvq “ gpvq ´ gpuq “ 1 “ dpu, vq.

It is straightforward to verify that }f} “ 1 and }g} “ 1. By Lemma 4.18,
Lip0pMq has the D2P.

We now show that the space Lip0pMq does not have the w˚-SD2P. It
suffices to show that space M does not have the LTP. Let N “ ta1, a2, a3u
and let ε ă 1{3. Whenever u, v P M with u ‰ v, there exist x, y P N with
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x ‰ y such that dpx, uq ď 1 and dpy, vq ď 1. Since dpx, yq “ 2, one has

p1 ´ εq
`

dpu, vq ` dpx, yq
˘

ě 3p1 ´ εq ą 2 ě dpx, uq ` dpy, vq.

4.3 Local norm-one Lipschitz function is a
Daugavet-point

Let M be a pointed metric space. In this section, we show that certain norm-
one elements f of Lip0pMq are Daugavet-points, i.e, given a slice S of the unit
ball of Lip0pMq and an ε ą 0, there exists a g P S with }f ´ g} ą 2 ´ ε.

Definition 4.20 (see [25, Definition 2.5]). A function f P Lip0pMq is said
to be local if, for every ε ą 0, there are u, v P M with u ‰ v such that
dpu, vq ă ε and fpmu,vq ą }f} ´ ε.

The question of whether every local f in the unit sphere of Lip0pMq is a
Daugavet point was posed and addressed in [25]; there, it was shown that

1. every local f on the unit sphere of Lip0pMq is a weak˚ Daugavet-point,
i.e., given a weak˚ slice S of the unit ball of Lip0pMq and an ε ą 0,
there exists g P S with }f ´ g} ą 2 ´ ε;

2. every spreadingly local f (see [25, Definition 2.5]) in the unit sphere of
Lip0pMq is a Daugavet-point.

The result (2) is yielded as a local argument of [24, Theorem 3.1] which says
that if M is spreadingly local, then Lip0pMq has the Daugavet property. The
way we look at Lip0pMq˚ allows us to improve upon all these results and fully
answer the aforementioned question with Theorem 4.4. The latter is, in fact,
a straightforward consequence of the following result.

Proposition 4.21 (cf. [25, Theorem 2.6]). Let M be a pointed metric space,
let F P SLip0pMq˚, and let punq and pvnq be two sequences of elements in M
such that un ‰ vn for every n P N. If dpun, vnq Ñ 0, then }F ` mun,vn} Ñ 2.

In the proof of Proposition 4.21, we shall repeatedly make use of the
following simple lemma.

Lemma 4.22. Let M be a metric space, let u, x, y P M , and let r and θ
be real numbers with r ą 0 and 0 ă θ ă 1. Suppose that y P Bpu, θrq and
x P MzBpu, rq. Then dpy, uq ď θ

1´θ
dpx, yq.
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Proof. Observe that dpx, yq ě p1 ´ θqr because otherwise one would have

dpx, uq ď dpx, yq ` dpy, uq ă p1 ´ θqr ` θr “ r,

a contradiction. It follows that dpy, uq ă θr ď θ
1´θ

dpx, yq, as desired.

Proof of Proposition 4.21. Assume that dpun, vnq Ñ 0. Let ε ą 0. Our aim
is to prove that there exists an n P N such that }F ` mun,vn} ą 2 ´ ε. To
that end, fix a real number δ ą 0 satisfying 7δ ď ε and h P SpF, 2δq with
}h} ď 1´ δ. Let ĂM be as in (4.1), and let µ P bapĂMq with |µ|pĂMq “ 1 satisfy
(4.2). It suffices to show that there is a subset A of M with |µpΓ1,Aq| ă δ and
|µpΓ2,Aq| ă δ such that, for some n P N, there exists a function f P BLip0pMq

such that f |MzA “ h|MzA and fpunq ´ fpvnq ě p1 ´ δqdpun, vnq. Indeed,
suppose that such A, n, and f have been found. Then, setting ΓA “ Γ1,A Y

Γ2,A, one has |µ|pΓAq ă 2δ, and thus (observing that rf |
ĂMzΓA

“ rh|
ĂMzΓA

)

F pfq “

ż

ĂM

rf dµ “

ż

ĂM

rh dµ `

ż

ΓA

`

rf ´ rh
˘

dµ

“ F phq `

ż

ΓA

`

rf ´ rh
˘

dµ

ą 1 ´ 2δ ´ 2|µ|pΓAq ě 1 ´ 6δ,

and, therefore,

}F ` mun,vn} ě F pfq `
fpunq ´ fpvnq

dpun, vnq
ą 2 ´ 7δ ě 2 ´ ε.

It remains to find the A, n, and f as above. To this end, choose a real
number θ P p0, 1q satisfying θ

1´θ
ă δ

2
. Without loss of generality, one may

assume that one of the following (mutually exclusive) conditions holds:

(1) no subsequence of the sequence punq8
n“1 converges;

(2) there is a u P M such that un “ u for every n P N;

(3) there is a u P M with un ‰ u and vn ‰ u for every n P N such that
un Ñ u.

(1). In this case, by passing to a subsequence, one may assume that there
is an r ą 0 such that the open balls An – Bpun, rq, n “ 1, 2, . . . , are pairwise
disjoint. It follows that there is an N P N such that, for every n ě N , one
has |µ|pΓ1,Anq ă δ and |µ|pΓ2,Anq ă δ. Pick an n ě N so that dpun, vnq ă θr.
One may assume that 0 R An. Let A “ An and define the function f by
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f |MzA “ h|MzA, fpunq “ hpunq, fpvnq “ hpunq ´ p1 ´ δqdpun, vnq, and by
extending the definition norm-preservingly to the whole M .

Then }f} ď 1 because, whenever x P MzA, one has (taking into account
that dpun, vnq ď δ

2
dpx, vnq by Lemma 4.22)

|fpxq ´ fpvnq| “ |hpxq ´ hpunq ` p1 ´ δq dpun, vnq|

ď p1 ´ δq dpx, unq ` p1 ´ δq dpun, vnq

ď p1 ´ δq
`

dpx, vnq ` 2 dpun, vnq
˘

ď dpx, vnq.

(2). Pick an n P N and r, s ą 0 so that dpvn, uq ă θr, s ă θdpvn, uq,
and |µ|pΓ1,Aq ă δ and |µ|pΓ2,Aq ă δ where A “ Bpu, rqzBpu, sq. One may
assume that 0 R Bpu, rqztuu. Letting A be as above, define the function f
by f |MzA “ h|MzA, fpvnq “ hpuq ´ p1 ´ δq dpu, vnq, and by extending the
definition norm-preservingly to the whole M . One has }f} ď 1. In fact, if
x P Bpu, sq, then (taking into account that dpx, uq ď δ

2
dpx, vnq by Lemma

4.22)

|fpxq ´ fpvnq| “ |hpxq ´ hpuq ` p1 ´ δq dpu, vnq|

ď p1 ´ δq dpx, uq ` p1 ´ δq dpu, vnq

ď p1 ´ δq
`

2dpx, uq ` dpx, vnq
˘

ď dpx, vnq;

if x P MzBpu, rq, then, keeping in mind that u “ un, the desired inequality
|fpxq ´ fpvnq| ď dpx, vnq is obtained as in the case (1).

(3). Pick an n P N and r, s ą 0 so that

maxtdpu, unq, dpu, vnqu ă θr, s ă θmintdpu, unq, dpu, vnqu,

and |µ|pΓ1,Aq ă δ and |µ|pΓ2,Aq ă δ where A “ Bpu, rqzBpu, sq. Letting
A be as above, define the function f by f |MzA “ h|MzA, fpunq “ hpuq `

p1 ´ δq dpu, unq, fpvnq “ fpunq ´ p1 ´ δq dpun, vnq, and by extending the
definition norm-preservingly to the whole M . By calculations similar to
those performed in the cases (1) and (2), one establishes that }f} ď 1.

Recall that a metric space M is local if for every ε ą 0 and for every
Lipschitz function f : M Ñ R there are two distinct points u, v P M such
that dpu, vq ă ε and fpmu,vq ą }f} ´ ε. The following result is an immediate
consequence of the previous theorem.

Corollary 4.23 (see [13, Proposition 3.4 and Theorem 3.5], cf. [24, Theorem
3.1]). Let M be a pointed metric space. If M is local, then Lip0pMq has the
Daugavet property.
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Remark 4.24. The converse statement of this result also holds (see [24, Propo-
sition 2.3 and the remark following its proof] and [13, Theorem 3.5]). On
the other hand, the converse statement of our Theorem 4.4 does not hold
since there exist uniformly discrete metric spaces M for which Lip0pMq has
Daugavet-points. For example, let M be an infinite pointed metric space
where the distance between two different elements is 1 if one of the elements
is the fixed point 0, and the distance between two different elements is 2 in
all other cases. Then the norm-one element f P Lip0pMq, given by fpxq “ 1
for every x P Mzt0u, is a Daugavet-point.
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Diameeter-2 omadused Lipschitzi funktsiooniruumides

Kokkuvõte

Käesoleva väitekirja põhieesmärk on laiendada teadmisi diameeter-2 omadus-
te kohta Lipschitzi funktsiooniruumides. Diameeter-2 omadused on Banachi
ruumidel vaadeldavate teatud omaduste koondnimetus. Neile omadustele on
iseloomulik, et ruumi kinnise ühikkera kõik kindlat liiki osahulgad, näiteks
ühikkera viilud või mittetühjad suhteliselt nõrgalt lahtised osahulgad, on
diameetriga kaks nagu ühikkera ise. Vaadeldavate diameeter-2 omadusega
Banachi ruum on tingimata lõpmatumõõtmeline, sest teadaolevalt on iga
lõplikumõõtmelise Banachi ruumi ühikkeral Radon–Nikodými omadus, mis-
tõttu sisaldab sellise ruumi ühikkera kuitahes väikese diameetriga viile.

Meetriliste ruumide vahel tegutsevad Lipschitzi funktsioonid on kõi-
ge loomulikum mitte-lineaarne analoog normeeritud ruumide vahel tegut-
sevatele pidevatele lineaarsetele operaatoritele. Iga Lipschitzi kujutusega on
seotud kindel mittenegatiivne reaalarv, selle kujutuse Lipschitzi konstant,
mis iseloomustab selle kujutuse maksimaalset võimalikku suhtelist muutust.
Erilist huvi pakuvad reaalarvuliste väärtustega Lipschitzi funktsioonid.
Kõik fikseeritud meetrilisest ruumist M reaalarvude ruumi tegutsevad Lip-
schitzi kujutused moodustavad täieliku poolnormiga vektorruumi, mida stan-
dardse samastamise võttega saab vaadelda Banachi ruumina, nn Lipschitzi
funktsiooniruumina Lip0pMq, kus Lipschitizi kujutuse norm on võrdne
tema Lipschitzi konstandiga. Osutub, et Lipschitzi funktsiooniruum on
koguni kaasruum. Tema teatud täielikku eelruumi nimetatakse Lipschitzi-
vabaks ruumiks (üle algselt lähtehulgaks olnud meetrilise ruumi M) ning
tähistatakse sümboliga FpMq, see Banachi ruum sisaldab loomulikul viisil
algset meetrilist ruumi M . Mis tahes meetriliste ruumide vahel tegutsev
Lipschitzi kujutus on jätkatav pidevaks lineaarseks operaatoriks vastavate
Lipschitzi-vabade ruumide vahel, kusjuures nii, et jätku norm on täpselt
algse kujutuse Lipschitzi konstant. See võimaldab (mittelineaarse) Lipschitzi
funktsiooni asemel vaadelda pidevat lineaarset operaatorit, mis tegutseb
Lipschitzi-vabade ruumide vahel.

Töös vaadeldakse diameeter-2 omadusi Lipschitzi funktsiooniruumides.
Lipschitzi funktsiooniruumi Lip0pMq ˚-nõrgale sümmeetrilisele tugevale dia-
meeter-2 omadusele antakse kirjeldus nii vastava meetrilise ruumi M oma-
duse kui ka Lipschitzi-vaba ruumi FpMq omaduse kaudu. Näidatakse, et

65



66 KOKKUVÕTE

Lipschitzi funktsiooniruumis on sümmeetriline tugev diameeter-2 omadus,
tugev diameeter-2 omadus ja diameeter-2 omadus kõik üksteisest erinevad
omadused. Lisaks näidatakse, et iga lokaalne punkt Lipschitzi funktsiooni-
ruumis on Daugaveti punkt.

Väitekiri koosneb neljast peatükist. Esimeses peatükis esitatakse ülevaade
töös vaadeldavate põhiomaduste ajaloolisest taustast, töö kokkuvõte ja töös
vajalikud tähistused ning antakse väitekirja põhiosa mõistmiseks vajalikud
eelteadmised.

Teises peatükis antakse Lipschitzi funktsiooniruumi Lip0pMq ˚-nõrga
sümmeetrilise tugeva diameeter-2 omaduse kirjeldus ruumi M omaduse
kaudu. Esitatakse näide meetrilisest ruumist M , mille korral Lipschitzi
funktsiooniruumil Lip0pMq on ˚-nõrk tugev diameeter-2 omadus, kuid ei ole
˚-nõrka sümmeetrilist tugevat diameeter-2 omadust. Sellega näidatakse, et
need omadused on Lipschitzi funktsiooniruumidel erinevad ning vastatakse
artiklis [20] esitatud küsimusele. Peatükk põhineb artiklil [32].

Kolmandas peatükis antakse Lipschitzi funktsiooniruumi Lip0pMq ˚-
nõrga sümmeetrilise tugeva diameeter-2 omaduse kirjeldus Lipschitzi-vaba
ruumi FpMq omaduse kaudu. Selleks defineeritakse Banachi ruumidel tükel-
datava oktaeedrilisuse mõiste. Näidatakse, et Banachi ruum on tükeldatavalt
oktaeedriline, kui tema kaasruumil on ˚-nõrk sümmeetriline tugev diameeter-
2 omadus. Esitatakse tarvilikud ja piisavad tingimused selleks, et kahe
Banachi ruumi absoluutne summa oleks tükeldatavalt oktaeedriline, ning
näidatakse, et kõigi pidevate funktsioonide ruum CpKq kompaktse Hausdorffi
ruumi K korral pole kunagi tükeldatavalt oktaeedriline. Peatükk põhineb
artiklil [33].

Neljandas peatükis näidatakse de Leeuw’ teisendust kasutades, et süm-
meetriline tugev diameeter-2 omadus, tugev diameeter-2 omadus ja diamee-
ter-2 omadus on Lipschitzi funktsiooniruumide klassis erinevad omadused.
Näidatakse, et ruumil Lip0pKnq on sümmeetriline tugev diameeter-2 omadus
iga naturaalarvu n korral. Mainitud tulemused annavad vastused artiklis [28]
esitatud kahele küsimusele. Lisaks näidatakse, et Lipschitzi funktsiooniruumi
ühiksfääri iga lokaalne punkt on Daugaveti punkt. Sellega antakse vastus
artiklis [25] esitatud küsimusele. Peatükk põhineb artiklil [22].
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