ELIZAVETA YANKOVSKAYA

Quality Estimation through Attention

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS

35




DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
35



DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
35

ELIZAVETA YANKOVSKAYA

Quality Estimation through Attention

)

UNIVERSITY oF TARTU
Press

—
—
D —
—
—



Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in Computer Science on May 3, 2022 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisor
Prof. Mark Fishel
Institute of Computer Science
University of Tartu, Tartu, Estonia
Opponents
Dr. Chi-kiu (Jackie) Lo
Digital Technologies Research Centre
National Research Council Canada
Prof. Dr. Rico Sennrich

Department of Computational Linguistics
University of Zurich, Switzerland

The public defense will take place on June 17,2022 at 16:15 in Narva rd 18, room
1021 and via Zoom.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright © 2022 by Elizaveta Yankovskaya

ISSN 2613-5906
ISBN 978-9949-03-893-0 (print)
ISBN 978-9949-03-894-7 (PDF)

University of Tartu Press
http://www.tyk.ee/


http://www.tyk.ee/

To covid



ABSTRACT

In recent years, the use of machine translation (MT) systems has increased dra-
matically. Today machine translation is used not only by large corporations, gov-
ernment services and translation agencies, but also by people who want, for exam-
ple, to know what their favourite song is about. With the development of machine
translation systems, the quality of translation has also improved. However, trans-
lation quality still varies significantly not only across different machine translation
systems, but also across translations produced by the same system. Modern MT
systems usually generate fluent translations, but some of these translations may
miss crucial details or completely misrepresent the original sentence. Thus, we
need to evaluate each translation of each system to make sure that the translation
does not distort the meaning of the original sentence.

In the case of translation agencies, professional translators edit the results of
machine translation. However, in some scenarios, for example, online machine
translation systems, it is not possible to assess translation quality with human
editors. That is why automated systems for measuring translation quality are a
crucial part of the machine translation pipeline.

There are two types of automated systems for estimating translation quality:
with and without the use of reference translation(s). The former is often referred
to as metrics or reference-based metrics; the second is called Quality Estimation
(QE) metrics. We generally use reference-based metrics to assess the quality of
MT output while training MT systems, whereas we can only apply QE metrics for
measuring translation quality at run-time.

In this thesis, we focus on QE metrics and consider the distribution of atten-
tion—one of the internal parameters of modern neural machine translation (NMT)
systems—as an indicator of translation quality. We first apply it to translations
generated by NMT systems based on recurrent neural networks (RNNs). We ex-
amine how the proposed models work in both unsupervised and supervised way.
The main drawback of supervised models is using human-annotated data, since
labeling data by professional translators is a time-consuming and relatively costly
task. That is why it is essential to have not only supervised models but also unsu-
pervised ones. In addition, we show that our approach is applicable to translations
produced by any unknown machine translation system.

Since transformers had replaced RNN-based MT systems, we adapted our ap-
proach to the transformers architecture. We examine how it performs in unsuper-
vised, semi-supervised and supervised tasks. For supervised tasks, we study how
much annotated data is needed to train a QE model. In addition, we demonstrate
that supervised models achieve a sensible correlation with human judgments even
with the use of synthetic labelled data.
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1. INTRODUCTION

Machine Translation (MT) is a quickly growing field of Natural Language Pro-
cessing (NLP). To see it, we compare two translations of the same sentence made
three years apart. The first translatiomﬂ generated in 2018 is “Like many calories
per day than you should be on a regular basis, even depends on your physical
activities.”. The second oneEI is “The maximum number of calories you should
eat per day also depends on your physical activities.”. Even without knowing
the original sentenceﬂ it is clear the second translation sounds more fluent and
readable.

Although the transition to neural networks from statistical methods has signif-
icantly improved the quality of translations (Wu et al., [2016), translation quality
varies across MT systems, language pairs and domains. While we have near-
human quality for high-resource language pairs, like English-German, for lan-
guages with a limited amount of training data, such as Nepalese-English, the
quality of translations is still relatively low. In addition, neural MT systems can
generate fluent translations that completely distort the meaning of the original
sentence. For example, Estonian sentence “Mina olen leevike” means “I am a
bullfinch”, but Google Translate translates it as “I am a freak’ﬂ In this example,
the incorrect translation makes us smile, but translation errors can be more seri-
ous and lead to tragic consequences. Thus, it is important to have an engine that
measures translation quality as a part of an MT pipeline.

How can we measure the quality of translations? There are three main ways:
(1) human annotations, (2) reference-based metrics and (3) Quality Estimation
(QE) metrics. Human annotations provide the most reliable output; however, it
is most expensive and time-consuming. Besides that, it is extremely expensive
and impractical to use human annotations for evaluating translation at runtime.
Reference-based and QE metrics are automated approaches that require little or
no human intervention. The main difference between reference-based metrics and
QE is the use of reference sentences. Reference-based metrics compare translation
output and its corresponding reference(s), whereas QE methods assess the quality
of translation without applying any gold-standard human translation. This fact
makes them valuable for evaluating online MT systems.

QE approaches can be divided into three groups: (1) relying on MT system-
independent features, so-called black-box, such as additional corpora, pre-trained
representation of words and mixed models; (2) internal features of MT systems or
glass-box features; and (3) their combination.

IThe translation is taken from the German-English development set WMT18 (Specia et al.,
2018)

“We translated it using Google Translate on November 3, 2021

3The original sentence is “Wie viele Kalorien Sie pro Tag héchstens zu sich nehmen sollten,
hingt auch von Ihren kérperlichen Aktivititen ab.”

4The translation is generated on November 3, 2021
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QE methods based on black-box features generally yield better results than
approaches using glass-box features. Their main disadvantage is that they require
additional resources that may not be available or hard to collect (for example, if
we want to translate Finnish into Lithuanian or if we need to evaluate translations
of lesser-used languages such as Faroese or dialects). In addition, QE black-box
models tend to be computationally intensive. In these cases, the benefits of glass-
box QE systems become apparent.

There are QE systems based on glass-box features extracted from statistical
MT systems, such as language model probabilities or the n-best list of translation
hypotheses (Blatz et al., 2004; Specia et al., [2013). The transition to neural MT
systems made the use of these features almost useless, but at the same time, it
allowed us to explore the internal features of neural MT systems, such as uncer-
tainty quantification, softmax distribution, and attention weights (Bahdanau et al.,
2015)).

In this thesis, we focus on attention weights (Bahdanau et al., |[2015)—one of
the internal features of MT systems. Before the advent of the attention mecha-
nism, neural MT systems did not cope with the translation of long sentences well,
“forgetting” the beginning of the original sentence. It happened because all in-
formation about the whole source sentence was captured into one vector, which
led to the fact that the beginning of the source sentence carried less information
than its end. The attention mechanism allowed an MT system to overcome this
problem by assigning higher weights to a particular part of the source sentence in
the overall representation.

1.1. Research Goals

In 2017, when we started our research, the only work that looked at the internal
information extracted from neural MT systems as an indicator of the translation
quality was a work of Rikters et al. (2017). Authors explore how the attention
distribution can be used to evaluate the outputs of machine translation systems.
Their analysis is done using a total of 200 sentences and only for translations
produced by neural MT systems with the attention mechanism.

Inspired by this work, we have focused our research on attention weights to
further explore how they can be used for quality estimation purposes. Our first
research goal is examination of attention weights extracted from MT systems
based on recurrent neural networks (RNNs) as a QE indicator. To examine it, we
discussed several aspects. First of all, we studied how well attention-based QE
models perform for supervised as well as unsupervised QE tasks (Research Ques-
tion 1, RG1-Q1). It is worth considering unsupervised models, since obtaining
gold labels needed to train supervised models is a time-consuming and an expen-
sive task. As statistical MT systems and neural MT systems without the attention
mechanism were still common in 2017, it was important to investigate whether the
attention-based approach can be used for translations produced by any unknown

11



MT system (RG1-Q2).

Since transformers (Vaswani et al.,[2017) had supplanted RNN-based MT sys-
tems and had become state-of-the-art, we explored the attention distribution ex-
tracted from transformer-based MT systems in terms of translation quality. This is
the second research goal of this thesis. Although the encoder-decoder attention
mechanism of transformer-based MT models is similar to the attention mechanism
used in RNN-based MT systems, unlike the latter, it consists of several attention
matrices. Thus, the previous attention-based approach has to be adapted to the
new architecture (RG2-Q1).

Similar to the RNN-based systems, we explored performance of the unsu-
pervised and supervised QE models for transformer-based MT models; in addi-
tion, we extended them to supervised models using synthetically generated labels
(RG2-Q2). Apart from that, we examined how much annotated data is needed
to train attention-based supervised models (RG2-Q3). Like any approach, the
attention-based approach has its weaknesses; we discussed its limitations and pos-
sible ways to overcome them (RG2-Q4).

12



2. BACKGROUND

As we mentioned in most modern machine translation systems are
trained using deep neural network algorithms. In our experiments, we used MT
systems based on recurrent neural networks and transformer.

In the first part of this chapter, we briefly discuss the main modifications of re-
current neural networks that have improved translation quality and we talk about
state-of-the-art architecture—transformer. In the second part, we focus on quality
estimation of MT outputs. Most QE systems today also use machine learning al-
gorithms, including neural networks. We talk about a framework used in the most
efficient QE systems, but at the the same time these QE systems tend to be compu-
tationally intensive, so we have a trade-off between QE models performance and
the amount of resources required. In addition, we discuss why there are different
reference-less types of MT evaluation and how they are correlated.

2.1. Recurrent Neural Networks

Recurrent neural networks (Rumelhart et al., 1985, RNNs) are a class of neural
networks that work with time series data or sequential data. One of the essential
features of RNNs is that the output of each time step depends not only on the
input but also on the prior information (see Figure [I)). In addition, RNNs can
process inputs and outputs of any length and share the learnable parameters across
different positions of data. All of these features together help to handle sequence

data.

Wx" Wx‘ Wx‘ er
Figure 1: Architecture of a many-to-many recurrent neural network. ‘“Many-to-
many” reflects that the number of input and output tokens is more than one.

The exact formula to compute the hidden state h, and the output y, at each time

step ¢ are expressed below:
h; = g1 (W h,_; + W,x,; + bias) oD
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where W,, W, and W, are weight matrices, g1 and g are activation functions.

One of the limitations of RNNs is that they only see the previous time steps,
X(1);---,X(;—1)» and the present input X,, but not future ones. However, in many
applications, it is crucial to observe the whole sequential input. For example, in
machine translation, the correct translation of the current word may depend on the
next words. Bidirectional-RNNs (Schuster et al., [1997) address this problem as
they can be trained simultaneously in both time directions: from the first time step
to the last and from the last to the first time step.

Another common weakness of RNNs is the vanishing gradient. It is happening
because we use gradient descent with the back-propagation algorithm to train a
neural network, and the gradient can get very small with respect to the number of
layers/time steps. As a result, it is quite hard to capture long-term dependencies
well. To tackle this problem, Long Short-Term Memory (Hochreiter et al., 1997,
LSTM) cells were used.

@(%? - |\><c<>
A

@\( )“’@

Figure 2: The LSTM cell.

LSTM is a modification of the hidden layer of RNNs that makes it much better
to handle long-term dependencies. Instead of neurons, LSTM has memory units
(see Figure[2)), each containing a gate that has a well-defined specific purpose:

« Input gate I'; controls how much we want to update a new cell;
* Forget gate I'y determines what information to keep or discard from the
unit;

¢ Output gate I', decides how much to reveal of a current state cell.

14



The equations below mathematically describe LSTM architecture:

'y =0(Ush,_1 +W;x, +biasy)
T; = 6(Ush,_; + W;x, + bias;)

I, = o(U,h,—; + W,x, + bias,)
¢; = tanh(U h,_; + W x; + bias,)
¢=I-¢,+Tf¢y

h, =T, -tanh(c,)

2.2)

where U and W are weight matrices specifically designed for each gate, tanh and
o are hyperbolic tangent and sigmoid functions, ¢ is a candidate value for the
internal cell state ¢, - denotes the element-wise product.

2.2. Encoder-decoder architecture

Machine translation is an example of converting one sequence to another which is
not necessarily of the same length. A typical architecture for solving this kind of
problem is shown in Figure 3] It consists of two parts: an encoder and a decoder,
hence its name - the encoder-decoder architecture (Cho et al., 2014; Sutskever
et al., 2014). Both Cho et al. (2014) and Sutskever et al. (2014) used recurrent

neural networks as an encoder and a decoder.
f N

Figure 3: The graphical illustration of the RNN Encoder-Decoder Cho et al., 2014

The encoder reads each token of the input sequence x = [X;,X,...,Xr] and
calculates hidden states at each step ¢:

h;, = f(htflaxt) (2.3)

15



After reading the whole sentence, we get the context vector ¢ that is actually
the last hidden state hy of the encoder. This is expected to be a summary of the
entire source sentence.

This vector ¢ is passed to the decoder as an input; and the decoder computes
its hidden state at step ¢ taking into account the vector c:

ht :f(htflyytflyc) (24)

and the conditional distribution of y, token is

P(yt’ytfhytf% "'>ylac) = g(htvytflvc)v (25)

where f and g are activation functions.

2.3. Attention mechanism

In the encoder-decoder architecture described above, the encoder reads and trans-
forms the entire input sentence into a fixed-length vector ¢, regardless of the in-
put’s length. Thus, all information about the whole sentence is compressed into
one vector and the last input tokens are given more importance, as a result, the
model may not cope with long sentences. To address this problem, Bahdanau
et al. (2015)) proposed the attention mechanism.

Yi—1 Yt

St—1 St

Figure 4: The graphical illustration of the attention mechanism proposed by Bah-
danau et al. (2015).

The core idea of the mechanism is to take into account all hidden states of
the encoder and focus on a particular part of the source sentence on each step

16



of the decoder (Figure [d). In other words, instead of using a fixed-length vector,
Bahdanau et al. (2015) suggest using a variable-length vector. To some extent, this
is similar to the work of a translator, who usually focuses not only on the entire
original sentence but also on its various parts, especially if the given sentence is
long.

Here, the encoder is a bidirectional RNN, the forward RNN reads the input se-
quence X = [X,Xa,...,Xr] from the beginning and calculates a sequence of hidden
states (hj,hy,...,hr), whereas the backward RNN reads the input in the reverse

, : —
order, computing backward hidden states (h;,h;,...,hr). To get the summary
of both the following and preceding words for a word x;, we concatenate hidden
states into one h; = [h;, h;].
The context vector ¢, is computed as a weighted sum of these hidden states:

T
¢ =Y o (2.6)
i=1

where oy; is the attention weight of each h;:

_ explen)
Y1 explen)
where e;; is defined by the previous hidden state of the decoder s,_; and en-
coder’s hidden state h; as score(s;_1,h;).
In (Bahdanau et al., 2015)), the alignment score & is parametrized by a feed-
forward neural network which is jointly trained with the whole system. The score
score(s,—1,h;) is calculated by:

O (2.7)

score(s;_1,h;) = V. tanh(W,[s,_1;h;]) (2.8)

where v, and W, are learnable weight matrices.

In contrast to the usual encoder-decoder architecture with a single context vec-
tor ¢, the proposed decoder generates its hidden state s, with the unique context
vector ¢, for each target token ¢:

St :f(sz—1;J’z—1;Ct)- (2.9)

The attention mechanism solves the problem of poor translation of long sen-
tences, and also mitigates the vanishing gradient problem. Thus, the use of neural
MT systems with the attention mechanism significantly improves neural MT per-
formance. Besides that, attention distribution provides some interpretability —
it allows us to see what part of the source sentence the decoder was focusing on
when generating the output.

17



2.4. Transformer

While RNN-based MT systems achieved great performance around 2016 (Wu et
al., 2016), they suffered from a lack of parallelizability. RNNs do not allow us
to compute future hidden states before previous hidden states have been com-
puted, resulting in very extensive training time. The use of LSTMs only par-
tially helped to solve the vanishing gradient problem related with length of the
sequences. Thus, RNN-based MT systems still cannot handle long-distant depen-
dencies well.

To remedy these issues, Vaswani et al. (2017)) proposed the transformer ar-
chitecture. It is based on the encoder-decoder architecture, but compared to the
previous encoder-decoder MT models, it no longer uses sequence-aligned RNNSs,
but instead relies entirely on the attention mechanism.

The encoding part (the left part of Figure ) is a stack of N identical encoders
(the setting described in the paper uses six encoders) on top of each other. Each
encoder has two layers: a multi-head self-attention mechanism and a fully con-
nected feed-forward neural network. The encoder’s input is fed to the multi-head
self-attention layer — which helps to encode a specific token as well as taking
a look at other tokens. Its output then goes through the feed-forward neural net-
work. There is a residual connection (He et al., 2016) around of each of the two
sub-layers, followed by layer normalization (Ba et al., 2016)); using residual con-
nections and layer normalization helps models to train better and faster.

The decoding part (the right part of Figure [5)) is also composed of a stack
of N identical decoders. Like the encoder, the decoder has the multi-head self-
attention and the fully connected feed-forward neural network layers and in ad-
dition to them, it has an encoder-decoder attention layer between them. The
encoder-decoder attention layer is similar to the encoder-decoder attention mech-
anism described in Section and it allows the decoder to focus on the relevant
parts of the input sentence. Residual connections with a layer-normalization step
are also wrapped around each sub-layer. In contrast to the encoder’s multi-head
self-attention layer, a masked layer is applied. It ensures that during the prediction
of the token i, the system does not see the future tokens, thus making its decision
is based only on the known outputs at positions less than i.

Attentions are the crucial part of the transformer architecture. To describe how
attentions work, we use three vectors named as query ¢, value v and key k which
are created for each embedded token. One of the powerful ideas is to use matrices
that allows to compute attention on a set of queries Q, keys K and values V at the
same time.

Attention(Q,K,V) = softmax <QKT> v (2.10)
[E) - \/[Tk y .

where d is the dimensions of &, \/dj prevents from the extremely small gradients.
There is a minor adjustment to computing attention in the transformer archi-
tecture, called “multi-head attention”. Instead of one set of (Q,K,V) weight ma-
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Figure 5: The Transformer - model architecture (Vaswani et al.,[2017).

trices, the transformer has n sets of (Q, K, V) matrices, where n is the number of
heads. It lets create multiple representation sub-spaces.

MultiHead(Q,K,V) = Concat (head,, ..., head, ) W?,

@2.11)
where head; = Attention(QW2, KWK VW),

where W are weighted matrices that were trained jointly with the model.
As we mentioned above, there are two different types of attention used in the
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transformer architecture: self-attention and encoder-decoder attention. The key
difference between them is that all queries Q, keys K and values V come from
the output of the previous layer of the encoder or the decoder in self-attention
layers. In contrast, in encoder-decoder attention layers, the queries Q come from
the decoder part and the keys K and the values V from the encoder.

2.5. Quality Estimation of Machine Translation

There are generally three types of QE systems depending on the granularity of the
predictions: at the word, sentence or document level. The goal of word-level QE
is to label a correctly translated word as “OK” and an incorrectly translated word
as “BAD”. Sentence-level and document-level QE models aim at predicting the
quality of a whole translated sentence or a document.

In this thesis, we focus on sentence-level QE systems, that is, when we talk
about QE systems, we mean sentence-level QE, unless other details are men-
tioned.

In this section, we will discuss two aspects of quality estimation of machine
translation. First, we will talk about a framework that is used in the best perform-
ing QE systems and its limitations. After that, we will examine what kind of labels
QE systems predict and why it does not make sense to use the same QE model to
predict translation quality from the perspective of a human and a translator.

2.5.1. Trade-off between performance and “lightweightness”

As mentioned in there are two types of features applied in Qual-
ity Estimation models: glass-box features extracted from the machine translation

systems and black-box obtained from the external resources.

Fomicheva et al. (2020a, which is our Publication III) study glass-box features
of transformer MT systems in terms of unsupervised QE. All proposed features
can be grouped into three categories: (1) output probability distribution from de-
terministic neural MT systems; (2) uncertainty quantification based on the Monte
Carlo dropout (MC dropout) method (Gal et al.,2016) and (3) attention distribu-
tion. The uncertainty-related features computed using MC dropout demonstrate
higher performance than the other two groups of features. In supervised settings,
the combination of MC dropout and attention-based features show the best results
(Fomicheva et al.,|2020bl, which is our Publication IV). Apart from “pure” glass-
box QE models, there are several QE supervised models that use the glass-box
features described above or their modifications in combination with black-box
features (Wang et al.,[2021; Moura et al., 2020).

Today, the best performing QE systems are based on black-box features or their
combination with glass-box features. They typically use the predictor-estimator
framework as well as model ensembling (Specia et al., 2021). The Predictor-
Estimator (Kim et al., [2017)) consists of an encoder-decoder RNN as a predictor
and a unidirectional RNN as an estimator. During the first step, the predictor
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trained on a large amount of parallel corpora predicts a word in the target sentence.
Then, the context representations generated by the predictor are used as inputs of
a regression layer of the neural quality estimation model within the second step.

Modern predictor-estimator models typically use multilingual pre-trained trans-
formers such as XLM-RoBERTa (Conneau et al., |2020) instead of training a
predictor and apply a feed-forward neural network as a estimator rather than a
RNN (Wang et al., 2021; Zerva et al., 2021).

Using multilingual pre-trained representation allows researchers to train well-
performing models without additional resources. However, these models require
a large amount of computational resources, for example, the most efficient QE
systems, presented in WMT?2 l[l, have more than 500M parameters (Specia et al.,
2021)), that may limit their practical use.

Another limitation of QE models built on top of multilingual pre-trained trans-
formers is that these pre-trained transformers do not cover all languages in the
world, for example XLM-RoBERTa model produces representations for 100 lan-
guages, whereas there are more than 7000 languages in the world.

While black-box models generally outperform glass-box models in predicting
translation quality, glass-box models usually require less computational resources
and do not require additional data (Specia et al.,|[2021). This is why they can be
more appropriate for lesser-used languages and for quick quality assessment.

2.5.2. Is QE for translators or humans?

The goal of Quality Estimation is to assess how good a translation is without
comparing it to a reference sentence. There are two common ways to consider
the translation quality. The first way is to measure post-editing (PE) effort and it
is more suitable for professional translators. The latter is human Direct Assess-
ment (DA) (Graham et al.,2017) and it is used mainly in everyday situations, for
example, to assess the translation quality of online machine translation systems.

Post-editing effort (Snover et al.,[2006, HTER) depends on the number of edits
that need to be made to get the correct translation. A post-editor has to find the
minimum number of shifts, substitutions, insertions and deletions in order to get
an adequate translation. As a rule, all edits have equal “weight”; and the ratio
between the number of edits and the length of the reference sentence is used.
Thus, the higher the HTER value, the more changes need to be made and the
lower the value, the better the translation.

Table[T|shows an example of MT output and its post-edited version (PE). There
are six edits to be made: five substitutions and one deletion — to get the correct
output. The number of tokens in the reference, including punctuation marks, is
24. So, the final HTER score is 6/24 = 0.25.

I'Sixth conference on Machine translation: https://www.statmt.org/wmt21/
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McDonald ’s , the international high-speed food chain operating in Estonia ,
has changed its business people in connection with the exchange of owners .
McDonald ’s , the international fast food chain operating in Estonia ,

changed its business name in connection with a change of ownership .

Table 1: Machine translation output (MT) and its post-edited version (PE). The
example is taken from MLQE-PE Et-En dataset (Fomicheva et al.,[2020c)). High-
lighted words should be replaced or deleted.

MT:

PE:

Another way to measure the effectiveness of QE systems is using Direct As-
sessment (DA) (Graham et al., 2017). For example, professional annotators of
WMT20 and WMT21 datasets (Fomicheva et al.,[2020a; Fomicheva et al.,2020c])
evaluated the quality of translation on a continuous 0-100 scale following the
FLORES setup (Guzman et al.,[2019):

0-10 an incorrect translation;

11-29 a translation with few correct keywords, but the overall mean-
ing does not preserve;

30-50 a translation with major mistakes;

51-69 a translation is understandable, the overall meaning of the
source is translated correctly but with typos or grammatical er-
Iors;

70-90 a translation that closely preserves the semantics of the source;

91-100 a perfect translation.

While both metrics measure the quality of the translation, they assess different
things; therefore, the linear correlation between them is not always moderate. For
example, Pearson correlation coefficients between DA and HTER are -0.17 and
-0.55 for En-De and Et-En WMT?20 training setﬂ respectively.

Muutused uurimistoo eeldustes ja maailmapildis
ning nendega enamasti kaasnevad vaidlused on teadusrevolutsioonidele iseloomulikud .

®

Changes in research assumptions and in the world picture ,

and most of the disputes that accompany them , are symptomatic of scientific revolutions .
Scientific revolutions are characterised by changes in research assumptions and in worldview ,
as well as the disputes that usually accompany them .

MT

PE

(i) Johannes teeb talle teatavaks , et Jaanusel on uus pruut .

MT Johannes tells him that Jaani has a new carrot .
PE  Johannes tells him that Jaanus has a new girlfriend .

Table 2: The examples of a source, its translation (MT) and its translation’s post-
edited version (PE) (Fomicheva et al.,[2020c, MLQE-PE Et-En dataset).

To more clearly show the difference between these two metrics, we chose two
examples with completely opposite values for HTER and DA (Table[2). In the first

2HTER and DA scores are available: https://github.com/sheffieldnlp/mlqe-pe

22


https://github.com/sheffieldnlp/mlqe-pe

case, the translation sounds a little clumsy, but the meaning is preserved. There-
fore, the annotators rated the quality of translation as very good (92.8 out of 100),
whereas the HTER value (0.609) indicates that many changes need to be made to
get the correct result. The second example demonstrates the opposite situation:
the source’s meaning is distorted (DA=11.5), while only two substitutions need to
be made to get a reasonable translation, which gives us a low HTER score of 0.2.
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3. ATTENTION WEIGHTS EXTRACTED FROM
RNN-BASED MT SYSTEMS
(PUBLICATIONS | AND II)

After Bahdanau et al. (2015) introduced the attention mechanism, models based
on RNNs with attention mechanisms quickly became state-of-the-art in machine
translation. It enhanced the quality of translations and provided an exciting way
to inspect alignments between the source and target tokens.

In this chapter, we explore how we can use attention weights to predict trans-
lation quality. The fascinating thing is that we can apply our Quality Estimation
approach based on attention weights not only to translations generated by machine
translation models with attention mechanisms but also to any translations — to
translations generated MT systems without the attention mechanism or theoreti-
cally to human translations.

To get attention weights for any translation, we replace the decoding part of the
neural MT system with computing the probability of the given translation under
a neural MT model for this language pair. This way beam search and selecting
the output token with the highest predicted probability is replaced by selecting the
next given output token; in other words, force-decoding is done. Thus, we can get
attention weights for any source-translation pair without even knowing anything
about the system that produced the original translation. We call these attention
weights force-decoded.

This chapter describes the use of attention weights for both supervised and
unsupervised QE tasks. We compare the performance of QE models based on
internal (extracted from the neural MT system which produces the translation)
and force-decoded attention weights.

3.1. Why do we use attention weights?

Rikters et al. (2017a)) propose using attention weights, or more precisely, metrics
based on them, for confidence estimation tasks. We extrapolate this approach to
assess translation quality, as attention weights represent the strength of connection
between the source and output tokens, that may indicate translation quality.

Figure[6|depicts a visualisation of attention distribution between the source and
output tokens of a partly good translation. The first part of the sentence “Warnung
vor einer unmittelbar drohenden Gefahr” is translated quite well and we see the
strong connections between the source and output tokens. The translation of the
part “zum Tode oder zu schwersten Verletzungen” is almost missing, which is
reflected in Figure[6]as a lack of connections.

Compared to widespread QE approaches of that time (Specia et al.,[2013; Mar-
tins et al., 2017; Kim et al.,[2017)), which required additional data, the attention-
based method requires only a neural MT system with the attention mechanism and
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Figure 6: Attention alignment visualization of a partly good translation (Rikters
et al.,2017Db).

gold labels in the case of supervised tasks.

Metrics

For all of our experiments described in this chapter, we used the following metrics
proposed by Rikters et al. (2017a):
* Coverage Deviation Penalty (CDP) penalizes the sum of attentions per
input token, so tokens with less or too much attention get a lower score.

1 J 1
CDP = _j Z’]log <1+(1 —E(Xﬁ)z),
= i=

where @ represents attention weights, J is the length of the input sentence
and / is the number of target tokens.

* Entropy or Absentmindedness Penalty (Ent;, and Ent,,) computes the
dispersion via the entropy of the attention distribution of input and output
tokens.
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¢ Total is a sum of all metrics described above.

Total = CDP + Ent;, + Ent
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In addition to the metrics listed above, we also compute the ratio between input
and output entopies:

Ent;,
Enty i = ———
E nt()ut

3.2. QE as a Classification Task (Publication I)

Quality Estimation is typically considered as a regression task. However, there
are scenarios in which it makes more sense to use classification, for example, if
the goal is to filter out the worst translations.

Data and Settings

We have done this work in close collaboration with Estonian translation agency
Grata OU. The main goal was to detect the worst translations because they slow
down the post-editing process. As we mentioned in Section[2.5.2] we usually take
the ratio between the number of edits and the length of the reference sentence to
compute post-editing effort (HTER). However, we chose not to normalize HTER
scores since denormalized scores correlate better with post-editing time than nor-
malized. In our case, post-editing time is the most important metric.

Since the MT systems generated translations used the attention mechanism,
we could build a classification model with internal weights. To compare this
model with the model with force-decoded weights, we trained new MT models.
As a classifier, we used sklear application of Random Forest (Ho, [1995), all
attention-based metrics described above were used as its input features and denor-
malized HTER score as labels. To evaluate the performance of the algorithm,
we mainly computed the Matthews correlation coefficient (MCC) that works well
for unbalanced data:

TPxTN—FPxFN
/(TP +FP)(TP+FN)(TN+FP)(TN +FN)’

where TP stands for true positive values, TN — true negative, FP - false positive
and FN — false negative.

As data, we had 5444 sentences for German-Estonian and 4541 sentences for
English-Estonian. All original English and German sentences were taken from
technical texts. We used about 10% of the data as test sets, and the rest was used
for training and validation.

MCC =

Results

Table [3 shows the results for German/English-Estonian language pairs. It can be
seen that there is no noticeable difference between the metrics based on internal

Unttps://scikit-learn.org/stable
ZPost-edits of translations were done by our industrial partner Grata OU.
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Supervised Unsupervised
Internal Force-decoded || Internal Force-decoded
De-Et | 0.593 0.598 0.668 0.467
En-Et | 0.659 0.556 0.689 0.412

Table 3: Results of experiments for German-Estonian (De-Et) and English-
Estonian (En-Et) language pairs. We used Matthews correlation coefficient for
supervised tasks and absolute values of Pearson correlation coefficient for unsu-
pervised tasks.

and force-decoded attention weights for supervised approach.

To see if attention-based metrics can be used as an unsupervised metric, we
calculated the Pearson correlation coefficient between the total metric and de-
normalized HTER scores. According to our results (Table [3), internal weights
perform better than force-decoded.

3.3. QE as a Regression Task (Publication II)

In this section, we extend the proposed attention-based approach to regression
problems and examine its performance for four different language pairs.

Data and Settings

We used the QE Shared Task data from WMT18 (Specia et al., |2018)). The or-
ganizers provided data for four language pairs: English-Czech (En-Cs), English-
German (En-De), English-Latvian (En-Lv) and German-English (De-En). For
En-De and En-Lv, translations were produced by statistical machine translation
(SMT) systems as well as neural machine translation systems. For De-En and
En-Cs, there were translations generated only by SMT systems. Table ] shows
the amount of data for all language pairs.

EN-DE DE-EN || EN-CS EN-LV
nmt smt smt smt nmt smt
train | 13442 | 26299 || 26032 | 40254 || 12936 | 11251
dev | 1000 | 1000 1000 1000 1000 | 1000
test | 1023 | 1926 1254 1920 1448 | 1315

Table 4: Number of sentences for each language pair and each machine translation
system.

Since neural MT systems produced translations were not available to WMT18

participants, we used only force-decoded attention weights. To extract them,
we adopted NMT models prepared by the University of Edinburgh (Sennrich et
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al.,2017) for English-German, German-English and English-Czech; for English-
Latvian, we used a different NMT model trained separately.

We trained regression QE models using Random Forest (Ho, [1995) with a grid
search algorithm for the optimization of parameters. Five attention-based metrics
described in[3.1] are used as input features of the regressor and HTER values pro-
vided by WMT18 organizers as gold-labels. To evaluate models’ performance,
Pearson correlation coefficients between predicted values and labels were com-
puted.

Results

As shown in Table[5] we obtained a reasonably high linear correlation for German-
English and a close-to-moderate/moderate correlation for English-Latvian (NMT).
However, QE systems for other language pairs demonstrate lower results. The
considerable performance gap can be caused by data belonging to different do-
mains — German-English and English-Latvian data were taken from pharmaceu-
tical texts, and sentences English-German and English-Czech from IT. In addition,
attention weights were extracted from general-domain NMT systems without fine-
tuning on a specific domain.

EN-DE DE-EN || EN-CS EN-LV
smt nmt smt smt smt ‘ nmt
AttW 0.249 0.219 0.533 0.319 0.323 | 0.438
QuEst 0.369 0.354 0.220 0.389 0.389 | 0.462

AuW + QuEst | 0426 0373 | 0554 | 0451 | 0.402 | 0.531

Table 5: The absolute values of Pearson correlation coefficients between HTER
scores and predicted values (AttW) for test datasets. QuEst (Specia et al., [2013])
is the baseline computed by organizers of WMT18.

To investigate how the choice of a neural MT system affects the Pearson corre-
lation between an automatic prediction and post-editing effort, we compared the
results of our neural MT system and the University of Edinburgh’s MT system
for the German-English language pair. The resulting scores differ but not signif-
icantly (0.562 and 0.533, respectively). On the one hand, this suggests that the
choice of a neural MT system is not essential; on the other hand, both compared
MT systems are general-domain models rather than specific-domain.

3.4. Summary

In this chapter, we have examined the first research task — examination of at-
tention weights extracted from MT systems based on recurrent neural networks
(RNNs) as a QF indicator and have answered to both research questions:
* RG1-Q1: How well do attention-based QE models perform for supervised
and unsupervised QF tasks?
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In Publication I, we have shown that unsupervised models with internal
weights have a strong linear correlation with post-editing effort. The results
of the supervised models, studied in Publication II, vary markedly across
language pairs. That may be due to the fact that the data was taken from
different domains and we extracted attention weights from out-of-domain
neural MT systems.

* RG1-Q2: Can these models be applied to translations produced by any
unknown machine translation system?
Yes, it is possible to use an external MT system with the attention mecha-
nism to get attention distribution for the translation generated by any MT
system. In Publication I, we have compared the performance of the mod-
els based on internal and force-decoded attention weights. Although the
models based on external attention weights demonstrate a moderate linear
correlation with post-editing effort, they show worse performance than the
models using internal attention weights.

It is worth noting, we cannot directly compare the results of the models in
Publication I and II, because we used different types of tasks: classification and
regression, and hence different metrics.
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4. ATTENTION WEIGHTS EXTRACTED FROM
TRANSFORMER-BASED MT SYSTEMS
(PUBLICATIONS l11-V)

In the previous chapter, we discussed attention weights obtained from RNN-
based machine translation models, however in 2017 a new architecture Trans-
former (Vaswani et al.,[2017) quickly supplanted RNN models and became state-
of-the-art. For this reason, the use of QE models based on attention weights de-
rived from RNN models with attention mechanism has become deprecated. How-
ever, the idea of using attention weights can be applied to the new architecture as
well.

As we mentioned earlier, there are two different attention mechanisms in Trans-
former: self-attention and encoder-decoder attention. In our experiments, we
only work with the encoder-decoder attention mechanism because it “binds” the
source and output sentences together. It is similar to the attention mechanism used
in RNN, but, by comparison, it consists of several attention matrices. Encoder-
decoder attention matrices are computed for each head (H) and layer (L) of the
decoder; as a result, there are [H x L] matrices. The main question arises — how
to handle [H x L] matrices.

4.1. Unsupervised and semi-supervised approaches for DA
(Publication IIl)

Metrics

We proposed two unsupervised ways to summarize information from all layers
and heads:

¢ the minimum entropy across all computed entropies:
Ent-Min = min{hl} (Att—Echl)

* the average of all computed entropies:

—

H L
Z Z Att-Enty,

where Aft-Ent is the entropy of the attention distribution as known as AP,
from the previous chapter:

Att-Ent = — (047 log (047

J
=1

N o=
1~

i=1j
and one semi-supervised:

» “oracle”: figure out the layer/head combination that shows the better per-
formance, for example, using a small annotated dataset.
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Data and settings

In our experiments, we used 1000 sentences taken from six language pairs: English-
German (En-De), English-Chinese (En-Zh), Romanian-English (Ro-En), Estonian-
English (Et-En), Sinhala-English (Si-En) and Nepali-English (Ne-En). To evalu-
ate the performance of the proposed metrics, we calculated Pearson correlation
coefficients between them and DA score (in contrast to the previous chapter,
where we worked with HTER scores).

The Transformer architecture was used to train all MT models; since the most
important parameters for our study are the number of heads and layers, we omit
other training parameters. For all languages except Si-En and Ne-En, the MT
models were trained based on the standard six-layer, eight-head Transformer ar-
chitecture; for Si-En and Ne-En used Big-Transformer with six layers and 16
heads. The presence of neural MT systems allowed us to extract the internal
weights of attention.

et-en | ro-en | si-en | ne-en | en-de | en-zh
Ent-Min 0.329 | 0.524 | 0.097 | 0.265 | 0.000 | 0.067
Ent-Avg 0.377 | 0.382 | 0.10 | 0.205 | 0.090 | 0.112
best layer/head | 0.416 | 0.636 | 0.255 | 0.381 | 0.241 | 0.168
Table 6: Absolute values of Pearson correlation coefficients between unsuper-

vised metrics and human DA judgments for 1000 sentences. Results that are not
significantly outperformed by any method are marked in bold.

Results and Discussion

As shown in Table [6] the performance of the metrics varies significantly across
languages, from no linear correlation to moderate. There are several plausible
explanations for this. First of all, there is no direct mapping between words in
different languages, so low entropy does not necessarily indicate a high quality
of translation. Secondly, simply combining information from different heads and
layers may not be the optimal solution.

Voita et al. (2019) show that different heads of attention are responsible for
different functions. To study the behaviour of attention heads in more detail from
QE perspective, we calculated Pearson correlation coefficients between human
DA judgments and Att-Ent for all heads. The best layer-head combination (“or-
acle”) is superior to summarized metrics, Ent-Min and Ent-Avg, in predicting
translation quality in almost all language pairs (Table [6). While its use gives the
best results, it requires validation on an annotated dataset and can be considered
as a semi-supervised approach.

'Original  sentences, their  translations and DA  scores can be found
https://github.com/facebookresearch/mlqe
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H Headl

Head2 Head3 Head4 Head5 Head6 Head7 Head8

Layerl
Layer2
Layer3
Layer4
Layer5
Layer6

0.307
0.314
0.317
0.146
0.181
0.163

0.209

0.179
0.246

0233 0286 0320 0267 0304 [0.336
0306 0.185 0275 0227 0277 [0.306
0343 0332 0327 0340 0356 (0361
[OB78 0298 0283 0299 (0344 0274
0311 [0335 [08538 0219 0168 0.267
0179 0239 0220 0252 0.197 0.188

Table 7: Absolute values of Pearson correlation coefficients between entropy and
human DA judgments for Estonian-English (1000 sentences).

‘ ‘ Headl Head2 Head3 Head4 Head5 Head6 Head7 Head8
Layer 1 | 0.078  0.124 0073 0.188 0.152 0.183 0266 |00o8
Layer2 | 0.011%* 0214 0.006* 0.108 0213 0.115 [HEE8 0343
Layer3 | 0.142 0301 [0B0H 0202 0222 0828 0067 0.406
Layer4 || 0.19¢ [0448 [0M483] [0449 0261 0.9 0393 0.022%
Layer5 | 0428 0311 [048% 0.195 0257 [0492 (0439 0.409
Layer6 || 0213  0.173 0258 0.186 [0M90] 0.099 0295 0.259

Table 8: Absolute values of Pearson correlation coefficients between entropy and
human DA judgments for Romanian-English (1000 sentences). Correlation coef-
ficients with p-value > 0.05 are marked *

Tables 7] and [§] show computed correlation coefficients for each head as a heat-
map for Et-En and Ro-En, with darker color indicating better performance. We
can see that correlation differs noticeably across the heads for both language pairs,
for example, from 0.146 to 0.416 for Et-En. Although for both language pairs the
highest correlation coefficients come from the second layer, we need to run more
experiments to extend this knowledge to other languages.

32



4.2. Supervised approaches for DA and HTER
(Publications IV and V)

In the previous section, we discussed the use of attention weights of Transformer
MT models to predict translation quality in unsupervised or semi-supervised ways.
Compared to the models using internal attention weights of RNN-based MT mod-
els (Section [3.2), the performance of QE models based on Transformer attention
weights is lower and varies significantly across language pairs.

In this section, we examine the behaviour of supervised models based on
Transformer attention weights using not only summarized information, as in the
first publications, but also “pure” attention weights. In addition, for the first time,
we have DA and HTER scores for the same data, which allowed us to compare
the performance of the proposed models for both metrics.

Data and Settings

Data We focused on two language pairs: Estonian-English (Et-En), as the lan-
guage pair performed relatively well on the unsupervised task, and English-German
(En-De), which performed the worst. For our supervised methods, we used 7 000
sentences for the training dataset, 1 000 sentences for the development set and two
test datasets of 1000 sentences each?]

Models with entropies as input features To run experiments with the sum-
marized information — in other words, with entropies (Ent-Mod), — we chose
Random Forest (Ho, [1993), as a relatively fast approach, and an ensemble build-
ing based on (Caruana et al., 2004). To run experiments with Random Forest
models (RF-Ent), we used the sklearnEL set a randomized search on the hyper-
parameters and performed 5-fold cross-validation. To conduct tests with ensem-
ble building models (Ens-Ent), we used the m1 j axﬂ Random Forest and Cat-
Boost (Prokhorenkova et al., [2018)), set Pearson as the evaluation metric and ran
5-fold cross-validation.

Convolutional Neural Network -based models The summarization of atten-
tion weights into metrics is already, to a certain extent, their interpretation. Is
it a necessary step? To test it, we used attention weights as input features for a
relatively simple convolutional neural network (CNN).

The base architecture of proposed CNN models is presented in Figure [/} The
model’s input is attention weights with a shape ([Heads xLayers], number of the
source tokens, number of the target tokens). The number of [Headstayers]E]
is constant for all weights obtained from the same system, whereas the number
of source and target tokens of each sentence can vary noticeably. To reduce the
amount of padding added to each batch, we sort all sentences by the number of

2 All data can be found http://www.statmt.org/wmt21/quality-estimation-task.html]
3https://scikit-learn.org/stable

4https://supervised.mljar.com/

58 x 6 for En-Et and En-De neural MT systems
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source/target tokens (max(src, tgt)) and only after that form a batch. Each CNN-
based model consists of two or three CNN blocks, each of them comprises 2D-
CNN, Batch Normalization, MaxPooling and Dropout Layers. We use Relu as
the activation function. To handle the variable size of input batches, we use the
Adaptive Max pooling layer. The last block of the model consists of three feed-
forward layers. As a result, the model is trained to produce the desirable score:
DA or HTER. We optimised our neural models with Adam (Kingma et al.,[2015).

We ran experiments with several models; the main difference between them is
the type of gold labels used — human-annotated or synthetic.

To predict DA scores, we considered three

models: QE score
CNN-DA: we use DA human-annotated data: T
7000 for the training dataset and 1 000 Feed
for the development; Forward
CNN-BLEURT: we experiment with pre- }
training on synthetic data and for that AdaMax
we compute the BLEURT (Sellam et Pool
al., 2020) score for randomly chosen y
300000 sentences®] and use them as la-
bels for the training and development CNN
datasets. We have chosen BLEURT to
get artificial labels due to its good agree- Attention Weights
ment with human judgments (Mathur et
al., 2020): Figure 7: The architecture of the

CNN-BLEURT+: we fine-tune the model CNN-QE models.

CNN-BLEURT on human-annotated data.
To predict HTER scores, we presented two models:

CNN-HTER: we train a model with HTER human-annotated data;

CNN-HTERart: we use synthetically computed HTER between the translations
and their references. Though the preliminary experiments demonstrated a
poor performance compared to CNN-HTER, but this setting can be used in
the absence of the human annotated training data.

Results

Results of DA-predicting models As expected, the supervised attention-based
models predicting DA outperform unsupervised ones (see Table[9). Both summa-
rizing and non-summarizing methods demonstrate nearly moderate to moderate
linear correlation. It is worth pointing out that the performance of CNN-BLEURT,

6 Additional parallel corpora to train CNN models: the OpenSubtitles (Lison et al., 2016), JRC
Acquis (Steinberger et al., [2006), EuroParl (Koehn, 2005), DGT and EMEA (Tiedemann, 2012)
corpora
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the model that does not require expensive and time-consuming human labels, is
relatively high.

En-De Et-En
dataset]l dataset? || datasetl dataset2
RF-Ent 0.373 0.301 0.499 0.455
Ens-Ent 0.395 0.341 0.517 0.480
CNN-DA 0.220 0.210 0.518 0.464

CNN-BLEURT | 0.383 0.357 0.577 0.526
CNN-BLEURT+ | 0.381 0.369 0.599 0.547

Ent-Min 0.000 woE 0.329 o
Ent-Avg 0.090 *k 0.377 *oE
best head/layer 0.241 o 0.416 ok

Table 9: The absolute value of Pearson correlation coefficients between human
DA scores and predicted values for both test datasets. **We did not compute
correlations between true labels and unsupervised predicted values for the second
dataset.

To measure how predicted outputs of entropy-based and CNN-based models
are correlated, we computed Pearson correlation coefficients for dataset2’s pre-
dictions. As expected, we got a moderate correlation (0.36-0.46) for En-De and a
strong correlation (0.61-0.75) for Et-En. As shown in Table[I0] averaging outputs
of both, entropy- and CNN-based, models results in better performance than the
individual model.

En-De Et-En

Ens-Ent + CNN-DA 0.344 0.517

Ens-Ent + CNN-BLEURT 0.409 0.547
Ens-Ent + CNN-BLEURT+ | 0.416 0.561

Table 10: The absolute value of Pearson correlation coefficients between human
DA scores and predicted values for the second dataset.

Results of HTER-predicting models Like DA-predicted models, all pro-
posed HTER-models perform well (see Table[TT)), showing a moderate linear cor-
relation for both language pairs and outperforming unsupervised metrics.

How many sentences do we need to train a QE model? Getting DA as
well as HTER scores is a time-consuming and expensive task, so the less anno-
tated data required, the better. To examine how much labelled data is needed to
train models, we ran ten tests and averaged the obtained correlation coefficients
for each examined amount of data (25%, 50%, 75%). According to our exper-
iments, both discussed approaches, Ent-Mod and CNN-HTER/DA, demonstrate
comparable higher performance even with a small amount of training/validation
data. As shown in Figure[§] the performance of Ent-Mod models for En-De (left)
and Et-En (right) language pairs worsens slightly as the amount of training data
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En-De Et-En
dataset] dataset2 || datasetl] dataset2
RF-Ent 0.389 0.519 0.505 0.534
Ens-Ent 0.408 0.531 0.519 0.561
CNN-HTER 0.430 0.503 0.580 0.549
CNN-HTERart | 0.334 *x 0.482 *x
Ent-Min 0.000 HE 0.386 *k
Ent-Avg 0.000 HE 0.289 wE
best head/layer | 0.269 ok 0.407 ok

Table 11: The absolute value of Pearson correlation coefficients between HTER
scores and predicted values for both test sets. **We did not compute correla-
tions between true labels and CNN-HTERart/unsupervised predicted values for
the second dataset.

decreases. The performance of CNN-HTER models declines more markedly, but
remains relatively high. All models show a moderate linear correlation with post-
editing effort, especially in the case of the En-Et language pair, even using 2000
training / validation examples (1750 for training and 250 for validation).
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Figure 8: Absolute value of Pearson correlation coefficient between predicted
values of the first dataset and HTER scores for En-De and Et-En language pairs.

Does combining several glass-box features improve performance? One
way to improve performance of glass-box QE models is to use several glass-
box features together. In collaboration with our colleagues at the University of
Sheffield, we examined the behavior of QE models based on three types of fea-
tures: (1) attention weights; (2) the output probability distribution from a deter-
ministic neural MT system (Probability features) and (3) output probability
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distribution with use uncertainty quantification based on the Monte Carlo dropout
method (Dropout featuresﬂ

| EtEn Ro-En  Si-En  Ne-En  En-De En-Zh

,, Attention 0.519 0.722 0455 0.583 0382 0.353
95) Dropout 0.669 0.751 0.548 0.638 0.206 0.352
S Probability 0.525 0.670 0.508 0.568 0.189 0.329
< Dropout+Probability 0.670 0.754 0.556 0.632 0.194 0.381
é Attention+Probability | 0.611 0.700 0.550 0.629 0.454 0.406
£ Attention+Dropout 0.679 0.791 0.554 0.659 0452 0.429

All 0.678 0.793 0.556 0.657 0.464 0.427

Table 12: Pearson correlation coefficients between human DA scores and pre-
dicted values for the first dataset. Results marked in bold are not significantly out-
performed by any other method (We use the Hotelling-Williams test to compute
significance of the difference between dependent correlations (Williams, [1959)
with p-value < 0.05.

In our experiments with several glass-box features, we used language pairs
described in Section 4.1 with 7 000 sentences for training set, 1 000 for develop-
ment set and 1 000 for test se] We trained models with different combinations of
the above groups of features using XG-Boost (Chen et al., [2016) from xgboostﬂ
package. As can be seen from Table [12] the best results among the individual
groups of features are obtained for either Dropout features (Et/Ro/Si/Ne-En and
En-Zh) or Attention features (En-De/Zh). The combination of all three groups of
features and the combination of Dropout and Attention show the best results for all
language pairs. Thus, while QE models based on a single metric may not perform
well, a combination of different metrics results in much better performance.

4.3. Summary

In this chapter, we have discussed the second research task — exploration of the
attention distribution extracted from transformer-based MT systems in terms of
translation quality and have answered to following research questions:

* RG2-Q1: What are the possible solutions to overcome the difficulties en-
countered when working with attention weights of transformer MT systems?
Transformer’s encoder-decoder attention mechanism consists of several at-
tention matrices. So, the main difficulty arises — how to handle them?
In Publication III-V, we have proposed to compute entropy of each matri-
ces. In the case of supervised tasks, all computed entropies are used as input

"More details about Probability and Dropout features can be found in Publications IIT and IV.

8Sentences, DA labels and MT models are available: |https://statmt.org/wmt20/quality-
estimation-task.html

Jhttps://xgboost.readthedocs.io/en/latest/python/index.html
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features of a regression model. Regarding unsupervised tasks, we have sug-
gested to calculate the minimum entropy across all computed entropies and
the average of all computed entropies. In Publication V, we have also pro-
posed to use attention matrices as an input of convolutional neural networks
for supervised tasks.

RG2-Q2: How well do attention-based QE models perform for unsuper-
vised and supervised QFE tasks, including “zero-shot” supervised models
requiring only synthetic data for labels?

The performance of unsupervised models varies significantly across lan-
guage pairs, so it might be more practical and safe to use semi-supervised
or supervised models. All supervised models considered above are supe-
rior in efficiency to unsupervised and semi-supervised ones, but also differs
across language pairs. Supervised models work relatively well even with
synthetic labels.

RG2-Q3: How much annotated data is needed to train attention-based su-
pervised models?

Both, CNN-based and entropy-based, supervised models show compara-
ble higher performance with relatively small amounts of human-annotated
data. However, the performance of these models degrades as the amount of
training data decreases.

RG2-Q4: What are the limitations of the attention-based approach and
how can they be overcome?

As mentioned above, the performance of the proposed models differs no-
tably across language pairs. In the case of unsupervised models, the linear
correlation between entropies and human labels varies remarkably across
all heads, that is why using the minimum or average entropy may not be the
optimal solution. As we have not found the optimal solution, we have pro-
posed to use a semi-supervised approach — using a small annotated dataset
to help identify the head that shows the better performance. To improve per-
formance of supervised models, we have suggested to use the combination
of several glass-box features.
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5. CONCLUSION

Machine translation has become a part of the life of not only linguists and pro-
fessional translators, but almost everyone. Most people who have used machine
translation have come across funny and sometimes completely incorrect transla-
tions that turn the meaning of a sentence upside down. Thus, in addition to trans-
lation, we need to use a scoring mechanism that informs people about translation
quality.

The most prevalent QE approaches are based on black-box features because
they provide the best performance. However, methods based on glass-box features
can be interesting not only for researchers, but can also prove fruitful in several
specific scenarios. For example, when additional data is not available or is difficult
to collect, or when we need to reduce the computational resources required to train
a QE model.

In this work, we examined attention weights of neural MT systems in terms of
translation quality. Initially, the PhD thesis tackled the first research goal “exam-
ination of attention weights extracted from MT systems based on recurrent neural
networks (RNNs) as a QF indicator”. In Chapter |3} we examined the perfor-
mance of attention-based QE models in unsupervised and supervised ways. We
have shown that these models can be used when translations produced by any
MT system. It was noticed that the performance of the proposed models differs
markedly across language pairs.

When transformer-based MT systems have become state-of-the-art, we exam-
ined the attention distribution extracted from transformer-based MT systems in
terms of quality estimation (the second research goal). Unlike the attention mech-
anism applied in RNN-based systems, where there is only one attention matrix,
there are several attention matrices in systems based on transformers. In Chap-
ter 4] we have proposed two ways how to handle transformer’s attention matrices:
(1) to compute entropy and (2) to use all attention matrices as an input of convo-
lutional neural networks (CNNs). The first approach can be used for supervised
as well as unsupervised tasks, while the second one is only suitable for supervised
tasks. We have shown that all proposed supervised models require a small amount
of training data. We have also demonstrated that CNN-based approach can be used
in a zero-shot setting when human-labelled data is not available. There is the same
issue with the transformer’s attention-based approaches—the performance varies
significantly across language pairs. One possible way to mitigate it and improve
performance is to combine attention weights with other glass-box features.

Multilingual machine translation systems are becoming more and more popu-
lar. Therefore, it would be interesting to explore how glass-box approaches work
for them. Could we transfer a model trained for one language pair of a multilin-
gual MT system to other language pairs of the same system? Especially if we
are talking about a zero-shot MT system when the system has explicitly not seen
some language pairs.
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In this work, we have explored only the quality of translation at the sentence
level. We believe that attention-based approaches can be easily adapted to word-
level tasks as well as critical error detection problems. Although, some particular
difficulties might arise, for example, how we should handle English phrasal verbs,
the meaning of which depends heavily on the preposition of the verb, or German
verbs with prefixes where the meaning relies on the prefix.

In conclusion, translation quality is an important part of the machine trans-
lation pipeline. Although there are already several quality estimation systems
showing impressive performance, so far only for some language pairs, and at the
same time requiring quite a lot of resources; therefore, there is still a lot of work
to be done.
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SISUKOKKUVOTE

Kvaliteedi hindamine tahelepanu abil

Viimastel aastatel on masintdlkesiisteemide (MT) kasutamine jérsult kasvanud.
Tidnapdeval ei kasuta masintdlget mitte ainult suurettevotted, riigiasutused ja tdl-
kebiirood, vaid ka inimesed, kes tahavad nditeks teada, millest nende lemmik-
laul ridgib. Narvivorgu pdhiste mudelite tulekuga on masintdlkesiisteemid teinud
olulisi edusamme, saavutades korge ressursiga keelepaaride puhul inimldhedase
kvaliteedi. Tolke kvaliteet ei ole aga keelepaaride, domeenide, andmekogumite
ja isegi sama MT-siisteemi puhul jirjepidev. See on eriti problemaatiline vihes-
te ressurssidega stsenaariumide puhul, kus treenimisandmeid ei ole piisavalt ja
tolke kvaliteet jidb méarkimisvéirselt maha. Lisaks loovad kaasaegsed masintdl-
kesiisteemid tavaliselt ladusaid tdlkeid, kuid moned neist tdlgetest vdivad olulised
iiksikasjad vahele jétta voi originaallause tdiesti valesti esitada. Seega peame hin-
dama iga siisteemi tdlget, et tdlge ei moonutaks algse lause tdhendust.

Tdlkebiiroode puhul toimetavad masintdlke tulemusi professionaalsed tolki-
jad. Mdne stsenaariumi korral, nditeks veebipShiste masintdlkesiisteemide puhul,
ei ole aga vdimalik tdlke kvaliteeti inimtoimetajate abiga hinnata. Seetdttu on
automatiseeritud tolkekvaliteedi hindamise siisteemid masintdlke td6voo oluline
osa.

Tdlkekvaliteedi hindamiseks on olemas kahte tiilipi automatiseeritud siistee-
me: vordlustdlge(te)ga ja ilma. Esimesi nimetatakse sageli mdddikuteks voi eta-
lonipdhisteks moddikuteks; teisi nimetatakse kvaliteedihinnangu (quality estima-
tion, QE) moddikuteks. Tavaliselt kasutame MT-siisteemide treenimisel masintol-
ke valjundi kvaliteedi hindamiseks etalonipdhiseid mdodikuid, samas aga saame
kvaliteedihinnangu mdddikuid kasutada otse ka veebipdhiste M T-siisteemide tol-
kekvaliteedi mdotmiseks, ilma etalontolgeteta.

Selles doktoritdds keskendume kvaliteedihinnangu moddikutele ja kisitleme
tolke kvaliteedi nditajana tdhelepanumehhanismi ennustatud jaotusi, mis on iiks
kaasaegsete neuromasintdlke (NMT) siisteemide sisemistest parameetritest. Koi-
gepealt rakendame seda rekurrentsetel nérvivorkudel (RNN) pohinevate NMT-
siisteemide genereeritud tdlgetele (Publikatsioonid I ja II). Néitame, et pakutud
mudelid vdivad to6tada nii juhendatud kui ka juhendamata viisil rakendatuna. Ju-
hendatud mudelite peamiseks puuduseks on annoteeritud inimandmete kasutami-
ne, kuna professionaalsete tolkijate poolt andmete mérgistamine on aegandudev
ja kulukas iilesanne. Seetottu on oluline arendada ka juhendamata ldhenemisi.
Lisaks demonstreerime, et antud lihenemisviis on rakendatav tdlgetele, mis on
tehtud mistahes tundmatu masintdlkesiisteemiga. Uurime pakutud mudeli tule-
muslikkust erinevates keelepaarides, nagu eesti-saksa, inglise-saksa, inglise-liti,
ja erinevates domeenides (IT, tehniline ja farmakoloogiline).

Kuna RNN-pohised MT-siisteemid on niitidseks asendunud transformeritega,
mis muutusid peamiseks tipptaseme masintdlke tehnoloogiaks, kohandasime oma
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lahenemisviisi ka transformeri arhitektuurile. Uurime, kuidas see toimib juhen-
damata (Publikatsioon III), osaliselt juhendatud (Publikatsioon III) ja juhenda-
tud (Publikatsioonid IV-V) masindppe iilesannetes. Juhendatud treenimise puhul
uurime, kui palju annoteeritud andmeid on vaja kvaliteedihinnangu mudeli treeni-
miseks, ja nditame, et need nduavad tegelikult vdikest kogust treenimese andmeid.
Sellele lisaks niditame, et juhendatud masindppe mudelid saavutavad mdistliku
korrelatsiooni inimeste hinnangutega isegi siinteetiliste mérgistatud andmete ka-
sutamisel. Demonstreerime, et parimaid tulemusi saavutatakse tdhelepanukaalu-
de ja muude MT mudelist saadud tunnuste kombineerimisel (Publikatsioon IV).
Nagu kahes eelmises publikatsioonis, testime oma ldhenemist erinevates keeltes
— eesti-inglise ja inglise-saksa (juhendamata, osaliselt juhendatud ja juhendatud
mudelid), inglise-hiina, nepali-inglise, rumeenia-inglise ja singali-inlglise (osali-
selt juhendatud ja juhendatud mudelid).

Me rakendame oma ldhenemisviisi ainult lausetaseme kvaliteedi hindamisel,
kuid seda voiks kohandada kvaliteedikontrolli jaoks muudel tasanditel, nditeks
sona, fraasi voi dokumendi jaoks.
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