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Chapter 1

Introduction

The focus of our work is to develop testing platforms for In-Orbit Demonstra-
tion (IOD) of novel propulsion technologies. This thesis presents an Attitude
Determination System (ADS) developed for testing electric solar wind sail
(E-sail) technology on board the ESTCube-1 satellite. The system uses Sun
sensors, magnetometers, gyroscopic sensors for attitude measurements and a
Kalman filter for attitude estimation. The ADS has been calibrated and char-
acterised in the laboratory, simulated, as well as recalibrated and characterised
in orbit.

1.1 Background

Spacecraft propulsion is an enabler of space exploration. It enables launching
objects from the Earth’s surface, for changing orbits, for escaping the Earth’s
orbit, for approaching other celestial bodies and even landing on them. While
conventional propulsion methods like chemical, ion and cold gas have served
the drive of exploration for decades, the first space exploration visionaries
and science fiction writers also described and discussed propellantless means
of propulsion [1–4]. One of the most popular technologies is the photon sail,
which employs a large reflective sail to capture thrust from photons coming
from the Sun [5–7]. In recant decades, other types of sails have been proposed,
for example, the magnetic sail and the E-sail. The magnetic sail consists of
a magnetic field generated around a spacecraft and deflecting the solar wind
[8; 9]. The E-sail consists of centrifugally stretched and positively charged
tethers that also deflect charged particles in the solar wind [10; 11]. The E-
sail is a promising propulsion system concept because it provides a high and
constant thrust with its large effective sail area and small mass [12]. The E-
sail has the potential to decrease the cost of interplanetary travel and, at the
same time, it allows for faster travel speeds and enables new missions [13–19].
A satellite with one or more negatively charged E-sail tethers can be used in
Low Earth Orbit (LEO) to deorbit satellites [20; 21].

The E-sail has been developed to Technology Readiness Level (TRL) 4–5
[22; 23]. In order to increase the TRL further, technology has to be demon-
strated in orbit. For IOD, the stepping stone approach can be employed,
first, by testing the technology in LEO. Here instead of the solar wind plasma
stream there is ionospheric plasma, which moves relative to the satellite due

10



to the orbital motion of the satellite. Second, the technology is tested in an
authentic environment — the solar wind. By demonstrating technology in
LEO, the E-sail TRL would increase to 6 and the plasma brake TRL to 7 or
even 9 if a satellite is effectively deorbited. By demonstrating technology in
the solar wind, the E-sail TRL would increase to 7. TRL 9 can be reached by
using the E-sail in an operational mission.

According to the E-sail inventor Pekka Janhunen [12], the tether is pro-
duced by an ultrasonic wire-to-wire bonding method [24]. A tether of one
kilometre has been successfully produced [25]. The reeling system has been
developed based on a piezoelectric motor [26; 27]. The reeling system assists
tether deployment — the pull and tension is provided by the centrifugal force
and an end-mass at the tip of the tether [III]. To provide centrifugal force,
high rate spin control is required [II].

Since the end of 1990s, nanosatellites (1–10 kg) have grown from simple,
mostly educational, satellites with limited functionality to platforms for IOD,
Earth observation, scientific experiments and even operational missions [28–
35]. One of the biggest challenges in such missions is to provide accurate on-
board attitude determination that is usually required by a payload and/or for
attitude control. The small size of nanosatellites introduces limiting factors on
performance and on means of accurate on-board attitude determination. Due
to the small size and affordability, the most popular sensors for nanosatellite
ADSs are magnetometers, Sun sensors and gyroscopic sensors, e.g., [36–43].
Star trackers are also becoming more and more popular since ADSs with higher
accuracy are required and star trackers suitable for nanosatellites have been
developed [36; 44–46]. Rapid developments in consumer electronics have pro-
vided Commercial Off-The-Shelf (COTS) components, which are miniaturised
and can provide high processing power. Such components are successfully used
on nanosatellites but require thorough testing.

In order to demonstrate affordable in-orbit tether deployment and to mea-
sure the E-sail force, a cost-effective approach with quick development time
has to be used. Hence nanosatellites are employed to perform proof of concept
tests. The first E-sail IOD was carried out on board the ESTCube-1 satellite
which was launched in May 2013 [I]. In-orbit tests were carried out in the au-
tumn of 2014 and provided suggestions for further development of the tether
deployment system [47]. The second IOD with an improved tether deployment
system will be tested on board the Aalto-1 satellite which will be launched at
the beginning of 2016 [36; 48].

While nowadays high performance nanosatellite ADSs and other sub-
systems are available commercially, in 2008, when the ESTCube-1 project
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started, on-board attitude determination was only being demonstrated on
some nanosatellites. Such satellites were mostly equipped with passive at-
titude control systems (i.e., with permanent magnets following the Earth’s
magnetic field or with booms employing gravity gradient stabilisation) and
attitude determination was rarely performed on board [28]. To the best knowl-
edge of the author, an active on-board ADS for high rate spin control has not
been developed previously.

1.2 Progress in this work

This work presents development and characterisation of an ADS for the first
E-sail experiment on board ESTCube-1. The satellite was launched on May 7,
2013 and this work also presents in-orbit validation of the ADS. ESTCube-1
is required to spin up to one rotation per second for centrifugal tether deploy-
ment [I]. Feasibility of high rate spin up has been demonstrated by simulations,
which also set the preliminary requirements for attitude determination accu-
racy [II]. ESTCube-1 is required to determine the attitude with an accuracy
better than 2◦. The ADS was developed and characterised in the laboratory.
Results of laboratory characterisation were used to demonstrate the feasibil-
ity of determining the attitude with the required accuracy using simulations
[III]. With in-orbit recalibration and validation, the ADS was significantly im-
proved. The system was characterised by developing an uncertainty budget,
which showed that the ADS fulfils the requirements for attitude determination
accuracy. The attitude determined from on-board camera images was used as
a reference. The uncertainty budget includes uncertainties from both attitude
determination methods [IV].
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Chapter 2

Mission objectives and attitude determination
requirements

The ESTCube-1 scientific mission objective was to perform an IOD of the
E-sail. While the E-sail operational environment is the solar wind, a proof
of concept can be demonstrated in the Earth’s surrounding ionosphere, which
moves relative to the satellite due to the orbital motion of the satellite. The
ionospheric plasma stream is up to 105 denser than the solar wind but the
relative speed is 50 to 100 times slower. The expected E-sail thrust per unit
length in ESTCube-1 was ∼ 1 µN [12].

To provide a cost-efficient solution for demonstrating the E-sail, ESTCube-
1 was built according to the CubeSat standard. CubeSats are satellites whose
size is either ≈ 10 × 10 × 10 cm and mass is ≈ 1 kg corresponding to one
unit, or a combination of multiple units [49]. By the time when the ESTCube-
1 project started, more than 40 CubeSats had been launched, by the time of
the ESTCube-1 launch, more than 110 CubeSats had been launched and, up
to now, more than 380 CubeSats have been launched [50]. Popularity of the
standard, especially between university satellite projects, has created a market
of various launch options. This has been enabled by a standardised satellite
deployer and cost-effectiveness as a result of the use and testing of consumer
electronics and availability of COTS subsystems. The initial study showed the
feasibility of fulfilling the ESTCube-1 scientific mission objective by using a
one-unit CubeSat form factor, which sets the volume of satellite components
and subsystems as the main design driver.

The socioeconomic objectives of the project are to provide hands-on ed-
ucation to students and pupils, as well as to popularise science and space
exploration. ESTCube-1 was built within the Estonian Student Satellite Pro-
gramme where students and pupils were developing the satellite and managing
the project under supervision of advisors. The ESTCube-1 project was coor-
dinated by the University of Tartu and Tartu Observatory where most of the
satellite bus development and integration took place. Students from Tallinn
University of Technology, the Estonian Aviation Academy, the Estonian Uni-
versity of Life Sciences, Ventspils University College, University of Latvia and
Bremen University of Applied Sciences also contributed to the project. The
payload was developed by the Finnish Meteorological Institute, University
of Helsinki, University of Jyväskylä, University Of Eastern Finland and the
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German Aerospace Center.
The satellite payload consists of a tether, a motor with a reel for storing

the tether, an end-mass at the tip of the tether, a high voltage source for
charging the tether, a slip ring and electron guns [26].

Requirements for the ADS were directly related to system requirements,
which stem from the main mission objective to test components of E-sail tech-
nology. The experiment consists of the following steps [I].

1. Spin up the satellite to one rotation per second and align the spin axis
with the Earth’s polar axis. An on-board ADS is required to provide
inputs to the spin controller.

2. Deploy the E-sail tether using the centrifugal force such that the tether
is in the spin plane. The ADS is required to monitor changes in the
spin rate caused by the changing moment of inertia. It also triggers the
camera to take images of the tether end-mass on a dark background.

3. Measure angular velocity changes caused by the Coulomb drag interac-
tion between the charged tether and the surrounding ionospheric plasma.
Here the attitude measurements are the main means of determining the
E-sail force. The ADS also triggers the charging of the tether in synchro-
nisation with the satellite spin — either up or down the plasma stream
depending on the experiment mode.

An equatorial orbit is the most suitable for the E-sail experiment because
the experiment can be performed anywhere in this orbit, but ESTCube-1 was
designed for a polar orbit because of more frequent launch opportunities, more
ground station options and the ability to perform three-axis attitude control
with magnetorquers [12]. In a polar orbit, the experiment can be performed
over geographical poles where the spin plane is roughly aligned with the plasma
stream and the spin axis is nearly parallel to the magnetic field of the Earth
(Figure 2.1). In such conditions, the magnetic Lorentz force and the E-sail
force are roughly parallel to the spin plane, hence the spin axis will not have
a tendency to turn. With ±15◦ from the Earth’s poles being the part of orbit
where the E-sail experiment can be performed, it was estimated that the E-sail
thrust would change the angular rate ≈ 0.5 deg·s−1 during one polar pass [I].
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Spin axis

Tether

Orbit trajectory
Magnetic field

Polar axis

Figure 2.1: Spin plane orientation with respect to the polar orbit. Grey sectors
mark where the E-sail experiment is performed. [51]

The high rate spin-up manoeuvre was considered (and later proved to
be) the most challenging task for the ESTCube-1 attitude determination and
control system. In order to set requirements for the ADS, a simulation study of
high rate spin-up for nanosatellites was carried out [II]. The study showed the
feasibility to spin up a CubeSat to one rotation per second and align the spin
axis with the Earth’s polar axis with a pointing error less than 3◦ within three
orbits when the satellite was fully operational. By simulating the ADS with
limited functionality (large attitude determination error introduced by non-
operational Sun sensors), it was found that ten orbits are required to spin up
the satellite. From standard deviations used for a fully operational satellite,
the preliminary requirement for the attitude determination system was set:
standard deviation for magnetic field vector direction of less than 3◦, for Sun
direction — 3.33◦ and for angular velocity — 1 deg·s−1. The parameters were
not strictly defined at that stage because the uncertainties are the subjects
of trade between sensors because sensor measurements are fused during the
attitude estimation process. Moreover, detailed mission analysis suggested an
attitude determination uncertainty of ±2◦ (95% confidence level, k = 2) [III].
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Chapter 3

Attitude determination system

The attitude of a spacecraft is its orientation in space. The attitude and its
motion describe a rotation of a spacecraft body about the centre of mass.
While the orbital position and velocity are independent of the attitude, in
many cases it is required in the attitude determination process. Attitude de-
termination is the process of computing the orientation of the spacecraft rela-
tive to a reference frame. Inputs to attitude determination computations are
measurements of sensors and reference models. Although attitude prediction
is defined separately as the process of forecasting the future orientation of the
spacecraft, in this thesis, attitude determination will include both processes
mostly because the Kalman filter, used for ESTCube-1 attitude estimation,
includes a prediction step. [52]

3.1 Reference frames

For attitude determination, reference frames are used to define, for example,
the attitude and orientation of one frame with respect to another, to define
position and orientation of attitude sensors, and to define principal axes of a
satellite. Reference frames are defined by the location of the origin and the
direction of axes. A simulation environment developed at Aalborg University
for the AAUSAT3 mission [53] was used to simulate the ESTCube-1 ADS.
Reference frames implemented in the simulation environment are suitable for
the ESTCube-1 mission.

3.1.1 Earth Centred Inertial reference frame (ECI)

As the name of the ECI suggests, its origin is located at the centre of the
Earth. The x-axis goes through the point where the vernal equinox and the
equatorial plane cross, the z-axis through the Geographic North Pole, and
the y-axis is the cross product between the x- and the z-axis. One has to
keep in mind that this frame is not perfectly inertial because of the Earth’s
orbital motion around the Sun, precession of equinoxes and nutation of the
Earth’s spin axis [52; 54]. The latter two of these factors are included in
the uncertainty budget [IV, Table 1], but the former one does not influence
ESTCube-1 attitude measurements because stars are not used as a reference,
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and for attitude determination in general, it can be neglected because of its
small influence (�1 arcsecond) [55].

3.1.2 Earth Centred Earth Fixed reference frame (ECEF)

The ECEF frame is fixed with respect to the surface of the Earth. The ori-
gin is in the centre of the Earth with the x-axis crossing the point where the
Greenwich meridian crosses the equatorial plane, the z-axis crossing the Geo-
graphical North Pole, and the y-axis is the cross product between the x- and
the z-axis.

3.1.3 Satellite Body Reference Frame (SBRF)

The SBRF axes are aligned with the satellite frame as shown in Figure 3.1.
The tether is deployed in the +y direction and the camera is placed in the
same direction to take images of the tether end-mass. The intended spin axis
is the z-axis to provide centrifugal force for tether deployment. Electron guns
are placed on the −z side. Sun sensors are placed on all sides of the satellite.
An exploded view with much more detail of the satellite is presented in [I,
Figure 4].

-z

+x+y

Figure 3.1: ESTCube-1 satellite with axes. Photo: Mihkel Pajusalu.
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3.1.4 Principal Axes Reference Frame (PARF)

The PARF is a body-fixed frame in which the moment of inertia matrix is
diagonal [56]. Its origin is located at the centre of mass with the x-axis being
the minor axis of inertia, and the z-axis being the major axis of inertia. The
y-axis is the intermediate axis of inertia and also the cross product between the
x- and the z-axis. In order to find the centre of mass and principal axes, mass
distribution and an inertia matrix must be determined [57]. Hence precision
of the PARF depends on measurement or model accuracy.

3.2 Sensors

Attitude determination sensors are used to measure the direction or position
of celestial bodies, the Earth or their magnetic field, as well as to take iner-
tial measurements, like the spin rate. The most popular attitude sensors are
Sun sensors, magnetometers, Earth sensors, star trackers and angular veloc-
ity sensors. Measurements of the direction and position are combined with
respective reference models to determine the attitude of the satellite. Inertial
measurements are used as an input for dynamic models, hence provide better
attitude estimates.

3.2.1 Sun sensors

Sun sensors are widely used for attitude determination for multiple reasons.
First, the Sun vector is easy to measure because of the small angular radius
of the Sun (0.267◦ at the distance of one astronomical unit, [52]). The small
angular radius of the Sun for most of the cases can be considered as a point
light source and hence allows for simpler sensors and algorithms. Second, most
of the space missions require sunlight for power and many of them require the
pointing of solar panels towards the Sun. Third, the direction of the Sun drives
the thermal design. Four, there are missions that require instruments to be
pointed towards the Sun. Five, there are instruments that can malfunction
when pointed towards the Sun.

Sun sensors can be divided into three groups. Analogue sensors output a
continuous signal as a function of the angle of incidence. Course sensors also
use analogue detectors but can only detect whether or not the Sun is in the
Field of View (FoV). Digital sensors output a discrete signal of a function of
the angle of incidence.
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Analogue Sun sensors

Analogue Sun sensors are based on Position Sensitive Devices (PSDs) that
output current proportional to the cosine of the angle between the sensor nor-
mal vector and the incident solar radiation vector [56]. The exact model of a
sensor depends on its specific implementation and in most of the cases correc-
tion a function has to be determined based on calibration results. The model
might need to take into account slit width of the sensor mask, internal reflec-
tions in the sensor, thickness of the mask, light coming from other sources like
the Earth’s albedo, and other effects. When characterising Sun sensors and
other sensors, attention should be paid to systematic and random error. Ran-
dom error is caused by unknown or unpredictable effects, like measurement
noise. Although it is not possible to compensate for random error, it can usu-
ally be reduced by increasing the number of measurements and filtering them.
Systematic errors include bias, gain error, nonlinearity, asymmetry (different
gains for positive and negative measurements), quantisation and other known
and predictable effects. These errors can be caused by changing temperature,
uncertain reference, imperfect sensor design or test bench. Systematic error
can be quantified and compensated for. [58; 59]

Digital Sun sensors

Digital Sun sensors nowadays are similar to analogue ones, but instead of
PSDs, complementary metal-oxide-semiconductors or charge-coupled devices
are used as detectors. They can achieve higher accuracies but the complexity
and power consumption are increased, and the sampling rate and the minimum
required exposure time limit their use at high spin rates.

Course Sun sensors

Photodiodes, photocells or solar cells are used as course Sun sensors to detect
whether the Sun is in the FoV. Due to simplicity, robustness and independence
from other attitude measurements, course Sun sensors are suitable for safe-
guarding instruments, elementary thermal control, safe modes and preliminary
attitude acquisition [58].

3.2.2 Magnetometers

A magnetometer measures the magnitude and the direction of the local mag-
netic field. By using three one-axis magnetometers or one three-axis magne-
tometer, the magnetic field in all directions can be measured. By combining
the measurement with the orientation of the sensor in the SBRF, the magnetic
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field in the SBRF can be determined. To interpret the magnetic field vector
in, for example, an Earth reference frame, an Earth magnetic field reference
model has to be employed [52].

While most types of magnetometers are low-accuracy sensors (order of
magnitude of 1◦) for attitude determination purposes, their main advantage
is that the FoV is not a limit. However, magnetometer measurements can be
influenced by the magnetic field of the satellite. The residual magnetic field
can be caused by ferromagnetic materials used in satellite structure or current
loops in satellite electronics. To avoid the influence of the magnetic field of the
satellite, magnetometers have to be calibrated and they are sometimes placed
outside the main structure of the satellite — on a boom. Magnetometers are
also limited as attitude determination sensors since they can only be used
inside the Earth’s magnetosphere (mostly below 1000 km where the magnetic
field is strong enough [52]).

When magnetometers are used in combination with magnetic torquers,
it should be checked that the magnetic field generated by torquers does not
influence magnetometer measurements [47]. The easiest way to avoid this is
by taking measurements and running torquers in a sequence [IV, Figure 2].

On satellites, usually the following types of magnetometers are used: flux-
gate, search-coil, Overhauser, and anisotropic magnetoresistive. The first two
types have been used on large satellites for decades, the third type is used on
geomagnetic missions due to its accuracy in magnetic field magnitude mea-
surements (±1 nT for 98% of the data [60]) but it has high power consumption.
The fourth type is available as miniaturised COTS sensors, hence is popular
on nanosatellites. [52; 61]

3.2.3 Earth sensors

Earth sensors are particularly useful for nadir pointing satellites, for example,
Earth observation, communication and weather. Earth sensors detect the
Earth horizon and from that it is possible to determine attitude in the orbital
reference frame (roll and pitch angles).

Usually Earth sensors detect infrared radiation emitted from the Earth’s
surface. They can be used in sunlight and during eclipse but the presence
of the Sun or the Moon in the FoV introduces disturbances. Also, Earth
oblateness contributes to the attitude determination uncertainty.

Two types of sensors are used — static and scanning Earth sensors. For
static Earth sensors, the Earth has to be in the FoV permanently. To deter-
mine attitude around two axes, two or more sensors have to be used. Scanning
Earth sensors either rotate themselves or the whole satellite spins. A rotating

20



sensor sweeps out a cone and determines the attitude from signals generated
when the Earth’s horizon enters and leaves the FoV. [58]

3.2.4 Star trackers

Star trackers determine attitude by identifying star patterns. They are the
most complex attitude sensors with high computational requirements but, at
the same time, the most accurate ones. There are multiple reasons why star
trackers are so accurate (below 0.1◦). First, the apparent size of stars is small,
hence direction can be determined with high precision. Second, stars are in-
ertially fixed, hence determining attitude in the ECI frame does not require
additional models and attitude transformations. Third, sensors can track mul-
tiple stars, hence minimise the measurement uncertainty and determine the
attitude from one sample. A star tracker alone can be used as a three-axis
attitude determination system.

Since star trackers essentially are imagers of objects with low brightness,
the required exposure time limits the spin rate a spacecraft can have. Also,
the Sun and the Earth cannot be in the FoV of a star tracker. While star
trackers work as three-axis attitude determination systems, they are usually
used together with other attitude determination sensors due to the fact that
processing an image for attitude determination takes a significant amount of
time and computational resources. Hence, intermediate attitude is propagated
by angular velocity measurements or determined by another method. Due to
optics and a baffle, star trackers are usually the heaviest sensors compared
with other attitude sensors. The baffle is required to avoid stray light from
the Earth and the Sun. [58]

3.2.5 Angular velocity sensors

Angular velocity sensors measure the spin rate of a satellite in an inertial
reference frame. Although spin rate can be determined from other attitude
measurements by differentiation, measuring the spin rate directly provides
lower noise level without having to consider the orbital motion of the satellite
(satellite moving with respect to an external reference).

As opposed to other sensors discussed in this section, angular velocity sen-
sors provide measurements independent of an external reference. This prop-
erty allows the taking of measurements without the Sun, the Earth or stars
in the FoV, or outside the Earth’s magnetosphere. For example, angular ve-
locity measurements are especially useful to propagate the attitude while the
satellite is in the eclipse. However, angular velocity measurements are biased,
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in addition to noise and gain error, and the attitude propagated using angular
velocity will drift.

The bias is a non-zero sensor output at 0 deg·s−1 rotation rate with respect
to an inertial reference frame. While the bias can change over time and after
turning the sensor off and on, it is also influenced by the temperature, magnetic
field, acceleration and other factors. The gain converts raw sensor readings to
angular velocity. The gain is also influenced by the temperature, hence it is
important to include the temperature effects when calibrating angular velocity
sensors. While the noise level is usually low for angular velocity sensors, it
can have a significant contribution when angular velocity measurements are
used to propagate the attitude. Due to this, filtering can be used, especially
for miniaturised sensors for which the noise level might be fairly high. [58]

Historically, mechanical gyroscopes were used to measure the angular ve-
locity but recently laser gyroscopes have become popular due to the benefit
of no moving parts [56]. On nanosatellites, COTS micro-electro-mechanical
systems based vibratory systems for angular velocity sensors are used [62].

3.2.6 ESTCube-1 attitude sensor set

The main considerations for choosing attitude determination sensors for
ESTCube-1 are the ability to provide reliable measurements when the satellite
spins with the rate of one rotation per second, as well as the mass, volume
and power consumption.

Star trackers and Earth sensors are excluded from selection due to signifi-
cant mass contributions by optics and a baffle. In addition, since the satellite
is spinning around the axis that is aligned with the Earth’s polar axis, Earth
sensors would not be able to provide attitude measurements throughout the
orbit. Star trackers are also limited by the maximum spin rate at which they
are able to operate. The maximum limit is usually of an order of magnitude
of 10 deg·s−1. The advantage of analogue Sun sensors over digital ones is
simplicity and low power requirements due to the fact that analogue PSDs
are passive detectors — they generate photocurrent from sunlight. They are
also not limited by the spin rate of the satellite because a continuous signal
is provided by the PSD and it can be read instantaneously. Nevertheless, the
performance is limited by the Analogue to Digital Converter (ADC) sampling
rate.

The following set of sensors was chosen for ESTCube-1 — analogue Sun
sensors, magnetometers and gyroscopic sensors. Since, at the time of designing
the system, suitable Sun sensors were not available commercially, ESTCube-1
Sun sensors were developed in-house. While the selected set of sensors is op-
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timal for ESTCube-1, the system has certain limitations, namely, Sun sensors
cannot be used in the eclipse, Sun sensors have to be placed on all sides of
the satellite to maximise the FoV, the attitude determination uncertainty will
increase when using angular velocity measurements to propagate the attitude
during the eclipse, and magnetometer measurements cannot be taken at the
same time when magnetorquers are used.

3.3 Reference models

Reference models are used to reference sensor measurements. Since ESTCube-
1 is using Sun sensors and magnetometers, the Sun position model and the
Earth magnetic field model are required. In order to use the Earth magnetic
field model, position of the satellite and the rotation of the Earth have to be
known.

3.3.1 Orbital perturbation model

Modelling of orbits is not directly related to attitude determination but for
many missions the orbital position of the satellite is required in order to de-
termine the attitude. For example, when magnetic field measurements are
referenced to the geomagnetic field model this requires orbital position as an
input to calculate the magnetic field vector.

An idealised orbital equation, the Keplerian two-body orbital equation, is
derived from the Newton’s laws of motion and the Newton’s law of gravitation.
It is presented in Equation 3.1, where r is the position vector of the satellite,
G is the universal gravitational constant and m is the mass of the body that
the satellite is orbiting around (assuming that mass of the orbiting body is
� m). A point mass approximation is used here. [56]

r̈ = −Gm|r| r (3.1)

Orbits are described by orbital elements, for example, Keplerian elements.
The eccentricity defines the shape of an orbit, the semimajor axis define the
size, the orientation of the orbital plane is defined by the inclination and the
longitude of the ascending node, the orientation of the ellipse in the orbital
plane is defined by argument of periapsis, and the mean anomaly at epoch
defines the position of the satellite in an orbit.

Orbital perturbations play a significant role in determining an orbit and
the position of a satellite. Satellites in the Earth’s orbit are affected by the
following perturbations. First, the Earth is not perfectly spherical, hence

23



the point mass approximation is not precise. Second, other bodies influence
the orbit, for example, the Sun and the Moon. Third, in low Earth orbits,
the atmospheric drag decreases the orbital velocity. Fourth, solar radiation
pressure transfers the momentum from photons to the satellite surface. [56]

In practise, orbital elements, not necessarily Keplerian elements, are deter-
mined using measurements (e.g., radar, laser ranging or Doppler shift measure-
ments). While the theoretical background on orbital perturbations is wide, it
is not in the scope of this thesis and here just a practical method used on
ESTCube-1 will be discussed briefly.

One of the most widely used set of orbital elements, especially when high
accuracy is not required, is the North American Aerospace Defense Command
(NORAD) element set (also known as the Two-Line Element set, TLE) [63].
The NORAD element set works with five satellite position prediction models:
Simplified General Perturbations (SGP) [64], SGP4 [65], Simplified Deep space
Perturbations (SDP4) [66], SGP8 [67] and SDP8 (based on SGP8). SGP mod-
els are used with orbital periods smaller than 225 minutes and SDP models
with periods larger than that. The orbital period of 225 minutes corresponds
to a circular orbit of about 5877 km altitude. All models with FORTRAN
code are provided in [63]. The TLE consists of the following elements and ad-
ministrative fields: NORAD catalogue number, security classification, launch
year, number and piece letter, epoch year and day (including fractional hours)
of the orbital element, first time derivative of the mean anomaly, atmospheric
drag term, ephemeris (model) type, element number, inclination, right ascen-
sion of ascending node, eccentricity, argument of the perigee, mean anomaly,
mean motion and revolution number at epoch.

While the error in the predicted position can be tens of kilometres [68],
due to its simplicity and availability of TLEs, the SGP4 model is widely used.
In the case of ESTCube-1, the orbital position uncertainty is 3.5 km and
contributes 0.1◦ to the uncertainty budget (standard uncertainties) [IV, Table
1].

3.3.2 Earth rotation model

The Earth rotation model calculates the rotation between the ECI frame and
the ECEF, using the time as an input. One rotation of the Earth corresponds
to the mean Sidereal day of 23 hours, 56 minutes and 4.09053 seconds [69]. The
reference time for the Earth’s rotation is the Greenwich meridian transit of the
equinox on December 31, 1996 at 17 hours, 18 minutes and 21.8256 seconds.
From the reference time, full rotations are calculated and the fractional part
corresponds to the Earth’s rotation that day. The model is based on the work

24



by Princeton Satellite Systems, Rafa l Wísniewski (Aalborg University) and
the final version was prepared for the AAUSAT3 satellite [53].

The Earth rotation model does not account for precession and nutation,
hence they contribute to the uncertainty budget [IV, Table 1]. Precession
contributes 0.15◦ and nutation contributes 0.0015◦ to the uncertainty budget
(standard uncertainties) [52]. The contribution by precession could have been
minimised by using a later reference time but, unfortunately, such improve-
ment was not included in on-board software.

3.3.3 Geomagnetic field model

The geomagnetic field or the magnetic field of the Earth is the magnetic field
generated by the motion of conductive fluids in the Earth’s core [70]. While
the processes generating the geomagnetic field are not fully understood, it can
be measured, modelled and predicted. Multiple models of the geomagnetic
field have been developed and their coefficients are usually updated every five
years using ground and satellite measurements. Examples of these models are
CHAMP, Ørsted and Swarm (CHAOS) [71], the International Geomagnetic
Reference Field (IGRF) [72], the World Magnetic Model (WMM) [73], and
the Canadian Geomagnetic Reference Field (CGRF) [74].

The latest IGRF generation is the 12th but on ESTCube-1 the 11th gen-
eration IGRF, valid for 1900–2015, was used [75]. The magnetic field was
calculated using a simple C implementation suitable for running on board the
satellite [53; 76]. By using harmonic series and data from CHAMP and Ørsted
satellites, as well as from magnetic field observatories, the IGRF models the
main magnetic field and secular variations. Since the magnetic field of the
Earth is changing, every five years the coefficients are updated and the model
is assumed to be linear over a five year period. When calculating the magnetic
field vector, in addition to position in the ECEF, the time has to be specified.

Since 2000, the IGRF uses order 13 harmonics to better represent measure-
ment data. Nevertheless, the standard deviation of the magnetic field is about
100 nT due to temporal changes in the magnetic field [76; 77]. Geomagnetic
field uncertainty contributes 0.42◦ to the attitude determination uncertainty
budget [IV, Table 1].

3.3.4 Sun position model

The Sun position model is a simple function that takes time as an input and
outputs the position of the Sun. In the implementation used on ESTCube-1
[78], originally the Julian date was used as an input together with the space-
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craft position vector in the ECI frame. However, on-board code was modified
to use the ESTCube-1 time as an input. The ESTCube-1 time is a timestamp
that started on 21.12.2012 00:00:00 and uses steps of 100 ms. The model cal-
culates the mean anomaly, the obliquity of ecliptic, and uses the spacecraft
position vector to account for parallax. The model outputs a normalised po-
sition vector of the Sun in the ECI frame, as well as the distance to the Sun.
Despite its simplicity, the accuracy of the model is one minute of arc, which
contributes to the uncertainty budget [IV, Table 1].

3.4 Attitude estimation

Knowing sensor measurements in the SBRF (Section 3.2), the spacecraft po-
sition and reference vectors in the ECI frame (Section 3.3), the goal is to
estimate the orientation of the SBRF in the ECI frame. Estimation can be
performed by batch approach or Kalman filtering. The batch approach uses
a set of measurements taken at the same time. The most popular batch ap-
proach algorithms are TRIAD (also known as the Algebraic Method) [79; 80],
q-method [81] and Quaternion Estimator [82; 83]. Quaternions are rotation
formalism widely used in spacecraft attitude determination. Their main ad-
vantage is that trigonometric functions are not required, they are free from
singularities and are very suitable for computers due to low computational
requirements and algebraic operations [52; 56; 84].

With increasing computational power on board satellites, a more sophis-
ticated method for attitude estimation, the Kalman filter [85], has become
popular. The Kalman filter was also chosen for ESTCube-1 due to having
enough processing power to run it on board. The method takes advantage of
historical measurements, it uses not only direction and position measurements
(like magnetic field vector and Sun vector) but also angular velocity measure-
ments, it employs spacecraft kinematic and dynamic models, as well as takes
into account knowledge about measurement covariance. In the case that the
system is overdetermined, the Kalman filter can also estimate the measure-
ment bias. Generally, the Kalman filter consists of initialisation, prediction
and correction steps.

For ESTCube-1, an Unscented Kalman Filter (UKF) originally developed
for the AAUSAT3 satellite was used [40]. The UKF combines the extended
Kalman filter with a set of sigma points that are used to approximate the
Gaussian probability distribution of the input and the output. The extended
Kalman filter is a suitable variant of the Kalman filter for attitude estimation
since the filter linearises the model. The UKF is based on a sigma point sam-
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pling method called unscented transform. Sigma points are a structured set of
sample points selected in such a way that they give adequate coverage of the
input and output probability distribution. The UKF implementation makes
the initial attitude guess by solving the Wahba’s problem [86] using the singu-
lar value decomposition method. Since the filter propagates the attitude using
angular velocity measurements, knowledge of the moment of inertia matrix is
required. It is especially important when performing attitude estimation at
high spin rates. [87; 88]

3.5 System design

Historically, for large satellites, attitude determination sensors are of a size
comparable with the size of nanosatellites. For example, a star tracker devel-
oped for missions in geostationary orbit weighing more than 6 kg [89], fine Sun
sensors weighing 0.6 kg [90], an Earth sensor weighing 3.5 kg [91], gyroscopic
sensors weighing 450 g per axis [92], and magnetometers weighing about 0.5 kg
[58]. In order to equip ESTCube-1 with an attitude determination system, the
sensor mass has to be decreased by between one and two orders of magnitude.
This has been achieved by employing COTS consumer electronics components.

A diagram of the ESTCube-1 ADS is presented in Figure 3.2. The system
consists of a sensor board and Sun sensors located on all sides of the satel-
lite. The ADS is connected with the Command and Data Handling System
(CDHS) where calculations are executed. The sensor board contains two Hon-
eywell HMC5883L magnetometers [93], four Invensense ITG-3200 gyroscopic
sensors [94] and two Maxim MAX1230 ADCs [95] to which Sun sensors are
connected. ADCs also have built-in temperature sensors. Sun sensors are
based on two Hamamatsu S3931 PSDs [96] located under a mask with two
slits perpendicular to each PSD. The mass of each sensor is 4.6 g and each
consumes 4 mW. Together with ADCs the average power consumption of Sun
sensors is 96 mW. Magnetometers and gyroscopic sensors are connected to
the CDHS with two inter-integrated circuit bus interfaces. Each interface is
connected to a couple of gyroscopic sensors and one magnetometer. ADCs
are connected to the CDHS via a serial peripheral interface. By executing
calculations on the CDHS, the total mass of the system was reduced, and
redundancy provided by the CDHS was employed. An STMicroelectronics
STM32F103 processor is used on the CDHS. All sensor measurements are
pre-processed — faulty measurements (e.g., zero magnetic field vector or out-
of-range values) are discarded, and filters and weights are applied. Sensors are
calibrated and corrected for zero offsets and temperature influences. Sensor
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measurements together with outputs of the Sun direction model, the satellite
position model and the magnetic field model are given to the UKF. Measure-
ment noise covariances are also given to the UKF, which outputs the attitude,
the estimated magnetic field and the estimated angular velocity. Estimated
values are based on bias estimation results. [III]
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Figure 3.2: ESTCube-1 attitude determination system diagram. I2C — Inter-
Integrated Circuit, SPI — Serial Peripheral Interface.



Chapter 4

Characterisation and validation

The designed ADS (Section 3.5) was first characterised by laboratory mea-
surements and simulations. After launching the satellite, the system perfor-
mance was analysed and software was developed and tuned to improve the
performance. The system was validated by using an independent attitude
determined from on-board images.

4.1 Characterisation

The system was developed and characterised by laboratory tests and simula-
tions. For evaluation of the uncertainty of the result, recommendations from
the standard guide “Evaluation of measurement data — Guide to the expres-
sion of uncertainty in measurement” are followed [59].

The average power consumption of the sensor board at full load is 262 mW;
for the CDHS board — 178 mW. Both boards are built to be used in a CubeSat
and the size is 92 × 94 × 5 mm. The combined mass of the sensor board and
Sun sensors is 45 g; the mass of the CDHS board is 49 g. One iteration
of attitude determination calculations (taking measurements, processing of
measurements, running reference models and the UKF) takes less than 150 ms
when the processor clock frequency is set to 32 MHz with 72 MHz being the
maximum clock frequency. [III]

The expanded uncertainty for the angle of incident light measured by the
Sun sensor is 2.5◦ [III, Section 4]. The following factors contribute to the
uncertainty budget: the albedo of the Earth (standard uncertainty of 1◦),
the temperature (0.76◦), the solar irradiance uncertainty (0.25◦), the testing
equipment precision (0.081◦), the resolution (0.02◦) and the noise (0.005◦).
The expanded uncertainty of the direction of the angle of the magnetic field is
3.2◦ [III, Section 5]. The following factors contribute to the uncertainty bud-
get: the temperature (standard uncertainty of 1.4◦), the noise (0.8◦) and the
testing equipment precision (0.3◦). The expanded uncertainty for the angular
velocity is 3.6 deg·s−1 [III, Section 6]. The following factors contribute to
the uncertainty budget: the temperature (standard uncertainty of 1.5 deg·s−1),
the noise (0.9 deg·s−1), the influence of the vacuum (0.2 deg·s−1), the testing
equipment precision (0.1 deg·s−1) and the resolution (0.07 deg·s−1). While
uncertainties of sensors separately are bigger than the required attitude de-
termination accuracy, the measurements are still to be processed and fused by
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the UKF in order to estimate the attitude and angular velocity determination
accuracy.

Attitude determination with conditions that were expected during the ex-
periment were simulated — a spin rate of about 20 deg·s−1 around the z-axis,
and the spin axis nearly aligned with the Earth’s polar axis. To estimate the
ability of the system to determine the attitude with the required accuracy, the
following factors were simulated: radiation; atmospheric, gravity and magnetic
residual disturbances; the time bias; biases for all sensors; the Gaussian noise
for all measurements (values taken from sensor uncertainty budgets); tilting of
the magnetometer and the gyroscopic sensor; variations in the inertia matrix
knowledge; and variations in the measurement noise covariance for the UKF.

The expanded uncertainty (95% confidence level, k = 2) of attitude de-
termination is 1.52◦ [IV, Table 1]. The uncertainty budget includes the
simulation-based uncertainty estimated by standard deviation (0.6◦), the geo-
magnetic field model uncertainty (0.42◦), the Earth precession uncertainty
(0.15◦), the orbit propagation uncertainty (0.1◦), the Earth nutation uncer-
tainty (0.01◦), and the modelled Sun direction uncertainty (0.0015◦).

4.2 In-orbit performance

After the ESTCube-1 launch, ADS software was improved and updated and
the system was tuned. The sequence of attitude determination and control
tasks was improved to maximise frequency of attitude control. Measurement
noise covariances were estimated. Sensor performance was analysed and soft-
ware was developed to avoid using low-accuracy or faulty measurements. The
moment of inertia matrix was estimated based on in-orbit measurements to
improve attitude estimation.

The timeline of attitude determination and control sequence was improved
by executing attitude determination tasks in parallel with attitude control
of magnetic moment calculated in the previous iteration. To avoid faulty
magnetic field measurements, electromagnetic coils were not used when mea-
surements were taken. Such an approach and code optimisation enabled the
running of the attitude determination and control sequence with a frequency
more than 10 Hz provided that the processor was run with the highest clock
frequency of 72 MHz. For a high spin rate of the satellite, timing is critical
— the determined attitude is extrapolated to the moment when the attitude
control is to be executed. This approach proved to be successful, since the
satellite was able to reach a spin rate of 2.4 rotations per second [47].

By minimising the error between the attitude determined by the ADS
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and from on-board images, measurement noise covariances for the UKF were
estimated iteratively. The magnetic field vector direction noise covariance
is 2.4 × 10−7 rad. The angular velocity measurement noise covariance is
6 × 10−6 rad·s−1. The Sun sensor covariance varies depending on the incidence
angle — it increases when the incidence angle approaches the limit of the
FoV. The FoV was limited to ±36.7◦ in software and the measurement noise
covariance was set to 1.75 × 10−6 rad for the FoV of ±20◦. Between the FoV
±20◦ and ±36.7◦, the measurement noise covariance is quadratically increased
to 0.01 rad. When the Sun is not in the FoV, the UKF runs as in the eclipse.
Such an approach was also used when the Sun illuminates the side of the
satellite on which the Sun sensor was broken. The most probable cause of
the broken sensor was a loose wire. A few weeks after the launch one of the
gyroscopic sensors started to malfunction. That, however, did not cause any
problems because there are four gyroscopic sensors on the ADS board. [IV]

Re-estimation of the moment of inertia matrix was required because the
one provided by the computer aided design model was not precise enough
to effectively estimate the attitude at high spin rates. The inertia matrix
was found by minimising differences between the uncontrolled rotation of the
satellite in orbit and the simulated rotation. The moment of inertia matrix
was chosen such that rotations match. The matrix consists of the following
elements:

10−3 ·

2.25242 0.02109 0.03208
0.02109 2.45397 0.03730
0.03208 0.03730 2.24506

 kg ·m2.

4.3 Validation

To validate the ADS, an independent attitude determined from on-board im-
ages was used. The on-board camera has a 4.4 mm telecentric lens and a
640 × 480 pixel complementary metal-oxide semiconductor sensor [97]. The
attitude is extracted from images in post-processing. A set of coordinates
of well distinguishable landmarks in the image coordinate system, as well as
corresponding points on the map with a geographical coordinate system were
selected to determine the attitude from images. Similar to the ADS, time and
orbital elements were required to calculate the orbital position. Points were
selected such that the system is overdetermined and the attitude is determined
by minimising the angular difference between two sets of camera space vectors.

The expanded uncertainty (95% confidence level, k = 2) of the image-
based attitude determination is 0.86◦ [IV, Table 2]. The uncertainty budget
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includes the point selection uncertainty (standard uncertainty: 0.37◦), the time
uncertainty (0.21◦), the camera resolution uncertainty (0.04◦) and the lens
distortion uncertainty (0.02◦). The expanded uncertainty of comparison (95%
confidence level, k = 2) is 1.75◦. This value is calculated by combining the
uncertainty of ADS attitude determination (Section 4.1) and the uncertainty
of image-based attitude determination.

Differences between the attitude determined by both methods were calcu-
lated for 15 samples. Images were taken during attitude determination ses-
sions. For all samples the difference is smaller than 1.44◦, which is well within
the uncertainty budget [IV, Table 3]. The results indicate that the ADS ful-
fils the mission requirement to determine the attitude with an accuracy better
than 2◦.
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Chapter 5

Discussion and conclusions

This thesis presents the ESTCube-1 attitude determination system. The main
objective of the system is to serve the electric solar wind sail experiment. The
system is required to determine the attitude of ESTCube-1 with an accuracy
better than 2◦. The attitude is used for the following: as an input for high rate
spin control (hundreds of degrees per second) required for centrifugal electric
solar wind sail tether deployment; for monitoring tether deployment; in order
to determine the timing of the charging of the tether in synchronisation with
the satellite spin; and for measuring changes in the angular velocity caused by
the Coulomb drag interaction between the charged tether and the surrounding
plasma. The experiment was planned to be performed over the poles and it
was estimated that during one polar pass the change of angular rate would be
≈ 0.5 deg·s−1. Preliminary requirements for attitude determination sensors
were set by simulating high rate spin control.

In order to employ the one-unit CubeSat standard, the volume was the
main design driver. For the attitude determination system, a set of sensors was
chosen that would have the smallest size. The system has Sun sensors, magne-
tometers and gyroscopic sensors. Sun sensors are custom-built and placed on
all sides of the satellite. For all sensors, commercially available consumer elec-
tronics components were used. Sensor measurements with outputs from the
geomagnetic field model and the Sun position model are given to the unscented
Kalman filter for attitude estimation.

To provide reliable attitude measurements, sensors and the whole attitude
determination system were characterised in the laboratory and by simulations.
The expanded uncertainty (95% confidence level, k = 2) for Sun sensors is
2.5◦, for gyroscopic sensors — 3.6 deg·s−1, for magnetometers (magnetic field
direction) — 3.2◦. While the sensor uncertainties are high when compared
with the required attitude determination accuracy, simulations showed that
the unscented Kalman filter estimates the attitude with a standard deviation
of 0.6◦ for parts of the orbit where the electric solar wind sail experiment was
planned to be performed. In addition to the simulation-based standard uncer-
tainty, the following standard uncertainty contributors were included in the
uncertainty budget for the attitude determination system — the geomagnetic
field model uncertainty (0.42◦), the Earth’s precession (0.15◦), the orbit prop-
agator uncertainty (0.1◦), the Earth’s nutation (0.01◦), and the Sun direction
model uncertainty (0.0015◦). The combined expanded uncertainty of attitude
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determination is 1.52◦.
The system was validated in orbit by using an independent attitude deter-

mined from on-board images. The following standard uncertainty contributors
were included in the uncertainty budget for image-based attitude determina-
tion — the point selection uncertainty (0.37◦), the time uncertainty (0.21◦),
the resolution uncertainty (0.04◦), and the lens distortion uncertainty (0.02◦).
The combined expanded uncertainty of image-based attitude determination is
0.86◦.

The system fulfils the requirement, set by the electric solar wind sail exper-
iment, to determine the attitude better than 2◦ — the expanded uncertainty
of comparison is 1.75◦. For all 15 samples used to compare results from both
attitude determination methods, the difference is less than 1.44◦, which is well
within the uncertainty budget.

The ESTCube-1 project achieved the objective to provide hands-on edu-
cation and to popularise science. More than 200 students were involved in the
project as developers, team leaders and managers. The senior staff had an
advisory role in the project. Students wrote more than 30 bachelor theses and
more then 20 master theses, published more than ten journal articles, eight
conference papers, presented seven posters, gave more than 50 technical pre-
sentations, participated in ten workshops and seminars, wrote more than ten
popular science articles and gave more than 30 popular science talks and inter-
views. The project provided a unique opportunity for more than 20 secondary
school pupils to contribute to the mission during summers.

By building, launching and operating the satellite, the team learned lessons
that would have otherwise not been possible. Although tether deployment was
not successful [47], the best practises and lessons learned have been and are
implemented on follow-up missions Aalto-1 [48] and ESTCube-2.

In the future, the following is suggested to improve attitude determination.
Sun sensor measurements can be improved by increasing the field of view, by
correcting for temperature effects, by avoiding unwanted reflections inside the
mask, and by modelling the Earth’s albedo. Magnetometer performance can
be improved by avoiding residual magnetic moment on board the satellite. All
sensor measurements can be improved by rotating around an arbitrary axis
during calibration and by having more temperature and voltage references.
Attitude estimation can be improved by having a good knowledge of the inertia
matrix. It is especially important when using a Kalman filter which includes a
prediction step and when performing high spin rate manoeuvres. ESTCube-1
had the functionality to update software in orbit. It proved to be beneficial
for troubleshooting, updating, and in-orbit characterisation of the attitude
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determination system. [47]
While consumer electronics commercial off-the-shelf components have been

used on satellites only in the last 15 years, and such systems are still looked
at sceptically, reliable systems can be developed by carefully characterising
components and sensors, and by implementing redundancy. In turn, such
an approach provides affordable access to space due to low mass, utilises the
latest developments in consumer electronics and enables rapid developments
for technology demonstration.
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Summary

This research was carried out at the University of Tartu, Tartu Observatory,
the Finnish Meteorological Institute and the Estonian Student Satellite Pro-
gramme. This thesis presents the ESTCube-1 attitude determination system.
The attitude is the satellite’s orientation is space. ESTCube-1 is a satellite
built according to the one-unit CubeSat standard (≈ 10 × 10 × 10 cm). The
satellite was launched in May 2013 and operated until May 2015. The main
scientific mission of ESTCube-1 was to perform the first in-orbit electric so-
lar wind sail demonstration. The electric solar wind sail is a propellantless
propulsion technology concept. The sail consists of long, thin, centrifugally
stretched and positively charged tethers that deflect charged particles in the
solar wind, hence generate spacecraft thrust.

The main requirement of the ESTCube-1 attitude determination system
is to determine the attitude with an accuracy better than 2◦ for the following
purposes: high rate spin control (hundreds of degrees per second) for cen-
trifugal tether deployment; monitoring of tether deployment; to trigger the
charging of the tether in synchronisation with the satellite spin; to measure
angular velocity changes caused by the Coulomb drag interaction between the
charged tether and the surrounding ionospheric plasma.

The attitude determination system has Sun sensors, magnetometers and
gyroscopic sensors. A geomagnetic field model and a Sun position model were
used to reference the respective sensor measurements. A Kalman filter was
used to estimate the attitude. Before the launch, the system was characterised
in the laboratory and by simulations. With in-orbit recalibration and valida-
tion, the system was significantly improved. For validation, an independent
attitude determined from on-board images was used. By characterising and
validating the system, it was shown that attitude determination accuracy is
better than 1.75◦, hence fulfils the requirement set by the electric solar wind
sail experiment.
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Kokkuvõte (Summary in Estonian)

ESTCube-1 asendi määramine

Uuring viidi läbi Tartu Ülikoolis, Tartu Observatooriumis, Soome Me-
teoroloogia instituudis ja Eesti tudengisatelliidi programmis. Doktoritöös
tutvustatakse satelliidi ESTCube-1 asendi määramise süsteemi, mille otstarve
on satelliidi orientatsiooni kindlakstegemine erinevate taustsüsteemide suhtes.
ESTCube-1 on ehitatud vastavalt CubeSat standardi nõuetele (≈ 10 cm × 10
cm × 10 cm) ja saadeti orbiidile 2013. aasta mais, kus see tegutses kuni 2015.
aasta maini. Selle põhimissiooniks oli katsetada Maa orbiidil elektrilise päike-
sepurje tehnoloogiaid. Elektriline päikesetuulepuri on uudne Päikesesüsteemis
liikumise moodus, mis kasutab tõukejõu saamiseks Päikeselt väljapursatavate
elektriliselt laetud osakeste voogu ehk päikesetuult.

ESTCube-1 asendi määramise süsteemi põhieesmärgiks on leida satelliidi
orientatsioon parema täpsusega kui 2◦ järgmiste tegevuste jaoks: satelliidi
suure kiirusega pöörlema panemisel (sajad kraadid sekundis) tsentrifugaaljõu
abil purje väljakerimiseks ja selle protsessi jälgimiseks, päikesepurje elektrilisel
laadimisel sünkroonis satelliidi pöörlemisega ning mõõtmaks nurkkiiruse muu-
tumist laetud päikesepurje ja ionosfääri plasma vahelise elektrostaatiline jõu
tulemusel.

Asendi määramise süsteem koosneb magnetomeetridest, nurkkiirusean-
duritest ja Päikese suuna anduritest. Maa magnetvälja ja Päikese asukoha
mudeleid kasutati vastavate andurite mõõtmistega võrdlemiseks. Asendi
määramiseks kasutati Kalmani filtrit. Süsteem karakteriseeriti laboratoori-
umis ja simulatsioonidega enne starti. Orbiidil parendati süsteemi oluliselt
tarkvara uuenduste ja uuesti karakteriseerimisega. Sõltumatuks valideerim-
iseks kasutati satellidi poolt tehtud fotodel põhinevat orientatsiooni leidmise
meetodit. Süsteemi karakteriseerimise ja valideerimisega näidati, et asendi
määramise täpsus on parem kui 1.75◦ mis täidab eksperimendi poolt seatud
nõudeid.
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— Kārlis, Kaspars, Andis
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2009 – 2011: Ventspilsi Ülikooli Kolledž, M. Sc. arvutiteaduses
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KOOLITUSED
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2012.05: Aalto CubeSat kursus, Aalto Ülikool, Soome
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Läti: emakeel
Inglise: kõrgtase
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