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ABSTRACT

As we are going toward the quantum era, the need to revisit the security of cryp-
tographic constructions against a quantum adversary is getting more apprecia-
ble. Post-quantum cryptography is an emerging discipline that deals with classi-
cal cryptographic constructions that remain secure against a quantum adversary.
In this setting, the honest parties are willing to communicate using only classical
devices while the adversary may have a quantum computing device. Due to the
breaking of many public-key cryptosystems based on the factoring and discrete
logarithm problems by Shor’s quantum algorithm, to achieve the post-quantum
security, it is necessary to substitute those hard problems with some quantum-
hard problems. Then we need to design the cryptographic construction based on
quantum hard problems. Finally, we have to prove mathematically the security of
the new constructions. The classical security proof techniques may fail against a
quantum adversary due to some strange properties of a quantum adversary, there-
fore, even if we design a cryptographic construction based on a quantum-hard
problem, proving the security of the construction remains a challenging task. In
this thesis, we focus on proving the quantum security of some cryptographic con-
structions. We also present some quantum attacks to argue the insecurity of some
constructions.

We prove the post-quantum security of a slightly modified version of the Fujisaki-
Okamoto (FO) construction that transforms two weakly secure encryption schemes
into a strongly secure one using three hash functions in the quantum random oracle
model. In the quantum random oracle model the quantum adversary has superpo-
sition (quantum) access to the random oracles. In order to prove the security of the
FO construction, we need to study the properties of hash functions in the quantum
setting. The Indifferentiability Framework has been used to prove the soundness
of some hash function constructions when underlying primitive used in the con-
struction is modeled as an ideal primitive. In the quantum setting, a quantum
adversary can evaluate an ideal primitive in superposition, therefore we need to
redefine the Indifferentiability Framework for a quantum adversary. We define the
quantum indifferentiability and show that most of classical constructions of hash
functions are not perfectly-quantum indifferentiable from a random oracle under
some conjecture. Our quantum definition of indifferentiability allows superposi-
tion access to the underlying primitive used in the construction, however, since
we claim the impossibility of quantum indifferentiability, we consider a classical
access to the construction and this leads to a stronger impossibility result. In other
words, our impossibility result will hold if we consider a quantum indifferentia-
bility definition in which the adversary has superposition access to both the con-
struction and the underlying primitive because this definition is stronger than ours.
Also, we study the collision-resistance property of a function whose outputs are
chosen according to some non-uniform distribution against a quantum adversary
that has quantum access to the function. We obtain some upper and lower bounds
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that depend on the min-entropy and collision-entropy of the outputs distribution
of the function. We use the quantum collision-resistance property of a function
whose outputs are chosen according to a distribution with high min-entropy to
prove the security of the FO construction in the quantum random oracle model.
We use the same techniques to prove the post-quantum security of the OAEP
transformation in the quantum random oracle model. Finally, we study the secu-
rity of modes of operations in the quantum chosen plaintext attack model (qCPA)
in which the quantum adversary may have quantum access to the encryption or-
acle, but, it is only allowed to submit classical challenge queries. We prove that
OFB and CTR are secure against qCPA using a block cipher that is secure against
a quantum adversary with classical access to the block cipher (this block cipher
is called standard secure block cipher). We show CBC, CFB and XTS modes can
be insecure when using standard secure block ciphers by constructing separating
examples. Finally, we prove the IND-qCPA security of CBC and CFB using a
block cipher that is secure against a quantum adversary with quantum access.
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1. INTRODUCTION

Quantum computing is a new paradigm to do computation that employs some
strange properties of quantum mechanics. Due to those strange properties, a large-
scale quantum computer can solve some specific problems much faster than a clas-
sical computer. This is due to the existence of some efficient quantum algorithms
that can solve some problems that there is not an efficient classical algorithm to
solve them. For instance, we can name the factoring problem and discrete log-
arithm problem as two important intractable problems for a classical computer
that can be solved by a quantum computer [59]. Since the factoring problem and
discrete logarithm problem have been used to construct many cryptographic pro-
tocols, the interest in verifying the security of cryptosystems in the presence of a
quantum adversary increased after the celebrated paper of Shor [59]. To address
the threat posed by a large-quantum computer, there are two trends among scien-
tists: Post-Quantum cryptography and Quantum Cryptography. Even though these
two trends look similar but there is a subtle difference between them. Namely, in
the post-quantum cryptography setting, users are willing to communicate securely
using their classical devices in the presence of an adversary that possesses a quan-
tum computing device. In contrast, in the quantum cryptography users also use
quantum devices to communicate securely and of course in the presence of an
adversary with the quantum computing power. The quantum security can also be
achieved by combining two secure schemes in the aforementioned realms. For
instance, two parties can use Quantum Key Distribution scheme to share a secret
key using quantum devices and then use the secret key to communicate using their
classical schemes and devices. In this thesis, we focus on post-quantum cryptog-
raphy.

To achieve post-quantum security, the research community should build con-
fidence on some intractable problems for a quantum computer. Exploring such
quantum-hard problems and designing a cryptographic protocol based on them is
the halfway of constructing a secure cryptographic protocol that can be used in
practice. In addition, we need to prove, mathematically, the security of the cryp-
tographic construction and this might be a challenging task since the adversary
may possess a quantum computing device.

Many security proofs in the classical cryptography have to be revisited for
the reason that the classical security techniques may not work against a quantum
adversary. For instance, “rewinding” technique that has been used in classical
interactive proof systems is quiet problematic to use in the quantum case [10].
Also, we need to modify the classical security notions to encounter the quantum
attacks. For instance, we need to consider adversarial superposition queries in the
security notions in the quantum case. A quantum adversary with superposition
access to an oracle can evaluate the oracle on exponentially many inputs in each
query. In contrast, a classical adversary only learn the output of the oracle on
one input in each query. This can have some consequences. Namely, a quantum
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adversary may obtain more information about the oracle compared to a classical
adversary. Another challenge caused by superposition queries is the incapability
of some classical security techniques to prove the quantum security. Now some
questions may arise: What would be the impact of superposition queries on the
security of classical constructions? What are the challenges that may arise when
one wants to prove the security of classical constructions considering adversarial
superposition queries? What would be solutions to the challenges? How can one
justify a new security notion that is defined to encounter superposition attacks?

To name a few examples of the security proofs in the presence of adversar-
ial superposition queries, we can mention the security proofs in the random oracle
model [14] where a quantum adversary has superposition access to the random or-
acle, the security of the cryptosystems against the chosen-plaintext attack in which
the adversary is allowed to submit superposition queries to the encryption algo-
rithm [18], the collision-resistance property of hash functions when the adversary
has superposition access to the hash function and the security of the constructions
based on Indifferentiability Framework [54] when the adversary has superposition
access to the public interface of the construction (these new quantum definitions
will be discussed in details in next chapters).

1.1. Our Contribution

In this thesis, we study the impact of superposition queries to the security of clas-
sical constructions. These include the security of hash functions, the security of
modes of operation and the security of public-key encryption schemes against su-
perposition queries. In the following, we give a short overview of our result in
each chapter.

Chapter 3 [On Quantum Indifferentiability]. The primary goal of the “Indiffer-
entiability Framework” introduced in [54] was to provide a simplified explanation
of the impossibility of instantiating a random oracle by a hash function [26]. How-
ever, subsequently, many classical construction have been studied in the indiffer-
entiability framework [16, 32, 33, 35] to prove their soundness. Indifferentiability
is a generalization of indistinguishability in which the adversary may have access
to additional information of involved systems. In this thesis, we redefine the In-
differentiability Framework considering a quantum adversary. Our new definition
allows a quantum distinguisher to submit superposition queries to the primitive
that has been used in the construction as a building block. In contrast, since we
claim the impossibility of quantum indifferentiability in many cases, queries to
the construction are classical and this definition (with classical queries to the con-
struction) leads to a stronger impossibility result. In other words, our impossibility
result will hold if we consider a quantum indifferentiability definition that allows
superposition queries to both the construction and the underlying primitive.
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We show that almost all classical constructions (that are classically indiffere-
tiable from a random oracle (or ideal cipher)) are not “perfectly” quantum indif-
ferentiable from a random oracle (or ideal cipher). We show our result using a
conjecture. Informally, the conjecture says that whenever we have N orthogonal
projectors that pairwise commute over a subspace V of a Hilbert space H, then
there are N new orthogonal projectors that pairwise commute everywhere (over
H) and operate the same as the old projectors over V (refer to the Conjecture 1
for its mathematical representation).

Chapter 4 [Quantum Collisions for Non-uniform Functions]. A cryptographic
hash function is a fundamental primitive in cryptology and it has to fulfil some
properties according to its applications. The indifferentiability of a hash function
from a random oracle is a desirable property for a cryptographic hash function
that has been studied in [16,32]. In the chapter 3, we prove that most famous con-
structions, Merkle-Damgard and Sponge construction, are not “perfectly” quan-
tum indifferentiable from a random oracle. However, in many applications, even
a weaker property like collision-resistance is sufficient. Informally, the collision-
resistance property guarantees that it is computationally infeasible to find two
distinct inputs that hash to the same output. In this thesis, we study the collision-
resistance property of hash functions considering a quantum adversary that can
submit quantum queries to the hash function. We consider the quantum colli-
sion problem for a random function whose outputs are chosen according to a
non-uniform distribution because the outputs of a hash function usually are not
uniformly distributed. We derive some upper and lower bounds for the quantum
collision problem applied to a random function whose outputs are chosen accord-
ing to a distribution with some known entropy (collision-entropy or min-entropy).

Chapter 5 [Post-Quantum Security of Fujisaki-Okamoto and OAEP]. Impact
of the quantum computing to the public-key encryption is drastically negative
due to breaking the classical cryptosystems based on factoring and discrete log-
arithm problems. Also, many efficient classical cryptosystems are proved to be
secure in the random oracle model [14] and many of them still lack an equivalent
proof in the quantum setting. Therefore, even if we find a cryptographic prim-
itive immune to quantum attacks, to construct an efficient cryptosystem secure
against quantum adversaries, we may have to consider its security in the quantum
random oracle model in which the adversary has quantum access to the random
oracle. In this thesis, we analyse the security of two well-known transformations,
Fujisaki-Okamoto (FO) [42] and OAEP [60] constructions, in the quantum ran-
dom oracle model. The FO construction is a transformation from two weakly
secure encryption schemes to a strongly secure one (IND-CCA secure) using two
random oracles. We modify the FO construction and prove the security of our
modified construction in the quantum random oracle model. OAEP is a trans-
formation from a one-way trapdoor permutation to IND-CCA secure encryption
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scheme using two random oracles. We modify the OAEP construction and prove
its security in quantum random oracle model.

Chapter 6 [Post-quantum Security of Modes of Operations]. The impact of a
large-scale quantum computer to the private-key encryption schemes is the neces-
sity to use a larger key size (or a larger output size for hash functions) 1. However,
the security of the private-key encryption schemes has to be revisited considering
the new security definitions that are defined against a quantum adversary. For in-
stance, the IND-qCPA security notion introduced in [18] considers superposition
queries to the encryption algorithm with classical queries during the challenge
phase. In contrast, in the IND-CPA security notion (the classical security notion)
both learning queries and challenge queries are classical. Block ciphers are one of
the most fundamental primitives used in private-key encryption schemes in which
two parties can communicate securely using a shared secret key. Block ciphers are
usually used in so called "modes of operation" in order to encrypt a message with
larger size. In this thesis, we study the IND-qCPA security of the recommended
list of modes of operation published by the European Union Agency for Network
and Information Security [41]. Classically, OFB, CTR, CBC and CFB modes of
operation are IND-CPA secure if the underlying block cipher is a classical secure
pseudo-random function (a function that is indistinguishable from a truly random
function when the distinguisher is classical). In the quantum setting, we prove that
OFB and CTR are IND-qCPA secure if the underlying block cipher is a standard
secure PRF, that is, a PRF that is indistinguishable from a truly random function
when the distinguisher is quantum but it is only allowed to make classical queries
to the function. In contrast, we show that CBC, CFB and XTS modes of oper-
ation are not IND-qCPA secure using a standard secure block cipher. We prove
the IND-qCPA security of CBC and CFB when the underlying block cipher is a
quantum secure PRF, that is, a PRF that is indistinguishable from a truly random
function when the quantum distinguisher can make superposition queries to the
function.

Connections between the chapters. In order to prove the quantum security of
the FO and OAEP construction, we need to study the security of hash functions
against superposition attacks since our modified version of the FO and OAEP
construction use three hash functions. We revisit the property of hash functions,
indifferentiability from a random oracle and collision-resistance, when an adver-
sary has superposition access to the hash function. We use our result on collision-
resistance of a non-uniformly distributed function to prove the FO construction
in Chapter 5. The FO construction is a transformation from IND-CPA to IND-
CCA secure encryption scheme, therefore for the future work, we may need an

1Initial recommendations of long-term secure post-quantum systems:
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
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IND-qCPA secure private-key encryption scheme in order to prove the security
of FO construction against an adversary that makes superposition queries to the
encryption and decryption oracles [4]. In other words, we may prove that the FO
construction is a transformation from IND-qCPA to IND-qCCA and the existence
of IND-qCPA secure private encryption scheme make the result more useful.
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2. PRELIMINARIES

In this chapter, we present the preliminaries that are used throughout this thesis.
We give a short introduction to the quantum computing in Section 2.2. Then, we
present some definitions and theorems that are needed in each chapter.

2.1. Notation

Asymptotic Notations. We define negl(n) to be any non-negative function that
is smaller than the inverse of any non-negative polynomial p(n) for sufficiently
large n. That is, lim

n→∞
negl(n)p(n) = 0 for any polynomial p(n). We write f (n) =

O(g(n)) iff the absolute value of f is bounded above by g (up to a constant factor

asymptotically), that is, lim
n→∞

sup
| f (n)|
g(n)

< ∞. We write f (n) = Ω(g(n)) iff f is

bounded below by g asymptotically , that is, lim
n→∞

inf
f (n)
g(n)

> 0. We say f (n) =

θ(g(n)) iff f (n) = O(g(n)) and f (n) = Ω(g(n)).

Probability Notations. The notation x $←− X means that x is chosen uniformly at
random from the set X . If D is a distribution over Y , then the notation y← D

means that y is chosen at random according to the distribution D. Sup(D) is the
set of all elements y ∈ Y such that D(y) 6= 0. By f ← DX , we mean a function
whose outputs are chosen independently according to the distribution D, that is,
f is a function from X to Sup(D) such that for any x ∈ X , f (x) = y where y←D.
Pr[P : G] is the probability that the predicate P holds where free variables in P are
assigned according to the description of G.
Other Notations. We represent the set {1, . . . ,m} by [m]. By a⊕b, we mean the
“Exclusive or” of a and b that is 1 if a and b differ.

2.2. Quantum Computing Background

In this section, we present some introductory information about quantum comput-
ing that are needed in the thesis. We refer the interested reader to [56] for more
information.

For a complex number ψ = x+yi, ψ
∗ := x−yi is the complex conjugate of ψ .

The n-dimensional Hilbert space H is the complex vector space Cn with the inner
product defined as

〈Ψ ,Φ〉 :=
n

∑
i

ψ
∗
i φi.

The norm of a vector |Ψ〉 ∈H is defined by ‖Ψ‖=
√
〈Ψ ,Ψ〉. We say that vectors

|Ψ〉 and |Φ〉 are orthogonal iff 〈Ψ ,Φ〉= 0. We say that B is a basis for H if every
vector in H can be written as a unique linear combination of vectors in B. B is an
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orthonormal basis if its elements have norm 1 and they are pairwise orthogonal. A
quantum system is the Hilbert space H and a quantum state is a vector in H with
norm 1. For two quantum systems H1 and H2, the composition of them is defined
by a tensor product H1⊗H2. If B1 = {|b1〉 , . . . , |bn〉} and B2 = {

∣∣b′1
〉
, . . . ,

∣∣b′m
〉
}

are bases for H1 and H2, respectively, then

B = {|bi〉⊗
∣∣b′j
〉
}i=1,··· ,n, j=1,··· ,m

is a basis for H1⊗H2. We may use the abbreviation
∣∣bib′j

〉
instead of |bi〉⊗

∣∣b′j
〉
.

For a quantum state |Ψ〉, the linear operator |Ψ〉〈Ψ| : H→H is defined as:

|Ψ〉〈Ψ|(|Φ〉) = 〈Ψ ,Φ〉 |Ψ〉 .

We say the linear transformation U : H→ H is unitary if it preserve the inner
product:

〈Uψ ,Uφ〉= 〈ψ ,φ〉.
For an unitary transformation U , UU† = I where U† is the conjugate-transpose of
U . If U1 and U2 are some unitaries on H1 and H2, respectively, then U1⊗U2 is
the corresponding unitary on H1⊗H2 that is defined by

(U1⊗U2)(|v〉⊗ |w〉) =U1(|v〉)⊗U2(|w〉).

A linear operator A is Hermitian if A = A† where A† is the conjugate-transpose
of A. An orthogonal projector P is a Hermitian operator that satisfies P2 = P.
A projective measurement is a family {Pj} j∈J of orthogonal projectors such that
PiPj = 0 for any i 6= j and ∑

j∈J
Pj = I. The measurement applied to |Ψ〉 returns

outcome “ j” with probability ‖Pj |Ψ〉‖2 and the post-measurement state is

Pj |Ψ〉
‖Pj |Ψ〉‖

.

For an orthonormal basis B = {|b1〉 , . . . , |bn〉} and a given state |Ψ〉, the result of
measurement in the basis B applied to |Ψ〉 is bi with probability ‖〈bi,Ψ〉‖2 and
the post-measurement state will be |bi〉. This is a special case of a projective mea-
surement where Pi = |bi〉〈bi| and it is called a complete measurement. The basis
B = {|n〉}n∈{0,1}n is called the computational basis and the measurement with re-
spect to the computational basis is called computational basis measurement.

The set E = {(|Ψi〉 , pi)}i is an ensemble over a Hilbert space H if it satisfies
the following two items.

1. For all i, |Ψi〉 ∈H and ‖Ψi‖= 1
2. For all i, pi ≥ 0 and ∑

i
pi = 1.
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The density operator corresponding to the ensemble E is

ρ = ∑
i

pi |Ψi〉〈Ψi| .

The Hadamard operator H is an unitary operator on C2 such that

H |0〉= 1√
2
(|0〉+ |1〉) and H |1〉= 1√

2
(|0〉− |1〉).

The Controlled-Not operator is an unitary operator on C4 such that it flips the
second bit only if the first bit is 1.

CNOT |00〉= |00〉 , CNOT |01〉= |01〉 , CNOT |10〉= |11〉 and CNOT |11〉= |10〉 .

A general quantum circuit can be represented by a circuit consists of unitary
operations on larger systems. This procedure is called unitary purification of a
general quantum circuit [70]. We say that a quantum algorithm A has quantum
access to the oracle O : {0,1}n0 →{0,1}n1 (O might be chosen randomly accord-
ing to some distribution), denoted by AO, where A prepares two registers X and
Y for inputs and outputs respectively. Then A can submit superposition queries
(∑

x,y
αx,y |x,y〉) and the oracle O applies an unitary transformation that maps |x, y〉

to |x, y⊕O(x)〉 to registers X and Y .

2.3. Preliminaries for Chapter 4

We define the min-entropy and collision entropy of a distribution in the following:
Definition 1. Let D be a distribution on a set X. The min-entropy and collision-
entropy of the distribution D is defined as the following, respectively.

H∞(D) =− logmax
x∈X

D(x), H2(D) =− log ∑
x∈X

D(x)2.

A collision for a function h is a pair of two distinct inputs, let say (x,x′), such
that h(x) = h(x′). The theorem below proves that an uniformly random function
is collision-resistant even against a quantum adversary. By an uniformly random
function h : X → Y , we mean a function that is chosen uniformly at random from
the set of all functions with domain X and co-domain Y . We reduce the quantum
collision problem for a random function whose outputs are chosen according to
a non-uniform distribution to the quantum collision problem for an uniformly
random function and use the following theorem.
Theorem 1 (Theorem 7 [75]). Let h← DX where D is the uniform distribution
over Y . Then any quantum algorithm making q queries to h outputs a collision for

h with probability at most
C(q+2)3

|Y | where C is a universal constant.
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Definition 2 (Universal Hash Function [28]). A family of functions H = {h :
{0,1}n → {0,1}m} is called a family of universal hash functions if for all dis-
tinct x,y ∈ {0,1}n:

Pr
[
h(x) = h(y) : h $←− H

]
≤ 2−m.

Definition 3. Let D1 and D2 be distributions on a set X. The statistical distance
between D1 and D2 is

SD(D1,D2) =
1
2 ∑

x∈X

∣∣∣[D1(x)]− [D2(x)]
∣∣∣.

Lemma 2 (Leftover Hash Lemma [46]). Let D be a distribution with collision-
entropy k over set X and e be a positive integer. Let h : {0,1}m × {0,1}n →
{0,1}k−2e be a universal hash function. Then,

SD
((

h(y,x),y
)
,
(
z,y
))
≤ 2−e−1

where x←D,y $←− {0,1}m and z $←− {0,1}k−2e.
The following lemma gives an upper bound on the success probability of a

quantum adversary in distinguishing a zero function from a random function that
outputs 1 with some probability γ independently for any input and outputs 0 oth-
erwise.
Lemma 3 (Lemma 3 in [48]). For 0 ≤ γ ≤ 1, we define distribution Dγ of func-
tions F : X→{0,1} where F(x) := 1 with probability γ , and F(x) := 0 otherwise.
Then for any oracle algorithm A making q queries,

∣∣∣Pr
[
b = 1 : b←AF]−Pr

[
b = 1 : b←AN]∣∣∣≤ 8q2

γ,

where N is the zero function on X and F is chosen randomly according to the
distribution Dγ .

The lemma below proves that if two distributions are indistinguishable for a
quantum distinguisher then they are “oracle-indistinguishable”.
Lemma 4 ( [74]). Let D1 and D2 be efficiently sampleable distributions over
some set Y, and let X be some other set. Then if A is a quantum algorithm that
distinguishes f1←DX

1 from f2←DX
2 by making q queries and with probability

ε , we can construct a quantum algorithm B that distinguishes samples from D1

and D2 with probability at least
3ε2

64π2q3 .

2.4. Preliminaries for Chapter 5

In this section, we present some notations, definitions and existing results that are
needed in Chapter 5. In the following lines, we define the notion of the symmetric
and asymmetric encryption scheme.
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Definition 4. A symmetric encryption scheme Π consists of three polynomial time
(in the security parameter n) algorithms, Π = (Gen,Enc,Dec), described below.

1. Gen, the key generation algorithm, is a probabilistic algorithm which on
input 1n outputs a key, sk← Gen(1n).

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a key k and a message m∈ MSP and outputs a ciphertext c← Enck(m).
The message space can be infinite and may depend on the security param-
eter.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as
input a key k and a ciphertext c and returns the message m := Deck(c).
Here we assume that decryption algorithm returns the original message,
i.e., Deck(Enck(m)) = m, for every k ∈ KSP and every m ∈ MSP.

Definition 5. An asymmetric encryption scheme Π consists of three polynomial
time (in the security parameter n) algorithms, Π = (Gen,Enc,Dec), described
below.

1. Gen, the key generation algorithm, is a probabilistic algorithm which on
input 1n outputs a pair of keys, (pk,sk)← Gen(1n), called the public key
and the secret key for the encryption scheme, respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m ∈ MSP and outputs a ciphertext
c← Encpk(m). The message space MSP may depend on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as in-
put a secret key sk and a ciphertext c and returns message the m :=Decsk(c).
It is required that the decryption algorithm returns the original message,
i.e., Decsk(Encpk(m)) = m, for every (pk,sk)← Gen(1n) and every m ∈
MSP. The algorithm Dec returns ⊥ if ciphertext c is not decryptable.

We define the security notions for encryption schemes, e.g, One-time security,
One-way security and IND-CCA in the quantum random oracle model.
Definition 6 (One-time secure). A symmetric encryption scheme Π = (Enc,Dec)
is one-time secure if no quantum polynomial time adversary A can win in the
PrivKOT

A,Π(n) game, except with probability at most 1/2 + negl(n):

PrivKPrivKPrivKOTOTOT
A,ΠA,ΠA,Π(n) game:

Key Gen: The challenger picks up a key k from KSP uniformly at random, i.e.,

k $←− KSP.

Query: The adversary A on input (1n) chooses two messages m0,m1 of the same

length and sends them to the challenger. The challenger chooses b $←− {0,1} and
responds with c∗← Enck(mb).

Guess: The adversary A produces a bit b′, and wins if b = b′.
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Definition 7 (One-way secure). An asymmetric encryption scheme Π=(Gen,Enc,Dec)
is one-way secure if no quantum polynomial time adversary A can win in the
PubKOW

A,Π(n) game, except with probability at most negl(n):

PubKPubKPubKOWOWOW
A,ΠA,ΠA,Π(n) game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk,sk).

Challenge Query: The challenger picks a uniformly random x from the mes-

sage space, i.e., x $←− MSP, and encrypts it using pk to obtain the ciphertext
y← Encpk(x), and sends y to the adversary A.

Guess: The adversary A on input (pk,y) produces a bit string x′, and wins if x′ =
x.

Random Oracle Model. In the random oracle model, the assumption is every
party, even adversary, has access to a truly random function H that has been used
in a cryptographic construction. By access to H, we mean that every party can
query H on some inputs x and gets H(x) back. It is easier to prove the security
of construction when H is modeled as a random function, however, in a real life
application one has to substitute the random function with a hash function.

Quantum Random Oracle Model. Since in a real life application H is a hash
function that adversary knows its description, a quantum adversary can imple-
ment H on his quantum computing device and evaluates H on some quantum
states. Therefore, we need to consider the quantum random oracle model instead
of random oracle model to prove the security of cryptographic constructions in the
presence of a quantum adversary. In the quantum random oracle model the ad-
versary has superposition access to H but honest parties have classical access to H.

Definition 8 (IND-CCA in the quantum random oracle model). An asymmetric
encryption scheme Π

asy = (Gen,Enc,Dec) is IND-CCA secure if no quantum
polynomial time adversary A can win in the PubKCCA−QRO

A,Π (n) game, except with
probability at most 1/2 + negl(n):

PubKPubKPubKCCA−QROCCA−QROCCA−QRO
A,ΠA,ΠA,Π (n) game:
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Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk,sk) and
chooses random oracles.

Query: The adversary A is given the public key pk and with classical oracle
access to the decryption oracle and quantum access to the random oracles
chooses two messages m0,m1 of the same length and sends them to the challenger.

The challenger chooses b $←− {0,1} and responds with c∗← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the random
oracles, but may not query the ciphertext c∗ in a decryption query. Finally, the
adversary A produces a bit b′, and wins if b = b′.

Note that in the definition above, the adversary is only allowed to make super-
position queries to the random oracle. In contrast, the encryption and decryption
queries are classical.
Definition 9 (Quantum partial-domain one-way function). We say a function f :
{0,1}n+k1 ×{0,1}k0 → {0,1}m where k0, k2 may depend on n is partial-domain
one-way if for any polynomial time quantum adversary A,

Pr
[
s̃ = s : s $←− {0,1}n+k1 , t $←− {0,1}k0 , s̃← A( f (s, t))

]
≤ negl(n).

2.4.1. One-way to Hidding Lemmas

The following lemmas give us a way to reprogram a random oracle in the se-
curity proof. A classical adversary with access to the random oracle H can not
distinguish (x,H(x)) from (x,y) where x and y are chosen uniformly at random
unless the adversary queries H on input x. If the adversary makes q queries, the
probability that one of them is on input x is

q
|X | . In the quantum case, the same

argument does not hold because a quantum adversary A can query the random
oracle on superposition of all inputs (that includes x as well). Therefore in our
quantum security proof, we use the following lemma. Informally, the lemma says
that the success probability of A in distinguishing two cases is upper bounded by
the success probability of another algorithm C that runs A and measures the input
of a randomly chosen query of A and declares success if the result of measurement
is x.
Lemma 5 (One way to hiding (O2H) [67]). Let H : {0,1}n→{0,1}m be a random
oracle. Consider an oracle algorithm A that makes at most q queries to H. Let C

be an oracle algorithm that on input x does the following: pick i $←−{1, . . . ,q} and

y $←− {0,1}m, run AH(x,y) until (just before) the i-th query, measure the argument
of the query in the computational basis, and output the measurement outcome.
(When A makes less than i queries, C outputs ⊥ /∈ {0,1}n.) Let FALL{n,m} be
the set of all functions from {0,1}n to {0,1}m.

Let P1
A := Pr

[
b′ = 1 : H $←− FALL{n,m},x $←− {0,1}n,b′← AH(x,H(x))

]
,
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P2
A := Pr

[
b′ = 1 : H $←− FALL{n,m},x $←− {0,1}n,y $←− {0,1}m,b′← AH(x,y)

]
,

PC := Pr
[
x′ = x : H $←− FALL{n,m},x $←− {0,1}n,x′←CH(x)

]
.

Then ∣∣P1
A−P2

A

∣∣≤ 2q
√

PC.

The following lemma is a generalization of the lemma above. In the security
proof, we use it to replace H(x‖m) with a random element when x is chosen
uniformly at random, but m is chosen adaptively based on earlier random oracle
queries.
Lemma 6 (One way to hiding, adaptive (O2HA) [66]). Let H : {0,1}∗→{0,1}n

be a random oracle. Consider an oracle algorithm A0 that makes at most q0
queries to H. Consider an oracle algorithm A1 that uses the final state of A0 and
makes at most q1 queries to H. Let C be an oracle algorithm that on input ( j,B,x)
does the following: run AH

1 (x,B) until (just before) the j-th query, measure the
argument of the query in the computational basis, and output the measurement
outcome. (When A1 makes less than j queries, C outputs ⊥ /∈ {0,1}`.)
Let

P1
A := Pr

[
b′ = 1 : H $←− ({0,1}∗→{0,1}n),m← AH

0 (),

x $←− {0,1}`,b′← AH
1 (x,H(x‖m))

]

P2
A := Pr

[
b′ = 1 : H $←− ({0,1}∗→{0,1}n),m← AH

0 (),

x $←− {0,1}`,B $←− {0,1}n,b′← AH
1 (x,B))

]

PC := Pr
[
x = x′∧m = m′ : H $←− ({0,1}∗→{0,1}n),m← AH

0 (),x
$←− {0,1}`,

B $←− {0,1}n, j $←− {1, · · · ,q1},x′||m′←CH( j,B,x)
]

Then ∣∣P1
A−P2

A

∣∣≤ 2q1
√

PC +q02−`/2+2.

2.5. Preliminaries for Chapter 6

We define the IND-CPA security and IND-qCPA security of a symmetric en-
cryption scheme as follows. We may use the notation c = Enck(m;r) instead of
c← Enck(m) when the randomness r used by the encryption algorithm explicitly
has defined.
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Definition 10 (IND-CPA). A symmetric encryption scheme Π = (Gen,Enc, Dec)
is indistinguishable under chosen plaintext attack (IND-CPA secure) if no classi-
cal poly-time adversary A can win in the PrivKCPA

A,Π(n) game, except with proba-
bility at most 1/2 + negl(n):
PrivKPrivKPrivKCPACPACPA

A,ΠA,ΠA,Π(n) game:

Key Gen: The challenger picks a random key k← Gen(1n).

Encryption Queries: Adversary may make polynomial number of encryption
queries.

Challenge Query: Adversary A chooses two messages m0,m1 and sends them to

the challenger. The challenger chooses b $←− {0,1} and r $←− {0,1}∗ and responds
with c∗ = Enck(mb;r).

Encryption Queries: Adversary makes polynomial number of encryption queries.

Guess: Adversary A produces a bit b′, and wins if b = b′.
In the definition below, a quantum adversary is allowed to query encryption

oracle in superposition but challenge queries have to be classical.
Definition 11 (IND-qCPA [19]). A symmetric encryption scheme Π = (Gen,Enc,
Dec) is indistinguishable under quantum chosen message attack (IND-qCPA se-
cure) if no efficient adversary A can win in the PrivKqCPA

A,Π (n) game, except with
probability at most 1/2 + negl(n):
PrivKPrivKPrivKqCPAqCPAqCPA

A,ΠA,ΠA,Π (n) game:

Key Gen: The challenger picks a random key k← Gen(1n).

Challenge Queries: A sends two messages m0,m1 to which the challenger

responds with c∗ = Enck(mb;r) where b $←− {0,1} and r $←− {0,1}∗.

Encryption Queries: For each such query, the adversary A provides the register
M, containing message, and the register C, to store ciphertext. Then, the chal-
lenger chooses randomness r, and encrypts each message in the superposition
using r as randomness:

∑
m,c

ψm,c
∣∣m,c

〉
→∑

m,c
ψm,c

∣∣m,c⊕Enck(m;r)
〉
,

and gives back M and C registers to the adversary.
Guess: A produces a bit b

′
, and wins if b = b

′
.
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2.5.1. Modes of Operation

Let E : K×{0,1}t → {0,1}t be a block cipher and n be a polynomial in t in the
following definitions. We define different modes of operation using E. Every
mode consists of three algorithms Gen,Enc,Dec that are defined below for each
mode.
Definition 12 (ECB mode of operation). ΠECB = (Gen,Enc,Dec):
Gen: Pick a random key k← Gen(1t) .
Enc: For a given message M = m1m2 . . .mn;

Enck(M) := c1 · · ·cn, where ci = E(k,mi) for 0< i≤ n.

Dec: For a given cipher-text C = c1 . . .cn and key k;

m̂i := E−1(k,ci) for 0< i≤ n.

Definition 13 (CBC mode of operation). ΠCBC = (Gen,Enc,Dec):
Gen: Pick a random key k← Gen(1t) .
Enc:: For a given message M = m1m2 . . .mn;

Enck(M) := c0c1 . . .cn, where c0
$←−{0,1}t and ci = E(k,mi⊕ci−1) for 0< i≤ n.

Dec: For a given cipher-text C = c0c1 · · ·cn and key k;

m̂i := E−1(k,ci)⊕ ci−1 for 0< i≤ n.

Definition 14 (CFB mode of operation). ΠCFB = (Gen,Enc,Dec):
Gen: Pick a random key k← Gen(1t) .
Enc: For a given message M = m1m2 . . .mn;

Enck(M) := c0c1 . . .cn, where c0
$←−{0,1}t and ci = E(k,ci−1)⊕mi for 0< i≤ n.

Dec: For a given cipher-text C = c0c1 . . .cn and key k;

m̂i := E(k,ci−1)⊕ ci for 0< i≤ n.

Definition 15 (OFB mode of operation). ΠOFB = (Gen,Enc,Dec):
Gen: Pick a random key k← Gen(1t) .
Enc: For a given message M = m1m2 . . .mn; Enck(M) := c0c1 . . .cn,

where c0 = r0
$←− {0,1}t , ri = E(k,ri−1) and ci = ri⊕mi for 0< i≤ n.

Dec: For a given cipher-text C = c0c1 . . .cn and key k;

m̂i := E(k,ci−1)⊕ ci for 0< i≤ n.
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Definition 16 (CTR mode of operation). ΠCT R = (Gen,Enc,Dec):
Gen: Pick a random key k← Gen(1t) .
Enc: For a given message M = m1m2 . . .mn;

Enck(M) := c0c1 . . .cn, where c0
$←−{0,1}t and ci =E(k,c0+ i)⊕mi for 0< i≤ n.

Dec: For a given cipher-text C = c0c1 . . .cn and key k;

m̂i := E(k,c0 + i)⊕ ci for 0< i≤ n.

Definition 17 (XTS mode of operation). ΠXT S = (Gen,Enc,Dec):
Gen: Pick two random keys k1,k2← Gen(1t) .
Enc: For a given message M = m1m2 . . .mn;

Enck(M) := c0c1 . . .cn,

where c0 ∈ {0,1}t (and will be different in different ciphertext), ci = E(k1,mi⊕
∆i)⊕∆i for 0< i≤ n, ∆i = α

i−1L, L = E(k2,c0) and α is the primitive element of
the field Fn

2.
Dec: For a given cipher-text C = c0c1 . . .cn; and keys k1 and k2;

∆i = α
i−1E(k2,c0) and m̂i := E(k,ci⊕∆i)⊕∆i for 0< i≤ n.
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3. ON QUANTUM INDIFFERENTIABILITY

3.1. Motivation

The “Indifferentiability Framework” introduced in [54] is a generalization of the
concept of indistinguishability of two systems in which the adversary is assumed
to have access to the additional information of involved systems. It is a security
notion that allows us to compare the implementation of a cryptosystem (called
a “construction” in the following) to an ideal representation. For example, the
indifferentiability framework allows us to say that a certain hash function con-
struction that is constructed from a smaller idealized primitive is indifferentiable
from a random oracle. This means that we can use this hash function in any set-
ting in which a random oracle can be used, without loss of security.1 In particular,
showing indifferentiability of a specific construction immediately implies a num-
ber of other security properties. For example, if a hash function is indifferentiable
from a random oracle, we immediately get that it is one-way, collision-resistant, a
pseudo-random-function, etc. Indifferentiability is most often applied in settings
where a larger primitive (say a hash function) is constructed from a smaller ideal-
ized primitive (say a random oracle with short input/output as a block function).

In [54], constructions can be arbitrary interacting systems. In our paper, we
consider a special case, namely where constructions are stateful oracles.2 To
make this more formal, we need to first introduce two types of “interfaces” to
a construction, the private and the public interface. In our view (where construc-
tions are oracles), these simply represent two types of queries, and we write Tpriv

for T restricted to its private interface (i.e., ignoring all queries that are not of the
private type), and Tpub for T restricted to its public interface. The idea behind
private and public interfaces is that private interfaces model the access the user
of a construction has (e.g., input/output via an API), while the public interface
represents what access an adversary has (e.g., network communication, or, in our
case, publicly available random oracles).

The primary goal of the indifferentiability framework was to provide a sim-
plified explanation of the impossibility of instantiating a random oracle by a hash
function [26]. However, subsequently, many classical constructions have been
revisited based on indifferentiability framework to prove their soundness. To
name a few, the Luby-Rackoff construction (Feistel Network) [53] that constructs
a pseudo-random permutation from pseudo-random functions has been studied
based on the indifferentiability framework in multiple research works [33,35,37].
In [32], the authors revisited the Merkle-Damgård construction based on the indif-

1Within limitations. There are certain settings in which indifferentiability is not enough for this
purpose. See [58]. In most settings, however, a construction that is indifferentiable from a random
oracle is as good as a random oracle.

2That is, whenever a construction is queried with some value x, it returns some value y to the
invoking party and possibly updates its internal state.
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ferentiability framework. They show that the plain Merkle-Damgård construction
is differentiable from a random oracle, but, they modify the MD construction to
successfully obtain positive result. The indifferentiability of sponge construction
that is used in SHA-3 has been studied in [16].

It is worth mentioning that at least in the case of SHA-3/the Sponge construc-
tion, all security properties were derived from its indifferentiability. For example,
we are not aware of any proof of the collision-resistance of the Sponge construc-
tion that does not rely on first showing indifferentiability.3

However, all of these results are in the classical setting. To the best of our
knowledge, no results on indifferentiability are known in the quantum setting.4

Especially in the case of the Sponge construction, this is quite problematic since
no direct proofs of the security properties of the Sponge construction are known
in the case of a random permutation as block function. That means, we do not
even know whether SHA-3 is post-quantum secure.

3.2. Our Contribution

We translate the indifferentiability framework to the quantum case. In the defini-
tion below, C[ f ] (that can be any of mentioned constructions above, e.g. Sponge)
is a construction that uses a primitive function f as a building block. D(X ,Y )
means the quantum distinguisher D has oracle access to X and Y . We denote non-
superposition access using “overline” and no overline over constructions means
superposition access.
Definition 18 (Quantum indifferentiability). C[ f ] is quantum indifferentiable from
H iff for any quantum-polynomial-time distinguisher D, there exists a quantum-
polynomial-time simulator Sim such that

|Pr[D(C[ f ], f ) = 1]−Pr[D(H,Sim(H)) = 1]| (3.1)

is negligible. We say C[ f ] is perfectly quantum indifferentiable from H if that
difference is 0.

3 [34] shows the (quantum) collision-resistance of the Sponge construction in the case where
the underlying block function is a random function, but this does not apply to SHA-3 which uses an
invertible random permutation instead.

4In [76], Zhandry proved the Quantum Indifferentiability of Merkle-Damgård construction using
a “compressed standard oracle”. However, it is not clear that their compressed standard oracle is an
unitary operation. Since a non-unitary operation is not a valid quantum operation, their result might
not hold.
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Figure 3.1: Quantum Indifferentiability Definition. Quantum access has highlighted by
gray rectangles.

Here, we explain the ideas behind the definition above. Since f (public in-
terface) represents a globally known function (e.g., the block function of a hash
function construction modeled as a random oracle), we have to model the fact that
an adversary can evaluate that function in superposition5. (See [17] for additional
discussion on why random oracles should be modeled with superposition queries.)
Since we will give evidence that indifferentiability is not achievable in many cases
(stated below), we consider queries to C[ f ] (private interface) to be classical and
consequently this weaker variant of the definition (with classical queries) yields a
stronger claim.

We give some evidence why there is a lack of proofs of quantum indifferen-
tiability. Precisely, we show that under a certain assumption (stated below as a
conjecture), perfectly secure quantum indifferentiability is impossible in a wide
variety of cases (including the Sponge construction and Feistel networks). This
holds even in the weaker setting where the construction is accessed classically,
and the adversary merely has superposition access to the underlying primitive
(e.g., the random oracle). We give an overview of the impossibility result in the
following subsection.

Concurrent Work. Concurrently in [76], Zhandry proved the Quantum Indiffer-
entiability of Merkle-Damgåd construction using a “compressed standard oracle”.
However, it is not clear that their compressed standard oracle is an unitary oper-
ation and this means that their result might not hold. Even if it is an unitary
operation, it does not reject our conjecture and result since we show the impossi-
bility of Quantum Indifferentiability respected to a perfect simulator. We would
like to thank Mark Zhandry for valuable discussion about his work.

5An oracle implementing f with classical queries will measure its input register in the computa-
tional basis, resulting in a value x, and then prepare its output register in the state | f (x)〉. An oracle
implementing f with superposition queries will apply the unitary U f to a pair of registers, where
U f is defined by U f |x,y〉= |x,y⊕ f (x)〉.
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3.2.1. Proof Overview for the Impossibility of Perfect
Indifferentiability

We skip the details of the proof and the interested reader can refer to [27] for more
information. The highlighted part of the proof:
• We show that if two constructions C[ f ] and H are perfectly quantum indif-

ferentiable, then they are perfectly classical indifferentiable with respect to
a stateless classical simulator. By a stateless simulator, we mean a simulator
that chooses the primitive function f according to some distribution at the
beginning, before any queries have been made, and answers to a query on
input x by f (x). We show that the existence of a perfect quantum simulator
implies the existence of a stateless one (to show the result stated above) by
defining a class of distinguishers, named D, that limit the behaviour of the
quantum simulator. Inside the class, there is a classical distinguisher Dcl
that we will give its description later in the proof. Using D, we transform a
quantum simulator to a (stateless) classical simulator that is perfect for Dcl .
• Finally, we show that many classical constructions are not perfectly indiffer-

entiable from H with respect to stateless simulators (using Dcl) and there-
fore they are not perfectly quantum indifferentiable (since perfect quantum
indifferentiability implies perfect classical indifferentiability with respect to
stateless classical simulators.).

The following theorem is our main theorem. We show the theorem under a
certain assumption (see the Conjecture 1.) By an one-sided distinguisher, we
mean a distinguisher D that outputs 1 with probability 1 when it interacts with the
real case, that is, Pr[D(C[ f ], f ) = 1] = 1.
Theorem 7. If two construction C[ f ] and H are perfectly quantum indifferen-
tiable then for any classical ”one-sided” distinguisher Dcl (cl stands for classi-
cal), there exists a stateless simulator Simsl (sl stands for stateless) such that

|Pr[Dcl(C[ f ], f ) = 1]−Pr[Dcl(H,Simsl(H)) = 1]|= 0.

We prove the theorem above for a primitive f that has one bit output. The
result can be generalized easily for a function with n bit output. To prove the
theorem above, we start with arbitrary one-sided classical distinguisher Dcl that
makes at most q−2 queries. Then, we define a class of one-sided distinguishers

D=
6⋃

i=1

Di∪{Dcl}

that limits the behaviour of the simulator. These distinguishers can be defined
now but we present them step by step in the following.

High-level proof of Theorem 7. In the following lemma we show that for the
finite class of one-sided distinguishers, the perfect quantum indifferentiability im-
plies the existence of a simulator that is perfect for all distinguishers inside the
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class. Then, we show that a quantum simulator that is perfect for the class D has
some properties. Namely, we show that there is a quantum simulator Sim3 that is
perfect for D and in each query operates as follows:

Sim3 |x,b,ψ〉XY S = |x〉⊗ |b〉Px |ψ〉+ |x〉⊗ |1−b〉(I−Px) |ψ〉 ,
where X is the input register, Y is the output register, S is the internal register
of simulator, and Px is a projector (see Property 8). This property can be ob-
tained using distinguishers in D1, . . . ,D5. Then we use distinguishers in D5 and
D6 to show that the projectors {Px}x∈X pairwise commute on some specific sub-
space SpanVSim3

q−3 (see Definition 21). We conjecture that there are some projectors
{P̂x}x∈X that commute everywhere and they operate the same as Px on subspace
SpanVSim3

q−3 . Since the projectors commute, they are diagonalizable and therefore
a complete measurement on the register S can be commuted to the beginning be-
fore any query has been made. This intuitively means that the internal register of
the simulator will not change during the queries (simulator does not have a mem-
ory). From this we construct a classical stateless simulator that is perfect for Dcl .

Lemma 8. Let D be a finite class of “one-sided” distinguishers that make poly-
nomial number of queries. If the construction C[ f ] is perfectly quantum indiffer-
entiable from H, then there exists a quantum-polynomial time simulator Sim such
that for any D ∈ D,

|Pr[D(C[ f ], f ) = 1]−Pr[D(H,Sim(H)) = 1]|= 0.

Proof. Let D∗ be a distinguisher that chooses a distinguisher D from D uniformly
at random, runs D and outputs its result. Then, the perfectly quantum indifferen-
tiability of C[ f ] and H implies the existence of a simulator Sim that is perfect for
D∗. Since D is a class of one-sided distinguishers, we can conclude that Sim is a
perfect simulator for any D ∈ D.

We use the following definition for the sate of a simulator that has been queried
by a distinguisher. Since queries made by the distinguisher can be randomized,
the state of simulator after being queried by the distinguisher is represented as a
density operator.
Definition 19. For a given simulator Sim, and for a given algorithm D querying
the simulator, let

ρ
Sim,D
S := ∑

j
λ j
∣∣Ψ j
〉〈

Ψ j
∣∣ ,

where λi > 0 and {
∣∣Ψ j
〉
} j is an orthonormal set of vectors, denote the inner state

of Sim after running D.
Definition 20. We define VD,Sim := {

∣∣Ψ j
〉
} j where for any j,

∣∣Ψ j
〉

is defined in
the definition above. That is, VD,Sim is defined such that the state of Sim after
running D is a mixture of pure states in VD,Sim.
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Definition 21. Let
VSim

i :=
⋃

D

VD,Sim

where the union ranges over all D ∈ D that makes i queries. We omit Sim from
VSim

q wherever Sim is clear. Note that V0 = {|Φ〉} where |Φ〉 is the initial state of
the simulator.

To prove Theorem 7, in the following, we present our distinguishers and the
properties that they enforce to a perfect simulator. The discussion here lacks a lot
of details and interested reader can refer to [27] for more detailed proofs.
Property 1. The simulator is perfect for the class of distinguishers D, that is, the
simulator is a perfect simulator for any D ∈ D.
Claim 1. There exists a simulator Sim1 that has Property 1.

Proof. Since D is a finite class of one-sided distinguishers, there exists Sim1 that
is perfect for any D ∈ D by Lemma 8.

Property 2. The simulator is a unitary transformation, i.e., his operation in the
i-th query is given by an unitary U (i) that may depend on the primitive that is
queried by the simulator and it is applied to the registers X (input register), Y
(output register), S (internal register of simulator).
Claim 2. There exists a simulator that has the Properties 1 and 2.

Proof. Let Sim2 be a purification of Sim1. It is clear that it fulfils Properties 1 and
2.

The class D1 of distinguishers:

D1 = {D(1)
1 , . . . ,D

(q)
1 },

where for any i ∈ [q], D(i)
1 is a distinguiser that queries the public interface of

the primitive on a random input x in the i-th query. After getting a response, it
measures the input wire to test if it gets the input back.

X : |x〉 /

Tpub
|x〉〈x|

Y : |y〉
It is clear that when D1 interacts with the public interface of the real case (or f ),

it measures |x〉 with probability 1. This is because U f |x,y〉= |x,y⊕ f (x)〉. Since
Sim2 is perfect for D1, then D1 forces the simulator Sim2 to have the following
property.

Property 3. For any i ∈ [q] and x ∈ X, there exists an unitary U (i)
x such that for

any |Ψ〉 ∈Vi−1, y ∈ Y :

U (i) |x,y,Ψ〉= |x〉⊗U (i)
x |y,Ψ〉 ,

where U (i) is the unitary from Property 2.
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Note that if a distinguisher interacts with the public interface of the construc-
tion (or f ) and queries |x〉X |+〉Y , then it will get |x〉X |+〉Y back from the construc-
tion. Then in the following, we present two class of distinguishers D2 and D3 that
test if simulator do the same or not and of course a perfect simulator has to return
|x〉X |+〉Y back.

The class D2 of distinguishers:

D2 = {D(1)
2 , . . . ,D

(q)
2 },

where for any i ∈ [q], the distinguisher D(i)
2 (the i-th query) prepares an ancillary

wire A and does the following:

A : |0〉 / H • ∣∣Φ+
〉〈

Φ
+
∣∣

X : |0〉 /

Tpub

Y :|+〉 |+〉〈+|
where ∣∣Φ+

〉
=

1
2n/2 ∑

x∈{0,1}n

|x〉 |x〉 .

(In the circuit above, the Hadamard operation H is applied to each wire.) D
(i)
2

measures if it gets back
∣∣Φ+

〉
and |+〉 states in AX and Y wires, respectively.

A simple calculation shows that if D
(i)
2 interact with the public interface of

the real case (or f ), it measures
∣∣Φ+

〉
and |+〉 with probability 1. Since Sim2 is

perfect for D2, the class D2 ensures that if the output register Y sets to |+〉 in any
query, then the simulator has to return |+〉 in output wire. In other words, the
inner state of the simulator is not entangled with input and output wires in this
case. We can show that D2 is a class of distinguishers that forces Sim2 to have the
following property.
Property 4. For any i ∈ [q] and |Ψ〉 ∈Vi−1, there exists

∣∣Ψ′
〉

such that

∀x : U (i)
x (|+〉Y ⊗|Ψ〉S) = |+〉Y ⊗

∣∣Ψ′
〉

S ,

where U (i)
x is the unitary from Property 3.

Let Sim3 be a simulator that is the same with Sim2 except it applies a uni-
tary operator F(i) that maps

∣∣Ψ′
〉

to |Ψ〉 to the internal register in i-th query and,
the inverse of F(i) before the (i+ 1)-th query. So, Sim3 applies the operation
F(i−1)†U (i)F(i) in the i-th query where F(0) = I and U (i) is defined in Property 2.

X : /

U (1) U (2) U (3)

· · ·
Y : · · ·

S : / F(1) F(1)† F(2) F(2)† F(3) · · ·
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Intuitively, since Sim3 undoes the operator F(i), then it has all the properties so far
and in addition it has the following property.

Property 5. For any i ∈ [q] and |Ψ〉 ∈Vi−1, ∀x : U (i)
x (|+〉Y |Ψ〉S) = |+〉⊗ |Ψ〉.

The class D3 of distinguishers. For any i ∈ [q] and any distinguisher D(i−1) ∈ D
that makes i− 1 queries, let D(i)

3 (D(i−1)) be a distinguisher that runs the distin-
guisher D(i−1) and then additionally queries with XY = |0〉 |+〉. The class D3 is
consists of all such distinguishers.
Claim 3. For any i ∈ [q], VSim3

i−1 ⊆VSim3
i .

Proof. Note that the state of simulator stays the same if distinguisher queries
|0〉X |+〉Y by Property 5, therefore we get every state in VSim3

i using D3.

The class D4 of distinguishers. For any i ∈ [q] and any distinguisher D(i−1) ∈ D
that makes i−1 queries, let D(i)

4 (D(i−1)) be an i-query distinguisher that prepares
an ancillary wire Aq, queries the public interface of the construction for uniformly
random x, and measures the outputs wire Y to see if it gets |+〉 back as follows:

X : |x〉 /

Tpub

Y :|+〉 • • |+〉〈+|
Aq : |0〉

A simple calculation shows that if D4 interacts with the public interface of the
real case, it measures |+〉 with probability 1. Since Sim3 is perfect for D4, then
with probability 1 the measurement outputs |+〉 in the ideal case as well. Using
this, we can show the following property for Sim3.

Property 6. For any i ∈ [q] and |Ψ〉 ∈ Vi−1, and any x, U (i)
x |1〉Y |Ψ〉 = (X ⊗

IS)U
(i)
x |0〉Y |Ψ〉. Here X is the bitflip (Pauli X matrix).

The following property can be concluded by Property 5 and Property 6.
Property 7. For any i∈ [q], |Ψ〉 ∈Vi−1 and x, there are non-normalized |Ψx0〉 , |Ψx1〉
such that:

U (i)
x |b〉 |Ψ〉= |b〉 |Ψx0〉+

∣∣b̄
〉
|Ψx1〉 and |Ψx0〉+ |Ψx1〉= |Ψ〉 .

The class D5 of distinguishers. For any i ∈ [q] and any distinguisher D(i−1) ∈ D
that makes i−1 queries, let D(i+1)

5 (D(i−1)) be an (i+1)-query distinguisher that
runs D(i−1) and queries the same input in two subsequent queries, i-th and (i+1)-
th queries, and measures if their outputs are the same (checks if y1 = y2 in the
following circuit).

X : |x〉 /

Tpub
a |x〉 /

Tpub
a

Y : |0〉 |0〉

y1 y2
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Using the distinguisher D5 and the previous properties, we can conclude:
Property 8. For any i ∈ [q], x ∈ X, and |Ψ〉 ∈ Vi−1, the states |Ψx0〉 and |Ψx1〉
defined in Property 7 are orthogonal. In addition, for any x there exists a projector
P(i)

x such that for any |Ψ〉 ∈ SpanVi−1, we have U (i)
x : |b〉 |Ψ〉 7→ |b〉P(i)

x |Ψ〉+
|1−b〉P(i)

x |Ψ〉 where P(i)
x := I−P(i)

x .
Claim 4. Sim3 has the Property 8.

Proof. We depict the distinguisher above in the ideal case:

X : |x〉 /

U (i)

a |x〉 /

U (i+1)

a
Y : |0〉 |0〉
S :|Ψ〉 /

y1 y2

Intuitively, we show that the second measurement can distinguish |Ψx0〉 and |Ψx1〉
defined in Property 7 perfectly and therefore they are orthogonal and consequently

we can write U (i)
x : |b〉 |Ψ〉 7→ |b〉P(i)

x |Ψ〉+ |1−b〉P(i)
x |Ψ〉 where P(i)

x := I−P(i)
x .

In the following, we show that the projectors defined in Property 8 will pair-
wise commute.
Property 9. For any i ∈ [q], |Ψ〉 ∈ SpanVi−1, and x ∈ X , P(i)

x |Ψ〉 = P(i+1)
x |Ψ〉,

where P(i)
x and P(i+1)

x are the projectors from Property 8.

Proof. This also can be proven by the distinguisher D5.

The class D6 of distinguishers. For any i ∈ [q− 1] and any distinguisher
D(i−1) ∈ D that makes i−1 queries, let D(i+2)

6 (D(i−1)) be an (i+2)-query distin-
guisher that runs D(i−1), then makes three subsequent queries as follows.

X : |x〉 /

Tpub
a |x′〉 /

Tpub
a |x〉 /

Tpub
a

Y : |0〉 |0〉 |0〉

y1 y2 y3
It outputs 1 if y1 = y3 and 0 otherwise.

Using the distinguisher D6, we can conclude the following property. The fol-
lowing property is needed to prove the Lemma 9 that is crucial to prove the Prop-
erty 11 that states the commutativity property for the projectors over a subspace.

Property 10. For any i∈ [q−2], |Ψ〉 ∈Vi−1 and x,x′, P(i+2)
x P(i+1)

x′ P(i)
x |Ψ〉= 0 and

P(i+2)
x P(i+1)

x′ P(i)
x |Ψ〉= 0.
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Lemma 9. Let P and Q be rank-one projectors over a two dimensional Hilbert
space H such that for any |Ψ〉 ∈H, Q̄PQ |Ψ〉= 0 and QPQ̄ |Ψ〉= 0. Then, P and
Q commute on H, i.e, ∀ |Ψ〉 ∈H, PQ |Ψ〉= QP |Ψ〉 .
Proof. The proof is straightforward by writing P = |α〉〈α| and Q = |β 〉〈β | for
some normalized vectors |α〉 and |β 〉. Then using the assumption Q̄PQ |Ψ〉 = 0
and QPQ̄ |Ψ〉= 0.

Property 11. For any i ∈ [q−2], |Ψ〉 ∈Vi−1, x,x′: P(i+1)
x′ P(i)

x |Ψ〉= P(i+1)
x P(i)

x′ |Ψ〉.
Proof. The proof uses Jordan’s Lemma [49] that says two orthogonal projectors
are simultaneously block diagonalizable with block of size ≤ 2 and then the com-
mutativity property follows from Lemma 9.

Corollary 1. For any |Ψ〉 ∈SpanVSim3
q−3 , x,x′: P(q−1)

x′ P(q−1)
x |Ψ〉=P(q−1)

x P(q−1)
x′ |Ψ〉 .

Proof. By Property 11 and Property 9, it is clear that for any |Ψ〉 ∈ VSim3
q−3 , x,x′:

P(q−1)
x′ P(q−1)

x |Ψ〉= P(q−1)
x P(q−1)

x′ |Ψ〉 . The result follows by the linearity of P(q−1)
x .

Conjecture 1. Let V be a strict subspace of Hilbert space H. Let {Px}x∈X be a
family of orthogonal projectors such that

∀|Ψ〉 ∈ V, x 6= x′ ∈ X ,PxPx′ |Ψ〉= Px′Px |Ψ〉 .

Then, there exists a family of projectors {P̂x}x∈X such that
1. For any |Ψ〉 ∈ V and x ∈ X, P̂x |Ψ〉= Px |Ψ〉.
2. ∀|Ψ〉 ∈H, x 6= x′ ∈ X , P̂xP̂x′ |Ψ〉= P̂x′P̂x |Ψ〉 .
Now using the conjecture above and the Corollary 1, there is a family of pro-

jectors {P̂(q−1)
x }x∈X such that it has the following two properties.

1. For any |Ψ〉 ∈ SpanVSim3
q−3 , P̂(q−1)

x |Ψ〉= P(q−1)
x |Ψ〉.

2. Projectors in {P̂(q−1)
x }x∈X pairwise commute everywhere.

Claim 5. There exists a perfect simulator Sim6 for D such that it chooses a clas-
sical value s in the first invocation according to some probability distribution µ

H .
It then applies some unitary USim6 |x,y〉= |x〉⊗U s

x |y〉 in every query.

Proof. Since the projectors {P̂(q−1)
x }x∈X pairwise commute, they are simultane-

ously unitarily diagonalizable [45], that is, there exists an unitary matrix U such
that U†P̂(q−1)

x U is diagonal for any x ∈ X . We define Sim
(1)
4 := (IXY ⊗U†)Sim

(1)
3

and for 2 ≤ i ≤ q− 2, Sim
(i)
4 := (IXY ⊗U†)Sim

(i)
3 (IXY ⊗U). The simulator Sim4

is depicted in the following circuit.

Sim
(1)
3 Sim

(2)
3

. . .
Sim

(q−2)
3|Φ〉 U† U U† U U† . . . U U†
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where for any x,y and |Ψ〉 ∈VSim3
i−1 ,

Sim
(i)
3 |x,y,Ψ〉 := |x〉⊗U (i)

x |y,Ψ〉= |x〉⊗ (|y〉P(i)
x |Ψ〉+ |ȳ〉 P̄(i)

x |Ψ〉
)
.

By definition of Sim4, it is clear that Sim4 is perfect for Dcl . Let Û (q−1) be the
following unitary:

Û (q−1) |x,y,Ψ〉 := |x〉⊗Û (q−1)
x |y,Ψ〉= |x〉⊗ (|y〉 P̂(q−1)

x |Ψ〉+ |ȳ〉 ¯̂P(q−1)
x |Ψ〉

)
.

By Property 4 and Property 8, for any i ∈ [q−2] and |Ψ〉 ∈ SpanVSim3
i−1 , P(i)

x |Ψ〉=
P(q−1)

x |Ψ〉 and by Conjecture 1, P(q−1)
x |Ψ〉= P̂(q−1)

x |Ψ〉 therefore we can conclude
that

∀ x,y, ∀ |Ψ〉 ∈ SpanVSim3
i−1 : Sim

(i)
3 |x,y,Ψ〉= Û (q−1) |x,y,Ψ〉 . (3.2)

Let Sim5 be the same with Sim4 except it applies the unitary Û (q−1) instead of
Sim

(i)
3 in each query:

Û (q−1) Û (q−1)
. . .

Û (q−1)
|Φ〉 U† U U† U U† . . . U U†

By Equation 3.2, it is clear that Sim5 fulfils Property 1. Now since U†
∏
x∈X

P̂(q−1)
x U

is diagonal, we show a complete measurement in computational basis on S-register
at the end of the circuit above can be moved to the beginning of the circuit (right
after U†). To show that, we prove that the following two circuits output the same
result:

Û (q−1) Û (q−1)
U U† M ∼= M U U†

Let M j := | j〉〈 j| be the measurement operator corresponding to the outcome j.
We start with the circuit in the left side. For any x,y and |Ψ〉:

(IXY ⊗M j)(IXY ⊗U†)Û (q−1)(IXY ⊗U) |x,y,Ψ〉
= (IXY ⊗M j)(IXY ⊗U†)Û (q−1)( |x,y〉⊗U |Ψ〉

)

= (IXY ⊗M j)(IXY ⊗U†)
(
|x〉⊗Û (q−1)

x (|y〉⊗U |Ψ〉)
)

= (IXY ⊗M j)(IXY ⊗U†)
(
|x〉⊗ (|y〉⊗ P̂(q−1)

x U |Ψ〉+ |ȳ〉⊗ ¯̂P(q−1)
x U |Ψ〉)

)

= |x〉⊗ (|y〉⊗M jU†P̂(q−1)
x U |Ψ〉+ |ȳ〉⊗M jU† ¯̂P(q−1)

x U |Ψ〉)
(∗)
= |x〉⊗ (|y〉⊗U†P̂(q−1)

x UM j |Ψ〉+ |ȳ〉⊗U† ¯̂P(q−1)
x UM j |Ψ〉)

= (IXY ⊗U†)
(
|x〉⊗ (|y〉⊗ P̂(q−1)

x UM j |Ψ〉+ |ȳ〉⊗ ¯̂P(q−1)
x UM j |Ψ〉)

)

= (IXY ⊗U†)
(
|x〉⊗Û (q−1)

x (|y〉⊗UM j |Ψ〉)
)

= (IXY ⊗U†)Û (q−1)(IXY ⊗U)(IXY ⊗M j) |x,y,Ψ〉 ,
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where (∗) holds because U†P̂(q−1)
x U , U† ¯̂P(q−1)

x U and M j are diagonal. We have
proven that the (non-normalized) post-measurement state corresponding to out-
come j is the same in two circuit. This also shows that the probability of getting
output j is the same in two circuits. Therefore the measurement can be moved to
the beginning of the circuit right after U† and the output of the circuit stays the
same. Let Sim6 be a simulator that measures the inner state in the computational
basis right after applying U†. (Sim6 is the same with Sim5 except the measure-
ment has been moved to the beginning.) By the construction, Sim6 has Property 1.
Therefore, the inner state of the simulator collapses to a classical value s.

Claim 6. There exists a stateless classical simulator Sim8 that is perfect for Dcl .
That is Sim8 chooses a random function f : X → {0,1} at the beginning and
answers to any query on input x by f (x).

Proof. Let Sim7 be a simulator that upon receiving a query from the distinguisher,
measures the input and output wires in the computational basis measurement and
then invokes Sim6 (or forwards the input and output wire to Sim6).

X :
Sim6

Y :

It is clear that for any distinguisher D that makes classical queries, the circuit
above is indistinguishable from Sim6. Let Sim8 be a classical simulator that upon
receiving a classical query on input x, invokes Sim7 on input |x,0〉 to get the
answer Sim7 |x,0〉 = USim6 |x,0〉 = |x〉 ⊗U s

x |0〉 = |x〉 ⊗
∣∣y′
〉
. It then returns the

output y′ to the distinguisher. We define f (x) := y′. Since U s
x only depends on

the values s and x, then this is equivalent to saying that Sim8 chooses a function
f : X →{0,1} at the beginning and answers to any query on input x by f (x).

3.2.2. Discussion on the Conjecture

This subsection is based on a public communication with the mathematics com-
munity [1]. The following lemma prove that the conjecture holds for two projec-
tors.
Lemma 10. Let P and Q be two orthogonal projectors over Hilbert space H such
that they commute over a strict subspace V<H. There are two projectors P̂ and
Q̂ such that they commute over H and for all |Ψ〉 ∈ V,

P̂ |Ψ〉= P |Ψ〉 and Q̂ |Ψ〉= Q |Ψ〉 .

Proof. Poof follows using Halmos’ two projections theorem [25]. Let ImP := L
and ImQ := N. We can decompose H as

H = (L∩N)⊕ (L∩N⊥)⊕ (L⊥∩N)⊕ (L⊥∩N⊥)⊕ (M1⊕M2).
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Halmos’s theorem says that M1 is nontrivial iff M2 is nontrivial and if one of them
is nontrivial, then we can write

P = (I, I,0,0)⊕U†
(

I 0
0 0

)
U,

Q = (I,0, I,0)⊕U†
(

I−H W
W H

)
U,

where U = Diag(I,R), W =
√

H(I−H), R : M2→M1 is a unitary operator and
H : M1→M1 is a selfadjoint operator such that 0 ≤ H ≤ I and KerH = Ker(I−
H) = {0}. For any |Ψ〉 ∈ V, let |ψ1〉 ∈M1 and |ψ2〉 ∈M2 be the last components
of |Ψ〉. A simple calculation shows that

QP |Ψ〉=
(
(I−H) |ψ1〉

R†W |ψ1〉

)
and PQ |Ψ〉=

(
(I−H) |ψ1〉+WR |ψ2〉

0

)

where we only consider the operation over two last components of |Ψ〉. Since P
and Q commute over V we can conclude

R†W |ψ1〉= 0 and WR |ψ2〉= 0,

and from this we can obtain |ψ1〉 = |ψ2〉 = 0. This means that V is contained
in the sum of first four expressions. We consider projectors P̂ and Q̂ that are
modification of P and Q by replacing M1⊕M2 with zero.

It is not clear how one can generalize this proof idea to more than two pro-
jectors to prove the Conjecture 1. In order to prove the Conjecture 1 for three
projectors P1, P2 and P3, one idea will be to use the lemma to obtain projectors P̂1
and P̂2 that commute everywhere and operate the same as P1 and P2 on V. Then
we may use the lemma again for P̂i (for an i ∈ [2]) and P3, however, we can not
apply the lemma because it is not clear if P̂i and P3 commute on V. Another idea
would be to apply the lemma to pairs (P1, P2), (P2,P3) and (P3,P1) to obtain pro-
jectors (P̂1, P̂2), (P′2,P

′
3) and (P̄3, P̄1), respectively. But it is not clear if three of

transformed projectors have the properties stated in the Conjecture.

3.2.3. The Impossibility Results

In the following, we present the description of Dcl . We argue that Dcl can dis-
tinguish (C[ f ], f ) from (H,Simsl(H)). This shows that any constructions that is
not perfectly indifferentiable from the real case with respect to classical stateless
simulators is not perfectly quantum indifferentiable by Theorem 7.

Construction of Dcl . The distinguisher Dcl that wants to distinguish (C[ f ], f )
from (H,Sim(H)) picks a random element x from the domain. Then it evaluates
C[ f ](x) without querying x to the public interface of the construction and only us-
ing queries to f (this is possible since the construction has been built from f ). We
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call this value y. Then it queries x to the public interface of the construction to get
C[ f ](x). Finally, it outputs 1 if y = C[ f ](x) and 0 otherwise. It is clear that in the
real case, when Dcl interacts with (C[ f ], f ), the output of Dcl is 1 with probability
1.

Argument on impossibility results. In the ideal case, the simulator has access to
the H and answers to the queries that distinguisher makes to f . Since the simulator
is stateless, it chooses a function f at the beginning (before any query has been
made to f ) and according to some distribution that can depend on H and answers
to the distinguisher queries using f . Intuitively, since H is a random primitive
with larger domain and co-domain compare to f , then a stateless simulator that
does not record the list of queries can not simulate a bigger function with a smaller
one. So, any constructions that is not perfectly indifferentiable from the real case
limited to classical stateless simulator is not perfectly quantum indifferentiable as
well. For instance, Sponge Construction [16] and Feistel Networks [53].

3.3. Discussion: Open Problems and Related Works

Indifferentiability is a well-studied notion for cryptographic constructions in the
classical setting. We initiate the study of Indifferentiability notion in the quan-
tum setting. We study the quantum indifferentiability notion with respect to a
perfect simulator. We show the impossibility of quantum indifferentiability no-
tion with respect to a perfect simulator for many classical constructions of hash
functions under a conjecture. Proving or rejecting our conjecture is an interesting
open problem. The main challenge in proving the quantum indifferentiability of
a construction from an ideal primitive is the incapability of a quantum simulator
to record quantum queries. In the classical setting, the simulator can record list
of queries to the underlying function f used in the construction C[ f ]. Then the
simulator can respond to queries to the construction C[ f ] by looking at the list of
queries to f to guarantee the consistency of responses to f and C[ f ] queries. Con-
currently, Zhandry [76] presents a technique to record quantum queries. He uses
the technique to prove the quantum indifferentiability of the Merkle-Damgård
construction. Our impossibility result remains unaffected by Zhandy’s work be-
cause we show the impossibility with respect to a perfect simulator. There are
many open questions in this realm. For instance, the indifferentiability of Sponge
construction and Feistel construction with respect to a non-perfect simulator is
open.
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4. QUANTUM COLLISION FOR NON-UNIFORMLY
DISTRIBUTED FUNCTIONS

4.1. Motivation

Hash functions are crucial cryptographic primitives that are used to construct
many encryption schemes and cryptographic schemes. They usually compress
a large input to a smaller output. In many applications, collision-resistance is a
vital property for a cryptographic hash function. A collision for a hash function H
is a pair of two distinct inputs that map to the same output under the hash function,
that is, x 6= x′ such that H(x) = H(x′). Since it is mainly the case that the input
size of a hash function is much larger than its output size, a collision is inevitable,
however, the design of the hash function has to guarantee that the hash function is
collision resistant. In other words, it has to be computationally infeasible to find
a collision.

As we move toward the quantum era, we have to prove it is computationally
hard to find a collision using a quantum computing device. This is formulated as
a quantum query complexity problem, that is, how many quantum queries to the
hash function are needed in order to find a collision with constant probability. This
gives us a lower bound on the required number of queries to solve the collision
problem. The other question is to present a quantum algorithm that solves the
collision problem using certain number of queries. This gives us an upper bound
on the sufficient number of queries to solve the collision problem.

Usually, hash functions are modelled as random functions in the random oracle
model [14] to achieve provable secure schemes. It is easier to prove the security of
the scheme if we model the underlying hash function as a random function. It has
been proven in [75] that a random function is quantum collision-resistant. How-
ever in some cryptographic constructions, they are composed with other functions
and the security of the construction relies on the collision resistance property of
the composition. Therefore the output of combination of a function f and a ran-
dom function H may not be distributed uniformly and finding a collision for this
non-uniformly distributed f ◦H may break the security of the scheme. For exam-
ple, the well-known Fujisaki-Okamoto construction [42] uses a random function
H to produce the randomness for an encryption scheme f . The security relies on
the fact that the adversary can not find two inputs of the random function that lead
to the same ciphertext. This is roughly equivalent to saying that f ◦H is colli-
sion resistant. In fact, our result is a crucial ingredient for analyzing a variant of
Fujisaki-Okamoto construction in the quantum setting. See Chapter 5 for more
details.

44



Lower bound Upper bound
Quantifier H∞(D) H2(D) Quantifier H∞(D) H2(D)

∀ A ∀ D Ω(2H∞(D)/5) Ω(2H2(D)/9) ∃ A, ∃ D O(2H∞(D)/3) O(2H2(D)/4)

∃ D ∀ A Ω(2
H∞(D)

2 ) Ω(2
H2(D)

3 ) ∀ D ∃ A O(2
H∞(D)

2 ) O(2
H2(D)

4 )

∀ A ∃ D Ω(2
H∞(D)

2 ) Ω(2
H2(D)

3 ) ∃ A ∀ D O(2
2H∞(D)

3 ) O(2
H2(D)

3 )

Table 1: Summary of the bounds achieved in this Chapter. The columns marked H∞(D),
H2(D) give lower/upper bounds on the number of queries needed for finding a collision in
terms of the min-entropy and the collision-entropy, respectively. The “quantifier” column
indicates for what quantification of collision-finding algorithm A and distribution D the
respective bound is achieved. For example, a lower bound Ω(B) with quantifiers ∀A∃D
means that for any adversary A, there exists a distribution D such that A needs at least
Ω(B) queries to find a collision.

4.2. Our Contribution

We study the quantum query complexity of finding a collision for a function f
whose outputs are chosen according to a non-uniform distribution D. We de-
rive some upper bounds and lower bounds depending on the min-entropy and
collision-entropy of D that are denoted by H∞(D) and H2(D), respectively. Table
1 summarizes our results.

We study the problem for two entropy measures that are mostly occurred in
cryptographic context, namely, collision-entropy and min-entropy. We present
twelve bounds (see Table 1) that contains all possible quantifiers. The motivation
for different quantifiers can be:
• ∀A∀D. This is motivated by some cryptographic use cases. We may en-

counter a cryptosystem that is insecure if a quantum algorithm finds a colli-
sion for a non-uniformly distributed function f . Then, in order to claim the
security of cryptosystem, we need to show that for any quantum adversary
A and any distribution D the necessary number of queries to find a collision
for a random function f whose outputs are chosen independently according
to D is large. For instance, in Chapter 5, we show the security of FO con-
struction using our result in the row marked ∀A∀D and column marked
H∞(D).
• ∀D∃A. We may be motivated from the algorithmic point of view. Namely,

we might be interested to give an quantum algorithm that finds a collision
for a random function whose outputs are chosen according to a distribution
D with a specific entropy measure. In this case, the algorithm can be depen-
dent on the distribution D. This kind of bounds are needed to compare the
quantum computing power with classical computing for a specific problem.
• ∃A∀D. We might be interested in a quantum algorithm that finds a colli-

sion and it is universal for any distribution with specific entropy measures.
In the previous case, the quantum algorithm can be dependent on the dis-
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tribution. In contrast, in this case we are interested to give a quantum algo-
rithm that is universal and works for any distribution with a known entropy
measure.

Remaining quantifiers. In each item above, we are interested to know if our
bound is tight or not. Therefore, we study the negation of the aforementioned
quantifiers. We make the tight bounds bold in the Table 1.

4.2.1. Proof Overview for Upper Bounds

We present the sketch of the proofs for the bounds that are more challenging and
an interested reader may refer to [63] to find the proofs of other bounds. The core
idea of the proofs for upper bounds is to use Grover’s search algorithm [21, 43],
Ambainis’ element distinctness algorithm [9] and Theorem 6 in [75] as a black
box. In the following, we present the proof for the upper bound for two cases.

Quantifier order ∃A ∃D and the collision-entropy. The idea is to use Grover’s
search algorithm [21, 43] to find a collision. To do that, we need to define a dis-
tribution D with H2(D) ≥ k such that one of the elements in the support of D
(the target element that Grover’s algorithm would search for its pre-image) oc-
curs with considerably high probability and other elements of the support occur
with relatively small probability. Therefore, we define a distribution D such that
D(0) = 1/2(k+1)/2 := γ and it is an uniform distribution over non-zero elements.
We show the bound for f ←DN where N is the set of natural numbers. We choose
a subset N1 of size d2/γe from N. Then we use Chernoff inequality, Theorem 4.5
in [55], to show that there exists at least one pre-image of 0 in N1 with high prob-
ability. Now, Grover’s algorithm [21, 43] applied to f �N1 returns a pre-image of
0 using O(

√
|N1|) queries with constant probability. We choose a subset N2 of

size d2/γe from N \N1 and apply Grover’s algorithm to f �N2 to obtain another
pre-image of 0 and this finishes our proof.

Quantifier order ∃ A ∀ D and the collision entropy. The proof follows by
the reduction technique used in [3, 75] and using Ambainis’s algorithm [9] for
the element distinctness as a black box. Let S be a random subset of N of size
2k/2 + 1. By Theorem 3 in [72], f ′ := f |S has at least one collision with proba-
bility at least 1− 2/e. Now, invoking Ambainis’s algorithm [9] for f ′ returns a
collision with bounded error. The query complexity of Ambainis’s algorithm is
O(|S|2/3) = O(2k/3). By repeating this procedure on distinct subset of the domain
of f , we can amplify the success probability arbitrary close to 1.

4.2.2. Proof Overview for Lower bounds

Our result are stated in the from of an upper bound for the success probability of
an adversary making q queries. We present these bounds in Table 2. The lower
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Upper bound for the Success Probability Using q Queries
Quantifier H∞(D)≥ k H2(D)≥ k

∀ A ∀ D O
(q5/2

2k/2

)
O
(q9/5

2k/5

)

∃ D ∀ A O
(

max{q2

2k ,
q3

23k/2 }
)

O
(q3

2k

)

∀ A ∃ D O
(

max{q2

2k ,
q3

23k/2 }
)

O
(q3

2k

)

Table 2: An upper bound for the probability of finding a collision using q queries have
been presented in this table. For instance, for any quantum adversary (∀A) that makes q
queries and for any distribution D (∀D) with H∞ ≥ k, the success probability of finding a

collision is less than or equal to O
(q5/2

2k/2

)
.

bounds in Table 1 can be derived from the upper bound on the success probabilities
stated in Table 2.
High-level idea of reduction proof. Since the collision problem is hard for a
uniformly at random function [75], we reduce the quantum collision problem for
non-uniformly at random function to a uniformly at random function as follows.
In a very high level, the reduction proof is constructing a quantum adversary B that
finds a collision for a uniformly at random function f from a quantum adversary
A that finds a collision for a non-uniformly at random function h. So basically, B
runs A and has to simulate the function h using his oracle f . The simulation of
f by B follows the similar line as the classical proofs, namely, B has to answer
to A’s queries in such a way that is indistinguishable from A’s point of view. To
do that, B (using his oracle h) has to come up with a function f ′ that its outputs
are distributed as f (classically). Then U f ′ is indistinguishable from U f from A’s
point of view. The last point to check is that the output of A (that is a collision
for h) has to be a collision for target function f . Since it is hard to find a collision
for f , we conclude that it is hard to find a collision for non-uniformly at random
function h.

We present the high-level proof of quantifier order ∃D ∀A and the proofs for
“every adversary and every distribution” quantifier that are more challenging for
both the collision-entropy and the min-entropy.
Quantifier order ∃D∀A and min-entropy. We present the proof for “there
exists a distribution D of min-entropy k and any adversary A making q queries”.
We define a distribution D over {0,1}n∪{a} such that D(a) = 1/2k and D(y) =
(1−1/2k)/2n for y ∈ {0,1}n. Let A be a quantum adversary that makes q queries
to f ←DX and outputs a collision with probability ε . There are two cases:
• A finds two pre-images of the element “a”. Let say with probability ε1

• A finds x 6= x′ such that f (x) = f (x′) 6= a. Let say with probability ε2

Note that we can write ε = ε1 + ε2. Then, we obtain some upper bounds for ε1
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and ε2. Since D over {0,1}n is a distribution close to a uniformly at random
distribution, we can reduce it to the collision problem for a uniformly at random

function and obtain the upper bound ε2 ≤
C(q+2)3

2n using Lemma 1 in Section
2.3. To conclude an upper bound for ε2, we construct an adversary B that runs
A and using the output of A distinguishes a zero-function from a function that
outputs 1 with probability 1/2k and outputs zero otherwise. Then, using Lemma
3 in Section 2.3 we can conclude ε1 ≤ 8(2q+2)2/2k. Finally, when n≥ 3k/2 we
can conclude

ε ≤ O
(

max{q2

2k ,
q3

23k/2 }
)
.

Lower bound based on collision-entropy. We would prove that if there exists a
quantum adversary that outputs a collision for f ←DX , then we can construct a
quantum adversary B that finds a collision for h◦ f in which h is a universal hash
function. Since by the Leftover Hash Lemma [46], h◦ f is indistinguishable from
a truly random function, we can conclude that h ◦ f is collision-resistant simply
because a truly random function is collision-resistant [75]. Therefore, we have
shown that f is collision-resistant. The proof procedure is as follows. Let f be
a random function whose outputs are chosen independently according to a distri-
bution with collision-entropy k. We apply the Leftover Hash Lemma [46] to the
function f to extract the number of bits that are indistinguishable from uniformly
random bits. After applying the Leftover Hash Lemma, the output distribution of
h◦ f , where h is a universal hash function, is indistinguishable from the uniform
distribution. Note that a collision for function f is a collision for h ◦ f . Let A be
a quantum adversary that has quantum access to f and finds a collision for h◦ f .
Using the existence of A, we show that there exists a quantum algorithm B that
has quantum access to h ◦ f and finds a collision for h ◦ f with the same proba-
bility and the same number of queries as algorithm A. By [74], two distribution
are indistinguishable if and only if they are oracle-indistinguishable. Therefore,
h ◦ f is indistinguishable from a random function (recall that the output of h ◦ f
is indistinguishable from the uniform distribution by Leftover Hash Lemma) and
as a result any quantum algorithm B is unable to differentiate between h◦ f and a
random function. This means that the success probability of finding a collision for
h◦ f has to be close to the success probability of finding a collision for a random
function otherwise a collision finding algorithm can distinguish the two cases. By
using an existing result for finding a collision for a random function [75], we ob-
tain an upper bound for the probability of finding a collision for function h ◦ f .
Therefore, we get an upper bound for the probability of success for the quantum
collision problem applied to the function f .

Lower bound based on min-entropy. Since every distribution with min-entropy
k can be written as a convex combination of some flat distributions on a subset of
size at least {0,1}k [31], one can obtain a lower bound for the quantum collision
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problem for a function f ← DX by reducing the quantum collision problem for
f to the quantum collision problem for an uniformly distributed function and use
the existing result on collision-resistance of random functions [75]. In more de-
tails, assume that the distribution D is written as convex combination of the flat
distributions D1, . . . ,DN . One can use a reduction algorithm that converts a quan-
tum algorithm A that finds a collision for f to a quantum algorithm that finds a
collision for at least one of fi←DX

i . However, the final bound might be the mul-
tiplication of N to the existing bound for a random function, i.e, O(N(q+2)3/2k),
and that bound is not suitable when N is exponentially large. To circumvent this
problem, we write the distribution D as a convex combination of some nearly flat
distributions Di for i = k, . . . ,m where the value of m will be fixed at the end of
proof. For i = k, . . . ,m, we define the distributions D̃i as the following:

D̃i(y) :=
Di(y)

∑y∈{0,1}n Di(y)
,

where for i = k, . . . ,m−1,

Di(y) :=

{
D(y), if D(y) ∈

(
2−(i+1),2−i

]

0, otherwise

and

Dm(y) :=

{
D(y), if D(y) ∈

(
0,2−m]

0, otherwise
.

For all i ∈ [m], let Yi be the set of all elements y such that D̃i(y) 6= 0. We define
the distribution

α(i) := ∑
y∈{0,1}n

Di(y)

over {k, . . . ,m}. We show that the distribution D is equivalent to the distribution
D′′ obtained by choosing i according to the distribution α and then picking an
element according to the distribution D̃i. (Note that there are no values i with
D(i)> 2−k since H∞(D)≥ k.)

Pr
[
y = y′ : i← α,y′← D̃i

]

=
k

∑
i=1

Pr
[
i = i′ : i′← α

]
Pr
[
y = y′ : y′← D̃i

]

=
k

∑
i=1

Di(y) =D(y).

The high-level overview for the proof. We would prove an upper bound for the
probability of finding a collision for the function f ←DX . Since Yi ∩Yj = 0 for

49



any i 6= j, the probability of finding a collision for f ←DX can be written as the
sum of the probability of finding a collision inside Yi:

Pr
[

f (x) = f (x′)∧ x 6= x′ : f ←DX , (x,x′)←A f ]

=
m

∑
i=k

Pr
[

f (x) = f (x′)∧ x 6= x′∧ f (x) ∈ Yi : f ←DX , (x,x′)←A f ] := (εi)

We would obtain an upper bound for each expression in the sum (εi) in the fol-
lowing steps.

First step. We prove that the probability of finding a pre-image of Yi (an x such
that f (x)∈Yi) is upper bounded by O(q2

α(i)) for any quantum adversary A f with
f ←DX . In other words, we prove

δi := Pr
[

f (x) ∈ Yi : f ←DX ,x←A f ]≤ O
(
q2

α(i)
)
, (4.1)

and therefore εi ≤ O
(
q2

α(i)
)
. To prove the above, we show that a quantum algo-

rithm B that has oracle access either to the zero function over X or the function
g : X →{0,1}:

g(x) :=

{
1, with probability α(i)
0, otherwise

,

can run A, properly simulates f and using A’s output distinguishes the zero func-
tion over X from g making O(q2) queries to its oracle. Therefore, δi ≤O(q2

α(i))
by Theorem 3 in Section 2.3 that gives an upper bound for the success probability
of B that tries to distinguish a zero function from g. Note that the bound might
not be useful if α(i) be large for some i. Therefore, we obtain the second bound
in the second step.

Second step. We would prove a different abound for εi in the following. We re-
duce the collision problem for f ←DX to collision problem for f ← D̃

X
i . Since the

distribution D is equivalent to the distribution D′′ obtained by choosing i accord-
ing to the distribution α and then picking an element according to the distribution
D̃i, we can prove that

Pr
[

f (x) = f (x′)∧ x 6= x′∧ f (x) ∈ Yi : f ←DX , (x,x′)←A f ]

≤ Pr
[

f̃ (x) = f̃ (x′)∧ x 6= x′ : f̃ ← D̃
X
i , (x,x

′)←A f̃
]
. (4.2)

We show that the probability of finding a collision for function fi ← D̃
X
i is

upper bounded by O
( q3

2iα(i)

)
for any i = 1, · · · ,m−1 with non-empty Yi:

Pr
[

f̃ (x) = f̃ (x′)∧ x 6= x′ : f̃ ← D̃
X
i , (x,x

′)←A f̃
]
≤ O

( q3

2iα(i)

)
. (4.3)
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To prove the bound in 4.3, we define the new distributions D∗i : Yi ∪{⊥} →
[0,1] as the following:

D∗i (y) :=





2i

|Yi|
Di(y), if y ∈ Yi

1− 2i

|Yi|
α(i), if y =⊥

.

Next we prove that the function f ∗←D∗Xi is collision-resistant by reducing it to
the collision problem for a random function. Since a random function is collision-
resistant [75], f ∗ is collision-resistant as well. And finally, we reduce the collision
problem for f̃ ← D̃

X
i to the collision problem for f ∗←D∗Xi . (If it is not clear from

this sketch how we get Equation 4.3, an interested reader can refer to [63] for de-
tails.)

Final step. In the following, we use the bound derived above to show our final
bound. We use the inequalities 4.1, 4.2 and 4.3 to prove that the probability of

returning a collision for f ←DX is upper bounded by O
(q5/2

2k/2

)
as follows:

Pr
[

f (x) = f (x′)∧ x 6= x′ : f ←DX , (x,x′)←A f ]

=
m

∑
i=k

Pr
[

f (x) = f (x′)∧ x 6= x′∧ f (x) ∈ Yi : f ←DX , (x,x′)←A f ]

≤
m−1

∑
i=k

O
(

min
{ q3

2iα(i)
,q2

α(i)
})

+O
(
q2

α(m)
)

(∗)
≤ (m− k−1)O

(q5/2

2k/2

)
+O

(
q2

α(m)
)

where (∗) holds because min
{ q3

2iα(i)
,q2

α(i)
}

will be maximised when
q3

2iα(i)
=

q2
α(i) and the maximum value is q5/2/2i/2. Choosing m= n+k results in q2

α(m)≤
q2|Ym|/2m ≤ q22n−m ≤ q2/2k and this proves the bound stated in Table 1.

4.3. Discussion: Open Problems and Related Works

“Collapsing” property introduced by Unruh [68] is a strengthening of quantum
collision resistance property of hash functions. Unruh shows that a collapsing
hash function is collision-resistant. In particular, he shows that a random oracle is
collapsing and therefore it is collision-resistant. It is open to verify the collapsing
property for a non-uniformly distributed function.

Subsequent Work. In subsequent but independent work, Balogh et al. [13] study
the quantum-collision problem for non-uniformly distributed functions. They
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have obtained similar bounds as ours except for general two lower bounds (∀A∀D)
and for an upper bound in case of ∃A∃D and collision-entropy. Their general
lower bounds, Ω(2

H∞
3 ) and Ω(2

H2
6 ) improve upon our bounds, using a completely

different proof. Our upper bound in case of ∃A∃D and collision-entropy is
O(2

H2
4 ) which is stronger than their corresponding bound O(2

H2
3 ).

Previous Works. The quantum collision problem has been studied in various pre-
vious works. All of the following results are proven for random functions.

In the following, we mention the existing results on the number of queries that
are necessary to find a collision. An Ω(N1/3) lower bound for function f is given
by Aaronson and Shi [3] and Ambainis [8] where f is a two-to-one function with
the same domain and co-domain and N is the domain size. Yuen [73] proves
an Ω(N1/5/polylogN) lower bound for the quantum collision problem for a ran-
dom function f with same domain and co-domain. He reduces the distinguishing
between a random function and a random permutation problem to the distinguish-
ing between a function with r-to-one part and a function without r-to-one part.
His proof is a combination of using the r-to-one lower bound from [3] and using
the quantum adversary method [7]. Zhandry [75] improves Yuen’s bound to the
Ω(N1/3) and also removes the same size domain and co-domain constraint. He
uses the existing result from [74] to prove his bound.

The sufficient number of quantum queries to find a collision has given in the
following works. A quantum algorithm that requires O(N1/3) quantum queries
and finds a collision for any two-to-one function f with overwhelming proba-
bility is given by Brassard, Hφyer and Tapp [23]. Ambainis [9] gives a quan-
tum algorithm that requires O(N2/3) queries to find two equal elements among
N given elements and therefore it is an algorithm for finding a collision in an ar-
bitrary function f given the promise that f has at least one collision. Yuen [73]
shows that the collision-finding algorithm from [23] is able to produce a collision
for a random function with same domain and co-domain using O(N1/3) queries.
Zhandry shows that O(M1/3) queries are adequate to find a collision for a random
function f : [N]→ [M] where N = Ω(M1/2). He uses Ambainis’s element distinct-
ness algorithm [9] as a black box in his proof. Zhandry’s bound also implies that
we can not expect a lower bound for the query complexity of finding a collision
for a non-uniform function better than O(2k/3).
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5. POST-QUANTUM SECURITY OF
FUJISAKI-OKAMOTO AND OAEP

5.1. Motivation

The fascinating idea of a public-key encryption scheme that guarantees secure
communication between two parties even though they have not shared any key in
advance was publicly introduced in 1976 by Whitfield Diffie and Martin Hellman.
Since then there have been tremendous efforts to construct public-key encryption
schemes based on multiple hard assumptions. However, there are few examples
of cryptosystems that are both provably secure against chosen ciphertext attacks
(IND-CCA) in the standard model and efficient.

The random oracle model [14] in which there is a truly random function that
all parties, including an adversary, can query on some desired inputs and get back
the corresponding outputs is a method to achieve a trade-off between the security
and the efficiency of encryption schemes. However, in the real world applications,
the random oracle is instantiated by a hash function. Consequently in the advent
of quantum computers, the security proofs in the random oracle model have to
be revisited for the reason that a quantum adversary might implement the hash
function (since it is public) and therefore can evaluate the hash function on some
quantum superposition of inputs. Proving security of constructions in the quantum
random oracle model is more challenging since queries to the random oracle can
be in superposition and classical security proof techniques may not work. In [17],
Boneh et al. present a separating scheme that is secure when adversary has clas-
sical access to the random oracle and is insecure if adversary can submit quantum
queries. They construct an identification scheme that has two stages. In the first
stage, the verifier checks if the prover is able to find enough collisions for some
hash function. In the second stage, the prover and verifier run a quantum secure
identification scheme. At the end, the verifier accepts if the prover can find enough
collisions in the first stage or the prover can identify itself in the second stage. It
is clear that if the prover is not able to find enough collisions in the first stage,
then the security of the scheme follows from the security of the quantum secure
identification in the second stage. They use the polynomial gap between a quan-
tum collision finding algorithm based on Grover’s search algorithm and birthday
attack to argue that the scheme is insecure if a malicious prover can evaluate the
hash function on quantum states. For the positive result, they show that every clas-
sical security reduction in which the answer to a new oracle query is independent
of the history of previous queries implies quantum security. However, their tech-
niques can not imply the security of the famous construction of Fujisaki-Okamoto
(FO construction) [42]. Whereas the Fujisaki-Okamoto transformation, for ex-
ample in [57], has been used to construct an actively secure encryption scheme
based on the lattice-based assumptions that are believed to be intractable even for
a quantum computer.
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Fujisaki and Okamoto [42] constructed a hybrid encryption scheme that is se-
cure against chosen ciphertext attacks (IND-CCA), i.e., the most desirable secu-
rity notion for encryption schemes, in the random oracle model. Their scheme is
a combination of a symmetric and an asymmetric encryption scheme using two
hash functions where the symmetric and asymmetric encryption schemes are se-
cure in a very weak sense. However, their proof of security only works against
classical adversaries and it is not clear how one can fix their proof in the quantum
setting. In the following, we mention the parts of the classical proof that may not
work in the quantum setting.
Challenges. The following challenges will occur if one wants to prove the secu-
rity of FO transformation in the quantum random oracle model.
(a) The classical proof uses the list of all queries made to the random oracles

to simulate the decryption algorithm without possessing the secret key of the
asymmetric encryption scheme. In the quantum case, where the adversary has
quantum access to the random oracles and submits queries in superpositions,
such a list is not a well-defined concept.

(b) Also, the classical proof uses the fact that using a random value h∗ instead
of a given random oracle output H(x) cannot be noticed by the adversary,
provided that the adversary never queries x from the random oracle. In the
quantum setting, the adversary may in a certain sense always query all values
x by querying the random oracle on the superposition ∑

x
|x〉 of all values. The

situation gets especially difficult since the value x depends in turn on messages
produced by the adversary.

(c) Finally, the classical proof uses the fact that for a randomized encryption
scheme, it is hard to find values x 6= x′ such that encrypting message m with
randomness H(x) and H(x′) leads to the same ciphertext, Enc(m;H(x)) =
Enc(m;H(x′)). (Note: this does not follow directly from the collision resis-
tance of the random oracle H since we may have Enc(m;H(x))=Enc(m;H(x′))
for H(x) 6= H(x′).)

5.2. Our Contribution

Our solutions. We show how to circumvent those problems. Problem (c) is
solved by using our result showing the collision resistance of random functions
with outputs sampled from a non-uniform distribution that we discussed in Chap-
ter 4. Problem (b) is solved by the “one-way to hiding” lemmas from [66, 67]
(Lemma 5 and Lemma 6 in Subsection 2.4.1) which gives us a tool for handling
the reprogramming of the random oracle. Problem (a) remains. In fact, we do not
have a proof for the unmodified Fujisaki-Okamoto scheme. However, we show
how to solve the problem by adding one more hash value H ′(δ ) to the ciphertext.
Although in general, it may not be well-defined in the quantum setting what the
list of queries to the random oracle is, we can show it to be well-defined in this
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case, using the fact that range and domain of H ′ have the same size.

Figure 5.1: Our modified Fujisaki-Okamoto transformation

We modify the hybrid encryption scheme presented by Fujisaki and Okamoto
using an extra hash function H ′. We prove that our scheme is indistinguishable
secure against chosen ciphertext attacks in the quantum random oracle model. For
a message m, the encryption algorithm of our scheme, Enchy

pk, works as follows:

Enchy
pk(m;δ ) =

(
Encsy

G(δ )(m), Encasy
pk

(
δ ;H

(
δ‖Encsy

G(δ )(m)
))
, H ′(δ )

)

where pk and sk are the public key and the secret key of the asymmetric encryp-
tion scheme. Encasy

pk and Encsy
sk are the asymmetric and symmetric encryption

algorithms respectively and δ is a random element from the message space of the
asymmetric encryption scheme. H, G and H ′ are random oracles. The asymmet-
ric encryption scheme is one-way secure, that is, informally the adversary can not
decrypt the encryption of a random message. The symmetric encryption scheme
is one-time secure, that is, informally the adversary can not distinguish between
the encryptions of two messages when a fresh key is used for every encryption. In
addition, the asymmetric encryption scheme is well-spread, i.e. any message can
lead to at least 2ω(logn) potential ciphertexts.

Note that our modification increases the ciphertext size by only a single hash
value H ′(δ ) and is computationally inexpensive.

As already mentioned above, the added hash value H ′(δ ) solves problem (a)
because given H ′(δ ), it is well-defined what δ is. This is because H ′ is chosen
to have the same domain and range size, and hence is indistinguishable from a
permutation [73]. However, we need to efficiently invert H ′ in the formal proof,
therefore we do not directly use that fact, instead our proof goes along the fol-
lowing lines: We replace H ′ with a random polynomial to force the adversary to
submit the input that has been used to obtain the ciphertext. This can be done due
to a result by Zhandry [74] that shows a random oracle is indistinguishable from a
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2q-wise independent function where q is the number of queries that the adversary
makes to the oracle function. As soon as H ′ is implemented as a polynomial, we
can use the fact that roots of a polynomial can be found in polynomial-time; this
allows us to efficiently get all candidates for δ given H ′(δ ).

We present the formal definition of our modified Fujisaki-Okamoto construc-
tion in the following. The definition contains the description of key generation,
encryption and decryption algorithms.
Modified Fujisaki-Okamoto Construction. Let Π

asy = (Genasy,Encasy,Decasy)
be an asymmetric encryption scheme with the message space MSPasy = {0,1}n1

and the coin space COINasy = {0,1}n2 . Let Π
sy = (Encsy,Decsy) be a symmetric

encryption scheme where MSPsy and KSPsy = {0,1}m are its message space and key
space, respectively. The parameters n1, n2 and m depend on the security parameter
n. We define three hash functions:

G : MSPasy→ KSPsy, H : {0,1}∗→ COINasy and H ′ : MSPasy→ MSPasy.
These hash functions will be modeled as random oracles in the following.

The hybrid scheme Π
hy =(Genhy,Enchy,Dechy) is constructed as follows, with

MSPhy as its message space:
1. Genhy, the key generation algorithm, on input 1n runs Genasy to obtain a

pair of keys (pk,sk).
2. Enchy, the encryption algorithm, on input pk and message m ∈ MSPhy (=

MSPsy) does the following:

• Select δ
$←− MSPasy.

• Compute c← Encsy
a (m), where a := G(δ ).

• Compute e := Encasy
pk (δ ;h), where h := H(δ‖c).

• Finally, output (e,c,d) as Enchy
pk(m;δ ), where d := H ′(δ ).

3. Dechy, the decryption algorithm, on input sk and ciphertext (e,c,d) does the
following:

• Compute δ̂ := Decasy
sk (e).

• If δ̂ =⊥: abort and output ⊥.
• Otherwise set ĥ := H(δ̂‖c).
• If e 6= Encasy

pk (δ̂ ; ĥ): abort and output ⊥.

• Else if d = H ′(δ̂ ):
– Compute â := G(δ̂ ) and output Decsy

â (c).
• Else output ⊥.

Also, we modify OAEP-cryptosystem [60] using an extra hash function and
prove its security in the quantum random oracle model based on the existence
of a partial-domain one-way trapdoor injective function secure against quantum
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adversaries. This will remain theoretical until a candidate for a quantum secure
partial-domain one-way trapdoor injective function is discovered. The proof fol-
lows similar lines as that of the Fujisaki-Okamoto transform.

Figure 5.2: Our modified OAEP transformation. H ′ has been added to OAEP.

Modified OAEP Transform. Let

G : {0,1}k0 →{0,1}k−k0 and H : {0,1}k−k0 →{0,1}k0

be random oracles. We modify the OAEP construction using an extra hash func-
tion H ′ : {0,1}k → {0,1}k. The Q-OAEP = (Gen,Enc,Dec) encryption scheme
is defined as:

1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0,1}n, the encryption algorithm computes

s := m||0k1⊕G(r) and t := r⊕H(s),

where r $←− {0,1}k0 , and outputs the ciphertext (c,d) :=
(

f (s, t),H ′(s‖t)
)

.

3. Dec: Given a ciphertext (c,d), the decryption algorithm does the following:

• When c /∈ Im f , return ⊥ .
• When c ∈ Im f , the decryption algorithm extracts (s, t) = f−1(c). If

H ′(s‖t) 6= d it returns ⊥, otherwise it does the following:
(a) query the random oracle H on input s and compute r := t⊕H(s).
(b) query the random oracle G on input r and compute M := s⊕G(r).
(c) if the k1 least significant bits of M are zero then return the n most

significant bits of M, otherwise return ⊥.

Note that k0 and k depend on the security parameter n. The modification is adding
H ′(s‖t) to the ciphertext.

On the necessity of our modifications. We have slightly modified both the
Fujisaki-Okamoto and the OAEP-cryptosystem by adding one additional hash
to the ciphertexts. Although these additions are not very costly, it is a natural
question whether they are necessary, especially in light of the question whether
existing implementations are post-quantum secure. Although it is clear that our
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Figure 5.3: The relation between the success probability of Games in the proof of FO
construction. The symbol ∼= indicates that two games are indistinguishable. The symbol
≤ indicates the upper bound, for instance, the difference between the success probability
of Game 1 and Game 2 is upper bounded by the success probability of Game 3.

proof technique strongly relies on these additional hashes (to overcome the chal-
lenge (a) stated above), this does not mean that the original schemes are insecure.
However, we urge the reader not to assume that they are post-quantum secure just
because they are classically secure. For example, in [11] it was shown that (at least
relative to a specific oracle) the Fiat-Shamir transform is insecure in the quantum
setting (using quantum random oracles)even though it is secure classically. Their
setting is similar to ours, so while there are no known quantum attacks on Fujisaki-
Okamoto or OAEP, we should not rely on their security until a security proof is
found. We leave finding either an attack or a proof as a (highly non-trivial) open
problem.

5.2.1. Proof Overview

Proof overview for FO construction: The proof consists of several subsequent
games in which we start with the IND-CCA game for the hybrid encryption
scheme and end with a game whose success probability is negligibly close to
1/2. In Figure 5.3, we sketch the relation between the games described in the
proof. The description of Games are presented in the following. We discuss the
differences between two subsequent games and the reason behind the relation in
Figure 5.3.

Game 0: This game corresponds to the IND-CCA game. The adversary A that has
oracle access to the decryption algorithm wins if he can distinguish between the
encryption of two messages m0,m1 of his choice (but can not submit the challenge
query Enchy

pk(mb;δ
∗) := (e∗,c∗,d∗) for decryption).

Game 1: We modify the decryption algorithm such that it returns ⊥ if it receives
a decryption query with the first coordinate e∗. Roughly speaking, the adversary
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may have a chance to distinguish these two games by querying (e∗,c,d∗) to the
decryption oracle for a suitable c. Note that the decryption algorithm in Game 1
returns ⊥ in this case, in contrast, the decryption algorithm in Game 0 will not
return ⊥ if e∗ = Encasy

pk (δ
∗;H(δ ∗‖c)). Since c is used to produce the randomness

for the asymmetric encryption scheme that is well-spread, this roughly leads to
a collision for a function whose output is chosen according to a distribution with
high min-entropy, that is, Encasy

pk (δ
∗;H(δ ∗‖c)) = Encasy

pk (δ
∗;H(δ ∗‖c∗)). There-

fore, Game 0 and Game 1 are roughly equivalent by the result showing collision
resistance of random functions with outputs sampled from a non-uniform distri-
bution in Chapter 4.

Game 2: In this game, we use a random key a∗ to obtain the second coordinate
of the challenge ciphertext, and we replace the last coordinate of the challenge
ciphertext with a random element, that is, c∗ := Encsy

a∗(mb) and d∗ is chosen uni-
formly at random. Since a∗ is a random key to encrypt mb, we can reduce the
success probability of the adversary in Game 2 to the one-time security of the
symmetric encryption scheme and consequently its success probability is negli-
gibly close to 1/2. It is left to prove that Game 1 and Game 2 have negligible
difference. Classically (when queries to the random oracles are classical), Game
1 and Game 2 are equivalent unless the adversary queries the random oracles G or
H ′ on input δ

∗ (the bad event). This argument does not work for quantum queries
since every quantum query may contain δ

∗ in some sense and the bad event is
not well-defined concept in quantum case. For this reason, we use the “one-way
to hiding” lemma 5 in Subsection 2.4.1, which give us a tool for handling the
reprogramming of the random oracle and get an upper bound for the difference
between the success probabilities of Game 1 and Game 2. The upper bound that
we obtain is roughly the square root of the success probability of the next game.

Game 3: Roughly speaking, in this game, the adversary Am runs the adversary
A, and it measures the argument of a randomly chosen query that adversary A
makes to the random oracles G and H ′ and outputs the measurement result.The
game succeeds if Am outputs δ

∗ . The success probability of this game may not
be negligible since δ

∗ is used to obtain e∗ := Encasy
pk (δ

∗;H(δ ∗‖c∗)) and the adver-
sary may obtain some information about δ

∗ from e∗. The following sequence of
games deals with this issue by introducing a new decryption algorithm that does
not need the secret key of the asymmetric encryption scheme and consequently
we can use the one-way security of the asymmetric encryption scheme to prove
that this game has a negligible success probability.

Game 4: In this game, we replace H ′ with a random polynomial. Due to a result
by Zhandry [74] that shows a random oracle is indistinguishable from a 2q-wise
independent function where q is the number of queries that the adversary makes
to the oracle function, Game 3 and Game 4 are indistinguishable.
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Game 5: In this game, we modify the decryption algorithm in a way that does not
need the secret key of the asymmetric encryption scheme for decryption. Vaguely
speaking, this can be done by solving the equation H ′−d = 0 where d is the last
coordinate of the decryption query and H ′ is a polynomial. Still we are not yet
able to reduce the success probability of this game to the one-way security of the
asymmetric encryption scheme for the reason that the randomness used to obtain
e∗ (H(δ ∗‖c∗)) is dependent on δ

∗.

Game 6: We use a fresh randomness to obtain e∗ :=Encasy
pk (δ

∗;$) (that is H(δ ∗‖c∗)
is replaced by $) and consequently the success probability of Game 6 can be re-
duced to the one-way security. Intuitively, since δ

∗ is not used anywhere else
then if Am1 measures δ

∗, it corresponds to inverting e∗. However, the Game 5
and Game 6 are indistinguishable unless the adversary notices that we replace
H(δ ∗‖c∗) with a random element. Classically (when queries to the random ora-
cles are classical), Game 5 and Game 6 are equivalent unless the adversary queries
the random oracles G or H ′ on input δ

∗ (the bad event). Similar to the discussion
in Game 2, this argument does not work for quantum queries. For this reason, we
again use the adaptive “one-way to hiding” lemma 6 in Subsection 2.4.1, which
gives us a tool for handling the reprogramming of the random oracle and get an
upper bound for the difference between the success probability of Game 5 and
Game 6. The upper bound that we obtain is roughly the square root of the success
probability of the next game.

Game 7: Roughly speaking, in this game, the adversary Am2 runs the adversary
Am1, and measures the argument of a random query that the adversary Am1 makes
to the random oracles H and outputs the result. The game succeeds if Am2 obtains
δ
∗ and c∗ after the measurement. Intuitively, obtaining δ

∗ is corresponding to
inverting e∗ and therefore the success probability is negligible by one-way security
of the asymmetric encryption scheme.

5.3. Discussion: Open Problems and Related works

We did prove the IND-CCA security of modified FO and OAEP constructions in
the quantum random oracle model. Recently, Zhandry [76] shows the IND-qCCA
security (Definition 4.6 in [19]) of FO construction (without modification) using a
technique to record superposition queries. In the IND-qCCA security notion, the
adversary is allowed to submit superposition queries to the decryption oracle. The
challenger stores the challenge ciphertexts in a set C and the decryption algorithm
returns ⊥ if the adversary ask for the decryption of a challenge ciphertext in C. A
natural question might be: why are the challenge queries only allowed to be clas-
sical? and in contrast, the decryption queries can be in superposition. The way
they handle the issue of submitting a challenge ciphertext to the decryption ora-
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cle by the adversary only works when the challenge queries are classical. In [5],
authors study a quantum counterpart of IND-CCA security notion for quantum
encryption schemes that encrypt quantum data. Presenting a justified quantum
IND-CCA security notion for a classical encryption scheme is open. Then we
may verify if the FO construction is a transformation from quantum IND-CPA to
quantum IND-CCA in the quantum random oracle model.

Related works. We mention the use of the quantum random oracle model in some
previous constructions. Quantum random oracles have been used to explore the
limitation of the quantum computing in [15], i.e., relative to a random oracle not
all of NP can be solved by a quantum computing device. In [2], they use quantum
random oracles to construct publicly-verifiable quantum money. The quantum
random oracles have been used in [22,24] to provide some level of security to the
quantum counterpart of Merkle’s Puzzles. The first secure identity-based encryp-
tion in the quantum random oracle model was proposed in [74] by Zhandry. Un-
ruh [67] constructed a non-interactive zero-knowledge proof system in the quan-
tum random oracle model. A quantum position verification scheme that is secure
in the quantum random oracle model was presented in [66]. The security of the
Fiat–Shamir transformation [39] in the quantum random oracle model has been
studied in multiple research works [10, 36, 69].

Subsequent Works. Subsequently, our transformation has been used in multi-
ple research works [6, 20, 44, 47] to present an IND-CCA secure Key Encapsula-
tion Mechanism (KEM) in quantum random oracle model. Also, our conversion
has been used in [29, 30] to propose post-quantum secure public-key encryption
scheme.
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6. POST-QUANTUM SECURITY OF MODES OF
OPERATION

6.1. Motivation

A block cipher is a type of private-key encryption scheme in which the sender and
the receiver use a shared secret key to communicate. Block ciphers are one of the
most fundamental primitives in cryptography, however, it can only encrypt mes-
sages of a fixed (and usually very short) length. This drawback reduces the use
of a block cipher significantly. To make the block ciphers more applicable, they
are usually used in so-called “modes of operation” that extend the message space
of the block cipher. The security of many encryption schemes used in practice
are dependent on the security of modes of operation. Classically, the indistin-
guishability against chosen plaintext attack (IND-CPA) is a desirable notion for
the security of a mode of operation. It usually is proven that a mode of operation
is IND-CPA secure under the assumption that the underlying block cipher is a
pseudo-random function (PRF).

We investigate the security of modes of operation against a quantum adversary.
So far in the quantum case, there are two variants of the IND-CPA notion: “stan-
dard IND-CPA” and “IND-qCPA”. In the standard IND-CPA notion, the quantum
adversary performs only classical encryption queries, and in the IND-qCPA no-
tion (as defined by [19]), the adversary is allowed to perform quantum encryption
queries. However, the challenge queries are required to be classical.

We enumerate some motivations to consider such a security notion.
• In the future, we might want to encrypt the superposition of messages using

quantum devices. (That is, a protocol that actively uses quantum communi-
cation, not just a classical protocol secure against quantum adversaries.)
• A second argument (made in [38]) is that with continuing miniaturization,

supposedly classical devices may enter the quantum scale, and thus “acci-
dentally” encrypt messages in superposition. (We have doubts how realistic
this case is, but we mention it for completeness.)
• A third argument (made in [12]) is that the security of an encryption scheme

in IND-qCPA notion might help to prove the quantum security of a classical
protocol that uses the encryption scheme as a part of its construction. If a
classical protocol is proven secure (with respect to a quantum adversary),
intermediate games in the security proof may actually contain honest par-
ties that run in superposition. This happens in particular if zero-knowledge
proof systems or similar are involved [64, 71]. For example, in [65, Sec-
tion 5], the security proof of a classical protocol did not go through because
the signature scheme was not secure under quantum queries (they had to
change the protocol considerably instead). Encryption schemes that are not
just standard IND-CPA, but IND-qCPA might help in similar situations.
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Mode of Classical Standard (quantum) IND-qCPA?
operation IND-CPA? IND-CPA? (with sPRF) (with qPRF)

ECB no no no no
CBC yes yes no yes
CFB yes yes no yes
OFB yes yes yes yes
CTR yes yes yes yes
XTS unknown unknown “no in spirit” unknown

Table 3: Summary of our results in this Chapter. “No in spirit” means that there is an
attack using superposition queries that does not formally violate IND-qCPA.

6.2. Our Contribution

We investigate the quantum security of common modes of operation, namely those
listed in the 2013 ENISA1 report on recommended encryption algorithms [41]:
CBC, CFB, OFB, CTR, and XTS. Classically, CBC, CFB, OFB, CTR modes of
operation are IND-CPA secure under the assumption that the underlying block
cipher is a pseudo-random function (PRF). ECB is known not to have reasonable
security for most applications, while the security of XTS, as far as we know, is an
open question. The standard IND-CPA security of CBC, CFB, OFB, CTR modes
of operation is essentially the same with the classical case under the assumption
that the underlying block cipher is a PRF that is secure against a quantum adver-
sary that only makes classical queries to the PRF. Such a PRF is called standard
secure pseudo-random function, sPRF.

However, the IND-qCPA security of the aforementioned modes of operation
is more challenging since the quantum adversary has superposition access to the
encryption scheme. In this setting, we show that OFB and CTR modes of opera-
tion can be proven IND-qCPA secure using a standard secure PRF. In contrast, we
show that CBC and CFB modes of operation are not IND-qCPA secure in general
when using a standard secure PRF in the quantum random oracle model, but they
are secure when the underlying block cipher is qPRF. For XTS, we show that the
adversary can recover the second half of a plaintext if he can choose the first half
of the plaintext (and the adversary can recover half of the key).

We summarize the results in Table 3. Our counter-examples are in the quan-
tum random oracle model, but our positive results are in the standard model (no
random oracle). For the counter-example, we construct a block cipher that is pe-
riodic in the secret key using a random oracle. We show that our construction
is standard secure in the quantum random oracle model. In contrast, when ad-
versary has a superposition access to the block cipher, we can recover the secret
key using Simon’s algorithm [61]. For a function f : {0,1}n→ {0,1}n such that

1European Union Agency for Network and Information Security. We chose this list as a basis in
order to investigate a practically relevant and industrially deployed set of modes of operations.
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f (x⊕k) = f (x) for any x ∈ {0,1}n and a fixed and unknown k ∈ {0,1}n, Simon’s
algorithm finds k with polynomial number of queries (O(n) queries) to f .

6.2.1. Proof Overview

Notations. In the following, droplastbit is a function that removes the last bit of
the input bit-string, that is, for a bit-string BS = (b1, . . . ,bn), droplastbit(BS) =
(b1, . . . ,bn−1). The function lastbit outputs the last bit of the input, for instance
lastbit(BS) = bn. The operator · is defined as BS · b = BS if b = 1 and BS · b =
(0,0, . . . ,0) (zero bit-string of length n) if b = 0.

Insecurity of CBC and CFB modes of operation using a standard secure PRF:
In order to show the insecurity of CBC and CFB, we construct a standard secure
BCk that is k-periodic (where k is the secret key). We show the adversary can use
Simon’s algorithm [61] to find the period (the secret key) of BCk using learning
queries to CBCBCk and CFBBCk . This allows the adversary to break the IND-
qCPA security of CBCBCk and CFBBCk by decrypting the challenge ciphertext in
the challenge phase. BCk is constructed as follows. First we construct a standard
secure PRF as follows.

PRFk(x) := EH(k)
(
droplastbit(x⊕ (k‖1) · lastbit(x))

)
,

where H is a random oracle and E : {0,1}n−1×{0,1}n−1→{0,1}n−1 is a standard
secure PRF. We show that PRFk(x) = PRFk(x⊕ (k‖1)). There are two cases:

1. If the last bit of x is 1, then the last bit of x⊕ (k‖1) is 0 and we can write

PRFk(x⊕ (k‖1)) = EH(k)
(
droplastbit(x⊕ (k‖1))

)
= PRFk(x)

2. If the last bit of x is 0, then the last bit of x⊕ (k‖1) is 1 and we can write

PRFk(x⊕ (k‖1)) = EH(k)
(
droplastbit(x)

)
= PRFk(x).

Note that the construction above is not decryptable, therefore we modify it to the
construction below.

BCk(x) = EH(k)1

(
droplastbit(x⊕ (k‖1) · lastbit(x))

)
∥∥tH(k)2

(
x⊕ (k‖1) · lastbit(x)

)
⊕ lastbit(x),

where H : {0,1}n→ {0,1}n×{0,1}n is a random oracle, t : {0,1}n×{0,1}n→
{0,1} is a standard secure PRF, and the key is k $←−{0,1}n−1. We prove that BC is
a standard secure PRF in the quantum random oracle model. The proof uses the
O2H lemma, Lemma 5 in chapter 2, to substitute H(k) by a random element and
then the rest of the proof is classical.
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By definition of CBC, CBC BCk(m) := (c0,BCk(m⊕ c0)) where m ∈ {0,1}n

and c0
$←− {0,1}n. Then the adversary can prepare two registers M and C for mes-

sages and ciphertexts, respectively, and query CBC on a superposition of mes-
sages. Since BCk(m⊕c0) is (k‖1)-periodic when restricted to the first n−1 bit of
output, the adversary can use Simon’s algorithm to output k using a polynomial
number of quantum queries. Note that the adversary needs to ignore the last bit of
BCk(m⊕ c0) (in order to use Simon’s algorithm) by putting |+〉 as the last bit of
the register C (refer to [12] for more detail.).

By definition of CFB, CFBBCk(m1) := (c0,BCk(c0)⊕m1) and clearly the first
message block m1 in superposition does not lead to a superposition query to BCk.
Therefore, the adversary uses two message blocks to attack. The first block m1 is
in superposition and m2 is classical. By definition,

CFBBCk(m1,m2) :=
(

c0, BCk(c0)⊕m1, BCk(BCk(c0)⊕m1)⊕m2

)

where c0
$←− {0,1}n and adversary can obtain k similar to the CBC case using the

last block of the ciphertext.

The insecurity of XTS mode using a standard PRF: By definition of XTS, the
i-th ciphertext block is ci := α

i−1L⊕BCk2(mi⊕α
i−1L) where L := BCk1(c0) for

a nonce c0 and α is the primitive element of the field Fn
2. (Where k1 and k2 are

independent part of the key.) If we use the block cipher constructed above (used
to prove the insecurity of CBC and CFB) in XTS mode, the Simon attack will
only reveal the key k2 and the key k1 remains secret since c0 is a classical value
that the adversary has no control over it. In other words, superposition queries
to XTSBC mode of operation will not result in superposition queries to BCk1 by
the definition of XTS. Therefore we can not apply Simon’s algorithm to BCk1 and
k1 remains secret. Consequently, L remains unknown and we can not decrypt the
mode without knowing L. Instead, we use the following block cipher.

BCk2(x‖y) := EH(k2)

(
droplastbit

(
x⊕ (k2‖1) · lastbit(x)

)
‖

droplastbit
(
y⊕ fk2(x) · lastbit(y)

))
,

where fk2 is a suitable function depending on k2 with the property that lastbit( fk2(x)=
1). A simple calculation shows that

BCk2(x‖y) = BCk2(x⊕ (k2‖1),y) and BCk2(x‖y) = BCk2(x‖y⊕ fk2(x)).

Similar to the previous case, we add two extra bits to make it decryptable (re-
fer to [12] for details). Now, we use Simon’s algorithm to recover the key k2 by
querying the superposition of all messages as x-part of input and fixing the second
half on the input (y = 0). This can be done by polynomial number of message
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blocks. Then, we recover L used in the encryption query. Note that if we insert 0
as x-part of the input in the i-th query and the superposition of all messages as the
y-part, then BCk2 is fk2(firsthalf(α i−1L))-periodic because the XTS construction
invokes BCk2 with the input (α i−1L⊕ x)‖y. Therefore, we can recover one bit of
fk2(firsthalf(α i−1L)) from the cipher blocks i and using Simon’s algorithm and
since k2 is known, we can recover one bit of α

i−1L. Using different ciphertext
block i, we can compute L and this allows us to decrypt the rest of the ciphertext
in this block. Since in each ciphertext , a different L is used, we can not decrypt
another ciphertext using L recovered from one ciphertext. Consequently, this at-
tacks does not violate the IND-qCPA security notion because the challenge query
is classical and knowing k2 will not help to distinguish the encryption of two mes-
sages M0 and M1 when L used in the ciphertext is secret.

The security of OFB and CTR. By definition of OFB and CTR, we can represent
them generally as Enck(M) = Gk(|M|;r)⊕M, where G is a pseudorandom bit
generator that depends on the block cipher BC. For instance for OFB mode, the
pseudo-random bit-string is generated as

BCk(r),BCk(BCk(r)),BCk
(
BCk(BCk(r))

)
, . . .

and its size depends on the size of the message block. For an encryption scheme of
the form Enck(M) = Gk(|M|;r)⊕M, we can reduce the IND-qCPA security to the
standard IND-CPA security, since a superposition query ∑

i
αi |Mi〉, to the encryp-

tion scheme can be simulated using a classical encryption query on zero-bit-string
of length |Mi| and then calculating ∑

i
αi |Mi⊕Enck(0)〉. Therefore, OFB and CTR

are IND-qCPA secure if they are standard IND-CPA secure. The standard IND-
CPA security of the underlying block cipher follows from the standard security of
the PRF.

The security of CBC and OFB. Since a quantum query to the CBC and OFB
modes of operation in the IND-qCPA security notion results in a quantum query
to the underlying block cipher, their security will not follow using a standard se-
cure PRF as shown above. However, we prove that CBC and OFB are IND-qCPA
secure using a quantum secure PRF. The proof overview is as follows. We ex-
plain the proof for the CBC mode, and it is similar for OFB. By definition of CBC
encryption, the encryption of M = m1 . . . ,mn is Enc(CBC)

k (M) := c0, . . . ,cn where
c0 is a random string and ci = PRFk(mi⊕ ci−1) for 0 < i ≤ n. In the IND-qCPA
notion, the adversary given oracle access to EncCBC

k tries to distinguish the encryp-
tion of two message blocks of its choice, let say EncCBC

k (M0) and EncCBC
k (M1). In

other words, the adversary wins if he can guess the random bit b given the chal-
lenge ciphertext C∗ = (c∗0,c

∗
1, . . . ,c

∗
n) = EncCBC

k (Mb). We show that replacing c∗i
by randomness step by step in the challenge ciphertest C∗ will change the advan-
tage of the adversary negligibly. More precisely, we define n hybrid games such
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that in i-th game, c∗0,c
∗
1, . . . ,c

∗
i are random elements and c∗i+1, . . . ,c

∗
n are computed

by EncCBC
k . Then, we show that the two successive games have negligible differ-

ence. Since in the last game the challenge ciphertext is a random string and it is
independent of M0 and M1, the advantage of the adversary is 1/2 in the last game.
This proves that the advantage of the adversary in the first game (IND-qCPA) is
at most 1/2+negl. Now we show why two consecutive games have a negligi-
ble difference. Since the situation is similar for any two consecutive games, we
look at the first game where Game 0 is the IND-qCPA game and in the Game 1,
c∗0,c

∗
1 are random elements and the rest are computed by EncCBC

k . In the proof,
we use the One-way to Hiding (O2H) Lemma, Lemma 5 in chapter 2, that states
for a random input c∗0⊕mb

1 and random oracle PRFk, the advantage of a quantum
adversary A making at most q queries to PRFk, in distinguishing PRFk(c∗0⊕mb

1)
from a random element is bounded approximately by the success probability of

an adversary B that chooses a random query i $←− [q] of A, measures the input of
the i-th query and returns 1 if the measurement output is c∗0⊕mb

1. To be accurate
syntactically in using the One-way to Hiding (O2H) Lemma, we need to define a
adversary Ao2h that is constructed from A as follows: The adversary Ao2h given
oracle access to PRF and on input (x,y) runs the adversary A. It is clear that Ao2h
can answer to A’s learning queries using his oracle PRF . In the challenge query,
Ao2h picks a random bit and responds with C∗= (c∗0,c

∗
1, . . . ,c

∗
n) where c∗0 = x⊕mb

1,
c∗1 = y and the rest of challenge ciphertext are computed similar to EncPRF

CBC . At
the end, Ao2h returns 1 if A guesses b correctly and it return 0 otherwise. It is
clear that the success probability in Game 0 is exactly the same as the success
probability of A2oh given input (x,PRF(x)) for random x and the success proba-
bility of Game 1 is the same as the success probability of A2oh given input (x,y)
for random x and y. Therefore using O2H lemme we can argue that the difference
between the success probability of two games 0 and 1 is upper bounded by the
success probability of the adversary B that runs Ao2h, measures the argument of a
random query to PRF and declares success if it measures x. We have three cases
based on the random query (i-th query) that is measured by the adversary B.
• If i-th query occurs before the challenge query, then obviously the advan-

tage of two games are negligible because mb
1⊕c∗0 is a random element since

c∗0 is a uniformly random element and mb
1 is chosen after the i-th query. In

other words, the input that is measured in the i-th query is independent of
mb

1⊕ c∗0, therefore the probability of success for B (the probability that the
measurement output of B is mb

1⊕ c∗0) is negligible.
• B measures a query during the challenge query. Note that c∗0 and c∗1 are

computed using the input (x,y) of Ao2h and to compute the rest of challenge
ciphertext, Ao2h queries its oracle PRF . The queries are :

PRF(mb
2⊕y),PRF(mb

3⊕PRF(mb
2⊕y)),PRF(mb

4⊕PRF(mb
3⊕PRF(mb

2⊕y))), . . .

Since the challenge query is purely classical and x is a uniformly random
element, then the probability of success is negligible for B.
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• The i-th query occurs after the challenge query has been made. The queries
to PRF are in superposition and we can not use the argument above. In-
stead we show that a measurement on input registers and on computational
basis can commute with the unitary gates used to evaluate the encryption
algorithm. Therefore, the measurement performed by B can be made at the
beginning of the encryption circuit and we can assume that the queries are
classical. Then we use the argument made in the second bullet point above
to show that the probability of measuring x is negligible.

These three cases show that the success probability of B is negligible. Sine the dif-
ference between the success probability of Game 0 and Game 1 are upper bounded
by the success probability of B, Game 0 and Game 1 are indistinguishable.

6.3. Discussion: Open Problems and Related Works

We verify the security of Modes of operation against IND-qCPA that is defined
in [19] by Boneh and Zhandry. In the case of XTS mode, we present an attack
to XTSBC where BC is constructed in a way that leaks half of the secret key to a
quantum adversary. The adversary can decrypt the remaining part of the ciphertext
that is under the attack and has not been used to obtain the secret key k2 and the
parameter L. However, we could not show that this attack violates the IND-qCPA
notion of XTS because the challenge query is classical (while learning queries can
be in superposition) and L used in the challenge query remains secret. This issue
may raise some questions: Has IND-qCPA notion been defined properly in [19]?
Why quantum learning queries but classical challenge queries? Authors in [19]
justify the classical challenge queries in IND-qCPA notion by defining two other
notions “IND-fqCPA” (Definition 4.1 in [19]) and “IND-lrCPA” (Definition 4.3 in
[19]) with superposition queries during the challenge phase. Then, they show that
no encryption scheme satisfies these two security notions. Even though this might
help to understand the reason behind the classical restriction to adversarial queries
during the challenge phase, but it is not a comprehensive justification because
there are some other potential security definitions that they have not discussed.
One needs to define all possible security notions and compare them to have a
complete study. A comprehensive study of all possible quantum counterpart of
IND-CPA notion is an open problem.

Simon’s algorithm has been used in multiple research works to attack classical
cryptographic constructions. Authors in [51] show that the 3-round Feistel cipher
is distinguishable from a truly random permutation if one allows superposition
queries to the construction. Their quantum algorithm uses Simon’s algorithm to
notice the periodicity caused by the Feistel construction. Since a random permu-
tation is an one-one function with no period, their quantum algorithm can distin-
guish the 3-round Feistel cipher from a random permutation. In contrast in the
classical setting, Luby and Rackoff prove the 3-round Feistel cipher is indistin-
guishable from a truly random permutation when in each round a truly random
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function is used [53]. The security or the insecurity of 4-round Feistel cipher
against superposition queries is an interesting open problem. Simon’s algorithm
has been used in [52] to attack Even-Mansour block cipher. Their algorithm is al-
lowed to make superposition queries to the construction and to the internal permu-
tation used in the construction. One may suggest the use of constructions above in
modes of operation as the block-cipher and show the insecurity. However, it is not
clear how we can use the aforementioned result to violate IND-qCPA of modes of
operations. Instead, we define some standard secure block-ciphers in the quantum
random oracle model that are periodic in the secret key. Our insecurity result are
in quantum random oracle model and constructing a counter example in the stan-
dard model is open.

In [50], Simon’s algorithm has been used to attack many message authenti-
cation codes that are constructed by modes of operation. In particular, authors
present a forgery attack to CBC-MAC. In contrast, we show that CBC modes of
operation is IND-qCPA secure when underlying block cioher is qPRF. It is clear
that their forgery attack can not be used to violate IND-qCPA security because IV
is chosen randomly in each query in CBC mode of operation and it is not in con-
trol of adversary while in CBC-MAC, IV is fixed to zero bit-string. It easy to get
around their forgery attack if one make CBC-MAC signing algorithm a random-
ized algorithm as following. We present three algorithms Gen, Sign and Veri f y of
RCBC-MAC.
Gen : It outputs two secret keys k, k′.
Sign : On input k,k′ and message M :=m1,m2, . . . ,m` chooses random c0 ∈{0,1}n

and calculates ci = BCk(ci−1⊕mi) for i ∈ [`]. Finally, it returns t = (c0,BCk′(x`))
Veri f y : On input (M, t = (c0, t2)) it outputs 1 if ci = BCk(ci−1⊕mi) for i ∈ [`]
and t2 = BCk′(x`). Otherwise it returns 0.
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7. CONCLUSION

In this thesis we discuss the challenges caused by adversarial superposition queries
to the security of multiple fundamental cryptographic constructions. On the pos-
itive side, we prove the post-quantum security of Fujisaki-Okamoto construction,
OAEP construction and some modes of operation. In the light of NIST1 compe-
tition, our result has been used in multiple candidates to propose an IND-CCA
secure scheme for the competition. To achieve post-quantum security, we over-
come some challenges in the quantum security proofs, for instance, how to repro-
gramme a random oracle when adversary has superposition access to the oracle,
how to extract the input of a superposition query that the adversary makes to the
random oracle in a specific case, etc. We study the collision-resistance property
of non-uniformly distributed functions when the adversary has superposition ac-
cess to the function. Our result consists of many security proof techniques. For
instance, we show how to decompose a non-uniform distribution to some nearly
flat distributions and use this decomposition to reduce the quantum collision prob-
lem for a non-uniformly distributed function to the quantum collision problem for
a uniformly distributed function, etc. On the negative side, we discuss the diffi-
culties in proving the quantum indifferentiability of classical constructions. We
present some quantum attacks to modes of operation that indicates the power of
superposition queries.

In more details, we defined the indifferentiability in the quantum setting and
showed that most of classical constructions are not perfectly quantum indifferen-
tiable from a random oracle using a conjecture. We studied the quantum query
complexity of collision problem for a non-uniformly distributed function. We
used the quantum collision-resistance property of a function whose outputs are
chosen according to a distribution with high min-entropy to prove the security of
our modified version of Fujisaki-Okamoto construction in the quantum random
oracle model. We present both upper bounds and lower bounds for the collision
problem. We studied the IND-qCPA security of modes of operation. We showed
that OFB and CTR modes are IND-qCPA when underlying block cipher is stan-
dard secure. In contrast, CBC and OFB modes are not secure using standard
secure block cipher and we showed their security using a quantum secure block
cipher. For XTS, we present an attack using superposition queries that does not
formally violate the IND-qCPA.

1National Institute of Standards and Technology
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Krüptograafiliste konstruktsioonide turvalisus
superpositsioonpäringute vastu

Kvantajastu lähenedes on tekkinud vajadus analüüsida olemaolevate krüptograa-
filiste konstruktsioonide turvalisust kvantruünnete vastu. Postkvantkrüptograafia
on tärkav valdkond, mis klassikalise krüptograafia konstruktsioonide vastupida-
vust kvantrünnetele. See tähendab, et ausad osapooled kasutavad ainult klassi-
kalisi seadmeid, samas kui ründaja võib kasutada ka kvantarvutusvõimekusega
seadmeid. Kuna mitmed avaliku võtme krüptosüsteemid, mis põhinevad algarvu-
deks lahutamisel või diskreetse logaritmi leidmisel, on murtavad Shori algorit-
miga, tuleks need eeldused asendada kvantturvaliste eeldustega ning seejärel väl-
ja pakkuda neil eeldustel põhinevad konstruktsioonid ja matemaatiliselt tõestada
nende turvalisus. Kvantründajate ebatavalise olemuse tõttu ei pruugi klassikalis-
test tõestusvõtetest piisata ning seega võib konstruktsioonide turvalisuse tõesta-
mine osutuda suureks väljakutseks. Antud väitekirjas keskendume mitme erineva
krüptograafilise konstruktsiooni kvantturvalisuse tõestamisele. Tõestame, et mo-
difikatsioon Fujisaki-Okamoto (FO) konstruktsioon, mis teisendab kaks nõrgalt
turvalist krüpteerimisalgoritmi tugevalt turvaliseks krüpteerimisalgoritmiks kasu-
tades kolme räsifunktsiooni kvantjuhuoraakli mudelis, kus kvantründaja saab ju-
huoraaklile esitada superpositsioonpäringuid, on postkvant-turvaline. Selleks, et
tõestada FO konstruktsiooni turvalisus, peame uurima räsifunktsioonide omadusi
kvantkeskkonnas. Defineerime Eristamatuse Raamistiku kvantkeskkonnas ja näi-
tame, et klassikalised räsifunktsioonide konstruktsioonid ei ole juhuslikust oraak-
list perfektselt kvanteristamatud. Meie kvantdefinitsioon eristamatusest on raken-
datav postkvantkeskkonnas, kus kvantründajal on klassikaline ligipääs konstrukt-
sioonile ja kvantligipääs konstruktsioonis kasutatavale krüptograafilisele primi-
tiivile. Negatiivsete tulemuste tõttu uurime funktsioonide kvantkollisioonikindlu-
se omadust, kus funktsiooni väljundid ei ole ühtlase jaotusega ja kvantründajal
on kvantligipääs funktsioonile. Tuletame alam- ja ülempiirid funktsiooni väljundi
jaotise miinimumentroopia ja kollisioonientroopia kohta. Kasutame mitte-ühtlase
jaotusega funktsioonide kollisioonikindluse omadust, kus väljundil on kõrge mii-
nimumentroopia, et näidata FO konstruktsiooni turvalisust kvantjuhuoraakli mu-
delis. Kasutame samu võtteid, et tõestada OAEP teisenduse turvalisus kvantju-
huoraakli mudelis. Lõpetuseks uurime plokkšifri tööviiside turvalisust superpo-
sitsiooniliste tavateksti rünnete tavateksti rünnete (quantum chosen plaintext at-
tack, edaspidi IND-qCPA) vastu, kus kvantründajal on kvantligipääs krüpteeri-
misoraaklile, kuid ta võib edastada vaid klassikalisi päringuid. Kasutades plokk-
šifrit, kus kvantründaja saab teha klassikalisi päringuid (standardne turvaline plokk-
šiffer), tõestame, et OFB ja CTR on turvalised IND-qCPA vastu. Konstrueerime
näite, mis demonstreerib, et CBC, CFB ja XTS tööviis võivad standardseid tur-
valisi plokkšifreid kasutades olla ebaturvalised. Lõpuks näitame, et CBC ja CFB
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töörežiimid on IND-qCPA turvalised eeldusel, et kasutatav plokkšiffer on turvali-
ne kvantrünnete vastu.
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