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1. INTRODUCTION 

The soil as a central agent in many ecological processes has received a lot of 
research attention from many different angles. The investigation of the rich 
microbiome of the soil has been slowed by the fact that most of the microbes 
are unculturable. This gap can be filled by the metagenomics which is a field 
that deals with genetic material directly acquired form environmental samples 
offering a new way to investigate soil microbiome.  

High-throughput sequencing of PCR-amplified 16S rRNA gene has grown 
explosively over the past decade. The analysis of 16S rDNA data usually begins 
with the construction of operational taxonomic units (OTUs): clusters of reads 
that differ by less than a fixed sequence dissimilarity threshold. Consequently, 
the obtained sample-by-OTU abundance table serves as the basis for further 
statistical and exploratory analysis. For example, 16S rDNA sequences clus-
tered into OTU-s could be used to estimate the microbial community richness, 
alpha and beeta diversity, and composition of bacterial communities or be used 
in different statistical and multivariate exploratory analyses as a stand in for 
more conventional taxonomic units.  

The rapid development of sequencing technologies and amount of 16S 
rDNA data has been coherent with the fast growth in different analytical tools 
and programs for analysis of obtained data sets. During the last decade, a 
plethora of tools based on different principles and having different computa-
tional requirements to perform aforementioned OTU clustering has been created 
(Schloss, 2016). 

There have been some comparison and benchmarking studies for these tools 
and methods (Sun et al., 2012; Chen et al., 2013). In this work we are not so 
much interested in direct benchmarking but in the differences of the final 
outcome of series of analyses when different OTU clustering methods are used.  

The original publications on which this work is based concern with forest 
soil microbiome and the associated plant microbiomes (specifically rhizosphere 
microbiome). Methods that were used in these publications were based on 16S 
rDNA amplicon based metagenomics techniques.  
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2. THE AIM OF THE STUDY 

In this work we used the dataset published in Preem et al. (2012; Publication I) 
and analysed it using different software packages for processing bioinformatics 
data: Mothur (Schloss et al. 2009), UCLUST (Edgar 2010), CROP (Hao et al. 
2011), and a novel Swarm (Mahé et al. 2014). The results were compared with 
the datasets on microbiological and environmental parameters. The main aim of 
the study was to evaluate the different clustering methods for their use in 16S 
rDNA metagenomic analyses and observe the effect of different OTU binning 
methods on the final output and ecological conclusions of metagenomic ana-
lysis. 

In addition, to better evaluate the differences between different clustering 
methods in silico mock community analysis was also performed. An OTU 
clustering independent analysis – a Principal Coordinates Analysis (PCoA) 
based on Kantorovich-Rubenstein distances and acquired from phylogenetic 
placements – is also provided as a background information. In this analysis, 
sequence data from other original publications were used.  
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3. LITERATURE REVIEW 

3.1. Forest soil microbiome 
Microbial communities are vital in mediating the forest soil biogeochemical 
cycles, and an understanding of their role in ecosystem processes is pivotal 
predicting the forest response to future environmental conditions. Fungi are the 
most well-studied microbes in temperate and boreal forests’ soils, while bacteria 
and archaea represent another important but less explored integral part of the of 
the forest soil microbial community (Baldrian 2016). 

Bacteria inhibit several habitats in forest soils – they can be found in bulk 
soil, rhizosphere, and litter. The collective communities of plant-associated 
microorganisms are referred to as the plant microbiome. Virtually all tissues of 
a plant host a microbial community that is a part (endosphere) of the plant 
microbiome (Turner et al. 2013), and rhizosphere microbes constitute another 
part of the plant microbiome (Mendes et al. 2013). Despite its complexity and 
dynamism, particularly in natural environments, it is important not to overlook 
the plant microbiome when performing studies about forest soil microbial 
communities.  

Typical dominant bacterial phyla in forest soils are Acidobacteria, Actino-
bacteria, Proteobacteria, Bacteroidetes, and Firmicutes (Lladó et al. 2017). 
Archaeal community is mostly dominated by phylum Thaumarchaeota, while 
Euryarchaeota and Crenarchaeota are less abundant (Siles and Margesin 
2016).  

Forest soils as a habitat for bacteria is very heterogeneous as these soils are 
characterized by sharp vertical stratification. Along the vertical soil gradient the 
quantity and quality of organic matter is decreasing, and this affects the soil 
bacterial and archaeal community structure, abundance and activity (Norman 
and Barrett, 2016). In addition to soil organic matter content and quality the soil 
pH value is important factor shaping forest soil bacterial community structure 
(Jeanbille et al. 2016; Nacke et al. 2016). Furthermore, soil parameters like 
availability of organic and inorganic nitrogen and phosphorous is related to 
forest soil microbial community structure (Chodak et al. 2015) Also, the soil 
type may have impact on soil microbial community structure (Colin et al. 
2017). 

Trees strongly shape the community composition of soil bacteria and fungi 
in temperate and boreal forests (Nacke et al. 2016; Uroz et al. 2016a). Uroz and 
co-workers (2016b) found that fungal and archaeal community structures and 
compositions were mainly determined according to tree species, whereas 
bacterial communities differ to a great degree between rhizosphere and bulk 
soils, regardless of the tree species in beech and Norway spruce stands. 

Microbial communities in forest soils respond to the effects of global 
change, such as climate warming, increased levels of carbon dioxide, or anthro-
pogenic nitrogen deposition (Lladó et al. 2017). Soil microbial communities are 
able to respond more rapidly than plant communities to environmental changes, 
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which in turn affect ecosystem processes, such as carbon and nitrogen cycling, 
because of the vastness of microbial biomass and diversity (López-Lozano et al. 
2013). Since soil microbes (primarily prokaryotes and fungi) produce green-
house gases, especially N2O (Seo and DeLaune 2010; Giles et al. 2012; Saggar 
et al. 2013) and methane (Nazaries et al. 2013a) climate change-triggered 
alterations in soil microbial communities can have substantial feedback to the 
climate (Nazaries et al. 2013b). Climate warming is increasingly leading to 
marked changes in plant and animal biodiversity, but it remains unclear how 
temperatures affect microbial biodiversity, particularly in terrestrial soils (Zhou 
et al. 2016). 

In accordance with metabolic theory of ecology, taxonomic and phylo-
genetic diversity of soil bacteria, fungi and nitrogen fixers are all better pre-
dicted by variation in environmental temperature than pH. Cong and co-workers 
(2015) found that temperature was important in shaping microbial communities 
at both the taxonomic and functional gene levels in different forest soils. 
However, the rates of diversity turnover across the global temperature gradients 
are substantially lower than those recorded for trees and animals, suggesting 
that the diversity of plant, animal and soil microbial communities show diffe-
rential responses to climate change. (Zhou et al. 2016). 

 

3.2. Soil microbiome characterization using  
metagenomics methods 

3.2.1. General information on metagenomics 

Metagenomics refers to the use of genomic techniques on the genetic material 
acquired directly from environment – without intermediate isolation and culti-
vation of individual species. To our knowledge the earliest publication using the 
term metagenome is by Jo Handelsman (Handelsman et al. 1998). It is remark-
able that the idea of metagenomics (the term is in this publication referencing 
the idea of analysing collection of genes sequenced from the environment in a 
way analogous to the study of a single genome) is first mentioned in the context 
of soil microbes. 

The same article (Handelsman et al. 1998) brings out a combination of 
factors that make it very compelling to use metagenomic methods on soils – 
first: a great proportion of soil microbes are unculturable, second: the soil 
microbial communities have shown to be extremely rich and diverse containing 
not only a vast amount of different taxa but also a vast amount of different 
metabolic pathways and functionalities. The latter making it an enticing pro-
position for practical/applied research. 

The main questions to answer in the microbial ecology are “Who is out 
there?” and “What are they doing?” In fact, metagenomics can answer both 
questions. Particularly, microbial diversity can be determined using two diffe-
rent approaches: (1) Amplicon sequencing or (2) Shotgun metagenomics. In the 
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first approach, specific regions of DNA from microbial communities are ampli-
fied using taxonomical informative primer targets such as 16S rRNA gene for 
prokaryotes and intergenic transcribed spacers (ITS) or the large ribosomal sub-
unit (LSU) gene for eukaryotes (Sharpton 2014; Tonge et al. 2014). In the 
second approach, shotgun metagenomics can help to reconstruct large frag-
ments or even complete genomes from microorganisms in a community without 
previous isolation, allowing the characterization of a large number of coding 
and non-coding sequences that can be used as phylogenetic markers ( Escobar-
Zepeda et al. 2015). 

Both approaches have their strengths and weaknesses and it must be kept in 
mind that the end results using one or other method might disagree on with each 
other as has been shown in study by Steven and co-workers (Steven et al. 2012). 
 
 

3.2.2. Amplicon based metagenomics/metaprofiling 

As previously mentioned amplicon based approach uses specific regions of 
DNA from communities that are amplified using taxonomical informative pri-
mer targets, and in case of prokaryotes 16S rRNA gene is the most common 
example. All original publications (Publication I (Preem et al. 2012), Publi-
cation II (Truu et al. 2017), and Publication III (Ostonen et al. 2017)) serving as 
a basis of this doctoral thesis include 16S rRNA amplicon based metagenomics 
analysis with an addition of fungal ITS analysis in Publication III. As using 
specific sequences means that we are not dealing with all the genes of all the 
available genomes from the sample sometimes it is argued that we should not 
use the term “metagenomics” but rather term like “metaprofiling” (Escobar-
Zepeda et al. 2015). 

A typical amplicon based study would include: 
1)  The selection of region of the genome/gene to amplify and suitable primers 

for such gene fragment. The selection of region depends on many factors. As 
an example 16S rDNA based analysis is considered. The choice of which 
16S rDNA variable region to amplify depends on a variety of factors specific 
to the sample and experiment, including the particular bacteria present, 
whether it is most important to get resolution at a species, genus, or higher 
taxonomic level, and the gene fragment length that is afforded by the 
sequencer. Since all variable regions of the 16S rRNA gene have strengths 
and weaknesses, some researchers may opt to sequence more than one 
variable region to get a clearer view of the composition of the microbiome 
(Di Bella et al. 2013). 

2)  Gene fragment amplification and sequencing – (platform chosen by the 
considerations of budget vs. desired sequencing depth, the platform selection 
would also influence decisions for point 1 and vice-versa) 

3)  Quality-control and other processing of sequence data – the amplicon based 
methods are particularly sensitive to sequencing errors (Kunin et al. 2010), 
NGS platforms have different biases to produce different errors. 
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4)  OTU clustering – needed to convert sequence information to “species/taxon” 
presence/abundance information. Matters considering OTU clustering will 
be covered extensively in the proceeding parts of this thesis. 

5) OTU presence/abundance data can then be used as basis for different explo-
ratory and statistical analyses.  

 
The reliability of abundance data which is central in numerical ecology analyses 
is affected by multitude of aspects in all previous steps beginning with the 
amplicon selection (copy numbers differences/evolutionary conservation etc.) 
and culminating with OTU detection. Metaprofiling has been widely used due 
to its convenience to perform taxonomic and phylogenetic classification in large 
and complex samples within organisms from different life domains (Escobar-
Zepeda et al. 2015). That enhances the suitability of the method for soil samples 
as soil microbial communities are one of the most complex. Soil-borne micro-
bial communities are thought to be Earths greatest source of biodiversity, with 
estimates ranging from thousands to tens of thousands of species per gram of 
soil (Kowalchuk et al. 2007).  

The use of specific amplicons as compared to shotgun metagenomics helps 
the economy of analysis both in getting better coverage for given sequencing 
depth and by reduced computational complexity. The choice of selecting ampli-
con length allows to consider different sequencing platforms to your experi-
ment. For many possible amplicon regions there are databases assisting taxono-
mic and phylogenic classifications of sequences and OTUs produced. Databases 
governing 16S rDNA sequences being one of the most common. The examples 
of such databases are GreenGenes (DeSantis et al. 2006), Silva (Pruesse et al. 
2007), and RDP (Maidak et al. 2001). 

The popular 16S rDNA region amplicons have set of problems as high-
lighted by Escobar-Zepeda et al. (2015): 
1)  low resolution at the species level (Petrosino et al. 2009; Nalbantoglu et al. 

2014) 
2)  a variable range in 16S rRNA gene copy number in many species (Acinas et 

al. 2004) 
3)  horizontal transfer of 16S rRNA genes (Schouls et al. 2003; Bodilis et al. 

2012) 
4)  the fact that <0.1% of the total genome are ribosomal genes, hindering the 

amplification of this marker from very low abundant genomes in a sample. 
Amplicon based approaches in themselves do not provide direct insight into the 
general functional state of microbial community but assembled phylogenetic 
and taxonomic information can to some extent cross-referenced with appro-
priate databases (De Filippo et al. 2012). All and all the popularity of amplicon 
based sequencing as compared to shotgun-metagenomics is easily under-
standable by the economical and ease of use aspects. Even if leaving these 
aspects out either of the methods can be more suitable for certain research 
questions. 
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3.2.3 Shotgun metagenomics 

By comparison (to amplicon based strategies) in shotgun metagenomic ana-
lyses, all DNA in a sample is sequenced and analysed, which while being a 
more comprehensive approach means that the same sequencing depth yields far 
lower coverage in such studies. Acquiring the needed coverage puts pressure in 
the selection of sequencing platform. Computational requirements for such 
analysis will also be greatly increased. The assembly of longer sequences from 
a multitude of shotgun fragments is a daunting task especially when we have to 
account for the fact that different microbial taxa and genes may be present in the 
sample at wildly different abundances. All around the correct assembly of 
shotgun metagenomics assembly is still largely unresolved task although the 
number and quality of methods and tools is growing (Di Bella et al. 2013). 

Some of the common steps in shotgun metagenomic analyses will be high-
lighted in following sections. 

Binning refers to assigning reads to discrete “bins” on the account of com-
mon characteristics (sequence composition characteristics like codon usage, 
frequency of repeating elements etc.) on the assumption that such similar 
sequences might more likely be from same or similar organisms. 

For gene finding and annotation it is more useful to have longer sequences – 
so often an assembly of overlapping sequences into longer contigs is in order. 
Such assembly might be done before and/or after the binning as both procedures 
can benefit from each other.  

Assembly can be a purely de-novo process using only acquired sequences 
themselves and trying to find overlapping regions. Understandably process like 
this quickly demands ever larger resources with increasing number of sequen-
ces. Another approach is to map the sequences to reference database. While this 
reduces the computational needs it will also make the analysis depend on the 
reference database. There might be problems if the database contains errors or 
just has a very different composition of genes compared to sample, also it is not 
possible to map genes in the sample that are not represented in the database. 

Whether the reads are assembled to longer contigs or not the next step would 
be gene finding. One possibility is to predict genes de-novo by the properties of 
the sequence. Examples of such tools are MetaGeneAnnotator (Noguchi et al. 
2008), FragGeneScan (Rho et al. 2010), Prodigal (Hyatt et al. 2010), Orphelia 
(Hoff et al. 2009) and FragGeneScan + (Kim et al. 2015). 

Afterwards the function of predicted genes could be determined by various 
tools and methods such as trying to map the gene to an appropriate database or 
using function prediction tools. A variety of databases and systems exist to aid 
in functional annotation of genes and gene segments, including the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 1999), the 
Clusters of Orthologous Groups (COG) system (Tatusov et al. 2003), Pfam 
(Bateman et al. 2004), the Conserved Domains Database (CDD) (Marchler-
Bauer et al. 2005), SEED (Overbeek et al. 2005), TIGRFAM (Selengut et al. 
2007) and eggNOG (Muller et al. 2009). These databases can find domains and 
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classify proteins by function, allowing determination of which functions and 
pathways are present in the metagenome or metatranscriptome, and in what 
abundances they are found. 

Another approach is to immediately match read sequences against gene/pro-
tein databases, in this case the same database might already contain the neces-
sary functional annotation therefore enabling the researcher to dispense with the 
function determining part. Signing oneself to only this approach leaves out 
possibility of finding novel genes and predict their function though. 

To compare samples by found genes and their abundances a multitude of 
tools is also available. Jonsson and co-workers (2016) compared 14 different 
tools for identification of differentially abundant genes between metagenomes 
and found edgeR (Matsen and Evans 2013) and DESeq2 (Love et al. 2014) to 
have overall best performance. 

In conclusion: shotgun metagenomics allows many additional options com-
pared to amplicon-based strategies, but at the cost of increased complexities – 
some of which might turn out prohibitive for given research goal. 
 
 

3.3. Data analysis approaches in amplicon based  
soil metagenomics studies 

3.3.1. General overview of clustering methods used  
in 16S rDNA analyses 

Although there are alternatives, especially when the main goal of our numerical 
ecology analysis is centered on sample comparison, one of the main methods to 
transform metagenomic sequence data to data more ecologically meaningful is 
through the process called clustering. Similar sequences are clustered together 
into OTU-s (Operational Taxonomic Units) that alongside their abundance 
information can be used as a stand-in for species (or other taxonomic level 
grouping) in already existing ecological methodologies. From OTU data it is 
possible to calculate the richness and diversity indices, compare samples using 
multivariate statistical analysis, correlations of OTU-s with parameters mea-
sured etc. OTU clustering methods could be classified in three general cate-
gories – hierarchical clustering, heuristic clustering and model-based clustering 
methods (Chen et al. 2013).  

In the hierarchical clustering category, a distance matrix measuring the diffe-
rence between each pair of sequences is calculated first, and standard hie-
rarchical clustering is then used to define OTUs at a specific level of sequence 
dissimilarity. Most of these methods have an O(N2) computational complexity, 
where N is the number of sequences, posing a significant computational bottle-
neck for processing large-scale sequencing datasets (Chen et al. 2013). Diffe-
rent heuristic algorithms have been developed mainly to avoid the computatio-
nal bottlenecks that might be prohibitive when analysing large scale datasets. A 
usual way to reduce the quadratic complexity is to ditch the computation of full 
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pairwise distance matrix and use algorithms that would process input sequences 
and distance calculations sequentially. Examples of such algorithms are CD-Hit 
(Li and Godzik 2006) and UCLUST (Edgar 2010).  

Both these methods use pairwise sequence alignment and process input se-
quences sequentially. Given a predefined threshold, an input sequence is either 
assigned to an existing cluster if the distance between the sequence and a seed is 
smaller than the threshold, or becomes a seed otherwise. The computational 
complexity of greedy heuristic clustering is on the order of O(NM), where M is 
the number of seeds and usually M << N (Cai and Sun 2011). 

Greedy heuristic clustering (e.g. CD-HIT and UCLUST ) processes input 
sequences one at a time, avoiding the expensive step of comparing all pairs of 
sequences. Given a predefined threshold, an input sequence is either assigned to 
an existing cluster if the distance between the sequence and a seed (the sequen-
ce representing that cluster) is smaller than the threshold, or becomes a new 
seed for a new cluster otherwise. Consequently, the computational complexity 
of greedy heuristic clustering is O(MN), where M is the number of seeds. 
Usually M<<N, and hence greedy heuristic clustering is computationally much 
more efficient than HC (Sun et al. 2012).  

These greedy clustering methods suffer from two fundamental problems. 
Mahé et al. (2014) summarizes them as following. 

First, they use an arbitrary fixed global clustering threshold. As lineages 
evolve at variable rates, no single cut-off value can accommodate the entire tree 
of life. A single global clustering threshold will inevitably be too relaxed for 
slow-evolving lineages and too stringent for rapidly evolving ones (Stacke-
brandt and Goebel 1994; Sogin et al. 2006; Nebel et al. 2011; Koeppel and Wu 
2013). Secondly, the input order of amplicons strongly influences the clustering 
results. Previous centroid selections are not re-evaluated as clustering progres-
ses, which can generate inaccurately formed OTUs, where closely related 
amplicons can be separated and unrelated amplicons can be grouped (Koeppel 
and Wu 2013). 

These two problems are brought out as a rationale for the development of 
Swarm algorithm (Mahé et al. 2014) which can be according to Chen et. al. 
(2013) classification still be described as hierarchical algorithm though it has 
some specific properties not common with most hierarchical methods as 
described by Chen et. al., (2013) and which will be covered more thoroughly in 
separate chapter dedicated to Swarm algorithm/tool. The possibility to avoid 
these kind of arbitrary cut-offs is also one rationale to development of CROP 
(Hao et al. 2011) algorithm which is an unsupervised Bayesian clustering algo-
rithm using Gaussian mixture models. It will also be discussed in separate 
chapter and leads us to the third class of OTU clustering methods. 

A third class of OTU clustering methods as classified by Chen et al. are 
model based OTU clustering methods. Probability models have been proposed 
for quite some time as a basis for cluster analysis. In this approach, the data are 
viewed as coming from a mixture of probability distributions, each representing 
a different cluster (Fraley and Raftery 1998).  
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Clustering algorithms based on probability models offer a principle alterna-
tive to heuristic algorithms. In particular, model-based clustering assumes that 
the data is generated by a finite mixture of underlying probability distributions 
such as multivariate normal distributions. The issues of selecting a ‘good’ 
clustering method and determining the ‘correct’ number of clusters are reduced 
to model selection problems in the probability framework. Gaussian mixture 
models have been shown to be a powerful tool for clustering in many applica-
tions (Yeung et al. 2001). 

As for the meaning of “quite some time” – in the article (Fraley and Raftery 
2002) declare that mixture based models have often been proposed and studied 
in the context of clustering – citing sources that go back to 1960's. Therefore it 
comes as no surprise that such mature methods, which have shown their uses in 
many different clustering applications, have now found their applications in 
OTU clustering tools like CROP or BEBaC (Cheng et al. 2012). 

 
  

3.3.2. Mothur software package 

DOTUR (Schloss and Handelsman 2005) was introduced in 2005 as a software 
tool that both did OTU assignment of sequences by the means of hierarchical 
clustering based on PHYLIP (Felsenstein 1989) generated sequence distance 
matrices (using nearest, furthest or average neighbour joining algorithm as 
chosen by user). Mothur, version 1.0.0 released in February 2009, is a software 
platform that incorporates algorithms from many previous tools such as 
DOTUR, SONS (Schloss and Handelsman 2006a), TreeClimber (Schloss and 
Handelsman 2006b), LIBSHUFF (Singleton et al. 2001), ∫-LIBSHUFF (Schloss 
et al. 2004), and UniFrac (Lozupone and Knight 2005). The platform has been 
in continual development with several new version releases per year, it has 
continued to grow in capabilities and different algorithms implemented from 
many other bioinformatics tools.  

The capabilities of first version already included over 25 calculators for 
quantifying key ecological parameters for measuring α- and β-diversity; visuali-
zation tools including Venn diagrams, heat maps, and dendrograms, functions 
for screening sequence collections based on quality; a NAST-based sequence 
aligner; a pairwise sequence distance calculator; and the ability to either call 
individual commands from within Mothur, using files with lists of commands 
(i.e. batch files), or directly from the command line which provide for greater 
flexibility in setting up analysis pipelines (Schloss et al. 2009). 

The concise way to describe Mothur cluster generation used in this work and 
in Publication I would be to say that we used average neighbour algorithm for 
clustering sparse distance matrix (distances larger than 0.1 discarded) generated 
from multiple sequence alignment by simple pairwise comparison (gaps pena-
lised as one difference). All the steps (alignment, distance calculation, clus-
tering) were done within Mothur package. More details are given in the Mate-
rials and methods section.  
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Preem et al. (2012) used Mothur v.1.13.0 for sequence data pre-processing, 
distance matrix generation, clustering, ecological index calculation and more.  

In current work all other data sets were analysed using Mothur package 
v.1.36.0. to some extent – pre- and post-clustering. Clustering itself is done by 
different tools for such analyses. The data pre-processing is covered in Mate-
rials and methods section.  
 
 

3.3.3. UCLUST and USEARCH 

UCLUST is an example of heuristic clustering algorithm. As described earlier 
in general discussion it achieves linear complexity by the means of processing 
input sequences one-by-one by assigning them to (randomly seeded) OTU-s by 
pre-defined threshold. It uses USEARCH algorithm for the sequence assign-
ment. A brief description of its rationale is given in the following paragraph. 

High-throughput is achieved by using a fast heuristic designed to enable 
rapid identification of one or a few good hits rather than all homologous se-
quences. For a given query, database sequences are sorted in order of decreasing 
number of words in common to exploit the fact that similar sequences tend to 
have short words in common (see e.g. (Edgar 2004)). When examined in this 
order (i) if a hit exists in the database, it is likely to be found among the first 
few candidates, and (ii) the probability that a hit exists falls rapidly as the 
number of failed attempts increases. A search can therefore often be terminated 
after examining a small number of candidates without a large cost in sensitivity 
(Edgar 2010). 

The UCLUST algorithm employs USEARCH to seek a matching cluster for 
a given sequence. An initially empty database is created, which is extended as 
input sequences are processed. The database contains exactly one representative 
sequence for each cluster, known as its seed. Each input sequence (Q) is 
compared to the current database using USEARCH. If a matching seed is found, 
Q is assigned to the corresponding cluster and the database remains unchanged; 
otherwise, Q is added to the database, becoming the seed of a new cluster. A 
match is defined as a global alignment of the query to a seed with an identity 
exceeding a pre-set threshold. Using a single representative sequence per cluster 
minimizes the database size and total number of sequence comparisons and 
hence the time and memory required, but may not be biologically optimal as 
there is no enforced lower bound on pair wise similarity when neither sequence 
is a seed (from supplemental materials of (Edgar 2010), online version is 
available at http://bioinformatics.oxfordjournals.org/content/suppl/2010/08/11/ 
btq461.DC1/supp_mat_rev2.pdf) 
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3.3.4. CROP – an unsupervised Bayesian clustering method 

CROP is unsupervised Bayesian clustering algorithm that uses Gaussian mix-
ture model to describe 16S rDNA sequence data as such it falls in the model-
based camp of OTU clustering methods as classified by Chen et al. (2013) . The 
main rationale for the CROP clustering method as described in the Hao et al. 
(2011) by authors themselves is the sensitivity to dissimilarity threshold and the 
difficulty of choosing an optimal threshold especially in the light of sequencing 
errors that crop up as problems in traditional hierarchical clustering methods. 

Article by Hao and co-workers (2011) brings out many references to studies 
that show the overestimation of OTU-s by hierarchical clustering methods 
(Quince et al. 2009; Marco 2010; Huse et al. 2010). Also they highlight that 
distance calculated from multiple alignment was, in general, larger than those 
calculated from pairwise alignments and thus might also result in over-
estimation of the number of OTUs (Sun et al. 2009). 

A concise summary of CROP can be found in publication by Soueidan & 
Nikolski (2015). CROP (Hao et al. 2011) (Hao et al. 2011) (Hao et al. 2011) 
(Hao et al. 2011) uses an unsupervised Bayesian clustering approach. The 
model relies on the notion of probability that a given sequence s belongs to a 
cluster. This probability is defined as function of the distance between the se-
quences and the sequence that is in the center of the cluster. Moreover, CROP 
applies the divide-and-conquer principle by dividing the dataset into small 
subsets and performing Bayesian clustering on the subsets. Thus generated 
clusters are replaced by their consensus sequences on which a final step of 
Bayesian clustering is performed in order to obtain the OTUs. 

For a more elaborate summary of CROP principles the following paragraphs 
as written by Hao et al. (2011) authors themselves should be suitable- “The key 
concept of our method replaces the mean value of a Gaussian distribution and 
instead uses a ‘center’ sequence to characterize a specific cluster. Thus, if we 
consider the sequences as data points in a high-dimensional space and we 
calculate the pairwise distances as the distance between two data points, then 
the probability that a sequence belongs to a cluster becomes a function of the 
distance between the sequence and the center. The nature of Gaussian distri-
butions can handle sequencing errors as well as sequence variations. However, 
by restricting the parameter space of the standard deviations of the Gaussian 
distributions, we could limit our probabilistic search to the parameter subspace 
in which the clustering results reflect the desired partitions of the datasets and, 
hence, the accurate number of underlying OTUs. 

Based on this model, we can define the likelihood of the data and use a 
Markov Chain Monte Carlo (MCMC) approach to sample from the posterior 
distribution of the parameters to obtain the optimal clustering. The optimal 
result, which maximizes the posterior probability, will give all the quantities of 
interest, including the number of clusters, their relative abundance levels and 
the sequences in each cluster. Richardson and Green (1997) and Stephens 
(2000) have proposed MCMC methods to study the mixture model with an 
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unknown number of components. In this application, we used a Markov birth–
death process to build the Markov Chain with appropriate stationary distribu-
tion, as proposed by Stephens (2000). That is, in each step, a new cluster would 
be created, or an existing one would be deleted, according to which operation is 
more likely to increase the posterior probability. To enhance computational 
efficiency, we further introduced a hierarchical approach by splitting the data 
into small blocks, running Bayesian Clustering on each block independently, 
and then later merging these clustering results. We also introduced several 
criteria to reduce the burden of calculating Gaussian density functions, thereby 
accelerating the MCMC process”. 

 
 

3.3.5. Swarm 

Swarm could be described as agglomerative hierarchical clustering algorithm. 
It's rationale as described by authors is to create an exact clustering algorithm 
that could compete with greedy heuristic based algorithms in terms of compu-
tational complexity and speed.  

Current chapter describes Swarm on the basis of Mahé et al. 2014. The main 
assumption of Swarm is that if amplicons are viewed as discrete points in 
abstract amplicon-space then the clusters forming from directly neighbouring 
amplicons (one nucleotide difference) are separated by each other by empty 
regions, meaning that amplicons do not form a vast uninterrupted continuum. If 
that assumption holds true OTU-s can be allowed to grow iteratively until they 
reach their natural limits – empty space around amplicon clusters. 

Swarm explores the amplicon-space as follows: Swarm processes the input 
file and creates a pool of amplicons. An empty OTU is created, and the first 
available amplicon in the pool is withdrawn from the pool to become the OTU 
seed. The seed is then compared to all amplicons remaining in the pool, and the 
measured number of differences is stored in the memory. The number of 
differences is calculated as the number of nucleotide mismatches (substitution, 
insertion, or deletion) between two amplicons once the optimal pairwise global 
alignment has been found. Amplicons for which the number of differences is 
equal to or less than d, the user-chosen local clustering threshold, are removed 
from the pool and added to the OTU where they become subseeds. Each sub-
seed is then compared to the amplicons remaining in the pool, but only to those 
that have at most 2d differences with the seed. Indeed, amplicons with more 
than 2d differences with the seed cannot have d or less differences with one of 
its subseeds.  

This iterative growth process is repeated for each generation of subseeds as 
long as new amplicons are captured. The OTU is then closed. The first available 
amplicon is removed from the pool, becomes the seed of a new OTU, and the 
process is repeated until no more amplicons remain in the pool. This clustering 
process generates stable OTUs, regardless of the first seed choice. Thus, an 
OTU organically grows to its natural limits where it cannot recruit any more 
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amplicons with d or fewer differences. Operating in this way, Swarm removes 
the two main sources of variability inherent in greedy de novo clustering 
methods: the need to designate an OTU centre (centroid selection), and the need 
for an arbitrary global clustering threshold (maximum radius). Swarm outlines 
OTUs without imposing one particular shape or size, and produces the same 
OTUs regardless of the initially selected amplicon. 

Under certain conditions (like using short and/or slowly evolving markers), 
the assumption that amplicons do not form a vast continuum can be violated. 
Huse et al. 2010 have shown that single-linkage clustering is known to produce 
chains of amplicons that can potentially link closely related OTUs and decrease 
clustering resolution. To solve this issue, Swarm implements a breaking phase 
that uses the structure of the cluster and amplicon abundance values to eliminate 
weak contiguity regions, and to delineate higher-resolution OTUs. 

Swarm internally produces a graph representation of the OTU, in the form of 
a star-shaped minimum spanning tree. OTUs present an internal structure where 
the most abundant amplicon usually occupies a central position and is sur-
rounded by less abundant amplicons. To identify and break the chains, our algo-
rithm finds paths linking abundant amplicons (peaks) and monitors the abun-
dance variations along these paths. If abundances decrease, go through a mini-
mum, and then go up again (valley shape), this indicates a possible amplicon 
chain. Depending on the depth of the valley (i.e., the ratio between the mini-
mum and maximum observed abundances), the algorithm will decide whether 
or not to break the graph into independent OTUs.  

Concerned with possible under-grouping in the original Swarm algorithm a 
new version was published which includes so called fastidious option for 
grafting singletons and doubletons to larger OTU-s (Mahé et al. 2015). In this 
work we use Swarm both with and without fastidious option. 
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4. MATERIALS AND METHODS 

4.1. Description of study sites and sampling  
For all data sets of OTU based analyses the same procedure as in the Publi-
cation I described applies. Five soil samples (50 cm3 of each) were collected 
from a 0 to 10 cm layer of the soil A horizon. A 10-meter-wide square strategy 
was applied for this purpose on each study site. Four samples were collected 
from the corners and one from the middle point of the square. The roots were 
separated from the soil. 10 g of each soil sample was stored at −20°C for DNA 
extraction, and the rest was stored at 4°C for chemical analyses. Soil pHKCl, 
total nitrogen, phosphorus (ammonium lactate extractable) and the amount of 
organic matter (LOI – loss on ignition) were determined for each sample. In 
addition, the elemental composition (concentrations of total Al, B, Ca, Cd, Cu, 
Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb and Zn) of each soil was determined by 
inductively coupled Plasma Mass Spectrometry (ICP, wet digestion with HNO 
3 –H 2 O 2 ) in the laboratory of the Finnish Forest Research Institute (Vantaa, 
Finland). 
 
 

4.2. DNA extraction, PCR product preparation and 
sequencing  

For all sets of OTU based analyses the same procedure as in the publication 
(Preem et al., 2012) described applies. Total DNA was extracted from soil using 
an UltraClean Soil DNA kit (Mo Bio Laboratories, Inc.) according to the manu-
facturer’s protocol. PCR was carried out using Qiagen HotStarTaq mix (Qia-
genGmBh, Germany) and primers 8F (Edwards et al. 1989) and 357R (Muyzer et 
al. 1993) amplifying V2 and partly V3 hyper-variable region of the 16S rRNA 
gene. The forward 8F primers (5-GCCTCCCTCGCGCCATCAG (NNNNNN) 
AGAGTTTGATCCTGGCTCAG-3) used in the reaction mixture contained 
sequencing primer (underlined) followed by a 6-bp barcode (indicated in 
parentheses) unique to each sample (Parameswaran et al. 2007) and finally the 
primer sequence. The reverse 357R primer (5-GCCTTGCCAGCCCGCTCAG 
CTGCTG CCTCCCGTAGG-3) had a sequencing primer (underlined) before 
the primer sequence. The following PCR program was used: 15 min at 95°C 
followed by 3 cycles of 30 s at 95°C, 30 s at 50°C and 60 s at 72°C and 28 
cycles of 30 s at 95°C, 30 s at 65°C and 60 s at 72°C and final extension for 10 
min at 72°C. PCR products were purified from gel using the Qiagen QIAquick 
Gel Extraction Kit (Qiagen Gmbh,Germany), quantified using NanoDrop 1000 
(Thermo Scientific) and finally mixed at equimolar concentrations prior to 
sequencing. DNA extraction and PCR products preparation for sequencing was 
performed by BiotaP LLC (Tallinn, Estonia). Sequencing was performed by 
GATC Biotech (Constanz, Germany) using a Genome Sequencer FLX System 
(Roche Applied Science). 
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4.3. Data analysis 

4.3.1. Sequence data pre-processing 

For all sets of OTU based analyses the same procedure for sequence data pre-
processing as described in the Publication I, including homopolymer removal, 
removal of short sequences and chimeras, applies. The following data denoising 
procedure was performed: all sequences containing any ambiguous bases and 
sequences containing long stretches of homopolymers (more than 7 bp) were 
removed (Margulies et al. 2005), sequences less than 180 bp were removed and 
identical sequences were merged. To remove possible chimeric sequences we 
used UCHIME de novo approach (without reference database) as an incorpo-
rated command in Mothur (Edgar et al. 2011). 

 

4.3.2. OTU clustering 

For Mothur based analysis following procedure was used. The pre-processed 
dereplicated sequences were aligned and then pairwise distances were cal-
culated using Mothur “dist.seqs” command (simple pairwise comparison of 
aligned sequences, consecutive gaps in sequence penalized as one gap, gaps at 
the end of sequence penalized, distances larger than 0.1 discarded from result). 
Thereafter OTU-s were created by Mothur command “cluster” using average 
neighbour algorithm. Version of Mothur used was v.1.34.4. The process is also 
described in Publication sub-section “2.3. Sequenced data processing and taxo-
nomic assessment”, in this case v.1.13.0. of Mothur was used. 

For CROP based analysis the pre-processed redundant sequence set was 
used as input for CROP program to perform the clustering at species level 
(CROP parameter “-s”). 

For UCLUST based analysis part of QIIME (Caporaso et al. 2010) pipeline 
were used. The pre-processed redundant fasta sequences were supplied with 
QIIME compatible labels by add_qiime_labels.py QIIME script after which the 
QIIME script pick_otus.py was used which by default uses UCLUST algorithm 
for clustering.  

For Swarm based analysis parameter value of d=1 (maximum allowed 
differences between amplicons is 1 mismatch) and -f (fastidious) options were 
used. The input was dereplicated pre-processed sequence set with numbers of 
sequence occurrence added to the sequence identifiers by in house scripts. 

 

4.3.3. OTU data post-processing and statistical analyses 

As a first step before calculating any statistics from acquired OTU data – OTU-
s containing only one single sequence were culled. The removal was performed 
for CROP, Swarm and UCLUST based analyses, and also for analysis that was 
otherwise identical to the Publication I which will be mentioned as Mothur 
based analysis from now onward. 
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Owing to the differences in OTU clustering and subsequent removal of 
singletons the sequence data for Mothur based analysis was normalized to 2437 
sequences per sample and 18045 sequences per site. The sequencing data for 
CROP analysis was normalized to 2558 sequences per sample and 18714 se-
quences per site, for UCLUST analysis it was normalized to 2483 sequences per 
sample and 18252 sequences per site and for Swarm analysis 360 sequences per 
sample and 3320 sequences per site. Nonparametric Kruskal–Wallis one-way 
analysis of variance by ranks was applied to verify differences in diversity 
indices and the relative abundance of bacterial phylogenetic groups between the 
studied locations. 

The number of OTU-s and diversity indices acquired by different methods 
was compared by the use repeated measures ANOVA. Post-hoc testing was 
done by multiple t-tests using Holm-Bonferroni correction. 

For each set of analyses Bray-Curtis dissimilarity measure was applied to 
calculate the between samples distance matrices. The Congruence Among Dis-
tance Matrices (CADM) analysis (Legendre et al. 2004) was performed to find 
congruence among these distance matrices. The distance matrices were also 
compared by means of Mantel tests. Principal coordinate analysis (PCoA) was 
used to explore and visualize similarities in a low-dimensional space between 
soil samples based on the obtained distance matrices. Based on the same distan-
ce matrices also one-way permutational multivariate analysis (PERMANOVA) 
(Anderson 2001) was performed to test for differences in microbial community 
composition between the studied locations. Before conducting PERMANOVA, 
the distance-based test for the homogeneity of multivariate dispersions was 
performed. Also distance-based regression analysis was applied to identify vari-
ables that explained significant amounts of variation in bacterial community 
structure. The analysis was carried out using the DISTLM (McArdle and 
Anderson 2001) program with forward selection procedure and 10000 permu-
tations. 

Molecular Ecological Network Analyses Pipeline (MENAP) was used to 
create molecular ecological networks from the obtained OTUs (Deng et al. 
2012). Input for the MENAP pipeline were post-processed OTU abundance 
tables gathered from every analysis. Only OTU-s that were present at least in 5 
samples were included in the network analysis. 

 
 

4.4. Mock community generation and analysis 
To evaluate different OTU clustering methods against a dataset with sequences 
of precisely known origin a low-complexity mock dataset was constructed. For 
this sequences which had perfect matches for primers used in Publication I (8F, 
357R) were acquired from Greengenes (DeSantis et al. 2006) database (2013-
August version). Further on, a hundred random sequences that had Greengenes 
classifications to species level were chosen such that each one represented a 
different species. These 100 unique sequences were used to construct a dataset 
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consisting of 114 744 sequences by using a simulation tool called Grinder 
(Angly et al. 2012). Abundance model by which the unique sequences were 
multiplied was following – a random Gaussian distribution was generated with 
a median of 1000 and standard deviation of 200, acquired numbers were 
rounded to integers and used as count numbers for OTUs. The error model used 
for this mock dataset generation was 454 pyrosequencing error model as 
described in (Balzer et al. 2011). 

The resulting dataset was then submitted to the same set of analyses that 
were performed previously in this work on the Publication I dataset. Including 
similar sequence data pre- and post-processing and OTU clustering by four 
different OTU clustering methods. Following OTU clustering, to assess the 
quality of generated OTU data, the acquired OTU abundance profiles were 
compared to abundance profile used when generating the mock dataset – by 
means of bootstrapped Kolmogorov-Smirnov tests. Also for that aim statistics 
such as number of OTU-s observed, ecological indices and the representative 
sequence for 10 most abundant OTUs were acquired. 

 
 

4.5. Clustering independent analysis 
In order to provide a clustering independent comparison analysis we took fol-
lowing steps. As described in (Steven N. Evans, Matsen et al. 2012) the widely 
used weighted Unifrac distance is just Kantorovich-Rubenstein distance if we 
equate a metagenomic sample with its empirical distribution on a reference 
phylogenetic tree. We took the samples from the original Publications I-III and 
used the SEPP tool (Mirarab et al.) to produce such placements onto the Green-
genes reference tree. Kantorovich-Rubenstein distances between samples were 
calculated from phylogenetic placements using guppy tool from pplacer suite 
(Matsen et al. 2010). Several PCoA-s based ordination plots on such pairwise 
distances were produced containing different combinations of datasets. The 
PCoA-s (especially those containing Publication I dataset) provide an OTU 
clustering independent analysis that can be used for the background. 
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5. RESULTS AND DISCUSSION 

5.1. Differences in the quality of estimating  
the mock community structure  

The mock community was generated form 100 unique sequences which were 
multiplied while allocating a certain amount of sequence differences (amount-
ing to 454 pyrosequencing error probabilities). The assumption being that each 
unique sequence should in this way represent an OTU center – ideally with its 
“progeny” sequences (differentiating from parent by errors introduced in multi-
plication process) clustering in the same OTU. Table 1 shows the number of 
OTU-s observed and calculated inverse Simpson indices for mock dataset and 
for analyses after clustering the dataset with four different clustering methods. It 
can be seen that if we take the original amount of unique sequences (100) as the 
actual amount of OTU-s in dataset then most of the clustering methods result in 
overestimation of OTU numbers compared to mock data. 
 

 
Particularly large overestimation was for the case of Swarm analysis using the 
default parameter for maximum differences for amplicons to be grouped to-
gether d=1 and the fastidious option turned on. As the generation of OTU-s in 
Swarm algorithm goes agglomeratively by adding amplicons that differ by d 
differences to each other one-by-one until no such amplicon can be found. The 
most organic d especially if aiming for a high taxonomical resolution seems 
d=1. Fastidious option merges OTU-s by postulating “virtual amplicons” which 
if existing would allow merger of small OTU-s (singletons and doubletons by 
default) to be merged with some other and then doing the merges accordingly. 
Such process makes a good deal of biological sense as no matter how different a 
set of amplicons is if it is possible to link them a one difference step by one 
difference step at a time representing phylogenetically linked amplicons where 
each is separated by other by a mutational event.  

Unfortunately, for Swarm algorithm our mock dataset is constructed by 
adding 454 pyrosequencing errors to a seed amplicon – so the “progeny” might 
not be removed from seed and each other in such step-by-step evolution. So it 

 

 Mock Mothur CROP UCLUST Swarm Swarm d=4 
Number of 
OTU-s 100 278 93 204 493 96 

Inverted 
Simpson’s 
index 

96,8 91,0 76,5 82,9 123,1 76.3 

 

 
Table 1. OTU-s observed and inverted Simpson’s indices for mock OTU data and 
OTU- data created by different clustering methods. 
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seems understandable that such small difference as d=1 will create much more 
OTU-s as the “progeny” sequences can often both be removed from seed se-
quence by a larger amount of differences and there is no step-by-step sequence 
of mutation events that would lead from seed through one progeny sequence to 
another. To alleviate such problems we did some tests for clustering with 
Swarm using larger d values. 

At d value 4, Swarm clustered 98 OTU-s (result of 96 OTUs observed for 
our analysis where we removed 2 singletons) which was closest to original set 
of 100 seed sequences. The Mothur and UCLUST analyses ended up overesti-
mating the number of OTU-s by a smaller amount and CROP analysis yielded 
93 OTU-s – close to the original number of seed sequences.  

The diversity as expressed by inverted Simpson index shows that although 
Swarm d=4 and CROP analysis result in a number of observed OTU-s pretty 
close to the original seed sequences the abundance profiles are still not similar 
to original mock dataset being on the whole less diverse – even Mothur analysis 
that has 204 observed OTU-s as a result still has an inverse Simpson index that 
shows a lower diversity than in the original dataset. 

OTU abundances for each set of analysis were compared to the original set 
by means of bootstrapped (10000 repeats) Kolmogorov-Smirnov tests. At p-
values much lower than 0.001 none of these could be considered as coming 
from the same distribution as original. 

In Table 2 the abundances and representative sequences of 10 most abun-
dant OTU-s are shown. It is interesting to see how the most abundant OTU for 
Mothur, CROP and Swarm d=1 analysis all have the same representative se-
quence – sequence 131 which is based from an original sequence (from the se-
lection of 100 unique seed sequences) 470487 – Helicobacter canadensis. Sug-
gesting similarities in the OTU generating process. The Swarm d=4 has the 
most abundant OTU representative sequence as 14312 based on original seed 
sequence of 274316 Helicobacter hepaticus. In original mock set the seed se-
quence that was amplified the most was the sequence 11111417 – Pelomonas 
puraquae. 
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5.2. Differences in evaluated bacterial  
community structure  

The number of OTU-s obtained did not differ between sites for analyses using 
any clustering methods (Kruskal-Wallis test, p>0.05). The calculated Inverted 
Simpson’s diversity indices showed no difference between the studied sites 
(Kruskal–Wallis test, p > 0.05) in any sets of analyses. To visualize the 
differences between the studied sites according to the numbers of obtained 
OTUs, four-way Venn diagrams were created for each sets of analyses. These 
Venn diagrams can be seen in Figure 1. 
 

Figure 1. Unique and shared OTU-s by the sampling sites according to the results of 
different OTU clustering methods. Venn diagrams illustrate the OTU-s found in four 
different alder stands (Holvandi, Porijõgi, Sirgala, Songa). The diagrams are labeled 
such that A, B, C, D correspond to Mothur, CROP, UCLUST and Swarm clustering 
methods, respectively. 
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The total number of observed OTU-s was highest in Mothur based set with 
5143 OTU-s observed. The number of OTU-s observed was 4752 for Swarm 
based set, 3437 for UCLUST based set, and 2788 for CROP based set. The 
percentage of OTU-s unique to stands was highest in UCLUST based set – 
63.4 % of sequences were not shared between the stands. This percentage was 
51.4 in Mothur based set, 37.9 in CROP based set and 25.5 in Swarm based set. 
The percentage of OTU-s shared by all stands was highest in CROP based set – 
16.5% of all OTU-s were shared between all stands. This percentage was 15.0 
for UCLUST based set, 9.1 for Mothur based set and 4.3 for Swarm based set. 
The proportions of OTU-s shared by all stands were statistically dependent on 
clustering methods used (Fisher's exact test – p<0.001) the same applies to the 
proportions of unique OTU-s (Fischer's exact test – p<0.001). The removal of 
singletons seems to mostly have affected the OTU-s that were unique – in 
comparison compare in 2012 Mothur based analysis over 71% of sequences 
were unique between the stands.  

The overall OTU numbers and IS indices were found to be significantly 
different between different clustering approaches by the means of repeated 
measures ANOVA (p<0.001 in both cases). The results from post-hoc tests are 
depicted in Table 3. 

While the PERMANOVA analysis found that the communities of the stands 
are statistically different (p<0.01) for the Mothur based analysis in Publication 
I, for the current tests there was no statistically significant difference between 
the stands in any of the four sets of analyses. Similar to the Publication I there 
were no significant differences in multivariate dispersions between the four 
studied stands (p > 0.05). The loss of statistically significant differences 
between the stands for Mothur based set should be accounted for the removal of 
singleton OTU-s. 

CADM analysis showed Bray-Curtis distance matrices acquired for different 
sets of analyses were highly congruent (Kendalls coefficient of concordance W 
=0.94, permutational probability calculated by 10000 permutations p<0.001). 
Mantel tests were also conducted between the Bray-Curtis distance matrices 
from different sets. According to the Mantel tests the Swarm set of analyses 
produced a Bray-Curtis dissimilarity matrix that compared to any other matrices 
produced less similarities than any other two-way comparison (Table 4). 
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The same Bray-Curtis distance matrices were also used in principal coordinate 
analyses – the results of can be seen in Figure 2. Obtained PCoA plots indicate 
that the general sample placement remains quite similar no matter the clustering 
method. The biggest visual difference being again the Swarm method result.  
 
 

Table 3. Results from paired t-tests on OTU numbers (Sobs) and IS indices acquired by 
analysing OTU data produced by different OTU clustering methods. Shown are the 
(Holm-Bonferroni corrected) p-values for each possible pairwise combination.  
 

Sobs Mothur CROP UCLUST 
Mothur 
CROP 0.001 
UCLUST 0.093 0.001 
Swarm 0.001 0.037 0.0002 
IS indices    
Mothur 
CROP 0.001 
UCLUST 0.093 0.001 
Swarm 0.001 0.038 0.002 

 
 
Table 4. Mantel correlations, computed on rank-transformed distances. Distances were 
acquired from Bray-Curtis distance matrices based on OTU data gathered using 
different OTU clustering method on same samples. Correlations shown are Pearson 
correlations on rank transformed variables A.K.A Spearman correlations. Also Kendall's 
coefficient of concordance, W = 0.94 – was calculated for the set. Holm-Bonferroni 
corrected permutational p-values for all coefficients were p<0.001. Tests were carried 
out using 10,000 permutations. 
 

Spearman correlations Mothur CROP UCLUST Swarm 
Mothur 1 0.98 0.99 0.85 
CROP 0.98 1 0.98 0.83 
UCLUST 0.99 0.98 1 0.84 
Swarm 0.85 0.83 0.84 1 
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Figure 2. Ordination plots produced by principal coordinate analyses on Bray-Curtis 
distance matrices. Shown are the results of four PCoA each based on OTU data acquired 
by different clustering method. A, B, C, D correspond to Mothur, CROP, UCLUST and 
Swarm clustering methods, respectively. The samples belonging to same test site (Hol-
vandi, Porijõgi, Sirgala, Songa) are surrounded by continuous line. 
 
 
The networks acquired by MENAP are presented in Figure 3. It is to be 
remembered that modules sized less than 5 OTU-s are removed from the figure 
and any further analyses. The network acquired by using MENAP on Swarm 
clustered OTU abundance table stands out among others by having all modules 
moderately small and similar in sizes with sparse interconnections – while in 
figures depicting the results for analyses after other clustering methods there 
exists always at least a few modules that compared to others are large in size 
and have many interconnections with other modules. 
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The sparser network observed in the case of Swarm analysis might at least 
partially be explained by the fact that Swarm generated OTU-s that were quite 
often present only in one or few samples. Therefore the step in MENAP where 
we removed OTU-s that were not present in at least 5 samples had the most 
impact on Swarm analysis. The topological parameters of acquired networks are 
shown in Table 5. 

 

A

B
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Figure 3. Plots of networks constructed using Molecular Ecological Network Analyses 
Pipeline on the OTU-data that was acquired for same samples by different OTU 
clustering methods. The networks are labeled such that A, B, C, D correspond to 
Mothur, CROP, UCLUST and Swarm clustering methods, respectively. The color 
legend available at 3A applies to every network. 

C

D
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5.3. Differences in relationships between bacterial 
community structures and site-specific characteristics 

Distance-based regression analysis was applied to identify soil variables that ex-
plain significant amounts of variation in bacterial community structure. For all 
sets of analyses pH and soil water content was related to bacterial community 
composition as shown in Table 6. 
 
 
Table 6. Soil variables that explain significant amounts of variation in bacterial com-
munity structure. Distance based linear regression analyses results on Bray-Curtis 
distance matrices using soil chemical parameters as explanatory variables. Variables 
inserted into the forward selection using DISTLM analysis were water content (%), 
pHKCl, total nitrogen (%), phosphorus (mg/Kg, ammonium lactate extractable) and the 
amount of organic matter (based on LOI – loss on ignition). The table is formatted as 
following – following each clustering method the values included in final model are 
depicted with the percentage of variation explained levels for each variable included 
after all model terms a p-value level for the whole model is depicted. 
 
Method Soil variables Variation explained (%) 

Mothur pH 22.9%, Dry weight 8.2% (<0.001) 31.1 

CROP pH 25.9%, Dry weight 8.8% (<0.001) 34.7 

UCLUST pH 23%, Dry weight 8.3% (<0.001) 31.3 

Swarm pH 10.7%, Dry weight 6.2% (<0.001) 16.9 
 
 
When soil elemental concentrations were used in stepwise regression analysis 
as explanatory variables, the concentration values of boron and cadmium were 
included in the model for all sets of analyses, and with the exception of Swarm 
based sets also aluminium and iron. Swarm was also only set which had a 
model including copper as show in Table 7. 
 
 
Table 7. Metallic element concentrations that explain significant amounts of variation in 
bacterial community structure. DISTLM analyses. Variables used were elemental 
concentrations of Al, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb and Zn. 
 

Method Metals Variation explained (%) 

Mothur B 14.1%, Cd 13.2%, Al 7.4%, Fe 6.3% (<0.001) 40.9 

CROP B 15.3%, Cd 14%, Al 6.9%, Fe 7% (<0.001) 43.4 

UCLUST B 14.1%, Cd 13.1%, Al 7.7%, Fe 6% (<0.001) 41.1 

Swarm B 8.2%, Cd 7.9%, Cu 6.6% (<0.001) 22.7 
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5.4. Beta diversity results according to  
OTU clustering independent analysis  

The term beta diversity has been used to refer to a wide variety of phenomena. 
Although all of these encompass some kind of compositional heterogeneity 
between places, many are not related to each other in any predictable way (Tuo-
misto 2010). 

When looking at PCoA plots produced on the Kantorovich-Rubenstein 
distance matrix between the samples from all three publications (Figure 4) – it 
becomes visible how different the samples from Publication I are compared to 
the others. Reasons for these samples clustering together far from others is most 
likely caused by the different amplicons and/or sequencing platforms used in 
Publication I as compared to others.  

It can be seen that although all the soil samples of Publication II were col-
lected inside Estonia the same as Publication I on this PCoA they tend to be 
position much closer to Publication III samples, which were taken from a much 
wider set of geographical locations: including also Estonia, but also UK, Fin-
land and Russia.  

The description of V2 and partly V3 hyper-variable region of the 16S rRNA 
used in Publication I and its amplification and further sequencing on 454 plat-
form is already provided in the Materials and methods section of this article. In 
Publications II and III the L-V6 and R-V6 primers (Gloor et al. 2010) were used 
to amplify the bacteria-specific V6 hyper variable region of the 16S rRNA. The 
sequencing in these cases was done using Illumina HiSeq 2000. 

Figure 5 shows a PCoA plots where the soil samples used come only from 
the Publications II and III). This plot indicates that in the case of the same 
amplicon the OTU clustering irrelevant analysis is a viable way to compare 
samples. In case of Figure 6 we can even observe similarities to the groupings 
produced in the case of OTU based strategies (Figure 2). 
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Figure 4. Ordination plot of PCoA based on Kantorovich-Rubenstein matrix. PCoA 
was produced from Kantorovich-Rubenstein distances calculated from phylogenetic 
placements. Placements were produced on samples from three datasets – green points 
denote samples from (Preem et al., 2012), red points samples from (Truu et al., 2017) 
and green points samples from (Ostonen et al., 2017) 

 
Figure 5. Ordination plots of PCoA based on Kantorovich-Rubenstein distance 
matrices. PCoA was produced from Kantorovich-Rubenstein distances calculated from 
phylogenetic placements. Placements were produced on samples from several datasets – 
colored points denote samples from (Truu et al., 2017) uncolored points with labels 
denote samples from (Ostonen et al., 2017). Plot A contains PCoA that is produced from 
bulk soil samples, and plot B a PCOA produced from rhizosphere samples. Green points 
denote samples from control plots and blue ones humidified plots 

Axis1 (25.8%) 

Ax
is

2 
(3

.4
%

)

B.

axis 1 (36.9%)

ax
is

 2
 (1

5.
6%

)

A.

ax
is

 2
 (8

.8
%

)

axis 1 (53.8%)



 

40 

Figure 6. Ordination plot of PCoA based on Kantorovich-Rubenstein distance matrices. 
PCoA was produced from Kantorovich-Rubenstein distances calculated from 
phylogenetic placements. Placements were produced on samples from Publication I. 
This provides an alternative to OTU based analyses as depicted in Figure 2. 
 
 
 

5.5. Comparison of clustering methods  
While the composition and classification of OTU-s acquired by different OUT 
clustering methods can vary quite a lot the Kruskal-Wallis tests show that OTU 
numbers do not differ significantly between sites in any analysis, and most of 
the ecological conclusions acquired on the OTU datasets remain quite similar. 

The estimation of overall similarity between bacterial communities seems to 
be similar among the different OTU clustering methods as proven by high 
congruency of Bray-Curtis distance matrices in CADM a test that has shown to 
have good performance for comparisons like this (Campbell et al. 2011). This 
similarity is also illustrated neatly in Figure 2. Showing that the distances 
between samples based on the OTU data remain similar in spite of different 
methods. The fact that that samples taken from the same region cluster together 
serves as a positive sanity check. 

According to the Mantel test on distance matrices the most distant matrix 
from the others is the SWARM based one. The Swarm based analysis tends to 
also produce the most different biological conclusions compared to other 
clustering methods. So the SWARM algorithms ability to represent correct 
ecological/biological foundation compared to other methods comes to question. 
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It should be then taken into account that for processing OTU data gathered 
from current OTU clustering methods more robust statistical methods and ana-
lyses are preferable. For instance, PCoA, CADM and Kruskal-Wallis tests of 
OTU numbers and IS show similar output in case of different clustering 
methods used whereas analysis such as MENAP produces substantially diffe-
rent results. 

The results of application of different clustering methods for the analysis of 
mock community data casts the clustering methods in worse light. Considering 
that the dataset of unique sequences was amplified/replicated by adding minor 
deviations (sequencing errors according to Balzer et al. (2011) model) from 
unique sequences so that the proportions of sequences derived from originals 
follow a pre-set distribution of copy numbers – the clustering method should 
cluster the sequences originating from original dataset into OTU-s following 
similar distribution.  

The distributions of OTU-s garnered by clustering do not resemble the distri-
bution in the mock set which sets their validity to doubt. The other possibility is 
the need for a more refined mock community generation method so that the 
process of adding deviations to the original seed sequence would follow more 
closely evolutional models or to create in addition to in silico mock communi-
ties mock communities – though that would be a resource intensive endeavor. 

There is still some similarities in the OTU clustering methods in that all 
methods (with the exception of Swarm analysis where distance value was set to 
4 nucleotides) have the same representative sequence for the largest OTU. 
Though this is not the sequence that is amplified the most in actual mock com-
munity. 

PCoA plots acquired from OTU independent analysis behave in readily 
explainable manner and can be said to pass some sanity checks: we can deter-
mine from Figure 5 how samples collected at Alatskivi and Erastvere sites 
(ala32 and era55) in Estonia (samples from (Publication III) group closer to the 
blue-green marked samples that are all collected in FAHM facility (Publication 
II) in Estonia compared to other named sites from more distant geographical 
locations.  

In Figure 5 the samples from Publication I cluster farther from the samples 
from other publications. This can be expected as it uses different 16S rDNA 
region and sequencing platform compared to others. Taking this on account, the 
look at the Figure 6 which is a PCoA on samples from Publication I similar to 
the PCoA plots in Figure 2, shows samples grouping into groups by site in an 
overall similar manner to OTU based analyses, although OTU based methods 
have a stronger separation of sites. The overall appearance of the plots is rather 
similar though the OTU independent analysis is still most dissimilar from others 
just after the SWARM based method. 

The overall similarities in OTU based analysis and OTU-independent ana-
lysis support each-other  

In case of different OTU clustering methods the Swarm analysis stands out 
as most different from others also could be said to be most un-trustworthy. The 
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basic assumption of Swarm methodology gives for an elegant basis for a 
computationally efficient clustering algorithm but should be investigated more. 
It seems instinctually make sense that evolutionary processes proceed stepwise 
to form a cluster of related/similar progeny centered around an ancestor – but 
how well can we assume that the ancestors and progenies are to our comfort 
represented in environmental samples in a neat enough chains with no lacking 
intermediates causing major gaps. The exact nature of mutations that cause the 
generation of new sequences is something that would also affect the algorithm 
especially the selection of suitable k parameter. The troubles of choosing ade-
quate parameter k for programs run are demonstrated in the mock community 
analysis.  

Mothur based analysis although not providing as different results as others 
but the simple average-neighbor clustering algorithm based on distance matrix 
and the generation of such distance matrix would be prohibitively computa-
tionally expensive for larger datasets. As of such UCLUST and CROP stand out 
as clustering methods of choice. 

The similarity of PCoA plots alongside to the fact that they look as expected 
lends also support to this as a highly robust one (the suitability for ordination 
methods for different tasks has been disputed and discussed such as (Minchin 
1987; Ruokolainen and Salo 2006) but in our case PCoA produces verifiably 
“sane” results). The thesis demonstrates the benefits of robust methods such as 
this – which are able to work consistently even with some differences that are 
produced by different clustering methods. On the other hand, network analysis 
results obtained with MENAP shows itself as highly sensitive to such diffe-
rences and its results therefore are suspect.  
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6. CONCLUSIONS 

Different clustering methods will mostly reach the same ecological conclusions 
for the same dataset. The biggest differences generated from others come from 
SWARM method.  

OTU clustering independent analysis results being similar to those acquired 
from clustering based strengthens the idea that all these methods are capable of 
accessing ecologically meaningful patterns in bacterial communities. 

As a recommendation, UCLUST and CROP methods stand out while 
SWARM which produces most different results from the consensus elicits some 
doubt. Mothur clustering method which produces comparable results to others, 
will experience quickly growing needs for computational resources for larger 
datasets so its usability will be more limited in this regard. 

MENAP networks show up radically different for each OUT clustering 
method – this seems to show more of an issue with the MENAP methodology 
being overly sensitive. The thesis shows the practicality of using robust data 
analysis methods when dealing with OTU data acquired by clustering.  

All OTU clustering methods fail to satisfactorily reproduce the build of 
mock community – it might stand that this part of analysis should require a 
revisit – a experiment with better mock community generation protocol and 
more complex mock community. 
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SUMMARY IN ESTONIAN 

Amplikoni põhine metsamuldade  
bakterikoosluse analüüs 

Muld, olles paljude ökoloogiliste protsesside keskmes, on arusaadavalt pärinud 
tähelepanu ja uurimist mitmest vallast. Muldade rikkalike mikrobioomide uuri-
mist on siiani takistanud tõsiasi, et enamik mulla mikroobe on kultiveerimatud. 
Seda kitsaskohta aitab leevendada metagenoomika, mis tähistab uurimistööd 
otse keskkonnaproovidest eraldatud geneetilise materjaliga. Selline lähenemine 
võimaldab uurida ka kultiveerimatuid mikroobe. 

Publikatsioonid, millel käesolev töö põhineb, käsitlesid peamiselt metsa-
muldade mikrobioome ning lisaks mõningal määral ka taimede mikrobioome 
(täpsemalt risosfääri kooslusi). Publikatsioonides kasutati 16S rDNA amplikoni 
põhiseid metagenoomilisi meetodeid mulla mikrobioomi kirjeldamiseks. 

Selliste andmete kasutamiseks on levinud meetodid, mille abil grupeeritakse 
(klasterdatakse) kogutud DNA järjestused ad-hoc taksonoomilistesse üksustesse 
nn. OTU-desse (Operational Taxonomic Unit). Nii võib OTU-desse 
klasterdatud järjestusi kasutades hinnata bakterikoosluste mitmekesisust ja lii-
gilist koostist. Saadud OTU-de arvukuse numbreid saab kasutada mitmesugus-
tes erinevates analüüsides kui asendajaid konventsionaalsematele taksonoomi-
listele üksustele. Niisama kiire, kui on olnud uute sekveneerimistehnoloogiate 
areng, on ka olnud uute tööriistade arvu kasv – viimase kümnendi jooksul on 
loodud hulk programme, mis on mõeldud eelpoolmainitud OTU-de moodusta-
miseks DNA järjestuste andmetest. 

Käesolev töö keskendub sellele, kuidas mõjutavad erinevad OTU loomise 
meetodid edasist andmeanalüüsi ning lõplikke järeldusi. Selleks kasutati 
järjestusandmeid artiklist “Bacterial community structure and its relationship to 
soil physico-chemical characteristics in alder stands with different management 
histories” (originaalartikkel I) ning erinevaid OTU klasterdamise meetodeid. 

OTU-d loodi Mothuri, UCLUST, CROP ja Swarm algoritmide abil – seejärel 
viidi läbi koosluste erinevad statistilised analüüsid. Paremaks OTU 
klasterdamismeetodite võrdluseks loodi ka in silico bakterikooslus, mida käsit-
leti samal viisil kui artikkel I järjestusandmeid. Võrdluseks viidi läbi OTU 
klasterdamisest sõltumatuks analüüs, mis kujutas endast mitmemõõtmelist ana-
lüüsi järjestuste fülogeneetilistest paigutustest arvutatud Kantorovich-
Rubenstein kauguste põhjal. Sellesse analüüsi oli täiendavateks võrdlusteks 
lisaks kaasatud ka originaalartiklite II ja III andmed. 

Erinevate meetoditega saadud OTU andmete analüüs andis üldjoontes sama-
suguseid tulemusi. Seda visualiseerivad hästi töös olevad mitmemõõtmelise 
analüüsi joonised. Kuigi proovikohtade OTUde arvud ja mitmekesisusindeksid 
olid meetodite vahel erinevad, siis statistilised testid iga meetodi siseselt viisid 
samale järelduse, et proovikohad üksteiset ei erine OTU arvu ja mitmekesisus-
indeksite poolest. Samuti olid sarnased regressioonanalüüside tulemused. Teis-
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test erinevaimad olid SWARM meetodiga läbi viidud analüüside tulemused. Eri 
meetodite abil saadud OTU-de alusel loodud Bray-Curtis kaugusmaatriksid olid 
CADM analüüsi alusel tugevalt kongruentsed. Kõige erinevam maatriks oli 
Mantel testi alusel jällegi SWARM meetodi tulem. 

OTU klasterdamise vaba analüüsi tulemused kinnitasid eri 
klasterdamismeetoditega saadud analüüsi tulemusi, kuid in silico koosluse pu-
hul koosluses esialgselt olnud sünteetiliste liikide sagedusi ei suutnud korrekt-
selt taastada ükski klasterdamismeetod – selle taga võivad olla ka probleemid in 
silico koosluse valmistamisel. 

Arvestades, et kõige rohkem erinevusi andmeanalüüsi tulemustes kaasnes 
SWARM meetodi kasutamisega ning Mothuri kaugusmaatrikseid kasutav 
klasterdamismeetod on suuremate andmehulkade kasutamisel piiratud, jäävad 
antud töö tulemusena soovitusena sõelale CROP ja UCLUST meetodid. 

Lisaks peab ka mainima, et kui eri klasterdamismeetoditega loodud OTU 
tabelite analüüsid andsid samasuguseid tulemusi OTU numbrite, OTU alusel 
loodud kaugusmaatriksitele tehtud ordinatsioonidele ning neile tehtud lineaarse-
tele regressioonidele keskkonnanäitajatele, siis MENAP võrgustikuanalüüs 
andis eri meetodite puhul drastiliselt erinevaid tulemusi – see näitab robustse-
mate meetodite kasulikkust OTU andmete analüüsil. 
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