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Abstract

The aim of this paper is to find out whether and in which circumstances information about

tax  arrears enables to predict  permanent insolvency with higher accuracy than financial

ratios. Data consisted of 1093 and 2586 non-failed Estonian SMEs from the period of 2015

to 2017 and logistic regression was used as the predictive method. In total, five models

were composed – one for financial ratios and others based on tax arrears from different

periods  with  a  length  of  12  months.  The  results  confirm  that  using  tax  arrears  as

explanatory variables substantially improves prediction accuracy. Usage of tax arrears in

failure prediction resolves the issue of information asymmetry, i.e. when poorly performing

firms fail to submit annual report(s). The novelty of this paper lies in the fact that when

other forms of payment disturbances have been previously analyzed, tax arrears have not

been previously used in forecasting studies.

Keywords: failure prediction, tax arrears, payment behavior, permanent insolvency, logistic 

regression

CERCS: S181, S190, S192
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1. Introduction

Failure prediction is an important field for evaluating risk in business decision-making.

Failure prediction is  especially important  and widely used in banking and the financial

sector  for  credit  risk analysis.  In addition,  forecasting corporate  failure holds  value for

investors, trade partners and tax authorities. First studies in failure prediction date back to

the 1960s – Beaver (1966) and Altman (1968) used linear statistical tools to determine the

state  of  a  firm.  In the 1980s,  Ohlson (1980) introduced a  non-linear  model  of  logistic

regression to bankruptcy prediction. Since the 1990s, artificial intelligence and machine

learning  tools  have  been  more  popular  in  failure  prediction  than  statistical  techniques,

though they are often outperformed by latter in accuracy (Ravi & Kumar, 2006; Alaka et

al.,  2018;  Sun et  al.,  2014;  Altman et  al.,  2017). So far,  no single  best  tool  has  been

developed that would always outperform others – each has its strengths and weaknesses.

Ensemble  and hybrid  models  are  the  newest  techniques  in  failure  prediction  that  yield

better results than single-models (Sun  et al., 2014). New techniques in failure prediction

fall under machine learning (e.g. pattern recognition models), but their usage in practice is

often limited by legal constraints due to low transparency (Jayasekera, 2018).

In prior studies, failure has been mainly defined (Ciampi et al., 2020; Karan et al., 2013;

Laitinen, 2011; Back, 2005) as a (court declared) permanent insolvency1, also known as

bankruptcy2,  which  does  not  incorporate  de  facto permanent  insolvency.  In  this  study,

permanent insolvency is used as a term to describe firms that cannot and do not repay their

debts. Knowing firm’s state of permanent insolvency as early as possible is often crucial to

avoid losses;  hence,  forecasting  the  de  facto permanent  insolvency  (i.e.  out  of  court

insolvency)  is  more  practical  than  using  de  jure  permanent  insolvency.  While  de  jure

1 Often defined by “start  of insolvency proceedings” or  “payment defaults (overdue 90 days)”,  mostly
dependent on a specific countries Commercial Code.

2 Bankruptcy is a form of failure which means  de jure permanent insolvency,  i.e.  firms who go through
formal process of insolvency proceeding. In this paper, de facto permanent insolvency is the subject under
research, i.e. firms with tax arrears, who do not go through process of insolvency proceedings.
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permanent insolvency as a dependent variable is factual, it takes careful consideration of an

extra set of rules and thresholds to correctly classify firms de facto permanent insolvency.

The Estonian practice in  commercial  register  allows to  delay the submission of  annual

report(s) up to six months, after which a warning is issued. It is common practice for firms

to  legally  delay  the  filing  of  an  annual  report up  to  six  months  without  penalties.

Consequently, the newest data available about the going concern firms can be up to 1.5

years old. Moreover, many firms in risk of insolvency deliberately do not publish financial

statements (Lukason, 2013). According to the Estonian Commercial Code3, after the first

warning,  firms have another  six  months  to  file  a  missing annual  report;  if  they fail  to

comply  with  the  injunction,  court  will  initiate  a  compulsory  liquidation  (i.e.  forced

termination) that will end with deletion of firm from the commercial register. 

With regard to permanently insolvent firms, newest available data can be at  least  three

years old, but often due to the legal processing time of a firm’s compulsory liquidation, data

availability extends up to four years. When it comes to SMEs, their last financial data does

not often indicate any distress in the firm (Lukason, 2016). Therefore, variables based on

financial data have shortcomings mainly due to financial data being expired – they do not

represent  the  up-to-date  state  of  firms’ financial  position.  For  that  reason,  it  has  been

suggested that secondary variables combined with financial data be used, which could yield

higher prediction accuracies for failed firms or determine early warning signs (Laitinen &

Lukason, 2019).

Up to now, financial  ratios  have been and are still  the most  used variables  to  forecast

failure.  Aside from financial  ratios,  the importance of non-financial  variables  have also

been  emphasized  –  macroeconomic;  corporate  governance;  industry,  sector  and  firm

specific; previous payment dynamics (Altman  et al., 2015; Dimitras et al., 1996). While

3 Process of compulsory liquidation, due to failure to submit annual report set in the Estonian Accounting
Act, that ends with court ruling on deletion of a company from the commercial register is laid out in
Commercial Code §60.
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payment behavior related variables have been used in just a few studies as independent

variables (Ciampi et al., 2020; Back, 2005; Karan et al., 2013; Laitinen, 2011), tax arrears4

have never been used in previous studies. Data on tax arrears is available throughout the

year for each month and therefore could offer solid ground to improve models based solely

on financial  variables.  Moreover,  their  importance  increases  when financial  data  is  not

available, which is common for firms facing a risk of insolvency. With availability of tax

arrears, shortcomings related to expired financial data are evened out.

The aim of this paper is to find out whether and in which circumstances information about

tax  arrears enables to predict  permanent insolvency with higher accuracy than financial

ratios.  Tax  arrears  are  used  to  compose  different  variables  for  four  periods  and  are

compared  with  financial  ratios  calculated  from  the  last  available  annual  report.  As

permanent insolvency, a specific group of firms, namely forcefully liquidated because of

not submitting annual report(s), are used. Permanently insolvent firms have been chosen

because it is common in Estonian practice that many firms who get terminated from the e-

Business Register, have tax arrears and never go through the formal process of bankruptcy

or liquidation. This study uses the Estonian permanently insolvent firms population data

from 2011 to 2017. The structure of the following article is: literature overview covering

the  theoretical  background  on  variable(s)  and  method  selection;  data  and  methods

explaining  the empirical  work that  was carried  out;  results  and discussion  followed by

concluding remarks.

2. Literature overview
   
2.1. Variables used in failure prediction studies

Choosing explanatory variables is one of the first tasks in research design for forecasting

firms’ failure. Financial ratios have been and still are the most popular variables used in

forecasting studies. Choice of the dimension of variables is mostly subjective and limited to

4 i.e. unpaid tax debt due
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availability of data or sample specific, while selection is done based on previous academic

literature  or  by  statistical  techniques.  Financial  variables  are  mostly  chosen from three

categories:  solvency,  liquidity  and  profitability,  as  these  are  best  indicators  of  firms’

financial  health.  Artificial  intelligence tools have become more popular in  the past two

decades and due to the fact that these tools mostly do not require prior selection of variables

(all-inclusive is the default practice), not many reviews on selection of variables have been

written lately. Majority of reviews concentrate  on comparisons of different methods and

models accuracies.

There are comprehensive reviews written on variables used in previous corporate failure

prediction studies (Ravi & Kumar, 2006; Dimitrias  et al.,  1996; Bellovary  et al.,  2007;

Altman & Narayanan, 1996). These reviews incorporate failure prediction studies from the

1930s  up  to  2007.  The  most  extensive  comparison  (165  studies)  was  carried  out  by

Bellovary et al. (2007), while other reviews compare around 40 to 60 studies. Reviews by

Bellovary et al. (2007) and by Ravi & Kumar (2006) have been chosen for comparison of

financial ratios used in previous studies, which can be seen in Table 1. These reviews cover

studies from a broad period and include financial and non-financial firms across different

sectors  and are not  subject  to  a specific  country or region.  Bellovary  et  al. (2007) put

stronger  emphasis  on  older  studies  based  on  univariate  and  multivariate  discriminant

analysis tools, while Ravi & Kumar (2006) used more newer studies after the 1980s that

include various statistical and intelligent techniques.

The variety of financial ratios used is large, but most studies stick to specific variables that

describe profitability, short-term and long-term financial health of firms. Comparison of

reviews reveal that profitability ratio in the form of EBIT to total assets or net income to

total  assets  is  most  popular  in  previous  studies.  In  addition,  it  draws out  that  liquidity

category variables are most frequent in forecasting studies, but used in different forms. The

popularity of liquidity ratios can be accounted to the fact that a forecast horizon of one year

is  dominant  in  forecasting  studies.  Liquidity  ratios  are  followed  by  financial  structure
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whereby their importance should increase with a longer forecast horizon. From turnover

ratios, only sales to total assets has been used moderately in previous studies. From Table 1

it concludes that Bellovary et al. (2007) and Ravi & Kumar (2006) have reached similar

results with popular financial variables used in previous studies.

Table 1. Comparison of reviews on financial ratios used in failure forecasting studies (composed by

author)

Note: Category of domain is based on du Jardin’s (2017) classification. Marginal variations among financial

ratio calculations exist.

Aside  from  financial  data,  non-financial  variables  have  gained  increasing  popularity.

Drawbacks in default predictions based solely on financial ratios, especially among SMEs,

due  to  the  lack  of  accounting  data  availability,  can  be  overcome  with  non-financial

variables, which leads to significant improvement in default prediction accuracy (Ciampi,

2015;  Lukason  &  Laitinen,  2019).  Under  non-financial  data  are  classified  corporate

governance, sector and firm specific, macroeconomic, relational data and previous payment

behavior  related data.  Previous payment behavior related variables  have been used only in
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 Kumar & Ravi (2007)

Years 1930-2007 1968-2005
number of studies 165 62

Domain Rank No. of studies Rank No. of studies

Profitability 1 89 1 39

Financial structure 2 62 3 25

current assets/current liabilities Liquidity 3 51 2 30
working capital/total assets Liquidity 4 45 4 23
sales/total assets Turnover 5 32 5 18
quick assets/current liabilities Liquidity 6 30 6 16
quick assets/total assets Liquidity 7 29 8 10
current assets/total assets Liquidity 8 26 7 11
current liabilities/total assets Financial structure 9 13 10 6
cash flow/total debt Solvency 10 12 9 8

Bellovary, Giacomino,  
Akers (2007)

EBIT/total assets &                   
net income/total assets
total equity/total assets &           
total debt/total assets



Table 2. Comparison of related studies with payment behavior variables (composed by author)

7

Back (2005) Laitinen (2011)

Research question

Country  Italy Finland Turkey Finland
Sector Manufacturing Randomized Retailers Randomized
Data(set) years 2005-2015 1997 2006 2004

Methods Logistic regression

Variables

Selected financial ratios

Bank loans/turnover Total debt/total assets Return on investment

Return on investment Quick ratio

EBIT/turnover Equity ratio

Interest expense/EBITDA Cash flow to sales

Total debt/total purchase

Models

Forecasting period 1- ,2- ,3-year 1-year 6-months 1-year

Research results

Ciampi et al. (2020) Karan et al. (2013)

The study aims to verify 
the potential of combining 
corporate prior payment 
behavior and Kohonen 

maps for small enterprise 
default prediction.

The purpose of this study 
is to investigate if non-

financial variables affect 
the probability of financial 

difficulties in small and 
medium sized firms.

The main objective of this 
study is  to develop credit 

risk prediction models 
using massive payment 

history data and non- 
financial factors of the 

retailer companies.

The purpose of this study 
is to develop a model for 

viability based on financial 
variables but also on non-

financial variables.

Sample size and 
method

Training sample of 1200 
SME-s. Test sample of 800 

firms (stratified random 
sampling by turnover, 
location and business 

sector)

Estimation sample of 1600 
firms and holdout sample 

1599 firms (randomly 
selected from 5 categories 

of firms)

Training sample of 1260 
and testing sample of 5404 

companies (randomly 
categorized from pool of 

6304)

Estimation sample of 
43732 firms and testing 
sample of 15853 firms 

(randomly categorized from 
sample chosen by viability 
and bankruptcy measures)

Logistic regression (LR), 
discrete-time hazard 
analysis (DT), self 

organizing map-based 
trajectories (TBM)

Multinomial logistic 
regression

Logistic regression, 
multiple criteria decision 

analysis

Financial ratios (FR), prior 
payment behavior (PB)

Financial ratios, non-
financial variables

Payment history data, firm-
specific non-financial 

information

Financial ratios, non-
financial variables

Net financial 
position/turnover

Selected payment 
behavior related 
variables

Past due and/or overdrawn 
exposures for more than 60 
days (binary)

Payment disturbance < 1 
year (binary)

Number of late paid 
invoices/total number of 
invoices

Log number of active 
delays in payment

Past due and/or overdrawn 
exposures for more than 60 
days/EBITDA

payment disturbance > 1 
year (binary)

Sum of early paid days 
before payment date

Log number of payment 
defaults during last 12 
months

Number of cumulative non-
remedied payment delays 
exceeding 60 days

1-2 payment delays 
(binary)

Standard deviation of time 
between invoices

Log number of active 
positive payment signals

3+ payment delays (binary) 

2 categories of models for 
each method, based on 

financial ratios and 
financial ratios combined 
with payment behavior-

related variables

3 models based on 
financial ratios, not-

financial variables and both 
combined

1 model based on firm 
specific factors and 

payment history

2 models based on 
financial variables and 

financial variables with non-
financial variables

Forecasting accuracy 
(test and control)

For 1-year: LR/FR 80.87%, 
DT/FR 80.97%, TBM/FR 

82.64%, 1-year LR/FR+PB 
81.99%, DT/FR+PB 

81.98%, TBM/FR+PB 
85.73%

Financial ratio model 
72.32%, Non-financial 

model 86.02%, Combined 
model 85.08%

Model based on multiple 
criteria 90%, Model based 

on logistic regression 
98.89%

Financial variable model 
63%, combined model 

89.2%

Trajectory based models 
are more effective than 

logistic and hazard models. 
Payment behavior related 

variables significantly 
increase default prediction, 

when added to financial 
ratios.

Payment disturbances 
occurring before the 

analyzed period 
significantly increase the 

probability of financial 
difficulties. Model based on 
non-financial variables had 
higher classifying percent 

than model based on 
financial variables.

Models based on previous 
payment history offer equal 
prediction ability compared 
with previous results from 

1965 to 2007.

Non-financial variables 
bring incremental 

information for viability 
assessment over financial 

ratios. Non-financial 
variables include more 

updated information. They 
also refer to background 
and payment behavior of 

firm neglected by financial 
variables



some studies  (Ciampi et al., 2020; Back, 2005; Karan  et al., 2013; Laitinen, 2011), but

specifically tax arrears as independent variables have never been used. Höglund (2017) has

used genetic algorithm to predict tax defaults as a dependent variable. Full comparison of

relevant studies using previous payment behavior related explanatory variables is visible in

Table 2.

2.2. Payment behavior variables

While many non-financial variables about SMEs may not be available, different types of

payment defaults in some form (unpaid loans, wages, services, goods; filing history; tax

arrears)  are  mostly  accessible. Studies  in  comparison  have  not  used  tax  arrears  as

explanatory variables, but private late payments, invoices and unpaid loans have been used

instead of tax payment disturbances. These studies (Table 2) confirm that payment behavior

related variables are statistically significant and increase default prediction accuracy when

combined with financial information. In Back’s (2005) study, model based on non-financial

variables outperformed financial ratio model and combined model achieving 86% accuracy.

Laitinen (2011) compared the financial ratio model with the combined model resulting in

89.2% accuracy against  63%. Karan  et  al. (2013)  used payment  history  data  and non-

financial information to forecast a 6-month horizon reaching 98.9% accuracy. Only Ciampi

et al. (2020) found small marginal improvement in prediction power with payment behavior

related variables.

Payment behavior related variables selected in the model were often in binary form, i.e. if

payment disturbance exceeded a certain time limit or the number of disturbances (or late

payments) exceeded a threshold. Ciampi  et al. (2020) used 60 days as a threshold, while

Laitinen (2011) and Back (2005) used a one year time frame. All studies in the comparison

have included logistic regression as one of the methods to analyze data with a forecasting

period varying from six months to three years. In conclusion, Back (2005) has found that

models incorporating non-financial variables offer higher classifying accuracy than models
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only based on financial data. Laitinen (2011) has reached a similar conclusion, adding that

non-financial variables hold more up-to-date information about firms. The most general and

important  conclusion  is  that  payment  behavior  related  variables  and  previous  payment

history data significantly increases forecasting accuracy.

In Estonia, poorly performing firms (low liquidity and profitability) systematically delay

the submission of annual  report(s),  which leads to  information asymmetry (Lukason &

Camacho-Miňano, 2019) and therefore using secondary variables combined with or instead

of financial variables is required for up-to-date information about the firm. Tax arrears are

preferred over other forms of payment disturbances because they are available in the full

extent, while defaults to private creditors and payment disturbances are mostly accessible in

a limited amount. Hence, tax arrears should yield higher prediction power.

2.3. Technique selection

After selecting variable class(es), choosing a classification tool is the next step in research

design. Tools used in failure prediction are categorized as statistical or artificial intelligence

tools. Among the most popular statistical tools are logistic regression (LR) and multivariate

discriminant analysis (MDA) (Alaka et al., 2018; Ravi & Kumar, 2006). Among artificial

intelligent tools, most popular are support vector machines (SVM), artificial neural network

(ANN),  rough  sets  (RS),  case  based  reasoning  (CBR),  decision  tree  (DT)  and  genetic

algorithm (GA) (Alaka et al., 2018, Ravi & Kumar, 2006). Though MDA has been the most

used tool up to now, its popularity comes from earlier times. The variety of tools to choose

from is higher than ever, yet in recent decades ANN and LR stand out as the most used

techniques to forecast corporate failure (Alaka et al., 2018;  Balcaen, S., Ooghe, H. 2006;

Ravi & Kumar, 2006). Ensemble and hybrid models with visual techniques have been new

innovations in failure prediction.

Alaka et al. (2018) found that the  choice of tool is often based on popularity and is not

based on criteria they should satisfy nor limitations imposed by data and sample. With the
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increase of the forecasting horizon, the accuracy of the models declines; the effect of time

on information value and thereby on the accuracy of the models has been analyzed by du

Jardin (2017).  When  machine learning tools and ensemble models outperform traditional

tools  in  short-term prediction,  they  do not  in  past  a  3-year  horizon  (du  Jardin,  2017).

Considering the fact that in decision-making, intelligent tools’ results are not interpretable

and they may lead to different solutions in repeated runs, traditional tools are still held in

high  regard  in  practice  (du  Jardin,  2017;  Alaka  et  al.,  2018).  For  this  study,  logistic

regression has been chosen as the statistical tool to analyze data. Logistic regression has

been  selected  for  the  transparency  of  its  results,  high  generalizability  and  reasonable

accuracy  compared  to  other  methods  (Alaka et  al.,  2018).  Furthermore  LR’s  fully

deterministic  binary  output  provides  coefficients  and  significances  to  variables,  which

enables direct comparison of different models.

3. Data & Method

Data on permanent insolvency cases of Estonian SMEs has been gathered from 2015 to

2017. A population of 1093 permanently insolvent firms has been deleted from commercial

register with tax arrears during this period due to failure to submit annual report(s). Years

2018 and 2019 have not been included due to heterogeneity with the data of previous years.

Since 2018, value added tax liability5 has been increased from 16 000 € to 40 000 €, but

availability of time-series data for 2018-2019 during the time of empirical work was not

complete nor sufficient for separate analysis. Latest available annual reports for the deleted

firms are from the period of 2011-2013. Hence a random sample of 25866 non-failing firms

have been chosen from the same period to match annual reports for comparison. 

All chosen firms for both groups were liable to pay value added tax during the period,

namely turnover above 16 000 €. Smaller firms have been excluded to keep the population

homogeneous due  to  possible  large  anomalies  in  financial  ratios  and lack  of  sufficient

5 Value-Added Tax Act § 19. Obligation to register as a taxable person.
6 Selected non-failed group sample was tested against a random sample of equal size and no significant.

difference between variance and means were detected.
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economic significance. Besides, firms with below 16 000 € turnover can’t have value added

tax debt. In addition, firms were constrained with having assets less than 2 000 000 € and

turnover less than 2 000 000 €. Table 3 shows the structure of primary data for failed and

non-failed firms, comparison between assets and turnover size in groups. Firms’ annual

reports and tax arrears data has been used to calculate independent variables. Tax arrears

data is in an accumulated form, majority of arrears are either social tax, income tax or value

added tax; in a lesser form it includes customs and excise duties.7 It is not reasonable to

differentiate between possible objects of tax as monetary obligations are performed in the

order they were created.8 Accumulated form of tax arrears at the end of each month assures

that behavior of tax arrears is not random or incidental.

Table 3. Structure of data (composed by author)

As outlined in  Section 2,  only a  scant  amount  of  studies,  which use different  types of

payment  defaults  as  independent  variables,  are  available.  In  this  study,  two  groups  of

independent variables have been used – financial ratios and payment disturbances in the

7 Complete list of possible corporate taxes are listed in Taxation Act § 3. Tax system.
8 Taxation Act § 105. Payment and set-off.
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Failed Non-failed
Annual Reports
    Year 2011 458 814
    Year 2012 341 873
    Year 2013 294 899
    Total 1093 2586
Turnover by size
    < 25 000 € 124 (11.3%) 330 (12.8%)
    25 000 € – 50 000 € 219 (20.0%) 616 (23.8%)
    50 000 € – 100 000 € 227 (20.8%) 623 (24.1%)
    100 000 € – 200 000 € 211 (19.3%) 481 (18.6%)
    > 200 000 € 312 (28.5%) 536 (20.7%)
Assets by size
    < 25 000 € 374 (34.3%) 682 (26.4%)
    25 000 € – 50 000 € 231 (21.2%) 517 (20.0%)
    50 000 € – 100 000 € 189 (17.3%) 503 (19.5%)
    100 000 € – 200 000 € 158 (14.5%) 395 (15.2%)
    > 200 000 € 138 (12.7%) 491 (19.0%)



form of tax arrears. Dependent variables take a value of 0 for a failed firm (deleted with tax

arrears) and a value of 1 for non-failed.  A selection of independent variables  based on

financial ratios has been carried out in two stages. First, a group of the most used financial

ratios have been chosen (Table 1) based on reviews of failure prediction studies. Secondly,

due to the shortened version of annual reports for SMEs, the choice of financial ratios has

come down to fewer options. Finally, financial ratios were selected to represent different

categories:  profitability  – return on assets,  financial  structure – equity ratio,  liquidity  –

working capital to total assets, turnover – asset turnover ratio.

Tax arrears’ variables have been chosen for four different periods. One period represents the

time of last available information from the annual report and the following periods time

after the last available annual report submission up to the forced termination of the firm

from the commercial register. The length of a period is 12 months and three tax arrears’

variables  are  calculated  for  each  period  –  maximum,  median  and duration  (number  of

months with tax arrears). Variables are calculated using month-end data on tax arrears for

each 12-month period. Month-end data on tax arrears is used because social and income tax

due date is around the 10th of each month and value added tax due date is usually 10 days

before the end of the month, therefore changes in tax arrears are registered for the present

month.

Recurring  occurrences  of  unpaid  taxes  on  month-end  basis  should  indicate  financial

problems in firm and not be random in that instance. Period of t (months 1-12 before) for

tax arrears’ variables represents a year of annual report information and hence is calculated

one year back from the annual report submission date to match the time of annual report

information. Periods of t+1 (months 1-12 after), t+2 (months 13-24 after) and t+3 (months

25-36 after) represent years on from the annual report submission date closer to the time of

deletion of failed firms. Table 4 lists all selected variables with definitions, characteristics

and formulas. The correlation matrix of selected variables is visible in Appendix A.
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Table 4. Independent variables (composed by author)

Note: T can take values t, t+1, t+2 or t+3. For tax arrears there are 4 different periods of variables from t to

t+3. t represents the period of 12 months prior to the annual report submission date; t+1 12 months after the

submission, t+2 months 13-24 and t+3 months 25-36 after the submission. MAX, MED and DUR variables

are calculated on month-end data for each period. xi,T indicates month end tax arrears for period T.

Due to the fact that logistic regression is sensitive to outliers, which are present especially

among failed firms, data transformation has been used to normalize groups. Financial ratios

were winsorized at 5% and 95% and natural logarithm of tax arrears’ variables were used to

get  more robust  results  with higher  predictive power.  Since conditional  probabilities of

logistic  regressions  are  not  even  for  unbalanced  data  –  larger  class  is  overestimated

(Menardi  & Torelli,  2010),  Synthetic  Minority  Oversampling  Technique  (SMOTE)  has

been used to reach balanced data. Five logistic regression permanent insolvency prediction

models were analyzed – one for each set of variables. The model based on financial ratios

and one model of tax arrears’ variables (period t) represent the same time period, while the

15

Variables Characteristics Description Formula
Financial ratios

Profitability ratio Return on assets

Financial structure Equity Ratio

Liquidity ratio

Turnover Assets turnover ratio

Tax arrears

Payment behavior

Payment behavior

Payment behavior

    ROA
 T

    ER
 T

    WCTA
 T

Working capital over               
total assets

    ATR
 T

    MAX
 T

Maximum value of month end 
tax arrears (for 12 months)

    MED
 T

Median value of month end tax 
arrears (for 12 months)

    DUR
 T

Number of month ends with tax 
arrears

ROAT=
Net  incomeT

Total  assetsT

ERT=
Total  equityT

Total  assetsT

WCTAT=
Current  assetsT – Current  liabilitiesT

Total  assetsT

ATRT=
TurnoverT

Total  assetsT

MAXT=max(x1,T ... x12,T)

MEDT=median (x1,T ... x12,T)

DURT=∑
i=1
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other  three periods  represent  the time between the last  available  annual  report  and the

deletion of the firm, offering additional information about the firm while annual report(s)

are not submitted.

4. Results & Discussion

The descriptive statistics of independent variables for the 3679 firms is presented in Table 5

in three groups: all, failed and non-failed. Financial ratios of failed firms in relation to non-

failed firms show lower mean and median values, also a higher standard deviation, but it is

not  clear whether the difference is  significant for the model.  Asset  turnover ratio is  an

exception9, as it shows higher mean and median values for failed firms mainly due to many

high values that are present even after winsorization. With regard to tax arrears’ variables, a

difference between the failed and non-failed group is visible throughout all four periods.

The mean value of maximum month-end tax arrears for the failed group starts at 1809 € for

the period of last available annual report and increases up to 4283 € for the period of t+1;

10 380 € for the period of t+2 and 12 927 € for the period of t+3. In comparison, the mean

value of maximum month-end tax arrears of the non-failed group is between 30 € and 60 €.

The median value of month-end tax arrears behaves n similar fashion – the failed group’s

value is more  than 50 times larger and the difference increases with the passing of time

from the last available annual report.

The number of months (duration in months) with tax arrears larger than 100 € reveal, that

on average, failed firms have tax debts of seven to eight months for earlier periods and

closer to deletion it increases up to 9-10 months, while non-failed firms show almost no

month-ends with tax arrears. From descriptive statistics it concludes, that for the first two

periods  (12 months prior and after the submission of the last annual report),  more than half

9 According  to  financial  theory  (Altman,  1968;  Wilcox,  1971),  under  normal  conditions  higher  asset
turnover ratio should decrease firms probability for failure,  but  the values  for  assets of  failing firms
decrease towards zero, which can yield to high ATR value if they are still operating and making sales.
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Table 5. Descriptive statistics of independent variables (composed by author)
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All Failed Non-Failed

Mean SD Median Min Max Mean SD Median Min Max Mean SD Median Min Max

2.7 3.0 1.8 0.2 19.3 4.1 4.6 2.5 0.4 19.3 2.1 1.8 1.6 0.2 6.8

0.5 0.4 0.6 -0.9 1.0 0.4 0.5 0.4 -0.9 1.0 0.6 0.3 0.6 0.1 1.0

0.1 0.3 0.1 -1.2 0.8 0.1 0.5 0.1 -1.2 0.8 0.1 0.2 0.1 -0.3 0.6

0.3 0.4 0.3 -1.1 1.0 0.2 0.5 0.2 -1.1 1.0 0.3 0.4 0.4 -0.4 0.9

569.2 4914.9 0.0 0.0 137207.4 1809.2 8748.9 0.0 0.0 137207.4 45.1 1054.0 0.0 0.0 47845.4

1296.3 7880.4 0.0 0.0 269253.1 4283.2 13988.1 0.0 0.0 269253.1 33.8 579.5 0.0 0.0 16528.2

3109.6 26307.4 0.0 0.0 965668.9 10380.3 47487.3 1626.2 0.0 965668.9 36.6 539.4 0.0 0.0 16528.2

3880.0 58042.8 0.0 0.0 3272173.7 12927.8 105967.3 909.8 0.0 3272173.7 55.9 787.4 0.0 0.0 26356.3

425.3 3884.3 0.0 0.0 88579.4 1382.7 6994.1 0.0 0.0 88579.4 20.7 501.7 0.0 0.0 23333.9

1106.5 7292.4 0.0 0.0 268569.0 3671.0 13012.2 0.0 0.0 268569.0 22.6 427.4 0.0 0.0 14361.4

2738.5 19077.1 0.0 0.0 754864.6 9163.6 34156.6 1502.3 0.0 754864.6 22.8 372.4 0.0 0.0 12900.1

3376.0 36424.5 0.0 0.0 1810747.1 11275.8 66174.1 903.5 0.0 1810747.1 37.0 571.0 0.0 0.0 20215.8

2.6 4.3 0.0 0.0 12.0 7.5 4.6 9.0 0.0 12.0 0.6 1.9 0.0 0.0 12.0

2.6 4.3 0.0 0.0 12.0 7.5 4.6 9.0 0.0 12.0 0.5 1.8 0.0 0.0 12.0

3.2 5.0 0.0 0.0 12.0 9.4 4.5 12.0 0.0 12.0 0.5 1.9 0.0 0.0 12.0

3.2 5.0 0.0 0.0 12.0 9.5 4.4 12.0 0.0 12.0 0.6 1.9 0.0 0.0 12.0

ATR
 t

ER
 t

ROA
 t

WCTA
 t

MAX
 t

MAX
 t+1

MAX
 t+2

MAX
 t+3

MED
 t

MED
 t+1

MED
 t+2

MED
 t+3

DUR
 t

DUR
 t+1

DUR
 t+2

DUR
 t+3



of failed firms had no tax arrears, but for the last two periods and therefore closer to the

deletion date, there is an increase in the number of firms with tax arrears. Non-failed firms’

tax arrears’ variables are relatively stable throughout the time periods under surveillance,

compared to the failed group values. An increase in the values of the failed group’s tax

arrears’ variables with an increase in periods can be accounted on the fact that disturbances

in tax payment increase and gain volume up to the point of deletion.

The proposed five models’ variables individual results as single-predictors are visible in

Table 6 – each variable was used disjointly as a single-predictor to test accordance with the

theory and report individual prediction power for comparison. Behavior of financial ratios

were drawn from Altman (1968) and Wilcox (1971) and payment behavior of tax arrears

from Table 2. Model set 1 consists only of financial variables, model set 2 includes tax

arrears’ variables 12 months prior to the submission of the last available annual report and

hence indicate the same period as the annual report. Model sets 3 to 5 represent periods

after  the  last  available  annual  report,  moving  closer  to  the  date  of  deletion  from  the

commercial register. The variable coefficient sign indicates the way in which, all else being

equal,  the variable value classifies observations.  According to financial  theory (Altman,

1968, Wilcox 1971), increase of these financial ratios should increase probability of a firm

to be classified non-failed, yet this is not true for asset turnover ratio, explained previously.

Comparison of the individual accuracy of variables reveals that tax arrears’ variables on

average  offer  significantly  higher  classification  accuracy  than  financial  ratios.  Periods

closer  to  deletion  yield  higher  accuracy  for  tax  arrears’ variables  compared  to  earlier

periods. While the classification accuracy for duration variables remains stable at around

85% throughout the periods, the accuracy of maximum and median variables significantly

improves for periods closer to the deletion date. For the first two periods, prediction power

of duration variable is stronger than median or maximum tax arrears, but for the second and

third periods it is exceeded by latter two by a margin of 5%. This can be explained with

time effect, where periods of t and t+1 represent on average the 4th and 3rd year prior to
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deletion, when many failed firms do not yet indicate any problems – lower median and

maximum tax arrears compared to later periods. Firms who already have longstanding tax

arrears (duration variable) for earlier  periods (t  and t+1) indicate strong increase in tax

arrears for median and maximum value up to deletion.

Table 6. Logistic regression models and results for individual variables (composed by author)

Note: Accordance with theory for financial ratio analysis is derived from Altman (1968) and Wilcox (1971)

and for tax arrears is derived from payment behavior literature (Table 2).

Having higher individual accuracy value for median and maximum value of tax arrears for

periods of t+2 and t+3, shows that when time of deletion draws closer outstanding tax

arrears drastically  increase,  while  duration variable  is  limited to  maximum value of  12

months and remains relatively same throughout the period for many failing firms. These

results recommend having a stronger emphasis on the duration of monthly tax arrears three

or four years prior to failure and a maximum or median value two or one year prior to

failure. Although single variable models are not as efficient as more complicated models
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Model Variable Accuracy Sign P-value Theory

M1 (FR)

58.03% - 0.000 No

61.62% + 0.000 Yes

50.53% + 0.000 Yes

55.08% + 0.000 Yes

M2 (12P)

58.76% - 0.000 Yes

58.76% - 0.000 Yes

85.77% - 0.000 Yes

M3 (12F)

70.91% - 0.000 Yes

70.88% - 0.000 Yes

86.46% - 0.000 Yes

M4 (24F)

91.41% - 0.000 Yes

91.45% - 0.000 Yes

86.83% - 0.000 Yes

M5 (36F)

89.55% - 0.000 Yes

89.55% - 0.000 Yes

85.96% - 0.000 Yes

ATR
 t

ER
 t

ROA
 t

WCTA
 t

MAX
 t

MED
 t

DUR
 t

MAX
 t+1

MED
 t+1
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 t+1
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 t+3

MED
 t+3
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consisting of a diversity of variables (Jackson & Wood, 2013), using tax arrears’ variables

result in a relatively high classification accuracy on their own, which mainly accounts to

the fact that systematic occurrence of tax arrears is often a direct reference to high risk of

insolvency.

Five  logistic  regression  models,  which  are  visible  in  Table  7,  have  been analyzed and

compared – each model consists of a set  of variables presented in Table 6.  The results

confirm that models based on tax arrears offer higher predictive power compared to the

financial ratio model. Model 1 and 2 represent data from the same period, yet the model

based  on tax  arrears  offers  around 20% higher  accuracy  than  the  model  consisting  of

financial variables. The financial ratio model predicted with an accuracy of 64.6% based on

4 years old data, while the accuracy of results with a 1-year horizon based on financial

ratios from articles  in comparison (Table 2) varied from 63% up to 80.9% for  logistic

regression.  Ciampi  et al. (2020) reported up to three years prior to failure and reached

71.5% classification accuracy with logistic regression. With each 12-month period after the

submission of the last annual report models’ overall accuracy increases (M3 87.28%, M4

92.82%, M5 93.89%). Classification accuracy for a year prior to failure in related literature

(either payment behavior variables or combined model, see Table 2) – 82% Ciampi et al.

(2020), 86% Back (2005) and 89.2% Laitinen (2011), while tax arrears variables resulted in

an accuracy of 93.9% for a year prior to deletion.

Table 7. Analyzed logistic regression models (composed by author)

Note: TP – true positive; TN – true negative; FP – false positive; FN – false negative; FNR (Type I error) –

false negative ratio (FN/(TP+FN)); FPR (Type II error) – false positive ratio (FP/(TN+FP)); AUC – area

under curve.
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Model Accuracy TP TN FP FN FNR FPR AUC

M1 (FR) 64.62% 1353 1472 714 833 38.11% 32.66% 0.719

M2 (12P) 85.75% 1891 1858 328 295 13.49% 15.00% 0.902

M3 (12F) 87.28% 1929 1887 299 257 11.76% 13.68% 0.915

M4 (24F) 92.82% 1974 2084 102 212 9.70% 4.67% 0.968

M5 (36F) 93.89% 2076 2029 157 110 5.03% 7.18% 0.974



Conflicting results can be seen between models 4 and 5. Even if model 5 offers higher

overall  accuracy,  its  individual  variables  are  outperformed by model  4.  This  difference

becomes especially important in comparison of type II error, which increases from 4.67%

for model 4 to 7.18% for model 5. This conflict can be accounted to the fact that model 5

(period of t+3) already includes some deletion dates of failed firms and hence their tax

arrears are deleted from the data-set and take value of 0, so they are classified as non-

failed10. This effect is also somewhat amplified by oversampling of the minority group.

Models’  performance  was  also  tested  with  an  artificial  neural  network  resulting  in

marginally better accuracy, but the difference from logistic regression was not significant.

Du Jardin (2017) has compared the accuracy of models with a forecasting horizon of four

and five years and found that the range of decline in correctly classified firms from a one

year to four or five year horizon is in total 15.5% (85% to 69.5%). The decline of accuracy

from model five to two (4-years) in this study is merely 8.14% for tax arrears’ variables.

These results suggest that information from tax arrears loses its value more slowly than

other variable classes.

Table  8  shows the  results  of  grouped logistic  regression  models  with  accuracy  values,

where variable groups have been aggregated one-by-one. The predictive power of grouped

models  exceeds  individual  models  by  a  small  margin  leading  to  a  conclusion  that  tax

arrears from earlier periods carry over to later periods and up to the deletion of a firm. In

addition, these results confirm that the financial failure of firms is a long process and starts

years prior to forced termination. In these results for individual models, model 2 represents

four years prior to failure for most firms and model 5 one year prior to failure. In terms of

predictive power, tax arrears four years prior to deletion have a classification accuracy of

85% which increases up to 93% for a year prior to deletion, while financial variables offer

an overall accuracy of 65% for 4 years prior to deletion. In addition to the higher predictive

10 This effect can be reduced by changing cut-off percentage for observed logistic regression model by
margin of deleted firms count during the period to total failed firms.
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power of tax arrears for the period of financial ratios, data on unpaid taxes is available up to

the end of the failure process and decreases type I and type II error rates year-by-year.

Variables based on tax arrears outperform the financial ratio model and offer information

about firms facing permanent insolvency while they do not submit annual reports.

Table 8. Results of logistic regression grouped models (composed by author)

In this study, tax arrears’ variables were formed based on month-ends accumulated data for

four  different  periods,  each  with  a  length  of  12  months.  Variables  were  calculated  as

maximum,  median  and  duration  of  months  with  tax  arrears.  Yet  there  exist  many

alternatives and variations to be tested in future research – different mathematical averages,

thresholds based on a country’s insolvency proceedings and volatility measurements. In

addition,  different  lengths  of  periods  for  month-end  data  could  be  considered.  Longer

periods place more emphasis on duration variables, while the predictive power of median

and  maximum  variables  could  increase  from  using  shorter  periods.  Depending  on  the

choice of the forecasting horizon, overlapping periods can be used to increase the duration

variable’s range of months with tax arrears; in this study duration variables in most cases

either  took  a  value  of  0  or  12,  hence  longer  periods  could  show  other  trends.  With

availability of defaults to private creditors, it could be combined with tax arrears.

5. Conclusion

The aim of this paper was to find out, whether and in which circumstances information

about  tax  arrears  enables  to  predict  permanent  insolvency  with  higher  accuracy  than

financial ratios. Firms in risk of insolvency often do not publish annual report(s), which

22

Model Accuracy

M1 64.62%

M6 (M1+M2) 87.24%

M7 (M1+M2+M3) 89.75%

M8 (M1+M2+M3+M4) 92.98%

M9 (M1+M2+M3+M4+M5) 95.75%



makes forecasting their  future  status  based on financial  ratios  imprecise and especially

increases the false positive ratio in prediction power. For that purpose, tax arrears were used

to determine permanently insolvent firms during the period of 2015 to 2017 and variables

based on tax arrears were formed to compare results with financial ratios from the latest

available annual report(s). Due to the nature of the compulsory liquidation process in the

Estonian commercial register, the latest available annual reports of the majority of failed

firms from the years 2015 to 2017, are from the period of 2011 to 2013. Hence, a random

sample of solvent firms were selected from the period of 2011 to 2013.

Financial variables were initially ranked based on popularity of usage in failure prediction

studies and later a group of four based on popularity and availability were used in the

model. For tax arrears’ variables, four different periods were formed, where first period of

12-months represents the time of the last annual report information and the following three

periods  a  time  between  the  submission  of  the  last  annual  report  and  deletion  from

commercial register. For four different periods, three different tax arrears’ variables were

calculated: maximum, median and duration on month-ends data. Logistic regression was

used to  analyze  the  proposed five  different  models  for  each  set  of  variables  including

individual accuracy of single-variables and combined models.

The results  of this study confirm that tax arrears’ variables have a higher classification

accuracy for the same period than that of the last available annual report. The financial ratio

model reported an overall accuracy of 64.6%, while the tax arrears model reported 85.8%.

In addition, tax arrears’ data offers information for the period between the last available

annual  report  and  compulsory  liquidation,  of  which  the  models  reported  increasing

accuracy  year-by-year,  reaching  over  90%  classification  accuracy  for  a  year  prior  to

deletion.  Regarding tax arrears’ variables, the duration of monthly tax arrears offered a

similarly  high  accuracy  throughout  the  selected  four  periods,  while  the  maximum and

median prediction power of monthly tax arrears increased significantly for years closer to

deletion.
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Financial  ratios are the most used variables to forecast firms’ financial failure. Yet it  is

rather  common  for  failing  firms  to  delay  or  even  withhold  the  submitting  of  annual

report(s),  which hinders  the use of financial  ratios as primary variables.  Data from the

annual report(s) is already around six months old, which in Estonia can be delayed up to

one year over the legal deadline. Hence, the use of tax arrears to predict failing firms who

face permanent insolvency holds high value in practice, offering up-to-date monthly data.

The study can be extended by looking into other forms of payment disturbances to private

creditors (listed in section 2) and combining them with tax arrears. Regarding to tax arrears’

variables, future studies could also experiment with different time periods, instead of 12

months using 6- or 18-month periods, and using different mathematical approaches for the

calculation of variables. Since 2018, the increase in value added tax threshold suggests

differentiating tax arrears into groups for future research; this would facilitate inclusion of a

larger set of firms that are outside of value added tax liability.
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Appendix A. Correlation matrix of independent variables
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1 -0.212 -0.161 -0.075 0.027 0.037 0.185 0.054 0.040 0.189 0.059 0.081 0.228 0.045 0.067 0.230

-0.212 1 0.522 0.746 -0.157 -0.154 -0.305 -0.182 -0.180 -0.303 -0.083 -0.108 -0.292 -0.051 -0.063 -0.295

-0.161 0.522 1 0.481 -0.097 -0.098 -0.126 -0.095 -0.098 -0.120 -0.041 -0.038 -0.103 -0.023 -0.030 -0.101

-0.075 0.746 0.481 1 -0.118 -0.112 -0.184 -0.100 -0.091 -0.181 -0.027 -0.044 -0.160 -0.012 -0.017 -0.159

0.027 -0.157 -0.097 -0.118 1 0.943 0.247 0.516 0.533 0.242 0.143 0.198 0.188 0.057 0.084 0.178

0.037 -0.154 -0.098 -0.112 0.943 1 0.234 0.556 0.587 0.232 0.157 0.218 0.184 0.063 0.094 0.174

0.185 -0.305 -0.126 -0.184 0.247 0.234 1 0.353 0.327 0.968 0.148 0.210 0.854 0.051 0.079 0.794

0.054 -0.182 -0.095 -0.100 0.516 0.556 0.353 1 0.960 0.357 0.285 0.394 0.287 0.075 0.113 0.267

0.040 -0.180 -0.098 -0.091 0.533 0.587 0.327 0.960 1 0.329 0.279 0.386 0.266 0.069 0.103 0.245

0.189 -0.303 -0.120 -0.181 0.242 0.232 0.968 0.357 0.329 1 0.150 0.212 0.875 0.052 0.080 0.808

0.059 -0.083 -0.041 -0.027 0.143 0.157 0.148 0.285 0.279 0.150 1 0.812 0.187 0.825 0.906 0.196

0.081 -0.108 -0.038 -0.044 0.198 0.218 0.210 0.394 0.386 0.212 0.812 1 0.252 0.761 0.779 0.237

0.228 -0.292 -0.103 -0.160 0.188 0.184 0.854 0.287 0.266 0.875 0.187 0.252 1 0.103 0.140 0.937

0.045 -0.051 -0.023 -0.012 0.057 0.063 0.051 0.075 0.069 0.052 0.825 0.761 0.103 1 0.971 0.118

0.067 -0.063 -0.030 -0.017 0.084 0.094 0.079 0.113 0.103 0.080 0.906 0.779 0.140 0.971 1 0.163

0.230 -0.295 -0.101 -0.159 0.178 0.174 0.794 0.267 0.245 0.808 0.196 0.237 0.937 0.118 0.163 1

ATR
 t

ER
 t

ROA
 t

WCTA
 t

MAX
 t

MED
 t

DUR
 t

MAX
 t+1

MED
 t+1

DUR
 t+1

MAX
 t+2

MED
 t+2

DUR
 t+2

MAX
 t+3

MED
 t+3

DUR
 t+3

ATR
 t

ER
 t

ROA
 t

WCTA
 t

MAX
 t

MED
 t

DUR
 t

MAX
 t+1

MED
 t+1

DUR
 t+1

MAX
 t+2

MED
 t+2

DUR
 t+2

MAX
 t+3

MED
 t+3

DUR t+3



Non-exclusive licence to reproduce thesis and make thesis public

I, Germo Valgenberg,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce,  for  the  purpose  of  preservation,  including  for  adding to  the  DSpace  digital
archives until the expiry of the term of copyright,

Forecasting corporate permanent insolvency with financial ratios and tax arrears,

supervised by Oliver Lukason.

2.    I grant the University of Tartu a permit to make the work specified in p. 1 available to
the  public  via  the  web  environment  of  the  University  of  Tartu,  including  via  the
DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0,
which allows, by giving appropriate credit to the author, to reproduce, distribute the
work and communicate it to the public, and prohibits the creation of derivative works
and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I  certify  that  granting  the  non-exclusive  licence  does  not  infringe  other  persons’
intellectual  property  rights  or  rights  arising  from  the  personal  data  protection
legislation. 

Germo Valgenberg
13.01.2020


