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1. Introduction 

The worldwide production of primary aluminium has been rapidly growing through the 21st 

century, increasing 2.6 times between 2000 and 2017 (“Statiscal data published at the World 

Aluminium webpage.,” n.d.) to cover industry demand for this light-weight metal. Primary 

aluminium is produced by electrolysis of metallurgical alumina (aluminium oxide), which in 

its turn is produced from bauxite ore during the Bayer process, see Figure 1. During the Bayer 

process, bauxite, an aluminium bearing ore, is dissolved in strong sodium hydroxide solution 

and subsequently aluminium hydroxide is recovered, which is subsequently converted to 

aluminium oxide. The remaining elements, mostly insoluble in sodium solution, are washed 

and usually filtered and end up in the Bauxite Residue (BR), also called ‘red mud’.  BR is 

produced at the rates of 1 to 1.5 ton on average per ton of alumina, totaling up to 150 Mtons 

annually worldwide (Evans, 2016). Historically, bauxite residue has been treated as a waste 

material and in some places used to be discharged in the sea or stockpiled in special Bauxite 

Residue Disposal Areas (BRDAs) (Power et al., 2009). The growing volume of the produced BR 

requires new land areas for the BRDAs and puts additional economic burden on alumina 

plants. At the same time, potential failure of a BRDA can be dangerous to nearby population 

and hazardous to the environment, similarly to Ajka accident in Hungary in 2010 (Ruyters et 

al., 2011), (Winkler et al., 2018) and storage failure in Dahegou Village in China in 2016 (Frik, 

2016). 

 

 
Figure 1: During the Bayer process, bauxites are separated into alumina and Bauxite Residue 

(BR). BR can be landfilled or further processed to recover iron, aluminium, titanium or other 

valuable materials. 

 

As a result, there is a significant interest towards development of BR valorization methods, 

such as development of BR containing construction materials (bricks, cement, inorganic 

polymers (Evans, 2016; Joyce et al., 2018; Raj et al., 2013))  and recovery of valuable metals 

from BR (Bonomi et al., 2016). BR is rich in iron, aluminium, titanium and Rare Earth Elements 

(REE), as presented in Table 1, as well as has elevated concentration of naturally occurring 
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radionuclides. Bauxite Residue radionuclide content can vary significantly based on the 

origins of bauxites, possible concentrations are 100 - 3000 Bq/kg for uranium and thorium 

series, 10 - 100 Bq/kg for 40K (IAEA, 2003). 

 
Table 1: Typical chemical composition of the bauxite residue. 

Component Typical concentration  

Fe2O3 20 - 45 % (INTERNATIONAL ALUMINIUM INSTITUTE, 2015) 

Al2O3 10 - 22 %  (INTERNATIONAL ALUMINIUM INSTITUTE, 2015) 

TiO2 4 - 20 %  (INTERNATIONAL ALUMINIUM INSTITUTE, 2015) 

CaO 0 - 14 %  (INTERNATIONAL ALUMINIUM INSTITUTE, 2015) 

SiO2 5 - 30 %  (INTERNATIONAL ALUMINIUM INSTITUTE, 2015) 

Na2O 2 - 8 %  (INTERNATIONAL ALUMINIUM INSTITUTE, 2015) 

REE 0.1 - 1 %  (Bonomi et al., 2016) 

 

During a metallurgical process, the valuable fraction of the initial raw material is recovered, 

while the remaining materials are accumulated in the waste or residue product. For instance, 

in the Bayer process implemented at the Aluminium of Greece plant, most of the 

radionuclides presented in the bauxites end up in the BR, and their concentration is increased 

1.7-2.5 times per unit mass (Goronovski et al., 2018).  

Despite a considerable radionuclide accumulation ratio, BR produced at Aluminium of Greece 

plant (AoG) is not considered radiologically hazardous, as the radionuclide concentrations 

remain below screening values set in the European Basic Safety Standard: 1 000 Bq/kg for 
232U and 234Th decay series nuclides and 10 000 for 40K (European Parliament, 2014). If the 

natural radionuclide content in a material remains below these values, then the material is 

unlikely to cause elevated radiological exposure to humans and environment. 

Secondary processing of the BR might further increase radionuclide concentration in the 

newly produced residues, and therefore it is important to investigate behavior of these 

radionuclides and to ensure safety of the workers and environment. In the current article, the 

following valorization processes have been studied: (1) iron smelting; (2) iron roasting; (3) 

alkali leaching of aluminium; (4) acidic recovery of trace metals; (5) ionic liquid leaching. 

2. Description of the investigated processes 

2.1. Iron smelting: 

An electric arc furnace was used to recover pig iron from the BR. In this process carbon was 

used to convert iron oxides to metallic iron at high temperatures (~1500 - 1700° C)  (Tam et 

al., 2017). As a result, iron was recovered in the form of pig iron and the rest of the materials 

were separated in the form of slag, see Figure 2. Fluxing materials (lime, SiO2, etc) can be 

added to the process for more efficient separation between pig iron and slag. A small amount 
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of flue dust was produced as an additional secondary waste product, which can potentially 

be recycled by other industries (Ruiz et al., 2007), (De Araújo and Schalch, 2014). 

 

 
Figure 2: Reductive smelting of BR schematics. 

2.2. Iron roasting 

Iron roasting is an alternative method to recover iron from BR and is schematically described 

in Figure 3 (Cardenia et al., 2017). Roasting was performed in order to convert iron within BR 

into a magnetic form. During this process, BR was mixed with metallurgical coke and Na2CO3 

was added as a fluxing material. The mixture produced was roasted at 1000° C to create 

cinders (sodium aluminates). The cinders were milled and leached with water; the resulting 

particles are subjected to magnetic separation multiple times with different currents going 

through the magnet. As a result, most of the iron was recovered in the form of magnetic 

fractions and the remaining materials were found in the non-magnetic fraction. 

 

 
Figure 3: Roasting and magnetic separation of iron from the BR. 

2.3. Recovery of aluminia with alkali leaching 

Similarly to iron roasting, during this process BR was mixed with sodium carbonate and 

heated to 800-1100° C to form cinders (Bonomi et al., 2016). Next, sodium hydroxide was 

used to dissolve and leach sodium aluminates, leaving rest of the materials in the form of 

residue as presented in Figure 4. 
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Figure 4: Pyro-metallurgical roasting of the BR schematics. 

2.4. Acidic recovery of trace metals from the neutralized BR 

BR was first neutralized with CO2 in order to reduce pH and thus consumption of acid, as 

described elsewhere (Rivera et al., 2017). Then mineral acids (H2SO4, HNO3, HCl) were used 

to dissolve primary and trace metals from the BR. The resulting solid residues were analyzed 

for the radionuclides. 

 

 
Figure 5: Acidic recovery of trace metals from the neutralized BR. 

 

2.5. Ionic liquid leaching 

Ionic liquids are solvents consisting purely of ions, which can be used as an alternative to 

mineral acids in dissolving BR and recovering variety of metals, including REE. [Emim][H2SO4] 

was the ionic liquid used to dissolve BR (Bonomi et al., 2017). Valuable metals dissolve and 

end up in the leachate, while the insoluble fractions are filtered and considered as residue. 
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Figure 6: Leaching with ionic liquid. 

3. Measurement methods 

Two high purity germanium detectors were used in the current study: GEM- 35200 (EG&G 

Ortec®) coaxial detector and BE3830P (supplied by CANBERRA®). The following radionuclides 

were studied: 226Ra (decay product of 238U), 228Ra and 228Th (decay products of 232Th) by their 

decay products (as presented in Table 2). Secular equilibrium was assumed between 

measured and the nuclides presented (the probes were kept intactly sealed for a month after 

preparation to ensure secular equilibrium is achieved). 

Calibration was performed using RGU-1 and RGTh-1 reference materials certified by IAEA 

(IAEA, 1987).  

 
Table 2: Following gamma were lines used in the measurements. In brackets, daughter 

nuclides that were used to determine parent nuclide activity are provided. 

Isotope Gamma lines [keV] 

226Ra (214Pb) 

241.99 

295.22 

351.93 
228Ra (212Pb) 238.63 

228Th (228Ac) 

338.32 

911.19 

968.96 

 

3.1. Sample preparation 

Samples were dried at 105° C and then were tightly sealed in metallic containers to avoid 

radon leakage. In case significant sample volume was available, 55.5 cm3 aluminium container 

was tightly filled. However, most of the samples’ mass was in the order of 1-2 grams, due to 

the fact that experiments were performed at laboratory scale. These samples were mixed 

with larger volume of epoxy resin and homogenized. After solidification, the samples had the 

same geometry and a similar matrix to the standard materials. Possible differences in density 

and matrix were corrected with EFFTRAN model (Vidmar, 2005). 

Residues produced in liquid form were dried and then prepared similarly to the solid samples. 
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4. Results 

Bauxite Residue coming from the AoG plant was used in the current study. The radiological 

properties of this BR have been previously discussed in (Goronovski et al., 2018) and are 

summarized in the Table 3. The secondary residues produced after recovery of valuable 

metals from BR are presented in this work. Altogether with measured radionuclide 

concentrations (all the uncertainties are reported at 2σ confidence level), enrichment factors 

are provided (CR, see equation 1) as the ratio between activity concentration of secondary 

residue over BR. 

 

𝐶𝑅 =
𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑒

𝐴𝐵𝑅
  (1) 

 

 
Table 3: Mean radionuclide content in BR from AoG (Goronovski et al., 2018). Uncertainties 

are reported at 2σ. 

Isotope series Isotope 
Mean concentration 

[Bq/kg] 
238U 226Ra (214Pb) 170 ± 2 

232Th 
228Ra (228Ac) 431 ± 7 

228Th (212Pb) 404 ± 15 

40K 40K 26 ± 8 

 

4.1. Reductive smelting 

Measurement results for residues produced with reductive smelting are summarized in the 

Table 4. Residues (called slags, S1.1, S1.2, S1.3) from three experiments have been analyzed, 

while S1.1D is a flue dust sample produced during the first experiment and S1.3V is a 

vanadium sample recovered from pig iron during experiment 3. 

Significant difference in the radionuclide accumulation ratios is explained by the differences 

in the amounts of fluxing materials (see Figure 2), no fluxes were used in experiment 1, and 

5:1 BR to flux ratio was used in the experiments 2 and 3 (further information is available in 

the Appendix A). 

As a result, in the residue S1.1 radionuclide accumulation ratio was rather high and for 228Th 

concentration reached 1013±31.6 Bq/kg, making it potentially hazardous if produced at large 

scale (BSS screening value of 1000 Bq/kg is set for 228Th). 

Optimization of the valorization process resulted in experiments 2 and 3, where fluxes were 

added and the mean radionuclide accumulation ratio was 1.6 - 1.7. These residues posed no 

potential radiological hazard, as the radionuclide concentrations remained below screening 

limits set in the EU BSS (European Parliament, 2014). The analyzed flue dust sample has 
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shown considerable accumulation of 210Pb, which is a common problem for iron processing 

facilities due to the  volatile properties of lead at elevated temperatures (Jia, 2013). The dust 

produced is hazardous from radiological perspective, however, it can be processed as 

discussed in chapter 2.1. Vanadium sample (S1.3V), which was recovered by oxidization from 

pig iron has shown only minor presence of 228Th. 

In the sample S1.1 similar amount of 40K as in the BR was detected. In all the rest measured 

samples 40K concentration remained below Minimum Detectable Amount (MDA). 

 
Table 4: Radionuclide concentration in the secondary residues produced by reductive 

smelting. Results in brackets show radionuclide accumulation compared to BR. 

Isotope 
Radionuclide concentration [Bq/kg d.w.1] 

S 1.1 S 1.2 S 1.3 S 1.1D S 1.3V 

226Ra 
397.3±4.5 

(2.3) 

289.4±10.6 

(1.7) 

284.2±16.0 

(1.7) 
<333 <129 

228Ra 
905.9±11.1 

(2.1) 

682.2±24.5 

(1.6) 

680.2±44.0 

(1.6) 
<711 <222 

228Th 
1013±31.6 

(2.5) 

686.0±23.8 

(1.7) 

680.0±42.4 

(1.7) 
<240 188.1±14.1 

40K 27.5±11.2 <231 <150 <3740 <914 
210Pb - - - 2436.4±476.2 - 

Mean 

Accumulation2 
2.3 1.7 1.6 - - 

 

4.2. Reductive roasting 

Samples produced during one single reductive roasting experiment were analyzed and results 

were summarized in the Table 5. Two steps of iron recovery with magnetic separation were 

performed (S2.1 and S2.2) under different currents of 1 and 5 A respectively. The remaining 

materials ended up in the non-magnetic fraction (S2.3), considered as a residue in this process 

and additionally metallurgical coal sample, which was added during roasting, was studied. 

Resulting residue did not show significant radionuclide concentration change compared to 

the BR (mean accumulation ratio – 1.1), while recovered portions of iron (S2.1 and S2.2) had 

considerable accumulation (1.4 and 1.5 respectively) compared to the BR. This leads to a 

hypothesis that significant amounts of radionuclides in the BR are associated with iron. This 

would also explain previous observation, than only minor portion of uranium is dissolved 

during the Bayer process (Goronovski et al., 2018), since iron is considered to be inert material 

in the Bayer process (Vind et al., 2017).  

                                                      
1 d.w. - dry weight. 
2 Mean accumulation rate was calculated for 226Ra, 228Ra and 228Ra. 40K was detected only in one sample, for the 
rest MDA values are provided. 
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Analysis of metallurgical coal has shown no considerable radionuclide input from this 

material. 

 
Table 5: Results of a single experiment of reductive roasting. Two steps of magnetic 

separation have been performed and the residue is presented in the form of a non-

magnetic fraction. 

Isotope  
Radionuclide concentration [Bq/kg d.w.] 

S2.1 S2.2 S2.3 Coal 

226Ra 
247.5±8.4 

(1.5) 

246.4±32 

(1.5) 

181.9±16.4 

(1.1) 
<26.4 

228Ra 
630.4±34.8 

(1.5) 

606.4±59.4 

(1.4) 

490.5±37.6 

(1.1) 
<44.5 

228Th 
632.2±37.6 

(1.6) 

551.6± 44.4 

(1.4) 

385.4±28.2 

(1.0) 
<19.9 

40K <107 <76.4 <338 <184 

Mean 1.5 1.4 1.1 - 

4.3. Recovery of aluminia with alkali leaching 

Results of the experiments on the process optimization are presented in the Table 6. During 

these experiments, residue masses were in the order of 0.1 - 0.5 grams. In order to obtain 

measurable sample mass, materials from multiple experiments were mixed to obtain one 

measurement sample (S3.1 and S3.2), where S3.1C and S3.2C are cinders and S3.1R and S3.2R 

are corresponding residues (see Figure 4 for more details). 

In both measured cinder samples, similar mean radionuclide dilution (mean decrease of 10%) 

was observed due to addition of sodium carbonate. In the residue samples, 20% higher 

average radionuclide content compared to BR was observed in the first batch and 30% in the 

second. There was also considerable difference in the quantity of 228Ra and 228Th in the 

sample S3.2R. These isotopes are products of the thorium decay chain; however, they have 

different chemical properties and might behave differently during chemical processing. 

 
Table 6: Radionuclide concentration in the cinders and residues produced in preliminary 

aluminium leaching experiments. 

Isotope  
Radionuclide concentration [Bq/kg d.w.] 

S3.1C S3.1R S3.2C S3.2R 

226Ra 
154.8±7.4 

(0.9) 

192.3±23.2 

(1.1) 

149.2±4.2 

(0.9) 

125.7±12.1 

(1.3) 

228Ra 
389.1±16.2 

(0.9) 

489.4±46.8 

(1.1) 

369.1±10.0 

(0.9) 

272.4±23.4 

(1.2) 
228Th 388.8±15.4 499.2±32 370.9±12.9 338.1±19.1 
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(1.0) (1.2) (0.9) (1.4) 
40K <165 <768 <106 <178 

Mean 0.9 1.2 0.9 1.3 

 

The next set of experiments was conducted using BR slag as an input material. Iron was 

initially removed from BR using the smelting method as discussed in chapter 2.1 and 5:2 BR 

to flux ratio. Aluminium was recovered from the slag produced by alkali leaching and the 

radionuclide content of residues has been studied. Measurement results for slag and residues 

produced in multiple experiments are presented in Table 7. In the experiments material 

quantitates were used in the order of 1 - 3 grams, and thus every measured sample 

corresponds to a single experiment (more details about experimental conditions are available 

in the Appendix A). In the resulting residues, mean radionuclide increase by 20% - 30% was 

observed. The radionuclide content remained similar to the slag (S3.slag) and remained 

consistent between different experiments, showing no potential influence of experimental 

parameters presented in the Appendix A.  

Activity concentration of 228Ra and 228Th is similar in the studied residues, however residues 

S3.2R - S3.9R show lower accumulation ratio of 228Ra than the other nuclides. This is caused 

by initially lower measured content of 228Ra in BR (as presented in Table 3). 

 
Table 7: BR slag used as a source material for aluminium recovery and corresponding 

residues. Results in brackets show radionuclide accumulation compared to the initial BR. 

Isotope  
Radionuclide concentration [Bq/kg d.w.] 

S3.slag S3.3R S3.4R S3.5R S3.6R S3.7R S3.8R 

226Ra 
216.1±12.6

(1.3) 

231.3±13.0

(1.4) 

229.5±12.8

(1.4) 

230.1±13.0

(1.4) 

222.2±9.7 

(1.3) 

223.6±12.0

(1.3) 

219.9±12.8

(1.2) 

228Ra 
508.1±33.7

(1.2) 

516.4±34.2

(1.2) 

537.7±35.2

(1.2) 

516.1±34.4

(1.2) 

492.8±28.6

(1.1) 

522.4±29.0

(1.2) 

521.4±34.6

(1.2) 

228Th 
528.6±33.2

(1.3) 

532.9±33.4

(1.3) 

527.4±33.2

(1.3) 

527.5±33.2

(1.3) 

518.1±28.9

(1.3) 

519.2±30.6

(1.3) 

528.0±33.0

(1.3) 
40K <193 <228 <226 <238 <163 <214 <226 

Mean 1.3 1.3 1.3 1.3 1.2 1.3 1.3 

 

4.4. Acidic recovery of trace metals from neutralized BR 

This method was used to recover primary metals (Fe, Al, Ti) altogether with trace elements 

(REE and Sc). Three different acids were tested and radionuclide content of the produced 

residues is summarized in Table 8: HNO3 (S4.1), H2SO4 (S4.2) and HCl (S4.3). Metal recovery 

efficiency for these experiments (Fe, Al, Ti, REE, Sc) is presented elsewhere (Rivera et al., 

2017).  The mean increase of the radionuclide content did not exceed 20% compared to the 
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initial BR. It is expected, that portion of radionuclides was dissolved and leached with valuable 

metals. This to be confirmed in future experiments with the leachate samples. 

 
Table 8: Residues produced during 3 experiments to recover primary and trace metals with 

mineral acids. Results in brackets show radionuclide accumulation compared to the initial 

BR. 

Isotope  
Radionuclide concentration [Bq/kg d.w.] 

S4.1 S4.2 S4.3 

226Ra 
204.0±9.5 

(1.2) 

198.8±8.8 

(1.2) 

203.4±7.8 

(1.2) 

228Ra 
524.0±75.2 

(1.2) 

463.4±28.0 

(1.1) 

514.8±29.0 

(1.2) 

228Th 
465.0±75.2 

(1.2) 

430.9±26.8 

(1.1) 

529.3±31.0 

(1.3) 
40K <117 <123 <105 

Mean 1.2 1.1 1.2 

 

4.5. Ionic liquid leaching 

The radionuclide concentrations for nine residues (S5.1 - S5.9) produced after BR treatment 

with [Emim][H2SO4] are presented in Table 9 and Table 10. Metal recovery efficiency for these 

experiments (Fe, Al, Ti, REE, Na) is presented elsewhere (Bonomi et al., 2018). For residues 

S5.7 - S5.9 corresponding leachate solution were also analyzed (S5.7l - S5.9l). 

Produced residues show significant difference in the mean radionuclide accumulation ratio, 

ranging between 1.0 - 1.5. No correlation with the experimental setup conditions were 

observed (see Appendix A for more details on the experimental conditions). Additionally, in 

two of the experiments (S5.1 and S5.3) decrease in 228Th content was observed, which can be 

explained by potential leaching of this nuclide. 

In the residues S5.1 – S5.6 and S5.9 226Ra accumulation ratio is higher than for the thorium 

series nuclides (228Ra and 228Th). 

 
Table 9: Radionuclide concentration in the residues produced after BR was leached with 

ionic liquid. Results in brackets show radionuclide accumulation compared to the initial BR. 

Isotope  
Radionuclide concentration [Bq/kg d.w.] 

S5.1 S5.2 S5.3 S5.4 S5.5 S5.6 

226Ra 
204.2±12.4 

(1.2) 

184.1±12.1 

(1.1) 

236.3±16.2 

(1.4) 

263.0±16.0 

(1.6) 

213.6±23.2 

(1.3) 

325.7±33.4 

(1.9) 

228Ra 
451.1±26.6 

(1.0) 

446.2±25.0 

(1.0) 

462.0±33.3 

(1.1) 

559.2±39.2 

(1.3) 

459.0±44.1 

(1.1) 

577.9±66.0 

(1.3) 
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228Th 
305.1±17.4 

(0.8) 

416.1±20.6 

(1.0) 

353.3±21.8 

(0.9) 

520.9±34.2 

(1.3) 

499.2±36.7 

(1.2) 

540.3±44.6 

(1.3) 
40K <338 <313 <492 <76 <292 <537 

Mean 1.0 1.1 1.1 1.4 1.2 1.5 

 

Liquid leachate samples S5.7l - S5.8l show presence of trace amounts of 228Ra and 226Ra in 

S5.9l. Current experiments could not confirm leaching of 228Th due to high MDA value which 

are explained by small masses of the samples. Leachate results are to be treated indicatively, 

as these are intermediate products that should be further processed to separate valuable 

metals. 

 
Table 10: In the experiments 7 - 9 liquid leachate samples were analyzed additionally to the 

solid residues. Results in brackets show radionuclide accumulation compared to the initial 

BR. 

Isotope  

Radionuclide concentration [Bq/kg 

d.w.] 
Radionuclide concentration [Bq/l] 

S5.7s S5.8s S5.9s S5.7l S5.8l S5.9l 

226Ra 
241.2±32 

(1.4) 

206.3±10.4 

(1.2) 

263.6±28.4 

(1.6) 
<0.6 <0.6 0.6±0.2 

228Ra 
325.0±60 

(1.4) 

493.7±30.9 

(1.1) 

631.9±56.5 

(1.5) 
1.7±0.2 1.0±0.2 2.3±0.2 

228Th 
470.0±34.2 

(1.2) 

482.1±29.8 

(1.2) 

512.3±39.8 

(1.3) 
<1.7 <1.4 <2.0 

40K <788 <590 <632    

Mean 1.3 1.2 1.4 - - - 

 

Conclusions 

Five BR valorization methods have been discussed in the current article. Results, summarizing 

activity concentration for residues produced by every method are presented in the Figure 7 

with corresponding measurement uncertainties. The presented results correspond to the 

mean value for secondary residues, averaged between multiple experiments (for example 3 

experiments averaged for reductive smelting, 8 for alkali leaching). It should be noted, that 

all the materials studied have been produced using bauxite residue coming from AoG plant, 

which utilizes specific bauxite types. Therefore, results presented current study cannot be 

directly extrapolated to other plants or bauxite residues. 
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Figure 7: Radionuclide mean concentration ratios in secondary residues. Uncertainty bars 

are reported at 2σ. 

It can be observed that all the results presented remain well below the screening values (1000 

Bq/kg for the nuclides measured) set in Euratom BSS. The exception from these findings was 

one particular experiment with reductive smelting; the screening value for 228Th has been 

exceeded in the residue and 210Pb in the flue dust. The experiment was later optimized by 

utilizing flux materials and all subsequent residues remained below screening limits, while the 

flue dust is potentially hazardous residue that has to be dealt with. For the other studied 

valorization methods, this would be unnecessary as the radionuclide accumulation did not 

exceed EU BSS screening limits. 

If a reductive smelting process were used on an industrial scale for BR from AoG, then a 

further  radiological assessment might be needed to demonstrate safety of workers. 

However, it is expected that the standard protective safety measures utilized at a 

metallurgical plant (respirators, gloves, protective clothing) would be sufficient to provide a 

safe working environment from radiological perspective. 

Additionally, measurements of 40K have been performed. Activity concentration of this 

radionuclide remained below minimum detectable amounts in all experiments except for 

one. All the provided results for this nuclide were below the EU BSS screening value set to 10 

kBq/kg. 

The current study has also shown that during iron recovery with microwave roasting, a 

considerable amount of radionuclides (226Ra, 228Ra, 228Th) is recovered with iron, and during 

ionic liquid leaching, trace amounts of radionuclides (226Ra, 228Ra) were present in the 

leachate solution. 
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