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Introduction

The class of complex Gelfand-Mazur algebras was introduced, in-
depedently of each other, by Mati Abel (see [6]–[8]) and by Anastasios
Mallios (see [24]). The structure of complex Gelfand-Mazur algebras
has been enough well studied. The class of real Gelfand-Mazur alge-
bras was introduced recently in [18].

Properties of real topological algebras have been studied mainly in
case of Banach algebras (see [21, 30]). The main method for the study
of real Banach algebras is the following: first to complexify the real
Banach algebra A and then to transform the results, that are known
for complex Banach algebras, from the complexification Ã of A to the
initial real Banach algebra A. The same technics is working in case of
real Gelfand-Mazur algebras, too.

Using ideas of G. Allan and L. Waelbroeck (see [19, 32]), Mart Abel
showed in [2, 4] how to describe closed maximal ideals in complex (not
necessarily commutative) Gelfand-Mazur algebras. Using his results

on the complexification Ã of a real Gelfand-Mazur algebra A, a similar
description for a certain kind of closed maximal ideals (in particular, of
all closed maximal ideals with codimension 1) is presented in the this
Thesis. As an application, the description of closed maximal ideals in
subalgebras of C(X,A;σ) is given.

This Thesis consists of three Chapters. Properties of the com-
plexification of real topological algebras (in particular, of real locally
pseudoconvex and of real galbed algebras) are considered in the first
Chapter. Conditions, when a real topological division algebra is a real
Gelfand-Mazur division algebra, are given in the last section of this
Chapter.

A description of classes of real (commutative and noncommutative)
Gelfand-Mazur algebras is given in the second Chapter. Conditions
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for a real topological algebra A, for which the center of A/P (the
quotient algebra of A by a closed primitive ideal P ) is homeomorphic
to R, are found. Using this result, a description of closed maximal
left (right or two-sided) ideals in real unital Gelfand-Mazur algebra is
given.

Properties of the topological algebra C(X,A;σ) (of A-valued con-
tinuous functions on a topological space X in case when σ is a com-
pact cover of X and A a real Gelfand-Mazur algebra) are studied
in the third Chapter. A description of closed maximal left (right or
two-sided) ideals and of all nontrivial continuous linear multiplica-
tive functionals in subalgebras A(X,A;σ) of C(X,A;σ) are given as
an application. Conditions, when hom(A(X,A;σ)) (the space of all
nontrivial continuous homomorphisms from A(X,A;σ) to R endowed
with the Gelfand topology) and X × hom(A) are homeomorphic, are
given.

Main results, presented in this Thesis, have been published in [18],
[28], and in a coming paper [29]. The author has introduced these
results at the following international conferences and workshops: ”In-
ternational Conference on Topological Algebras and its Applications”
(Oulu, 2001), ”Topological algebras, their applications and related
results” (Bed lewo, 2003), ”International conference dedicated to 125-
th anniversary of Hans Hahn” (Chernivtsi, Ukraine, 2004), ”Inter-
national Conference on Topological Algebras and its Applications”
(Athens, 2005) and joint workshop ”Tartu-Riga” (Riga, 2005).
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Chapter 1

Real Gelfand-Mazur division
algebras

In this Chapter we consider properties of the complexification of
real topological algebras (in particular, of real locally pseudoconvex
and of real galbed algebras) and we give the conditions, when a real
topological division algebra is a real Gelfand-Mazur division algebra.

Main results in this Chapter are published in [18].

1.1 Preliminary

Here we give definitions of some terms, which are connected with
the topological vector space.

Let K be one of the fields R or C of real or complex numbers,
endowed with their usual topologies, X a vector space over K and τ
a topology on X. The pair (X, τ) is called a topological vector space
over K if

a) for each neighbourhood O of zero ofX in the topology τ there ex-
ists another neighbourhood U of zero of X such that
U + U ⊂ O;

b) for each neighbourhood O of zero of X in the topology τ there
exist a neighbourhood U of zero of K and a neighbourhood V of
zero of X such that V U ⊂ O.
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Throughout of this Thesis the zero element in X is denoted by θX .

Let now X be a topological vector space and U an arbitrary set in
X. Then U is

• balanced if λU ⊂ U , whenever |λ| 6 1;

• absorbing if for each a ∈ X there exists a number µ > 0 such
that a ∈ λU , whenever |λ| > µ;

• convex if λa+ (1− λ)b ∈ U for each a, b ∈ U and 0 6 λ 6 1;

• absolutely k-convex if λa+µb ∈ U for each a, b ∈ U and λ, µ ∈ K
such that |λ|k + |µ|k 6 1 and k ∈ (0, 1];

• pseudoconvex if U + U ⊂ 2
1
kU for some k ∈ (0, 1];

• bounded in X if for each neighbourhood O of zero of X there
exists a number λO > 0 such that U ⊂ λOO.

Let k be a positive real number. The map p : X → R+ is a k-ho-
mogeneous seminorm1 on X if

a) p(x) > 0 for each x ∈ X;

b) p(λx) = |λ|kp(x) for each x ∈ X and λ ∈ K;

c) p(x+ y) 6 p(x) + p(y) for each x, y ∈ X.

Let M be an absorbing subset in X. The map pM : X → R+ (the set
of nonnegative real numbers), defined by

pM(x) = inf{|λ|k > 0 : x ∈ λM}

for each x ∈ X, is called a k-homogeneous Minkowski functional of M
on X.

It is easy to see that, if M is an absolutely k-convex, absorbing
and balanced set in X, then the k-homogeneous Minkowski functional
pM of M is a k-homogenous seminorm on X (see, for example, [20],
Propostion 4.1.10).

1A k-homogeneuos seminorm p on X is a k-homogeneous norm if from p(x) = 0
it follows that x = θX .
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1.2 Real topological algebras and their

complexifications

1. A topological vector space A over K is called a topological
algebra2 over K (shortly, topological algebra) if there has been defined
in A an associative multiplication such that

a) A is an algebra over K with respect to this multiplication;

b) this multiplication is separately continuous.

The condition b) means that for any a ∈ A and every neighbour-
hood U of zero in A there is another neighbourhood V of zero in A
such that V a, aV ⊂ U .

In particular, when K = R, we will speak about real topological
algebras, and when K = C, about complex topological algebras.

In case when the multiplication of A is jointly continuous (that is,
for any neighbourhood U of zero in A there is another neighbourhood
V of zero in A such that V V ⊂ U), then A is called a topological
algebra with jointly continuous multiplication.

Throughout of this Thesis the unit element in A is denoted by eA.

For any unital topological algebra A we will use the following no-
tations:

• m(A) is the set of all closed two-sided ideals of A, which are
maximal as left or right ideals;

• ml(A) (mr(A) or mt(A)) is the set of all closed maximal left
(respectively, right or two-sided) ideals of A.

2. Let A be a real (not necessarily topological) algebra and

Ã = A + iA the complexification of A. Then every element ã of
Ã is representable in the form ã = a+ ib, where a, b ∈ A and i2 = −1.
If the addition, the scalar multiplication and the multiplication in Ã

2In case, when we have already specified the topology τ on X, then we talk
about a topological algebra (A, τ).
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to define by

(a+ ib) + (c+ id) = (a+ c) + i(b+ d),

(α + iβ)(a+ ib) = (αa− βb) + i(αb+ βa),

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

for all elements a, b, c, d ∈ A and α, β ∈ R, then Ã is a complex algebra
with the zero element θ

eA = θA + iθA. In case, when A has the unit

element eA, then e
eA = eA + iθA is the unit element of Ã. Herewith,

Ã is an associative (commutative) algebra if A is an associative (re-
spectively, commutative) algebra. Moreover, we can considered A as

a real subalgebra of Ã if we embed A into Ã by the map ν defined by
ν(a) = a+ iθA for each a ∈ A.

3. Let (A, τ) be a real topological algebra and BA = {Uα : α ∈ A}
a base of neigbourhoods of zero in (A, τ). As usual (see [20] or [36]),

we endow Ã with the topology τ̃ , in which a base of neighbourhoods
of zero is B

eA = {Uα + i Uα : α ∈ A}. It is easy to see that (Ã, τ̃) is a

topological algebra and the multiplication in (Ã, τ̃) is jointly continu-
ous if the multiplication in (A, τ) is jointly continuous (see Proposition

2.2.10 from [20]). Moreover, the underlying topological space of Ã is a
Hausdorff space if the underlying topological space of A is a Hausdorff
space.

4. A usual method for the study of properties of a real topological
algebra A is the following: complexify and then apply results known
for complex topological algebras to the complexification Ã of A and
deduce similar results for the original topological algebra A.

1.3 Real locally pseudoconvex algebras

and their complexifications

1. A topological algebra (A, τ) is a locally pseudoconvex algebra
if its underlying topological vector space is locally pseudoconvex. It
means that (A, τ) has a base

BA = {Uα : α ∈ A}
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of neighbourhoods of zero, consisting of balanced and pseudoconvex
sets. The topology τ of a locally pseudoconvex algebra (A, τ) is usually
given by a family

PA = {pα : α ∈ A}
of kα-homogeneous seminorms, where kα ∈ (0, 1] for each α ∈ A (see
[33], p. 4).

Now we define two paticular cases of locally pseudoconvex algebras.
A locally pseudoconvex algebra (A, τ) is

• locally absorbingly pseudoconvex (shortly, locally A-pseudocon-
vex) if for each Uα ∈ BA and a ∈ A there is a positive number
µa such that aUα, Uαa ⊂ µaUα or, in terms of seminorms, if
every seminorm p ∈ PA is A-multiplicative, it means that for
each a ∈ A there are positive numbers M(a, p) and N(a, p) such
that

p(ab) 6 M(a, p)p(b) and p(ba) 6 N(a, p)p(a)

for all b ∈ A ;

• locally multiplicatively pseudoconvex (shortly, locally m-pseudo-
convex) if U2

α ⊂ Uα for each Uα ∈ BA or, in terms of seminorms,
if every seminorm p ∈ PA is submultiplicative, it means that

p(ab) 6 p(a)p(b)

for all a, b ∈ A.

It is easy to see that every locally m-pseudoconvex algebra is lo-
cally A-pseudoconvex. Indeed, let (A, τ) be a locally m-pseudoconvex
algebra, U an arbitrary set in BA and a ∈ A. Then there is a number
λ > 0 such that a ∈ λU . Therefore aU ⊂ λUU ⊂ λU (similarily,
Ua ⊂ λU). Hence, (A, τ) is a locally A-pseudoconvex algebra.

2. Let now A be a real locally pseudoconvex algebra, Ã the com-
plexification of A,

Γkα(Uα + iθA) =
{ n∑

k=1

λk(uk + iθA) : n ∈ N,

u1, ..., un ∈ Uα, λ1, ..., λn ∈ C with
n∑

k=1

|λk|kα 6 1
}
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and
qα(a+ ib) = inf{|λ |kα : (a+ ib) ∈ λΓkα(Uα + iθA)}

for each a + ib ∈ Ã. Then Γkα(Uα + iθA) is the absolutelly kα-convex
hull of Uα +iθA for each α ∈ A and qα is a kα-homogeneous Minkowski
functional of Γkα(Uα + iθA) on Ã. For real normed algebras the fol-
lowing result has been proved in [21], p. 68−69 (see also [30], p. 8)
and for k-seminormed algebras with k ∈ (0, 1] in [20], p. 183−184.

Theorem 1.3.1. Let (A, τ) be a real locally pseudoconvex algebra,
PA = {pα : α ∈ A} a family of kα-homogeneuos seminorms on A
(with kα ∈ (0, 1] for each α ∈ A), which defines the topology τ of A,
and let Uα = {a ∈ A : pα(a) < 1}. Then the following statements are
true for each α ∈ A :

a) (Ã, τ̃) is a complex locally pseudoconvex algebra, which topology τ̃
is defined by the set {qα : α ∈ A} of kα-homogeneuos seminorm

on Ã;

b) max{pα(a), pα(b)} 6 qα(a + ib) 6 2 max{pα(a), pα(b)} for each
a, b ∈ A;

c) qα(a+ iθA) = pα(a) for each a ∈ A;

d) Γkα(Uα + iθA) = {a+ ib ∈ Ã : qα(a+ ib) < 1}.

Proof. a) We will show that qα is a kα-homogeneuos seminorm on

Ã for each α ∈ A. For it, it is enough to show, that Γkα(Uα + iθA) is

an absorbing set. Let α ∈ A, (a+ ib) ∈ Ã \ {θ
eA} and

µkα
α > max{pα(a), pα(b)}.

Then
a

µα

,
b

µα

∈ Uα. Since

2−
1

kα

( a

µα

+ i
b

µα

)
= 2−

1
kα

( a

µα

+ iθA

)
+ i2−

1
kα

( b

µα

+ iθA

)
and

|2−
1

kα |kα + |i2−
1

kα |kα = 1,

then
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(a+ ib) ∈ 2
1

kα µαΓkα(Uα + iθA). (1.3.1)

Hence, (a+ ib) ∈ λαΓkα(Uα + iθA) for each α ∈ A if |λα| > 2
1

kα µα. It
means that the set Γkα(Uα + iθA) is an absorbing set. Consequently

(see [20], Proposition 4.1.10), qα is a kα-homogeneous seminorm on Ã.

b) Let now (a+ ib) ∈ Ã \ {θ
eA}. Then from (1.3.1) it follows that

qα(a+ ib) 6 2µkα
α .

Since this inequality is valid for each µkα
α > max{pα(a), pα(b)}, then

qα(a+ ib) 6 2 max{pα(a), pα(b)}. (1.3.2)

Let now a+ ib ∈ Γkα(Uα + iθA). Then

a+ ib =
n∑

k=1

(λk + iµk)(ak + iθA) =
n∑

k=1

λkak + i
n∑

k=1

µkak

for some a1, . . . , an ∈ Uα and real numbers λ1, . . . , λn and µ1, . . . , µn

such that
n∑

k=1

|λk + iµk|kα 6 1.

Since |λk| 6 |λk + iµk| and |µk| 6 |λk + iµk| for each k = 1, . . . , n,
then

a =
n∑

k=1

λkak and b =
n∑

k=1

µkak

belong to Γkα(Uα) = Uα.
Let now ε > 0 and

µα >
( 1

qα(a+ ib) + ε

) 1
kα
.

Then from µα(a + ib) ∈ Γkα(Uα + iθA) it follows that µαa, µαb ∈ Uα

or pα(µαa) < 1 and pα(µαb) < 1. Therefore

max{pα(a), pα(b)} < µ−kα
α < qα(a+ ib) + ε. (1.3.3)

Since ε is arbitrary, then from (1.3.3) it follows that

max{pα(a), pα(b)} 6 qα(a+ ib)
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for each a, b ∈ A. Taking this and the inequality (1.3.2) into account,
it is clear that the statement b) holds.

c) Let a ∈ A, α ∈ A and ρkα > qα(a+ iθA). Then from(a
ρ

+ iθA

)
∈ Γkα(Uα + iθA)

it follows that a ∈ ρUα or pα(a) < ρkα . It means that the set of
numbers ρkα for which ρkα > qα(a + iθA) is bounded below by pα(a).
Therefore

pα(a) 6 qα(a+ iθA).

Let now ρkα > pα(a). Then a ∈ ρUα and from(a
ρ

+ iθA

)
∈ Γkα(Uα + iθA)

it follows that qα(a + iθA) < ρkα . Hence qα(a + iθA) 6 pα(a). Thus
qα(a+ iθA) = pα(a) for each a ∈ A and α ∈ A.

d) It is clear that the set

{a+ ib ∈ Ã : qα(a+ ib) < 1} ⊂ Γkα(Uα + iθA).

Now we show that Γkα(Uα + iθA) ⊂ {a+ ib ∈ Ã : qα(a+ ib) < 1}. For
it, let a+ ib ∈ Γkα(Uα + iθA). Then

a+ ib =
n∑

k=1

(λk + iµk)(ak + iθA)

for some elements a1, . . . , an ∈ Uα and real numbers λ1, . . . , λn and
µ1, . . . , µn such that

n∑
k=1

|λk + iµk|kα 6 1.

Since pα(ak) < 1 for each k = 1, . . . , n, we can choose εα > 0 so that

max{pα(a1), . . . , pα(an)} < εkα
α < 1.

Then ak ∈ εαUα for each α ∈ A and each k = 1, . . . , n. Therefore

a+ ib

εα

∈
n∑

k=1

(λk + iµk)(
ak

εα

+ iθA) ∈ Γkα(Uα + iθA).
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Hence,
(a+ ib) ∈ εαΓkα(Uα + iθA)

or qα(a+ ib) 6 εkα
α < 1. It means that the statement d) holds.

A topological algebra (A, τ) is called a Fréchet algebra if the un-
derlying topological vector space of (A, τ) is a Fréchet space that is,
(A, τ) is complete and metrizable. It means, that every Cauchy net3

in (A, τ) converges in (A, τ) and there exists a metrics d on A such
that the topology on A defined by d, consider with τ . It is well known
that (A, τ) is metrizable if it has a countable base of neighbourhoods
of zero.

Corollary 1.3.2. If (A, τ) is a real locally pseudoconvex Fréchet

algebra, then (Ã, τ̃) is a complex locally pseudoconvex Fréchet algebra.

Proof. Let (A, τ) be a real locally pseudoconvex Fréchet algebra
and {pn, n ∈ N} a countable family of kn-homogeneuos seminorms
(with kn ∈ (0, 1] for each n ∈ N), which defines the topology τ on A.

Then {qn : n ∈ N} defines on Ã a metrizable locally pseudoconvex
topology τ̃ by Theorem 1.3.1. If (an + ibn) is a Cauchy sequence in

Ã, then (an) and (bn) are Cauchy sequences in A by the inequality
b) of Theorem 1.3.1. Because A is complete, then (an) converges to
a0 ∈ A and (bn) converges to b0 ∈ A. Hence (an + ibn) converges in

Ã to a0 + ib0 ∈ Ã by the same inequality b). Thus, Ã is a complex
locally pseudoconvex Fréchet algebra.

Theorem 1.3.3. Let A be a real locally A-pseudoconvex (locally

m-pseudoconvex) algebra. Then Ã is a complex locally A-pseudoconvex
(respectively, locally m-pseudoconvex) algebra.

Proof. Let (A, τ) be a real locally A-pseudoconvex algebra and
PA = {pα : α ∈ A} a family of kα-homogeneous A-multiplicative
seminorms on A (with kα ∈ (0, 1] for each α ∈ A), which defines

the topology τ on A and (Ã, τ̃) the complexification4 of (A, τ). Then

3A net (xλ)λ∈Λ of elements of topological vector space X is called a Cauchy
net if for each neighbourhood U of zero of X there is an index λ0 ∈ Λ such that
xλ − xµ ⊂ U , whenever λ > µ > λ0.

4Here τ̃ denotes the topology on Ã defined by the system {qα : α ∈ A} (see
Theorem 1.3.1).
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every fixed a0 ∈ A and α ∈ A there are positive numbers Mα(a0) and
Nα(a0) such that

pα(a0a) 6 Mα(a0)pα(a) and pα(aa0) 6 Nα(a0)pα(a)

for all a ∈ A. If a0 + ib0 is a fixed and a + ib an arbitrary element in
Ã, then

qα((a0 + ib0)(a+ ib)) = qα((a0a− b0b) + i(a0b+ b0a)) 6

6 2 max{pα(a0a− b0b), pα(a0b+ b0a)}

for each α ∈ A by the inequality b) of Theorem 1.3.1. If now

pα(a0a− b0b) > pα(a0b+ b0a),

then

max{pα(a0a− b0b), pα(a0b+ b0a)} =

= pα(a0a− b0b) 6 Mα(a0)pα(a) +Mα(b0)pα(b) 6

6 max{pα(a), pα(b)}(Mα(a0) +Mα(b0)) 6

6
1

2
Mα(a0, b0)qα(a+ ib)

by the same inequality b) of Theorem 1.3.1, where

Mα(a0, b0) = 2(Mα(a0) +Mα(b0)).

Hence

qα((a0 + ib0)(a+ ib)) 6 Mα(a0, b0)qα(a+ ib) (1.3.4)

for each a+ ib ∈ Ã and α ∈ A.

The proof for the case, when pα(a0a − b0b) < pα(a0b + b0a), is
similar. Thus, the inequality (1.3.4) holds for both cases. In the same
way it is easy to show that the inequality

qα((a+ ib)(a0 + ib0)) 6 Nα(a0, b0)qα(a+ ib)

holds for each a+ib ∈ Ã and α ∈ A. Consequently, (Ã, τ̃) is a complex
locally A-pseudoconvex algebra.
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Let now (A, τ) be a real locally m-pseudoconvex algebra, then each

pα ∈ PA is a submultiplicative seminorm on A. If a+ ib, a′ + ib′ ∈ Ã,
then

qα((a+ ib)(a′ + ib′)) 6 2 max{pα(aa′ − bb′), pα(ab′ + ba′)}

by the inequality b) of Theorem 1.3.1. Again, if

pα(aa′ − bb′) > pα(ab′ + ba′),

then

max{pα(ab′ − bb′), pα(ab′ + bb′)} = pα(ab′ − bb′) 6

6 pα(a)pα(a′) + pα(b)pα(b′) 6

6 2 max{pα(a), pα(b)}max{pα(a′), pα(b′)} 6

6 2qα(a+ ib)qα(a′ + ib′)

by the inequality b) of Theorem 1.3.1 Hence,

qα((a+ ib)(a′ + ib′)) 6 4qα(a+ ib)qα(a′ + ib′).

Putting rα = 4qα for each α ∈ A, we see that

rα((a+ ib)(a′ + ib′)) 6 rα(a+ ib)rα(a′ + ib′) (1.3.5)

for each a+ ib, a′ + ib′ ∈ Ã and α ∈ A.

The proof for the case, when pα(ab′−bb′) < pα(ab′+bb′), is similar.
Hence, the inequality (1.3.5) holds for both cases. Since the families

{qα : α ∈ A} and {rα : α ∈ A} define on Ã the same topology τ̃ ,

then (Ã, τ̃) is a complex locally m-pseudoconvex algebra.

1.4 Real galbed algebras and their com-

plexifications

Let `0 be the set of all sequences (αn) ∈ RN, in which only finite
number of members αn are different from zero. Moreover, let k be a
positive real number, `k the set of all sequences (αn) ∈ RN, for which
the series

∞∑
k=0

|αn|k
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converges and let ` = `1 \ `0.
A topological algebra A is called a galbed algebra if its underlying

topological vector space is a galbed space, that is, there exist a se-
quence (αn) ∈ ` and for each neighbourhood O of zero in A another
neighbourhood U of zero such that{ n∑

k=0

αkak : a0, ..., an ∈ U
}
⊂ O (1.4.1)

for each n ∈ N.
Now we give two particular cases of galbed algebras5. A topological

algebra A is

• strongly galbed if its underlying topological vector space is a
strongly galbed space that is, if there exists a sequence (αn) ∈ `
with α0 6= 0 and

α = inf
n>0

|αn|
1
n > 0

such that the condition (1.4.1) has been satisfied;

• exponentially galbed if A is a (2−n)-galbed algebra.

It is easy to see that every locally pseudoconvex algebra is an
exponentially galbed algebra and every exponentially galbed algebra
is an (αn)-galbed algebra with αn = 2−n for each n ∈ N. Hence, the
class of galbed algebras is much larger than the class of exponentially
galbed algebras. Herewith, there exists a metrizable algebra, which is
not a galbed algebra (see [16], Proposition 5).

A topological algebra A is called a topological algebra with bounded
elements if all elements of A are bounded that is, for each a ∈ A there
is λa ∈ R \ {0} such that the set{( a

λa

)n

: n ∈ N
}

is bounded in A.

Next we will find conditions for a real (strongly) galbed algebra A

in order to the complexification Ã of A is a (strongly) galbed algebra.

5In case, when we have already specified the sequence (αn) ∈ `, then we talk
about an (αn)-galbed algebra.
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Theorem 1.4.1. Let A be a real galbed algebra (a commutative
real strongly galbed algebra with jointly continuous multiplication and
bounded elements). Then Ã is a complex galbed algebra (respectively, a
commutative complex strongly galbed algebra with bounded elements).

Proof. Let A be a real galbed algebra and Õ a neighbourhood of
zero in Ã. Then there are a sequense (αn) ∈ `, a neighbourhood O of

zero in A such that O+ iO ⊂ Õ and another neighbourhood U of zero
in A such that { n∑

k=0

αkak : a0, . . . , an ∈ U
}
⊂ O

for each n ∈ N. Since U + iU is a neighbourhood of zero in A and{ n∑
k=0

αk(ak + ibk) : a0 + ib0, . . . , an + ibn ∈ U + iU
}
⊂

⊂ O + iO ⊂ Õ (1.4.2)

for each n ∈ N, then Ã is a complex galbed algebra.

Let now A be a commutative real strongly galbed algebra with
jointly continuous multiplication and bounded elements. It is clear,
that Ã is a commutative complex strongly galbed algebra. We will
show that every element in Ã is bounded. For it, let Õ be an arbitrary
neighbourhood of zero in Ã and a+ib ∈ Ã an arbitrary element. Then
there are a neighbourhood O of zero in A such that O + iO ⊂ Õ and
λa, λb ∈ C \ {0} such that the sets{( a

λa

)n

: n ∈ N
}

and
{( b

λb

)n

: n ∈ N
}

are bounded in A. The neighbourhood O defines now a balanced
neighbourhood U of zero in A such that (1.4.2) holds and U defines a
balanced neighbourhood V of zero in A such that V V ⊂ U (because
the multiplication in A is jointly continuous). Now there are numbers
µa, µb > 0 such that( a

|λa|

)n

∈ µaV and
( b

|λb|

)n

∈ µbV
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for each n ∈ N. Let

κ =
2(|λa|+ |λb|)

α
,

where α = infn>0 |αn|
1
n > 0 because A is strongly galbed. Since

a+ ib = (a+ iθA) + i(b+ iθA), then

(a+ ib

κ

)n

=
n∑

k=0

(
n

k

)((a
κ

)k

+ iθA

)
in−k

(( b
κ

)n−k

+ iθA

)
=

= µaµb

n∑
k=0

αkx̃k

for each n ∈ N, where

x̃k = %nk
1

µaµb

(( a

|λa|

)k( b

|λb|

)n−k

+ iθA

)
and

%nk =
1

αk

in−k

(
n

k

)( |λa|
κ

)k( |λb|
κ

)n−k

for each k 6 n. As |αk| > αk, then

|%nk| =
1

|αk|κn

(
n

k

)
|λa|k|λb|n−k 6

1

αnκn
(|λa|+ |λb|)n 6

(1

2

)n

< 1

and ( a

|λa|

)k( b

|λb|

)n−k

+ iθA ∈ µaµbV V + iθA ⊂ µaµb(U + iU).

As U is a balanced set, then x̃k ∈ U+ iU for each k = 0, . . . , n. Hence,(a+ ib

κ

)n

∈ µaµb(O + iO) ⊂ µaµbÕ

by (1.4.2) for each n ∈ N. It means that a + ib is bounded in Ã.

Consequently, Ã is a commutative complex strongly galbed algebra
with bounded elements.
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Corollary 1.4.2. If A is a real exponentially galbed algebra
(a commutative real exponentially galbed algebra with jointly contin-

uous multiplication and bounded elements). Then Ã is a complex ex-
ponentially galbed algebra (respectively, a commutative complex expo-
nentially galbed algebra with bounded elements).

Proof. According to the definition, every exponentially galbed al-
gebra is a strongly galbed algebra with α = 1

2
.

1.5 Strictly and formally real algebras

1. Let A be a (not necessary topological) algebra over C with the
unit element eA and InvA the set of all invertible6 elements in A. Then
the spectrum of a ∈ A is the set

spA(a) = {λ ∈ C : a− λeA /∈ InvA}.

If A is a real algebra, then the spectrum of a ∈ A is defined by

spA(a) = sp
eA(a+ iθA),

where Ã is the complexification of A. Real algebras have two main
subclasses.

a) A real unital algebra A is strictly real if a2 + eA ∈ InvA for each
a ∈ A.

Next result gives a sufficient condition for the strict reality of a
real algebra.

Proposition 1.5.1. Let A be a commutative real unital algebra.
If spA(a) ⊂ R for each a ∈ A, then A is strictly real.

Proof. Let A be a commutative real unital algebra and Ã the com-
plexification of A. Suppose that there is an element a ∈ A such that
α + iβ ∈ spA(a), with β 6= 0. Then

x = (a− αeA)− iβeA = (a+ iθA)− (α + iβ)eA /∈ InvÃ.

6An element a ∈ A is invertible in A if there is an element b ∈ A such that
ab = ba = eA.
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Put x = a − (α + iβ)eA. If now xx ∈ InvA, then there is an element
c ∈ A such that (xx)c = c(xx) = eA. Therefore,

(xx)(c+ iθA) = (xx)c+ iθA = eA + iθA.

Since A is a commutative algebra, then x ∈ InvÃ, what is not possible.
Hence,

xx = (a− αeA)2 + β2eA /∈ InvA

or (a− αeA

β

)2

+ eA /∈ InvA.

It means, that A is not strictly real.

Corollary 1.5.2. Let A be a strictly real algebra, M a two-sided
ideal in A and πM the canonical homomorphism from A onto A/M .
Then A/M is a strictly real algebra, too.

Proof. If x ∈ A/M , then there is a ∈ A such that x = πM(a). Since
spA/M(πM(a)) ⊂ spA(a) ⊂ R, then A/M is strictly real algebra.

b) A real algebra A is formally real if

from a, b ∈ A and a2 + b2 = θA it follows that a = b = θA. (1.5.1)

The condition (1.5.1) shows that formally real algebras are ”similar”
to the field R. It is known (see [20], Proposition 1.6.20) that the com-

plexification Ã of a commutative real division algebra A is a division
algebra if and only if A is formally real and every commutative real
division algebra, which is not formally real, has the complex structure.
Moreover (see [20], Proposition 1.9.14), a formally real division alge-
bra is strictly real and a commutative strictly real division algebra is
formally real.

Next result gives a necessary and sufficient condition for a quotient
algebra A/I (over a two-sided ideal I) to be formally real.

Proposition 1.5.3. Let A be a real algebra and I a two-sided ideal
in A. Then the quotient algebra A/I is formally real if and only if A
satisfies the condition

from a, b ∈ A and a2 + b2 ∈ I it follows that a, b ∈ I. (1.5.2)
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Proof. Let A be a real algebra, I a two-sided ideal in A, πI the
quotient map of A onto A/I and let a, b ∈ A be such that a2 + b2 ∈ I.
Then

πI(a)2 + πI(b)2 = πI(a2 + b2) = θA/I .

If A/I is formally real, then πI(a) = πI(b) = θA/I or a ∈ I and b ∈ I.
Let now algebra A satisfy the condition (1.5.2) and x, y ∈ A/I be

such that x2+y2 = θA/I . Then there are a, b ∈ A such that x = πI(a),
y = πI(b) and

πI(a2 + b2) = x2 + y2 = θA/I .

Hence, from a2 + b2 ∈ I it follows that x = y = θA/I by the condition
(1.5.2).

2. Example. Let C(X) be an algebra7 of all continuous functions
f : X → R, where X is a compact Hausdorff space. Then every
maximal ideal M in C(X) satisfies the condition (1.5.2), because every
maximal ideal M defines x ∈ X such that

M = Mx = {f ∈ A : f(x) = 0}.

More generally, if A is an subalgebra of C(X), in which every maximal
ideal M defines x ∈ X such that M = Mx, then every maximal ideal
M in A satisfies the condition (1.5.2) as well. Hence, the quotient
algebra A/M is formally real algebra for each maximal ideal M in A.

1.6 Properties of the complexification of

some real topological algebras

A unital topological algebra A is called a Q-algebra if the set InvA
of all invertible elements of A is open in A and is called a Waelbroeck
algebra if A is a Q-algebra in which the inverse a→ a−1 is continuous
in InvA.

Let now A be a real unital topological algebra and Ã its complex-
ification. Next we describe properties of Ã that we need later on.

7All algebraic operations in C(X) are defined point-wisely.
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Proposition 1.6.1. If A is a commutative strictly real topological
Hausdorff division algebra with continuous inversion. Then the com-
plexification Ã of A is a commutative complex topological Hausdorff
division algebra with continuous inversion.

Proof. Let A be a commutative strictly real topological division al-
gebra. Then Ã is a complex division algebra (see Propositions 1.6.20
and 1.9.14 from [20]). Since the underlying topological space of A
is a Hausdorff space, then A is a Q-algebra. If the inversion in A is
continuous, then A is a commutative real Waelbroeck algebra. There-
fore, Ã is a commutative complex Hausdorff Waelbroeck algebra (see
Proposition 3.6.31 from [20], or Proposition on the page 237 from

[36]). Thus, Ã is a commutative complex Hausdorff division algebra
with continuous inversion.

Proposition 1.6.2. Let A be a real topological algebra and Ã the
complexification of A. If the topological dual A∗ of A is not empty,
then the topological dual Ã∗ of Ã is also not empty.

Proof. It is easy to see that if ψ ∈ A∗, then ψ̃, defined by

ψ̃(a+ ib) = ψ(a) + iψ(b)

for each a+ ib ∈ Ã, is an element of Ã∗.

Proposition 1.6.3. Let A be a commutative strictly real division
algebra and Ã the complexification of A. Then

sp
eA(a+ ib) = {α + iβ ∈ C : α ∈ spA(a) and β ∈ spA(b)}.

Proof. Let α+ iβ ∈ sp
eA(a+ ib). Since A is a commutative strictly

real division algebra, then Ã is a commutative complex division alge-
bra (see [20], Propositions 1.6.20 and 1.9.14). Therefore

a+ ib− (α + iβ)(eA + iθ) = (a− αeA) + i(b− βeA) = θA + iθA

if and only if α ∈ spA(a) and β ∈ spA(b).
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1.7 Real Gelfand-Mazur division algeb-

ras

1. Let (A, τ) be a topological algebra, M ∈ m(A) and πM from A
to A/M be the canonical homomorphism, then the quotient topology
on A/M is defined by

τA/M = {U ⊂ A/M : π−1(U) ∈ τ}.

A real topological algebra A is called a real Gelfand-Mazur algebra
if the quotient algebra A/M (in the quotient topology) is topologically
isomorphic8 to R for each M ∈ m(A). Complex Gelfand-Mazur alge-
bras are defined similary (see [1], [2], [11]–[14]). Hence, a real Gelfand-
Mazur algebra is a real topological algebra in which every M ∈ m(A)
defines a homomorhism ψM ∈ hom(A) such that M = kerψM . Here9

and later on hom(A) denotes the set of all nontrivial continuous ho-
momorphisms from A to R.

The next result describes several classes10of real topological alge-
bras which belong to the class of real Gelfand-Mazur division algebras.

Theorem 1.7.1. Let A be a commutative strictly real topological
division algebra. If there is a topology τ on A such that (A, τ) is one
of the following algebras:

a) a locally pseudoconvex Hausdorff algebra with continuous inver-
sion;

b) a Hausdorff algebra with continuous inversion for which the topo-
logical dual space A∗ is not empty;

c) a strongly galbed (in particular, an exponentially galbed) Haus-
dorff algebra with jointly continuous multiplication and bounded
elements;

8Algebras A and B are topologically isomorphic if there is an isomorphism ρ
from A onto B such that ρ and ρ−1 are continuous.

9The set hom(A) we endow, as usual, with the Gelfand topology. In this topol-
ogy the sets {ψ ∈ hom(A) : |(ψ − ψo)(a)| < ε} with a ∈ A and ε > 0 form a
subbase of neighbourhoos of ψ0 ∈ hom(A).

10Several classes of complex Gelfand-Mazur algebras have been described in
[11]–[13] and [17].
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d) a topological Hausdorff algebra for which the spectrum spA(a) is
not empty for each a ∈ A,

then A and R are topologically isomorphic.

Proof. If A is a commutative strictly real division algebra, then
its complexification Ã is a commutative complex division algebra as
above. Since (A, τ) satisfies

1) the condition a), then the complexification (Ã, τ̃) of (A, τ) is a
commutative complex locally pseudoconvex Hausdorff division
algebra with continuous inversion (by Theorem 1.3.1 and Propo-
sition 1.6.1);

2) the condition b), then the complexification (Ã, τ̃) of (A, τ) is
a commutative complex topological Hausdorff division algebra
with continuous inversion for which the set Ã∗ is not empty (by
Propositions 1.6.1 and 1.6.2);

3) the condition c), then the complexification (Ã, τ̃) of (A, τ) is a
commutative complex strongly galbed Hausdorff division alge-
bra with bounded elements (by Theorem 1.4.1) (in particular,
a commutative complex exponentially galbed Hausdorff division
algebra with bounded elements by Corollary 1.4.2);

4) the condition d), then the complexification (Ã, τ̃) of (A, τ) is
a commutative complex topological Hausdorff division algebra
such that the spectrum sp

eA(a+ ib) is not empty for each a+ ib ∈
Ã (by Proposition 1.6.3).

Therefore (Ã, τ̃) and C are topologically isomorphic (in cases a), b),
and d) see [11], Theorem 1, and in case c) see [9], Proposition 4.1).

Hence, every element a+ ib ∈ Ã is representable in the form

a+ ib = λe
eA

for some λ ∈ C. Now, for each a ∈ A there is a real number µa such
that a = µaeA, because A is strictly real. It is easy to see that ρ,
defined by ρ(a) = µa for each a ∈ A, is an isomorphism from A to R,
whose inverse map is, continuous. To show the continuity of ρ, let O
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be a neighbourhood of zero in R. Then there is a number ε > 0 such
that

Oε = {α ∈ R : |α| < ε} ⊂ O.

If λ0 ∈ Oε \ {0}, then there is a balanced neighbourhood V of zero of
A such that λ0eA /∈ V (because A is a Hausdorff space). If |µa| > |λ0|,
then |µ−1

a λ0| 6 1. Therefore, λ0eA = (λ0µ
−1
a )a ∈ V for each a ∈ V .

As it is not possible, then µa ∈ O for each a ∈ V . Consequently, ρ is
a continuous map.

Remark. In Theorem 1.7.1 the topology τ can be different from
the preliminary topology of A.

Corollary 1.7.2. Let A be a commutative strictly real division
algebra. If there is a topology τ on A such that (A, τ) is one of the
following algebras:

a) a locally pseudoconvex Hausdorff algebra with continuous inver-
sion;

b) a locally A-pseudoconvex (in particular, a locally m-pseudo-
convex) Hausdorff algebra;

c) a locally pseudoconvex Fréchet algebra;

d) a strongly galbed (in particular, an exponentially galbed) Haus-
dorff algebra with jointly continuous multiplication and bounded
elements,

e) a topological Hausdorff algebra, for which the spectrum spA(a) is
not empty for each a ∈ A,

then A is a commutative real Gelfand-Mazur division algebra.

Proof. It is easy to see that A is a commutative real Gelfand-Mazur
division algebra by Theorem 1.7.1 in cases a), d) and e). Since the
inversion is continuous in every unital locally m-pseudoconvex Haus-
dorff algebra (see Lemma 2.2 in [17]) and every locally A-pseudoconvex
Hausdorff algebra has a locally m-pseudoconvex topology (see Lemma
2.2 in [17]), then A is a commutative real Gelfand-Mazur division al-
gebra by a).
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Let now A be a commutative strictly real locally pseudoconvex
Fréchet division algebra. Then A is a commutative strictly real lo-
cally pseudoconvex algebra with continuous inversion (see Corollary
7.6 from [35]). Hence, A is a commutative real Gelfand-Mazur division
algebra by Theorem 1.7.1 a).

Let now A be a real topological algebra with unit element eA. An
element a ∈ A is topologically invertible in A if there is a net (aλ)λ∈Λ

of elements of A such that (aaλ)λ∈Λ and (aλa)λ∈Λ converge in A to eA

(see, for example, [10], p. 14). The set of all topologically invertible
elements of A we denote by TinvA .

Proposition 1.7.3. Let A be a commutative real unital complete
locally m-pseudoconvex Hausdorff algebra and B a strictly real subal-
gebra of A with the same unit eA. If m(B) 6= ∅ and B satisfies the
condition (1.5.2) for each M ∈ m(B), then clAB is a commutative
real unital locally m-pseudoconvex Hausdorff algebra, which satisfies
the condition (1.5.2) for each M ∈ m(clAB).

Proof. Let A be a commutative real unital complete locally
m-pseudoconvex Hausdorff algebra and B a strictly real subalgebra
of A which satisfies the condition (1.5.2) for each M ∈ m(B). Then A
is a real topological algebra with jointly continuous multiplication and
B is a unital strictly real locally m-pseudoconvex Hausdorff algebra
which satisfies the condition (1.5.2) for each M ∈ m(B). Hence B is a
real Gelfand-Mazur algebra by Corollary 1.7.2. Since m(B) 6= ∅, then
hom(B) 6= ∅. Therefore for each φ ∈ hom(B) there is ψ ∈ hom(clAB)
such that φ = ψ|B by Proposition 3 from [15] and the map φ → ψ
is bijection from hom(B) onto11 hom(clAB) by Theorem 4 from [15].
Now, let b ∈ clAB be an arbitrary element. Then there is in B a
net (aλ)λ∈Λ such that (aλ)λ∈Λ converges to b in the topology of A and
eA + a2

λ ∈ InvB for each λ ∈ Λ because B is strictly real. Since

ψ(eA + b2) = lim
λ
ψ(eA + a2

λ) = 1 + lim
λ
φ(aλ)2 = 1 + |ψ(b)|2 ≥ 1

for each ψ ∈ hom(clAB), then eA +b2 ∈ Tinv(clAB) by Proposition 11
e) from [10]. As clAB is complete and locally m-pseudoconvex, then

11Here and later on by clX(U) is denoted the closure of U ⊂ X in the topology
of the space X.
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Inv(clA(B)) = Tinv(clA(B)) by Corollary 2 from [10]. Hence

eA + b2 ∈ Inv(clAB).

Thus, clAB is a commutative strictly real locally m-pseudoconvex al-
gebra. Therefore clAB is a strictly real Gelfand-Mazur algebra by
Proposition 3 from [15] and m(clAB) 6= ∅.

Let now M ∈ m(clAB). Then there is φ ∈ hom(clAB) such that
M = kerφ. If a, b ∈ clAB and a2 +b2 ∈M, then from φ(a)2 +φ(b)2 = 0
it follws that φ(a) = φ(b) = 0 or a, b ∈M . Consequently, clAB satisfies
the condition (1.5.2) for each M ∈ m(clAB).
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Chapter 2

Real Gelfand-Mazur
algebras

In this Chapter we give a description of classes of real (commuta-
tive and noncommutative) Gelfand-Mazur algebras. We present con-
ditions for a real topological algebra A, for which the center of A/P
(the quotient algebra of A by a closed primitive ideal P ) is homeomor-
phic to R. Using this result, we give a description of closed maximal
left (right or two-sided) ideals in real unital Gelfand-Mazur algebra.

Results of this Chapter are published in [28].

2.1 Properties of quotient algebras and

of the center of a topological algebra

Let A be a real topological algebra, I a closed two-sided ideal in
A, πI : A→ A/I the canonical homomorphism and

Z(A) = {z ∈ A : za = az for each a ∈ A}

the center of A.

Proposition 2.1.1. Let (A, τ) be a real locally pseudoconvex (in
particular, a locally A-pseudoconvex or a locally m-pseudoconvex) al-
gebra and I a closed two-sided ideal in A. Then (A/I, τA/I) (in the
quotient topology) and (Z(A/I), τZ) (in the subspace topology) are also
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real locally pseudoconvex (in particular, locally A-pseudoconvex or lo-
cally m-pseudoconvex) algebras.

Proof. Let (A, τ) be a locally pseudoconvex algebra, then there is
a base

B = {Uα : α ∈ A}

of neighbourhoods of zero, consisting of balanced and pseudoconvex
subsets of A. It is easy to see that

B′ = πI(B) = {πI(Uα) : Uα ∈ B, α ∈ A}

is a base of neighbourhoods of zero in (A/I, τA/I), consisting of bal-
anced and pseudoconvex subsets of A/I. Thus, (A/I, τA/I) is a real
locally pseudoconvex algebra.

Since τZ = {O′ ∩Z(A/I) : O′ ∈ τA/I} is the subspace topology on
Z(A/I), generated by τA/I , then it is clear that (Z(A/I), τZ) is a real
locally pseudoconvex algebra.

Analogously, (Z(A/I), τZ) is a real locally A-pseudoconvex (res-
pectively, locally m-pseudoconvex) algebra if A is a real locally
A-pseudoconvex (respectively, locally m-pseudoconvex) algebra.

Proposition 2.1.2. Let (A, τ) be a real locally pseudoconvex
Fréchet algebra and I a closed two-sided ideal in A. Then (A/I, τA/I)
(in the quotient topology) and (Z(A/I), τZ) (in the subspace topology)
are also real locally pseudoconvex Fréchet algebras.

Proof. By Theorem 2, p. 138, from [23] the quotient algebra
(A/I, τA/I) is a Fréchet algebra. Since Z(A/I) is closed in A/I,
then (Z(A/I), τZ) is complete and metrizable, hence (Z(A/I), τZ) is
a Fréchet algebra.

Proposition 2.1.3. Let (A, τ) be a real topological algebra with
bounded elements and I a closed two-sided ideal in A. Then (A/I, τA/I)
(in the quotient topology) and (Z(A/I), τZ) (in the subspace topology)
are also real topological algebras with bounded elements.

Proof. Let x ∈ A/I be an arbitrary element and U an arbitrary
neighbourhood of zero in A/I. Then there is an element a ∈ A such
that x = πI(a). Moreover, π−1

I (U) is a neigbourhood of zero in A.
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Since every element in A is bounded, then there exist λ ∈ R \ {0} and
a number µ > 0 such that(a

λ

)n

∈ µπ−1
I (U)

for each n ∈ N. Now(x
λ

)n

=
(πI(a)

λ

)n

= πI

((a
λ

)n)
∈ µ(πI(π−1

I (U))) = µU.

Hence, (A/I, τA/I) is a real topological algebra with bounded element.

Let now y ∈ Z(A/I) be an arbitrary element and W ′′ an arbitrary
neighbourhood of zero in Z(A/I). Then y ∈ A/I and there exists a
neighbourhood W ′ of zero in A/I such that W ′′ = W ′∩Z(A/I). Since
every element in A/I is bounded, then there exist λy ∈ R \ {0} and
number µ′W > 0 such that ( y

λy

)n

∈ µ′WW ′

for each n ∈ N. As y ∈ Z(A/I), then( y

λy

)n

∈ Z(A/I)

for each n ∈ N. Therefore,( y

λy

)n

∈ µ′WW ′′

for each n ∈ N. Thus, every element in Z(A/I) is bounded.

Proposition 2.1.4. Let (A, τ) be a real galbed (in particular,
strongly or exponentially galbed) algebra and I a closed two-sided ideal
in A. Then (A/I, τA/I) (in the quotient topology) and (Z(A/I), τZ)
(in the subspace topology) are also real galbed (in particular, strongly
or exponentially galbed) algebras.

Proof. Let (A, τ) be a real galbed algebra. Then there is a sequence
(αn) ∈ ` such that (A, τ) is a (αn)-galbed algebra. Moreover, let O
be a neighbourhood of zero in (A/I, τA/I). Then U = π−1

I (O) is a
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neighbourhood of zero in (A, τ) and there is in A a neighbourhood V
of zero such that { n∑

k=0

αkxk; x0, . . . , xn ∈ V
}
⊂ U

for each n ∈ N. Now πI(V ) is a neighbourhood of zero in (A/I, τA/I),
because πI is an open map. Let now n ∈ N and x0, . . . , xn ∈ πI(V ).
Then there are elements a0, . . . an ∈ V such that xk = πI(ak) for each
k = 0, ..., n and

n∑
k=0

αkxk = πI

( n∑
k=0

αkak

)
∈ πI(π−1

I (O)) = O

for each n ∈ N. Hence, (A/I, τA/I) is an (αn)-galbed algebra.

Since τZ is the subspace topology on Z(A/I) generated by τA/I ,
then every neighbourhood O′′ of zero in Z(A/I) in this topology is
representable in the form O′′ = O′∩Z(A/I), where O′ is a neighbour-
hood of zero in A/I. Now we find a neighbourhood V ′ of zero in A/I
such that { n∑

k=0

αkak : a0, . . . , an ∈ V ′
}
⊂ O′

for each n ∈ N and put V ′′ = V ′ ∩ Z(A/I). Since{ n∑
k=0

αkxk : x0, . . . , xn ∈ V ′′
}
⊂ O′′

for each n ∈ N, then (Z(A/I), τZ) is a real (αn)-galbed algebra. The
proof for strongly and exponentially galbed algebras is similar.

Proposition 2.1.5. Let A be a real topological algebra and M ∈
m(A). If for each a ∈ A there exists λ ∈ R\0 such that a−λeA ∈M ,
then the spectrum spA/M(x) is not empty for each element x ∈ A/M
and spZ(A/M)(b) is not empty for each b ∈ Z(A/M).

Proof. Let A be a real topological algebra, M ∈ m(A), πM be
the canonical homomorphism from A onto A/M and x ∈ A/M an
arbitrary element. Then there exists an element a ∈ A such that

37



x = πM(a). Let λa ∈ R be such that a − λaeA ∈ M by assumption.
Then

πM(a)− λaeA/M = πM(a− λaeA) = θA/M .

Since A/M is a division algebra (see [22], the proof of the Theorem
24.9.6, or [27], Theorem 2.4.12), then

πM(a)− λaeA/M /∈ InvA/M.

Hence, λa ∈ spA/M(π(a)).
Moreover, spA/M(b) ⊂ spZ(A/M)(b) for each b ∈ Z(A/M) (because

Z(A/M) ⊂ A/M) and

InvZ(A/M) = InvA/M ∩ Z(A/M).

Thus, spZ(A/M)(b) is not empty for each b ∈ Z(A/M) and

spZ(A/M)(b) = spA/M(b).

2.2 Commutative real Gelfand-Mazur al-

gebras

In this section we describe some real commutative Gelfand-Mazur
algebras.

Theorem 2.2.1. Let A be a commutative real topological algebra.
If A satisfies the condition

from a, b ∈ A and a2 + b2 ∈M it follows that a, b ∈M (2.2.1)

for each M ∈ m(A) and there is a topology τ on A such that (A, τ) is
one of the following algebras:

a) a locally pseudoconvex Waelbroeck algebra;

b) a locally A-pseudoconvex (in particular, a locally m-pseudocon-
vex) algebra;
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c) a locally pseudoconvex Fréchet algebra;

d) a strongly galbed (in particular, an exponentially galbed) algebra
with jointly continuous multiplication and bounded elements;

e) a topological algebra in which for each a ∈ A and M ∈ m(A)
there is λ ∈ R such that a− λeA ∈M ,

then A is a commutative real Gelfand-Mazur algebra.

Proof. Let (A, τ) be a commutative real topological algebra which
satisfies the condition (2.2.1) for each M ∈ m(A) and let M be a
fixed element in m(A). Then (A/M, τA/M) is a topological division
Hausdorff algebra. Moreover, (A/M, τA/M) is a commutative formally
real algebra by Proposition 1.5.3. Hence, it is a commutative strictly
real algebra. Herewith, if (A, τ) satisfies

1) the condition a), then (A/M, τA/M) is a locally pseudoconvex
Waelbroeck algebra by Proposition 2.1.1 and Corollary 3.6.27
from [20];

2) the condition b), then (A/M, τA/M) is a locally A-pseudoconvex
(in particular, a locally m-pseudoconvex) algebra by Proposition
2.1.1;

3) the condition c), then (A/M, τA/M) is a locally pseudoconvex
Fréchet algebra by Proposition 2.1.2;

4) the condition d), then (A/M, τA/M) is a strongly galbed (in par-
ticular, an exponentially galbed) algebra with jointly continuous
multiplication and bounded elements by Propositions 2.1.3 and
2.1.4;

5) the condition e), then (A/M, τA/M) is a topological algebra for
which the spectrum spA/M(x) is not empty for each x ∈ A/M
by Proposition 2.1.5.

Hence, in all these cases A/M (in the quotient topology defined by the
topology τ of A) is topologically isomorphic to R for each M ∈ m(A)
by Theorem 1.7.1 and Corollary 1.7.2. Therefore, A is a commutative
real Gelfand-Mazur algebra.
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2.3 Some properties of ideals

Let A be an algebra over R and M ∈ ml(A) (M ∈ mr(A)). Then

PM = {a ∈ A : aA ⊂M} (respectively, PM = {a ∈ A : Aa ⊂M})

is the primitive ideal in A defined by M . Herewith, PM is a closed
two-sided ideal in A and if M ∈ mt(A), then PM = M .

Let now A be a real algebra and Ã the complexification of A. Then
the following results are true.

Proposition 2.3.1. Let A be a real topological Hausdorff algebra,
Ã the complexification of A and let M ∈ ml(A). Then

a) every ideal M̃ ∈ ml(Ã) is representable in the form

M̃ = M + iM,

where M ∈ ml(A), and M + iM ∈ ml(Ã) for every M ∈ ml(A);

b) the primitive ideal P̃
fM in Ã, defined by M̃=M+iM, is repre-

sentable in the form P̃
fM = PM + iPM , where PM is the primitive

ideal in A defined by M ∈ ml(A);

c) Ã/P̃
fM = A/PM + iA/PM for each M̃ = M + iM ∈ ml(Ã).

Similar results are true for ideals in mr(A) and mt(A) .

Proof. a) Let A be a real topological algebra, Ã its complexifica-

tion, M̃ ∈ ml(Ã),

M = {a ∈ A : a+ ib ∈ M̃ for some b ∈ A}
and

M ′ = {b ∈ A : a+ ib ∈ M̃ for some a ∈ A}.

Since

ca+ icb = (c+ iθA)(a+ ib),

−b+ ia = i(a+ ib),

b+ i(−a) = −i(a+ ib)
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for each a, b, c ∈ A, then M and M ′ are left ideals in A, M = M ′,
M + iM 6= Ã, M + iM is a left ideal in Ã and

M̃ ⊂M + iM ′ = M + iM.

Hence, M̃ = M + iM (because M̃ is a left maximal ideal in Ã).

Now we show that M is a maximal ideal. For it, let I be an
arbitrary ideal in A, such that M ⊂ I. Since I + iI is an left ideal in
Ã, M̃ ⊂ I + iI and M̃ is maximal in Ã, then M̃ = I + iI. Therefore,
M = I that is, M is maximal in A.

Next we show that M is a closed ideal in A. For it, let a0 ∈ clAM .
Then there is a net (mλ)λ∈Λ in A, which converges in A to a0. Now

(mλ + iθA) is a net in Ã, which converges in Ã to a0 + iθA (because Ã

is a Hausdorff space). Hence, a0 + iθA ∈ M̃ (because M̃ is closed in

Ã). Consequently, a0 ∈M . It means that M ∈ ml(A).

Now we show that M + iM ∈ ml(Ã) for M ∈ ml(A). It is easy to

see that M + iM is a left ideal in Ã. If J̃ is a left ideal in Ã such that
M + iM ⊂ J̃ , then

M ⊂ J = {a ∈ A : a+ ib ∈ J̃ for some b ∈ A}.

As J is an left ideal in A, J 6= A and M is maximal, then M = J .
Hence, similarily as above M + iM = J̃ . Consequently, M + iM is a
maximal ideal in A.

Let now a0 + ib0 ∈ cl
eA(M+ iM). Then there is a net (mλ + inλ)λ∈Λ

in M + iM such that (mλ + inλ)λ∈Λ converges to a0 + ib0. Therefore
(mλ)λ∈Λ converges in A to a0 and (nλ)λ∈Λ converges in A to b0. Hence,
a0 + ib0 ∈ M + iM , because mλ, nλ ∈ M for each λ ∈ Λ and M is
closed. Consequently, M + iM ∈ ml(Ã).

The proof for ideals in mr(A) is similar. If M ∈ mt(A), then
M ∈ ml(A) and M ∈ mr(A), therefore result is also true.

b) Let P̃
fM be the primitive ideal in Ã, defined by M̃ ∈ ml(Ã).

Then there is an ideal M ∈ ml(A) such that M̃ = M + iM . Let

a, b ∈ PM and v + iw ∈ Ã. Since

(a+ ib)(v + iw) = av − bw + i(aw + bv) ∈ M̃,

then PM + iPM ⊂ P̃
fM . Let now a+ ib ∈ P̃

fM and v + iθA ∈ Ã. Then

(a+ ib)(v + iθA) = av + ibv ∈ M̃
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if and only if av, bv ∈ M or a, b ∈ PM . Thus P̃
fM ⊂ PM + iPM . The

proof for ideals in mr(A) is similar.

c) Let M̃ ∈ ml(Ã) and a, b ∈ A. Then again there is an ideal

M ∈ ml(A) such that M̃ = M + iM and

a+PM + i(b+PM) = (a+ ib) + (PM + iPM) = (a+ ib) + P̃
fM ∈ Ã/P̃

fM .

Hence A/PM + iA/PM ⊂ Ã/P̃
fM and similarly

Ã/P̃
fM ⊂ A/PM + iA/PM .

The proof for ideals in mr(A) is similar.

Proposition 2.3.2. Let A be a real topological algebra and Ã the
complexification of A. Then

Z(Ã) = Z(A) + iZ(A).

Proof. It is clear that Z(A) + iZ(A) ⊂ Z(Ã). Now we show that

Z(Ã) ⊂ Z(A) + iZ(A). For it, let a0 + ib0 ∈ Z(Ã). Since

aa0 + iab0 = (a+ iθA)(a0 + ib0) = (a0 + ib0)(a+ iθA) = a0a+ ib0a

for each a ∈ A, then a0 ∈ Z(A) and b0 ∈ Z(A).

A topological algebra A is called a topologically primitive algebra
if there is an ideal M ∈ ml(A) (M ∈ mr(A)) such that PM = {θA}.

Corollary 2.3.3. If A is a real topologically primitive algebra,
then the complexification Ã of A is a complex topologically primitive
algebra.

Proof. Let A be a real topologically primitive topological algebra.
Then there is M ∈ ml(A) such that PM = {θA}. Since

P̃
fM = PM + iPM = θA + iθA

for M̃ = M+iM ∈ ml(Ã), then Ã is a complex topologically primitive
topological algebra.
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2.4 Noncommutative real Gelfand-Ma-

zur algebras

Let A be a real topological algebra and m′
l(A) the set of such

M ∈ ml(A) for which the primitive ideal PM satisfies the condition

from a, b ∈ A and a2 + b2 ∈ PM it follows that a, b ∈ PM . (2.4.1)

The set m′
r(A) we define simirarily. If M ∈ mt(A), then PM = M .

Therefore, by m′
t(A) we define the set of such M ∈ mt(A) for which

the condition (2.2.1) is true.

Theorem 2.4.1. Let A be a real unital locally A-pseudoconvex
algebra or a real unital locally pseudoconvex Fréchet algebra. Then
Z(A/PM) is topologically isomorphic to R (in the subset topology on
Z(A/PM)) for each M ∈ m′

l(A) (M ∈ m′
r(A)). If M ∈ m′

t(A), then
Z(A/M) is topologically isomorphic to R.

Proof. Let (A, τ) be a real unital locally A-pseudoconvex (or lo-
cally pseudoconvex Fréchet) algebra, M ∈ m′

l(A), PM the primitive
ideal in A, defined by M , πM : A → A/PM the canonical homomor-
phism and τM the quotient topology on A/PM , defined by τ and πM .
Then (A/PM , τM) is a unital formally real locally A-pseudoconvex (re-
spectively, locally pseudoconvex Fréchet) algebra by Propositions 1.5.3
and 2.1.1 (respectively, by Propositions 1.5.3 and 2.1.2).

Now, let Ã/P̃
fM be the complexification of A/PM (see Proposition

2.3.1), where P̃
fM is the primitive ideal in Ã defined by M̃ . Then

(Ã/P̃
fM , τ̃fM) is a unital complex locally A-pseudoconvex algebra by

Theorem 1.3.3 or a unital complex locally pseudoconvex Fréchet alge-
bra by Corollary 1.3.2. Therefore Z(Ã/P̃

fM) is topologically isomor-
phic to C by Theorem 1 from [1] or by Theorem 2.17 from [2]. Since
A/PM is formally real, then Z(A/PM) is formally real, too.

As
Z(Ã/P̃

fM) = Z(A/PM) + iZ(A/PM)

by Proposition 2.3.2 and Z(A/PM) is formally real (see [20], Proposi-
tion 1.6.20), then Z(A/PM) is isomorphic to R. In the same way as
in Theorem 1.7.1, it is easy to show that Z(A/PM) is topologically
isomorphic to R, because Z(A/PM) is a Hausdorff space in the subset
topology.
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The proof for M ∈ m′
r(A) and M ∈ m′

t(A) is similar.

Corollary 2.4.2. Let A be a real unital locally m-pseudoconvex
topological algebra. Then Z(A/PM) is topologically isomorphic to R
for every M ∈ m′

l(A) and M ∈ m′
r(A). If M ∈ m′

t(A), then Z(A/M)
is topologically isomorphic to R.

Proof. Since every locally m-pseudoconvex algebra is locally
A-pseudoconvex, then Z(A/PM) is topologically isomorphic to R by
Theorem 2.4.1.

Corollary 2.4.3. Let A be a formally real unital topologically
primitive locally A-pseudoconvex Hausdorff algebra or a formally real
unital topologically primitive locally pseudoconvex Fréchet algebra.
Then Z(A) is topologically isomorphic to R.

Proof. Since A is a topologically primitive topological algebra,
then there is a closed maximal left (right) ideal M of A such that
PM = {θA}. Hence, Z(A) is topologically isomorphic to R by Theo-
rem 2.4.1.

2.5 Extendible ideals

Let A be a real topological algebra with a unit element eA, B a
closed subalgebra of Z(A) containing eA and M ∈ m(B). If

I(M) = clA

{ n∑
k=1

akmk; n ∈ N, a1, ..., an∈ A; m1, ...,mn∈M
}
6= A,

then M is called an extendible ideal in A. We denote the set of all
extendible ideals of B by me(B).

Proposition 2.5.1. Let1 A be a real locally A-pseudoconvex (in
particular, a real locally m-pseudoconvex) algebra with a unit element
eA or a real locally pseudoconvex Fréchet algebra with a unit element
eA. Let M ∈ m′

l(A) (M ∈ m′
r(A) or M ∈ m′

t(A)) and B be a closed
subalgebra of Z(A) containing eA. Then

1) every b ∈ B defines a number λ ∈ R such that b− λeA ∈M ;

1For complex topological algebra this result has been proved in [2], p. 50−51.
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2) M ∩B ∈ me(B).

Proof. Let M ∈ m′
l(A), PM be the primitive ideal in A, defined by

M , and πM : A→ A/PM a canonical homomorphism. Then (by The-
orem 2.4.1) there exists a topological isomorphism µ from Z(A/PM)
onto R. Since πM(b) ∈ Z(A/PM) for every b ∈ B, then we can find a
number λb ∈ R such that

µ(πM(b)) = λb = µ(πM(λbeA)).

Therefore, from πM(b) = πM(λbeA) it follws that b−λbeA ∈ PM ⊂M .

Let MB = M ∩ B. Then MB is a closed ideal in B. Moreover, let
I be an ideal in B such that MB ⊂ I. If MB 6= I, then there exists an
element b ∈ I\MB and by the statement 1) a number λb ∈ R such that
b− λbeA ∈ MB. Since b /∈ MB, then λb 6= 0. Now, from b− λbeA ∈ I
it follows that eA = λ−1

b [b − (b − λbeA)] ∈ I. Therefore I = B, which
is not possible. Hence, MB ∈ m(B). Since MB ⊂ M 6= A, then
I(MB) ⊂M 6= A. Thus, MB ∈ me(B).

The proof for closed maximal right ideals is similar. Consequently,
the results are true for closed two-sided ideals, too.

2.6 Description of closed maximal ideals

Let A be a real topological algebra and B a closed subalgebra of
Z(A). Here and later on we assume that me(B) is not empty. Then
for each M ∈ me(B) let AM = A/I(M) and κM : A → AM denote
the canonical homomorphism. To describe the sets m′

l(A) (m′
r(A) and

mt(A)),we need the following results.

Lemma 2.6.1. Let A be a real unital locally A-pseudoconvex (in
particular, a real unital locally m-pseudoconvex) algebra or a unital real
locally pseudoconvex Fréchet algebra and B a unital closed subalgebra
of Z(A). If M ∈ m′

l(A) and M∈ me(B) is such that

κM(M) = {κM(a) : a ∈M} 6= AM,

then κM(M) ∈ m′
l(AM).

Similar result holds in case, when M ∈ m′
r(A) and M ∈ m′

t(A).
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Proof. Let M ∈ m′
l(A) and M ∈ me(B) be such that

κM(M) 6= AM. First we show that κM(M) is a left ideal in AM
for each M ∈ m′

l(A) and M ∈ me(B). For it, let b1, b2 ∈ κM(M),
λ ∈ R and d ∈ AM. Then there are aM

1 , a
M
2 ∈M and c ∈ A such that

κM(aM
i ) = bi for i = 1, 2 and κM(c) = d. Since M is a left ideal in A,

then aM
1 + aM

2 , λa
M
1 , ca

M
1 ∈M. Therefore,

b1 + b2 = κM(aM
1 ) + κM(aM

2 ) = κM(aM
1 + aM

2 ) ∈ κM(M),

λb1 = λκM(aM
1 ) = κM(λaM

1 ) ∈ κM(M)

and

db1 = κM(c)κM(aM
1 ) = κM(caM

1 ) ∈ κM(M).

Hence, κM(M) is a left ideal in AM.

Now we show that κM(M) is maximal. For it, let W be a left ideal
in AM such that κM(M) ⊂ W, then

M ⊂ κ−1
M(κM(M)) ⊂ κ−1

M(W )

and there are two possibilities: κ−1
M(W ) = A (it gives us a contradic-

tion W = AM) or κ−1
M(W ) 6= A (then M = κ−1

M(W ) or κM(M) = W ).
Thus, κM(M) is a maximal left ideal in AM.

Next, we show that κM(M) is closed in AM. Again, we have two
possibilities:

clAM(κM(M)) 6= AM or clAM(κM(M)) = AM.

If clAM(κM(M)) 6= AM, then clAM(κM(M)) is a closed left ideal in
AM (see [26], p.169). Since κM(M) is a maximal left ideal, then

κM(M) = clAM(κM(M)).

Otherwise, κM(eA) ∈ clAM(κM(M)). Therefore, there is a net
(mλ)λ∈Λ in M such that (κM(mλ))λ∈Λ converges to κM(eA) in AM.

Let O′ be an arbitrary neighbourhood of zero in A, then O =
κM(O′) is a neighbourhood of zero in AM. Therefore we can find an
index µ ∈ Λ such that κM(mλ − eA) ∈ O for each λ > µ. Since

κM(I(M)) = θAM ∈ κM(M),
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then
I(M) ⊂ κ−1

M(κM(M)) = M

by maximality of M (because κ−1
M(κM(M)) 6= A). Let now λ0 > µ.

Then

mλ0 − eA ∈ κ−1
M(κM(O′)) = I(M) +O′ ⊂M +O′.

Therefore

eA = (eA −mλ0) +mλ0 ∈M +O′ +M ⊂M +O′.

Hence

eA ∈
⋂
{M +O′ : O′ is a neighbourhood of zero in A} =

= clA(M) = M

(see [31], p. 13). In this case M = A, which is not possible. Conse-
quently, κM(M) is a closed maximal left ideal in AM.

Now we show that κM(M) satisfies the condition (2.4.1). For it,
let MM = κM(M) and u1, u2 ∈ AM be such that u2

1 + u2
2 ∈ PMM .

Since

κM(PM) = {κM(a) ∈ AM : κM(a)AM ⊂MM} = PMM ,

then there are x0 ∈ PM , such that u2
1 + u2

2 = κM(x0), and a1, a2 ∈ A
such that ui = κM(ai), i = 1, 2. As

κM((a2
1 + a2

2)A) = (u2
1 + u2

2)κM(A) = κM(x0)κM(A) =

= κM(x0A) ∈ κM(M),

then
(a2

1 + a2
2)A ∈ κ−1

M(κM(M)) = M.

Hence, a2
1 +a2

2 ∈ PM . Therefore, a1, a2 ∈ PM , by the condition (2.4.1).
Consequently, u1, u2 ∈ PMM and MM ∈ m′

l(AM).

The proof for M ∈ m′
r(A) is similar. Consequently, the result is

true for closed maximal two-sided ideals as well.
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Lemma 2.6.2. Let A be a real unital locally A-pseudoconvex (in
particular, a unital real locally m-pseudoconvex) algebra or a real uni-
tal locally pseudoconvex Fréchet algebra and B a closed subalgebra of
Z(A). If M∈ me(B) and MM ∈ m′

l(AM), then

κ−1
M(MM) ∈ m′

l(A).

Similar result holds in case, when M ∈ m′
r(A) or M ∈ m′

t(A).

Proof. First we show that κ−1
M(MM) is a left ideal in A. For it, let

c1, c2 ∈ κ−1
M(MM) and λ ∈ R. Then there are elements b1, b2 ∈ MM

such that κM(ci) = bi for i = 1, 2. Since MM is a left ideal in AM,
then

κM(c1 + c2) = b1 + b2 ∈MM and κM(λc1) = λb1 ∈MM.

Therefore c1 + c2, λc1 ∈ κ−1
M(MM). If a ∈ A and d = κM(a), then

κM(ac1) = db1 ∈ MM or ac1 ∈ κ−1
M(MM). Moreover, it is easy to

see that κ−1
M(MM) 6= A and κ−1

M(MM) is closed in A (because MM is
closed in AM). Thus, κ−1

M(MM) is a closed left ideal in A.

Now we show that κ−1
M(MM) is maximal in A. For it, let H be a

left ideal in A such that κ−1
M(MM) ⊂ H. Then

MM ⊂ κM(κ−1
M(MM)) ⊂ κM(H).

If κM(H) = AM, then there is an element h ∈ H such that

κM(h) = eAM = κM(eA).

Since
h− eA ∈ κ−1

M(θAM) ∈ κ−1
M(MM) ⊂ H,

then
eA = h− (h− eA) ∈ H

implies that H = A, which is a contradiction. Therefore, κM(H) 6= A.
Thus, κM(H) is a left ideal in AM (see the proof of Lemma 2.6.1).
Hence, κM(H) = MM (because MM is maximal) and from

H ⊂ κ−1
M(κM(H)) = κ−1

M(MM) ⊂ H

it follows that κ−1
M(MM) = H. Hence, κ−1

M(MM) is a closed maximal
left ideal in A.
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Now we show that M∗ = κ−1
M(MM) satisfies the condition (2.4.1).

For it, let a1, a2 ∈ A be such that a2
1 + a2

2 ∈ PM∗ . Then

(a2
1 + a2

2)A ⊂M∗.

Since

(κM(a1)
2 + κM(a2)

2)AM = κM((a2
1 + a2

2)A) ⊂
⊂ κM(κ−1

M(MM)) = MM,

then κM(a1)
2 + κM(a2)

2 ∈ PMM . Consequently, κM(ai) ∈ PMM for
i = 1, 2, because MM ∈ m′

l(AM) (in this case from x1, x2 ∈ AM and
x2

1 + x2
2 ∈ PMM it follows that x1, x2 ∈ PMM). Now

aiA ⊂ κ−1
M [κM(ai)AM] ⊂ κ−1

M(MM) = M∗.

Therefore, ai ∈ PM∗ for i = 1, 2. Thus, M∗ ∈ m′
l(A).

The proof for right ideals is similar. Consequently, the result is
true for closed maximal two-sided ideals, too.

Now we prove the main result of this chapter.

Theorem 2.6.3. Let A be a real unital locally A-pseudoconvex (in
particular, a locally m-pseudoconvex) algebra or a real unital locally
pseudoconvex Fréchet algebra, B a closed subalgebra of Z(A) with the
same unit element as A and let M ∈ m′

l(A). Then

1) M = κ−1
M(MM) for some MM ∈ m′

l(AM) (here M = M ∩B);

2) there exists a bijection

Λl :
⋃

M∈me(B)

{
M

}
×m′

l(AM) → m′
l(A).

Similar results hold in case, when M ∈ m′
r(A) or M ∈ m′

t(A).

Proof. Let M ∈ m′
l(A). Then M = M ∩ B ∈ me(B), by Proposi-

tion 2.5.1, and
MM = κM(M) ∈ m′

l(AM),

by Lemma 2.6.1, because in this case κM(M) 6= AM (otherwise there
is an element m ∈ M such that m − eA ∈ I(M) ⊂ M , therefore
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eA = m − (m − eA) ∈ M). As M ⊂ κ−1
M(MM), then M = κ−1

M(MM)
because M is maximal. Moreover, if M∈ me(B) and MM ∈ m′

l(AM),
then κ−1

M(MM) ∈ m′
l(A) by Lemma 2.6.2. Hence, for each M∈ me(B)

and MM ∈ m′
l(AM) the map Λl, defined by

Λl((M,MM)) = κ−1
M(MM),

is an onto map.
Now we show that Λl is one-to-one. For it, let

M = κ−1
M1

(MM1) = κ−1
M2

(MM2)

for some Mi ∈ me(B) and MMi
∈ m′

l(AMi
), where i = 1, 2. Then

M ∈ m′
l(A) by Lemma 2.6.2, and

M = M ∩B ∈ me(B),

by Proposition 2.5.1. Since

κMi
(I(Mi)) = θAMi

∈MMi

for each i = 1, 2, then

Mi ⊂ I(Mi) ⊂ κ−1
Mi

(MMi
) = M

Hence, Mi ⊂ M for i = 1, 2. Since Mi is maximal in B for each
i = 1, 2, then M1 = M2 = M and

MM1 = κM1 [κ
−1
M1

(MM1)] = κM2 [κ
−1
M2

(MM2)] = MM2 .

Therefore, from Λl((M1,MM1)) = Λl((M2,MM2)) it follows that

(M1,MM1) = (M2,MM2).

Hence, Λl is an one-to-one map. Consequently, Λl is a bijection.

The proof for right ideals is similar. Consequently, similar results
are true for closed maximal two-sided ideals, too.
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Chapter 3

Description of ideals in
subalgebras of C(X,A, σ)

We study in this Chapter properties of the topological algebra
C(X,A;σ), a description of closed maximal left (right or two-sided)
ideals and of all nontrivial continuous linear multiplicative functionals
in subalgebras A(X,A;σ) of C(X,A;σ).

Results of this Chapter are published in [29].

3.1 Properties of C(X,A;σ) and of its sub-

algebras

Let A be a real topological algebra with jointly continuous multi-
plication, X a topological space, σ a cover of X and C(X,A;σ) the set
of all continuous functions f : X → A for which the closure of f(S)
(in the topology of A) is compact in A for each S ∈ σ. All algebraic
operations on C(X,A;σ) we define point-wisely and endow C(X,A;σ)
with the topology, whose subbase of neighbourhoods of zero is

{T (S,O) : S ∈ σ, O is a neighbourhood of zero in A},

where T (S,O) = {f ∈ C(X,A;σ) : f(S) ⊂ O}. Then C(X,A, σ) is a
real topological algebra. It is easy to see that C(X,A;σ) is a Hausdorff
space if A is a Hausdorff space. Now we describe these properties of
C(X,A;σ), which we need later on.
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Lemma 3.1.1. Let1 X be a topological space, σ its cover and A a
unital real locally m-pseudoconvex algebra. Then C(X,A;σ) is also a
unital real locally m-pseudoconvex algebra.

Proof. Since A is a unital real locally m-pseudoconvex algebra,
then A has a base BA = {Uα;α ∈ A} of neigbourhoods of zero, consist-
ing of balanced, pseudoconvex and idempotent sets. Let O be a neig-
bourhood of zero in C(X,A;σ). Then there are n ∈ N, S1, . . . , Sn ∈ σ
and neigbourhoods O1, . . . On of zero in A (by definition of topology
of C(X,A;σ)) such that

n⋂
k=1

T (Sk, Ok) ⊂ O.

Now, for every k there is a neigbourhood Uαk
∈ BA of zero such that

Uαk
⊂ Ok. It is easy to see that

{ n⋂
k=1

T (Sk, Uαk
) : n ∈ N, S1, . . . , Sn ∈ σ, Uαk

∈ BA

}
is a base of neigbourhoods of zero in C(X,A;σ), which consists of
balanced, pseudoconvex and idempotent sets. Thus C(X,A;σ) is a
unital real locally m-pseudoconvex algebra.

Lemma 3.1.2. Let X be a completely regular Hausdorff space and
σ a compact cover2 of X, which is closed with respect to finite unions.
Then

1) for every φ ∈ hom(C(X,R;σ)) defines an element xφ ∈ X such
that φ = φxφ

, where φxφ
(α) = α(xφ) for each α ∈ C(X,R;σ);

2) every M ∈ m(C(X,R;σ)) defines an element xM ∈ X such that

M = {α ∈ C(X,R;σ) : α(xM) = 0}.

Proof. See [5], the proof of Theorem 2 b) and v) in case of compact
cover.

1For complex topological algebra A this result has been proved in [2], p. 67.
2That is, every S ∈ σ is a compact subset of X.
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Lemma 3.1.3. Let3 A be a real topological Hausdorff algebra and
a ∈ A \ θA. Then νa : R → Ra ⊂ A, defined by νa(λ) = λa for each
λ ∈ R, is a homeomorphism.

Proof. Let A be a real topological Hausdorff algebra and a ∈ A\θA.
It is clear that νa : R → A, defined by νa(λ) = λa for each λ ∈ R, is
a continuous bijection. We show that ν−1

a is continuous. For it, let O
be a neigbourhood of zero in R. Then there is ε > 0 such that

Oε = {λ ∈ R : |λ| ≤ ε} ⊂ O.

If λ0 ∈ Oε \ {0}, then λ0a 6= θA. Since A is a Hausdorff space, then
there is a neigbourhood OA of zero in A such that λ0a /∈ OA. Let VA

be a balanced neigbourhood of zero in A such that VA ⊂ OA. Now
O′ = VA ∩ (Ra) is a neigbourhood of zero in Ra. If λa ∈ VA and
|λ0| ≤ |λ|, then |λ0λ

−1| ≤ 1 and λ0a = (λ0λ
−1)λa ⊂ VA, which is a

contradiction. Therefore, from λa ∈ O′ it follows that λ ∈ 0ε ⊂ O,
which means that ν−1

a is continuous.

3.2 Description of ideals in subalgebras

of C(X,A, σ)

1. Let A(X,A;σ) be a subalgebra of C(X,A;σ), endowed with
the subset topology. The following results hold.

Lemma 3.2.1. Let4 X be a topological space, σ its cover, A a (not
necessary real) topological algebra with jointly continuous multiplica-
tion and A(X,A;σ) a subalgebra of C(X,A;σ). If

{f(x) : f ∈ A(X,A;σ)} = A

for each x ∈ X, then

Z(A(X,A;σ)) = A(X,A;σ) ∩ C(X,Z(A);σ).

3For complex topological algebra A this result has been proved in [2], p. 70.
4For complex topological algebra this result has been proved in [2], p. 70−71.

53



Proof. Since A(X,A;σ) is a subalgebra of C(X,A;σ), then

A(X,A;σ) ∩ C(X,Z(A);σ) =

A(X,A;σ) ∩ Z(C(X,A;σ)) ⊂ Z(A(X,A;σ)).

Now we show that Z(A(X,A;σ)) ⊂ C(X,Z(A);σ). Let x ∈ X and
g ∈ Z(A(X,A;σ)). By assumption, every a ∈ A defines a function
fa ∈ A(X,A;σ) such that fa(x) = a. Since fag = gfa for each a ∈ A,
then

fag(x) = gfa(x) or ag(x) = g(x)a

for each x ∈ X and each a ∈ A. Thus g(x) ∈ Z(A), which implies
that Z(A(X,A;σ)) ⊂ C(X,Z(A);σ).

Next let εx : A(X,A;σ) → A be the homomorphism, defined by
εx(f) = f(x) for each f ∈ A(X,A;σ).

Lemma 3.2.2. Let X be a topological space, σ its cover, A a
unital topological algebra with jointly continuous multiplication and
A(X,A;σ) a subalgebra of C(X,A;σ). If

{fa : a ∈ A, fa(x) = a for each x ∈ X} ⊂ A(X,A;σ), (3.2.1)

then

Mx,M = {f ∈ A(X,A;σ) : f(x) ∈M} ∈ m′
l(A(X,A;σ))

for each x ∈ X and M ∈ m′
l(A).

Similar result holds for the pairs m′
r(A(X,A;σ)), m′

r(A) and
m′

t(A(X,A;σ)), m′
t(A).

Proof. Let x ∈ X and M ∈ m′
l(A). It is clear that Mx,M is a

left ideal in A(X,A;σ). We show that Mx,M is closed. For it, let
f0 ∈ clA(X,A;σ)(Mx,M). Then there is a net (fλ)λ∈Λ of elements of
Mx,M , which converges to f0 in A(X,A;σ). Since εx(T (S,O)) ⊂ O
for each neighbourhood O of zero in A and a set S ∈ σ such that x ∈ S,
then εx is continuous. Therefore (εx(fλ))λ∈Λ converges to εx(f0) and
εx(f0) ∈M , because M is closed. Thus, f0 ∈ Mx,M which means that
Mx,M is a closed ideal.

Next, we show that Mx,M is maximal. For it, let I be a left ideal
of A(X,A;σ) such that Mx,M ⊂ I. Then εx(Mx,M) ⊂ εx(I). Suppose
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that εx(I) = A. Then there is an element g ∈ I such that eA = εx(g).
Therefore

εx(feA
− g) = feA

(x)− εx(g) = θA ∈M,

which means that feA
−g ⊂ Mx,M ⊂ I. Hence feA

= (feA
−g)+g ∈ I,

which is not possible, because feA
is the unit element in A(X,A;σ).

Thus, εx(I) 6= A, εx(I) is a left ideal in A and M ⊂ εx(Mx,M) ⊂ εx(I).
Since M is a maximal ideal in A, then M = εx(I). Taking this into
account, from

I ⊂ ε−1
x (εx(I)) = ε−1

x (M) = Mx,M ⊂ I

it follows that I = Mx,M . Consequently, Mx,M ∈ ml(A(X,A;σ)).

Now we show that PMx,M
satisfies the condition (2.4.1). For it let

f, g ∈ A(X,A;σ) be such that f 2 + g2 ∈ PMx,M
. Then from

(f 2 + g2)A(X,A;σ) ⊂ Mx,M

it follows that
(f 2 + g2)fa ∈ Mx,M

for each a ∈ A by the assumption (3.2.1). It means that

(f 2(x) + g2(x))a ∈M

for each a ∈ A. Hence f 2(x) + g2(x) ∈ PM . As M ∈ m′
l(A), then PM

satisfies the condition (2.4.1). Hence, f(x), g(x) ∈ PM or f(x)A ⊂M
and g(x)A ⊂M . Therefore,

f(x)h(x), g(x)h(x) ⊂M or fh, gh ∈ Mx,M

for each h ∈ A(X,A;σ). Consequently, f, g ∈ PMx,M
. Thus, for each

x ∈ X and M ∈ m′
l(A) holds Mx,M ∈ m′

l(A(X,A;σ)).

The proof for right and two-sided ideals is similar.

2. Let again X be a topological space, σ its cover and A a real
topological algebra. For each5 α ∈ C(X,R) and a ∈ A let αa denote
the map defined by (αa)(x) = α(x)a for each x ∈ X. Moreover, let

Aa(X,R;σ) = {α ∈ C(X,R) : αa ∈ A(X,A;σ)}
and

A(X,R;σ) = AeA
(X,R;σ).

5The set of all continuous functions f : X → A we denote by C(X,A). It is
clear that C(X,A;σ) ⊂ C(X,A).
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Lemma 3.2.3. Let6 X be a topological space, σ its cover, which is
closed with respect to finite unions, A a real topological Hausdorff al-
gebra, a ∈ A\{θA} and Aa = Aa(X,R;σ)a. Then the map µa, defined
by µa(α) = αa for each α ∈ Aa(X,R;σ), is a topological isomorphism
between Aa(X,R;σ) and Aa.

Proof. It is clear that µa is a bijection between the sets Aa(X,R;σ)
and Aa. We show that µa is continuous. For it, let O be a neighbour-
hood of zero in Aa. Then O = O′ ∩ Aa, where O′ is a neighbour-
hood of zero in A(X,A;σ). Now there is S ∈ σ, neighbourhood OA

of zero in A and neighbourhood Oε = {λ ∈ K : |λ| ≤ ε} of zero
in R such that T (S,OA) ∩ A(X,A;σ) ⊂ O′ and Oεa ⊂ OA. Since
T (S,Oε) ∩ Aa(X,R;σ) is a neighbourhood of zero in Aa(X,R;σ) and

µa(T (S,Oε) ∩ Aa(X,R;σ)) ⊂ T (S,Oεa) ∩ Aa ⊂
⊂ (T (S,Oεa) ∩ A(X,A;σ)) ∩ Aa ⊂ O′ ∩ Aa = O,

then µa is continuous.

Next we show, that µ−1
a is continuous. For it, let U be a neigh-

bourhood of zero in Aa(X,R;σ). Then there is S ∈ σ and ε > 0 such
that T (S,Oε) ∩ Aa(X,R;σ) ⊂ U . Because Oεa = νa(Oε) and νa is
a homeomorphism, by Lemma 3.1.3, then Oεa is a neighbourhood of
zero in νa(R). Hence, there is a neighbourhood UA of zero in A such
that νa(Oε) = UA ∩ νa(R). Therefore, U ′ = T (S, UA) ∩ Aa is a neigh-
bourhood of zero in Aa and µ−1

a (U ′) ⊂ T (S,Oε) ∩ Aa(X,R;σ) ⊂ U
which means that µ−1

a is continuous.

3.3 Description of closed maximal ideals

in subalgebras of C(X,A, σ)

To describe closed maximal ideals in subalgebras of C(X,A, σ), we
need the following result.

Lemma 3.3.1. Let X be a topological space, σ a cover of X,
which is closed with respect to finite unions, A a real unital locally
m-pseudoconvex Hausdorff algebra and A(X,A;σ) a complete subalge-
bra of C(X,A;σ), which contains the unit element of C(X,A;σ). If

6For complex topological algebra A this result has been proved in [2], p. 72−73.
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A(X,R;σ) is strictly real and every M ∈ m(A(X,R;σ)eA) defines a
point x ∈ X such that

M = Mx = {αeA ∈ A(X,R;σ)eA : α(x) = 0},

then
B = clZ(A(X,A;σ))(A(X,R;σ)eA)

is a commutative real unital complete Gelfand-Mazur Hausdorff alge-
bra.

Proof. Let X, σ, A and B be such as in the formulation of Lemma
3.3.1. Then B is a real closed Hausdorff subalgebra of the center
Z(A(X,A;σ)) of A(X,A;σ). The map µeA

, defined by

µeA
(α) = αeA

for each α ∈ A(X,R;σ), is a topological isomorphism of A(X,R;σ)
into B, by Lemma 3.2.3. Let τ be the topology on µeA

(A(X,R;σ)),
induced by the topology of Z(A(X,A;σ)). Since σ is closed with re-
spect to finite unions, then every element of a base of neighbourhoods
of zero in µeA

(A(X,R;σ)) has the form

B = {αeA : α ∈ A(X,R;σ), α(S)eA ⊂ OZ(A) ∩ ReA}

for some S ∈ σ and neighbourhood OZ(A) of zero in Z(A), by Lemma
3.2.1. Since the map λ → λeA is continuous (by Lemma 3.1.3), then
there exists a number ε ∈ (0, 1) such that OεeA ⊂ OZ(A) ∩ReA, where
Oε = {λ ∈ R : |λ| ≤ ε}. It is easy to see that

{T (S,OεeA) ∩ µeA
(A(X,R;σ)) : S ∈ σ, ε > 0}

is also a base of neighbourhoods of zero in µeA
(A(X,R;σ)) in the topol-

ogy τ . Because every set T (S,OεeA) ∩ µeA
(A(X,R;σ)) is idempotent

and absolutely convex, then (µeA
(A(X,R;σ)), τ) is a commutative real

locally m-convex algebra.

Now we show that µeA
(A(X,R;σ)) is strictly real. By assump-

tion the unit element feA
of C(X,A;σ) belongs to A(X,R;σ). Since

feA
= eeA (here e(x) ≡ 1), then e ∈ A(X,R;σ) and eeA is the unit

element in µeA
(A(X,R;σ)). Now it is easy to show that

spµeA
(A(X,R;σ))(αeA) ⊂ spA(X,R;σ)(α)
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for each α ∈ A(X,R;σ). As

spA(X,R;σ)(α) ⊂ R

for each α ∈ A(X,R;σ) by Proposition 1.5.1 (because A(X,R;σ) is
strictly real), then

spµeA
(A(X,R;σ))(f) ⊂ R

for each f ∈ µeA
(A(X,R;σ)). Hence, µeA

(A(X,R;σ)) is also strictly
real by Proposition 1.5.1. If p is a homogeneous submultiplicative
seminorm on µeA

(A(X,R;σ)), then (similarily as in [21], Proposition
4, p. 129) its extension p′ onto B is a homogeneuos submultiplica-
tive seminorm on B. Hence B is a commutative real unital locally
m-pseudoconvex Hausdorff algebra. By assumption of Lemma 3.3.1,
every M ∈ m(A(X,R;σ)eA) defines a point x ∈ X such that M = Mx.
Therefore from α, β ∈ A(X,R;σ)eA and α2 + β2 ∈ M it follows that
α, β ∈ M . Thus A(X,R;σ)eA satisfies the condition (2.2.1) for each
M ∈ m(A(X,R;σ)eA). Since A(X,A;σ) is complete, then the cen-
ter Z(A(X,A;σ)) (as a closed subspace) is complete. Thus B is also
complete and, by Lemma 1.7.3, satisfies the condition (2.2.1) for each
M ∈ m(B). Consequently, B is a real unital commutative Gelfand-
Mazur Hausdorff algebra, by Corollary 1.7.2.

Now we prove the main result of Chapter 3, which describes closed
maximal ideals in subalgebras of C(X,A;σ).

Theorem 3.3.2. Let X be a completely regular Hausdorff space,
σ a cover of X, which is closed with respect to finite unions, A a
real unital locally m-pseudoconvex Hausdorff algebra and A(X,A;σ) a
complete subalgebra of C(X,A;σ) (with the same unit as C(X,A, σ)).
If

1) {fa : a ∈ A, fa(x) = a for each x ∈ X} ⊂ A(X,A;σ};

2) every M ∈ m(A(X,R;σ)) defines an element x ∈ X such that

M = Mx = {α ∈ A(X,R;σ) : α(x) = 0};

3) αf ∈ A(X,A;σ) for each α ∈ C(X,R) and f ∈ A(X,A;σ);

4) A(X,R;σ) is strictly real,
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then every M ∈ m′
l(A(X,A;σ)) is representable in the form

M = Mx,M = {f ∈ A(X,A;σ) : f(x) ∈M}

for some x ∈ X and M ∈ m′
l(A).

Similar result is true for ideals in m′
r(A(X,A;σ)) and for ideals in

m′
t(A(X,A;σ)).

Proof. We give the proof only for left ideals (the proof for right and
two-sided ideals is similar). Let X, σ and A be as in the formulation
of Theorem 3.3.2,

B = clZ(A(X,A;σ))(A(X,R;σ)eA)

and M ∈ m(A(X,R;σ)eA). Then µ−1
eA

(M) ∈ m(A(X,R;σ)) by Lem-
ma 3.2.3. Now by the condition 2) there is a point x ∈ X such that

µ−1
eA

(M) = {α ∈ C(X,R;σ) : α(x) = 0}.

Hence,
M = {αeA ∈ A(X,R;σ)eA : α(x) = 0}.

Consequently, B is a commutative real unital complete Gelfand-Mazur
Hausdorff algebra by Lemma 3.3.1 and the condition 4). In this case
the set m(B) is not empty, because every ψ ∈ hom(A(X,R;σ)eA)
has the extension ψ ∈ hom(B) by Proposition 3 from [15]. Therefore,
every M ∈ m(B) defines a map ψM ∈ hom(B) such that M = ker ψM .
Since µeA

is a topological isomorphism from A(X,R;σ) into B, by
Lemma 3.2.3, and µeA

(A(X,R;σ)) is dense in B, then

ψM ◦ µeA
∈ hom(A(X,R;σ)).

By the condition 2), there is a unique element x0 ∈ X such that

ker(ψM ◦ µeA
) = {α ∈ C(X,R;σ) : α(x0) = 0}.

Since ξx0 : A(X,R;σ) → R, defined by ξx0(α) = α(x0) for each α ∈
A(X,R;σ), is a homomorphism and ker ξx0 = ker (ψM ◦ µeA

), then
ψM ◦ µeA

= ξx0 . Now

µeA
(kerξx0) = µeA

(µ−1
eA

(kerψM)) = kerψM ∩ µeA
(A(X,R;σ)) =

= M ∩ µeA
(A(X,R;σ)).
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Since B is a commutative real unital Gelfand-Mazur algebra, then

clB(µeA
(kerξx0)) = clB(M ∩ µeA

(A(X,R;σ))) = M,

by Corollary 1 from [15]. Hence, every M defines an element x ∈ X
such that

M = Mx = clB({αeA : α ∈ (A(X,R;σ)), α(x) = 0}).

Let f ∈ A(X,A;σ),

κMx
: A(X,A;σ) → Y = A(X,A;σ)/I(Mx)

be the quotient map7 and δx : Y → A the map, defined by

δx(κMx
(f)) = εx(f)

for each x ∈ X and f ∈ A(X,A;σ). To show that δx is well defined,
we show that kerεx = I(Mx) for each x ∈ X. For it, let f ∈ I(Mx). If
we define the multiplication over A in A(X,A;σ) by (af)(x) = af(x)
for each x ∈ X and a ∈ A, then Mx ⊂ kerεx (because εx is continuous
and A is a Hausdorff spase) and

εx

( n∑
k=1

fkmk

)
= θA

for each n ∈ N, f1, . . . , fn ∈ A(X,A;σ) and m1, . . . ,mn ∈Mx. Hence,

εx(I(Mx)) = θA or I(Mx) ⊂ kerεx

for each x ∈ X.
Next, we show that kerεx ⊂ I(Mx) for each x ∈ X. For it, let

x0 ∈ X, f ∈ kerεx0 and O(f) be any neighbourhood of f in A(X,A;σ).
Since σ is closed with respect to finite unions, then

f + (T (S0, O0) ∩ A(X,A;σ)) ⊂ O(f)

for some S0 ∈ σ and balanced neighbourhood O0 of zero in A. Now
there exists an open neighbourhood O′ of zero in A such that O′ ⊂ O0.

7Here I(Mx) is extendible ideal in A(X,A;σ), defined by Mx.
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Since f(x0) ∈ O′, then XO′ = X \f−1(O′) is closed in X and x0 /∈ XO′ .
By assumption, X is a completely regular space. Therefore, there is
α ∈ C(X, [0, 1]) such that α(x0) = 0 and α(XO′) = {1}.

Let now x ∈ S0. If x ∈ XO′ , then

(αf − f)(x) = (α(x)− 1)f(x) ∈ O0.

If x /∈ XO′ , then x ∈ f−1(O′) and

(αf − f)(x) = (α(x)− 1)f(x) ∈ (α(x)− 1)O0 ∈ O0,

because |α(x)− 1| ≤ 1 and O0 is balanced set. Therefore,

αf − f ∈ T (S0, O0) ∩ A(X,A;σ),

by the condition 3) and8 αf = fαeA ∈ I(Mx0), then

I(Mx0) ∩O(f) 6= ∅.

Consequently, f ∈ I(Mx0), which implies that kerεx0 ⊂ I(Mx0).
Therefore, I(Mx0) = kerεx0 . Since every M ∈ m(B) defines an ele-
ment x ∈ X such that M = Mx and kerεx 6= A(X,A;σ), because
A(X,A;σ) has the unit element, then every closed maximal ideal in
B is extendible.

It is easy to see that C(X,A;σ) is a Hausdorff algebra, if A is
a Hausdorff algebra. By the assumption of Theorem 3.3.2 and by
Lemma 3.1.1 we see that C(X,A;σ) is locallym-pseudoconvex. There-
fore A(X,A;σ), as a subalgebra of C(X,A;σ), is a real unital locally
m-pseudoconvex Hausdorff algebra. It is shown in the proof of Theo-
rem 2.6.3 that every ideal M ∈ m′

l(A(X,A;σ)) has the form

M = κ−1

Mx
(κMx

(M))

for some x ∈ X and Mx = M ∩ B ∈ m(B) (because every ideal of
m(B) is extendible). Hence,

M = {f ∈ A(X,A;σ) : f(x) ∈ εx(M)}.
8It is clear that αeA = αfeA

∈ A(X,A;σ) by the conditions 1) and 3). Therefore
α ∈ A(X,A;σ) and αeA ∈Mx0 .
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Next we show that εx(M) is a closed maximal left ideal in A. If
εx(M) = A, then there is an element g ∈ M such that εx(g) = eA.
Since hg ∈ M for each h ∈ A(X,A;σ), then from

εx(h) = h(x)eA = (hg)(x) = εx(hg)

it follows that h− hg ∈ kerεx = I(Mx). Since Mx = M ∩ B (that is,
κMx

(M) is an ideal in Y by Lemma 2.6.1) and

κMx
(I(Mx)) = θY ∈ κMx

(M),

then
I(Mx) ⊂ κ−1

Mx
[κMx

(M)] = M.

Thus A(X,A;σ) = M, which gives us a contradiction. Hence
εx(M) 6= A and εx(M) is a left ideal in A. Let now I be a left
ideal in A such that εx(M) ⊂ I. Then

M ⊂ ε−1
x (εx(M)) ⊂ ε−1

x (I) 6= A(X,A;σ)

because of which ε−1
x (I) is a left ideal in A(X,A;σ). Since M is a

maximal left ideal in A(X,A;σ), then M = ε−1
x (I) or εx(M) = I,

because εx is an onto map by the condition 1). Consequently, εx(M)
is a maximal left ideal in A.

Next, we show that εx(M) is closed. For it, let a0 be an arbitrary
element of clA(εx(M)). Then there is a net (mλ)λ∈Λ in M such that
εx(mλ) converges to a0. Let ρ : A → C(X,A;σ) be a map, defined
by (ρ(a))(x) = a for each x ∈ X and a ∈ A. Then ρ is continuous
(because ρ is linear and ρ(O) ⊂ T (S,O) for each neighbourhood O of
zero in A and S ∈ σ). Therefore, ρ(εx(mλ)) converges to ρ(a0). Since

εx[ρ(εx(mλ))] = (ρ(εx(mλ)))(x) = εx(mλ)

and δx is an one-to-one map, then κMx
[ρ(εx(mλ))] = κMx

(mλ) for each
λ ∈ Λ. Thus

ρ(εx(mλ)) ∈ κ−1

Mx
[κMx

(ρ(εx(mλ)))] = κ−1

Mx
[κMx

(mλ)] ∈ M

for each λ ∈ Λ. Hence ρ(a0) ∈ M, because M is closed in A(X,A;σ).
Therefore, a0 = εx((ρ(a0)) ∈ εx(M). So we have proved that
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clA(εx(M)) = εx(M), which means that MM = εx(M) is a closed
maximal left ideal in A. Consequently,

M = Mx,MM

for some x ∈ X and MM ∈ ml(A).
Next we show, that εx(M) ∈ m′

l(A). For it, let a, b ∈ A be such
that a2 + b2 ∈ εx(M). Then from

εx(f 2
a + f 2

b ) = (f 2
a + f 2

b )(x) = a2 + b2 ∈ εx(M)

it follows that κMx
(f 2

a + f 2
b ) ∈ κMx

(M) because σx is a one-to-one
map. Hence,

f 2
a + f 2

b ∈ κ−1

Mx
[κMx

(f 2
a + f 2

b )] ⊂ κ−1

Mx
[κMx

(M)] = M.

Since M ∈ m′
l(A(X,A;σ)), and fa, fb ∈ A(X,A;σ) by condition 1),

then fa, fb ∈ M or a, b ∈ εx(M). Consequently, εx(M) ∈ m′
l(A).

Corollary 3.3.3. Let X be a completely regular Hausdorff k-spa-
ce9, σ a compact cover of X, which is closed with respect to finite
unions, A a real unital complete locally m-pseudoconvex Hausdorff al-
gebra and A(X,A;σ) a closed subalgebra of C(X,A;σ) (with the same
unit as C(X,A, σ)). If all conditions 1) − 4) of Theorem 3.3.2 have
been satisfied, then every M ∈ m′

l(A(X,A;σ)) is representable in the
form M = Mx,M for some x ∈ X and M ∈ m′

l(A).

Similar result is true for ideals in m′
r(A(X,A;σ)) and m′

t(A(X,A;σ)).

Proof. Since X is a k-space, σ is a compact cover and A is com-
plete, then C(X,A;σ) is complete by Theorem 43.11 from [34]. There-
fore A(X,A;σ) is also complete as a closed subset. Taking this into
account, Corollary 3.3.3 is true by Theorem 3.3.2.

Corollary 3.3.4. Let all assumtions and conditions of Theorem
3.3.2 be fullfilled. Then the map Ω : m′

l(A(X,A;σ)) → X × m′
l(A),

defined by
Ω(Mx,M) = (x,M)

9A topological space is a k-space or a compactly generated space if the following
condition holds: A ⊂ X is open if and only if A∩K is open in K for each compact
set K in X (see [25]). The collection of k-spaces contains a considerably wide
class of topological spaces. It is known (see [25], p. 172, or [34], p. 285) that
every locally compact Hausdorff space and every Hausdorff space, satisfying the
first axiom of countability, are k-spaces.
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for each x ∈ X and M ∈ m′
l(A), is a bijection.

Similar result is true for ideals in m′
r(A(X,A;σ)) and m′

t(A(X,A;σ)).

Proof. It is clear that Ω maps m′
k(A(X,A;σ)) onto X × m′

k(A)
by Lemma 3.2.2 and Theorem 3.3.2. If now Ω(Mx1,M1) = Ω(Mx2,M2),
then from (x1,M1) = (x2,M2) it follows that x1 = x2 and M1 = M2.
Hence Mx1,M1 = Mx2,M2 and thus Ω is a bijection.

Remark. In case, when A is a complex unital locally m-pseudo-
convex Hausdorff algebra, similar results to Theorem 3.3.2 and Corol-
lary 3.3.4 have been proved in [2] (see also [3, 4]).

3.4 Description of homomorphisms in

subalgebras of C(X,A, σ)

In this section we give some results, which follow from Theorem
3.3.2, and describe homomorphisms from subalgebras of C(X,A, σ)
onto R.

Proposition 3.4.1. Let all assumptions and conditions of The-
orem 3.3.2 be fullfilled. If, in addition, A is a commutative algebra,
then every homomorphism Φ ∈ hom(A(X,A;σ)) defines x ∈ X and
φ ∈ hom(A) such that Φ = φ ◦ εx.

Proof. If Φ ∈ hom(A(X,A;σ)), then kerΦ is a closed maximal two-
sided ideal in A(X,A;σ) (see [24], p. 68). Let now f, g ∈ A(X,A;σ)
be such that f 2 + g2 ∈ kerΦ. Then

Φ(f 2 + g2) = (Φ(f))2 + (Φ(g))2 = 0.

Since Φ(f),Φ(g) ∈ R, then Φ(f) = Φ(g) = 0. Thus, the condition
(2.2.1) is true in the present case. Hence, kerΦ = Mx,M for some
x ∈ X and M ∈ m(A) by Theorem 3.3.2.

Since A is a real Gelfand-Mazur algebra by Corollary 1.7.2 case
b), then there is φ ∈ hom(A) such that M = kerφ. Now from
f ∈ kerφ it follws that εx(f) ∈ kerφ or f ∈ ker(φ ◦ εx). Therefore
kerΦ ⊂ ker(φ ◦ εx). Since ker(φ ◦ εx) is a two-sided ideal in A(X,A;σ)
and kerΦ is a maximal two-sided ideal, then kerΦ = ker(φ ◦ εx) and
therefore Φ = φ ◦ εx by Lemma 7.2 from [24].
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A subset H ⊂ hom(A) is equicontinuous at a0 ∈ A if for every
ε > 0 there is a neighbourhood Oa0 such that |φ(a)−φ(a0)| < ε for all
φ ∈ H and a ∈ Oa0 and H ⊂ hom(A) is equicontinuous if it is equicon-
tinuous at every a ∈ A. The set hom(A) (in the Gelfand topology)
is locally equicontinuous if every φ0 ∈ hom(A) has an equicontinuous
neighbourhood Oφ0 of φ0 in hom(A) that is, for each ε > 0 and a0 ∈ A
there is a neighbourhood Oa0 of a0 in A such that |φ(a)− φ0(a0)| < ε
for all a ∈ Oa0 and φ ∈ Oφ0 .

Theorem 3.4.2. Let all assumptions and conditions of Theorem
3.3.2 be fullfilled. Let

hom(A(X,A;σ)) = {ξx : x ∈ X},

where ξx(α) = α(x) for each α ∈ A(X,R;σ), and the map ξx → x
from hom(A(X,R;σ)) onto X be continuous. If, in addition, A is a
commutative algebra, for which hom(A) is locally equicontinuous, then
hom(A(X,A;σ)) and X × hom(A) are homeomorphic.

Proof. By Proposition 3.4.1, every Φ ∈ hom(A(X,A;σ)) is repre-
sentable in the form

Φ = Φ(x,φ) = φ ◦ εx

for some x ∈ X and φ ∈ hom(A). Since εx is a continuous ho-
momorphism from A(X,A;σ) onto A for each x ∈ X, then
φ ◦ εx ∈ hom(A(X,R;σ)) for each x ∈ X and φ ∈ hom(A). Therefore
Ω, defined by

Ω(Φ) = Ω(Φ(x,φ)) = (x, φ)

for each x ∈ X and φ ∈ hom(A) maps hom(A(X,A;σ)) onto
X × hom(A).

We show that Ω is one-to-one. For it, let Ω(Φ(x,φ)) = Ω(Φ(x1,φ1)).
Then (x, φ) = (x1, φ1). Hence, Φ(x,φ) = Φ(x1,φ1), which means that Ω
is a bijection.

Next we show that Ω is continuous. For it, let

(Φi)i∈I = (Φ(xi,φi))i∈I

be a net in hom(A(X,A;σ)), which converges to Φ0 = Φ(x0,φ0) in the
Gelfand topology on hom(A(X,A;σ)). Then the net (Φi(f))i∈I con-
verges to Φ0(f) for each f ∈ hom(A(X,A;σ)). Since (by the condition

65



2) of Theorem 3.3.2) fa ∈ A(X,A;σ) for each a ∈ A, and

Φi(fa) = φi ◦ εxi
(fa) = φi(εxi

(fa)) = φi(fa(xi)) = φi(a)

for each i ∈ I ∪{0}, then (φi(a))i∈I converges to φ0(a) for each a ∈ A.
Hence (φi)i∈I converges to φ0 in the Gelfand topology on hom(A).

Moreover, αeA = αfeA
∈ A(X,A;σ) for each α ∈ A(X,A;σ) by

condition 1) and 3) of Theorem 3.3.2. Therefore the net (Φi(αeA))i∈I

converges to Φ0(αeA) for each α ∈ A(X,R;σ). Since

Φ(xi,φ)(αeA) = α(xi)φ(eA) = α(xi) = ξxi
(α)

for each φ ∈ hom(A) and α ∈ A(X,R;σ), then (ξxi
(α))i∈I converges

to ξx0(α) for each α ∈ A(X,R;σ). Hence (ξxi
)i∈I converges to ξx0 in

the Gelfand topology on hom(A(X,R;σ)). By assumption, ξx → x
is continuous. Thus (xi)i∈I converges to x0 in the topology of X and
therefore (xi, φi)i∈I converges to (x0, φ0) in the product topology on
X × homA. It means that Ω is continuous.

Now we show that Ω−1 is continuous. First, we show that for
each x0 ∈ X, φ0 ∈ hom(A) and neighbourhood OΦ(x0,φ0)

of Φ(x0,φ0) in
the Gelfand topology on hom(A(X,A;σ)) there is a neighbourhood
O(x0,φ0) of (x0, φ0) such that

Ω−1(O(x0,φ0)) ⊂ OΦ(x0,φ0)
.

For that, it is enogh to show that for each ε > 0, x0 ∈ X, φo ∈ hom(A)
and f ∈ A(X,A;σ) there is a neighbourhood O(x0,φ0) such that

|Φ(x,φ)(f)− Φ(x0,φ0)(f)| < ε,

whenever (x, φ) ∈ O(x0,φ0).

Since hom(A) is locally equicontinuous, then every φ0 ∈ hom(A)
has an equicontinuous neighbourhood Oφ0 of φ0 in the Gelfand topol-
ogy on hom(A). Therefore, for every x0 ∈ X, f ∈ A(X,A;σ) and
ε > 0 there is a neighbourhood Of(x0) of f(x0) such that

|φ(a)− φ(f(x0))| = |φ(a− f(x0))| <
ε

2

for each a ∈ Of(x0) and φ ∈ Oφ0 . Since f is continuous, then there is a
neighbourhood Ox0 of x0 such that f(x) ∈ Of(x0), whenever x ∈ Ox0 .
Hence

|φ(f(x)− f(x0))| <
ε

2
,
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whenever φ ∈ Oφ0 and x ∈ Ox0 . Let now

O(φ0) = Oφ0

⋂{
φ ∈ hom(A) : |(φ− φ0)(f(x0))| <

ε

2

}
.

Since Ox0×Oφ0 is a neighbourhood of (x0, φ0) in the product topology
of X × hom(A) and

|Φ(x,φ)(f)− Φ(x0,φ0)(f)| = |φ(f(x))− φ0(f(x0))| ≤
≤ |φ(f(x)− f(x0))|+ |(φ− φ0)(f(x0))| < ε

2
+ ε

2
= ε

for each f ∈ (A(X,A;σ), whenever (x, φ) ∈ Ox0 × Oφ0 , then Ω−1 is
continuous. Hence, Ω is a homeomorphism.

3.5 Some results for C(X,A;σ)

Next we describe ideals in C(X,A;σ).

Proposition 3.5.1. Let X be a completely regular Hausdorff
k-space, σ a compact cover of X, which is closed with respect to finite
unions, and A a real unital complete locally m-pseudoconvex Hausdorff
algebra. Then

a) every M ∈ m′
l(C(X,A;σ)) is representable in the form

M = Mx,M = {f ∈ C(X,A;σ) : f(x) ∈M}.

for some x ∈ X and M ∈ m′
l(A);

b) Mx,M ∈ m′
l(C(X,A;σ)) for each x ∈ X and each M ∈ m′

l(A);

c) the map Ω : m′
l(C(X,A;σ)) → X ×m′

l(A), defined by

Ω(Mx,M) = (x,M)

for each x ∈ X and M ∈ m′
l(A), is a bijection.

Similar results are true for ideals in m′
r(A(X,A;σ)) and in

m′
t(A(X,A;σ)).
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Proof. It is easy to see that C(X,A;σ) is strictly real and the
conditions of Lemma 3.2.1 and Theorem 3.3.2 are fullfilled by Lemma
3.1.1 and Lemma 3.1.2. Thus, the statements a), b) and c) are true
by Lemma 3.2.2 and Corollaries 3.3.3 and 3.3.4.

Proposition 3.5.2. Let X be a completely regular Hausdorff
k-space, σ a compact cover of X, which is closed with respect to finite
unions, A a commutative real unital complete locally m-pseudoconvex
Hausdorff algebra.

Then every Φ ∈ hom(C(X,A;σ)) defines x ∈ X and φ ∈ hom(A)
such that Φ = φ◦εx. If, in addition, hom(A) is locally equicontinuous,
then hom(C(X,A;σ)) and X × hom(A) are homeomorphic.

Proof. All assumptions and conditions of Corollary 3.3.3 and The-
orem 3.4.2 have been fullfilled by Lemmas 3.1.1 and 3.1.2. Therefore,
every Φ ∈ hom(C(X,A;σ) defines x ∈ X and φ ∈ hom(A) such that
φ = φ ◦ εx by Proposition 3.4.1. It is shown in [5], Theorem 2, that
hom(C(X,R;σ)) = {ξx : x ∈ X} and the map ξX → x is a home-
omorphism from C(X,R;σ) onto X. Consequently, hom(C(X,A;σ)
and X × hom(A) are homeomorphic by Theorem 3.4.2, because
hom(A) is locally equicontinuous.
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Kokkuvõte

1. Olgu A topoloogiline algebra üle reaalarvude korpuse R, s.t.
selline topoloogiline vektorruum üle korpuse R, milles on defineeritud
assotsiatiivne eraldi pidev korrutamine, ning olgu m(A) kõigi selliste
kinniste kahepoolsete ideaalide hulk algebras A, mis on maksimaalsed
kui vasakpoolsed ideaalid või kui parempoolsed ideaalid. Topoloogilist
algebrat üle R nimetatakse reaalseks Gelfand-Mazuri algebraks, kui
faktoralgebra A/M (faktortopoloogias) on topoloogiliselt isomorfne
korpusega R. Analoogiliselt defineeritakse kompleksne Gelfand-Ma-
zuri algebra.

Kompleksse Gelfand-Mazuri algebra mõiste võtsid teineteisest
sõltumatult kasutusele Mati Abel (vt. [6]–[8]) ja Anastasios Mallios
(vt. [24]). Komplekssete Gelfand-Mazuri algebrate struktuur on seni
küllaltki hästi uuritud. Reaalse Gelfand-Mazuri algebra mõiste on
kasutusele võetud töös [18].

Reaalse Gelfand-Mazuri algebra A omaduste uurimiseks sisesta-
takse A komplekssesse Gelfand-Mazuri algebrasse Ã. Kasutades
kompleksse Gelfand-Mazuri algebra korral teada olevaid tulemusi al-
gebra Ã korral, saame kirjeldada algebra A omadusi. Seda meetodit
on edukalt kasutatatud reaalsete Banachi algebrate uurimisel (vt. [21]
ja [30]).

2. Käesolev väitekiri koosneb kolmest peatükist. Esimeses
vaadeldakse topoloogiliste (s.o. lokaalselt pseudokumerate ja gälb) al-
gebrate kompleksifitseerimist ja selle omadusi. Antakse põhi-
liste reaalsete Gelfand-Mazuri jagamisega algebrate kirjeldus (Järeldus
1.7.2).

Teises peatükis näidatakse (Teoreem 2.2.1), et juhul kui kommu-
tatiivne reaalne topoloogiline algebra A rahuldab tingimust
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kui a, b ∈ A ning a2 + b2 ∈M , siis a, b ∈M
iga M ∈ m(A) korral, ning algebral A leidub selline topoloogia τ , et
(A, τ) on üks järgmistest topoloogilistest algebratest:

a) lokaalselt pseudokumer Waelbroecki algebra;

b) lokaalselt A-pseudokumer (erijuhul lokaalselt m-pseudokumer)
algebra;

c) lokaalselt pseudokumer Fréchet algebra;

d) pideva korrutamisega ja tõkestatud elementidega tugevalt gälb
(erijuhul eksponentsiaalselt gälb) Hausdorffi algebra;

e) topoloogiline Hausdorffi algebra, milles iga a ∈ A ja M ∈ m(A)
korral leidub selline λ ∈ R, et a− λeA ∈M ,

siis A on kommutatiivne reaalne Gelfand-Mazuri algebra.

Kasutades saadud tulemusi, leitakse selliste topoloogiliste algeb-
rate A kirjeldus, mille korral faktoralgebra A/P (üle kinnise primitiiv-
se ideaali P) tsenter Z(A/P ) on topoloogiliselt isomorfne kor-
pusega R.

Kasutades G. Allani ja L. Waelbroecki ideid (vt. [19, 32]) ja
Mart Abeli poolt saadud tulemusi (vt. [2] ja [4]) kinniste maksi-
maalsete ideaalide kirjeldamiseks komplekssetes Gelfand-Mazuri al-
gebrates, antakse ühe- ja kahepoolsete ideaalide kirjeldus lokaalselt
A-pseudokumerates (erijuhul lokaalselt m-pseudokumerates) algebra-
tes ning lokaalselt pseudokumerates Fréchet algebrates.

Kolmandas peatükis kirjeldatakse topoloogilise algebra C(X,A;σ)
omadusi juhul, kui A on reaalne ühikuga lokaalselt m-pseudokumer
algebra (vt. Lemma 3.1.1). Leitakse piisavad tingimused (Teoreemid
3.3.2 ja 3.4.1) selleks, et algebra C(X,A;σ) alamalgebrates oleks
võimalik kirjeldada kõiki kinniseid maksimaalseid ühe- ja kahepoolseid
ideaale (samuti kõiki pidevaid lineaarseid multiplikatiivseid
funktsionaale) ruumide X ja hom(A) punktide abil.

3. Käesoleva väitekirja tulemused on publitseeritud töödes [18]
ja [28] (töö [29] ilmumisel). Oma tulemusi on tutvustatud järgmistel
rahvusvahelistel konverentsidel: ”International Conference on Topo-
logical Algebras and its Applications” (Oulu, 2001), ”Topological al-
gebras, their applications and related results” (Bed lewo, 2003), ”In-
ternational conference dedicated to 125-th anniversary of Hans Hahn”
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(Chernivtsi, Ukraina, 2004), ”International Conference on Topologi-
cal Algebras and its Applications” (Athens, 2005) ja rahvusvahelisel
puhta matemaatika ühisseminaril ”Tartu-Riga” (Riga, 2005).
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Sünniaeg ja -koht: 24. november 1971, Tšitaa, Venemaa
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