
NEALT PROCEEDINGS SERIES

VOL. 8

Proceedings of the NODALIDA 2009 workshop

Constraint Grammar and robust parsing

May 14, 2009

Odense, Denmark

Nodalida 2009

Editors

Eckhard Bick

Kristin Hagen

Kaili Müürisep

Trond Trosterud

NORTHERN EUROPEAN ASSOCIATION FOR LANGUAGE TECHNOLOGY

Proceedings of the NODALIDA 2009 workshop

Constraint Grammar and robust parsing

NEALT Proceedings Series, Vol. 8

© 2009 The editors and contributors.

ISSN 1736-6305

Published by

Northern European Association for Language

Technology (NEALT)

http://omilia.uio.no/nealt

Electronically published at

Tartu University Library (Estonia)

http://hdl.handle.net/10062/14180

Volume Editors

Eckhard Bick

Kristin Hagen

Kaili Müürisep

Trond Trosterud

Series Editor-in-Chief

Mare Koit

Series Editorial Board

Lars Ahrenberg

Koenraad De Smedt

Kristiina Jokinen

Joakim Nivre

Patrizia Paggio

Vytautas Rudžionis

Contents

Preface iv

Trond Trosterud
A Constraint Grammar for Faroese 1

Eckhard Bick
A Dependency Constraint Grammar for Esperanto 8

Lene Antonsen, Saara Huhmarniemi and Trond Trosterud
Constraint Grammar in Dialogue Systems 13

Liina Lindström and Kaili Müürisep
Parsing Corpus of Estonian Dialects 22

iii

Preface

Constraint Grammar (CG) is a rare species in the Nordic garden of language
technology. The framework was invented and developed here, by Fred Karlsson, and
it has achieved quite spectacular results. Its success has also been a problem for the
framework, since central practitioners have commercialised their results, and
withdrawn them from the academic discussion. Whatever the reason is, CG has never
drawn a wide audience, not even on its "home ground", the Nordic countries.

The goal of the workshop was partly to make Constraint Grammar and its results
more known to collegues, but first and foremost to stimulate the discussion within the
CG community, and to facilitate progress. During the last couple of years, CG have
improved its way of doing dependency analysis, thereby bridging the gap between
"deep" and "shallow" parsing, being both "deep" and "robust". At the same time, the
number of applications in which CG is put to use is growing.

The present workshop proceedings contain 4 papers. The two first papers (Trosterud,
Bick) present CG parsers for two new languages, Faroese and Esperanto, the latter
paper with a focus on dependency grammar. The next paper (Antonsen et al) presents
CG in action, for a parser-based intelligent Corpus-Assisted Language Learning
(iCALL) program for North Sámi. The fourth paper (Lindström and Müürisep)
presents CG in a well-known setting, as a corpus parser, but this time for a corpus of
non-standardised language, Estonian dialects. At a time where more and more old
dialect archives are digitized, this is a highly relevant topic.

The workshop also contained two presentations which were not submitted for
publication: Kevin Brubeck Unhammer presented Constraint Grammar in Apertium
and Tino Didriksen presented Latest news, from the compilator programmer's
workbench.

Reviewers for all the papers were Kristin Hagen, Marit Julien and Anssi Yli-Jyrä. As
the field is small and transparent, the organising committee deemed a blind reviewing
process impossible to carry out (the authors behind all the papers were evident from
already published parsers and articles). All papers were accepted.

Eckhard Bick, Kristin Hagen, Kaili Müürisep and Trond Trosterud

iv

A constraint grammar for Faroese

Trond Trosterud
University of Tromsø

Abstract

The present paper presents ongoing work
on a finite-state transducer, a Constraint
Grammar disambiguator and dependency
grammar for Faroese. In Faroese, the
classical Germanic system of case, per-
son and number inflection is upheld, but
with somewhat more homonymy than in
the closely related Icelandic. Rather
than conflating homonym categories, the
present morphological transducer gives a
fully specified analysis of all morphologi-
cal distinctions.

1 Introduction

The transducer is based upon the lemma list
of Føroysk orðabók ((Poulsen et al., 1998))1,
and upon the grammatical description found in
(Thráinsson et al., 2004).

The Faroese parser uses the computational in-
frastructure from the Sámi parser project (giel-
latekno.uit.no). It has the same file setup, similar
makefiles, etc. There are also benefits in the op-
posite relation: The Sámi morphophonology test-
suite was taken from work on the Faroese twolc
file.

The Faroese morphological analyser/generator
Ffst is a finite-state transducer. It is compiled
with Xerox transducer compilers: twolc for Mor-
phophonology, and lexc for lexicon and morphol-
ogy (cf. (Beesley and Karttunen, 2003) and
http://www.fsmbook.com/). The disam-
biguator Fdis and dependency grammar Fdep are
written within the Constraint Grammar frame-
work (see e.g. (Karlsson, 1990), (Karlsson et
al., 1995)), and uses the 3rd generation compiler
vislcg3 ((Bick, 2000), http://beta.visl.
sdu.dk/cg3.html).

1Thanks to the authors for making lemmalist and inflec-
tion codes electronically accessible, Without it this project
would of course not have been realisable.

Sections 2, 3 and 4 present the grammatical
analyser Ffst, the disambiguator Fdis and the de-
pendency grammar Fdep, respectively. Section
5 gives an evaluation of the current stand of the
parser, and the final section contains future per-
spectives and a conclusion.

2 The grammatical analyser

2.1 Lexicon

The Ffst lexicon uses the same inflectional codes
as does (Poulsen et al., 1998). Dictionary updates
and new words annotated with the same codes may
thus be added directly to the Ffst. The analyser has
a dynamic compounding component, genitive sin-
gular nouns have the basic noun lexicon as one of
their continuation lexica, thereby creating a loop
allowing any compound with genitive singular first
part. This gives rise to a circular transducer, for
generation this component must thus be switched
off.

Ffst also contains a name guesser. The guesser
detects words with capital first letter and non-
Faroese phonotax. The candidate words must con-
tain at least one vowel. The final letter cannot be
a Faroese suffixal sound (a, i, u, n, m, r, s, t (to
avoid explicit case endings). The putative name
is then assigned Nom, Acc and Dat. If there is
any other analysis available, the guessed form is
automatically discarded. The guesser is very re-
liable: Of the 500 most common guesses all 500
were actually names. It is also (too) careful: Ban-
ning Faroese case suffixes from the guesser avoids
analysig case-inflected forms as baseforms, but at
the same time it prevents the parser from making
many correct guesses.

2.2 Morphology

The morphological part of Fdis is built in several
layers. For the nominal morphology, the first layer
gives the part of speech and gender tags, and mor-

1

phophonological flags, as shown in Figure 1, for
the noun bóndi “farmer”, where the nominative
and accusative plural forms show Umlaut.

Figure 1: Definiteness morphology

The dictionary contains xx nominal declension
types, but including singular-only and plural-only
declension patterns, and combined patterns (words
declined for more than one pattern), the system to-
tals 269 distinct first-layer continuation lexica for
nouns, one of them being the k5 lexicon in Figure
1.

The second layer gives case and number mor-
phology. Figure 2 gives the continuation lexica for
weak masculine plurals, i.e., also for bóndi and the
other k5 words.

Figure 2: Second layer - case and number

The third layer gives definiteness morphology.
Due to the agglutinative nature of Faroese mor-
phology, the lexica either only add the indefinite
tag, or the definite tag and suffix. The exception
is dative, which shows an n:m alternation. Rather
than writing a morphophonological rule deleting

m in front of num, the alternation is written into
the morphology file.

Figure 3: Third layer - definiteness

Applying these lexica, we get, among others the
accusative and dative plural definite forms shown
in Figure 4.

Figure 4: The resulting upper and lower lexc
strings

2.3 Morphophonology
The lower part of the string pairs from the mor-
phological transducer are then fed to a separate
automaton, the morphophonological component.
This automaton contains rules for morphophono-
logical alternations, and for non-segmental mor-
phology. The relevant rule in this context is I-
umlaut, shown in figure 5. The rule works on
strings containing any of the vowels in Vx, zero or
more consonants, and the Umlaut trigger symbol
^IUML, and changes all vowels in Vx into the cor-
responding vowels in Vy. In this case, it changes
ó into ø.

Figure 5: The twolc i-umlaut rule

2

The morphological and morphophonological
transducers are then composed, and the resulting
transducers gives a pairing of the upper represen-
ation of the former and the lower represntation of
the latter, graphically presented in Figure 6, with
the invisible, intermediate strings shown in shaded
grey.

Figure 6: The transducers

Applied to all grammatical words of the lexeme
bóndi, Ffst gives the paradigm shown in Figure 7.

Figure 7: The resulting paradigm for bóndi

A list of the morphophonological rules is given
in Figure 8 on page 4.

2.4 Status quo for Ffst

At present (May 2009), the Faroese morphological
transducer recognises 94.3 % of all wordform to-
kens and 62.8 % of all wordform types in running
text, for a corpus of 2.7 million words (dominated

by newspaper text). The discrepancy indicates that
Ffst handles common words better than rare ones.

The results could still be better, but for cer-
tain subgenres (such as the Bible), Ffst gives bet-
ter results (96.3 % and 83.3 %, respectively), re-
sults good enough to evaluate the subsequent CG
component. Note that even for the known text,
Ffst misses approximately 16 % of the wordform
types. The reason for this high number is that
certain parts of the transducer are still under con-
struction, especially parts of the irregular verbs,
and of comparative and superlative forms of ad-
jectives. Also Faroese names are missing, except
the most central person names. The foreign names
are mainly taken care of by the name guesser.

The top 84 missing wordforms from an 2.7 m
wd corpus are shown in Figure 9 on page 4.

The 43093 missing wordforms represent 5.67%
of the 2.7 mill corpus. In order to reduce the num-
ber of missing wordforms in running text by 50%,
the top 2117 wordforms of the missing list would
have to be added to the analyser. Important areas
for lexicon improvement include the following:

• Adjectival inflection of participles, irregular
adjectival forms

• Some irregular strong verbs and verb forms
• Faroese names (other than person names)
• Compounded function words
• Words missing from FO
• Plain errors

3 The Faroese disambiguator

The disambiguator (Fdis) consists of 166 rules for
morphological disambiguation, 67 mapping rules,
and 68 rules for disambiguation of grammatical
functions. This is a small, but relatively efficient
rule set, compared to the disambiguators for some
other languages in Table 12. For each language,
the table gives number or rules, and the average
numbers of readings before and after disambigua-
tion, as applied on a compatible corpus (Genesis
and the New Testament.).

3.1 Tag unification

The efficiency of the Fdis ruleset illustrates the ef-
ficiency of an innovation in vislcg3, namely set

2The Sámi parsers are developed at the University of
Tromsø (UiT), the Greenlandic parser is joint work between
Oqaasileriffik and UiT, and the Bokmål parser is developed at
Tesktlaboratoriet in Oslo. Thanks to Kristin Hagen for run-
ning the Bokmål analysis for this comparison.

3

Figure 8: Twol rules

Figure 9: Top 84 missing wordforms, the percentages showing the percentage of the corpus left unanal-
ysed with a list of missing wordforms up to and including the wordform in question

4

Table 1: Rules and results for some CG parsers

Parser Rules Input Output
North Sámi 3537 2.42 1.08
Norsk Bokmål 1964 2.13 1.17
Lule Sámi 832 2.18 1.21
Faroese 301 2.45 1.24
Greenlandic 518 2.69 1.42

unification for tags. With the set unification op-
erator $$ it is possible to refer to a set, so that the
tag that first satisfies the set must be the same as
all subsequent matches of the same set. Cf. the
rule (1), which refers to the set (2).
(1) SELECT $$NAGD IF (0 Det)(*1C $$NAGD

BARRIER NOT-NP);

(2) SET NAGD = Nom Acc Gen Dat ;

The bulk of the rules aims at disambiguating
case, number and gender within the NP. One clue
as to determining the correct case is the choice
of preposition, as it is for the human listener.
Unfortunately, most Faroese prepositions subcat-
egorise for more than one case. What case to
choose if there is a tie is ultimately dependant
upon the combination of verb and preposition. At
the present stage, Fdis selects Accusative for mo-
tion verbs and change of relationship PPs, other-
wise it chooses Dative.

When disambiguating running text, certain
high-frequent words need special attention, both
because they get multiple interpretations in the
morphological component, and for their key role
in the sentence. A common strategy for such
words is to write specific rules just for these words.
For Fdis, only approximately 15 such words have
received special treatment until now, among them
the pronouns hon, vit and the ambiguous function
words at, ið, men. Also this is an area for improve-
ment.

The Faroese verbal paradigm shows much
homonymy. Ffst follows the practice of the ref-
erence grammars, and specifies 3 persons in the
singular (also when the conjugation in question
shows homonymy), but only one plural form. Nat-
urally, disambiguating of the verbal forms rests
heavily upon the person of the subject.

Mapping of grammatical functions is done on
the basis of morphological cues and word order,
and their disambiguation mainly on the basis of
word order. The grammatical function tags are di-

rectional (the distinction @OBJ> / @<OBJ indi-
cates whether the governing verb is to found to the
right or to the left, respectively). This distinction
is heavily utilised in the dependency grammar.

4 The dependency grammar

The dependency grammar quite reliably delimits
NPs, and the governed constituents of P and V.
Eventual errors here are due to errors in Fdis. The
main obstacles for a good depencency analyses are
coordination and relative clauses. Attaching ap-
propriate constituents to the clause mother node
is quite a reliable process as long as the rest of
the analysis is correct. Unfortunately shortcom-
ings in coordination and relative clause analysis,
and especially the low coverage of the Ffst gives
too many top nodes (2.3 alleged clausal heads
per clause on average, compared to the correct 1
head/clause). Even with these shortcomings, the
Fdep is already at this stage a good tool for re-
search on basic dependency relations.

5 Evaluation

5.1 Precision and recall
The parser was tested on a small corpus of 1033
words of unseen text from a new genre (Faroese
education planning). The results are shown in Ta-
ble 2.

Table 2: Precision, recall, accuracy and F-ms for a
test corpus

Error type tp fp tn fn
Morphology 2048 369 2501 101
Syntax 1902 515 2357 245
Dependency 724 316 0 0

prec rec. acc. F-ms.
Morphology 0.85 0.95 0.91 0.90
Syntax 0.79 0.89 0.85 0.83
Dependency 0.7 1 0.7 0.82

Thus, Fdis is work in progress
As an illustration of the Fdis output, consider

Figure 10 on page 6. The two leftmost columns
give the output from Ffst, with all possible read-
ings. The third column gives the output from Fdis
and Fdep, with ambiguity removed, and grammat-
ical functions and dependency added.

5.2 Processing speed
When it comes to processing speed, it seems that
the bottleneck in the system is the disambigua-

5

Figure 10: And the earth was waste and void; and darkness was upon the face of the deep: and the Spirit
of God moved upon the face of the waters

6

tor. Even though it is much smaller than most
CG grammars, it performs clearly worse than all
the other parts of the pipeline. The reason for this
might be the extensive use of set unification.

Table 3: Processing speed, measured on 100000
words of running text, on a 2,4 GHz laptop

Process Program Words/sec
Preprocessing perl 10446
Morphological lookup fst 42992
Postprocessing perl 13017
Disambiguation vislcg3 2042
Dependency vislcg3 18814

6 Conclusion

The Faroese grammatical analyser presented here
is still in the making. It still shows that with a
modest number of CG rules, one may achive re-
sults good enough for several languaguage pro-
cessing tasks. Future improvements of the anal-
yser will concentrate upon key parts of the Ffst,
upon disambiguation of complex syntactic pat-
terns, and upon the dependency analysis of coor-
dination and relative clauses.

References
Kenneth R. Beesley and Lauri Karttunen. 2003. Finite

State Morphology. Studies in Computational Lin-
guistics. CSLI Publications, Stanford, California.

Eckhard Bick. 2000. The Parsing System ”Palavras”:
Automatic Grammatical Analysis of Portuguese in a
Constraint Grammar Framework. Aarhus Univer-
sity Press, Aarhus.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and
Atro Anttila. 1995. Constraint Grammar. A
Language-Independent System for Parsing Unre-
stricted Text. Natural Language Processing. Mouton
de Gruyter, Berlin, New York.

Fred Karlsson. 1990. Constraint grammar as a
framework for parsing running text. In 13th Inter-
national Conference on Computational Linguistics
(COLING-90), pages 168–173, Helsinki.

Jóhan Hendrik W. Poulsen, Marjun Simonsen, Jóg-
van í Lon Jacobsen, Anfinnur Johansen, and
Zacharis Svabo Hansen. 1998. Føroysk orðabók,
volume 1-2. Føroya Fróðskaparfelag, Tórshavn.

Höskuldur Thráinsson, Hjalmar P. Petersen, Jógvan
í Lon Jacobsen, and Zacharis Svabo Hansen. 2004.
Faroese: An overview and reference grammar.
Føroya Fróðskaparfelag, Tórshavn.

7

A Dependency Constraint Grammar for Esperanto

Eckhard Bick
Institute of Language and Communication

University of Southern Denmark

eckhard.bick@mail.dk

Abstract

This paper presents a rule-based formalism
for dependency annotation within the
Constraint Grammar framework,
implemented as an extension of the open
source CG3 compiler. As a proof of
concept we have constructed a complete
dependency grammar for Esperanto,
building on morphosyntactically annotated
input from the EspGram parser. The system
is described and evaluated on a test corpus.
With a 4% error rate, and most errors
caused by simple error propagation from
the morphosyntactic input module, our
system has proven robust enough to be
integrated into real life applications, such
as the Lingvohelpilo spell- and grammar-
checker.

1 Introduction

Traditionally, Constraint Grammar (Karlsson
et al. 1995) as a descriptive system, has
regarded syntax as an extension of
morphology, with a shallow syntax based on
function tags built on case markers, word
order and contextual constraints. This
approach to syntax efficiently exploits
lexico-morphological clues, and the tag-
based annotation allows the grammarian to
treat syntax as a disambiguation technique
similar to the one used for morphological
disambiguation. However, function is only
an indirect marker for the relation between
words, and it is difficult to express the
structural relations of deeper syntax in this
fashion. As a first approximation,
dependency direction markers were used for
the dependents in noun phrases (e.g. @N> or
@>N), adjective phrases (@A> or @>A)

and prepositional phrases (@P<), a
descriptive principle later generalized to
clause level functions and subclauses (Bick
2000). In this convention, some obvious
underspecifications arise, such as the
distinction between short and long
attachment in np's, and the scope of
coordinators. Nevertheless, two different
methods were developed to create full
syntactic trees from shallow CG function
tags. The first (Bick 2003) uses higher level
phrase structure grammars with function tags
as terminals, and resolves
underspecifications in a generative way. The
second, and more robust (Bick 2005), uses
ordinary CG rules to add secondary
attachment markers (e.g. <np-close>, <np-
long>, <co-acc>, <cjt-first>) to resolve
underspecification, and creates dependency
trees through successive attachment rules.
However, the method used an external
formalism, with a specially designed
dependency rule compiler that also handled
issues like uniqueness, circularity and
coordination chains.

This paper describes an effort to move this
last, tree-building step into the realm of
Constraint Grammar proper, thus allowing
the user to exploit CG's powerful contextual
methodology in the process, to better
integrate dependency and functional syntax
and to achieve some control over
dependency interaction not fully
implementable in an the external formalism.
The new CG extension was then used to
create a dependency CG grammar for
Esperanto, and it is this grammar that will be
described and evaluated here. The module

8

deep linguistic processing, and can thus be
seen as facilitation stepping stone both for
further, syntax-dependent annotation (e.g.
anaphora, semantic roles) and for various
applicative purposes such as machine
translation. Currently, the grammar is used
in the newly-developed Esperanto grammar
checker, Lingvohelpilo
(http://lingvohelpilo.ikso.net/), where it
provides important contextual information
for the checking of accusative/nominative
case endings and transitivity affixes, as well
as for the identification of long-distance
agreement errors, e.g. between subject and
subject complement.

2 The formalism

In order to accommodate for dependency, 2
new operators, SETPARENT and
SETCHILD, were introduced to
GrammarSoft's open-source CG3 compiler
(Didriksen 2007), establishing dependency
arcs from daughter to mother, or mother to
daughter, respectively, addressing one in the
SETPARENT/SETCHILD field and the
other in a TO field. Both fields of the rule
can be independently conditioned with CG
contexts in the usual way. The first field
works like the TARGET of a MAPping rule,
while the TO-end of the dependency is
specified by a context condition itself – as
seen from the TARGET position. In the case
of a LINKed condition, the attachment point
can be marked (with a special A operator) as
any of the individual contexts checked and
“passed”. As a default, the dependency arc
will attach to the last condition of the LINK
chain if it can be instantiated. As in the older,
external dependency compiler, dependency
arcs are expressed as number tokens of the
type #n->m, where n is the token ID of the
daughter and m the token ID of the mother.
Internally, the CG3 compiler uses unique,
running IDs (necessary for cross-sentence
relations such as anaphora or discourse
relations), but in standard dependency
output, sentence windows boundaries are
respected, using relative IDs. The notation is
information equivalent to constituent tree

structures, and has been successfully
converted into various exchange formats,
such as TIGER xml and the VISL cross-
language format (constituent trees), as well
as MALT xml and CoNNL field format
(dependency).

The rule below is an example of a
dependency-creating rule for prenominal
dependents (@>N), attaching to np-heads
(@NP-HEAD) or nouns in the nominative
(N NOM), to the right (*1).

(a) SETPARENT @>N TO (*1 @NP-HEAD
OR (N NOM) BARRIER PRP) ;

Once established, dependency arcs can be
used by later rules – even by other
dependency-mapping rules – using three
types of dependency relators: p (parent), c
(child) and s (sibling). The p-, c- and s-
relators replace what would otherwise be
position markers in a traditional CG context.
Thus, rule (a) exploits semantic prototype
roles to select +HUM subjects in the
presence of cognitive verbs, while (b)
implements the syntactic uniqueness
principle for direct objects (@ACC).

(a) SELECT (%hum) (0 @SUBJ) (p <Vcog>)
(b) SELECT (@ACC) (NOT s @ACC)
(c) ... (*-1 N LINK c DEF) -> definite np

recognized through dependent
(d) ADD (§AG) TARGET @SUBJ (p V-HUM

LINK c @ACC LINK 0 N-NON-HUM) ;

Rule (c) is an example of a rule context used
to recognize a definite np through its
determiner, and (d) assigns the semantic role
tag of agent (§AG) to subjects of “human”
verbs with a non-human direct objects.

3 The Esperanto grammar

The preposition barrier (PRP) in the np rule
in the last section is a sensible safety
measure for English and French, but fails to
account for pre-nominal pp's as they do
occur in e.g. Esperanto and German. The
next rule therefore allows prenominals to
search right (**1) across the first np-head to

9

a later one that is not part of a prenominal pp
(as implied by @P<). Note that the SET
target has its own condition excluding targets
that already have a parent (using the (*)
convention for “any tag”). Since rule
application order supersedes token order, this
will have the effect of not undoing the pp-
free prenominal attachments already mapped
by the first rule.

SETPARENT @>N (NOT p (*))
TO (**1 @NP-HEAD OR (N NOM))
(NOT 0 @P<) ;

At the clause level, it is a fair assumption
that all left-pointing functions attach to the
closest main verb (&MV), unless an
intervening subclause ending is marked by
punctuation (CLB):

SETPARENT @<FUNC
TO (*-1 &MV BARRIER CLB) ;

For right-pointing functions (@FUNC>), the
blocking condition is a subclause
“complementizer” (relative/interrogative
pronoun or a subordinating conjunction),
which – unlike English - is an obligatory
feature in Esperanto. In a subsequent rule,
long-distant attachment across relative
clauses can be performed for still unattached
subjects (NOT p (V)), by linking to the next
main verb that does not already have a
subject (NOT c @SUBJ>):

SETPARENT @SUBJ> (NOT p (V))
TO (**1 &MV)
(*-1 NON-V LINK NOT 1 PCP)
(NOT c @SUBJ>)

Note the additional context condition in the
TO field that identifies the first verb in a
possible verb chain and conditions it as not
being a participle – since participle clauses
don't have left subjects.

In our grammar, coordination is handled as
“parallel” attachment, not chained Mel'cuk-
style, and in the absence of uniqueness-
demanding contexts, ordinary attachment
rules will therefore handle coordination, too.

However, the clause boundary barrier
discussed before poses a problem where a
chain of conjuncts contains not only a
coordinator, but also commas. Therefore, a
somewhat more complicated rule becomes
necessary to attach comma-isolated
conjuncts:

SETPARENT $$@FUNC (NOT p (V))
TO (*-1 IT BARRIER NON-PRE-N/ADV
LINK *-1 $$@FUNC BARRIER @FUNC
LINK p (V)) ;

This rule exploits the new uniqueness feature
in CG3 to attach any as yet unattached
function if the same function ($$@FUNC)
can be found to the left of an immediately
adjacent (BARRIER NON-PRE-N/ADV)
iterator (IT = coordinator or comma), with
no other functions in between (BARRIER
@FUNC). The dependency head will be the
mother (p V) of the same-function
antecedent found. Further rules, not
discussed here, attach the coordinator token
itself, and assign secondary conjunct tags to
all conjuncts, in order to distinguish between
first and later conjuncts should the need for a
Mel'cuk-style transformation arise.

4 Evaluation

Compared to the complexity of
morphological and syntactic CGs, our
dependency CG module is strikingly rule
efficient, achieving robust annotation with
just 66 rules, compared to the thousands of
rules in lower-level CGs, and the couple of
hundred rules in a CG-based PSG. Of course,
it has to be born in mind, that our rules rely
heavily on syntactic functions and
attachment direction markers introduced by
preceding CG modules. Also, at the time of
writing, we have not yet incorporated the
distinction between close and long
postnominal attachment, ellipsis and quoted
sentences which will unavoidably add to the
number of rules.

Speedwise, CG-dependency is also quite
efficient. A 75.000 word corpus consisting of
50% news magazine text and 50% classical

10

texts, was analyzed with the EspGram tagger
(Bick 2007) at the syntactic-functional level,
and the annotated corpus was then tagged
with our dependency CG on a 2.4 GHz
laptop. In this experiment, the analysis chain
up to the syntactic function level ran at 72
words/s, while the dependency level alone
ran at 6336 words/s, using 10.2 % of overall
processing time. Compared to the external
dependency system (608 words/s), this
implies a speed improvement by almost one
order of magnitude.

A rough inspection of annotation results for a
sample of 1000 words indicate an overall
error rate for the dependency annotation of
about 4%. Of these, about half were
attachment failures (no mothernode for non-
topnode functions), half were wrong
attachments (wrong daughter-mother
relation). With most errors being caused by
syntactic-function errors in the input, the
error rate of the dependency module itself
was very low, under 1%.

5 Conclusion and outlook

Given the necessary formal changes to the
CG compiler software, it appears to be
feasible, even with a relatively small set of
rules, to handle the creation of dependency
tree structures for CG-analyzed input within
the CG formalism itself. Our experiments
with such a grammar for use in an Esperanto
spell- and grammar-checker produced robust
results, both quantitatively and qualitatively.
In particular, the dependency module proved
to be considerably more robust than the
syntactic function module, inheriting most of
its errors from the former. We therefore
believe that CG dependency modules can be
created with comparatively little effort, to
turn existing CG function annotations into
dependency treebanks without substantial
loss of information. Future research should
allow us to shed light on the question to what
degree our dependency grammar, given a
compatible set of morphological and
syntactic input tags, is language independent
- as the size and simple nature of our rule set

indicates.

References

Bick, Eckhard (2000), “The Parsing System
PALAVRAS - Automatic Grammatical Analysis of
Portuguese in a Constraint Grammar Framework”,
Aarhus: Aarhus University Press

Bick, Eckhard. (2003) A CG & PSG Hybrid Approach
to Automatic Corpus Annotation, In: Kiril Simow
& Petya Osenova (eds.), Proceedings of
SProLaC2003 (at Corpus Linguistics 2003,
Lancaster), pp. 1-12

Bick, Eckhard. (2005) “Turning Constraint Grammar
Data into Running Dependency Treebanks”. In:
Civit, Montserrat & Kübler, Sandra & Martí, Ma.
Antònia (red.), Proceedings of TLT 2005 (4th
Workshop on Treebanks and Linguistic Theory,
Barcelona, December 9th - 10th, 2005), pp.19-27

Bick, Eckhard (2007), Tagging and Parsing an
Artificial Language: An Annotated Web-Corpus of
Esperanto, In: Proceedings of Corpus Linguistics
2007, Birmingham, UK. Electronically published
at (http://ucrel.lancs.ac.uk/publications/CL2007/,
Nov. 2007)

Didriksen, Tino (2003). “Constraint Grammar
Manual”, http://beta.visl.sdu.dk/cg3/single/

Karlsson, Fred et al. (1995): Constraint Grammar - A
Language-Independent System for Parsing
Unrestricted Text. Natural Language Processing,
No 4. Berlin & New York: Mouton de Gruyter.

Appendix: Annotation sample

Post 12 jaroj da reformoj, la efikeco de la ĉeĥa
ekonomio ne signife transpaŝas la nivelon atingitan en
la jaro 1989.
(Ater 12 years of reforms, the efficiency of the chech
economy has not significantly surpassed the level
reached in [the year of] 1989,)

Post [post] <*> PRP @ADVL> #1->14
12 [12] <card> <cif> NUM P @>N #2->3
jaroj [jaro] <dur> <per> N P NOM @P< #3->1
da [da] PRP @N< #4->3
reformoj [reformo] <sem-c> <act> N P NOM @P<

#5->4
la [la] ART @>N #6->7
efikeco [efikeco] <f> N S NOM @SUBJ> #7->14
de [de] PRP @N< #8->7
la [la] ART @>N #9->11
cxehxa [cxehxa] <jnat> ADJ S NOM @>N

#10->11
ekonomio [ekonomio] <domain> N S NOM @P<

#11->8
ne [ne] <amod> <setop> ADV @>A #12->13

11

signife [signife] ADV @ADVL> #13->14
transpasxas [transpasxi] <mv> <vt>V PR @FS-STA

#14->0
la [la] ART @>N #15->16
nivelon [nivelo] <ac> N S ACC @<ACC #16->14
atingitan [atingi] <mv> <vt> V PCP PAS IMPF ADJ

S ACC @ICL-N< #17->16
en [en] PRP @<ADVL #18->17
la [la] ART @>N #19->20
jaro [jaro] <dur> <per> N S NOM @P<

#20->18
1989 [1989] <year> <card> <cif> NUM S @N<

#21->20
$.

The following fields are used in the annotation
scheme, and expressed as feature attribute pairs in
xml: wordform, [base form/lemma], <semantics>,

@syntactic_function, #dependency-link

(part of speech tags: N=noun, V=verb,
ADJ=adjective, ADV=adverb, PRP=preposition,
ART=article, NUM=numeral; inflexion: S=singular,
P=plural, NOM=nominative, ACC=accusative,
PCP=participle, PAS=passive, PR=present tense,
IMPF=past tense; syntactic function:
@SUBJ=subject, @ADVL=adverbial, @ACC=direct
object, @>N=pre-nomina modifier, @N<=post-
nominal modifier, @P<=argument of preposition,
@ICL=non-finite clause, @FS=finite clause,
@STA=statement; semantic prototypes: <dur>
duration, <ac> abstract countable, <domain> domain,
<sem-c> semantic product, <act> action, <f> feature,
<jnat> nationality, <mv> main verb; valency: <vt>
transitive)

12

Constraint Grammar in Dialogue Systems

Lene Antonsen
University of Tromsø

Norway
lene.antonsen

@uit.no

Saara Huhmarniemi
University of Tromsø

Norway
saara.huhmarniemi

@helsinki.fi

Trond Trosterud
University of Tromsø

Norway
trond.trosterud

@uit.no

Abstract

This article discusses and gives examples
of the use of Constraint Grammar as parser
engine in parser-based CALL programs
for North Sámi. The parser locates gram-
matical errors in a question-answer pro-
gram and a dialogue program, and is also
used for navigating inside the dialogue.

1 Introduction

The present paper discusses the use of Constraint
Grammar (vislcg3) in two different dialogue sys-
tems for learning North Sámi: Vasta – a QA-drill
with open questions, and Sahka – a dialogue be-
tween program and user within a scenario. The
underlying pedagogical goals for both programs
are exercising verb inflection, choosing the correct
case, and extending the vocabulary of the student.

Constraint Grammar (CG) rules are used for
adding tutorial feedback about grammatical er-
rors, navigating in the Sahka-dialogue based on
the user’s answers, and for identifying parts of the
user’s answer for use in variables later in the dia-
logue.

Our leading idea was to utilize our existing anal-
yser for Sámi when developing pedagogical pro-
grams for language instruction. With vislcg3 we
had the possibility of making an intelligent tutor-
ing system with sophisticated error analysis where
student tasks could go beyond multiple-choice or
string matching algorithms.

Sámi is a language with complex morphology,
and it demands much practising before the student
reaches necessary skills. However, since Sámi is
a minority language, it is common that Sámi stu-
dents do not receive enough opportunities to prac-
tise the language in a natural way. There is also
a lack of teaching materials. Therefore, programs
accessible on the Internet may be a supplement to
the instruction given at school or in universities.

In the following section we describe the basic
algorithm for generating questions for Vasta and
analysing user’s input in Vasta and Sahka. Section
3 shows how CG is used for navigation in the dia-
logues in Sahka, and section 4 shows how tutorial
feedback is given with the help of CG rules. In
section 5 we present an evaluation of how the sys-
tem works in real life. The final sections present
future perspectives and a conclusion. The pro-
grams are available on a web-based learning plat-
form at internet (http://oahpa.uit.no/),
which contains six programs (Antonsen, Huhu-
marniemi and Trosterud, 2009).

2 The system

2.1 Basic grammatical analysis

The basic grammatical analysis of North Sámi is
done with finite state transducers (fst) and a con-
straint grammar parser made at UiT. The relevant
resources are the following:

• a morphological fst analyser/generator, com-
piled with the Xerox compiler xfst (Beesley
and Karttunen, 2003).

• a morphological disambiguator based on con-
straint grammar with 3300 manually writ-
ten rules and a syntactic analyser which adds
grammatical function (vislcg3).

The CG parser framework shows extraordinary
results for free-text parsing, and Vislcg3 is also
used in the VISL-suite of games developed at Syd-
Dansk Universitet for teaching grammatical anal-
ysis on the Internet (http://visl.sdu.dk/).
One of their programs accepts free user input
in some of the 7 supported languages. The in-
put is analysed or changed into grammar exer-
cises (Bick, 2005).

13

Figure 1: A generated question and a user’s answer in Vasta. (”Did the boy ride yesterday?” ”No,
yesterday he does not.”)

2.2 Sentence generator

The question-answer drill Vasta consists of ran-
domly chosen questions – yes/no-questions and
wh-questions. In order to be able to create a large
number of potential tasks, we implemented a sen-
tence generator. With the generator we can easily
offer variation to the user, instead of tailoring ev-
ery task with ready-made questions.

A template question matrix contains two types
of elements: constants and grammatical units
for words selected from the pedagogical lexicon,
constrained by semantic sets. The pedagogical
lexicon forms a collection of about 2400 words
that are considered relevant for the learners of
North Sámi in schools and universities. The
dialectal variation is taken into account in the
lexicon as well as in the morphological generator,
and the user may choose eastern or western dialect
for the tasks. The sentence generator handles
agreement, e.g. between subject and the main
verb.

Figure 2 shows a question template in which
the main verb (MAINV) is fixed to indicative past
tense, but the person and number inflection may
vary freely. In Figure 1 on page 2 the same tem-
plate is realised as a task in Vasta. The user’s an-
swer triggers a feedback message about the tense
of the main verb. Since the content of the MAINV
and SUBJ are drawn from the lexicon, the exam-
ple template may generate around 15 000 different
questions.

The question matrices are marked for level,
corresponding to the level option chosen by the

Figure 2: A question template (MAINV question-
particle SUBJ yesterday).

user, e.g. the basic level 1 has only indicative and
no past tense. Because of this we have to fix the
inflections in every template to some extent, and
there are as many as 111 matrix questions.

2.3 The analysing process

Both the question and the answer are analysed
with the morphological analyser and then the
result is postprocessed to cg3-format and passed
to the CG3 rule component (cf. Figure 3). The
question and user’s answer pairs are merged,
and analysed as one text string. The question
mark in the question is exchanged for a special
symbol (”ˆqst” or ”ˆsahka” QDL), as shown in the
analysed question-answer pair in Figure 5 on page
4. We use these symbols, rather than the question
mark itself, in order not to introduce a sentence
delimiter in the analysis, since we want to refer
to the question and the answer separately in the
rules (left or right side of the QDL), but also treat

14

the question-answer part as one unit. Many of
the constraints are based upon the grammar and
semantics of the question – e.g. the tense and
person inflection of the verb, the case of NP in the
answer and so on. The question itself restricts the
possible interpretation of the input.

Analysis:

morpho-
logical

analysis
(sme-norm.fst)

post
processing
lookup2cg

disambiguating,
error detection,
interpretation
ped-sme.cg3

navigation
instruction

grammar
feedback

machine
question

user’s
answer

Figure 3: Schematical view of the process.

The vislcg3-rule set consists of two parts. The
first part is a rule set, which disambiguates the
user’s input only to a certain extent. The rule set
is relaxed compared to the ordinary disambigua-
tor, in order to be able to detect relevant readings
despite of a certain degree of grammatical and or-
thographic errors in the input. The second part of
the rule set contains rules for giving feedback to
grammatical errors, and rules for navigating to the
next question or utterance in the dialogue, based
on the user’s answer. In this paper, we concentrate
on the rules for giving feedback for the user and
navigating in the dialogue.

3 Navigating in the dialogues

In the Sahka dialogues the main goal has been
to create a feeling of a natural dialogue. One of
the ways to achieve that goal is reacting to the
user’s input. When the input is morphologically
analyzed, the CG rules are used for assigning tags
to the question-answer pairs, which are then used
for selecting appropriate questions and navigating
in the dialogue. The dialogues deal with differ-
ent topics. The “first meeting dialogue”, for ex-
ample, treats topics such as age, family, working
place/school, car and so on. Navigation between
the topics is achieved by recognizing and tagging
the content of the user’s answer in CG rules and
providing the analysis to the Sahka-engine. In ad-
dition, it is possible to assign a target tag to cer-
tain information types; the system may e.g. collect
name, car brand and so on, and use it as a variable

in the follow-up questions.
The CG rules used in the dialogue processing

may be divided into two types: general rules that
may target any question-answer pair and question-
specific rules that are tailored for a specific ques-
tion.

3.1 Rules for specific questions

Since the functionality of Sahka is more depen-
dent upon correct analysis of the content of user’s
answer, the questions in the dialogues do not vary
freely as in Vasta. Every question is a text string
and has its own unique name assigned to the QDL.
This enables writing question specific CG rules
and accessing the question from other questions.

Figure 4: From Sahka. (”In which room should we
place the TV?” ”We should place it in the toilet.”
”That is not a good idea. Try again.”)

Consider an example dialogue from Sahka. In
Figure 4 the setting is a visit to a friend who has
moved into a new flat, and needs a helping hand
with moving the furniture. We have come to the
third question and the next question in the dialogue
is selected depending on the answer. In Figure
5 the analysis assigns two navigation tags to the
question-answer pair. The rule for assigning the
tag &dia-hivsset is shown in Ex. (1), the other one
is explained in section 3.2.

(1) MAP (&dia-hivsset) TARGET QDL IF
(0 (where place TV))
(*1 (”hivsset”) BARRIER Neg OR ROOMS) ;

This special rule for the question with the iden-
tifier where place TV adds the tag &dia-hivsset
to the QDL in the question-answer pair if the
answer contains the word hivsset (toilet). The
barrier prevents the rule from working if the
negation verb or a word from the set denoting
rooms intervenes between the QDL and the word
hivsset. The barrier will prevent assigning the tag
to answers, which negate the possibility of putting
the TV to the toilet, or giving the toilet as only

15

one of more possibilities.

Figure 5: Assignment of navigation tags is done
together with the disambiguation.

Figure 6: From the a dialogue file. (”In which
room should we place the TV?” Alt. ’toilet’: ”That
is not a good idea. Try again.” Default: ”We carry
it there together.”)

When the Sahka-engine reads the CG-output, it
recognizes the dia-tag and searches for a next in-
struction based on the tag. Every question con-
tains links to alternative questions that are selected
based on the recognized tag. In addition, there
is a default link in case a navigation tag was not
present in the CG-input. In Figure 6 there are two
alternative links for the answers to the question in
Figure 5. One of them is connected to the &dia-
hivsset tag and will give the answer ”That is not
a good idea. Try again.” The other link is default
and leads to the next question in the dialogue.

Another example of a question specific dialogue
navigation rule comes from yes/no-questions
where the user often provides more information
than what was asked for. E.g. to the question ’Do
you have children?’, the user can answer ’Yes, I

have two children.’ In the dialogue, the next ques-
tion would normally be ’How many children do
you have?’. To avoid this question when the in-
formation was already provided, we have a pass-
tag for omitting the next question. In this case,
the pass-tag is added to the question with identi-
fier do you have children if the answer contains a
numeral, as shown in example (2):

(2) MAP (&dia-pass) TARGET QDL
(0 (do you have children) LINK *1 Num) ;

Let us consider a couple of examples showing
how the dialogue may be branched to different
questions and topics. In Figure 7 there are differ-
ent follow-up questions for the answer to “What
kind of car do you have?” If the car brand is in the
lexicon, the system picks up the car type and uses
it in a variable in the next question, e.g. ”Is Ford
a good car?”, and if it is not in the lexicon (it can
e.g. be a spelling error or a joke from the user),
the next question will be “Is it a car?”. There is
also an alternative link for a negative answer (“Do
you want to buy my car?”), and the default leads
to a comment, which closes this topic.

Figure 7: Alternative links due to the answer of
’What kind of car do you have?’.

Figure 8: Alternative branches due to the age of
the user. The question is ’How old are you?’.

Whenever a topic is closed, the dialogue pro-
ceeds to the next topic. For example, an answer
from the user about her age will induce a tag which
is used for navigating to different branches of the
dialogue based on the age of the user, as in Figure
8. The tag for age is assigned with a regular ex-

16

pression inside a CG rule, as in the examples (3),
(4) and (5):

(3) MAP (&dia-adult) TARGET Num
(*-1 QDL LINK 0 (How old are you))
(0 (”([2-9][0-9])”r)) ;

(4) MAP (&dia-young) TARGET Num
(*-1 QDL LINK 0 (How old are you))
(0 (”([1][0-9])”r)) ;

(5) MAP (&dia-child) TARGET Num
(*-1 QDL LINK 0 (How old are you))
(0 (”([0-9])”r)) ;

Users in the age-group below 20 proceed to a
topic about going to school, while the older users
are asked about their work. The question contains
a default link as well, since some users have fun
telling they are 1000 years old.

3.2 General rules

Most of the cg3-rules are general rules that apply
to all question-answer pairs. Consider example
(7), which generalizes over the question marker set
in (6):

(6) LIST TARGETQUESTION-ACC = (”mii” Acc)
(”gii” Acc)(”galle” Acc) (”gallis” Acc) ;

(7) MAP (&dia-target) TARGET NP-HEAD + Acc IF
(*-1 QDL BARRIER S-BOUNDARY LINK *-1
TARGETQUESTION-ACC LINK NOT 0 Num)
(NEGATE *1 (N Acc) BARRIER VERB OR
CC)(NOT 0 NOTHING) ;

This is a general target rule for questions,
which requires an answer in the accusative. S-
BOUNDARY is a set of words and tokens which
marks the end of the (sub)sentence. NOTHING
is a set of indefinite pronouns like ”nothing” and
”nobody”. There are similar rules for other cases.

There are also general rules for tags marking
whether the answer is interpreted as affirmative or
negative, as in Ex. (8):

(8) MAP (&dia-pos) TARGET QDL IF
(*-1 Qst OR go)(NOT *1 Neg);
MAP (&dia-neg) TARGET QDL IF
(*1 Neg BARRIER S-BOUNDARY);

In Sámi a yes-no question is indicated by a
question particle ”go”, which can be a separate
word or cliticized to the word to the left, which
then gets a Qst tag in the analysis.

3.3 Storing information

It is useful to store some information about the
user during the dialogue, such as name and age
of the user. This information may be used in ques-
tions later, and give an impression of familiarity.

These are implemented using special tags, such as
in the examples (9) and (10):

(9) If the name is not in the lexicon:
MAP (&dia-target) TARGET QMRK IF
(*-1 QDL BARRIER (&dia-target) LINK 0
(What is your name)) ;

(10) The name is in the lexicon:
MAP (&dia-target) TARGET Prop IF (*-1 QDL
BARRIER (&dia-target) LINK 0
(What is your name)) ;

The set QMRK contains the question mark, and
is given if the name is not in the lexicon, which is
quite common with names. Both rules have &dia-
target as barrier so it will hit only the first name, if
there are many. There are similar rules and tags for
information concerning place names, car brands
and so on, and the information is used by the sys-
tem in variables in tailored questions or utterances.

4 Tutorial feedback

The system gives tutorial feedback about grammar
errors both in Vasta and Sahka. The feedback is
generated from the grammar error tags, which are
assigned during the disambiguation analysis. It
should be noted that the system uses the grammat-
ical analyser on the fly, exploiting full lexicons.
This allows the user’s answer to contain any Sámi
word, also words that are not restricted to the ped-
agogical lexicon.

4.1 Grammar errors

Figure 9: A grammar error tag is assigned.

In the question in Figure 9, the systems asks
”In which room should we place the TV?” The

17

user answers ”Moai bidje TV gievkkanis” (’We
should place the TV in the kitchen’), with loca-
tive “gievkkanis” rather than the correct illative
“gievkkanii”. The CG parser disambiguates the
input, and the sentence matches the structural de-
scription of the general CG rule in example (11):

(11) MAP (&grm-missing-Ill) TARGET (”guhte”) IF
(1 (N Ill) LINK *1 QDL LINK NOT *1 Ill OR
ADV-ILL OR Neg BARRIER S-BOUNDARY) ;

The rule adds a grammar-error-tag &grm-
missing-Ill to the sentence analysis triggered by
the interrogative pronoun followed by a noun in
illative. This combination requires an illative form
in the answer, when there is no illative form nor
adverb with illative interpretation nor negation
verb in the answer. The Sahka-engine generates
a tutorial message based on the error-tag, given in
example (12):

(12) <message id=”grm-missing-Ill”>The
answer should contain an illative. </message>

One of the pedagogical goals behind the pro-
grams is that the user should practice inflecting the
finite verb correctly. A central requirement is thus
that the user answers with full sentences contain-
ing a finite verb. To encourage the user to practice
also difficult verbs, she has to use the same verb as
in the question. The CG rule in example (14) con-
trols the choice of verb for the answer, and it uses
a regular expression-based tag (a so-called sticky
tag). The verb is identified via a regular expres-
sion .∗ (cf. (13)), and the rule in (14) is triggered
if it does not find the same verb lemma in both the
question and the answer.

(13) LIST VERBLEMMA = (”.*”r) ;

(14) MAP (&sem-answer-with-same-verb) TARGET
FINVERB (NOT 0 Neg OR AUX-SET) (0
$$VERBLEMMA LINK *-1 QDL BARRIER
S-BOUNDARY OR FINVERB LINK NOT 0
EXEPTION-QUESTIONS LINK *-1 FINVERB
-1 BOS LINK NOT 1 $$VERBLEMMA)) ;

BOS is the left border of the sentence. Pro-
verbs get a special treatment, and a question
containing a pro-verb will accept any verb in the
answer. There are also exceptional rules for some
auxiliary verbs and for some questions, like for
the question ”What is your name?”, which will
more naturally be answered without a verb.

In Vasta the pronouns are not allowed to be in-
terpreted inclusively (we / you, not we / we), but in
Sahka they follow the logic of the scenario. This

is the main reason for why Sahka has a slightly
different rule set compared to Vasta. To indicate
the type of the program in the morphological anal-
ysis, the delimiter between question and answer
in Sahka is ”ˆsahka” instead of the delimiter tag
”ˆqst” used in Vasta.

Some of the questions in the Sahka dialogues
are made for special grammatical training such as
adjectival comparison. These questions populate
a whole section of rules in the CG file. The rules
add specific feedback to the potential errors.

The user will get only one feedback at a time, so
the error tags are ordered partly as natural progress
for error correction, and partly according to the
likeliness of the error. First of all, the user will
get feedback about spelling errors. If there is no
agreement between subject and verb, then she will
get feedback on the verb form, and not on the pro-
noun, given the assumption that the error is in the
verb form rather than in the pronoun.

Grammar errors we have rules for, include

• verbs: finite, infinite, negative form, correct
person/tense according to the question

• case of argument based upon the interroga-
tive

• case of argument based upon valence
• locative vs. illative based upon movement
• subject/verbal agreement
• agreement inside NP
• numeral expressions: case and number
• PP: case of noun, pp based upon the interrog-

ative
• time expressions
• some special adverbs
• particles according to word order
• comparison of adjectives

4.2 Misspellings
The user’s misspellings form the largest distinct
problem for the functionality of the game. If the
spelling error gives rise to a non-existing word
form, then the message to the user is ”The word
form is not in our lexicon, can it be a spelling er-
ror?”, which often is not of enough help to the
user. A human reader would be able to read the
answer in a robust way, and detect what the user
intended to write. Simulating this ability is not an
easy task.

Running the feedback through an ordinary
speller engine is not a good solution, since the
speller will come up with a large number of sug-
gestions, without being able to choose between

18

them. A possible solution would be to run a mor-
phological analysis on the speller suggestions, and
let a CG component pick the most likely candi-
dates. The problem is that the current North Sámi
speller (http://divvun.no) is made for na-
tive speakers and corrects mainly typing errors.
In Vasta and Sahka, we would need a correction
mechanism for errors due to wrong choice of af-
fixes.

As a partial solution, we have added rules to the
morphophonological rule file for typical spelling
errors in e.g. place names. This enables the sys-
tem to give a specific feedback in case of typical
misspellings of place names. If the place name
still is not recognized by the analyser, the feed-
back in the dialogue is ”I haven’t heard about X.
Is it a place?”, and the navigation proceeds to the
next question.

The misspelling can also give rise to another
word form of the same lemma. For such cases
we have made rules based on the sentential con-
text. The challenge is to give a feedback accord-
ing to what the user thinks she has written, because
she is probably not aware of the unintended word
form. E.g. if the consonant gradation is incorrect
in an attempted singular locative, the word form
will be a nominative with possessive suffix Sg3.
The learner will probably not know the possessive
suffixes yet, so referring to it would not be use-
ful. Instead, she gets the feedback: ”Do you mean
locative? Remember consonant gradation.”

A more difficult problem emerges when the
spelling error gives rise to an unintended lemma.
Then the challenge is again to give feedback ac-
cording to what the user thinks she has written.
The feedback has to be tailored to what we know
about the user’s interlingua – and we have made
some rules for sets of typical unintended lemmas.
Some of them are systematic, such as the Sg2 of a
verb incorrectly used after the negative verb, will
result in a ConNeg form of a derived verb.

4.3 Metacomments

The Sahka program is intended to mimic a natu-
ral dialogue. But there are some restrictions in the
possible input from the user; the system has to be
able to analyse the input, and the answers should
be pedagogically meaningful for the user. To re-
mind the user of that, the system sometimes give
metacomments to the user, like the following:

• ”Answering I-don’t-know is too simple. Try

again.”
• ”Your answer must always contain a finite

verb.”
• ”You must use one of the words in the

wordlist in the left margin.”
• ”You have not used the correct adjective. Try

again.”

5 Evaluation

The evaluation of Sahka and Vasta was done when
the programs had been available on internet for
three months. The user’s input and the feed-
back from the system were logged for the last two
weeks of the period. The log shows that Sahka has
six times as many queries as Vasta, so users clearly
prefer the former one.

The system gave 156 tutorial feedbacks for the
two programs during the two weeks. Breaking
down the precision numbers on type of feedback,
we got the picture shown in Table 1. Of 27
erroneous judgements, 16 were due to technical
malfunction, 9 to wrong syntactical and 2 to
wrong lexical analysis.

Rule type corr. wrong corr. %
wrong tense 7 0 100,0
wr. V after neg 3 0 100,0
no infinite V 1 0 100,0
orth. error 44 2 95,7
wr. case V-arg 26 4 86,7
no finite verb 19 4 82,6
wr. S-V agreem. 17 8 68,0
wrong V choice 7 4 63,6
wrong word 4 4 50,0
wr. case after Num 1 1 50,0

Table 1: Feedback precision for different rule
types.

As shown in Table 1 not all of the rule types
mentioned in 4.1 have been in use during this pe-
riod. These rule types have not been used:

• agreement inside NP (except for numeral
expressions)

• nominal case inside PP
• time expressions
• word order errors for particles

The reason is probably that the users do not
write more complex language than they have too.
E.g. they don’t answer with a complex NP if they

19

can answer with just a pronoun or a noun, they
don’t write a time-expression with PP if the can
answer with an adverb instead, and they don’t use
optional particles if they are unsure of where to put
them. The price we pay for the free input strategy
is that the users are not forced to exercise more
complex language.

Table 2 on page 9 shows different kinds of error
types the system has identified in the user’s sen-
tences, these we call positives. If it really is an er-
ror, then we call it it a true positive, if not, then it is
a false positive. A sentence not flagged as an error
by the system is counted as a negative, and we dis-
tinguish between true negatives (correct answers)
and false negatives (erroneous answers which the
system did not detect).

We measured precision (correctly identified er-
rors/all diagnosed errors), recall (correctly identi-
fied errors/all errors), and accuracy (correct judge-
ments/cases). For the error types we target, pre-
cision = 0.85, recall = 0.93, and accuracy = 0.89
(N=277). Better recall than precision indicates
that very few errors slip through, at the price of
erroneously identifying some correct forms as er-
rors. The system is thus a bit too critical towards
the students: It almost never lets through a (tar-
geted) mistake. In this pedagogical setting, a goal
for future work is improving precision (avoiding
erroneous error flagging), perhaps even with the
risk of a lower recall.

6 Future perspectives

We have started the work with improving the sys-
tem. Among our future plans are:

Implementing a speller. Because the mis-
spellings are the biggest problem for the
users, we will implement a speller. We
will give relevant suggestions to the user by
analysing the list of suggestions according
to the context with CG, and also implement
weighted lexical transducers, see (Linden
and Pirinen, 2009). For the weighting we
will use the pedagogical lexicon and the
North Sámi corpus as a training corpus.

Implementing a topic option in Vasta. Today
Vasta generates questions randomly within
each level based on grammar difficulty. The
log shows that this program is not as popular
as the Sahka. We are planning to make it
more interesting for the users by restricting
the semantic sets for the variables in the

question templates according to topics, and
give the user’s a topic option as well.

Sentence building from a fixed set of lemmas.
We are also considering forcing the user
to construct more complex phrases and
also use more particles, by deciding what
lemmas the user should use, as a supple-
ment to the other programs. Available on
internet is e-tutor – a program for teaching
German to foreigners (Heift, 2001), at
http://e-tutor.org/. e-tutor gives
very good feedback to student’s errors, but
the possible input is restricted to a set of lem-
mas by means of which she has to construct
a sentence. In this way the user is forced
to write more complex phrases. Figure 10
shows an example from the program.

Conduct studies on Oahpa in actual use.
Investigating how Oahpa works in actual use
in the classroom will be important in the
work with improving the system.

Porting the programs to more Sámi languages.
For Lule Sámi a morphological analyser is
available, and we have started making a
CG disambiaguator. For South Sámi a
morphological analyser will be finished in
2010.

Figure 10: An alternative to free input is e-tutor.

7 Conclusion

The paper has shown how we use vislcg3 for peda-
gogical dialogue systems for North Sámi. Vislcg3
is used in many ways: By relaxing the analysis of
the input string, we are able to find errors made by
the user, and assign feedback tags to the analysis.
Secondly, by analysing the semantics of the user’s
input, and assigning semantic tags to the input, we
are able to navigate through the dialogue accord-
ing to user feedback. And finally, we can assign

20

Error type true pos. false pos. true neg. false neg. precision recall accuracy F-ms.
Gramm. error 641 234 769 7 0,73 0,99 0,85 0,84
Semant. error 805 69 764 12 0,92 0,99 0,95 0,95
Orthogr. error 875 0 776 0 1 1 1 1
Other error 695 180 751 25 0,79 0,97 0,88 0,87

3016 483 3060 44 0,86 0,98 0,92 0,92

Table 2: Precision, recall and accuracy for different error types.

tag to information in the user’s input and use it in
the program’s questions or utterances.

The CG formalism has a great potential for use
in pedagogical settings. It is robust enough to han-
dle erroneous data, and at the same time flexible
enough to give both general corrections, and cor-
rections targeted at specific words in specific set-
tings.

We have seen that a major problem is spelling
errors. Whether CG is able to offer a solution for
this problem as well, remains a topic for future re-
search.

Acknowledgments

Thanks to the faculty of Humanities at the Univer-
sity of Tromsø, and the Sámi Parliament in Nor-
way, for funding the project.

References
Lene Antonsen, Saara Huhumarniemi and Trond

Trosterud. 2009. Interactive pedagogical programs
based on constraint grammar. Proceedings of the
17th Nordic Conference of Computational Linguis-
tics. Nealt Proceedings Series 4.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI publications in Computa-
tional Linguistics. USA.

Eckhard Bick. 2005. Live use of Corpus data and
Corpus annotation tools in CALL: Some new devel-
opments in VISL. Holmboe, Henrik (ed.): Nordic
Language Technology, Årbog for Nordisk Sprogtek-
nologisk Forskningsprogram 2000-2004, 171–185.
København: Museum Tusculanums Forlag.

Krister Lindén and Tommi Pirinen. 2009. Weighted
Finite-State Morphological Analysis of Finnish
Compounding with HFST-LEXC. Proceedings of
the 17th Nordic Conference of Computational Lin-
guistics.. Nealt Proceedings Series 4.

Trude Heift. 2001. Intelligent Language Tutoring Sys-
tems for Grammar Practice. Zeitschrift fur Interkul-
turellen Fremdsprachenunterricht [Online] 6(2).

Fred Karlsson, Atro Voutilainen, Juha Heikkilä and
Arto Anttila. 1995. Constraint grammar: a
language-independent system for parsing unre-
stricted text. Mouton de Gruyter.

VISL-group. 2008. Constraint Grammar.
http://beta.visl.sdu.dk/constraint grammar.html
University of Southern Denmark.

21

Parsing Corpus of Estonian Dialects

Liina Lindström
University of Tartu

Estonia
liina.lindstrom@ut.ee

Kaili Müürisep
University of Tartu

Estonia
kaili.muurisep@ut.ee

Abstract

This paper introduces our work for adapting a
rule based parser of spoken Estonian to the
morphologically unambiguous part of the cor-
pus of dialects. A Constraint Grammar based
parser was used for shallow syntactic analysis
of Estonian dialects. The recall of the grammar
was 96-97% and the precision 87-89%.

1 Introduction

The goal of this research was to find a method
for automatic syntactic annotation of the Corpus
of Estonian Dialects (CED)1.

The dialect corpus was compiled by two insti-
tutions – the University of Tartu and the Institute
of the Estonian Language. The Corpus of Estoni-
an Dialects consists of:

1) dialect recordings;
2) phonetically transcribed dialect texts;
3) dialect texts in simplified transcription;
4) morphologically tagged texts;
5) a database containing information about

informants and recordings.
The texts in the corpus are spoken dialect inter-
views.

By the end of 2008, the corpus contained
about 1,000,000 transcribed text words and
500,000 morphologically tagged text words.

We have used morphologically tagged texts
as input for the syntactic parser.

The texts of the dialect corpus represent
spoken language and have been transcribed using
quite similar principles as used for the Corpus of
Spoken Estonian (Hennoste et al., 2000). For this
reason, we decided to test the parser of spoken
language (Müürisep and Nigol, 2007, also
Müürisep and Nigol, 2008) on the texts of

1 see http://www.murre.ut.ee/korpus.html (in Estoni-
an)

dialects. It should be noted that the parser of
spoken language is an adaption of parser for
written language (Müürisep et al., 2003).

The parser for written Estonian is based on
Constraint Grammar framework (Karlsson et al.,
1995). The CG parser consists of two modules:
morphological disambiguator and syntactic pars-
er. In this paper, we presume that the input (tran-
scribed speech) is already morphologically un-
ambiguous and the word forms have been nor-
malized according to their orthographic forms.

The parser gives a shallow surface oriented
description to the sentence where every word is
annotated with the tag corresponding to its syn-
tactic function (in addition to morphological de-
scription). The head and modifiers are not linked
directly, only the tag of modifiers indicates the
direction where the head may be found.

1

aga ;; but
 aga+0 //_J_ coord // **CLB @J
timä ;; he
 tema+0 //_P_ pers ps3 sg nom // @SUBJ
!!!=
ol'l' ;; was
 ole+0 //_V_ main ps indic impf sg ps3 // @+FMV
latsõst ;; childhood
 laps+0 //_S_ com sg el // @P>
saan'iq ;; since
 saadik+0 //_K_ post #el // @ADVL
!!!=
tark ;; clever
 tark+0 //_A_ pos sg nom // @AN>
poiss ;; boy
 poiss+0 //_S_ com sg nom // @PRD

Fig. 1: An extract from syntactically annotated cor-
pus of dialect Võru: aga timä oll latsõst saaniq tark
poiss 'but he was a clever boy already since child-
hood'. @J - conjuction, @SUBJ - subject, @+FMV -
finite main verb, predicate, @P> - complement of
postposition, @ADVL - adverbial, @AN> - pre-
modifying attribute, @PRD - predicative or comple-
ment of subject. Morphological tags are between "//"-
characters.

22

Figure 1 depicts the format and tag set of syn-
tactically annotated sentence. The parser of writ-
ten text analyzes 88 - 90% of words unambigu-
ously and its error rate is 2% (if the input is mor-
phologically disambiguated and error-free). The
error rate for the corpora of dialects is higher:
3-5%, but approximately 89-92% of words are
assigned exactly one syntactic tag. The words
which are hard to analyze remain with two or
more tags.

As mentioned before, the parser is rule based.
The grammar consists of 1200 handcrafted rules.
The grammar rules implement a conservative
parsing strategy - they rather leave the word form
ambiguous than remove the correct tag.

The remainder of this paper is organized as
follows. We will give an overview of the Corpus
of Estonian Dialects in section 2. Section 3 de-
scribes the conversion of texts from XML
format to the textual format (see Fig. 1 and 2)
and section 4 deals with the modification of the
grammar. We will give an overview of the parser
evaluation process in section 5. In section 5, we
also discuss the main shortcomings of the parser:
the error types and ambiguity classes and com-
pare the results of the parser with the results of
the spoken language parser.

2 Overview of the Corpus

The Corpus of Estonian Dialects (CED) is an
electronic data collection which includes authen-
tic dialect texts from all Estonian dialects. In or-
der to create a solid base for further research, the
dialect data in CED were well-chosen and metic-
ulously transcribed. There is roughly the same
amount of material from every Estonian dialect
in the corpus. The first part of CED was com-
posed from the oldest available tape-recorded
dialect texts and contains about 1 million text
words.

The corpus is based on dialect recordings
which have mainly been made in the 1960s and
1970s. However, the first recordings are much
older – they date from 1938. The recordings are
usually interviews conducted at the home of the
dialect informant.

The dialect texts in Fenno-Ugric phonetic
transcription constitute one of the main parts of
the corpus. The aim has been to transcribe the
texts as accurately as possible; the phenomena
accompanying spontaneous speech (e.g. the dis-
course particles, corrections, repetitions, etc.)

have been added to the text which usually have
not been considered important in dialect re-
search.

All of the phonetically transcribed texts have
been transformed in one-to-one fashion without
information loss into the simplified transcription.
In addition, the comments, the text of the inform-
ant(s) and the interviewer have been annotated.
This annotation is preserved also in morpholo-
gically tagged texts.

Texts in the simplified transcription are mor-
phologically tagged. The tagged texts are in
XML format. Words have been divided into 26
word classes according to their morphological in-
flections, syntactic characteristics and semantics.
This classification is based on the system of
word classes presented in Estonian grammars
(Erelt et al., 1995: 14–41); however, more sub-
classes can be distinguished (e.g. proadverbs, af-
fixal adverbs; see Lindstrom et al., 2006). In ad-
dition, the annotation includes 2 numbers, 15
cases and possessive suffixes for nomens, and 25
features and endings for verbs. The XML
annotation consists also of meta information
(dialect, informant, transcriber, annotator etc.),
remarks about background activities, and
sometimes also the meaning of the word form.

Figure 2 demonstrates an extract from a short
dialogue turn from CED where the informant (<u
who="KJ">) says no tsuvvaq, no is a particle and
tsuvvaq is a plural noun in nominative case
meaning pastel 'soft leather shoe'.

According to the traditional approach (cf.
Pajusalu, 2003), Estonian dialects are divided
into three dialect groups. These dialect groups
are further divided into different dialects, the dia-
lects are divided into parish dialects (sub-dia-
lects). The following dialect groups and dialects
are represented in the dialect corpus:

1) North Estonian dialect group: Mid, Eastern,
Western, Insular dialects;

2) South Estonian dialect group: Võru, Mulgi,
Tartu, Seto dialects;

2

<u who="KJ">
<mark><sne>no</sne><msn>no</msn><mrf
slk="Par"/> </mark>
<mark><sne>tsuvvaq</sne><msn>tsuug</
msn><tah>pastel</tah><mrf slk="S">pl
n</mrf></mark>
</u>
Fig. 2: Example of morphologically annotated utter-
ance

23

3) North-Eastern Coastal dialect group: North-
Eastern (Alutaguse), Coastal dialects.

In our research for automatic syntactic
annotation of dialects, we use subcorpus of
19,000 words from 7 different parish dialects
(see Fig. 3).

The Äksi parish dialect (4 in the map) repres-
ents the central Mid dialect which is also the
basis for standard Estonian. Mustjala (1) repres-
ents the Insular dialect and Mihkli (2) represents
the Western dialect, both belonging to the North-
Estonian dialect group. Jõhvi (5) belongs to
North-Eastern Coastal dialect group which is
rather different from the North Estonian dialect
group; also, it has many similarities to Finnish
dialects.

Three parish dialects – Rõngu (3), Räpina (7)
and Seto (6) – represent the South-Estonian dia-
lect group which is even more different from
North Estonian (and standard Estonian) than
North-Eastern Coastal dialect. Rõngu belongs to
Tartu dialect which has historically had more
connections to North Estonian than Räpina and
Seto.

Parish dialect Word count

Äksi 3569

Mustjala 1013

Rõngu 1457

Jõhvi 2975

Seto 3122

Räpina 2559

Mihkli 4303

Total 18998

Table 1: The list of used subdialects and their size

Table 1 presents word counts for these
corpora.

3 Conversion of the Corpus

In order to apply constraint grammar parser to
the corpus of dialects, we had to convert it to the
appropriate format (see Fig. 1). As the original
format of the corpus was well documented and
automatically generated, the transformation
process was fairly smooth. The hardest task was
the mapping of differencies in word class
tagging.

The original annotation did not distinguish
modal verbs from main verbs but this
information is crucial for syntactic rules. For this
reason, every potential modal verb (4 verbs) got
an additional morphological reading.

Also, the original mark-up lacks the detailed
classification of pronouns. This was added using
a special database. Since the dialects may have
different pronouns (for example sjoo means 'this'
in Seto subdialect) there might be a need to
update the database before analysing new dialect.

Grammar rules use the valency database of
adpositions. Dialect specific adpositions should
be added to this before automatic transformation.
Before applying the conversion program to a
new dialect one should check the list of
adpositions.

The tags which exist in the dialect corpus but
do not exist in the corpus of spoken language
remain in the annotation in the same form (for
example, the case of instructive).

All words without morphological annotation,
irrelevant transcription tags, records of meanings
and remarks are commented out with a special
tag !!!, so they do not influence the work of the
parser (see Fig. 1).

The most substantial difference in the annota-
tion of dialects and spoken language is in the
mark up of participles. Namely, the participles
which act similarly to adjectives (attributes and
predicatives) are annotated as adjectives with ex-
tra tag partic in the corpora of spoken and writ-
ten language. The mark up of dialect corpus does
not distinguish different types of participles, all
participles carry the POS tag of verb. As the par-
ticiples act in dialects mainly as parts of verb
chain (they form perfect and past perfect tense)
and quite seldom as attribute or predicative, the
introduction of a new morphological ambiguity
was not reasonable.

3

Fig. 3: The map of of the parish dialects used in the
experiment

24

4 Conversion of the Grammar

Comparison of dialect texts with texts of spoken
language revealed that the largest modifications
in grammar should be related to a) inner clause
boundary detection rules due to lack of
intonation mark up; b) differences in annotation
scheme; c) differences in vocabulary.

We inspected all rules for clause boundary de-
tection thoroughly. In addition to the fact that
dialect corpus lacks the intonation mark up, we
had to consider that dialect texts resemble
monologues, the utterances are longer than in
everyday conversations or information dialogues.

Two types of pauses were transcribed in the
dialect corpus, the shorter and the longer. The
experiments showed that the use of shorter
pauses as delimiters is dangerous since they oc-
cur quite often inside a phrase when a speaker is
looking for an appropriate word, and their use
was rather an obstacle during parsing.

In most cases the morphological description
contains the normalized form of the stem which
was mostly the same as in written language.
There were some exceptions: we had to amend

negational words (ei 'not', new words ep, es), add
nakkama to the set of hakkama 'begin, start', etc.
Also, we had to add new items to the sets related
to temporal adverbial with folk calendar days
like jüripäev 'St. George's day', jaanipäev
'midsummer day', mihklipäev 'St. Michael's day'.
Fortunately, these modifications of rules were
marginal.

We did not find a good solution for the
analysis of participles which have different
annotation scheme than used in other text
corpora. It turned out that the ratio of precision
and recall was best if we left the grammar
willingly erroneous since the participles act
seldom as attributes or predicatives in dialects.

We had to remove some seemingly correct
rules from the grammar since they caused many
errors due to erroneous clause boundary detec-
tion. First of all this holds for the principle of
uniqueness: every main verb may have one unco-
ordinated subject. The same principle is also val-
id for objects and predicatives. These rules gen-
erate a lot of errors during the analysis of utter-
ances with disfluencies or ellipses (see example
(1)).

(1) ja ilus ein onn väga ilus
and beautiful hay is very beautiful
ein sin all ...
hay here below ...

'and it is a very beautiful hay here below'

We use the same method for the detection of
simpler disfluencies as used for contemporary
spoken language: an application of external
script which removes repeats and simpler self-re-
pairs before the parsing process and restores
them in the output with a special tag after the
analysis.

Modification and addition of rules took place
with the help of a training corpus of 5700 words
which was manually syntactically annotated.
The training corpus allowed to research how the
rules function and interact on dialect texts, which
rules should be modified, which ones should be
removed and which ones to be added. The texts
of the training corpus were basically from Cent-
ral, Western and Insular parishes.

During the rule design process, we attempted
to minimize their error rate. If the reasonable er-
ror rate for written language is below 2% then er-
ror rate for dialects turned into 3-3.5%. The fur-
ther debugging of rules gave only small effect

4

aga ;, but
 aga+0 //_J_ coord // @J
siss ;; then
 siis+0 //_D_ // @ADVL
!!!=
e ;; ee
 e+0 //_B_ // @B
!!!$.
!!! $. //_Z_ Fst //
*pulmad ;; weddings
 pulm+0 //_S_ com pl nom // @REP
*pulmad ;; weddings
 pulm+0 //_S_ com pl nom // @SUBJ
õlid ;;were
 ole+0 //_V_ main ps indic impf pl ps3 // @
+FMV
*ikke ;; still
 ikka+0 //_D_ // @ADVL
*suure+perälised ;; marvellous
 suure+pärane+0 //_A_ pos pl nom // @PRD
minul ;; I
 mina+0 //_P_ pers ps1 sg ad // @ADVL
küll ;; indeed
 küll+0 //_B_ // @B

Fig. 4: An extract from syntactically annotated cor-
pus of dialect Võru. 'I had indeed marvellous wed-
dings'

25

since most of remaining errors had been caused
by the phenomena specific to spoken language:
disfluencies, elliptical utterances, unfinished ut-
terances, agreement conflicts etc.

5 Evaluation

Table 2 demonstrates the gained results for dif-
ferent corpora. The test corpora have not been
used during the process of grammar develop-
ment. The results have been calculated on the
automatic comparison of manually annotated
corpora with automatically parsed corpora. Cor-
pora have been annotated mainly by one human
expert but the complicated utterances have been
discussed by several researchers.

Dialect and type Word
count

Recall Preci-
sion

Mustjala (training) 1013 97.14 86.54

Mihkli (training) 2140 96.87 90.01

Mihkli (test) 2163 96.44 85.88

Rõngu (training) 1457 96.98 89.96

Äksi (training) 977 96.52 88.56

Äksi (test) 2592 96.45 87.81

Jõhvi (test) 2975 96.12 87.35

Seto (test) 3122 95.26 88.59

Räpina (test) 2559 95.82 86.49

Training total 5587 96.89 89.09

Test total 13441 95.93 87.24

Table 2: The precision and the recall of the parser.

The table illustrates that the correctness in test
corpora is almost 1% lower than in training cor-
pora, and the precision is lower by 2%. The res-
ults are significantly worse on the corpora of
Southern Estonian dialects. This may have two
reasons: first, Southern Estonian texts were not
used during the training and development pro-
cess of the grammar. On the other hand, the
Souther Estonian dialects differ significantly
from standard Estonian which is based on North-
Estonian central dialect. Also, one should take
into account that every dialect text in this experi-
ment represents only one speaker and the results
of the dialect parsing depend on the fluency of
speech of this speaker. For example, the inform-
ant for Jõhvi dialect was an elderly woman who
had difficulties with speaking fluently.

The comparison of results of parsing dialects
and spoken language indicates that the parser
performs 1-2% worse on dialects (see Table 3).
But also, we have to consider the influence of the
genre to the outcome. For example, everyday
conversations are easier to parse than informa-
tion dialogues (this means that the precision and
recall are higher). For this reason, we included a
short radio interview to the comparison corpora
which has a genre most similar to dialect cor-
pora. The results of parsing this corpus are com-
parable to the results of parsing dialect corpora.

Corpus Type Recall Preci-
sion

Everyday conver-
sation

training 97.46 89.66

test 97.58 91.84

Information dia-
logues

training 97.06 87.63

test 96.77 87.42

Radio interview test 96.80 88.47

Dialects training 96.89 89.09

test 95.93 87.24

Table 3: Comparison of parsing results for spoken
language and dialects

5.1 Error types

The analysis of error types has been generated on
the basis of subcorpus of Mihkli parish dialect of
2500 words.

We tried to group the errors in a generic fash-
ion, individual cases which were hard to general-
ize have been categorized as Other. Table 4 gives
overview of error types and their occurrence in
the subcorpus.

In some cases it is very difficult to detect the
clause boundary (see example (2)) and these er-
rors are hard to avoid.

(2) rukis andis ikka väiksema saagi
ia ei olnud

rye gave still smaller harvest
good not was

'Rye gave a smaller harvest. It wasn't good.'

The errors of syntactic rules may occur also
during the analysis of other types of corpora,
they may be caused by unusual word order, small

5

26

unfixed error in context conditions of a rule or
some other shortcomings of rules.

Error Count

clause boundary detection 12

syntactic rules 11

a np-phrase before or after a clause 11

ellipse 9

mapping rules 6

kõik/all 6

predicative 4

disfluency detector 2

unknown syntactic error 2

dialect specific 3

other 11

Total 77

Table 4: Count of different error types

An solitary noun phrase causes always confusion
since the clause boundary detection rules could
not find the border between the phrase and a new
clause. Mostly the problematic noun phrases loc-
ate before the clause as in example (3).

(3) üks sort need on väga kibedad
one sort these are very bitter

'One sort. These are very bitter.'

But they can also be found after the clause as
in example (4).

(4) kui aeg seokke oli seemne
when time such was seed

tegemise aeg
making time

'When time was such. It was time for sowing
seeds.'

Ellipse is also a frequent phenomenon in
spoken language. Often the missing element is
be-verb as in example (5).

(5) üks ees teene taga
one before other behind

'One is before, the other is behind''

In some cases, the correct syntactic tag is never
added to the word form. Typically this is a case
where adjective acts as a noun but in dialect
texts, there are also cases where pronouns were
used as discourse particles or as a part of exclam-
ation (oh sa taevas 'oh you heaven').

Unexpectedly, the word kõik 'all' caused a
number of errors which are all hard to avoid.
kõik 'all' can act as a normal pronoun but quite
often it is premodifying or postmodifying attrib-
ute locating outside the phrase (see example (6)).

(6) pääbad oli jaettud kõik
days were divided all

'All days were divided'

kõik 'all' may also be found as a discourse
marker as in example (7).

(7) pangad olid raha täis ja kõik jahh
banks were money full and all yes

'The banks were full of money and ...'

There was a regular pattern of incorrect ana-
lysis of predicatives in the test corpus as in ex-
ample (8).

(8) Põllud ond neokst kitsad
Fields were such narrow

'Fields were such narrow.'

One could consider this as a shortcoming of
syntactic rules.

There were only 3 errors which may be classi-
fied as dialect specific, 2 of them occur with in-
definite pronoun keegi 'nobody' which was used
instead of miski 'nothing'.

Disfluency detector made 2 errors, and 2 er-
rors were related with words which syntactic
functions were not possible to decide.

5.2 Ambiguities

As the error rate of the grammar was 3-4% then
the second important indicator of parsing effi-
ciency was ambiguity rate. The percentage of re-
maining syntactic readings is given in Table 5
(on the basis of test corpus of 13,411 words).

92% of words become unambiguous, 5.8% of
words have two syntactic tags, and 1.9% of
words have 3-5 syntactic tags.

The ambiguity class of subject and object
dominates among ambiguity classes (see Table

6

27

6), followed by the ambiguity of subject and pre-
dicative, adverbial and subject, and finally fol-
lowed by the ambiguity classes containing attrib-
utes.

Count of syntactic
tags

Percentage

1 92.36

2 5.80

3 1.56

4 0.23

5 0.05

Table 5: The percentage of the count of syntactic
tags in the test corpus

The domination of the ambiguity class of ob-
ject and subject may be explained by the inexact
clause boundary detection - it is not clear which
word belongs to which verb and the decisions are
made rather by the form of the noun.

Ambiguity class Count

@OBJ @SUBJ 212

@PRD @SUBJ 134

@ADVL @SUBJ 68

@ADVL @NN> 64

@NN> @OBJ 60

@NN> @SUBJ 57

@ADVL @OBJ 56

@-FMV @ADVL 55

@ADVL @OBJ @SUBJ 53

@OBJ @PRD @SUBJ 36

@ADVL @PRD @SUBJ 35

@<NN @ADVL 30

Table 6: The main ambiguity classes

6 Conclusions

Our experiment of using a parser of spoken
language for syntactic analysis of the corpus of
dialects can be regarded fairly successful.
Although the error rate of the analysis is 1-2%
higher than for the spoken language parser, most
of the errors are hard to avoid. The parser and its
grammar that are based on Constraint Grammar
framework are robust enough to deal with non-
fluent speech and syntactic constructions specific

to dialects. Approximately 10% of words remain
ambiguous in the output of the parser but
fortunately these ambiguities will not obstruct
linguistic research.

We plan to analyze the whole corpus in an
automated fashion and make it available on the
web. Also, we are planning to create a publicly
available search engine for the corpus, in order to
facilitate further studies of Estonian syntax and
dialects.

References

Erelt, Mati, Reet Kasik, Helle Metslang, Henno
Rajandi, Kristiina Ross, Henn Saari, Kaja Tael,
Silvi Vare. 1995. Eesti keele grammatika, vol. 1.
Eesti TA Keele ja Kirjanduse Instituut, Tallinn.

Hennoste, T., Lindström, L., Rääbis, A., Toomet, P.,
Vellerind, R. 2000. Tartu University Corpus of
Spoken Estonian. In Seilenthal, T., Nurk, A., Palo,
T., eds.: Congressus Nonus Internationalis Fenno-
Ugristarum 7.-13. 8. 2000. Pars iv. Dissertationes
sectionum: Linguistica I, Tartu (2000) 345–351

Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A.
1995. Constraint Grammar: a Language
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter, Berlin and New York.

Lindström, Liina, Liisi Bakhoff, Mari-Liis Kalvik,
Anneliis Klaus, Rutt Läänemets, Mari Mets, Ellen
Niit, Karl Pajusalu, Pire Teras, Kristel Uiboaed,
Ann Veismann, Eva Velsker. 2006. Sõnaliigituse
küsimusi eesti murrete korpuse põhjal. – E. Niit
(ed.) Keele ehe. Tartu Ülikooli eesti keele õppet-
ooli toimetised 30, Tartu: 154-167

Müürisep, Kaili, Helen Nigol. 2007. Disfluency De-
tection and Parsing of Transcribed Speech of Esto-
nian. Proc. of Human Language Technologies as a
Challenge for Computer Science and Linguistics.
3rd Language & Technology Conference (ed. Zyg-
munt Vetulani). Oct 5-7, 2007, Poznan, Poland.
Fundacja Uniwersitetu im. A. Mickiewicza. pp.
483-487.

Müürisep, Kaili, Helen Nigol. 2008. Where Do Pars-
ing Errors Come From: The Case of Spoken Esto-
nian. In Sojka, P.; Horak, A.; Kopecek, I.; Karel, P.
(eds.). LNCS 5246. Text, Speech and Dialogue.
Springer-Verlag. pp. 161 - 168.

7

28

Müürisep, Kaili, Tiina Puolakainen, Kadri Muis-
chnek, Mare Koit, Tiit Roosmaa, Heli Uibo. 2003.
A New Language for Constraint Grammar: Estoni-
an. International Conference Recent Advances in
Natural Language Processing. Proceedings.
Borovets, Bulgaria, 10-12 September 2003, pp.
304-310.

Pajusalu, Karl. 2003. Estonian Dialects. – Mati Erelt
(ed.) Estonian Language. Linguistica Uralica sup-
plementary series, vol. 1. Estonian Academy Pub-
lishers, Tallinn: 231-272.

8

29

