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INTRODUCTION

Duplication of DNA during the S phase is critical for the accurate transmission
of genetic material to daughter cells. Successful progression trough the S phase
requires DNA replication to be properly regulated and monitored to ensure that
the entire genome is duplicated exactly once, without errors. In order to achieve
this, replication has evolved into a tightly regulated process that includes the
coordinated action of numerous factors that function in all phases of the cell
cycle. This thesis reviews the current understanding of these processes from the
formation of replicative complexes in preparation for DNA synthesis to the series
of events that culminate in the S phase with their activation. I will review the
constitution of the timely and coordinated replication origin activation program
and describe the concept of replication licensing, which protects against genomic
instability by limiting initiation events to once per cell cycle. Lastly, I will discuss,
how chromatin and chromatin dependent processes, such as DNA replication and
transcription, manage to successfully coexist and complete their independent tasks.

In the second part of the thesis, results of my practical work are presented.
First, a novel yeast DNA extraction protocol is introduced and its potential uses
and advantages are discussed. Additionally, results concerning the dynamics of
replication origin licensing under transcriptional conditions are outlined. They
demonstrate that DNA replication origins can be licensed multiple times in vivo,
and this ensures the presence of maximal number of functional replication origins in
the S phase. And finally the results about the role of chromatin environment in the
regulation of replication origin activation are introduced. These findings indicate
that the chromatin context indeed is a major influencing force of the temporal
dynamics of replication origin activation, but these effects can be bypassed by
specific mechanisms.



1. OVERVIEW OF LITERATURE

1.1. Replication initiation

DNA replication is initiated from specific sequences called replication origins.
Eukaryotic genomes have many such sites and the synthesis of each chromosome
is started from multiple origins. In budding yeast (Saccharomyces cerevisiae)
replication origins are short DNA regions of a few hundred base pairs in length,
referred to as autonomously replicating sequences (ARS) because of their ability
to promote autonomous replication of plasmids (Struhl et al., 1979). Dynamic
multi-protein complexes bind onto origins throughout the cell cycle and govern
where and when replisomes catalyzing DNA synthesis will assemble. Empirically
we can divide this process into several steps. In the first stages, replication origin
sites where the multi-protein complexes will form have to be selected. Then in G1
phase of the cell cycle, the inactive replication complexes are assembled onto these
sites. Finally these complexes are activated in the S phase. Here, in the literature
overview, the key events that take place at origins of DNA replication through the
cell cycle are outlined. Additionally, the regulatory mechanisms that control origin
activation in time and space and ensure that all genomic regions are replicated
exactly once within the same cell cycle are discussed.

1.1.1. Recognition of replication origin sites

The first step in budding yeast DNA replication is the selection of replication origin
sites from the 12 million bp genome. All budding yeast replication origins share a
highly conserved ARS consensus sequence (ACS) or A domain, which is required
for the recruitment of the origin recognition complex (ORC) (Bell and Stillman,
1992; Stinchcomb et al., 1979). The ACS consensus sequence consists of an 11 bp
motif (T/A)TTTAT(A/G)TTT(T/A), although a functional ACS may contain one
or more mismatches to this sequence. More recently, it has been found that three
additional conserved nucleotides on each side of the ACS are important, resulting
in a 17 bp extended ACS (Theis and Newlon, 1997; Chang et al., 2011).

While obligatory to origin functioning, the ACS alone is not sufficient for
selection of ORC binding sites. The yeast genome contains over 12,000 matches
to the ACS motif, yet only 400 are functional, indicating that there are additional
requirements (Nieduszynski et al., 2006). The additional sequence other than ACS
needed for ORC binding is often referred to as the B1 element. Together, the ACS
and B1 serve as a bipartite DNA binding site for ORC (Rao and Stillman, 1995;
Rowley et al., 1995).

In addition to ORC binding sequence, every origin contains a set of flanking
domains that enables it to serve as a site for DNA replication initiation (Walker
et al., 1991; Marahrens and Stillman, 1992). Historically, these elements have been
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referred to as B and C domains. Regardless of the name, the exact mechanism
of enhancement by the flanking regions varies between replication origins and no
clear consensus sequence of these elements can be brought out. Some of these well-
characterized elements have been shown to be transcription factor binding sites,
while others are regions of DNA unwinding (Bielinsky and Gerbi, 1998; Umek
and Kowalski, 1988). The role of transcription factors here is thought to involve
the recruitment of chromatin remodelers or modifiers that position nucleosomes or
otherwise increase accessibility of origins to transacting factors (Li and Herskowitz,
1993; Flanagan and Peterson, 1999; Venditti et al., 1994). Similarly, it has been
found that the favorable chromatin modifications can lead to better origin activation
(Knott et al., 2009; Vogelauer et al., 2002).

Therefore, whether a particular sequence matching the ACS behaves as an
origin may be determined by several contributing factors. These include, the ease
of unwinding of DNA in the vicinity of the ACS, the presence of transcription
factor binding sites that may act as nucleosome excluding elements, as well as
the surrounding chromatin context that is favorable for the binding of replication
factors. While no single one of these contributing properties may be essential for
origin activity, together these features may determine whether a particular ACS
motif can function as a replication origin.

1.1.2. Assembly of pre-replicative complexes

The first steps towards DNA replication are made long before the start of the
S phase. Already in the late mitosis and early G1 phase, relevant protein com-
plexes are formed at the replication origin sites, culminating in the formation
of pre-replicative complexes (pre-RCs) (Fig. 1). These events are conserved
among eukaryotic organisms, and this process results in the loading of the hetero-
hexameric Mcm2-7 (MiniChromosome Maintenance 2-7) replicative DNA helicase
onto origin DNA. Events needed for Mcm2-7 loading are the binding of ORC to
origin DNA and the recruitment of cofactors Cdc6 (Cell Division Cycle 6) and Cdtl
(Chromatin licensing and DNA replication factor 1) to the complex. Furthermore,
ATP binding and hydrolysis are essential for pre-RC formation as at least ten of
the proteins that participate in pre-RC assembly are members of the AAA+ family
of ATP binding proteins (Iyer et al., 2004). Analyses of mutations in the conserved
ATP binding motifs of ORC, Cdc6, and all six Mcm?2-7 subunits demonstrate that
each of these elements is essential in vivo (Klemm and Bell, 2001; Schwacha
and Bell, 2001; Weinreich et al., 1999). Reconstitution of pre-RC assembly from
purified yeast proteins has established that ORC, Cdc6 and Cdtl are necessary and
sufficient to load Mcm2-7 onto origin DNA in a reaction requiring ATP hydrolysis
(Evrin et al., 2009; Kawasaki et al., 2006; Remus et al., 2009).

Selecting replication origins involves binding of the ORC to the origin DNA.
This complex marks all potential origins, providing spatial control of origin posi-
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tioning, and is required for the loading of downstream replication factors. ORC
consists of six subunits (Orc1-Orc6) and binds DNA only in its ATP-bound state.
Specifically, ATP binding (but not hydrolysis) by the Orcl subunit is required
for origin-specific DNA binding (Bell and Stillman, 1992; Klemm et al., 1997).
ORC requires five of its largest subunits (Orc1-Orc5) to recognize DNA, four of
which (Orcl, 2, 4, and 5) are in close contact with the origin (Lee and Bell, 1997).
Although Orc6 is not required for DNA binding, it remains essential for DNA
replication and cell viability (Li and Herskowitz, 1993). ORC binding to DNA is
required for the recruitment of the Cdc6 ATPase and Cdtl. Moreover, targeting
of ORC to specific chromosomal locations can also be accomplished through its
interaction with with Cdc6, which increases the stability of ORC on chromatin and
inhibits ORC binding to nonspecific DNA (Mizushima et al., 2000; Harvey and
Newport, 2003).

Both Cdc6 and Cdt1 are necessary for the subsequent association of the Mcm2-7
helicases with origin DNA. In budding yeast, Cdtl and Mcm2-7 form a stable
complex and are recruited to origin DNA as a complex. Interactions between
Cdtl and Orc6 are important for this recruitment step (Chen and Bell, 2011). ATP
hydrolysis by Cdc6 stimulates the stable loading of the Mcm2-7 complex onto
chromatin, which is accompanied by the dissociation of Cdtl and Cdc6 (Randell
et al., 2006). Additionally, ATP hydrolysis by the ORC complex is necessary for
the reiterative loading of Mcm2—-7 complexes to origins (Bowers et al., 2004). As
mentioned, after helicase loading, Cdc6 and Cdtl are released from the complex
whilst ORC and Mcm2-7 are retained on DNA. In vitro, ORC can also be removed
with high salt buffer washing, but Mcm2-7 is retained on the DNA, which is a
hallmark of pre-RC assembly (Bowers et al., 2004; Donovan et al., 1997).

In vitro reconstitution of pre-RC formation using purified budding yeast proteins
and electron microscopy have revealed that Mcm?2-7 proteins are loaded as double
hexamers at replication origins. The two hexamers are arranged in a head-to-head
orientation and are connected via their N-terminal rings. Moreover, the Mcm?2-7
double hexamers encircle double stranded DNA and are able to slide along it
(Remus et al., 2009; Evrin et al., 2009). The ability of Mcm?2-7 to slide along
DNA is also interesting because it provides a mechanism for multiple double
hexamers to be loaded at a single origin. This could help explain the fact that the
number of Mcm?2-7 hexamers loaded during G1 phase greatly exceeds the number
of replication origins used in the subsequent S phase (Donovan et al., 1997; Lei
et al., 1996).

Taken together, current results indicate that Mcm?2-7 in the pre-RC exists as a
stable head-to-head double hexamer encircling double-stranded DNA. ORC, Cdc6
and Cdtl are required for Mcm2-7 loading, and the process also requires ATP
binding and hydrolysis (Fig. 1).
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Figure 1. Assembly of pre-replicative complexes. Replication origin sites in budding yeast are
marked by stable binding of ORC. Specificity of ORC binding is stabilized by ATP and Cdc6. In
G1 phase of the cell cycle, ORC together with Cdc6 and Cdtl help to load pre-RC complexes.
This results in the stable binding of Mcm?2-7 double hexamers. In order to achieve this, ORC -
Cdc6 subcomplex has to interact with Cdtl bound Mcm2-7. ATP hydrolysis by ORC and Cdc6 is
necessary. The loaded helicase complexes are activated in the S phase where they form the core of
the replication initiation process. Cdc6 and Cdtl are not needed for Mcm?2-7 activation.

1.1.3. Activation of the Mcm2-7 helicase complex

Multiple lines of evidence indicate that the Mcm2-7 complex is the engine of the
replicative helicase. First, Mcm2-7 travels with replication forks, forming part of
the purified replisome complex (Gambus et al., 2006; Aparicio et al., 1997). Second,
inactivation of Mcm2-7 subunits during the S phase results in rapid replisome
inactivation (Pacek and Walter, 2004; Labib et al., 2000). And third, purified yeast
Mcm?2-7 complex displays a weak helicase activity under appropriate conditions
(Bochman and Schwacha, 2008). However, the key aspect of the Mcm?2-7 activation
is its association with other proteins that are important for the helicase to function
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properly. Current evidence indicates that the active eukaryotic replicative DNA
helicase contains at least three components. In addition to hetero-hexameric
ATPase Mcm?2-7, two cofactors are needed, Cdc45 and the GINS complex (Moyer
et al., 2006; Pacek and Walter, 2004; Ilves et al., 2010). The Cdc45, Mcm?2-7 and
GINS assembly (collectively termed as the CMG complex) is several hundred fold
more active as a DNA helicase than the Mcm2-7 alone, providing strong evidence
that it is the functional form of eukaryotic DNA replicative helicase (Ilves et al.,
2010). The GINS complex (Go, Ichi, Nii, and San; five, one, two, and three in
Japanese) itself consists of SldS, Psfl, Psf2, and Psf3 proteins (Psf - Partner of
Sld Five; Sld - Synthetic Lethality with Dpb11), all of which are highly conserved
in eukaryotic cells (Takayama et al., 2003). Just like Cdc45 and Mcm2-7, GINS
has been shown to be important both for the initial helicase activation and for
progression of DNA replication forks (Aparicio et al., 1997; Labib et al., 2000;
Kanemaki et al., 2003; Kanemaki and Labib, 2006; Tercero et al., 2000).

The active helicase complexes are assembled only in the S phase, and this
process is dependent on the activities of two kinases, CDK (cyclin-dependent
kinase) and DDK (Dbf4-dependent kinase) (Zou and Stillman, 2000; Sheu and
Stillman, 2006; Masai et al., 2006). Both conserved protein kinases are regulated
independently of each other, but by similar mechanisms (Sclafani, 2000; Masai and
Arai, 2002). The enzymes are inactive in their monomeric forms and are activated
by the binding of unstable activating factors, cyclins for CDK and Dbf4 protein
for DDK. Unlike higher eukaryotes, budding yeast has only one cyclin-dependent
kinase, Cdk1. At the transition from G1 to the S phase, as CDK and DDK activities
increase, numerous factors are recruited to convert the Mcm?2-7 double hexamer
into an active helicase complex (Fig. 2).

DDK has been shown to act prior to CDK in activating replication origins (Heller
et al., 2011). The catalytic subunit of DDK is Cdc7, a serine/threonine kinase
activated by the enzyme’s regulatory subunit Dbf4. DDK is activated at the onset
of the S phase when Dbf4 protein levels are elevated (Ferreira et al., 2000). The
primary targets for DDK phosphorylation are the Mcm2-7 components Mcm?2,
Mcm4, and Mcm6 (Francis et al., 2009). It has been shown that DDK preferentially
phosphorylates Mcm2—-7 complexes that are stably bound to chromatin (Sheu and
Stillman, 2006; Francis et al., 2009; Masai et al., 2006). Moreover, DDK is
targeted to replication origins through interactions of Dbf4 with several pre-RC
components, including Mcm2, Mcm4, Orc2 and Orc3 (Duncker et al., 2002;
Varrin et al., 2005; Sheu and Stillman, 2006). The exact mechanism through
which the phosphorylation of Mcm2-7 complex activates the Mcm2-7 helicases
remains unknown, but it is likely that this post-translational modification generates
a conformational change in Mcm2-7 complex, enabling it to function as a helicase.
This model is supported by the finding of a specific mutation in the budding yeast
Mcmb5 subunit termed mcm5-bobl, which can bypass the requirement for Cdc7-
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Dbf4 in initiation of DNA replication (Hardy et al., 1997). The mcm5-bobl mutant
may mimic a conformational change in the Mcm2-7 complex that is normally
induced by DDK phosphorylation (Fletcher et al., 2003).

In addition to the DDK induced conformational change in the Mcm?2-7 complex,
the helicase activation is also dependent on the recruitment of several cofactor
proteins. This is directed by CDK dependent phosphorylation events. Unlike DDK,
activation and substrate specificity of CDK relies on multiple activation subunits
called cyclins. Activation of DNA replication is primarily dependent on the S
phase cyclins Clb5 and Clb6 (B-type cyclin 5 and 6). The primary targets of CDK
are Sld2 and SId3 proteins. S1d2 is the preferred substrate for CIb5/Cdk1, but S1d3
is equally well phosphorylated by the mitotic C1b2/Cdk]1 pair (Loog and Morgan,
2005). In the absence of CIbS5, the short-lived CIb6 is able to substitute for it and
activate early replication origins, but the S phase is prolonged due to the failure of
late replication origin activation (Jackson et al., 2006; McCune et al., 2008).

Once phosphorylated, the phosphopeptides in S1d2 and SId3 act as docking sites
for Dpb11 (DNA polymerase B 11). Dpb11 is then able to bind to both S1d2 and
S1d3 simultaneously and bring the two together. Both S1d2 and SId3 in turn form
complexes with other proteins. Therefore, the Dpb11 dependent scaffolding of
S1d2 and S1d3 helps to form a large protein complex (Fig. 2)(Zegerman and Diffley,
2007; Tanaka et al., 2007; Masumoto et al., 2002). The current model suggests
that S1d3 interacts with SId7 and Cdc45. This complex is recruited to origins prior
to their activation: in late G1 to early firing origins and during the S phase to late
firing origins (Kamimura et al., 2001; Tanaka et al., 2011). Other essential proteins
are then recruited to the complex via the Sld3 and Dpb11 interactions. First, the
binding of Dpb11 to phosphorylated SId2 triggers the assembly of a subcomplex
composed of Dpbl1, Sld2, polymerase € and GINS. Next, when phosphorylated
SId3 associates with Dpbl1, all of the components are brought together (Fig.
2) (Muramatsu et al., 2010). Upon initiation of DNA replication, Sld2, Sld3
and Dpbl1 do not participate in the replisome and dissociate, whereas Cdc45,
GINS and Mcm2-7 assemble into an active helicase complex (Muramatsu et al.,
2010). An additional evolutionarily conserved factor, Mcm10, participates in the
conversion of the pre-RC to an active replisome. It is required for the recruitment
of DNA polymerase « to origins and for activation of the CMG complex (Kanke
et al., 2012; Watase et al., 2012; van Deursen et al., 2012; Ricke and Bielinsky,
2004).

Dynamically, the whole process appears to occur very quickly, as Cdc45 has
been shown to associate with origins at the time of replication initiation, and its
binding to the origins has been utilized as a reliable marker of origin firing (Pryde
et al., 2009; Zou and Stillman, 2000; Vogelauer et al., 2002; Aparicio et al., 1999,
2004; Looke et al., 2010).
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In summary, activation of the replicative helicase is initiated by the action of two
S phase kinases, DDK and CDK. DDK phosphorylates Mcm2-7 proteins resulting
in the conformational change in the hexamer needed for Mcm?2-7 activation. Con-
currently, CDK dependent phosphorylations of SId2 and Sld3 allows recruitment
of the Dpb11 protein which acts as a scaffold to bring the CMG complex together
so that DNA can be unwound.

= 3

v/ Y/4 DDK

CDK

Figure 2. Activation of Mcm2-7 complexes. Abbreviations: S3 - S1d3; S2 - S1d2; S7 - SId7.
Increased activity of CDK and DDK in the S phase triggers the activation of Mcm2-7. First, subunits
of Mcm?2-7 are phosphorylated by DDK, which induces a conformational change in the complex,
enabling the binding of S1d3, S1d7 and Cdc45. CDK dependent phosphorylation of S1d3 and S1d2
creates binding sites for Dpb11 in each protein. Dpb11 binds both of the phosphorylated proteins
simultaneously and acts as a scaffold, bringing S1d2 and its binding partners Pol € and GINS to
the complex. Finally, before replication can start, the Mcm10 protein helps to recruit Pol o to the
replication complex. Sld2, Sld3, S1d7 and Dpb11 are not needed for the following synthesis of DNA.
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1.2. Replication elongation

At the start of replication, the previously formed CMG complex unwinds the DNA
duplex and a short region of single-stranded DNA (ssDNA) is exposed. This stretch
of DNA is stabilized by the ssDNA binding protein RPA (Replication Protein A),
hence RPA associates with origin DNA prior to replication initiation (Tanaka and
Nasmyth, 1998; Walter and Newport, 2000). After origin unwinding, Pol o/primase
primes DNA synthesis and Pol ¢ starts the elongation of both strands. Afterwards
the loading of PCNA (Proliferating Cell Nuclear Antigen) effects a switch from
Pol € to Pol 6 for continuous elongation of the leading strand (Burgers, 2009).

The leading strand is replicated continuously in 5° to 3* direction, but since
DNA polymerases only show unilateral processivity, the lagging strand must
also be replicated in the same fashion. This is achieved by producing Okazaki
fragments which are about 300 bp in length and where continuous priming and
Pol € dependent 5° to 3’ elongation takes place. Later the fragments are fused
together by DNA ligase (Burgers, 2009). On average, a replication fork replicates
~1-3kb/minute, but fork velocity can vary between different regions of the genome
(Conti et al., 2007). Replication forks can pause for some time at certain sites,
in particular during replication of long stretches of repeated sequences. This can
cause fork collapse and termination of DNA replication at that site (Rothstein et al.,
2000). Therefore, an integral part of genome duplication is the surveillance of DNA
replication and genome integrity. An evolutionarily conserved signal transduction
pathway called intra-S phase checkpoint or DNA damage checkpoint serves as
such surveillance mechanism and responds to both DNA damage and replication
perturbations.

Activation of this control mechanism starts with generation of long stretches of
ssDNA either by the functional uncoupling of replicative helicases and polymerases
during fork stalling (Byun et al., 2005; Nedelcheva et al., 2005), processing of
DNA double strand breaks (Mimitou and Symington, 2008; Zhu et al., 2008), or
by the nucleotide excision repair process (Giannattasio et al., 2004). The generated
ssDNA binds RPA and triggers the activation of checkpoint response by Ddc2
(DNA Damage Checkpoint protein 2) dependent recruitment of Mecl (Mitosis
Entry Checkpoint 1) kinase (Rouse and Jackson, 2002; Zou and Elledge, 2003).
Mecl in turn phosphorylates Mrc1 (Mediator of the Replication Checkpoint 1),
a mediator that transduces the signal to the effector kinase Rad53 (RADiation
sensitive 53), which becomes phosphorylated and activated (Alcasabas et al.,
2001). Once activated the S-phase checkpoint response coordinates various aspects
of DNA replication, such as firing of new replication origins (Santocanale and
Diffley, 1998; Shirahige et al., 1998; Santocanale et al., 1999), stabilization of DNA
replication forks (Tercero and Diffley, 2001; Lopes et al., 2001), and resumption
of stalled replication forks (Szyjka et al., 2008).
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In the event that the stalled replication forks cannot be reactivated, it is important
to have additional pre-RCs within the un-replicated region to finish DNA replica-
tion. Completion of DNA replication of the whole genome in a timely fashion is
thought to be to be crucial, since some evidence suggests lack of a mechanism con-
trolling the completion of DNA replication at the end of the S phase (Torres-Rosell
et al., 2007). This demonstrates that the usage of multiple replication origins in a
correct and timely fashion is essential for proper cell cycle progression and genome
stability.

1.3. Avoiding re-replication

Eukaryotic cells need to duplicate vast amounts of genetic information quickly and
accurately before each cell division. To meet this requirement multiple replication
origins have to be used. At the same time it is also important to ensure that DNA
replication is not only fast, but accurate, and no segment of the chromosome is
duplicated more than once. Indeed, re-initiation from even a single origin within
the same cell cycle may cause genomic instability. This is avoided by dividing the
process into two non-overlapping phases. In the first phase, during late mitosis
and G1, the Mcm?2-7 complexes are recruited to DNA in an inactive state. This is
also called replication licensing. These DNA bound Mcm2-7 complexes are then
essential for initiation and elongation of replication forks during the S phase. As
we will see, the spatial and temporal separation of factors needed for loading and
activation of the Mcm?2-7 is tightly regulated.

The existence of this elegant system was first noticed using cell fusion exper-
iments, where replicated DNA was shown to differ from un-replicated DNA in
its replication potential. G1 DNA was able to replicate when G1 cells were fused
with those in the S phase, but G2 DNA needed to pass through mitosis beforehand
(Rao and Johnson, 1970). Later, this finding was refined to a model according to
which replication origins were “licensed” for replication during late mitosis and
G1, but the license was removed as the DNA replication was started (Blow and
Laskey, 1988). Dividing the process of DNA replication into two non-overlapping
phases (one phase permissive for the licensing of DNA replication and the second
permissive for the initiation of replication but not for licensing) can explain how
cells ensure the precise duplication of chromosomal DNA in a single cell cycle. To
date, a large amount of detailed experimental data has been acquired supporting
the licensing model and we next will examine the essential features of this elegant
system.

To prevent the possibility of replicated origins becoming re-licensed during
the S phase, it is important that the ability to license new replication origins is
downregulated before entry into the S phase. Therefore, the licensing components
ORC, Cdc6 and Cdtl are only needed for the loading of Mcm2-7 onto DNA in
G1, but are not required for the continued association of the Mcm2-7 helicase
complex with DNA, and thus their activities are down-regulated of at the end of
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G1 (Donovan et al., 1997; Hua and Newport, 1998; Maiorano et al., 2000; Rowles
et al., 1999). The key component needed to achieve this is again CDK, whose
activity directly inhibits the assembly of pre-RCs (Dahmann et al., 1995). One of
the major substrates of CDK in budding yeast is Cdc6. CDK can bind to Cdc6
and the phosphorylation of Cdcb6 targets it for degradation at the G1 to the S phase
transition (Elsasser et al., 1999; Mimura et al., 2004; Drury et al., 2000). Cdc6
levels are also regulated at the transcriptional level to give maximum expression
in late mitosis and G1, with its transcription being under the control of the CDK-
dependent transcription factor SWI4 (SWltching deficient 4) (Mclnerny et al.,
1997; Zwerschke et al., 1994). In addition to Cdc6, ORC activities are also directly
inhibited by CDK. It has been shown that CDK binds ORC via its activating subunit
CIb5 and that this helps maintain ORC in an inactive state during S and G2 phases.
Eliminating the Clb5—Orc6 interaction has no effect on initiation of replication
but instead sensitizes cells to lethal over-replication. (Wuarin et al., 2002; Wilmes
et al., 2004). Subsequently, re-replication is further inhibited by CDK dependent
phosphorylation of ORC (Nguyen et al., 2001). The two remaining components of
pre-RC, Ctd1 and Mcm?2-7, are targeted in a different fashion. In budding yeast,
CDK promotes nuclear export of both proteins during the S phase, G2 and early
mitosis, thus preventing them from gaining access to chromosomal DNA (Nguyen
et al., 2000; Labib et al., 1999).

All the mechanisms described above assure that DNA is not replicated more
than once per cell cycle. Experiments in budding yeast have shown that in order
for significant re-replication to occur, all these different CDK-dependent controls
must be inactivated. Partial over-replication is possible when un-phosphorylatable
mutants of Orc2 and Orc6 are combined with non-degradable Cdc6. In addition
Mcm?2-7 and Cdt1 have to be constitutively expressed in the nucleus (Nguyen et al.,
2001). The presence of redundant control mechanisms highlights the importance
of avoiding over-replication.

1.4. Chromatin environment

In essence, the yeast genome represents a rather compact organization of genes
and regulatory sequences. Unlike in many other organisms, very little noncoding
DNA is present. From the number of genes and the total size of the yeast genome
one arrives at a gene density of about one open reading frame per 2 kb (Goffeau
et al., 1996). This leaves only limited space for the intergenic regions that harbor
the major regulatory elements involved in chromosome maintenance, transcription
and DNA replication. Therefore, in order to develop a more accurate picture, the
process of DNA replication must be considered in an in vivo environment, where
the cell has to deal with many important tasks simultaneously. Additionally, it
is also necessary to view the genome as a whole nucleo-protein complex called
chromatin, to take into account how the presence of nucleosomes or other DNA
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binding proteins affects replication, and also to fit other DNA dependent processes,
especially transcription, into the scheme.

1.4.1. Timing and efficiency of replication origins

To date, ~400 loci of budding yeast replication origins have been identified and
found to be distributed evenly throughout the genome. However, not all origins
are identical (Nieduszynski et al., 2006). The discriminating features between
these origins are their initiation time during the S phase and their efficiency of
initiation, the latter of which is defined as the frequency at which an origin initiates
DNA replication (fires) within a population of cells. In yeast, many origins are
efficient, firing in virtually every dividing cell within a population. However,
some replication origins are less efficient, initiating in fewer than half the dividing
cells within a population. Although the exact mechanisms that determine initiation
timing and efficiency remain unclear, chromatin structure clearly plays an important
role.

In addition to firing efficiencies, individual replication origins also fire at charac-
teristic and reproducible times during the S phase. For example, the yeast origins
ARS305 and ARS607 fire shortly after cells have entered the S phase and are con-
sidered to be ‘‘early’’ origins, while the yeast origin ARS/ fires during the first
half of the S phase but several minutes after ARS305 (Raghuraman et al., 2001).
On the other hand, some replication origins such as ARS501 or ARS609 fire near
the end of the S phase and are considered to be ‘‘late’” origins (Friedman et al.,
1996; Ferguson et al., 1991; Friedman et al., 1997). In general, most early origins
are positioned near the central portions of yeast chromosomes, while late firing
origins are positioned nearer to the telomeres. Therefore, the central portions of
chromosomes tend to replicate before the ends (Raghuraman et al., 2001).

There is no consistent relationship between replication origin efficiency and
the time at which an origin fires during the S phase: for instance some late firing
origins are efficient and others are not (Friedman et al., 1997; Yamashita et al.,
1997). Some late origins are inefficient because they are located near an early firing
origin. The earlier origin establishes a replication fork that replicates the later
origin before it has a chance to fire (Vujcic et al., 1999). As with origin efficiencies,
the chromatin context appears to be the major determinant of origin firing times.

1.4.2. Chromatin context

The first evidence of the influence of chromatin context on replication origin activity
came from studies showing that some ARS sequences that function properly when
inserted into plasmids fail to function as chromosomal origins in their native loci. In
particular, it was found that the origins in silenced mating type loci were inhibited
by heterochromatin (Vujcic et al., 1999; Dubey et al., 1991). When an otherwise
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additionally efficient origin ARS305 was inserted into the mating type locus, it
failed to function (Sharma et al., 2001). Therefore, the inherent capability of some
sequences to function as origins can be inhibited by chromatin context.

In budding yeast, heterochromatin is formed in three main regions — telom-
eres, the ribosomal DNA (rDNA) locus and silent mating type loci (HML and
HMR; Hidden Mat Left or Right). To establish silenced chromatin, SIR (Silent
Information Regulator) proteins Sirl, Sir4, Sir2 and Sir3 have to be recruited to
silencer sequences. This recruitment process is hierarchical where one event (the
recruitment of a protein) leads to another. Although the initial assembly varies at
different silenced loci, it is interesting to note that the silencing of mating type
loci is partially initiated by ORC complex, which binds to silencer sequences and
helps to recruit SIR proteins (Zhang et al., 2002). After their initial assembly, SIR
proteins spread out from the silencer region through the binding of Sir3 and Sir4
proteins to the tails of histones H3 and H4. Sir3 and Sir4 bind more efficiently
to hypoacetylated histone tails, and therefore they need the deacetylase activity
of Sir2 for this interaction. The binding of Sir4 and Sir3, in turn helps to recruit
additional Sir2 proteins, which facilitate further binding of Sir3 and Sir4 to adja-
cent nucleosomes, leading to effective silencing of the locus. This spreading of
heterochromatin is regulated by chromatin modifications that inhibit SIR binding.
This is often achieved by active transcription in boundary areas (Rusché et al.,
2002, 2003; Carmen et al., 2002).

In accordance with this model, it has been found that disruptive mutations in
Sir3 activate certain replication origins near the ends of chromosomes and cause
telomeric DNA to replicate earlier (Stevenson and Gottschling, 1999). On the other
hand, relocating a transcriptional silencer and artificially forming heterochromatin
in certain parts of the genome can inhibit origin functioning as well (Zappulla
et al., 2002). Instead of direct inhibition of replication origins by heterochromatin,
it has also been found that an origin’s activation time can be altered when it is
shuffled between regions with different chromatin states. Taken into account
that origins in subtelomeric regions are generally late firing, whereas origins in
centromeric regions are early firing (Raghuraman et al., 2001; Pohl et al., 2012), it
is possible to render an early origin ARS/ to fire significantly later when relocated
to subtelomeric areas near ARS50/ (Ferguson and Fangman, 1992). Likewise, the
late ARS501 can fire significantly earlier when taken out of subtelomeric DNA
and moved to a plasmid (Ferguson et al., 1991). Similar positional effects on
replication origin activation are confirmed in one of my publications with a larger
variety of origins, as discussed in Chapter 2.3 (Looke et al., 2013).

In addition to origin relocation experiments, much information on temporal
behavior of replication origins has been gathered by studying chromatin modi-
fications. Similar to their regulatory role in transcription, histone modifications
regulate the access of replication factors to replication origins and thus help to
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determine the time of origin activation. For example, the global increase in histone
acetylation has been shown to advance the timing of many replication origins.
This can be achieved by inactivating the Sin3—Rpd3 histone deacetylase complex
(Sin3 - Switch INdependent 3; Rpd3 - Reduced Potassium Dependency 3), known
for its role as a gene-specific transcriptional repressor. Deletion of RPD3 causes
significantly earlier initiation of late-firing origins, along with increased acetylation
of histones flanking these origins (Vogelauer et al., 2002; Aparicio et al., 2004;
Knott et al., 2009). Consistent with the idea that Rpd3 deacetylates chromatin
surrounding a large number of yeast origins, replication of the entire genome is
advanced in a strain lacking RPD3 (Aparicio et al., 2004). On the other hand,
inducing histone acetylation improves origin activation. For instance, targeting
of Gen5 (General Control Nonderepressible 5) histone acetylase adjacent to a
late-firing origin advances its time of initiation (Goren et al., 2008; Vogelauer et al.,
2002). Importantly, mutating the acetylation sites in H3 and H4 severely impairs
origin function, indicating that these acetylation events are necessary for efficient
origin firing (Unnikrishnan et al., 2010).

Although local chromatin environment is a major influencer of origin timing,
recent findings indicate that some origins with Forkhead transcription factor binding
sites are activated early in the S phase regardless of their location in the genome
(Chapter 2.3.; Looke et al., 2013). It has been found that Forkhead transcription
factor-dependent clustering of these replication origins is required for their early
firing, indicating that the spatial distribution of replication origins in the cell
nucleus might also influence their activation (Knott et al., 2012). Additional
evidence of the importance of spacial organization of chromatin in the nucleus
comes from studies of the Ku complex. This versatile complex composed of
yKu70 and yKu80 proteins, is important for the repair of double-stranded DNA
breaks, and also functions at telomeres. At chromosome ends, the Ku complex
is required for correct localization of telomeres to the nuclear periphery, and
also contributes to recruitment of telomerase and to transcriptional repression by
Sir proteins (Fisher and Zakian, 2005). It has been found that deletion of Ku
complex components alters the positioning of telomeric DNA in the yeast nucleus,
which in turn affects repression of telomere-proximal genes (Laroche et al., 1998).
Importantly, replication origins located close to telomeres or within subtelomeric
regions are activated much earlier in mutants lacking Ku function (Cosgrove et al.,
2002).

The final aspect influencing replication origin activation is the positioning of
nucleosomes. Generally, nucleosomes are depleted from regions of replication
origins due to active positioning and maintenance of nucleosome free regions (Field
et al., 2008; Eaton et al., 2010). When nucleosomes are positioned incorrectly
origin functioning is disrupted. For example, histone deacetylase Sir2 has been
shown to inhibit origin activation by inducing unfavorable nucleosome positioning

22



(Crampton et al., 2008). Several studies have found that active positioning of
nucleosomes is important for origin to function properly. For example, ARS/
activity is disrupted when the functional sequences of the origin are moved into a
DNA region masked by a nucleosome (Simpson, 1990). Ordinarily, the nucleosome
free region of ARS/ is maintained by ORC and Abfl (ARS-Binding Factor 1).
Mutations in the Abf1 binding site allow nucleosome invasion into the functional
region and reduce origin activity (Venditti et al., 1994). Similarly disruption of
ORC-directed nucleosomal positioning interferes with ARSI functioning (Lipford
and Bell, 2001).

Although not fully understood, chromatin environment remains the major deter-
minant of origin timing and efficiency. It is likely that all the described mechanisms
cooperatively regulate the access of replication factors to the origin DNA, since
overexpression of limiting replication factors help to overcome chromatin restraints
and advance the timing of late origins (Mantiero et al., 2011).

1.4.3. Transcription

A positive correlation between gene expression and timing of replication in both
human and fruit flies has been reported, suggesting a connection between these
nuclear functions (Woodfine et al., 2005; White et al., 2004; Schiibeler et al., 2002).
However, this is not found to be true in yeast, where the majority of replication ori-
gins are located in intergenic regions that are not directly involved in transcription
of protein-coding genes (Wyrick et al., 2001). Nevertheless, the influence of global
transcription can not be neglected in budding yeast. Several studies have reported
that transcription by RNA polymerase II (RNAPII) inactivates DNA replication
origins. The activity of a plasmid borne ARS/ is inhibited by transcription induced
from an adjacent promoter (Tanaka et al., 1994). Likewise, ARS605, located within
the open reading frame of a meiosis specific gene, is active when transcription is
repressed in mitosis, but becomes inactivated upon transcriptional induction of this
gene during meiosis (Mori and Shirahige, 2007). My research shows that transcrip-
tional inactivation of these origins arises from RNAPII-dependent transcriptional
inhibition of pre-RC formation. All the components of the pre-RC, including ORC
and Mcm?2-7 complexes dissociate from origin DNA when transcribed (Chapter
2.2.; Looke et al., 2010).

As mentioned previously, intergenic regions of yeast genome are short. Although
the majority of replication origins in budding yeast are located in intergenic loci,
several studies show that transcription of non-coding regions is widespread in yeast
(David et al., 2006; Neil et al., 2009; Xu et al., 2009; Davis and Ares, 2006). Thus,
it is likely that many, if not all, replication origins suffer from some transcriptional
stress and can potentially be inactivated by transcription. In order to cope with
such conditions, yeast origins can be relicensed multiple times in G1 phase of the
cell cycle. It appears that when all requirements are met, formation of pre-RC
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complexes is a fairly dynamic process, and an equilibrium between licensing and
transcriptional inactivation is formed (Chapter 2.2.; Looke et al., 2010).

In addition to transcription related perturbation of replication complex forma-
tion, conflicts between moving transcription and replication forks have also been
described. Both head-to-head and head-to-tail collisions between replication and
transcription are possible, although it has been found that head-on collisions inhibit
replication fork movement to a greater extent (McGlynn et al., 2012; French, 1992).
Replication forks which arrest due to encounters with transcription complexes
can give rise to DNA damage response, mutagenesis and chromosomal deletions
(Vilette et al., 1996; Srivatsan et al., 2010). To prevent this, certain features of
genome organization help to avoid head-on collisions of highly transcribed genes
and replication forks. For example replication of the rDNA cluster in budding
yeast is regulated in a manner that ensures that replication forks move through the
rDNA in the same direction as the transcribing RNA polymerase I (Brewer and
Fangman, 1988). Similarly, in higher eukaryotes, transcription of highly expressed
genes in close proximity to replication origins is directed away from the origins,
minimizing the frequency of head-on collisions (Huvet et al., 2007). While repli-
cation origin placement serves as a good method of reducing head-on collisions,
it is also clear that not all transcription related stress can be avoided in this way.
Recently, two helicases, Senl (Splicing ENdonuclease 1) in budding yeast and
Pfh1 (PiF1 Helicase homolog 1) in fission yeast, have been found to be necessary
for efficient movement of replication forks through transcribed areas. Deletion
of either factor results in aberrant DNA structures (Alzu et al., 2012; Sabouri
et al., 2012). Therefore, in addition to passive reduction of possible fork collisions,
certain factors actively help to reduce harmful effects in situations of concurrent
replication and transcription.

In brief, although yeast replication origins are located in genomic regions with
low transcriptional activity, usage of the same template molecule may easily lead
to conflicts between these two processes. First, the widespread transcription of
intergenic regions causes constant disruption and ensuing relicensing of replication
origins, at least in budding yeast. Second, collisions between replication and
transcription machineries can cause replication fork stalling and consequent genetic
instability. The cell prevents this by first minimizing the possible hazardous head-
on fork collisions by favorable genomic placement of replication origins with
respect to highly transcribed genes. However, when concurrent transcription
and replication can not be avoided, specific helicases have been shown to assist
replication fork movement through transcribed areas.
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AIMS OF THE STUDY

The overall goal of the study was to find out how replication origin functioning is
influenced by surrounding chromatin environments. The experimental part consists
of three linked studies, each dealing with individual objectives:

Ref. I The first objective of the study was to simplify the procedure of
introducing and verifying genetic manipulations in yeast. A large
fraction of this process consists of extraction of DNA from yeast
colonies and validation of the altered traits by PCR. Therefore,
the motivation was to create a simple and reliable DNA extraction
protocol to simplify the routine work in yeast laboratories.

Ref. 11 The second study presented in the thesis was initially inspired by
the discovery of the global bidirectionality of yeast promoters and
the resulting possibility that many replication origins might be
transcribed. Knowing that transcription disrupts the function of
these origins, we sought to find the likely number of transcribed
origins and also to dissect the dynamics and fate of transcribed
origins.

Ref. 111 The third paper presents results that help to understand how
chromatin context determines the activation time of different
replication origins. The initial aim was to introduce many dif-
ferent replication origins into similar chromatin environments
and to determine the role of surrounding landscape in origin acti-
vation. Later, when apparently chromatin-independent origins
were identified, the objective was to describe this phenomenon
in greater mechanistic detail.
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2. RESULTS AND DISCUSSION
2.1. Extraction of yeast genomic DNA (Ref. |)

Presently, the process of DNA replication is best understood in budding yeast
Saccharomyces cerevisiae. Therefore, it is an excellent tool to unveil the uncharac-
terized aspects of this process. In the current study, the focus was set on the relation
between chromatin context, chromatin dependent processes and DNA replication
initiation. In order to accomplish this goal, significant genetic manipulations had
to be performed in yeast strains. Altogether, nearly 100 different yeast strains
were created throughout the course of this study. Typically, genetic manipulation
of yeast cells involves several rounds of genomic DNA extraction: initially for
the gathering of template genetic material, next for the analysis of colonies with
desired traits, and finally for the verification of finished strains. PCR is commonly
used to gather information at each of the mentioned steps. Therefore, the need for
convenient and reliable DNA extraction protocol for PCR based applications was
apparent.

2.1.1. Development of the LiOAc-SDS DNA extraction
protocol

The main obstacle in efficient isolation of yeast genomic DNA (gDNA) is the very
inefficient disruption of the strong cell wall. Conventional methods for gDNA
preparation from yeast cells utilize either enzymatic or physical degradation of
the cell wall, followed generally by lysis of cells and extraction of gDNA with
phenol/chloroform (Ling et al., 1995; Amberg et al., 2005). When analyzing a
large number of samples, these methods become time-consuming and/or relatively
expensive. At the same time, the resulting amount and purity of DNA greatly
exceeds the requirements for simple PCR analysis. Alternatively, for quick geno-
typing, cells can also be lysed by repeated freeze-thaw cycles in a buffer containing
Triton X-100 and SDS, followed by extraction of gDNA with chloroform (Harju
et al., 2004). Although this method is considerably faster than conventional gDNA
preparation methods, it requires transfer of the sample to a new test tube after
chloroform extraction, which slows down the protocol and makes it inconvenient
for simultaneous handling of a large number of samples. It has also been reported
that usable gDNA can be isolated in a single tube by simple SDS treatment (Akada
et al., 2000). However, the yield of gDNA from this protocol is relatively low and
the results are poorly reproducible (Ref. I, Fig. 1A). In addition, a large number of
cells is required for the protocol, and the buffer for subsequent PCR reactions has
to be supplemented with Triton X-100 (Akada et al., 2000).

Principally, the idea was to improve the DNA yield of the SDS treatment by
using it in conjunction with a cell wall disruptive agent, and then to remove traces of
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SDS before PCR analysis. Initially, lithium acetate (LiOAc) and sodium hydroxide
(NaOH) were used to disrupt cell walls. Lithium acetate is commonly used in yeast
transformation protocols to weaken cell walls, and sodium hydroxide is used in
protein extraction protocols (Thompson et al., 1998; Ito et al., 1983; Kushnirov,
2000). Both chemicals produced adequate results, but the output in PCR signals
was diminished when using NaOH, possibly due to unsuitable pH (data not shown).
Therefore, LiOAc-SDS lysis was chosen for further calibration and validation.

Following the initial lysis, ethanol was used for precipitation of the DNA, thereby
removing the potentially inhibiting chemicals prior to PCR analysis. The protocol
subjected to testing, therefore, consisted of following steps:

Lysis of yeast cells in 100 ul LiOAc-SDS solution.
Precipitation of the DNA by addition of 300 ul of 96-100% ethanol.

Washing the resulting pellet with 70% ethanol to remove traces of LiOAc
and SDS.

Dissolving the pellet (which includes gDNA) in 100 pl of water
Removing the insoluble components by centrifugation

Using 1 yl of the extract for PCR

2.1.2. Calibration of the LiOAc-SDS DNA extraction
protocol

In order to identify the critical conditions for efficient DNA extraction, a panel
of calibration experiments were carried out. In all of these 100 pl aliquots of
mid-log phase liquid culture were collected, DNA was extracted in 100 pl of
lysis solution and analyzed by PCR. The test conditions were varied so that the
tested component in each panel would be the limiting factor in the reaction. For
example, short incubation time was used for testing of different temperatures;
reactions were carried out at room temperature to test a range of SDS concentrations
and incubation time; and long incubation time at high temperature was used for
determination of optimal LiOAc concentration (Ref. I, Fig. 1C-F). The best results
were obtained using 200 mM LiOAc and 1% SDS in the lysis solution, while
carrying out the lysis at 70°C for >5 min. However, based on these experiments,
many other suitable conditions can be selected if needed.

Having obtained the optimal conditions, the usability of the protocol was eval-
uated in its intended purpose - analysis of yeast colonies. A number of colonies
were selected for DNA extraction, and two PCR fragments of 489 and 2383 bp
in length were amplified. In all cases, robust reproducible output was detected,
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confirming the usability of the method, especially when compared to the SDS
extraction method described in Akada et al., 2000 (Ref. I, Fig. 1A).

In order to quantify the developed protocol, the yield and purity of the extracted
gDNA was determined. For this purpose, gDNA from samples corresponding to
107 cells was separated in 0.9% TAE-agarose gel along with serial dilutions of
gDNA with known concentrations. Approximately 100 nanograms of gDNA was
extracted from 107 cells, again representing a considerable improvement compared
to Akada et al., 2000. In addition, the experiment verified the presence of large
amounts of RNA, which can be removed with RNase treatment, if needed (Ref. I,
Fig. 1B).

Another important parameter to consider when choosing a DNA extraction
method for PCR is the maximal possible length of amplicons that can be amplified.
In order to validate the suitability of the developed protocol in this aspect, PCR
reactions were performed with different expected product lengths from 718 bp to
5920 bp. The LiOAc-SDS protocol produced robust results up to 3505 bp, with
amplicons of 4449 bp also clearly detectable, although if longer fragments need
to be amplified, more delicate DNA extraction methods should be used (Ref. 1,
Fig. 2A). Taking into account that the average gene density of yeast the genome is
about one open reading frame per 2 kb (Goffeau et al., 1996), the achieved length
of PCR fragment should be more than adequate in most situations.

Lastly, the potential wide use of the method was confirmed by the successful ex-
traction and amplification of DNA from six different yeast species (Kluyveromyces
lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans,
Pichia pastoris, and Saccharomyces cerevisiae) (Ref. 1, Fig. 2B). In addition to
simple PCR-based genotyping, we have used LiOAc-SDS extracted and Pfu DNA
polymerase amplified S. cerevisiae gDNA for BigDye v3.1-based sequencing and
obtained DNA sequence readout of the entire 850-bp PCR fragment (data not
shown). We have also used LiOAc-SDS extracted gDNA directly in real-time
gPCR reactions and for quick genotyping of yeast colonies (data not shown).

In summary, the developed method is a quick and reliable solution for gDNA
extraction from yeasts that is suitable for PCR amplification of DNA fragments
<3500 bp. The protocol can be carried out in a single test tube in under 15
minutes, and cells from liquid media and single colonies grown on solid media
can be used. The method is suitable for routine genotyping of yeasts either by
simple detection of PCR products or for initial amplification of genomic DNA for
subsequent sequencing - procedures that are widely used for analysis of scientific,
environmental, industrial and clinical samples.
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2.2. Relicensing of transcriptionally inactivated
origins (Ref. 1)

DNA replication origins are licensed in G1 phase of the cell cycle when the Mcm2-
7 helicase complexes are loaded onto origins. These pre-replicative complexes
remain inactive until replication is initiated in the S phase. In budding yeast, the
majority of replication origins are located in intergenic regions that are not directly
transcribed (Wyrick et al., 2001). However, it has been found that bidirectional
initiation of transcription from many promoters is common, leading to transcription
of intergenic regions and production of unstable cryptic transcripts (David et al.,
2006; Neil et al., 2009; Xu et al., 2009; Davis and Ares, 2006; Wyers et al., 2005).
The widespread transcription of noncoding DNA and the compact nature of the
yeast genome raise the possibility that a large fraction of replication origins are
transcribed on a regular basis, which can lead to their inactivation before cells enter
the S phase.

2.2.1. Transcription of replication origins

To estimate the fraction of replication origins that are regularly transcribed, genome-
wide data of yeast transcripts in the loci of replication origins were analyzed. First,
the tiling array data of total transcriptome from Neil et al., 2009 were analyzed,
and transcription of replication origins was compared to the average level of
noncoding DNA transcription genome-wide. This analysis revealed that more
than 10% of replication origins were transcribed (Ref. II, Fig. 1A). However,
this approach probably underestimated the total number of transcribed replication
origins because the widespread transcription of noncoding DNA in yeast cells
significantly increases the average level of background signal that was calculated
for this analysis. Therefore, the genome-wide locations of CUTs (Cryptic Unstable
Transcripts), defined by the SAGE (Serial Analysis of Gene Expression) analysis
in Neil et al., 2009 was also analyzed. This analysis showed that at least one-third
of the replication origin sequences are transcribed on a regular basis as CUTs
(Ref. 11, Fig. 1B). However, the replication origin placement in the yeast genome
still appears to favor transcriptionally silent regions, as the number of heavily
transcribed origins is significantly smaller than the number of those transcribed
occasionally (Ref. II, Fig. 1). As mentioned, only 10% of replication origins are
transcribed more frequently than the average noncoding DNA (Ref. II, Fig. 1A).
This is in good agreement with previous findings showing that active transcrip-
tion abolishes replication origin firing both in yeast and in higher eukaryotes (Mori
and Shirahige, 2007; Tanaka et al., 1994; Sasaki et al., 2006). However, the fact
that many replication origins are situated in transcriptionally active loci suggests
that the replication machinery might benefit from transcription-coupled remodeling
and modifications of the chromatin that help pre-RC components to access DNA
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and facilitate the initiation of replication. The observation that replication timing
and transcription are in positively correlated in higher eukaryotes surely supports
this interpretation (Woodfine et al., 2005; White et al., 2004; Schiibeler et al., 2002).
However, consequently the question about the fate of transcribed origins is raised.
Can sporadic transcription events permanently inactivate replication origins or is
there a rescue mechanism?

2.2.2. Dynamics of pre-RC formation

An efficient solution to the transcription-coupled loss of functional origins would
be re-establishment of pre-RCs on origins after sporadic transcription events. To
investigate this possibility, different ARS elements were inserted into a galactose-
inducible GAL-VPSI13 gene, 3 kb downstream from the transcription start site
(Ref. 1II, Fig. 2A). ChIP assays were used to monitor the binding of ORC (Orc2)
and Mcm?2-7 (Mcm4) to the newly engineered origins and to their corresponding
natural loci. When transcription was repressed, both complexes were detected at
the GAL-VPS13-ARS loci while, in accordance with previous findings, recruitment
of ORC and Mcm?2-7 was severely reduced in conditions of active transcription
(Ref. 11, Fig. 2C and 2D). This confirms the disrupting effect of active transcription
on replication origin functioning.

To further understand the temporal dynamics of transcription-related disruption
of pre-RCs and to investigate the possible re-establishment of pre-RC components,
the GAL-VPS13-ARS607 locus was first induced with galactose and then repressed
with glucose. As expected, both ORC and Mcm?2-7 were gradually removed from
chromatin as the origin was transcribed. Interestingly, both complexes quickly
returned after transcriptional repression and disappearance of RNAPII (Ref. II, Fig.
3). Half of the maximal amounts of Orc2 and Mcm4 were detected within the first
10 minutes after transcriptional repression, indicating that the pre-RCs reformed in
the same cell cycle and the passage through the S phase was not necessary.

Naturally, when rescuing pre-RCs from transcriptional stress, it would be im-
portant to achieve this before the inhibition of licensing in the S phase. In order
to eliminate the possibility of cells entering the S phase and to illustrate the pos-
sibility of origin relicensing in G1, cells were next arrested with o-factor and the
transcription-coupled dynamics of Mcm2-7 were monitored. In all surveyed ori-
gins, Mcm4 was removed from GAL-VPS13-ARS loci in response to transcriptional
induction. When transcription was subsequently repressed, but cells were arrested
in G1, Mcm4 was efficiently reloaded (Ref. II, Fig. 4B). The time needed for com-
plete rescue of transcriptionally inactivated replication origins was between 30 and
60 minutes at the GAL-VPSI3 locus (compare Ref. II, Fig. 3B and 4B). Whether
this time is sufficient to rescue origins in their natural loci remains unanswered in
the course of this study. However, it is clear that the repeated formation of pre-RCs
in G1 is possible.
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2.2.3. Activation of relicensed origin

After establishing that transcriptionally disrupted pre-RCs can be reloaded onto
origins in G1 without passing through the S phase, the next question was whether
the relicensed replication origins are activated in the following S phase. To this end,
the transcription at GAL-VPSI3 locus was either constantly repressed, constantly
activated, or activated and then repressed to allow origin relicensing before the
release of o-factor arrested cells into the S phase. As an origin activation indicator,
recruitment of Cdc45 protein to origin DNA was measured through the course of
the S phase (Ref. I, Fig. 5A). As expected, both ARS609 and GAL-VPS13-ARS609
replication origins were activated in transcriptionally repressed conditions, and the
GAL-VPS13-ARS609 origin failed to activate when transcription was constantly
activated. More importantly, the relicensed ARS609 origin in the GAL-VPS13 locus
was efficiently activated, demonstrating that there is no functional loss in origin
function. Furthermore, no change in the timing or efficiency was monitored when
the origin was relicensed (Ref. II, Fig. 5A).

To further confirm that Cdc45 recruitment to a relicensed origin reflects its firing,
replication structures were visualized at the 60 minute time-point, when Cdc45
associated with origin DNA. A replication bubble was successfully detected at the
relicensed GAL-VPS13-ARS609 locus, indicating origin firing (Ref. II, Fig. 5C).
In addition, origin firing was also detected in cells that were grown continuously in
transcriptionally repressed conditions, but not in cells where transcription at the
GAL-VPS13-ARS609 locus was active (Ref. II, Fig. 5D and 5E).

Taken together, these results show that transcriptionally disrupted pre-RCs are
quickly reloaded onto origins as soon as transcription is shut down, demonstrating
a possible rescue mechanism for transcriptionally inactivated replication origins.
Importantly, in G1-arrested cells, pre-RCs can reform without transition through
the S phase, and following release from G1 block, DNA replication can be initiated
from these relicensed origins. Therefore, this mechanism may allow pre-RC
assembly in conditions of sporadic transcription, ensuring that a sufficient number
of functional replication initiation loci will be available to carry out DNA synthesis.

But what is the sufficient number of origins? Surely, cells can afford to lose
some of the licensed origins as there is an an excess number of origins in yeast
and not all of them fire in a single S phase. Furthermore, even the most efficient
origins do not fire in every S phase (Hyrien et al., 2003). Nevertheless, several
lines of evidence suggest that replication origins are actively relicensed and that
this helps to maintain the integrity of the genome. First, our finding that several
efficient and active replication origins, like ARS214, ARS305, ARS453, and ARS519,
are highly transcribed as CUTs, argues that the relicensing mechanism indeed is
constantly used to maintain the potency of these origins (Ref. II, Suppl. Table 1).
It has been argued that the surplus of licensed origins helps to safeguard genomic
stability in situations where replication is disturbed and licensing is repressed
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(Blow and Ge, 2009). Furthermore, considering the importance of accurate genome
duplication, redundancy in DNA replication control naturally appears to be an
inherent feature of the system. For example, similar redundancy can be found
in mechanisms controlling re-initiation events in the S phase. The existence of
multiple mechanisms that prevent re-initiation results in an error rate lower than
10~ "per origin per cell cycle (Diffley, 2011). Analogously, the high copy number
of licensing factors compared to the number of origins may be responsible for
generating redundancy in the number of licensed replication origins (Tanaka et al.,
2011). This, in turn, can ensure the very low probability of failure of complete
genome duplication.

Lastly, in addition to safeguarding the DNA replication process in yeast, reli-
censing of origins can also explain how replication origins in other eukaryotes
can be positioned in transcriptionally active loci and why replication timing and
transcription are in positive correlation (Woodfine et al., 2005; White et al., 2004;
Schiibeler et al., 2002; Hassan et al., 1994). As a good example, it has been found
recently that the replication origins in Trypanosoma brucei are localized to the
boundaries of transcription units (Tiengwe et al., 2012). In these situations, the
otherwise harmful effects of accidental transcription can be balanced out by the
relicensing system, while the same time replication complex formation benefits
from being situated in the areas of open chromatin.

2.3. Chromatin-dependent and -independent
regulation of DNA replication origin activation
(Ref. 1)

One characteristic feature of budding yeast replication origins is their time of
activation in the S phase. This temporal behavior is well described, and individual
replication origins fire at characteristic and reproducible times during the S phase.
As discussed previously, chromatin context and chromosomal positioning of repli-
cation origins are the major determinants of replication timing (Chapter 1.4.2.).
Nevertheless, it is also possible that replication origin sequences carry intrinsic
DNA elements that mediate their time of activation and may help replication origins
to overcome certain chromatin directed constraints.

2.3.1. Location-dependent origins

To find out whether epigenetic environment or internal properties of replication
origins determine origin activation, different ARS sequences were relocated to a
common chromosomal position and their activation time in this new location was
determined. We reasoned that, if the timing of origin activation is determined solely
by chromatin context, all origins should fire at the same time in their new position,
whereas if the timing is derived from their intrinsic DNA sequence elements, the
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origins should maintain their own original firing times regardless of their location in
genome. The hallmark of origin activation used throughout the study was primarily
the binding of Cdc45, although the firing times of all native replication origins we
used were also verified by determining the binding of Pol2 (catalytic subunit DNA
polymerase €). Our measured activation times of native origins corresponded well
with those previously reported (Ref. III, Fig. 1).

In order to dissect the sequence-derived and chromatin-dependent components
of origin firing, activation times of these origins were determined when their
sequences were copied to a common VPS13 locus on chromosome XII. The VPS13
locus itself contains no other DNA replication origins within a 60-kb region and is a
genuinely late-replicating part of the chromosome, thus serving as good target locus
to study activation of inserted ARS sequences (Knott et al., 2009). After relocation
to VPS13, origins® firing times were compared to those in their native positions.
Upon relocation into the VPS13 locus, the dynamics of Cdc45 recruitment were
changed at four replication origins. In their native locations, the peak of Cdc45
binding was observed at 30 min after G1 release at ARS605, at 40 min at ARS409,
at 50 min at ARS501 and at 70 min at ARS609. However, when inserted into the
VPS13 locus, activation of these origins was changed, suggesting that their firing
was determined primarily by the genomic location rather by than the intrinsic
properties of their sequences. Moreover, as chromatin dependency would suggest,
the new activation times of these ARS sequences were synchronized in VPSI3,
indicating that regardless of their original timing, different replication origins can
adopt similar firing patterns when inserted into identical chromatin environment
(Ref. 111, Fig. 2).

These results are in good agreement with what has emerged from previous origin
relocation experiments. For example, the timing of ARS/ can be delayed upon
relocation to late replicating chromatin near the end of chromosome V (Ferguson
and Fangman, 1992). Similarly, loosening the chromatin derived restraints when
relocating ARS501 from a subtelomeric region to a plasmid advances its timing
(Ferguson et al., 1991). The additional layer of information emerging from our
study indicates that origins with very different initial activation times can adopt
similar chromatin derived activation times. Therefore, it appears that chromatin
context is the major determinant of origin firing time, and that changing the
chromatin environment can both advance and delay origin firing. This idea is
further supported by the finding that late replication origins retain their firing times
when moved to a plasmid together with their surrounding sequences, but not when
moved alone (Friedman et al., 1996). Additionally, changing the global chromatin
state results in similar effects. For example, deletion of RPD3 causes significantly
earlier initiation of late-firing origins. The deletion of RPD3 deacetylase increases
histone acetylation and expands the range of euchromatin. (Vogelauer et al., 2002;
Aparicio et al., 2004; Knott et al., 2009).
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What is the mechanism that underlies the regulation of origin timing by chang-
ing chromatin structure? Such observations can be explained by the now widely
accepted stochastic replication model (Bechhoefer and Rhind, 2012). The idea
behind the model is that the key components needed for the activation of replication
origins are limiting in cells. Therefore, the origins situated in more accessible
parts of the genome have an advantage when competing for these activation factors.
This rationale also suggests that overexpression of the limiting factors should
advance the timing of late replication origins, and this is indeed what has been
found (Mantiero et al., 2011; Tanaka et al., 2011). Furthermore, when overex-
pression of limiting replication factors is combined with the deletion of RPD3, an
additional set of dormant origins is activated (Mantiero et al., 2011). This indicates
that even when initiation factors are present in excess, some parts of chromatin
remain inaccessible. This, in turn, means that limiting the number of initiation
factors serves as an instrument to mediate origin firing times, and the process is
self-regulated by the affinity of replication origins to such factors, which can be
regulated epigenetically.

2.3.2. Location-independent origins

In addition to the location dependent origins, whose activation times were syn-
chronized in the VPS13 locus, another set of replication origins emerged from our
study. Contrary to those described above, no shift in Cdc45-binding peak was
detected at origins ARS305, ARS607 or ARS737 when they were inserted into the
VPS13 locus. All these origins were early firing both in their original and in the
VPS13 loci, as the binding of Cdc45 to these origins peaked at 30 min after the
release from G1 arrest (Ref. III, Fig. 3). These results demonstrate that some
early-firing origins can override the chromatin-derived control and retain their
activation pattern in the new environment. However, this is not a common feature
of all early replication origins, as ARS605 shifted from early- to late-firing upon
relocation into the VPS13 locus (Ref. III, Fig. 2C). Therefore, a set of early-firing
ARS sequences must possess specific sequence elements that ensure their early
firing even when relocated to different sites in the genome.

In order to test whether this location independence is also maintained in other
genomic loci, the ARS607 sequence was inserted into various other chromosomal
locations. First, ARS607 was placed into the DPBI1 locus on chromosome X,
which resides in late-replicating chromatin with no other adjacent replication
origins (Knott et al., 2009). As expected, Cdc45 was recruited to the locus 30 min
after the release from G1 arrest as it was in VPSI3 and in its native locus (Ref. III,
Fig. 4]). Next, the ARS607 sequence was tested in genomic regions that already
contain native replication origins. Since neither VPSI3 nor DPBII normally
contain active replication origins, it was possible that activation of ARS607 was not
properly regulated in these loci because some of the distal regulatory sequences
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were missing in these genuinely origin-free regions. To test this possibility, the
early origin ARS728 located near the CLD/ locus and the late origin ARS609
near the HXK locus were replaced with ARS607. The CLD1-ARS607 locus was
activated early in the S phase which was expected as both ARS728 and ARS607 are
early-firing origins. More importantly, ARS607 also activated early in the HXK/
locus where it replaced the late-firing ARS609. While the firing time of the native
ARS609 locus was around 70 min after release from G1 arrest, the recruitment
of Cdc45 was shifted 40 min forward in the HXK/-ARS607 locus and peaked
at 30 min after release from G1. Notably, the replaced ARS609 itself did not
harbor any intrinsic information for very late firing, as upon insertion into the
VPS13 locus, its activation shifted earlier and synchronized with the timing of
other location-dependent origins in this locus (Ref. III, Fig. 2D). These findings
confirm that ARS607 is activated early in the S phase regardless of its location in
the genome, and that it can convert late-replicating regions into early-replicating
ones. In our experimental system, this origin fires 30 min after release from the G1
arrest in all tested loci. This demonstrates that early firing of ARS607 is an intrinsic
property of its sequence, enabling early initiation of DNA synthesis regardless of
the surrounding genomic structures.

2.3.3. Forkhead binding ensures early activation

To identify the sequence elements required for chromatin independent activation of
origins, truncated variants of the ARS607 sequence were made (Ref. III, Fig. 4A).
First, 21 nucleotides were removed in the ARS607 A1 mutant with no effect on its
activation timing. Next, additional 21 nucleotides were removed in ARS607 A2,
which led to delayed activation of this origin in the VPSI3 locus (Ref. III, Fig.
4B and 4C). This deletion successfully separated the sequence needed for basic
origin functioning from the sequence needed for its early activation in location-
independent manner. The importance of this region becomes clear when it is
analyzed in the context of recent findings from Knott et al., 2012. Namely, it
was found that deletion of Forkhead transcription factors leads to genome-wide
deregulation of the origin firing pattern in budding yeast, resulting in delayed
activation of early origins and shifting many late origins to fire earlier. All three
origins (ARS305, ARS607 and ARS737) we found to be location-independent were
delayed in the Fkh1/2 (ForKhead Homolog) double mutant.

ARS607 contains two putative binding sites for Fkh1/2 proteins, one of which is
deleted in the ARS607 A2 mutant, whereas both sites are retained in the ARS607A1.
To confirm the importance of Forkhead factors for early firing of the three origins,
point mutations were introduced into the Fkh1/2 binding sites in ARS607, ARS305
and ARS737 ( Ref. 111, Fig. 4A). All of these origins have two Forkhead sites, and
when either one of these sites was mutated, early activation of these origins was
lost, suggesting that both Forkhead binding sites are necessary to ensure early firing
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of these origins (Fig 4D-4H). The double mutant of ARS305, where both Forkhead
sites were mutated, was also analyzed in Knott et al. 2012, and its activation was
impaired. In accordance with this, our results showed that the Forkhead mutants of
ARS607 and ARS737 also fire significantly later. Furthermore, the conversion of
the HXK1 locus into an early-replicating region is dependent on functional Fkh1/2
sites in ARS607, as the point-mutated version of ARS607 fires late in this locus
(Ref. III, Fig. 4]).

Naturally, in order to connect the delayed activation of the mutant origins with
Forkhead factors, binding of the Fkh1 protein to replication origins was followed by
ChIP assay. Fkh1 was detected at the early-replicating ARS305, ARS737, ARS607
and VPS13-ARS607 loci, but not at the ARS409, ARS501, ARS605, ARS609 or at
the origin-free VPS13 locus. Importantly, when either one or both Fhk1/2 sites
were disrupted in ARS607, ARS305 or ARS737, recruitment of Fkh1 to the origins
was severely reduced (Ref. III, Fig. 5A). Possibly, the binding of Forkhead proteins
to replication origins must exceed a certain threshold level to ensure their early
activation, and two Forkhead binding sites establish efficient recruitment of these
factors through cooperative binding to the target DNA sequence as shown by in
vitro assays (Hollenhorst et al., 2001). Altogether, these findings confirm that the
sufficient binding of Fkh1 to some origins ensures their ability to activate early
irrespective of their genomic location.

As the presence of two Forkhead binding sites was necessary for early firing
of location-independent origins, two Forkhead binding sites were also introduced
into the ARS609 sequence in order to render it early. Unfortunately, this did not
change the firing pattern of ARS609 (Ref. III, Fig. S2A, S2B and S2C). However,
binding of Fkh1 protein to this altered sequence was not observed either, indicating
that the sole the presence of Fkh1/2 recognition sequences within the locus is not
sufficient for efficient binding of Forkhead factors (Ref. III, Fig. S2D). It is likely
that accessibility of Fkh1/2 sites is hindered by nucleosomes. This possibility is
supported by the genome-wide nucleosome localization data indicating that the
ARS609 locus is covered by nucleosomes, whereas ARS305, ARS607 and ARS737
are located in nucleosome free regions (NFRs) (Jiang and Pugh, 2009). Therefore,
at least one of the Fkh1/2 sites inserted into the ARS609 locus is probably covered
by a nucleosome, which may make the site inaccessible to Forkhead factors. Earlier
studies have shown that localization of the ARSI regulatory sequences within an
NFR is crucial for the function of the origin, and that ORC is a key factor for
precise nucleosome positioning at the borders of origins (Simpson, 1990; Lipford
and Bell, 2001; Eaton et al., 2010). Interestingly, when the ARS607 sequence
was inserted into the HXK/ or VPS13 loci, Forkhead binding and early activation
was maintained (Ref. III, Fig. 4J). Therefore, it is be possible that in addition to
Forkhead binding sites, elements necessary for maintaining NFRs are also needed
for determining chromatin independency of replication origins.

36



In order to put the described findings into a broader context, the existence and
positioning of Forkhead binding sites were analyzed in the context of temporal
activation of replication origins. In particular, the values of replication indexes
(Raghuraman et al., 2001; Nieduszynski et al., 2007; Yabuki et al., 2002) of origins
containing different numbers of Forkhead binding sites were compared. The mean
activation time of replication origins harboring zero or one Fkh1/2 site did not
differ from the activation time of all origins, but origins containing two Forkhead
sites separated from each other by 60-120 bp were almost exclusively early-firing.
This suggests that Forkhead regulation affects a large number of origins and that,
not only the presence but also the positioning of the Forkhead sites within an origin
is important (Ref. III, Fig. 5B).

Taken together, these results indicate that some immediate-early replication
origins contain two Fkh1/2-binding sites, one of which is found in close proximity
to the ACS and another is located 60—120 bp away. It is also apparent that efficient
binding of the Forkhead factors assures the position independent firing of some
replication origins. In line with the previously discussed model of the temporal
regulation of origin firing, the binding of Forkhead factors may give replication
origins an advantage when competing for the limiting initiation factors. Some
proof supporting this idea can be found in the Knott et al., 2012 study. First, it
was found that the Forkhead activated origins were enriched in Cdc45 binding
in G1 and that this was Fkh1/2 dependent. Additionally, binding of Cdc45 to
early origins that were not regulated by Forkhead increased after Fkh1/2 deletion.
In other words, when the binding of Cdc45 to Forkhead regulated origins was
disrupted, the effective concentration of Cdc45 increased for other origins.

Forkhead induced binding of limiting factors could be facilitated in several
ways. First, since Cdc45 recruitment to origins is dependent on DDK (Tanaka
et al., 2011), Forkhead factors could directly recruit DDK to replication origins and
therefore actively regulate origin firing. However, Forkhead factors are unlikely
to achieve this without altering the accessibility of the chromatin environment,
since it has been shown that the DDK subunit Dbf4 itself is one of the limiting
initiation factors (Tanaka et al., 2011) and that even when it is overexpressed,
tightly packed areas of chromatin remain inaccessible to limiting factors (Mantiero
et al., 2011). Conversely, our results indicate that even the very late HXK/ locus
can be efficiently converted to early initiation via the insertion of the ARS607
sequence, and that this is Forkhead dependent (Ref. III, Fig. 4J). Therefore, it
is likely that instead of active recruitment of initiation factors, Forkhead binding
alters the accessibility of chromatin near replication origins.

Currently, available evidence suggests that Forkhead binding can alter the nuclear
positioning of replication origins and facilitate the clustering of early replication
origins. First, enrichment of interactions between early replication origins was
observed when the arrangement of DNA in nuclear space was analyzed (Duan et al.,
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2010). Further analysis of this dataset revealed that the Forkhead activated origins
form distinct clusters in the nucleus and that the interaction between two Forkhead
activated origins (ARS305 and ARS607) is lost upon Fkh1/2 deletion (Knott et al.,
2012). Fkh1 dependent association between distant genomic regions has been also
described in budding yeast mating type switching (Sun et al., 2002). Therefore, the
molecular capacity of Fkh1 to functionally mediate genomic clustering has been
demonstrated several times.

Although direct evidence that the Forkhead dependent clustering facilitates open
chromatin and better DNA accessibility at replication origins is currently lacking,
such mode of action would fit well with the proposed mechanism of controlling
replication timing through origin access by limiting initiation factors.
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CONCLUSIONS

This study was launched to find the effects of the chromatin environment on the
functioning of replication origins. Problems arising from chromosomal positioning
of replication origins and the effects of active transcription on origin regulation
were primarily addressed. Methodologically, both approaches were based on
genetically relocating a number of replication origins either to transcriptionally
active loci or to different chromosomal positions. In order to easily produce and
verify the yeast strains used in this study, a novel genomic DNA extraction protocol
was developed. The new method is a quick and easy way to reliably extract DNA
from yeast cell colonies and liquid culture for a downstream array of PCR based
applications. The protocol has been adopted into the everyday work routine of
our laboratory, and I hope that others will also benefit from it. Therefore, the first
practical outcome of this work has the potential to impact general yeast genetics
research.

When dissecting the importance of active transcription on origin activation, many
replication origins in the budding yeast genome were found to be transcribed in vivo.
Previous observations, that this kind of transcriptional disruption in replication
origin loci inhibits replication complex formation, were confirmed in this study.
At the same time it was found that pre-RC formation at these loci is a fairly
dynamic process, and that transcriptionally removed replication complexes can
quickly reassemble after transcriptional repression. Moreover, these reassembled,
or relicensed origins are capable of Mcm2-7 activation and origin firing in the
following S phase. Based on these results, it is likely that in in vivo conditions
a balance is formed between accidental transcriptional disruption of replication
origins and their constant relicensing in G1 phase. This balance may be responsible
for assuring an adequate number of functional licensed origins when cells enter
the S phase.

Lastly, the importance of the chromosomal environment on origin activation
was studied. In agreement with previous findings, it was found that chromatin
context is the sole determinant of activation for many origins. The activation
time of these origins changes when they are inserted into different chromosomal
positions. At the same time, origins containing double binding sites for Forkhead
transcription factors are able to override the chromatin determined replication
timing, and relatively late-replicating parts of the genome can be converted to
early. Additionally, a set of exclusively early firing origins from the budding yeast
genome were found to have two Forkhead binding sites with a specific 60 to 120
bp spacing possibly needed for efficient Forkhead binding at these loci. These
results indicate that while replication origins are subject to a range different control
mechanisms, the existence of chromatin independent replication origins may assure
an efficient start of DNA synthesis in various conditions.
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SUMMARY IN ESTONIAN

DNA replikatsiooni initsiatsiooni uurimine
Saccharomyces cerevisiaes

Antud uurimustdo raames uuriti, kuidas kromatiini kontekst mojutab replikatsiooni
alguspunktide aktivatsiooni pagariparmis. Késitleti replikatsiooni alguspunktide
kromosomaalse paiknemise ja transkriptsioonilise inaktivatsiooniga kaasnevaid
probleeme. T60 esimeses osas kirjeldati kiesoleva hetke arusaami replikatiivsete
komplekside moodustumisest ja nende aktivatsioonist rakutsiikli S faasis. Samuti
iseloomustati mehhanisme, mis tagavad DNA tipse, iihekordse duplitseerumise.
To06 praktilise osa paremaks mdistmiseks anti ka iilevaade replikatsiooni alguspunk-
tide ajalisest aktivatsioonist ja juba teadaolevatest faktoritest, mis seda mdjutavad.
Viimasena tutvustati kahe fundamentaalse DNA-seoselise protsessi, DNA replikat-
siooni ja transkriptsiooni omavahelisi seoseid, keskendudes eelkdige sellele kuidas
aktiivne transkriptsioon mdjutab DNA replikatsiooni.

To66 praktiline osa holmas endas metodoloogiliselt paljude replikatsiooni algus-
punktide geneetilist imberpaigutamist genoomi erinevatesse kromosomaalsetesse
positsioonidesse ning ka transkriptiooniliselt aktiivsesse lookustesse. Selleks, et
lihtsustada nende pdrmitiivede tegemist, arendati esmalt uudne genoomse DNA
ekstrahheerimise meetod, millega on vdimalik kiirelt ja usaldusvéérselt eraldada
DNA-d kasutamaks seda erinevate PCR-il pohinevate rakenduste jaoks.

Uurides transkriptsiooni vdimaliku m&ju DNA replikatsiooni algatamisele lei-
dsime, et paljud replikatsiooni alguspunktid paiknevad pdrmi genoomis posit-
sioonides, mis teeb vdimalikuks nende transkriptsioonilise inaktivatsiooni. Samuti
selgus, et transkriptsioon takistab funktsionaalsete replikatsiooni komplekside
moodustumist. Kuna aga replikatsiooni komplekside moodustumise diinaamika oli
oodatust kiirem, on vdimalik nende kiire reassambleerumise transkriptsioonilise
inaktivatsiooni jdrel. Lisaks niitasime, et sellised uuesti moodustunud replikat-
siooni kompleksid on funktsionaalsed. Antud mehhanism on vajalik tagamaks
piisava hulga funktsionaalseid replikatsiooni alguspunkte genoomi efektiivseks
paljundamiseks.

Viimasena otsiti antud to0s vastust kiisimusele, kuidas kromatiini kontekst
mdjutab replikatsiooni alguspunktide ajalist aktivatsiooni. Esmalt leidsime, et
paljude replikatsiooni alguspunktide aktivatsiooni jaoks on nende kromosomaalne
paiknemine peamine ajastust méérav faktor. Samas kirjeldasime ka mehhanis-
mi, millega teatud replikatsiooni alguspunktid véldivad kromatiini kontekstist
tulenevaid piiranguid. Sellised replikatsiooni alguspunktid omavad kahte kindla
paigutusega Forkhead transkriptsiooni faktori seostumis-kohta. Forkheadi seostu-
mine aga tagab replikatsiooni alguspunkti varajase aktivatsiooni sétlumata tema
kromosomaalsest paiknemisest. Selliselt tagatakse efektiivne DNA replikatsiooni
algatamine paljudes erinevates tingimustes.
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