
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science

Kristjan Krips

The Security Analysis of Browser Extensions

Bachelor’s thesis (6 EAP)

Supervisor: Sven Laur, D.Sc. (Tech.)

Author: .. “........” June 2010

Supervisor: ... “........” June 2010

Admitted to thesis defense

Professor ... “........” June 2010

Tartu 2010

Contents

Introduction 4

1 Mozilla Firefox 3.6 6
1.1 Overview of the extensions . 6
1.2 Security architecture . 8

1.2.1 Firefox’s memory space and threads 9
1.2.2 Firefox’s scheduler . 11
1.2.3 Firefox’s code space . 12
1.2.4 Update system . 14
1.2.5 JavaScript sandboxing 15
1.2.6 Blocklisting extensions 16

1.3 Attack scenarios . 17
1.3.1 Creating a keylogger 17
1.3.2 Website defacement . 18
1.3.3 Phishing attacks . 19
1.3.4 Stealing saved passwords 20
1.3.5 Using Firefox as a botnet 21
1.3.6 Risk assessment . 22

1.4 Ways for compromising Firefox 22
1.4.1 Cross-Site Scripting . 22
1.4.2 Installing a compromised extension 23
1.4.3 Modifying the installed extensions 23

1.5 Solutions . 24

2 Google Chrome 26
2.1 Overview of the extensions . 26
2.2 High-level architecture . 27
2.3 The security architecture of extensions 28

2

2.3.1 Chrome’s memory space 30
2.3.2 Google Chrome’s code space 31

2.4 Attack scenarios . 32
2.4.1 Creating a keylogger 32
2.4.2 Man in the browser attack 32
2.4.3 Using Google Chrome as a botnet 33
2.4.4 Risk assessment . 33

2.5 Ways for compromising Google Chrome 34
2.5.1 Installing a compromised extension 34
2.5.2 Modifying the installed extensions 34

2.6 Solutions . 35

3 Internet Explorer 8 36
3.1 Overview of the extensions . 36
3.2 High-level architecture . 37
3.3 The security architecture of extensions 39

3.3.1 Internet Explorer’s memory space 40
3.3.2 Internet Explorer’s code space 41

3.4 Attack scenarios . 41
3.4.1 Creating a keylogger 41
3.4.2 Website defacement . 42
3.4.3 Man in the browser attack 42
3.4.4 Risk assessment . 43

3.5 Ways for compromising Internet Expolorer 44
3.5.1 Installing a compromised extension 44

3.6 Solutions . 45

Conclusive comparison 46

Brauseri laienduste turvaanalüüs 48

Glossary 49

References 51

3

Introduction

The evolution of Internet has brought browsers, which can be compared to op-

erating systems. Users are allowed to run multiple tasks simultaneously and

therefore the browser must control the memory management and schedul-

ing. Additionally, the browser must assure that the computer and the user’s

information is not compromised. Thus, the browsers applies constraints to

the web content. A web content that is rendered inside the browser should

not have access to the hard drive and should not have access to modify the

way other web pages are being rendered. The focus of the browsers secu-

rity features has been on restricting web content’s rights. This should have

changed as browser extensions were introduced. Now, three most popular

web browsers include the possibility to extend their functionalities. Internet

Explorer, Google Chrome and Firefox allow users to install binary extensions

and these extensions have access to the hard drive. The new threat posed

by the extensions is not widely acknowledged.

In this work, we analyse the security models of browser extensions. We

view the extension models of Mozilla Firefox 3.6, Internet Explorer 8 and

Google Chrome 5.0.360. Because browsers are providing functionalities sim-

ilar to operating systems, we analyse these extension models as we would

analyse an operating system. We show that the current security models can

be abused with little effort. A browser with a compromised extension may

result in the whole computer being compromised. To support our claims, we

tested most of the attacks that are described in this analysis. The source code

of these attacks is not included in the thesis. Thus, due to previously men-

tioned risks, we want to stress the importance of the threat that extensions

pose to the security of browsers.

4

The thesis is divided into three parts. The first part describes Mozilla

Firefox’s security model, the second part contains analysis of Google Chrome’s

extension model and the third part describes Internet Explorer’s security

model. Each browser’s analysis starts with the description of the extension

model. Then we present the weaknesses of current model and show ways of

compromising it. The feasibility of creating malware extensions is analysed

for each browser individually. Based on the analysis we propose possible

attack vectors for each browser. Finally, we suggest ways to improve the

current security model and give advice to the users.

5

Chapter 1

Mozilla Firefox 3.6

Mozilla Firefox is a free open source browser. Mozilla project was started in

January 1998, when Netscape publicly released the source code of Netscape

Communicator 4.0. With the launch of the Mozilla project, a new cross-

platform layout engine named Gecko was released. The Mozilla Firefox

project was created as an experimental branch of the Mozilla project. In

2003 Mozilla Foundation was established in order to continue the work on the

Mozilla project. In November 2004, Firefox 1.0 was released. The browser

was built on Gecko 1.7, a successor to the layout engine that was created

by Netscape Communications Corporation. Since then the popularity of the

browser has grown and as of March 2010 Firefox holds 24.52% of web browsers

market share according to Net Applications [BMS]. The company monitors a

network of 40000 web sites over the world and the results are based on an ap-

proximate of 160 million unique visitors per month. Because of the browser’s

modular architecture, it is possible to extend its functionalities and that can

weaken the security architecture of the browser.

1.1 Overview of the extensions

Add-ons are software components that the user can add to Firefox. They are

divided into themes, extensions and plugins. Add-ons are created by third-

party developers who use Firefox’s extension framework to add functionality

to the browser. Themes change the visual appearance of the user interface.

6

Plugins are native code libraries, which are used to provide the user with

external functionalities. Thus, plugins are binary applications that run inside

the browser’s memory. Extensions differ from plugins as they extend or

modify the browser’s functionalities and also need only one set of privileges.

Extensions can be written in JavaScript or C++ and they are able to use

the XPCOM API [TO].

Figure 1.1: Extensions and plugins relation with Gecko.

Browser’s high level architecture is depicted in Figure 1.1. Extensions

can access the Gecko engine, which is a cross-platform layout engine. Access

to the engine is provided through a middle layer named XPConnect, which

allows JavaScript to interfere with Cross Platform Component Object Model

(XPCOM).

The component object model makes the resources of Gecko available as

a series of components, or reusable cross-platform libraries, which can be

accessed from the web browser or extension [XPCb]. The functionality of the

browser is defined in XPCOM components and accessed by means of those

component interfaces. For example the various XPCOM components provide

the functionality for navigation, window management, managing cookies,

bookmarks, security, searching, rendering, and other features [TO]. Since

the XPCOM components are written in C or C++, an additional bridging

7

layer is needed to enable the other programming languages to access these

components, see Figure 1.2. Applications that want to access the XPCOM

components (Network, DOM, Security, etc.) use a special language binding

layer of XPCOM called XPConnect, that reflects the library interfaces into

JavaScript. Other language bindings exist for Python (PyXPCOM), Java

(JavaXPCOM) and bindings for Perl and Ruby is being developed [Bin].

Figure 1.2: The XPCOM components are scriptable and JavaScript can ac-

cess these components via XPConnect.

Firefox extensions can be divided into two: binary extensions and exten-

sions that are based on XUL(XML User Interface Language) and JavaScript.

The new functionalities are applied by overloading the browser’s code at

startup or by adding additional binary components to the browser. Exten-

sions that have been installed on Firefox have full browser privileges. An ex-

tension has the rights to read, write and execute files on the user’s computer.

This means that if an attacker can exploit a vulnerability in an extension

then he may get the control over the browser. An attacker may also create

a malicious extension and trick the user install it.

1.2 Security architecture

Firefox uses single process memory model. All the windows, tabs, plugins and

extensions run inside the same process. Threads that run inside the process

share the address space and thus there are no borders between threads.

8

1.2.1 Firefox’s memory space and threads

Threads allow multiple executions to take place in the same process envi-

ronment, so that they are to a large degree independent of one another.

Having multiple threads running in parallel in one process is analogous to

having multiple processes running in parallel in a computer. However, the

separation of threads is weaker than the separation of processes.

Threads inside a process are not as independent as different processes

running in an operating system. All threads use the same address space,

which means that they also share the same global variables. Thus, a thread

can access every memory address within the process’s address space, see

Figure 1.3. Every thread is able to read, write, or even wipe out another

thread’s stack. Different processes may have different owners and run with

lower or higher privileges and therefore a process needs to be protected from

other processes. Contrary to processes, a thread does not need protection

from other threads as threads run with the same privileges and have a single

owner. Thus, there is no protection between threads. Therefore, in addition

to sharing an address space, all the threads share the same set of open files,

child processes, alarms, and signals, etc [Tan01]. For further details we refer

to the handbook [Tan01].

Figure 1.3: All threads inside a process share the same memory space, there-

fore a thread can access another thread’s stack.

To summarise, a thread inside the Firefox process is able to read and

write to the memory addresses outside of the thread’s memory. Because of

9

that, it is possible to make an extension that is able to read and modify the

memory of another extension. The developers have tried to create borders

between threads because of the thread safety issues. This is done in the API

level, for example, calling the plug-in API is supported only from the main

thread. Background threads are not allowed to modify the main thread, re-

quests that wish to modify the user interface are handed to the main thread.

This is implemented to protect the browser from crashing [Thr]. It is possible

to use a XPCOM component to have a call execute in another thread, but

this can lead to a crash [Tur].

Despite that there are some borders between threads, extensions can use

all the APIs the browser can. If an exension runs in a background thread,

then it can pass the request to the main thread. Thus extensions can do

everything the browser does. Therefore, the current memory system does

not separate extensions nor provides a way to handle privilege management.

UC Berkeley security group examined the extensions privilege management

in the API level [Fel09]. They examined the use of APIs in 25 extensions

recommended by Mozilla. After examining the behavior of the extensions,

they determined that only 3 of the 25 extensions actually needed access

to the most powerful capabilities of the Firefox extension system. Then

they compared extension behavior to the interfaces used to implement it

and found a privilege gap between the desired functionality and the actual

interfaces [Fel09]. This shows that by the current model extensions have

higher privileges than are required for their functionalities.

With the current APIs, reducing the privileges of extensions in the Firefox

extensions system is difficult because the functionalities needed for an exten-

sion are accessed through interfaces that give access to different privileges

[BFSB09]. For example, Firefox does not have a low privilege file storage in-

terface and thus extensions use a file system interface, which grants read and

write access to arbitrary files. Also, an extension that stores its preferences

using a preference service is able to modify the preferences of the browser

and other extensions. For that reason it is difficult to design an extension

with limited privileges.

10

1.2.2 Firefox’s scheduler

As Firefox is a multitasking system it owns a scheduler, that provides avail-

able processing time to the browser’s tasks. Local threads are scheduled

within a process only and are handled entirely by The Netscape Portable

Runtime (NSPR) API. Firefox also supports global threads, that are sched-

uled by the host OS and correspond to native threads on the host OS.

NSPR threads are scheduled by priority and can be preempted or inter-

rupted. These threads are interruptible, with some constraints and incon-

sistencies. To interrupt a thread, the caller of PR Interrupt must have the

NSPR reference to the target thread. PR Interrupt requests that a thread

would stop performing its task and return to a control point. When a thread

is interrupted, it is rescheduled from the point at which it was blocked. A

thread may be interrupted only if it is waiting on a condition variable or

waiting on I/O. In the latter case, interruption does cancel the I/O op-

eration. In neither case, when a thread interrupted, it is not terminated

[NSPa]. A thread can be shut down by calling its shutdown method from

another thread. This stops events from being dispatched to the thread, but

any pending events will run to completion [nsI].

For the implementation of NSPR, different strategies are used on different

platforms. On some platforms the NSPR threads map directly to the native

threads on the platform, while on others NSPR supports both threads that

are scheduled by NSPR and the native threads. NSPR version 4.8.3 uses

pthreads library on all Unix platforms and on Windows platforms NSPR

multiplexes user-level threads on top of native, kernel-level threads. This

model is also called a combined MxN model, with Windows threads and

fibers [NSPb]. It means that there are many local threads inside a Windows

thread and these local threads are scheduled by NSPR.

To summarize, the scheduling is not done by the operating system and if

Firefox gets compromised, then also the scheduler gets compromised. Thus,

if a malicious extension is installed, then it is able to control the execution

of a random thread inside the Firefox process.

11

1.2.3 Firefox’s code space

By default the contents of Firefox’s installation folder can be modified only

with administrative rights. This folder contains the browser’s source files

and globally installed extensions and plugins. User profile files are located in

a folder that is accessible without administrative privileges, see Figure 1.4.

This folder contains user’s bookmarks, preferences, passwords, extensions,

etc.

Most of the browser’s functionality is made available through the use of

XPCOM components. The official way to add additional XPCOM compo-

nents to the browser is to create an extension with the components inside

a components directory. With this approach the user will be notified about

the modifications and will be able to disable the component from the exten-

sions manager. Also, old components will not be installed on newer Firefox

versions if the extension is not compatible with the newer Firefox’s version.

Firefox’s code space in most part is not protected from modifications.

It is possible to modify the user interface files, the configuration files and

extension files. Before Firefox 3.6 it was possible to add binary components

to Firefox’s components directory and these components were automatically

loaded at startup. This was a security issue as these new components were

invisible to the users [Nig]. There was also a problem with Firefox crashing

after an update from version 3.0 to 3.5 because the old binary components

were not compatible with the new version.

This was somewhat fixed by adding a whitelist of approved components,

that the browser is allowed to load automatically. The whitelist is imple-

mented as a text file, containing the names of the allowed binary compo-

nents. Each time the browser is updated, a new components list is created,

which negates any unallowed changes in the file. It should not be possible to

load components that are not in the whitelist, because it is a security risk.

The current implementation of the whitelist allows a third party program to

add binary components to Firefox the same way as it was done before. It is

possible because the whitelist is not protected from modifications.

To test this hypothesis we created a new binary component and tested the

functionality of the whitelist’s implementation by adding a new component

to the current whitelist. We saw that the current whitelist does not provide

12

additional security as it is possible to force the browser to load the new

component at startup.

To carry out this attack, a third party program must be installed on

the computer that carries out the component installation. The program

must have read and write access to the Firefox’s installation directory, which

means that administrative privileges are required. This is required to modify

the whitelist and to register the new component after the whitelist has been

changed. Firefox is forced to check for new components when it starts if

its .autoreg file is modified. We added our component to the whitelist and

then we modified the autoreg file to force Firefox to scan the whitelist. Using

these steps we were able to quietly load our new binary component the next

time the browser started. We also found out that all new components are

whitelisted if the file containing the whitelist is removed from the components

directory.

Figure 1.4: The overview of Firefox’s code space.

These security risks could be abused to compromise the browser in a

manner that the user would not notice. There is little that the user could do

against the silent component installation because most users will not check,

which binary components are installed. If a threat abusing the current model

gets popular, then it is possible to block it. The developers of Firefox have

created blacklist of components that the browser cannot load. The blacklist

is renewed with every browser update. With this approach it is possible to

add malware components to the blacklist of the next update, which would

break the malware. This approach can be avoided by the malware if it dis-

ables the updating of the blacklist. Thus, the method is effective only in

preventing the installation of malware components.

13

The files of extensions, plugins and preferences are not protected and can

be overwritten by the user. This means that a third party application is able

to modify the functionality of the browser. For example, it is possible to

change the functionality of the extension by modifying its source files. Thus,

a user cannot be sure that the installed extensions function the same way

they did after their installation. This can lead to an information leak if a

compromised component is placed on the user’s computer or if an existing

extension’s functionalities are modified.

1.2.4 Update system

Before Gecko 1.9 (before Firefox 3), the extension update system was par-

tially vulnerable to a man-in-the-middle attack. Man-in-the-middle attack

allows an attacker to listen the traffic between the user and the server and

intercept it. For example, this attack could be done by hijacking a public

Wi-Fi network, because the connection between the computer and the pub-

lic Wi-Fi router is usually not encrypted and thus unsafe. Therefore, the

attacker may be able to impersonate a server and send false information to

the user. The vulnerability of the update system was possible because the

updates were sometimes delivered via an insecure protocol, without using

further security measures. This allowed an attacker to intercept traffic in

a public Wi-Fi hotspot and interfere with the update process. Gecko 1.9

introduced security measures to solve the problem. Now, every extension

that uses an insecure protocol for updating, must have a digital signature in

the update manifest. If such an extension does not have a digital signature,

then Firefox will not check for updates for that extension. Also, a https page

must use a valid signature for the update process to succeed. To verify the

integrity of the downloaded extension, the update must be hashed. More

specifically, the update information is hashed using a SHA-512 hashing al-

gorithm and the hash is digitally signed with the extension creator’s private

key [HAS]. These security measures will prevent an attacker from succeeding

in a man-in-the-middle attack against the update process.

14

1.2.5 JavaScript sandboxing

By current design, JavaScript that is used in an extension has the same

privileges as the extension. This could lead to a security breach, as privileged

JavaScript may interact with a hostile web page. A hostile web page might

use the design flaws of an extension and inject malicious code to the web page,

which could result in running the attacker’s code on the user’s computer.

Therefore, it is advised to sandbox the JavaScript that the extension injects

into web pages.

Applications and extensions that inject JavaScript to the DOM of un-

trusted (web page) content need to be secured against hostile web sites.

As a web site’s DOM might contain malicious content, the extensions must

make sure that the information that they use is really coming from the

DOM API and not from JavaScript properties, getter functions, and set-

ter functions defined by a malicious page [Saf]. Since Firefox 1.5, an API

(Components.utils.Sandbox) exists to evaluate JavaScript code with re-

stricted privileges. Code that is running in this sandbox will always execute

with restricted privileges, as on a normal web page [eva]. Still, privileged

JavaScript has to access some parts of unprivileged web content. By cre-

ating a sandbox and then loading a document into an XPCNativeWrapper

within the sandbox, an area can be made, in which JavaScript has restricted

privileges. XPCNativeWrapper is a way to wrap up an object, so that it’s

safe to access it from privileged code. It limits access to the properties and

methods of the object it wraps, thus preventing a web page from redefining

extension’s methods and properties [XPCa]. Extension that needs to use a

sandbox to run user scripts should create a sandbox area, add a document

to the XPCNativeWrapper, load JavaScript from local files (or generate it)

and finally use evalInSandbox() to run that code on the document. To use

evalInSandbox(), first a sandbox object must be created using its construc-

tor, Components.utils.Sandbox. The sandbox must be initialized with an

origin URI, a DOM window or a nsIPrincipal object. Manually creating

XPCNativeWrapper objects by using its constructor is necessary only if the

extension is designed to work on versions prior to Firefox 1.5. Newer Firefox

versions automatically wrap privileged JavaScript whenever it accesses less

privileged objects. The code that runs using evalInSandbox() will be able

15

to call API functions, so it must be protected from JavaScript running in the

original web page: for this reason many functions in the sandbox are unavail-

able [eva]. This kind of sandbox allows an extension to access certain parts

of the hostile environment like DOM, but it does not allow malicious scripts

to interfere with privileged scripts or intercept references to privileged func-

tions. However, security problems may arise when using evalInSandbox().

It may not be safe to use properties of the objects that are executed in the

sandbox. Also, it is not safe to call privileged functions from within the

sandbox.

1.2.6 Blocklisting extensions

Firefox has a built-in security feature, that should protect the users from

installing compromised plugins and extensions. A blocklist of extensions and

plugins has been created. This list should contain all known extensions and

plugins that are vulnerable to an attack or that have been created by attack-

ers. The list is updated daily and if a match is found, then the extension or

plugin will be disabled and the user will be notified about the threat. This

approach can protect the users from installing widely known threats and inse-

cure extensions, but it does not provide any protection after an extension has

been installed because the extension can disable this feature. Thus, if a com-

promised extension is installed, it can guarantee that no new blocklists will

be downloaded. The compromised extension can modify the preferences file

in the user’s profile folder and set extensions.blocklist.enabled=false

[Blo]. Additionally, an extension is able to modify the blocklist.xml file

and can allow dangerous extensions or plugins to be installed. The exten-

sions should not have the right to disable this feature in order for it to be

successful and provide protection against malware.

16

1.3 Attack scenarios

1.3.1 Creating a keylogger

An extension can be used as a keylogger. It is fairly simple to write a few

lines of JavaScript that logs every keystroke on the browser window or in

dialog boxes. Using XMLHttpRequest it is possible to send the collected

data to a listening server. What makes this dangerous is the simplicity to

implement it. It is not required to create or to install a new extension to add

the keylogger to the browser. An attacker or a third party software that is

able to modify the installed extensions can add additional functionality to

already installed extensions and thus compromise them. This is dangerous

as the user will not be able to detect the change, extensions will not loose

their functionality and no new extensions appear in the extensions manager.

Besides compromising the browser, it is possible to compromise the whole

computer. Firefox’s extensions are not sandboxed, they have privileges to

write to the hard drive and to read from the hard drive. An extension can

contain a binary component that is able to listen to every keystroke made

when the browser is running.

We tested if it would be possible to add a binary file to an already existing

extension and it was. A third party application or an attacker can add binary

files to already installed extensions without leaving a trace to the user. This

is possible as by the current model extensions load all binary files that are

included in their components folder. An attacker who is using these meth-

ods can probably collect information about the user without getting noticed.

Using virtual keyboard will not protect the user from these keyloggers as

the keystrokes are intercepted from the browser. The keylogger does not use

operation system APIs to hook itself to other programs, it is based only on

JavaScript. Thus, firewalls or antivirus programs will not detect this keylog-

ger because it is a simple JavaScript extension that has become a part of the

browsers functionality and runs inside the browser’s process. Therefore, if

Firefox is not blocked by the firewall, then the keylogger is also not blocked,

as they use the same port. The keylogger script that is part of the extension

cannot be distinguished from safe extensions, as an extension is allowed to

use JavaScript and send information to a remote server.

17

1.3.2 Website defacement

While browsing a web page, users believe that the content they see is au-

thentic. This is why attackers would like to modify the content of web pages.

An attacker could alter the information displayed or change the behavior

of the web site and users would likely not notice the difference. In Firefox

it is possible to change the way a web page is being displayed while it is

being loaded. JavaScript with a specific event listener is enough to change

the content of a web page being displayed. DOMContentLoaded is the event

listener that could be used. Fired on a Window object when a document’s

DOM content is finished loading, but unlike “load”, does not wait until all

images are loaded [Gec].

Figure 1.5: This scheme shows how a web page is being loaded.

We made an extension to test if we could use these methods for changing

the way an https page is being displayed. We wanted to test, if it would be

possible to add or remove content from an https page. The results revealed

that after the DOM had been loaded, it was possible to modify the content

before it was displayed. The extension was able to both add and remove

content. The result shows that website defacement is achievable and that

Firefox does not guarantee that a verified web page is always being displayed

correctly. This property can be used for creating a man-in-the-browser at-

tack, which is described in the second chapter. Implementing the attack in

Firefox is identical to the one described for Google Chrome.

18

1.3.3 Phishing attacks

Phishing is a type of fraud, which tricks users to give away sensitive infor-

mation, for example usernames and passwords. Usually phishing is done by

directing the user to a fake web site, which seems identical to the legitimate

one. This could be used by an attacker for gathering confidential informa-

tion. For example, the attacker could get the login details if the user would

try to log into his account on a fake web page. To be able to trick a user to

think that a web page is secure, it is needed to make him see no difference be-

tween the real page and the fake one. Firefox uses several methods to change

the user interface so that the user sees certain icons or extra information

when using a secure site. Firefox classifies web pages into three categories:

pages with no identity information, pages with basic identity information and

pages with complete identity information. The last two are both encrypted

pages whose domain has been verified, but the latter also has the informa-

tion about the owner of the site. To visualize the categorization, it provides a

colored button on the left side of the address bar since version 3.0, see Figure

1.6. This area is called the site identity button. If the page has no identity

information, then the button is colored grey, when it is verified and uses

encryption but does not have the information about the owner it is colored

blue and when the page has complete identity information it is colored green.

Figure 1.6: It shows how the color of the identity button changes depending

of the available identity information.

19

It should not be possible to change the color of the site identity button, as

this is the first thing, which makes the user notice that he is using a secure

site. But using only a few lines of code, it is possible to overlay the site

identity button’s background color to make it look identical to the ones used

on secure sites.

Another security feature is the padlock icon, which is shown on secure

sites. Firefox places the icon on the right side of the status bar. There are

no restrictions on the extensions overlaying the skin of the browser. It is

possible to disable the icon with one line of code and add a false icon with a

few more lines, see Figure 1.7.

Figure 1.7: A padlock image is created on the status bar every time an https

page is being loaded.

1.3.4 Stealing saved passwords

Firefox allows users to save passwords in order to make browsing more com-

fortable. Most users are not aware that these passwords are saved to an

encrypted file on the user’s profile folder and that the file that contains

the keys necessary for decrypting these passwords is inside the same folder.

These files can be copied to a new profile folder on another computer and then

viewed using the browsers password manager. An extension is able to read

the contents of these files and send the information to a remote server and

thereby reveal the saved usernames and passwords to a third party. There

is a way to avoid the leakage of passwords by using a master password. If

the user has set a master password, then the files of passwords and keys are

encrypted with another key. When a master password is used, then it must

be entered every time, when the user wants to use the saved passwords. This

20

eliminates the convenience of not entering passwords. For that reason, the

feature of protecting already saved passwords is not widely used. Even if the

user protects his passwords, there is a chance that a compromised extension

is able to read the saved passwords. The compromised extension might read

the keystrokes, find out the master password and send the collected strings

with the encrypted files to a remote server. An extension could also read the

password from the filled forms, that are shown after the master password is

used to access a password protected website. Considering these weaknesses

in the password protection, it is not advised to save passwords. Passwords

that are not protected can be viewed in a few seconds by anyone who is able

to access the computer. Even if the passwords are protected, then there still

remains a threat from the compromised extensions. Disallowing the password

file to be decrypted on other computers would protect the user’s passwords

from being copied. Besides that, Firefox could use the password managers

that are provided by operating systems.

1.3.5 Using Firefox as a botnet

Firefox could be used as a botnet client. Most difficult in creating this kind

of a botnet is installing botnet extensions to thousands of computers. If

this could be done, then the extensions could guide the browser on behalf

of the botnet owner. The extensions could read the instructions from stated

websites. This can be done by using XMLHttpRequest, that queries the con-

tents of a html page without loading it. The received html can be parsed

and instructions can be found. After reading the commands the extension

could start to send spam following the instructions or to start requesting a

certain URL to perform a DoS attack. DoS attack could be done by us-

ing XMLHttpRequest. The website, which is being queried, has to allow

XMLHttpRequests or the results are not returned. If the website does not al-

low XMLHttpRequests, then the requests still go through, making it possible

to clog the website. As the botnet client would run inside the Firefox process,

it would not be found by detecting software. Also, a Firewall would not stop

it because Firefox is allowed to pass it. The botnet client could be optimized

to utilise only a part of the computer’s resources, to remain unnoticed.

21

1.3.6 Risk assessment

Considering the threats we classified them by severity ratings provided by

Mozilla.

• Critical - It is possible to run code with user privileges and without the

user’s knowledge.

• High - Access to confidential data and ability to inject data without

the user’s knowledge.

• Moderate - Access to sensitive information that does not expose the

user or organization to immediate risk.

• Low - Leaks of non-sensitive information.

• DoS - Temporary denial of service attacks that may result in the crash

of the application.

Changing the Keylogger Website Phishing Botnet Faulty

functionalities defacement attacks client extensions

Critical x

High x

Moderate x x

Low x

DoS x

1.4 Ways for compromising Firefox

1.4.1 Cross-Site Scripting

Cross-Site Scripting attacks are a type of injection problem, in which ma-

licious scripts are injected into the otherwise benign and trusted web sites.

Cross-site scripting (XSS) attacks occur when an attacker uses a web appli-

cation to send malicious code, generally in the form of a browser side script,

22

to a different end user [XSS]. According to the presentation of Roberto Suggi

Liverani and Nick Freeman, any input rendered in the chrome is a potential

XSS injection point [LF]. XSS in chrome is privileged code, so there are no

same origin policy restrictions [LF].

The Firebug extension versions prior to 1.04 had vulnerabilities, which

allowed running arbitrary script code in chrome. Firstly, the input passed

to the console.log() function was not properly sanitised and could have

been exploited to execute arbitrary script code within the “chrome”: con-

text by tricking a user into visiting a malicious website. Secondly, results of

the toString method when processing function objects were not properly

sanitised before being used. This could have been exploited to e.g. exe-

cute arbitrary script code within the “chrome:” context by overriding the

toString method with a specially crafted function [Fir].

This means that some extensions may have security holes, allowing a web

page to inject scripts, which could alter the behavior of another web site.

Usually cross-site scripting is restricted by the same origin policy, which

does not allow a script to access the methods and properties of a different

site, but the code loaded from chrome is privileged with no restrictions on

XSS. Because Firefox’s extensions do not run inside a sandbox, it is possible

that an insecure extension could allow an attacker to take control over the

whole computer.

1.4.2 Installing a compromised extension

A third party software or a trusted person is able to install extensions. For

example, the cleaning staff or computer repair team may have access to the

browser. The extension that is installed may camouflage itself and behave as

a well known extension. Very few of the extensions are currently signed, the

user is not able to verify the origin of the installed extension. As a result of

limited identity information the change may stay undetected.

1.4.3 Modifying the installed extensions

We have demonstrated that is possible to modify the functionalities of in-

stalled extensions. An attacker using this property can hide the malware’s

23

code inside the existing extensions. A third party software intended to com-

promise the extensions could be used. The user might detect the third party

software and remove it, but probably would not detect the change in the ex-

tensions directory. Such an attack vector would compromise the computer,

mislead the user and leave the threat undetected. As the malware has become

a part of the browser, the detection programs will not find the infection.

1.5 Solutions

The easiest solution for these problems is to use the browser in safe mode.

Namely, when Firefox is started in safe mode, it disables all extensions and

thus there is no threat from the extensions. But that approach would destroy

the current functionalities provided by the extensions. This solution would

provide security only to a fraction of users, as most are not aware of the

threats posed by extensions.

If leaving aside the safe mode, the current extension model needs to be

made safer. The survey of Firefox extension API use by Adrienne Porter Felt

showed that extensions use too powerful APIs [Fel09]. These APIs provide

access to file system and the possibility to execute files. This kind of behavior

is required by a minority of extensions. Thus, the extensions have access to

the APIs, which they do not need to use. Currently, it is not possible to

allow an extension only partial API access. To give the extensions lowest

possible privileges, current APIs would have to be redesigned.

It should not be possible to change the functionalities of already installed

extensions. One solution would be to create a hash for every extension hosted

on the official Mozilla’s extensions website. Every extension would include a

hash code, which would be compared to a corresponding hash in the Mozilla’s

server every time the browser is started. A secure protocol would be used to

compare the hashes. This solution would make the startup of the browser

a bit slower but would compensate it by guaranteeing that the extensions

downloaded from the official website can not be modified.

Extensions should not have the right to modify the content of an https

page. Users should always feel safe when browsing trusted and encrypted

web sites. The API should not allow the modification of DOM on sites that

24

are using https. The downside of this would be the impossibility to use

extensions that modify DOM for blocking advertisements, as they are also a

part of the content of the page. This is a sacrifice the users would have to

make in order to receive the guaranteed content.

25

Chapter 2

Google Chrome

Extension support for Windows platform was added to Google Chrome in

version 4.0. At the same time, extensions were enabled for Linux and since

version 5.0.307.7 extensions are available for Mac OS X 10.5 or newer re-

leases. In this chapter we analyse the extension model of Google Chrome

version 5.0.356. The analysis is applicable for all Google Chrome versions

that support extensions.

2.1 Overview of the extensions

Extensions are small programs that can modify and enhance the functional-

ity of Google Chrome. They can be written using technologies like HTML,

JavaScript, and CSS. Extensions are essentially web pages, and thus they

can use all the APIs that the browser provides to web pages, for example

XMLHttpRequest, JSON and HTML5 local storage. Extensions are allowed to

modify the user interface of Google Chrome by using browser actions or page

actions. Browser actions allow to put icons in the main Google Chrome tool-

bar. Page actions allow to put icons inside the address bar. Page actions

represent actions that can be run on the current page, but that are not appli-

cable to all pages. Extensions can interact with some browser features, such

as bookmarks and tabs. They can also interact with web pages or servers by

using content scripts or cross-origin XMLHttpRequests [GCO]. Extension’s

security architecture differs from the architecture of the plugins. Plugins are

26

written using Netscape Plugin Application Programming Interface (NPAPI),

which is a cross-browser API for plugins. Each plugin is a binary that runs

in its own process, but the process is not sandboxed. This is because plugins

need to access the operating system. Google Chrome also supports binary

extensions. A NPAPI plugin can be bundled into an extension, which allows

to call into native binary code from JavaScript. Code running in an NPAPI

plugin has the full permissions of the current user and is not sandboxed or

shielded from malicious input by Google Chrome in any way [GCN].

2.2 High-level architecture

Until recently, web browsers could be compared to single-user, co-operatively

multi-tasked operating systems. In such an operating system a poorly de-

signed application or a hung process could bring the whole system to a halt.

Web browsers that use a single-process architecture face the same problems.

If a web browser runs all of its components in one process, then the crash

of one component can cause the crash of the whole browser. A misbehaving

web page, extension or a plugin can take down the entire browser and thus

all of the running tabs [GCA]. Google Chrome uses separate processes for

browser tabs to protect the overall application from bugs and glitches in the

rendering engine. It also restricts access from each rendering engine process

to other rendering engine processes and to the rest of the system. This brings

to web browsing the benefits similar to memory protection and access control

in operating systems.

A main process controls all other processes. This process runs the user

interface and manages the extension, plugin and rendering processes, see Fig-

ure 2.1. By default, each instance of a web page runs in its own renderer

process, which guarantees that web page is not able to modify the way an-

other web page behaves. Different subdomains are considered as a part of

the same web page to allow JavaScript access between the subdomains as

defined in the Same Origin Policy, see [GCP]. The number of renderer pro-

cesses is limited by the computer’s resources, the average limit is 20. If the

limit is reached then every succeeding tab will share a process with a ran-

domly chosen renderer process. This behavior somewhat weakens the process

27

separation model, but the impact is not severe as the shared process will be

chosen randomly. The process limit can be avoided if a limited number of

tabs is used.

Chromium’s rendering engines are executed within a sandboxed process,

thus limiting access to the user’s computer. These sandboxed processes do

not have direct access to the user’s filesystem, display, or most other re-

sources. Therefore, if a rendering process gets compromised, it cannot com-

promise the computer. The sandboxed renderers can gain access to permitted

resources only through the browser process, which can impose security poli-

cies on this access. As a result, Chromium’s browser process can mitigate

the damage that an exploited rendering engine can do [GCP].

Figure 2.1: Google Chrome’s main process manages the other processes.

2.3 The security architecture of extensions

The security architecture gives to the extensions minimal required privileges

and restricts access to the file system. The idea is to limit the possible exploits

of an extension’s design that would allow a web page to take over the browser.

More precisely, every extension runs in a separate operating system process.

Such a process is isolated from the other operating system processes and

thus an extension cannot compromise the browser’s kernel. As every web

page runs in a sandboxed process, it is not easy for a malicious web site to

compromise an extension. Besides that, every extension contains a manifest

file named manifest.json which describes the extension’s privileges. This

28

file is located in the user’s extensions folder and is therefore accessible without

administrative privileges. It is not digitally signed and thus can be modified.

The manifest file defines with which web sites the extension is allowed to

interact. The limited privileges will not allow an attacker to exploit the

security holes of an extension to access content it was not meant to use.

Every extension is divided into two basic blocks: content scripts and a

background page. Content scripts are files that run JavaScript in the context

of web pages. Background page is an invisible HTML page that runs in the

extension process and holds the main logic of the extension. For example, it

may contain a long-running script to manage some task or state, for further

details see [GCB]. In addition to a background page, an extension may

contain other HTML pages, for example a browser action can contain a

popup that is implemented by a HTML page.

The division into content scripts and background page is done to achieve

further privilege separation. Content scripts are allowed to interact di-

rectly with the web pages and to modify the DOM, but they cannot use

most of chrome.* APIs. In addition, content scripts cannot make cross-site

XMLHttpRequests and cannot use the variables or functions defined by web

pages, by other content scripts or extension pages. A content script that is

injected into a web page is not able to see any other JavaScript executing

on that page. The reverse also holds, JavaScript running on the same web

page cannot call any functions or access any variables defined by the content

script [GCC].

Background pages can use the chrome.* APIs, but are not allowed to

directly contact the web pages. Content script needs to communicate with

the background page in order to ask it to use the privileged APIs. Commu-

nication between extensions and content scrips is implemented by message

passing, see Figure 2.2. There is an API that provides the message pass-

ing capabilities. This implementation limits the content scripts privileges

while maintaining the functionalities of the extensions [GCM]. For example,

a content script is able to collect data from the DOM, but it needs to ask

the background page to use XMLHttpRequest to send this data to a remote

server.

Every extension package is forced to be signed by the creator and for that

29

a unique key pair is assigned as the extension is packaged. This is done in

order to guarantee secure update process. A new version of the extension

must be signed with the assigned private key. Every extension contains an

update URL and the assigned public key in a manifest file, which is used to

verify the origin of the update. For that reason the update can be received

via an insecure connection. When Google Chrome checks for updates, it

will request a XML document from the update URL and make sure whether

the document refers to a newer version of the extension. If a newer version

is available, then the browser will download it and check if the extension

package is signed with the same private key as the current extension. If

the signature is correct, then the installation of the update will succeed.

However, this approach will not protect the installed extensions from being

modified. Thus, having access to the user’s profile folder will allow replacing

the update URL and the corresponding public key.

Figure 2.2: Content scripts and the background page communicate via mes-

sage passing.

2.3.1 Chrome’s memory space

In Google Chrome the memory of browser kernel, web pages, extensions and

plugins is isolated. The isolation is achieved through the use of different

processes, which are natively isolated from each other. The communication

between different processes is done by message passing. Every extension runs

in its own process and is therefore protected from other extensions. Thus,

30

almost all of the extension’s code is separated from other processes, with the

exception of user scripts, which run in whichever renderers they apply to. The

extension process can be considered as a special type of renderer that controls

rendering of the various pieces of user interface, that an extension wishes to

add to the browser. The extension process is not able to interact with the

web page content directly, it has to inject user scripts into a web page and

then communicate with these scripts [GCE]. This means that the extension

is isolated from web content and cannot directly access the functions and

variables of a web page, therefore it is protecting itself from threats. An

extension is not able to directly access the variables or functions of another

process, including the main browser process. Thus, if an extension gets

hijacked, it cannot modify the way the browser or other extensions function.

2.3.2 Google Chrome’s code space

Google Chrome’s code space is not protected. It is possible to modify exten-

sion files and the preference files. These files are located in Google Chrome’s

user profile folder and thus accessing and modifying them does not require

administrative rights. We tested the possibility to overwrite the preferences

file and the extension files and found out that it was possible. Additional

content can be injected into the extension files, but to make all the changes

work the preferences file has to be modified first. This is because the pref-

erences file contains the copies of extension manifests and if the extension’s

manifest file was modified the preferences have to be changed similarly. In

order to modify the preferences file, the browser must not be running or the

default state will be restored after the browser is closed. Overwriting these

files and thus changing the functionality of the extensions required only user

privileges. Therefore, a third party application, which is running with lim-

ited privileges is able to change the functionalities of an already installed

extensions.

31

2.4 Attack scenarios

2.4.1 Creating a keylogger

As Google Chrome’s extensions can use content scripts, it is trivial to write

a keylogger. In order to create a keylogger it should be possible to access

the user profile folder, which does not require administrative privileges. A

content script needs to listen for keystokes and save them. In order to do

that, special rights must be given to the content script in the manifest file,

to allow the content script to be injected into every web page. Because the

content script cannot use XMLHttpRequest to send data to a remote server,

it has to delegate the task to the background page. Message passing will

allow to send the saved keystrokes to the background page, which is able to

send the data to a remote server. We created this kind of a keylogger and

found out that the code can be copied into an already installed extension.

This can be dangerous, as the user will not be able to detect the change.

The code can be injected by a third party application or by someone who

has brief access to the computer.

2.4.2 Man in the browser attack

This attack is feasible if a compromised JavaScript can be installed to the

browser. This attack is based on the possibility to actively modify https

pages via DOM interface. As a result, a malicious extension could manipu-

late a bank’s web site or the web site of an e-mail service provider. First, the

extension would have to recognize the web page it will attack. This can be

done as the extension can query the URL of a web page. The attack would

begin when the user navigates to a https page listed in the extension. The

extension would already know the structure of these web pages. Thus, it

could recognize a frame or a web page, where user is required to fill forms.

In that page or frame the extension could inject an additional function to the

send button and collect and replace the data entered into the forms when the

send button is pressed. Thus, the extension could modify the DOM after the

modifications send the data to the server. The modification in the function-

alities of the send button is invisible to the user as the visible user interface

32

does not change. To test our claim, we created an extension, which was able

to inject code into a https page and modify its DOM. The attacking extension

might also replace the DOM of the result page, but that might create a flicker

on the screen. A flicker might be noticeable because Google Chrome does

not support DOMContentLoaded event the way Firefox does. Namely, Google

Chrome may load images before the DOMContentLoaded event is fired.

Contrary to Firefox, it is possible to disable extensions in Google Chrome

during a browsing session. This can be done due to the isolated memory

of Chrome. For example, a button could be added to the user interface,

which would disable all extensions on the current web site. Chrome already

provides the possibility to choose on which web sites plugins are allowed and

this could also be extended to extensions. Currently it is possible to disable

one extension at a time from the extension manager, but not all extensions.

Also, it should be possible to create a list of web pages on which extensions

are automatically disabled, thereby guaranteeing the integrity of the web

page.

2.4.3 Using Google Chrome as a botnet

A Google Chrome’s extension could be used as a botnet client. The imple-

mentation would be a bit more difficult than in Firefox due to the content

script’s restrictions, but in principal the same. An extension could read the

commands from fixed web sites and then send spam by exploiting the possi-

bilities of XMLHttpRequest.

2.4.4 Risk assessment

• Critical - It is possible to run code with user privileges and without the

user’s knowledge.

• High - Access to confidential data and ability to inject data without

the user’s knowledge.

• Moderate - Access to sensitive information that does not expose the

user or organization to immediate risk.

33

• Low - Leaks of non-sensitive information.

• DoS - Temporary denial of service attacks that may result in the crash

of the application.

Critical High Moderate Low DoS

Changing the functionalities x

JavaScript keylogger x

Man in the browser attack x

Botnet client x

Faulty extensions x

2.5 Ways for compromising Google Chrome

2.5.1 Installing a compromised extension

The easiest way to compromise the browser is to trick the user into installing

a compromised extension. This risk can be limited by providing signed and

verified extensions, but it is not possible to protect the user from third party

extensions that are not hosted in the Google’s extension gallery. Extensions

that have a binary NPAPI component are thoroughly tested by Google be-

fore they are allowed into the extensions gallery. This is necessary as binary

component are not sandboxed and have access to the file system. For that

reason, Google Chrome notifies the user about the potential security risk

when a binary extension is being installed. However, it is not possible to

protect the user after a malicious binary extension has been installed. In-

stalling an unknown binary extension is considered to be the user’s risk.

2.5.2 Modifying the installed extensions

It is possible to modify the source code of an installed JavaScript extension.

This makes it possible to hide malicious extensions from the user as they can

live inside another extension. The injected code will not break the original

34

functionalities of the extension, which guarantees that the user will not notice

the change. Thus a third party application can add code to already existing

extensions in order to hide it’s behavior.

2.6 Solutions

Currently, there is no option on the user interface to disable all extensions

on certain web sites. This would be an important option, as the user could

be guaranteed that an extension has not changed the integrity of a web page.

There is a possibility to turn off the extensions by running Google Chrome

with the flag --disable-extensions, but this approach is not acceptable

for an average user.

Google Chrome does not notify the user, when an extension’s source

code has been modified and this allows the malicious code to be hidden.

Furthermore, it should not be possible to unnoticeably change the privileges

of an extension by modifying the manifest file. These vulnerabilities could be

disabled by digitally signing the extension’s files. The signature would have

to be recalculated every time an update is received, as it is the only time when

the extension’s files are modified. This would be computationally feasible.

Another solution would be to use a hash function to protect the whole code

tree. Hash function SHA-256 would be sufficient for the task. The code tree

could be hierarchically hashed and the top hash kept in a protected location,

which would be accessible only with administrative privileges.

Figure 2.3: Hierarchically hashed code space.

35

Chapter 3

Internet Explorer 8

Internet Explorer is a closed source browser that is developed by Microsoft.

The browser is built only for the Microsoft Windows operating systems. As

of April 2010, Internet Explorer holds 59.95% of web browsers market share

according to Net Applications, making it the most popular web browser [IES].

The statistics by Net Applications includes mobile browsing and is gathered

from a network of 40000 web sites over the world.

3.1 Overview of the extensions

Browser extensions, which were introduced in Microsoft Internet Explorer

5, allow to add functionality to the browser. Furthermore, extensions can

modify the user interface in a way that is not directly related to the viewable

content of web pages. The extensibility of the browser makes it possible for

the users to shape the browser according to their needs, for further details

see [IEE].

Internet Explorer’s extensions can be divided into the categories of browser

extensions and content extensions. Browser extensions can be used to add

additional functionality to the browser’s content. It includes features such

as shortcut menu extensions, custom toolbars, Explorer Bars, and Browser

Helper Objects (BHOs). Content extensions are used to extend the types of

content that can be parsed and displayed. ActiveX Controls and active docu-

ments are a part of content extensions [IEA]. For example, ActiveX Controls

36

are used for running Flash and Microsoft Silverlight in Internet Explorer.

With BHOs it is possible to write components, that Internet Explorer

will load each time it starts up. Specifically, these components are in-process

Component Object Model (COM) components. These objects run in the

same memory context as the browser and can perform any action on the

available windows and modules. Such actions include detecting the browser’s

typical events like GoBack, GoForward and DocumentComplete; accessing

the browser’s menus and toolbars and modifying them [IEE]. Additionally,

a Browser Helper Object can create windows on the currently viewed page

and install hooks to monitor messages and actions [IEE]. This means that

it can modify the functionality of the browser by adding binary components.

A Browser Helper Object is a dll module that runs within Internet Explorer

and offers additional services.

ActiveX controls can be embedded into a web page and used as an ap-

plication. ActiveX control has full access to the operating system and thus

it can be used to spread malware. A web page can initialize the installation

process of the ActiveX control, which is a potential security threat. This is

called a Drive-By-Download. A page may ask the user to install a malware

extension by claiming it to be an useful plugin and trick the user to install it.

If the browser is running in protected mode then the installation will prompt

the user with a request to use administrator privileges.

3.2 High-level architecture

Internet Explorer architecture is based on a Component Object Model, a

binary-interface standard for software componentry introduced by Microsoft

in 1993. According to Microsoft Developer Network library the architecture

of Internet Explorer is divided into six modules [IEA].

• IExplore.exe is a small application that relies on the other main

components of Internet Explorer to do the work of rendering, nav-

igation, protocol implementation, and so on.

37

• Browsui.dll is responsible for the user interface. This includes

the address bar, status bar, menus, and so on.

• Shdocvw.dll exposes ActiveX Control interfaces, provides nav-

igation functionality and history functionality. This component

can provide all the functionalities of the Internet Explorer except

the user interface.

• Mshtml.dll contains the Trident rendering engine. It is responsi-

ble for displaying web pages and handling the DOM.

• Urlmon.dll is responsible for handling Multipurpose Internet Mail

Extensions (MIME) and download of web content.

• WinInet.dll handles all network communication over HTTP,

HTTPS and FTP.

In previous Internet Explorer versions tabs, BHOs, ActiveX controls and

toolbar extensions were running in the same process as the browser window.

This caused crashes and security problems as the memory space was shared.

Loosely-coupled Internet Explorer (LCIE) architecture was introduced in In-

ternet Explorer 8, see Figure 3.1. This architecture isolates the browser’s

frame and its tabs into different processes and allows to use The Windows

Vista Integrity Mechanism on a per-process basis. This means that it is pos-

sible to run tabs in a protected mode, while allowing exceptions. Therefore,

tabs can be run with different mandatory integrity levels (MIC) inside the

same browser window. Additionally, the browser kernel is isolated from the

tab processes, which execute scripts and extensions, therefore providing ad-

ditional protection for the browser kernel. The protected mode is designed to

prohibit write privileges but the confidentiality of the file system is not pro-

tected, as read access is not restricted. This also holds for Internet Explorer

7. By default, the possible number of Internet Explorer’s processes is limited

by the amount of available physical memory. Once the limit is reached then

the new tabs are forced to share a process with an already existing tab. The

limit may be changed manually by editing the value of TabProcGrowth in

the Windows registry. When compared to Google Chrome, which fixes a

process limit depending on the available physical memory, Internet Explorer

38

determines when its tabs will share a process by using a context-based al-

gorithm. This algorithm uses the amount of installed physical memory to

calculate a pattern, which is used for creating new processes. Therefore, tabs

in Internet Explorer may share a process before the process limit is reached.

Figure 3.1: Loosely-coupled Internet Explorer architecture.

3.3 The security architecture of extensions

The core of the security architecture is based on the functionalities of Win-

dows Vista or newer versions of Windows. The architecture is based on

privilege separation and the ability to create processes with lower privileges.

It allows to run the browser with limited rights, which protects the com-

puter if the browser gets compromised. This approach is necessary, as the

extensions run with the same privileges as the browser.

In Windows Vista, IE 7 and IE8 run in protected mode, which helps

protect users from attack by running the Internet Explorer process with

greatly restricted privileges. Protected mode significantly reduces the ability

of an attacker to write, alter or destroy data on the user’s machine or to

39

install malicious code [SB]. Protected mode uses the Windows Vista integrity

mechanism to run the Internet Explorer process at low integrity [SB].

Thus, if the browser or a tab runs in a protected mode a malicious ex-

tension does not have write access to the data on the file system that has a

higher integrity level. By default, all files and registry entries have medium

integrity level and thus Internet Explorer in protected mode does not have

write access to them. However, the protected mode does not deny read ac-

cess and because of that a malicious extension would still be able to read

the data with a higher integrity level. This could lead to a security breach,

as a malicious extension could gather sensitive information and send it to a

remote server.

The majority of the extensions are digitally signed, which guarantees that

the updates are not tampered with and come from an authentic source.

3.3.1 Internet Explorer’s memory space

Internet Explorer does not create new processes for extensions and plugins.

Extensions are loaded as the browser starts, but they run in the process

from which they are called. The level of memory isolation depends on the

amount of created tabs as the number of new processes is limited. As the

number of tabs grows, new web pages are forced to share the process with

other web pages. Thus, the extension called from shared memory space will

have direct access to the other web sites in that process. This is somewhat

different from Google Chrome’s behavior, as Chrome runs each extension in

a different process. In Internet Explorer an extension that runs in a shared

process is not able to directly access web pages that are located in other

processes. However, in Google Chrome an extension with proper privileges

may inject scripts to every open web site.

A low privilege process cannot compromise a higher privilege process.

This is achieved by User Interface Privilege Isolation (UIPI), which prevents

lower privilege processes from accessing higher privilege processes by block-

ing possibly dangerous behavior [UIP]. For example, it is not possible to

SendMessage or PostMessage to higher privilege application windows. This

is disabled because window messages cover a wide range of information and

40

requests, including messages for mouse and keyboard input, dialog box input

and window creation and management [UIP]. Also, using hooks to attach

to a higher privilege process or to monitor a higher privilege process is not

allowed. These restrictions are used to protect the privileged applications

as a lower privileged process may not listen or modify their behavior. In

addition, a low privilege process cannot perform DLL injection to a higher

privilege process, as it would allow the lower privilege process to run code

with higher privileges.

3.3.2 Internet Explorer’s code space

Internet Explorer that is running in Windows Vista or a newer Windows

platform is by default running in protected mode. Thus, IE has write access

only to low integrity objects. These include the cookies folder, history folder,

temporary files folder and favorites folder. An extension that runs in pro-

tected mode can write only to certain subfolders of the previously mentioned

low integrity objects. For example, an extension can write to Temp\Low and

Cookies\Low. With those restrictions extensions are not able to write to sys-

tem locations such as the Program Files folder ,HKEY CLASSES ROOT or

HKEY LOCAL MACHINE subtrees. Also, extensions that try to gain write access

to the Internet Explorer binary files will receive access denied errors [SB].

Thus, extensions that run in protected mode are not able to compromise the

IE code space. Thereby, comparing to Firefox and Google Chrome, Inter-

net Explorer running in protected mode is able to prevent extensions from

modifying the code space.

3.4 Attack scenarios

3.4.1 Creating a keylogger

It is possible to write a BHO that logs keystrokes and monitors user’s be-

havior. By doing a quick search on Internet, we found several downloadable

BHO keyloggers and tutorials for creating them. As Internet Explorer does

not have a simple JavaScript based extension system it is somewhat harder

41

to write a simple keylogger. For example, a BHO could save user’s keystrokes

in a temporary file that is accessible from the browser. The collected data

could be sent to a remote server, when enough information has been saved.

While it was possible for the user to read the source code of the Firefox’s

and Google Chrome’s JavaScript extensions, it is not possible in Internet

Explorer because the user has access to a compiled binary file. Thus, the

user cannot verify the functionalities of the BHO.

3.4.2 Website defacement

Website defacement cannot be done in an invisible way, like it is possible in

Firefox. In Firefox, JavaScript can interact with the DOM before the web

page has been displayed. In Internet Explorer, the state when the DOM has

been loaded but is not displayed cannot be detected, see Figure 3.2. That is

not possible because the scripts and media in Internet Explorer are loaded as

they are downloaded and do not wait until the DOM is finished. Thus a web

page would have to be loaded in order to modify the DOM and the user could

notice it. Besides that, to manipulate the DOM a binary plugin (BHO) would

have to written, which is more complex than writing a JavaScript extension.

Therefore the original DOM cannot be replaced by trivial methods.

Figure 3.2: This scheme shows how a web page is being loaded.

3.4.3 Man in the browser attack

Website defacement is feasible only if invisible elements are modified. Man in

the browser attack is an example of such a website defacement. This attack

is feasible if a compromised BHO can be installed on the computer. Thus,

42

a previous infection is probably required for this attack to succeed. Man in

the Browser attack is similar to a man-in-the-middle attack but in this case

the malware is running inside the browser. A BHO is able to modify the

communication between the user and the server by replacing some parts in

DOM before a data packet is sent to the server.

For example, the compromised BHO could manipulate the information

in Internet banking transactions. The BHO contains a list of URL-s that

are being targeted and it compares these URL-s with the ones that the user

visits. The attack is initialized when the user navigates to a web page that is

in the targets list. The extension already knows the structure of the bank’s

web page and is able to recognize the transactions page. In the transactions

page the extension collects the data from the forms, as the send button is

clicked and replaces it in DOM. After the DOM is changed the extension calls

the function, which sends the modified information to the bank. For these

steps the functionality of the send button is changed by adding an additional

function to the DOM, when the transactions page has been loaded. This is

invisible to the user, as the visible user interface does not change. When the

bank sends a reply to confirm the transaction the extension replaces the false

data with the correct data in the reply’s DOM. The latter may be noticed by

the user, as the modification of the DOM might leave a flicker on the screen.

However, it is not likely that the user will understand what the flicker meant.

This attack is possible because the BHO is able to access and modify the

DOM of the web pages. It is also hard to avoid because the user passes all

the security checks before the transmission data is sent to the bank.

3.4.4 Risk assessment

• Critical - It is possible to run code with user privileges and without the

user’s knowledge.

• High - Access to confidential data and ability to inject data without

the user’s knowledge.

• Moderate - Access to sensitive information that does not expose the

user or organization to immediate risk.

43

• Low - Leaks of non-sensitive information.

• DoS - Temporary denial of service attacks that may result in the crash

of the application.

Drive by Installing a Man in the browser Faulty

downloads compromised binary attack extensions

Critical x x

High x

Moderate

Low

DoS x

3.5 Ways for compromising Internet Expolorer

3.5.1 Installing a compromised extension

The risk of installing an unknown BHO or an ActiveX control equals the

risk of running an executable file. Thus, before installing an ActiveX control

the user should be warned of the threats. A compromised ActiveX could

be accidentally installed when a web site is initiating an installation. Also,

an ActiveX control may have security flaws that could allow the computer

to be compromised. For example, in July 2009 MPEG2TuneRequest ActiveX

control in msvidctl.dll in DirectShow allowed remote attackers to execute

arbitrary code via a crafted web page [CVE]. This was possible because

the msvidctl.dll contained a design flaw, which allowed stack-based buffer

overflow in the CComVariant::ReadFromStream function in the Active Tem-

plate Library (ATL) to be used to execute arbitrary code [CVE].

Many popular BHO extensions are not hosted on the official extensions

web site. These extensions are created by third party developers who might

have added malware to the BHO. For example, the user would probably not

notice a keylogger inside a binary that blocks advertisement.

44

3.6 Solutions

Currently, the security architecture does not prevent a compromised exten-

sion from reading the data on the file system and sending this data to a

remote server. The extensions should not have read access to random files

on the file system. A solution for this would be to limit the read access and

force the extension to ask read access only to a specific location, when the

extension is installed. The extensions could have a file containing a list of

locations with read access and the user would see the list while the extension

is being installed.

A protection against threats arising from extensions can be achieved by

running Internet Explorer with all extensions disabled. Internet Explorer

will start without extensions if the user runs iexplore -extoff. With this

approach extensions are not loaded as the browser starts. If the browser was

started in normal mode, then the extensions are loaded, but they can be

disabled from the add-ons manager, which is located in the tools menu.

45

Conclusive comparison

One of the biggest differences between these browsers is the fact that Google

Chrome and Firefox are built on open source code, while Internet Explorer’s

source code is not available. Therefore, the community of developers and

enthusiast are able to find security holes in Google Chrome and Firefox. As

Internet Explorer is based on closed source, it may hide security holes, which

the community is not able to find. When a severe vulnerability is found

in a browser, then usually a fast fix is provided in the next update. All

three browsers behave similarly when downloading updates for extensions.

The update is digitally signed and thus cannot be tampered with. However,

Google Chrome and Firefox get updates for their extensions from sources that

are defined by the extensions. Updateable extensions contain a manifest file

with an update URL and a public key, but the manifest file is not protected

from being modified. Thus, if the computer is already compromised, then

it is possible to change the source of the updates and replace the existing

public key, which is used for authenticating the update.

Memory space

When comparing the three browsers, Firefox is the only one without isolated

memory. Google Chrome and Internet Explorer both use additional processes

for rendering web content. They also isolate the browser’s kernel from the

extensions and web content, thereby protecting it from being compromised.

Contrary to Google Chrome and Internet Explorer, Firefox could be com-

promised by a malicious extension or by a specially crafted web page. As

Firefox currently follows a single process model, extensions are able to access

and modify the stack of a random thread inside the process. Firefox does

46

not provide any isolation between extensions as an extension is able to mod-

ify the functionality of other extensions. In order to enhance security and

performance, a multi-process version of Firefox is currently being developed.

Code space

The architecture of Google Chrome’s extensions prevents a non-binary ex-

tension from accessing file system. Also, the sandboxed rendering processes

are denied read and write access to the file system. Internet Explorer sets

similar restrictions with the exception that read access is allowed. This priv-

ilege could lead to a leak of sensitive data if a browser containing malicious

extension is used for browsing. Unlike Google Chrome and Internet Explorer,

Firefox’s architecture gives JavaScript extensions read and write access to the

file system. Thus, a JavaScript extension is able to collect sensitive data from

the hard drive and publish it. Neither Firefox nor Google Chrome guaran-

tee that an already installed extension’s source files are not tampered with.

Both browsers are not able to detect an injection of a keylogger script into

installed extensions. Moreover, such an extension’s original functionalities

remain intact, therefore not giving the user a reason for getting suspicious.

47

Brauseri laienduste

turvaanalüüs

Kristjan Krips

Bakalaureusetöö (6 EAP)

Kokkuvõte

Paljud tänapäevased brauserid võimaldavad funktsionaalsuse lisamist või

muutmist laienduste kaudu. Rohkete võimaluste tõttu on laiendused muu-

tunud kasutajate hulgas populaarseks ja see on toonud kaasa uued ründevek-

torid, mis ohustavad kasutajate turvalisust. Töös analüüsime populaarsemate

veebibrauserite laienduste turvaarhitektuuri. Vaatleme Firefox 3.6, Google

Chrome 5.0.360 ja Internet Explorer 8 laienduste ehitust ja nende turval-

isust. Töö annab ülevaate vastavate brauserite laienduste arhitektuurilisest

turvalisusest ja kirjeldab võimalikke ründevektoreid. Selgitame, kuidas on

vastavate veebibrauserite koodiruum ja mälu kaitstud ja teeme kindlaks mis-

suguseid õiguseid brauserite laiendused omavad. Uurime, kuidas on prae-

gust laienduste arhitektuuri kasutades võimalik brausereid kompromiteerida

ja kirjeldame sellega kaasnevaid riske. Selleks demonstreerime laiendusi, mis

kompromiteerivad brauseri, näitamaks olemasoleva arhitektuuri puudujääke.

Näitame erinevaid ründevektoreid ja kirjeldame nendele vastavaid ründest-

senaariumeid. Töö tulemusena selguvad brauserite laienduste turvaarhitek-

tuuri nõrkused. Nende leevendamiseks pakume välja lahendusi, mis paran-

davad turvaarhitektuuri. Töö tulemusena on võimalik brauserite kasutajaid

informeerida olemasolevatest ohtudest ja teadvustada turvalisuse olulisusest.

48

Glossary

BHOs Browser Helper Objects are DLL modules designed for extending

Internet Explorer’s functionalities. Pages 36, 37, 38, 41, 42,

43, 44

COM Component Object Model is an architecture, allowing applications

to be built from binary software components. Page 37

CSS Cascading Style Sheets are used by Firefox’s and Google Chrome’s

extensions for creating browser themes. Page 26

DOM Document Object Model is a platform- and language-neutral inter-

face that allows programs and scripts to dynamically access

and update the content, structure and style of documents.

Pages 8, 15, 16, 18, 24, 29, 32, 33, 38, 42, 43

DoS Denial of Service is a type of an attack, which attempts to

make a computer resource unavailable to its intended users.

Pages 21, 22, 34, 44

Gecko An open source layout engine used in Mozilla Firefox.

Pages 6, 7, 14

JavaXPCOM A technology, which enables simple interoperation between

XPCOM and Java. Page 8

49

LCIE Loosely-coupled Internet Explorer architecture isolates Internet

Explorer’s frame and its tabs into different processes. Page 38

MIC Mandatory Integrity Control is a security feature introduced in

Windows Vista, which adds integrity levels to processes. Page 38

NPAPI Netscape Plugin Application Programming Interface is a cross-

platform plugin architecture used in Firefox and Google Chrome.

Pages 27, 34

NSPR Netscape Portable Runtime provides platform independence for

threads, thread synchronization, file and network I/O and basic

memory management. Page 11

PyXPCOM A technology, which enables simple interoperation between

XPCOM and Python. Page 8

UIPI User Interface Privilege Isolation is a security feature that

was introduced in Windows Vista. It is used to prevent lower

privilege processes from accessing higher privilege processes.

Page 40

XPCOM A cross platform component object model that is used in Firefox.

Pages 7, 8, 10, 12

XPConnect A technology, which enables simple interoperation between

XPCOM and JavaScript. Pages 7, 8

XSS Cross-Site Scripting is a type of an attack, which allows

an attacker to inject unwanted code into a web site. Pages 22, 23

XUL XML User Interface Language, which is used in Firefox. Page 8

50

Bibliography

[BFSB09] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and

Aaron Boodman. Protecting Browsers from Extension Vul-

nerabilities. Technical Report UCB/EECS-2009-185, EECS

Department, University of California, Berkeley, December

2009. Available from http://www.eecs.berkeley.edu/Pubs/

TechRpts/2009/EECS-2009-185.html.

[Bin] Language Bindings. http://mdn.beonex.com/en/XPCOM/

Language_Bindings. Last checked on 15 May 2010.

[Blo] Extensions blocklist. http://kb.mozillazine.org/

Extensions.blocklist.enabled. Last checked on 1 May

2010.

[BMS] Browser market share. http://marketshare.hitslink.com/

browser-market-share.aspx?qprid=0&qpcal=1&qpstick=1.

Last checked on 29 April 2010.

[CVE] Cve-2008-0015. http://www.cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2008-0015. Last checked on 23 April 2010.

[eva] Components.utils.evalinsandbox. https://developer.mozilla.

org/en/Components.utils.evalInSandbox. Last checked on 25

March 2010.

[Fel09] Adrienne Porter Felt. A Survey of Firefox Extension API

Use. Technical Report UCB/EECS-2009-139, EECS Depart-

ment, University of California, Berkeley, October 2009. Avail-

51

able from http://www.eecs.berkeley.edu/Pubs/TechRpts/

2009/EECS-2009-139.html.

[Fir] Mozilla firefox firebug extension two cross-context scripting vul-

nerabilities. http://secunia.com/advisories/24743/. Last

checked on 2 November 2009.

[GCA] Multi-process architecture. http://dev.

chromium.org/developers/design-documents/

multi-process-architecture. Last checked on 2 April

2010.

[GCB] Background pages. http://code.google.com/chrome/

extensions/background_pages.html. Last checked on 3

April 2010.

[GCC] Content scripts. http://code.google.com/chrome/

extensions/content_scripts.html. Last checked on 3

April 2010.

[GCE] Extension process model. http://www.chromium.org/

developers/design-documents/extensions/process-model.

Last checked on 3 April 2010.

[GCM] Message passing. http://code.google.com/chrome/

extensions/messaging.html. Last checked on 3 April 2010.

[GCN] Npapi plugins. http://code.google.com/chrome/extensions/

npapi.html. Last checked on 2 April 2010.

[GCO] Google chrome extensions overview. http://code.google.com/

chrome/extensions/overview.html. Last checked on 2 April

2010.

[GCP] Process models. http://www.chromium.org/developers/

design-documents/process-models. Last checked on 3 April

2010.

52

[Gec] Gecko-specific dom events. https://developer.mozilla.org/

en/Gecko-Specific_DOM_Events. Last checked on 2 November

2009.

[HAS] Extension versioning, update and compatibility. https:

//developer.mozilla.org/en/Extension_Versioning,

_Update_and_Compatibility. Last checked on 1 May 2010.

[IEA] Internet explorer architecture. http://msdn.microsoft.com/

en-us/library/aa741312.aspx. Last checked on 10 April 2010.

[IEE] Browser extensions. http://msdn.microsoft.com/en-us/

library/aa753587(VS.85).aspx. Last checked on 10 April 2010.

[IES] Browser market share. http://marketshare.hitslink.com/

browser-market-share.aspx?qprid=0&qpcal=1&qpstick=1.

Last checked on 1 May 2010.

[LF] Roberto Suggi Liverani and Nick Freeman. Abusing Firefox Ex-

tensions. Available from http://www.defcon.org/images/

defcon-17/dc-17-presentations/defcon-17-roberto_

liverani-nick_freeman-abusing_firefox.pdf. Last checked

on 2 November 2010.

[Nig] Johnathan Nightingale. Component directory

lockdown. Available from https://developer.

mozilla.org/devnews/index.php/2009/11/16/

component-directory-lockdown-new-in-firefox-3-6/.

Last checked on 1 May 2010.

[nsI] nsithread. https://developer.mozilla.org/en/nsIThread.

Last checked on 15 May 2010.

[NSPa] Introduction to nspr. https://developer.mozilla.org/en/

NSPR_API_Reference/Introduction_to_NSPR. Last checked on

1 April 2010.

53

[NSPb] Nspr 4.8.3 release. http://www.mozilla.org/projects/nspr/

release-notes/nspr31.html. Last checked on 1 April 2010.

[Saf] Safely accessing content dom from chrome. https:

//developer.mozilla.org/en/Safely_accessing_content_

DOM_from_chrome. Last checked on 1 May 2010.

[SB] Marc Silbey and Peter Brundrett. Understanding and working in

protected mode internet explorer. Available from http://msdn.

microsoft.com/en-us/library/bb250462(VS.85).aspx. Last

checked on 15 April 2010.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall,

second edition, 2001.

[Thr] Using the thread manager. https://developer.mozilla.org/

en/The_Thread_Manager#Using_the_Thread_Manager. Last

checked on 24 March 2010.

[TO] Doug Turner and Ian Oeschger. Using XPCOM compo-

nents. Available from https://developer.mozilla.org/en/

Creating_XPCOM_Components/Using_XPCOM_Components. Last

checked on 29 April 2010.

[Tur] Doug Turner. nsisupports proxies. Available from

https://developer.mozilla.org/en/nsISupports_proxies.

Last checked on 1 May 2010.

[UIP] Windows vista application development requirements for user

account control (uac). http://msdn.microsoft.com/en-us/

library/aa905330.aspx. Last checked on 15 April 2010.

[XPCa] Xpcnativewrapper. https://developer.mozilla.org/en/

XPCNativeWrapper. Last checked on 25 March 2010.

[XPCb] Xpcom. https://developer.mozilla.org/en/xpcom. Last

checked on 15 May 2010.

54

[XSS] Cross-site scripting (xss). http://www.owasp.org/index.php/

Cross-site_Scripting_(XSS). Last checked on 2 November

2009.

55

