
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science

Allar Tammik

Interactive Data Sharing Mechanism for

Widget-based Microsites

Master's thesis (30 ECTS)

Advisor: Peep Küngas

Author: .. "….." May 2011

Advisor: ... "….." May 2011

Approved for defence

Professor: ... "….." May 2011

Tartu 2011

2

Contents

Abstract .. 3

1. Introduction .. 4

2. Related Work.. 8

3. Motivating Scenario ... 12

4. Solution Description ... 15

4.1. Software Architecture ... 16

4.2. Components .. 17

4.2.1. Wookie .. 17

4.2.2. OpenAjax Hub ... 20

4.2.3. Facebook .. 24

4.3. Integration ... 25

5. Implementation... 27

6. Test Application ... 32

6.1. Package structure .. 32

6.2. Initialization .. 32

6.3. User Interaction ... 33

7. Conclusions and Future Work .. 36

Summary (in Estonian) .. 38

Bibliography .. 40

Appendix A. Installation ... 46

Appendix B. Source Code ... 49

3

Abstract

Nowadays it is very common that modern web sites exchange content between each other

by means of syndication and aggregation. This is enabled through APIs, protocols, tools

and platforms. The recent trend in content processing is advancing towards more extensive

use of widgets along with static content. Although web sites usually use widgets to provide

added value to their users, simpler web sites like microsites can be built entirely from

widgets. Such kinds of widgets are usually stateless, but not necessarily autonomous. In

particular they may also be able to communicate with other components in the same web

application, including microsites, which are the key focus of this thesis. Because of the

loose coupling, the widgets themselves are not able to capture the state of the microsite,

whereas the microsite itself usually does not have a mechanism for storing its state.

However, messages exchanged during communication, determine the state of the

microsite.

This thesis describes a solution for storing and sharing the state of a microsite by record-

and-replay mechanism for messages exchanged by widgets of microsites. Furthermore, the

mechanism also allows sharing the stored state of a microsite between friends via social

networks. The latter enables user-initiated inter-application content delivery and state

exchange, which has been possible so far only between tightly integrated applications.

4

1. Introduction

In the past few years, new software systems and applications have been made available at

the Web. It is common to use applications like collaborative word processors, spreadsheets

and calendars directly in the browser instead of installing them to your computer.

Moreover, the proliferation of end-user devices requires the content to be available in

multiple locations. The web applications strive to become highly interactive and give

visually rich and desktop-style user experience. These visually rich web applications are

also known as Rich Internet Applications (RIAs). It is believed that in the near future the

vast majority of end-user software applications will be written for the Web, instead of

conventional target platforms such as specific operating systems, CPU architectures or

devices [1]. More specifically, most important characteristics that pervade the technologies

are collaboration, interaction and user-generated content. These characteristics are often

associated with term “Web 2.0” [2]. The collaboration embraces social aspects that allow a

large number of people to collaborate, share data and services in the Web. By interaction it

is meant that web applications are built to behave like desktop applications, for example by

allowing web pages to update one user interface element at a time by providing support for

direct modification of Document Object Model (DOM). According to Gartner [3] such

Web 2.0 technologies as blogs, wikis and social networks are now used by progressive

mainstream businesses. Furthermore, the use of user-generated reviews and ratings is

growing. However, new Web 2.0 business models continue to emerge, for example, sites

exposing product information for mashup purposes via Application Programming

Interfaces (APIs).

Mashups are software applications that merge separate APIs and data sources into one

integrated interface [4]. Mashup development differs from conventional software

development in many ways. Mashup development’s main focus is in the reuse, rather than

in the implementation of a web site. Moreover, mashups are far more dynamic than

conventional software components, thus they cannot be built easily using static

programming languages, that require advance compilation and static type checking. What

is more, being a mashup developer does not require any formal training or background in

software development [1]. Instead, mashups are often developed by people gathered to

communities. Gartner uses a term „citizen developer“ to describe the concept [3]. In fact,

5

several big mashup providers have their own communities for people to develop and share

their mashups.

The aim of a mashup development is to create new applications and services by combining

existing sources in novel settings to deliver added value not leveraged by a single

source [5]. Mashups can be categorized in many ways. For instance, by the creator,

mashups fall into two categories: programmer-built mashups and user-built mashups. In

case of programmer-built mashups, a programmer uses AJAX (Asynchronous JavaScript

and XML) technologies to implement a web page, which uses third-party sources. For non-

programmers, there are a number of drag-and-drop mashup assembly tools, typically

running in browsers, which allow end-users to visually compose a mashup.

Another classification of mashups is by their target group: enterprise mashups and

consumer mashups. Enterprise mashup tools link existing resources in enterprise

environment within an end-user driven context. The center of attention of enterprise

mashups is visualization of back-end resources. In contrast of consumer mashups, they

invest more in security and availability aspects. Consumer mashups are targeted towards

individuals to create mashups for private use. The main distinction between consumer

mashups and enterprise mashups is that components of consumer mashups usually cannot

intercommunicate, as opposed to enterprise mashups [6].

Microsite is a small and narrowcast web-site or web application. It has a well-defined

target audience and definite purpose. Thus, a single-purpose mashup can be defined as a

microsite. In other words, it is a web application or a mashup, which has mostly one

feature, and does nothing but that one thing. For example, a mashup that is designed to

help users to find rental property, only retrieves data from real estate companies and

visualizes all offers on the map.

One shortcoming of current mashup technologies is that the mashup applications, which

provide drag and drop user interfaces, have a lot of sophistication hidden in them. The user

interfaces might abound with bells and whistles, but the code behind the graphical user

interface is significantly complex. This situation can be improved by introducing widget-

based approach to mashup development. The higher degree of modularity and cleaner

structure of widget-based mashups will lead to better quality and faster implementation

cycles compared to traditional mashup built in ad-hoc manner.

6

A widget is a reusable compact software component that can be embedded into a web page

or application to provide a specific functionality or visualization. In terms of terminology,

a notation “web widget” is occasionally used to emphasize the use of web technologies.

Also word “gadget” or sometimes “badge” is used by different parties. In generic terms

“widget”, “web widget”, “badge” or “gadget” refer to the same software items and

therefore can be considered the same [6].

Simple widgets are usually used for visualization, such as a map display or a weather

forecast. Simple widgets only take data from its sources and visualize it. In most cases

these kinds of widgets are isolated and unaware of other widgets or the web application

they are running in. However, more complex widgets are able to communicate with each

other allowing the use of widgets as building blocks in mashup development. One

technology that allows inter-widget communication is OpenAjax Hub 2.0 [7] (hereafter

noted simply as OpenAjax Hub). As the name suggests it has a hub to which all the

widgets can connect, and therefore are able to exchange information about their state and

user interactions. This kind of information sharing makes it possible to build mashups

where user interactions in one widget will have an influence on another widget. In effect,

these messages exchanged by the widgets change the state of the mashup, whereas by

nature, widgets are self-contained and loosely coupled in a mashup, they are not able to

store their state. And neither is the web application that mashes up the widgets.

However, different mashup providers have solutions, which are running in their own

runtime environments and are able to store the state of the mashup. Nevertheless, solutions

that enable users to run widgets in their own web pages, beyond the provider-specific

environment, are still not capable of storing the state of the mashup. Likewise, the

OpenAjax Hub is no exception, since it also does not provide tools for storing the state of

the widgets.

The main concern about widget and mashup platforms currently available is the

limitedness of state sharing. It is either possible to mash up widgets in users’ own web

pages and not be able to store their state, or to store the state of widgets on a condition that

they are run in special environments. It is not possible to have both of these qualities

simultaneously.

This thesis describes a solution to the problem of storing and sharing the states of widget-

based mashups, especially microsites, by recording messages exchanged by widgets such

7

that they can be replayed at other widget-based microsites. The messages are recorded by a

Wookie widget [8] after adding it to the mashup. They are stored using. Wookie provides

instanceable widgets and a database for persisting their state. By making mashups stateful,

prospects to create mashup-based solutions will broaden. In the long run, when developing

a widget-based application, it is ideologically right to use a solution designed widget-based

approach in mind. The usage of Wookie facilitates the application of pure widget-based

approach, where all primitives of programs are implemented in terms of widgets.

This thesis proposes a solution for mashups, which are built using widgets that are

communicating with each other via the OpenAjax Hub 2.0 technology. The proposed and

implemented solution for storing the state of mashups predicates on a Wookie widget, that

facilitates record-and-replay functionality. This approach allows storing the state of any

mashups, with minimal effort. Furthermore, this thesis introduces a novel aspect in widget-

based mashups’ state sharing through the use of Facebook as the wall posting capability

supplements the social measurement of the proposed solution. It enables to share results of

a stateful mashup by posting a link referring to the mashup on the Facebook’s wall, thus

enabling them to collaborate or benefit from each other’s work.

The solution proposed is validated using a sample portal as a proof of concept. The proof

of concept is based on the OpenAjax Hub technology and enables to record interactions

between widgets. The interactions can be stored as well as shared in the Web. The proof of

concept implementation demonstrates that the proposed solution allows storing and sharing

the state of simple microsites.

The rest of the thesis is organized as follows. Chapter 2 gives an overview of current

standards and technologies related to mashups and widgets. Chapter 3 describes a

motivating scenario. Chapter 4 describes the technologies and tools used to implement the

solution. Chapter 5 gives the detailed overview of the implemented widget. The utilization

of the widget is discussed in Chapter 6, which gives an overview of the test application.

Possible improvements and future work are discussed in Chapter 7.

8

2. Related Work

The lack of standards in widgets and mashups raises interoperability problems between

components of different vendors. Different widget providers foster their own approaches to

widget development, engendering the situation where different party widgets are not able

to exchange information. Various solutions have been proposed to solve the problem.

OpenAjax Alliance [9] is an organization of vendors, open source projects and companies

that are dedicated to adopt interoperable Ajax-based Web technologies. The alliance’s

prime objective is to help customers to be able to mix and match solutions from Ajax

technology providers. The OpenAjax Hub [7] is one of the initiatives by the alliance, that

provides a specification as well as an implementation for inter-widget communication.

There has been a research for using the OpenAjax Hub technology to build a semantic

integration platform, which allows aggregating data sent between widgets by generating

new messages with combined data[10]. The solution proposed in this thesis is fully

compliant with the semantic integration platform, as both are based on the OpenAjax Hub

technology.

The World Wide Web Consortium has worked on a W3C Widget standard specification

[11] to regulate packaging format and metadata for widgets. The standard specifies how a

widget should be packaged in order to be able to run the widget with different user agents

(for example in Wookie, which is used in this work for packaging the record and replay

widget). Standardization of widgets is beneficial for different parties related to widgets and

mashups, thus it would allow different widgets to run in multiple environments, providing

end users with a wider variety of widgets. In parallel with research in the field of widgets,

other widget-like solutions are covered in the research of mashup solutions.

Open Mashup Alliance [12] has developed an XML-based language for enterprise

mashups. Enterprise Mashup Markup Language (EMML) is an open markup language that

makes data universally readable and therefore increases the interoperability of mashup

solutions and improves mashup portability of mashup designs. Mashups written in EMML

can be deployed to any EMML-compatible platform [13].

Web Mashup Scripting Language (WMSL) enables end-users to write mashups to integrate

two or more web services on the Web without needing any other infrastructure. The

9

WMSL, combined with HTML and JavaScript, makes it possible to easily build

lightweight ontologies containing local semantics of a web service and its data model [14].

These mashup languages have not systematically examined the aspect of storing the state

of mashups, thus, that situation can be improved. Since these mashup languages allow the

use of JavaScript, the solution proposed in this thesis for storing the state of mashups could

be easily used with these mashup languages. Even more, with some effort the functionality

could be built into these languages as primitives.

There is a range of mashup providers available. Many of these tools are still under

development reflecting the rapidly evolving state of art in mashup development [1]. Some

major enterprise mashup products are IBM Mashup Center, Kapow Mashup Server,

JackBe Presto, Morfeo EzWeb and Morfeo FAST. IBM Mashup Center [15] is a catalogue

of feeds and widgets. It supports feed generation from different sources, like XML, SQL

queries or spreadsheets. Kapow Technologies [16] has a product called Kapow Mashup

Server, which is a commercial adapter for information access, augmentation and scraping

off web-based information. Its key feature is to convert web pages into data sources, which

can be used in mashups. JackBe Presto[17] is another enterprise mashup solution that

allows publishing of web services and provides collaboration and execution on the

presentation layer. JackBe also has solutions in security, administration and management

capabilities. In general, enterprise mashup environments provide their own runtime

environment [18].

The list of major consumer mashup providers includes Google, Yahoo!, Microsoft,

Netvibes and Intel can be listed. Google’s product iGoogle [19] is a presentation tool that

aims to centralize all personal information in a personalized home screen. It is capable of

combining RSS feeds and Google gadgets. Yahoo! Pipes [20] provides a graphical tool for

building applications that aggregate web feeds. It has a drag-and-drop user interface that

allows specifying data input, interconnecting widgets through “pipes” and specifying data

output format. Microsoft has a product called Popfly, which has an editor as well as

repository. It has a Silverlight-based user interface and its own community for sharing

mashups with others [18]. Netvibes [21] is a tool that enables users to assemble widgets,

feeds, social networks, email, videos and blogs on one fully-customizable page [18]. Intel

MashMaker [22] is an interactive tool for editing, querying, manipulating, and visualizing

semi-structured data. It is a browser extension that allows augmenting web pages with

10

third-party sources directly in the browser combining qualities from concepts such as word

processors, web browsers and spreadsheets. The goal of MashMaker is to allow creating

mashups based on data provided by other users and remote sites.

There are a few proposed solutions in the field of mashups that are not run by big

companies. One such end-user programming tool is Marmite [23]. Marmite is currently

implemented as a Firefox plug-in using JavaScript and XML User Interface Language

(XUL). Marmite’s innovation stands in the use of algorithms that are able to automatically

infer structures in unstructured text and facilitate data extraction from web pages.

Another such tool is MARGMASH [24] (from “marginal mashup”). It is a framework that

allows end-user to add mashup fragments to their favorite web sites. It behaves as a proxy

that redirects the request to the web site the user wishes to “margmash”. However, it alters

the URLs in the response to point them to MARGMASH by modifying the DOM structure.

Therefore all the latter interactions are conducted through MARGMASH.

Ousia Weaver [25] is a mashup editor that provides a sophisticated visual editor allowing

users to create mashups without writing any code. The mashup creation in Ousia Weaver

consists of two phases. In the data phase, a user creates dataflows, which represent the

rules of collecting, combining and processing data. The dataflow is drawn by dragging the

dataflow components, for example a user input or a visualization widget, in the form of

directed graph as characteristical to dataflows. In the visualization phase, a user can define

how the data will be visualized by selecting desired visualization widgets provided by

Ousia Weaver. The mashup server is built using Python, however the visualizer uses

JavaScript.

MyWiWall is a widget portal that allows inter-widget communication by providing a drag-

and-drop solution. The solution, which is based on W3C Widgets 1.0 family of

specifications, provides widget-to-widget drag-and-drop operations. It has a widget engine

written in PHP and MySQL and client-side JavaScript widget container [26].

The problem with all these tools is that they do not have out of the box functionality for

saving the state of the mashups the user creates. In some cases it can be implemented. To

do so, additional coding is required. Nevertheless, if these tools, which allow

intercommunication between widgets, were equipped with messaging ability, like the

11

OpenAjax Hub widgets, it would be possible to store the state of these mashups using the

solution provided in this thesis without additional coding.

There are a few widget containers that make widgets available for any web site, not just in

particular mashup platform. Apache Shindig [27] is a reference implementation to

OpenSocial API specification and provides infrastructure to host OpenSocial widgets on

third-party web applications. It consists of a JavaScript library and a backend server for

hosting OpenSocial compatible widgets. Another goal of Apache Shindig is to be language

neutral and cover multiple languages. Currently, Java and PHP versions are available [27].

In addition to web widgets, widgets are also available for different platforms and devices,

including mobile devices and operating systems, such as Microsoft Windows. To run

widgets in different platforms, special user agents are needed. User agent is a software

application that hosts an initiated widget [28]. For example, Windows Sidebar is a user

agent that was introduced in Windows Vista. As another example, Opera enables users to

run Opera Widgets [29] directly in the browser. Due to the standardization in user agents

and packaging, it is possible to run widgets in different user agents. There are some

reported cases, where the Wookie widget is running in the Opera browser [30]. This

indicates that standardization activities are beginning to consolidate. The latter indicates

that W3C widget specification is maturing. The solution proposed in this thesis uses

Wookie widgets.

12

3. Motivating Scenario

This section describes a motivating scenario to illustrate how storing a state of a mashup

could enhance the user experience and interaction.

Let us consider Mary, who is looking for photo printing services. Her goal is to get a list of

service providers including the location and additional information (such as prices,

available formats and queue length) of each service provider. She uses the OpenAjax-Hub-

enabled mashup development tools to develop a microsite, which will visualize the

acquired results in a microsite. Finally, she has a mashup that consists of a listing widget,

details widget, prices widget and a map widget, all of which are connected to the

OpenAjax Hub. When she clicks on a service provider in the list, the listing widget

publishes a message to the hub and all other widgets respond by showing information

about the selected item with respect to their properties such as item details, price or

location. Then she selects two suitable printing service providers from her mashup and

wants to show them to John. Because the microsite has no state sharing mechanism and

sending a link to the mashup would not suffice, she takes a screenshot of the mashup and

sends it to John. Yet, John knows another very good photo printing service he wants to

share with Mary. Thus, John gives Mary a precise description about a third photo lab,

which she can add to her mashup. Now she has all the information about three best photo

printing services and she wants to share them with James, who is currently using a

handheld device with a limited screen area. So he is not able to perceive the needed

information sent by Mary since the screenshot does not fit to the mobile device screen.

Now, let us roll back to the initial mashup Mary had with two items selected and imagine

that instead of sending a screenshot, she can send a link to the very same mashup in the

microsite. John opens the link and sees those two selected photo printing services with all

the related data and map. Moreover, he can add the third photo lab himself and Mary can

see it immediately (as illustrated in Figure 1). This is possible due to an invisible Wookie

widget what was recording all the messages representing modifications of the state of the

mashup and now replays them back to the hub.

13

Figure 1. Sharing a state of a microsite.

James is not able to get all the information he needs from the microsite with his PDA,

because the mashup in Microsite A does not fit to the device’s screen, as did not the

screenshot of it. With the possibility to send James a link to a microsite, he can load data

from Mary’s Microsite A to Microsite B. Microsite B is optimized for smaller screens

showing only important information, which is at the moment the map and details of the

selected photo labs (as illustrated in Figure 2). This is again possible due to the invisible

widget, which recorded all OpenAjax Hub messages at Microsite A while Mary and John

were interacting with it and replays them at Microsite B when James loads the recorded

interactions. The latter is feasible if the widgets in microsites A and B are built by using

the same framework, such as OpenAjax Hub and feature the widgets, which are able to

handle the semantics of particular messages.

14

Figure 2. Sharing a state between microsites.

The advantage of this approach is that the microsites A and B do not need to be tightly

integrated. They only need a mutual conception of interpreting their input parameters alike

to identify the corresponding Wookie widget. A solution applicable for Microsite A (see

Figure 1) is implemented as the practical outcome of this thesis.

15

4. Solution Description

In order to overcome the limitations stated in the Introduction, a solution, which combines

the strengths of widget-based software development approach and mashup ideology has

been designed and implemented. The solution is called the Wookie-OpenAjax Hub Bridge.

This section of the thesis gives an overview of the architecture of that solution. For

describing the architecture of the solution, the 4+1 View Model of Architecture [31]

framework is used. The 4+1 View Model of Architecture describes software architecture

using five concurrent views, which cover a set of concerns. The four views are logical,

process, physical and development view. Putting those four together, a fifth view called

scenarios is constituted to validate and illustrate the architecture design. To tailor the

model, some of the views can be omitted. Considering the size of the solution implemented

in this thesis, only logical and physical architecture will be described. This section also

introduces the components used in the proposed solution and integration details. The

solution provided in this thesis is called the Wookie-OpenAjax Hub Bridge.

The Wookie-OpenAjax Hub Bridge is an application that helps to connect two

technologies: OpenAjax messaging on one side and Wookie on the other side.

Combination of those two provides a mechanism for storing the state of the microsite. This

solution gives advantage over the dedicated storing solutions, which do not have a widget

engine, by allowing the usage of the same data in another microsite, which is compatible

with OpenAjax technologies. One major advantage of using Wookie is that Wookie

widgets have instances, thus they are stateful. In other words, Wookie is appropriate for the

proposed solution, because its widgets are able to run in a third party web applications as

well as it provides data management capabilities for each widget instance. Moreover, the

same widget instance can be included in multiple mashups and it is dynamically

initializable, thus it can be invoked by mashups automatically. Additional advantage is that

the state is stored in a server-side database as opposed to client-side storage, such as

cookies. The latter makes it a perfect solution for sharing data between different

applications and users.

OpenAjax Hub is a conjoining technology in terms of this thesis. It allows communication

between components that are isolated by nature. The key aspect in the OpenAjax Hub is

the message-driven intercommunication. The OpenAjax Hub is used to send information

16

between widgets in the browser. Furthermore, it specifies the widgets’ structure and

defines a standardized API for sending and receiving messages.

a social dimension to the proposed solution is given via Facebook, allowing users to share

their stateful mashups with others. Facebook’s wall-writing mechanism is used as an

environment for exchanging stored states. The Facebook integration is a part of the

microsite’s implementation.

4.1. Software Architecture

The logical architecture of this microsite consists of the OpenAjax Hub, a number of

widgets connected to it, a Wookie Engine and a Wookie’s database. The widgets

communicating on the OpenAjax Hub can act in different roles – while some of them

might accept user input, others might visualize something to the user. There may be

invisible widgets, whose purpose is to retrieve, aggregate or store the data from the hub.

The Wookie-OpenAjax Hub Widget operates as a mediator between the hub and the

Wookie Engine, which stores and reads the data from the database. The logical architecture

is illustrated in Figure 3.

Figure 3. The logical view to the architecture. The Wookie-OpenAjax Hub Widget is marked with an asterisk (*).

To present the whole system, including the surrounding web application or the so called

microsite, it is appropriate to introduce another view from the 4+1 views. The following is

the physical view, which exhibits the topology of software components on the physical

layer and the physical connections between these components. As shown in Figure 4, the

microsite and the Wookie Engine may run in separate web servers. The microsite initiates

the Wookie widget using a REST call from its JavaScript. The same-origin policy (SOP) in

17

web browsers governs access control among different web objects and prohibits a web

object from one origin from accessing web objects from a different origin [32]. According

to the browsers’ same-origin policy two web sites have the same origin if the originating

host, port and protocol are the same for both web sites. In the example, the microsite is

running on a port 8080, but the Wookie Engine is running on a port 9080. Due to the SOP,

the microsite’s JavaScript is not allowed to make a call to the Wookie Engine’s REST API

directly. To be able to make such a cross-domain request, there has to be a proxy that

mediates information between domains.

Figure 4. The physical view to the architecture.

4.2. Components

4.2.1. Wookie

Wookie is an implementation of W3C Widget specification [11] incubated in the Apache

Software Foundation [33]. The Wookie Engine is a widget engine that is designed to allow

widgets to be used in a number of third party web applications [34]. In technological terms

The Wookie Engine is a Java server that allows user to upload and deploy widgets for

user’s applications. Most of these widgets are mini-applications such as a weather forecast

widget or a single player puzzle-game Sudoku. However the number of fully-collaborative

applications such as chats, shared to-do lists and collaborative drawing applications is

growing. Wookie is based on W3C Widgets specification [11], but also widget supporting

18

APIs such as Google Wave [35] gadgets and OpenSocial [36]. Wookie currently has plug-

ins for Elgg, Drupal, LAMS, Moodle and Wordpress to embed widgets in them [8].

Additional widgets can be added to the Wookie server using an administrator web interface

or copying widget package directly to the Wookie hot deploy folder. In either case the new

widget will be deployed automatically [37].

In order to use Wookie widgets in mashups, widget instance has to be created. A widget

instance is a persistent instance of a particular widget. Each instance has its own storage

area in Wookie’s database [38]. This means that each widget instance has a capability to

store its state in the Wookie’s database allowing a widget to preserve user preferences.

User preferences are stored as key-value pairs. Furthermore, the key is unique in the scope

of widget instance and the value will be overwritten if the same key is used twice.

Widget instances can be created using the Wookie administrator web interface or the

Wookie REST API [39]. A widget instance can be identified using a combination of

parameters described in Table 1. When requesting a new widget instance from the Wookie

REST API, an XML, as shown in Example 1, is returned to the user. The XML contains

information about the widget instance location and the widget parameters. The url in the

XML denotes the location from where the widget instance can be loaded. Identifier is

Wookie’s internal unique widget identifier. Title, height and width specify the title and the

dimensions of the widget. Parameter maximize is not a part of W3C [11] specification and

as pointed out in the Wookie developer’s list [40] will be removed in the future. If the

same parameters are used when initiating a widget instance repeatedly, the very same

widget instance is returned every time.

Parameter Explanation

api_key The key issued to a particular application

shareddatakey The key generated by an application representing a specific context (e.g. a page,

post, section, group or other identified context)

userid An identifier (typically a hash rather than a real user Id) issued by an application

representing the current viewer of the widget instance

widgetid The URI of the widget this is an instance of (optional, see servicetype below)

servicetype Where an individual widget is not requested by URI as above, this parameter

should contain the category of widget to be instantiated, e.g. "chat"

locale The preferred locale of the widget, expressed using a BCP47 Language Tag[41]

Table 1. Parameters that can be used for identifying a widget instance, taken from [39].

19

<widgetdata>

 <url>URL TO ACCESS WIDGET</url>

 <identifier>IH6rjs75tkb6I.pl.k0hUq7YdnFcjw.eq.</identifier>

 <title>Weather</title>

 <height>125</height>

 <width>125</width>

 <maximize>false</maximize>

</widgetdata>

Example 1. Wookie’s response to widget creation request, taken from [39].

Let us assume that the widget instance is now loaded from the URL and running in the

browser. The widget is written in JavaScript and HTML. In addition to the logic written by

the author of the widget, the widget instance has an access to Wookie’s common services.

This allows the widget instance to manipulate data in its storage area. In the JavaScript

global scope, there is an object Widget, which allows fetch and store parameters by key.

As seen in Example 2, the widget instance’s preference named “foo” is fetched on the first

line. The second line sets preference for a key “bar” the value “foobar”.

Widget.preferences.getItem(“foo”);

Widget.preferences.setItem(“bar”, “foobar”);

Example 2. Getting and setting Widget preferences.

The Wookie widget is packaged into a .wgt archive, which is a valid ZIP archive. In some

other W3C Widgets implementations different extensions and packaging formats are used

[28]. The archive must contain one or more start files and a configuration document.

Optionally it can also contain icons, digital signatures and arbitrary files [11]. The overall

structure of the widget package is illustrated in Table 2.

Location Description

/ Widget’s root folder

/config.xml The configuration document

/index.html Start file, file name is defined in config.xml

/images Folder that contains all the graphical content

/scripts Folder that contains all the JavaScript source files where the widget’s behavior

is described.

/locales Container of localized content

Table 2. Widget package contents, based on [11].

20

The root folder must contain a configuration file and a start file. The best-practice for

packaging a widget advises to hold JavaScript files in a subdirectory called scripts and

graphical context in subdirectory of images. The specification defines a concept of folder-

based localization, which requires a container of localized content (simply a folder named

“locales”) in the widget’s root directory. In turn the container of localized contents

contains a subfolder for each locale. For example the correct folder structure would be

“/locales/en-us” and “/locales/et”.

4.2.2. OpenAjax Hub

The OpenAjax Hub is a set of standard JavaScript functionality defined by the OpenAjax

Alliance that addresses key interoperability and security issues that arise when multiple

Ajax libraries or components are used within the same web page. The OpenAjax Hub is

one of the primary technical contributions of OpenAjax Alliance to the Ajax community in

accordance with the Alliance's mission [7].

The OpenAjax Hub is an Ajax [42] library that allows integration of multiple client-side

components within a single Web application. The Hub provides a client-side framework

that allows third-party widgets to co-exist within the same Web page and

intercommunicate securely via the hub [43].

The key feature of the OpenAjax Hub is the publish-subscribe engine that includes a

"Managed Hub" mechanism that allows a host application to isolate distrusted components

into secure Containers (sandboxes as shown in Figure 5). The Managed Hub mechanism

ensures that all communications between components pass through the hub’s security

manager [44], which allows or denies each publish or subscribe request based on

corresponding callback functions (onPublish and onSubscribe), resulting a safe

integration of distrusted third party components [43].

21

Figure 5. How OpenAjax Hub. Addresses the Security Challenges, taken from [44].

The OpenAjax Hub has two built-in types of containers: an IframeContainer and an

InlineContainer. The IframeContainer sandboxes its content within an HTML <iframe>

element, hence all the communication with the client application is marshaled across the

iframe boundary. The InlineContainer places its content inside an HTML element (like

<div>). In essence the widget will be in the same browser window as the Manager

Application
1
. For that reason the inline container is less secure, but requires less memory

and publishes messages more quickly than the IframeContainer [45].

Figure 6 explains the initialization of the OpenAjax Hub driven mashup. First the manager

application has to preload the OpenAjax Hub framework library. The Managed Hub

instance is created using the security manager callback functions provided by the manager

application (see Example 3).

1
In the context of the OpenAjax Hub the main HTML document for the application is denoted as the manager

application [45].

22

Figure 6. Managed Hub Initialization and Usage, taken from [45].

var managedHub = new OpenAjax.hub.ManagedHub(

 {

 onPublish: onMHPublish,

 onSubscribe: onMHSubscribe,

 onUnsubscribe: onMHUnsubscribe,

 onSecurityAlert: onMHSecurityAlert

 }

);

Example 3. Managed hub initialization. onMHPublish, onMHSubscribe, onMHUnsubscribe and

onMHSecurityAlert are managed hub security callbacks. Taken from [45].

When the hub instance is created, client applications (widgets of the mashup) will be

embedded within a parent application. For each client application, a sandbox (called a

Container) associated with a given Managed Hub is constructed (see Example 4) and the

widget itself (called a Component) is initialized inside the sandbox. Penultimate action for

the client is to connect to the hub as shown in Example 5. As the final step of the

OpenAjax Hub initialization process, a component might subscribe to message topics as

shown in Example 6.

23

hubClient = new OpenAjax.hub.IframeHubClient({

 HubClient: {

 onSecurityAlert: clientSecurityAlertHandler

 }

 });

Example 4. IframeHubClient initialization, clientSecurityAlertHandler handles client’s security alerts. Based on

[45].

hubClient.connect(connectCompleted);

Example 5. Connect to managed hub, connectCompleted callback is called when this operation completes [47].

function connectCompleted (hubClient, success, error) {

 if (success) {

 /* Call hubClient.subscribe(...) to subscribe to message topics */

 }

}

Example 6. Callback that is invoked upon successful connection to the Managed Hub, based on [45].

Topics consist of tokens separated by the period character (.), for example

“org.example.topic”. Also wildcards such as “*” or “**” can be used when subscribing to

topics. A single asterisk (*) matches exactly one token, for example the topic

“org.example.*” matches topics “org.example.topic” and “org.example.important”, but not

“org.example.important.topic”. A single asterisk can be used between the tokens, for

example “org.*.topic”. However, the trailing wildcard token, a double asterisk (**), which

matches one or more tokens with any value, can be used only at the end of tokens [46]. For

example, “org.example.**” is a valid topic that matches “org.example.topic” as well as

“org.example.important.topic”. Topic names such as “org.**.invalid”, “org.in*alid.topic”

and “org..topic” are invalid.

After the hub and the widgets have been initialized, the widgets can publish messages to

the hub. As shown in Figure 7, Component-B publishes a message to a topic. Given that

Component-B is inside the IframeContainer, the message gets marshaled across browser

frames to the Managed Hub. If the Security manager callbacks decide to let this message

through, it will be sent to every container whose component has subscribed to this topic. In

current case, the message will be passed to Component-A’s callback.

24

Figure 7. Managed Hub Message Passing, taken from [45].

As the OpenAjax Hub specification [48] states, the topic has to be a string describing the

published message. The topics published are not allowed to contain any wildcards [46].

The message itself can equally be a string as shown in Example 7 or a JSON-serializable

JavaScript object as shown in Example 8.

hubClient.publish("org.example.foo","foo");

Example 7. Publish a string value, based on [48].

var location = { lat:current_latitude, long:current_longitude };

hubClient.publish("org.example.bar",location);

Example 8. Publish a JSON-serializable JavaScript object, based on [48].

4.2.3. Facebook

Facebook was chosen as the underlying social network to enable effective sharing of states

of widget-based microsites.

Facebook is a social network service launched in 2004. The number of users has grown

over the years. This is illustrated by the fact that by 2007 Facebook was reported to have

more than 21 million registered members [49]. By the January of 2011 it is said to have

over 600 million monthly active users [50].

25

Facebook has a micro-blogging feature called the wall, on which a user can post one’s

thoughts, links or even photos for others to see. Furthermore, Facebook provides an API

that enables integration of Facebook with other web-sites. It also provides tools for reading

and writing data to Facebook, or including a “Like” button to your web-site. Moreover, it

provides API for Single Sign-on (SSO), for using other web applications, which require

logging in without prompting the user to re-enter credentials [51].

To enable a third party application to post something directly on Facebook’s wall, the

application has to be registered in Facebook. Registration of the application links the host

name used for registration with the application identifier given by Facebook. If the

application is registered in Facebook, it is allowed to post web addresses with additional

information about the address to user’s wall [51], whereby the application identifier is

included with the request. However, Facebook makes a check whether the host where the

request is coming is in correspondence with the host linked with the given application

identifier.

The wall posting gives a social measurement to the proposed solution. It enables to share

results of a stateful mashup by posting a reference to the mashup on the wall.

4.3. Integration

The Wookie-OpenAjax Hub Bridge is a Wookie widget, that is capable of communicating

(subscribing and publishing) with widgets connected to the OpenAjax Hub. In another

point of view, it is an OpenAjax Hub client, which has access to Wookie’s context

variables and therefore is capable of persisting instance preferences in the Wookie’s

database. It is a widget that has qualities from both Wookie and OpenAjax Hub, so to say.

The general purpose of the Wookie-OpenAjax Widget is to listen to every message sent

through the OpenAjax Hub and to store the information to the Wookie’s database. The

messages are stored as a key-value pairs. The topic is stored as a key and the message

content is stored as the value of the key. If the message content is a simple string object, it

is stored without a conversion. However, if the message is a JavaScript object, it will be

serialized to JSON format before saving it to the Wookie’s database.

When the same widget instance is loaded later, the widget plays back all the gathered

messages. In other words it loads all the persisted messages from the Wookie’s database

and publishes each one of them to the correct topic in the hub. The messages are loaded in

26

the same order they were recorded. Due to the fact that the keys are unique and the values

might get overwritten let us examine Example 9 step by step.

Widget.preferences.setItem(“foo”, “one”); (1) foo = “one”

Widget.preferences.setItem(“bar”, “two”); (2)
foo = “one”

bar = “two”

Widget.preferences.setItem(“foo”, “three”); (3)
foo = “three”

bar = “two”

Example 9. Widget preference "foo" gets overwritten.

After step (1), the only preference set in the database is “foo” with the value “one”. After

the preference “bar” is added at step (2), there are two preferences “foo” and “bar” in the

database, with the values correspondingly “one” and “two”, whereby the adding order is

preserved. Finally, when step (3) is executed, the value under the key “foo” is overwritten,

however, the order of the preferences in the database will remain the same. Accordingly,

the outcome of this piece of code is that the widget instance has two preferences set: “foo”

is “three” and “bar” is “two” in the same order.

27

5. Implementation

The implementation of the proof of concept is divided into two parts: the Wookie-

OpenAjax Hub Widget and the surrounding web application, or the so called microsite.

The Wookie-OpenAjax Hub Bridge is a widget that is served from the Wookie Engine and

is capable of communicating with other widgets in the web application using the OpenAjax

Hub infrastructure. The widget is intended to run in an HTML <iframe> element, to be

physically isolated from other widgets in terms of JavaScript security. The OpenAjax Hub

provides a communication channel for those isolated components. The widget is built

using pure HTML and JavaScript and it is compatible with W3C Widgets 1.0 family of

specifications [11]. The widget is intended to have no visual output.

The widget is packaged into a .wgt archive (woah.wgt), which is a valid ZIP archive. In

fact Wookie provides tools for building a widget from its source. Apache Ant [52] script is

used to make the .wgt file.

The created widget archive must contain one or more start file and a configuration

document. Optionally it can also contain icons, digital signatures and arbitrary files [11].

The Wookie-OpenAjax Hub Bridge widget package contains the files summarized in Table

3.

28

Location Description

/ Widget’s root folder

/config.xml The configuration document

/index.html Start file, file name is defined in config.xml

/build.xml Widget’s ant build file

/images Folder that contains images

/images/icon.png Default icon

/scripts Folder that contains all the JavaScript source files where the

widget’s behavior is described.

/scripts/properties.js Methods for storing and fetching the widget’s properties

from the Wookie Engine

/scripts/oahHelper.js Helper methods for connecting to OpenAjax-Hub

/lib Folder that contains all the necessary supporting JavaScript

files (i.e. frameworks and libraries) for the widget

/lib/OpenAjaxManagedHub-all.js OpenAjax Hub 2.0 implementation

Table 3. The Wookie-OpenAjax Hub Widget structure.

The configuration document is an XML document that has a widget element in the root.

The widget element is in the widget’s namespace http://www.w3.org/ns/widgets and

serves as a container element. The widget element has another attribute id, which specifies

the identifier for the widget. To prevent naming collisions, namespace is often used as a

part of the id. In particular, there could be a number of weather widgets, which could be

tangled without a namespace prefix. So instead of using just “weather”,

“http://example.org/weather” is preferable. In order to follow the preferred naming

convention, “http://wookie.apache.org/widgets/woah” is used, as shown in Example

10. The widget element contains several children elements. The name and the description

elements specify the human-readable name and the description for the widget. The content

element defines the custom start file, which the user agent is presumed to use when the

widget is instantiated. The source attribute src allows an author to point to a file inside the

widget container. The icon element is similar to the content element as its src attribute

points to an icon file. The icon file is used in the Wookie Engine widget library helping the

user to recognize the widget at a glance. The author element marks the person who created

the widget. The license element specifies the license under which the widget is distributed.

The example configuration document is shown in Example 10.

29

<widget xmlns="http://www.w3.org/ns/widgets"

 id="http://wookie.apache.org/widgets/woah" >

<name>woah</name>

<description>Wookie-OpenAjaxHub bridge</description>

<content src="index.html"/>

<icon src="images/icon.png"/>

<author>Allar Tammik</author>

<licence>

…

</licence>

</widget>

Example 10. Wookie widget's configuration document.

The class diagram of the Wookie-OpenAjax Hub Widget is shown in Figure 8. Methods

are divided into two separate JavaScript files by the field of operation. All the functions

that are connected to the OpenAjax Hub are collected in oahHelper.js and the functions

responsible for interactions with Wookie service layer is put in properties.js.

Figure 8. Structure of JavaScript functions in the Wookie-OpenAjax Hub Bridge.

The start file is a very simple HTML file that basically loads the JavaScript files shown

above in the Table 3. When everything is loaded, the loadEventHandler function in the

oahHelper.js is executed with HTML body tag onload attribute value. The

loadEventHandler creates a OpenAjax.hub.IframeHubClient using a

clientSecurityAlertHandler function as an OpenAjax.hub.SecurityAlert callback

and calls its connect method. If the asynchronous connect call completes, the

clientAppHubClientConnect callback is invoked with three parameters: the item on

which the connect operation was invoked, boolean to indicate the successfulness of the

operation and OpenAjax.hub.Error type error code if an error occurs.

When the connecting process is successfully finished, the widget subscribes to all topics

using a special wildcard “**” (double asterisk). The subscription is required for enabling

30

retrieving all messages. Every time a message is broadcasted to the hub the onData

callback is invoked with three parameters: the topic, the event’s payload data, which can be

any JSON-serializable value and the subscriberData that the caller might have added to

the subscribe call. The onData callback invokes the saveMessage function in

properties.js. The aim of saveMessage function is to save the topic and the message

given as parameters to the Wookie storage area. Since the message parameter can be any

JSON-serializable value, the function checks the data type of the message with a typeof

operator. If the message variable is not a string type, the message is serialized to a JSON

string with stringify method (as shown in Example 11). The serialized message is saved

to the Wookie’s database using Wookie widget instance’s preference storing mechanism.

The topic from the message is saved as a key and the serialized message as a value as

illustrated in Example 12.

JSON.stringify(message);

Example 11. Message is serialized with stringify method.

Widget.preferences.setItem(topic, message);

Example 12. Message is stored in widget instance’s preferences in the Wookie’s database.

When the widget instance is reinitialized, all stored messages will be published to the hub

by invoking publishAllSavedMessages method in the properties.js. It fetches all the

widget instance’s preferences from the Wookie’s database and iterates over the key-value

pairs’ keys (which hold message topics). For each key the value is taken with

Widget.preferences.getItem(key). Among the keys, there is one extra key

“sharedDataKey”, which is stored in the database by the Wookie Engine and will be

ignored by the publishAllSavedMessages method. The values which are either

stringified JavaScript objects or simply strings will be deserialized with parseJSon

function, which internally uses JSON.parse method (as shown in Example 13).

JSON.parse(str);

Example 13. Message is deserialized with parse method.

Each topic can appear once in one widget instance’s preferences store. This can be very

useful if widgets communicating in the hub wish to overwrite previous values. Let us

imagine an example of a location-based OpenAjax hub mashup, where one of the widgets

has a functionality that allows a user to enter its location, for example a city name. The

user’s choice will be published to other widgets connected to the hub, including the

Wookie-OpenAjax Hub Widget, and some additional information about the city will be

31

shown to the user. If the user accidentally makes a typo or purposely wants to change the

location, another message will be broadcasted with a new value. The new value will

overwrite the location in the Wookie’s database. Thus, when the same Wookie-OpenAjax

Hub Widget instance is reinitialized it only publishes the recent value. Therefore the first,

invalid location will not be broadcasted to the hub by the Wookie-OpenAjax Hub Widget.

32

6. Test Application

The test application is a simple widget-based web application that follows the widget-

centric paradigm of application development and features the developed solution. When

activating the test-application an OpenAjax Hub instance is created and all the widgets,

including the Wookie-OpenAjax Hub Widget, are initialized. Also state sharing through

social networks is exemplified through Facebook integration.

6.1. Package structure

The test application is presented as a standard exploded web application archive (WAR).

The WEB-INF directory contains a deployment descriptor – a web.xml file, which describes

the structure of the application. The deployment descriptor declares a “welcome file” for

the application. The welcome file specifies the opening page of the application, which in

the context of this test application is the manager.html.

6.2. Initialization

The opening page of the microsite loads all the necessary libraries, such as the OpenAjax

Hub and the jQuery as well as custom functions. The jQuery library is used to make an

HTTP request to the Wookie REST API. Custom functions are divided into two JavaScript

files by area of responsibility. All the logic related to the OpenAjax Hub widgets of the

microsite is collected to mashup.js. These widgets are the core of the mashup. Additional

logic needed to initialize the Wookie-OpenAjax Hub Bridge is located in the

wookieWidgetFactory.js. JavaScript files are loaded using an HTML <script> tag as

shown in Example 14.

<script src="OpenAjaxManagedHub-all.js"></script>

<script src="jquery-1.5.2.min.js"></script>

<script src="wookieWidgetFactory.js"></script>

<script src="mashup.js"></script>

Example 14. Including JavaScript files into the application.

Initialization of the OpenAjax Hub is activated by the HTML body tag onload attribute.

The instantiation of the OpenAjax Hub is done in mashup.js. The loadEventHandler

function creates a ManagedHub instance and two IframeContainer instances, which will

be appended to the HTML body. These two components are OpenAjax widgets that are

implemented in the ClientPublisher.html and ClientSubscriber.html

correspondingly.

33

In addition, to be able to integrate with Facebook as a Facebook application, the Facebook

JavaScript Software Development Kit (SDK) must be loaded as well as the Facebook

application identifier specified. To initialize the library, FB.init must be invoked. Also, it

is mandatory to have an HTML <div> element with an id “fb-root” within the document as

well. Initialization of Facebook SDK is shown in Example 15.

<script src="http://connect.facebook.net/en_US/all.js#xfbml=1"></script>

<div id="fb-root"><script>

 var FB_APP_ID = '207749675918893';

 FB.init({

 appId:FB_APP_ID, cookie:true,

 status:true, xfbml:false

 });

</script></div>

Example 15. Initializing Facebook SDK.

6.3. User Interaction

The publisher is a widget, which purpose is to send messages to the hub. It has input fields

for a topic and a message; and a “Send message” button that transmits the message to the

hub. Moreover, there is another button “Send complex message”, which sends a whole

JavaScript object as the message. By clicking the button, a complex JavaScript object is

assembled and sent to the hub. The subscriber is a widget that subscribes to all topics of the

hub. If a message is sent to the hub, the subscriber outputs the message. If the message

received is a JavaScript object, it is serialized to JSON for visualization. Screenshot of the

working prototype can be viewed in Figure 9.

Figure 9. Screenshot of the prototype of the microsite.

34

Under the mashed OpenAjax Hub widgets, there is a keyword input and a button to

instantiate a Wookie-OpenAjax Hub Bridge. When the button is pushed the

initWookieWidget function in wookieWidgetFactory.js is invoked. As a result, the

invisible Wookie-OpenAjax Hub Bridge is initialized and a URL to identify the specific

mashup is generated to the following input. In other words, the “id” parameter in the URL

identifies the Wookie-OpenAjax Hub Widget instance, thus the widget instance can be

reinitialized afterwards. This generated URL can now be shared between browsers or

computers. Particularly the URL can be posted to Facebook’s wall for other users to view.

The “post to wall” button is implemented in the manager.html as shown in Example 16.

When pressed, the submitToWall function is invoked, which makes a request to the

Facebook API that opens a dialog, like shown in Figure 10. If a user presses the “Publish”

button, the link will be posted to user’s wall in Facebook. If the link is clicked in

Facebook, the user is redirected back to the microsite. Due to the “id” parameter in the

URL, the Wookie-OpenAjax Bridge will be revived.

<a href="javascript:void(0)" onclick="submitToWall()" class="fb_button

fb_button_small">

 Post to Wall

Example 16. Facebook post to wall button.

Figure 10. Facebook Post to Wall dialog.

The Wookie-OpenAjax Hub Bridge initialization passes through the following steps.

Firstly, a POST request is made via the proxy to the Wookie REST API to get a widget

instance. The Wookie Engine composes a response, which is an XML document (see

35

Example 1 above). When the response arrives back to the microsite, a

widgetResponseCallback is executed in the wookieWidgetFactory.js. The callback

traverses the response XML and extracts Wookie widget’s URL. Then the

initIframeContainer function creates an invisible HTML <iframe> element and loads

the Wookie-OpenAjax Hub Widget in it with a GET request directly to the Wookie

Engine. The widget will become operational after all its onload activities are done. The

widget instantiation is described in Figure 11.

Figure 11. Sequence diagram of a widget instantiation.

36

7. Conclusions and Future Work

This thesis focuses on the data sharing of widget-based applications by enabling mashups

to store their states within application. Furthermore, it enables to exchange the states

between applications. The latter enables usage of social networks in inter-application state

exchange.

This thesis proposed a solution for the OpenAjax Hub enabled mashups to record and

reproduce messages exchanged by widgets to overcome the limitations current platforms

have. The Wookie-OpenAjax Hub Bridge implemented in this thesis, combines Wookie’s

state storing abilities and the OpenAjax Hub’s message delivery capabilities to enable a

mashup to store its state without additional coding. In other words, instead of

implementing the state-storing mechanism for your system, this widget can be included to

your mashup. Additionally, a test application was implemented to demonstrate the

Wookie-OpenAjax Hub Bridge in action. The test application included two widgets in

addition to the Wookie-OpenAjax Hub Widget. Furthermore, a feature to share the state of

the mashup via Facebook was implemented in the test application.

As a future work, it is possible to improve the Wookie-OpenAjax Hub Bridge in many

ways by adding features that could make the state sharing more intelligent. One certain

direction to extend the solution could be to make the topics that the widget records or

replays dynamically configurable. Some systemic data could be stored in the Wookie’s

database besides the messages sent by other widgets in the mashup. This can be done by

defining some special messages – a set of commands to manipulate the systemic data. For

example, a microsite can send a special message, with a predefined topic that would define

which messages would be stored and replayed. Of course there should be a mechanism to

filter out all the systemic preferences not to replay them to other widgets. This

enhancement allows scenarios where the microsite can dynamically manage, which parts

of the state is restored from the database.

Yet another quite simple but crucial improvement would be to remove the messages from a

Wookie-OpenAjax Hub Widget’s instance. This can be done by implementing a special

command, which removes the preferences in the database. By utilizing this feature,

resetting of the state of the mashup can be evoked.

37

Currently, messages with identical topics will be overwritten in the Wookie-OpenAjax

Hub Widget. If that is not considered a feature, a technical improvement can be

implemented. Depending on the expected outcome, messages that are currently overwritten

could be added together, or perhaps ignored at all.

Another possible scenario for a future development is to add multiple Wookie-OpenAjax

Hub Widgets to a microsite. These widgets can be configured in such a way that each

widget instance would be recording different topics. This kind of approach would make

possible to use these widget instances as separate sources in terms of mashups. These

sources could be later used either separately or mashed with each other later. As an

example of this scenario, let us imagine there is a mashup that deals with data from Central

Commercial Register and Land Records. The responsibility to store messages could be

shared by two widget instances correspondingly.

The Wookie-OpenAjax Hub could be improved by introducing a systemic read-only flag,

which would denote whether the data stored in the Wookie’s database could be modified.

This improvement would enable the mashup creator to lock the state before sharing it. In

another words, one user could share the state of the mashup without worrying about the

possibly unwanted modifications the other user could make.

To combine the latter and the penultimate, more sophisticated mechanisms could be

developed. For example, branching which is common in Version Control Systems. In

particular, if one user shares a mashup to another user, the state is copied from one

Wookie-OpenAjax Hub Widget instance to another. As a result, there will be two copies of

the state which will be modified in parallel by two different users.

38

Summary (in Estonian)

Vidinapõhiste veebirakenduste interaktiivne andmevahetus-

mehhanism.

Magistritöö (30 EAP)

Allar Tammik

Kokkuvõte

Tänasel veebimaastikul on kasvavaks trendiks veebilehtede vaheline sisu jagamine.

Staatilise sisu asemel kasutatakse üha enam vidinaid. Vidinad on taaskasutatavad

veebikomponendid, mis sisaldavad mingit konkreetset funktsionaalsust. Lihtsamad vidinad

on enamasti olekuta. Keerukamad vidinad oskavad veebirakenduses omavahel suhelda,

näiteks saates üksteisele sõnumeid. Nii saavad vidinad üksteist mõjutada ja seeläbi olla

mashup’i laadse veebirakenduse ehitusklotsideks, määratledes selle oleku. Kuna vidinad

on nõrgalt sidestunud komponendid, ei ole nad võimelised veebirakenduse olekut

salvestama.

Antud magistritöö pakub välja lahenduse veebirakenduse sees olevate vidinate vahetatud

sõnumite jäädvustamiseks ja taasesitamiseks, võimaldades seeläbi veebirakenduse olekut

salvestada ja sõpradega jagada. Lahendus baseerub jaoturipõhisel sõnumivahetusel,

kasutades tehnoloogiana OpenAjax Hub raamistikku. See tähendab, et kõik ühes

veebirakenduses olevad vidinad on jaoturiga ühenduses. Sõnumite salvestamiseks

kasutatakse Wookie nimelist vidinamootorit, mis võimaldab luua olekuga vidinaid ja seda

olekut ka salvestada.

Magistritöö raames realiseeritakse iseseisev vidin, mis „sillana“ ühendab neid kaht

tehnoloogiat. Sellest tulenevalt on realiseeritud vidina nimeks Wookie-OpenAjax Hub

Bridge. Loodud vidin kuulab kõiki jaoturisse saadetud sõnumeid ja salvestab need

andmebaasi. Kui sama vidina isend hiljem taaselustada, siis see vidin taasesitab kõik

andmebaasi salvestatud sõnumid jaoturisse.

39

Realiseeritud vidina kasutamiseks luuakse väike näidisportaal, mille sees olevad vidinad

omavahel sõnumeid vahetavad. Näidisportaal demonstreerib saadetud sõnumite

salvestamist ja taasesitamist, ning ka oleku jagamist suhtlusvõrgustikuga Facebook.

40

Bibliography

[1] Antero Taivalsaari and Tommi Mikkonen, "Mashups and Modularity: Towards

Secure and Reusable Web Applications," in Proceedings of 1st Workshop on Social

Software Engineering and Applications, L'Aquila, Italy, 2008, pp. 25-33.

[2] Tim O'Reilly, "What Is Web 2.0: Design Patterns and Business Models for the Next

Generation of Software," Communications and Strategies, vol. 65, pp. 17-38, 2007.

[3] Ray Valdes et al., Hype Cycle for Web and User Interaction Technologies.: Gartner,

2010.

[4] Nan Zang, Mary Beth Rosson, and Vincent Nasser, "Mashups: who? what? why?,"

in Human Factors in Computing Systems, Florence, Italy, 2008, pp. 3171-3176.

[5] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel, "Understanding

Mashup Development," IEEE Internet Computing, pp. 44-52, September/October

2008.

[6] Florian Urmetzer et al., "Fast and Advanced Storyboard Tools. State of the art in

gadgets, semantics, visual design, SWS and Catalog," Deliverable D2.1.2, FP7

Project FAST, 2010.

[7] OpenAjax Alliance. OpenAjax Hub 2.0 Specification. Accessed: 16.05.2011.

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification

[8] Apache Software Foundation. Apache Wookie. Accessed: 16.05.2011.

http://incubator.apache.org/wookie/

[9] OpenAjax Alliance. Accessed: 16.05.2011. http://www.openajax.org

[10] Rainer Villido, "Semantic Integration Platform for Web," University of Tartu, Tartu,

Master Thesis 2010.

[11] World Wide Web Consortium. Widget Packaging and Configuration. Accessed:

16.05.2011. http://www.w3.org/TR/widgets/

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification
http://incubator.apache.org/wookie/
http://www.openajax.org/
http://www.w3.org/TR/widgets/

41

[12] Open Mashup Alliance. Accessed: 16.05.2011. http://www.openmashup.org/

[13] Open Mashup Alliance, "EMML Changes Everything: Profitability, Predictability &

Performance through Enterprise Mashups," 2009.

[14] Marwan Sabbouh, Jeff Higginson, Salim Semy, and Danny Gagne, "Web mashup

scripting language," in Proceedings of the 16th international conference on World

Wide Web, Banff, Alberta, Canada, 2007, pp. 1305-1306.

[15] IBM. IBM Mashup Center. Accessed: 16.05.2011.

http://www.ibm.com/software/info/mashup-center/

[16] Kapow Software. Accessed: 16.05.2011. http://kapowsoftware.com/

[17] JackBe. Presto: The Real-Time Intelligence Solution. Accessed: 16.05.2011.

http://www.jackbe.com/products/

[18] Volker Hoyer and Marco Fischer, "Market Overview of Enterprise Mashup Tools,"

in Proceedings of International Conference on Service-Oriented Computing, Berlin,

Germany, 2008, pp. 708-721.

[19] Google. iGoogle. Accessed: 16.05.2011. http://www.google.com/ig

[20] Yahoo! Pipes. Accessed: 16.05.2011. http://pipes.yahoo.com/pipes/

[21] Netvibes. Netvibes. Accessed: 16.05.2011. http://www.netvibes.com/

[22] Robert J. Ennals and Minos N. Garofalakis, "MashMaker: mashups for the masses,"

in Proceedings of the 2007 ACM SIGMOD international conference on Management

of data, Beijing, 2007, pp. 1116-1118.

[23] Jeffrey Wong and Jason I. Hong, "Making Mashups with Marmite: Towards End-

User Programming for the Web," in Proceedings of the SIGCHI conference on

Human factors in computing systems, San Jose, California, 2007, pp. 1435-1444.

http://www.openmashup.org/
http://www.ibm.com/software/info/mashup-center/
http://kapowsoftware.com/
http://www.jackbe.com/products/
http://www.google.com/ig
http://pipes.yahoo.com/pipes/
http://www.netvibes.com/

42

[24] Oscar Díaz, Sandy Pérez, and Iñaki Paz, "Providing Personalized Mashups Within

the Context of Existing Web Applications," in Web Information Systems

Engineering – WISE 2007. Berlin, 2007, pp. 493-502.

[25] Ikuya Yamada, Yamaki Wataru, Nakajima Hirotaka, and Takefuji Yoshiyasu,

"Ousia Weaver: A tool for creating and publishing mashups," in International World

Wide Web Conference, Raleigh, North Carolina, 2010, p. 8.

[26] Stéphane Sire, Micaël Paquier, Alain Vagner, and Jérôme Bogaerts, "A Messaging

API for Inter-Widgets Communication," in Proceedings of the 18th international

conference on World wide web, Madrid, 2009, pp. 1115-1116.

[27] Apache Software Foundation. Apache Shindig. Accessed: 16.05.2011.

http://shindig.apache.org/

[28] World Wide Web Consortium. (2008, Apr) Widgets 1.0: The Widget Landscape.

Accessed: 16.05.2011. http://www.w3.org/TR/widgets-land/

[29] Opera Software. Opera Widgets. Accessed: 16.05.2011. http://widgets.opera.com/

[30] Scott Wilson. (2011, Apr.) W3C Widgets with Opera 11. Accessed: 16.05.2011.

http://scottbw.wordpress.com/2011/04/13/w3c-widgets-with-opera-11/

[31] Philippe B. Kruchten, "The 4+1 View Model of Architecture," IEEE Software, vol.

12, no. 6, pp. 42-50, Nov. 1995.

[32] Chris Karlof, Umesh Shankar, J. Doug Tygar, and David Wagner, "Dynamic

pharming attacks and locked same-origin policies for web browsers," in Proceedings

of the 14th ACM conference on Computer and communications security, New York,

2007, pp. 58-71.

[33] Apache Software Foundation. Apache Incubator. Accessed: 16.05.2011.

http://incubator.apache.org/

[34] Scott Wilson, "Wookie Widget Developer's guide," 2009.

[35] Google. Google Wave. Accessed: 16.05.2011. http://wave.google.com/

http://shindig.apache.org/
http://www.w3.org/TR/widgets-land/
http://widgets.opera.com/
http://scottbw.wordpress.com/2011/04/13/w3c-widgets-with-opera-11/
http://incubator.apache.org/
http://wave.google.com/

43

[36] OpenSocial Foundation. OpenSocial. Accessed: 16.05.2011.

http://www.opensocial.org/

[37] Apache Software Foundation. Wookie Server Administrators Guide. Accessed:

16.05.2011. http://incubator.apache.org/wookie/wookie-server-administrators-

guide.html

[38] Apache Software Foundation. Wookie Plugin Developers Guide. Accessed:

16.05.2011. http://incubator.apache.org/wookie/wookie-plugin-developers-

guide.html

[39] Apache Software Foundation. Wookie REST API. Accessed: 16.05.2011.

http://incubator.apache.org/wookie/wookie-rest-api.html

[40] Scott Wilson. Wordpress plugin updated. Accessed: 16.05.2011. http://www.mail-

archive.com/wookie-dev@incubator.apache.org/msg01418.html

[41] World Wide Web Consortium. Language tags in HTML and XML. Accessed:

16.05.2011. http://www.w3.org/International/articles/language-

tags/Overview.en.php

[42] World Wide Web Consortium. Scripting and Ajax. Accessed: 16.05.2011.

http://www.w3schools.com/ajax/default.asp

[43] OpenAjax Alliance. OpenAjax Hub 2.0 Specification Introduction. Accessed:

16.05.2011.

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Introduct

ion

[44] OpenAjax Alliance. Introducing OpenAjax Hub 2.0 and Secure Mashups. Accessed:

16.05.2011.

http://www.openajax.org/whitepapers/Introducing%20OpenAjax%20Hub%202.0%2

0and%20Secure%20Mashups.php

http://www.opensocial.org/
http://incubator.apache.org/wookie/wookie-server-administrators-guide.html
http://incubator.apache.org/wookie/wookie-server-administrators-guide.html
http://incubator.apache.org/wookie/wookie-plugin-developers-guide.html
http://incubator.apache.org/wookie/wookie-plugin-developers-guide.html
http://incubator.apache.org/wookie/wookie-rest-api.html
http://www.mail-archive.com/wookie-dev@incubator.apache.org/msg01418.html
http://www.mail-archive.com/wookie-dev@incubator.apache.org/msg01418.html
http://www.w3.org/International/articles/language-tags/Overview.en.php
http://www.w3.org/International/articles/language-tags/Overview.en.php
http://www.w3schools.com/ajax/default.asp
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Introduction
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Introduction
http://www.openajax.org/whitepapers/Introducing%20OpenAjax%20Hub%202.0%20and%20Secure%20Mashups.php
http://www.openajax.org/whitepapers/Introducing%20OpenAjax%20Hub%202.0%20and%20Secure%20Mashups.php

44

[45] OpenAjax Alliance. OpenAjax Hub 2.0 Specification Managed Hub Overview.

Accessed: 16.05.2011.

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Managed

_Hub_Overview

[46] OpenAjax Alliance. OpenAjax Hub 2.0 Specification Managed Hub APIs. Accessed:

16.05.2011.

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Managed

_Hub_APIs

[47] OpenAjax Alliance. OpenAjax Hub 2.0 Specification Topic Names. Accessed:

16.05.2011.

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Topic_N

ames

[48] OpenAjax Alliance. OpenAjax Hub 2.0 Specification Publish Subscribe Overview.

Accessed: 16.05.2011.

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Publish_

Subscribe_Overview

[49] Nicole B. Ellison, Charles Steinfield, and Cliff Lampe, "The Benefits of Facebook

"Friends": Social Capital and College Students’ Use of Online Social Network

Sites.," Journal of Computer-Mediated Communication, vol. 12, no. 4, pp. 1143–

1168, July 2007, http://onlinelibrary.wiley.com/doi/10.1111/j.1083-

6101.2007.00367.x/full.

[50] Nicholas Carlson. Facebook Has More Than 600 Million Users, Goldman Tells

Clients. Accessed: 16.05.2011. http://www.businessinsider.com/facebook-has-more-

than-600-million-users-goldman-tells-clients-2011-1

[51] Facebook. Facebook Developer's Documentation. Accessed: 16.05.2011.

http://developers.facebook.com/docs/

[52] The Apache Software Foundation. Apache Ant. Accessed: 16.05.2011.

http://ant.apache.org/

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Managed_Hub_Overview
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Managed_Hub_Overview
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Managed_Hub_APIs
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Managed_Hub_APIs
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Topic_Names
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Topic_Names
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Publish_Subscribe_Overview
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification_Publish_Subscribe_Overview
http://www.businessinsider.com/facebook-has-more-than-600-million-users-goldman-tells-clients-2011-1
http://www.businessinsider.com/facebook-has-more-than-600-million-users-goldman-tells-clients-2011-1
http://developers.facebook.com/docs/
http://ant.apache.org/

45

[53] Apache Software Foundation. FAQ. Accessed: 16.05.2011.

http://incubator.apache.org/wookie/faq.html

[54] Apache Software Foundation. Downloading and Installing Wookie. Accessed:

16.05.2011. http://incubator.apache.org/wookie/downloading-and-installing-

wookie.html

[55] Facebook. Create Application. Accessed: 16.05.2011.

http://www.facebook.com/developers/createapp.php

http://incubator.apache.org/wookie/faq.html
http://incubator.apache.org/wookie/downloading-and-installing-wookie.html
http://incubator.apache.org/wookie/downloading-and-installing-wookie.html
http://www.facebook.com/developers/createapp.php

46

Appendix A. Installation

To deploy a Wookie Engine, Java 6 and Apache Ant 1.7.1 must be present. There are

documented cases when running with Apache Ant 1.8 causes problems [53]. Wookie will

be compiled from its source code, which can be downloaded from Apache SVN repository.

Since Wookie is still in incubation and is a subject to active development, very specific

revision is used in this thesis. The Wookie-OpenAjax Hub Bridge is tested using Wookie

revision 1089020. System requirements are summarized in Table 4.

Java Java 6

Widget server Apache Wookie revision 1089020

Build tool Apache Ant 1.7.1

Application server for test application Apache Tomcat 6

Table 4. System requirements.

Wookie’s source code can be downloaded using the following SVN command:

svn co -r 1089020 http://svn.apache.org/repos/asf/incubator/wookie/trunk

wookie

The Wookie Engine will be running in standalone mode using a Jetty container and a

Derby database. To build and run, the Ant build scripts are used. To run Wookie in

standalone mode with default settings type following command in the folder that was

created during the last command:

ant run

Additional running options can be specified by adding

-Drun.args="<property_name>=<property_value>". Available running options are

“port” and “initDB”. The parameter “port” defines the port for the Jetty to run; the

“initDB” defines whether to clean the database to its initial state. If the initDB is set to

true, all the data stored in the database will be lost. For example, to run Wookie in

standalone mode on port 9080 and to preserve database state, the following command can

be executed:

ant run -Drun.args="port=9080 initDB=false"

First launch will take some time, because all dependency libraries are downloaded using

Ivy.

47

To deploy the Wookie-OpenAjax Hub Widget, copy woah.wgt to webapp directory’s

deploy subdirectory. In standalone mode with default configuration it is located in project

root build/webapp/wookie/deploy. Wookie supports widgets, hot deployment, which

means all .wgt files dropped to the deploy directory will be deployed automatically. When

widget’s deployment is finished, a confirmation message will be shown in the application

server’s log (see Example 17) and the widget will be available for initiation.

 [java] 17:06:27,268 INFO ContextListener:210 - woah' - Widget was

successfully imported into the system.

Example 17. A log message indicating a successful widget deployment.

Additional information concerning the installation of Wookie can be found on the

Wookie’s homepage in Downloading and Installing Wookie section [53] or in the

Frequently Asked Questions [54].

In case the test application and the Wookie are run on different application servers, thus on

different ports or even on different physical servers, it is required to have a proxy to enable

cross-domain requests from portal to Wookie. I have implemented a really simple proxy to

make those requests possible. By default the proxy tries to connect to the Wookie server

that is deployed to http://localhost:9080/wookie, more precisely the request is

directed to http://localhost:9080/wookie/widgetinstances. To configure the URL,

change the servlet’s init-parameter “URL” in web.xml in proxy.war file. The proxy

application has to be deployed to the same application server as the test application itself.

Thus the JavaScripts running in the test application are allowed to make requests to the

proxy, which then can proxy them to Wookie server. If the proxy.war is deployed under

different name, modifications must be done in the beginning of the

wookieWidgetFactory.js in proxyUrl variable value. A sample deployment model is

illustrated by Figure 12.

48

Figure 12. A sample deployment model.

The test application can be deployed by arbitrary JEE container, however, I used Tomcat 6.

It is assumed, that the test application runs on http://localhost:8080/myportal/. If

not, adjustments must be made in test application in the beginning of the

wookieWidgetFactory.js. More precisely, tunnelUrl must refer to tunnel.html.

To be able to integrate with Facebook, host name of the application must be in accordance

with the one specified in Facebook application’s settings. For example, if the microsite is

hosted in mydomain.org, the Facebook application must be configured accordingly. New

Facebook application can be registered at the “Create Application” page [55] in Facebook.

To connect the test application to the newly created Facebook application, the new

Facebook application id must be set to FB_APP_ID variable value in the manager.html.

Further information about the Facebook integration can be found at Facebook Developer's

Documentation [51].

To make the test application visible outside the local machine, make sure that all the

necessary ports are opened in the firewall.

49

Appendix B. Source Code

The source code of the Wookie-OpenAjax Hub Bridge and the test application, which were

discussed in this thesis, are available on the accompanying CD.

