
University of Tartu

Faculty of Mathematics and Computer Science

Institute of Computer Science

Alisa Pankova

Insecurity of Transformation-Based
Privacy-Preserving Linear Programming

Master’s thesis (30ECTS)

Supervisor: Peeter Laud

Co-supervisor: Margus Niitsoo

Author: ... ”.....” May 2013

Supervisor: .. ”.....” May 2013

Co-supervisor: ”.....” May 2013

Allowed to defend

Professor: .. ”.....” May 2013

Tartu 2013

Contents

Abstract 3

1 Introduction 4
1.1 Problem Statement . 4
1.2 Outline . 4
1.3 Contribution . 4
1.4 Notation . 5

2 Linear Programming and its Applications 6
2.1 Formal Definition of Linear Programming 6
2.2 Geometrical Representation of a Linear Program 7
2.3 Forms of Linear Programming . 9
2.4 Example . 10

3 Privacy of Linear Programming 12
3.1 Security Definition . 13
3.2 Existing Approaches and their Problems 15

3.2.1 Basic Operations from Related Works 15
3.2.2 Example of a Transformation . 16
3.2.3 Some New Attacks . 18
3.2.4 Implementation-Related Problems 20

4 Bounds of Transformation-Based Linear Programming 22
4.1 The Problems of Perfect Secrecy . 22
4.2 Computational Security Assumptions . 24

4.2.1 Linear Programming over Zp . 25
4.2.2 Security Assumptions over R . 26

4.3 Possible Ways of Hiding . 28
4.3.1 Adding Constraints . 29
4.3.2 Augmenting the Columns . 29
4.3.3 Combining Different Types of Variables 32

4.4 Indistinguishability of the Variables . 32
4.4.1 Security Requirements . 33
4.4.2 Defining a Construction . 34

4.5 Proofs of Insecurity . 35
4.5.1 Formal Definition of a Transformation 35
4.5.2 Possible Classes of Affine Spaces 36
4.5.3 Conclusions for the Indistinguishability-Based Security 41

4.6 Weaker Security Requirements . 41

5 Conclusion 45

Resume (in Estonian) 46

References 47

2

Abstract

Applied mathematics is used in many real-world problems. Solving some of these prob-
lems may involve sensitive data. In this case, cryptographic techniques become necessary.
Although it has been proven that any function can be computed securely, it is still a ques-
tion how to do it efficiently. While it may be difficult to solve optimization tasks securely
and efficiently in general, there may still be solutions for some particular classes of tasks,
such as linear programming. This thesis gives an overview of the transformation-based
privacy-preserving linear programming. The thesis introduces some problems of this ap-
proach that have been present in the previous works and demonstrates its insecurity. It
presents concrete attacks against published methods following this approach. Possible
methods of protection against these attacks are proposed. It has been proven that there
are issues that cannot be resolved at all using the particular known class of efficient
transformations that has been used before.

3

1 Introduction

This thesis is devoted to protection of sensitive data in the field of applied mathematics.
In general, this work considers cryptography-like methods that are more related to linear
algebra than to classical cryptography.

1.1 Problem Statement

Applied mathematics is a field that deals with real-world problems. One large class of
problems that it solves are optimization tasks. A company would like to know how it has
to share its resources in order to maximize its profit, or how to distribute the work in such
a way that the expenses would be minimized. There exist many standard mathematical
ways how it could be done.

Different companies often have a strong collaboration with each other. In order to
maximize their profit in the best way, the optimization task may be needed to be solved
based on the data of several different companies. A good example that is used in many
works (like [3]) is related to transportation companies that may significantly reduce the
total distance their trucks have to cover if they adjust their routes according to each
other. However, it may happen that the companies do not want to reveal their data, or it
may be just prohibited by law. They want to be sure that their data remains private and
will not be revealed in any way. This is the point where using cryptographic methods
becomes essential.

It has been proven that it is in fact possible to compute securely any function [27].
The question is how to do it efficiently. If the companies need to wait several months
until the function will be computed, it may happen that the situation changes, and the
same function should be computed based on a completely different input.

Narrowing the set of mathematical tasks to a particular class of problems, it is possible
that there exists an easier and a more efficient way of solving them. In this work, we
consider linear programming optimization tasks.

1.2 Outline

First of all, we explain what is linear programming and why the privacy of its input data
may be important. We show some different protection methods that have already been
proposed in related works. We give a brief overview of the existing security definitions,
explain why they are too weak, and then state another security definition that seems
standard and reasonable. We find out which requirements have to be satisfied in order to
achieve this security definition. In the end, we conclude that it is impossible to achieve
it using a known class of efficient techniques of privacy-preserving linear programming.

1.3 Contribution

The aim of this thesis is to give an overview of existing approaches and their problems
together with some new attacks. After that, it introduces new protection methods that
nevertheless still do not solve all the problems. The thesis proposes a reasonably standard
and practical security definition. This security definition is proven to be unachievable for
any affine transformation, and this proof is the main contribution of this thesis.

4

1.4 Notation

Throughout this work, we use the following notation:

• Matrices are denoted with upright capital letters: A, B.

• Sets are denoted with italic capital letters: V , E.

• Vectors are denoted with bold font, while their elements remain non-bold. A vector

of length n is denoted as x =

x1...
xn

. A zero vector is denoted as 0 =

0
...
0

.

• The transpose of a vector denotes just writing the vector not as a column, but as a
row: xT = (x1, . . . , xn).

• The binary relational operations ≤,=,≥, <,> are applied componentwise to the
corresponding vectors: x ≤ y ⇐⇒ (x1 ≤ y1) ∧ (x2 ≤ y2) ∧ . . . ∧ (xn ≤ yn).

• The binary arithmetic operations +,− are applied componentwise to the corre-

sponding vectors: x + y =

x1 + y1
...

xn + yn

.

The exception is the · operation which denotes the scalar product of two vectors:
xT · y = x1y1 + . . .+ xnyn.

• No operator sign is used when a matrix is being multiplied by a vector or another
matrix: Ax, AB.

• Sometimes several matrices are augmented to each other. If an m × n matrix A
is augmented from the right by a m × p matrix B, this is denoted as

(
A B

)
. If

a k × (n + p) matrix C is in turn augmented to this construction from below, the

obtained matrix is denoted as

(
A B

C

)
.

• An identity matrix


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 is denoted by I.

5

2 Linear Programming and its Applications

This section gives a brief overview of linear programming, its properties, and different
forms.

Let us first look at an example from [5]. Suppose that a small brewery produces ale
and beer. The ingredients for these products are corn, hops, and malt, and different
products use them in different proportions. These ingredients are not infinite, and their
usage is bounded. Given how much resources each product consumes, bounds on the
resources, and how much profit a barrel of each product gives, the question is how the
brewery can maximize its profit.

Let a single barrel of beer bring a larger profit than a barrel of ale. Does it mean that
the best plan is to produce only beer? This idea may be wrong since beer may consume
more resources per barrel than ale. Moreover, it may happen that brewing only beer uses
up all the corn much faster than the other resources. The optimal solution may be not
so obvious, and that’s why we need linear programming.

The term “programming” is used in the sense of “planning”, not computer program-
ming, and “linear” is related to the way how it is defined mathematically. In this work, we
refer to a linear programming task as a “linear program”, although it cannot be treated
as an ordinary computer program.

Linear programming technique is widely used in the field of economics. More examples
and motivation can be found in [5].

2.1 Formal Definition of Linear Programming

Suppose that we have the following settings (an example from [5]). One barrel of ale
requires 5 units of corn, 4 units of hops, and 35 units of malt, whereas one barrel of beer
requires 15 units of corn, 4 units of hops, and 20 units of malt. There are 480 units of
corn, 160 units of hops, and 1190 units of malt available in total. The profit obtained
from a barrel of ale is 13 currency units, and the profit obtained from a barrel of beer is
23 currency units.

Let x1 denote the number of barrels of beer produced, and x2 the number of barrels
of ale produced. We may formulate the profit maximization task in the following way:

maximize 13x1 + 23x2

subject to 5x1 + 15x2 ≤ 480

4x1 + 4x2 ≤ 160

35x1 + 20x2 ≤ 1190

x1 ≥ 0

x2 ≥ 0

The constraints x1 ≥ 0 and x2 ≥ 0 ensure that the number of produced barrels is not
negative.

If we write down the inequalities in a matrix form, the profit maximization problem
looks like

maximize

(
13
23

)T

·
(
x1
x2

)
, subject to

 5 15
4 4
35 20

(x1
x2

)
≤

 480
160
1190

 ,

(
x1
x2

)
≥
(

0
0

)
.

6

Represented in such a way, the profit maximization task is an instance of linear pro-
gramming. Formally, linear programming is a technique used in optimization of a linear
function, subject to linear equality and linear inequality constraints.

Definition 1. The canonical form of a linear program is

maximize cT · x, subject to Ax ≤ b,x ≥ 0 , (1)

where the system Ax ≤ b represents the constraints, cT the cost function, x the vector of
variables.

The aim of linear programming is to find a solution to the linear inequality system
Ax ≤ b such that cT · x is maximal.

There exist efficient polynomial-time algorithms that solve linear programming tasks
on the assumption that the values of the variables are real numbers. In the given example,
it means that the products and the resources are divisible, i.e it must be allowed to produce
a half of a barrel. Adding the constraints that some variables must be integers turns a
linear programming task to a so-called integer programming task, which has been proven
to be NP-complete. In this work, we concentrate just on real number linear programming.

One thing that deserves mentioning is that the constraint x ≥ 0 is needed just for
correctness, and it does not affect the efficiency of the solver. Any variable may be set
to free, what means that it is allowed to take negative values. This should be taken into
account when we talk about security, since we cannot restrict the adversary from allowing
the variables to take negative values.

2.2 Geometrical Representation of a Linear Program

In the brewery example, we have just two variables, and therefore it is easy to represent
the set of possible solutions of the corresponding linear program geometrically in a two-
dimensional space. It turns out to be a polygon.

We will see that the same intuition generalizes to multidimensional space. Let a linear
program be given in its canonical form (1).

7

Definition 2. A feasible solution of a linear program is any vector v that satisfies its
constraints: Av ≤ b, v ≥ 0.

Definition 3. An optimal solution of a linear program is any feasible solution v that
minimizes the value of its cost function cT · v.

Definition 4. The feasible region of a linear program is the set of all its feasible solutions.

Let us look at the feasible region of a linear program in its geometric sense. Its
properties may become useful when we talk about privacy since a linear programming
task is in fact defined by its feasible region and the optimization direction.

Although the following definitions can be generalized, in this work we are dealing
with Euclidean spaces only. More information about the properties of polyhedrons can
be found in [12].

Definition 5. A set S ⊆ Rn is called convex if for any x ∈ S and y ∈ S, the straight
line segment between x and y also belongs to S (formally, λx + (1 − λ)y ∈ S for any
λ ∈ [0, 1]).

Definition 6. A hyperplane is a set of points S ⊆ Rn defined by a linear equation
a1x1 + . . .+anxn = b, where b ∈ R, ai ∈ R for any i ∈ {1, . . . , n}, and aj 6= 0 for some j.

Definition 7. A half-space is a set of points S ⊆ Rn defined by a linear inequality
a1x1 + . . .+anxn ≤ b, where b ∈ R, ai ∈ R for any i ∈ {1, . . . , n}, and aj 6= 0 for some j.

Definition 8. A set K ⊆ Rn is called a polyhedron if it is an intersection of a finite
number of half-spaces of Rn.

Example: a point, a closed line segment, a closed square, and a closed cube are bounded
polyhedrons in the spaces of dimensions 0, 1, 2, 3.

Proposition 1. The intersection of convex sets is also a convex set.

Proof: Let {Si}i∈I for some set of indices I (possibly infinite) be a collection of convex
sets. Let S =

⋂
i∈I Si. Let x, y ∈ S. Then x, y ∈ Si for any i ∈ I. Let z = λx+ (1− λy)

for some λ ∈ [0, 1]. By convexity of Si, z ∈ Si for any Si. Thus z ∈
⋂
i∈I Si, and S is

indeed a convex set. �

Proposition 2. A polyhedron is a convex set.

8

Proof: A polyhedron is by definition an intersection of a finite number of half-spaces.
Any half-space is a convex set. The intersection of a finite number of convex sets is also
a convex set. �

Why do we need all these definitions? The solution set of the system Ax ≤ b is a
polyhedron by definition, since each inequality in fact defines a half-space of Rn. Some
known properties of polyhedrons may help to analyze the feasible region of a linear
program.

Definition 9. A point v of a polyhedron P is called a vertex if it cannot be expressed as
a convex combination of points in P \ {v}.

Example: in the space of dimension 3, a vertex is just a corner point.

Definition 10. A basic solution to the linear program is the solution that is located in a
vertex of the corresponding polyhedron.

It is possible to find in polynomial time not just an arbitrary optimal solution, but
more precisely a basic solution (if it exists). The reason is that the linear programming
solvers are based on finding a local maximum of the feasible region (that is actually the
global maximum because of convexity), and the local maximum is necessarily located in
a vertex.

2.3 Forms of Linear Programming

We define some representation forms of linear programming that will be used in further
sections.

It is possible to define any polyhedron in such a way that the only inequalities are of
the form x ≥ 0. Any inequality may be transformed to an equality by introducing a slack
variable and thus increasing the dimension. An inequality of the form a1x1+. . .+anxn ≤ b
may be rewritten as a1x1 + . . .+ anxn + xs = b, where xs is called a slack variable. This
equation is equivalent to the initial inequality on the condition xs ≥ 0. Each inequality
in general requires its own slack variable to ensure that no solutions will be lost.

Definition 11. The standard form of a linear programming task is

maximize

(
c
0

)T

·
(

x
xs

)
, subject to

(
A I

)(x
xs

)
= b,

(
x
xs

)
≥ 0 , (2)

where inequalities have been transformed to equalities by introducing slack variables xs.

9

On the other hand, any linear equation system Ax = b may be transformed into a
system of inequalities by replacing each equality aT

i x = bi with two inequalities aT
i x ≤ bi

and −aT
i x ≤ −bi. This means that there is no difference whether the constraints of the

linear program are represented by equalities or inequalities. These two representations
are equivalent.

Another thing that we may do is to include the cost function into the constraint
matrix. This is what is actually being done in the preprocessing phase of some linear
programming solvers.

Definition 12. The augmented form of a linear programming task is

maximize w, subject to

(
1 −cT 0
0 A I

)wx
xs

 =

(
0
b

)
,

wx
xs

 ≥ 0 . (3)

where w is the variable to be maximized that represents the cost of the solution.

From the geometrical interpretation, it can be seen that we may maximize in any direc-
tion. An analogous minimization problem can be easily transformed into a maximization
problem just by reversing the direction of the objective function (flipping the signs of
the elements of c). Hence we may further consider both maximization and minimization
problems.

2.4 Example

The brewery example was quite specific, and it was related to a particular profit maxi-
mization task. Linear programming can be actually used in solving more general standard
problems. For example, some graph-related tasks such as finding the maximum flow, the
minimal spanning-tree, and shortest path, can be formalized as linear programs.

Let us look at the shortest path example. Given a directed graph (V,E) (V is the set
of nodes, and E is the set of arcs) with source node s, target node t, and cost wij for each
arc (i, j) ∈ E, the task is to find the path from s to t that has the minimal cost. This
task may be expressed by the following linear program with variables xij:

minimize
∑

(i,j)∈E

wijxij

subject to x ≥ 0 and ∀i
∑

j∈V \{i}

xij −
∑

j∈V \{i}

xji =


1 if i = s

−1 if i = t

0 otherwise

.

Why is it defined like that? Assume that xij = k iff the arc (i, j) is taken k times (if
it is not taken, then xij = 0). In this way, assigning integer values to the variables xij
represents a multiset of arcs. The constraints ensure that this multiset indeed forms a
path. Note that

∑
j∈V \{i} xji is the number of arcs entering the node i, and

∑
j∈V \{i} xij

is the number of arcs leaving the node i. The number of entering arcs should be equal
to the number of exiting arcs iff i is neither the source nor the target node. If it is the
source node, then it should contain one extra exiting arc, and if it is the target node, it

10

should contain one extra entering arc. The value to be minimized
∑

(i,j)∈E wijxij is the
sum of the weights of the arcs that are included into the path.

According to such definition, the path is allowed to pass through the same node several
times, and the same arc may be taken multiple times, but that is not a problem since
the shortest path will be a simple path (assuming that the length of the path cannot be
reduced to −∞ by assigning negative weights to the arcs).

Although it seems that, in order to get a correct solution, we should restrict the
answers to integers, this is actually not necessary. In the case of the shortest path problem,
finding an arbitrary optimal solution is no harder than finding an integral solution. The
reason is that all its basic solutions are integral, including the optimal one. The proof is
not so trivial, and it can be found in [17].

Representing the shortest path problem as a linear program is not intended to be the
most efficient algorithm for solving this task. However, it is a good example that shows
how linear programming can be used in solving more general problems. This can be in-
teresting from cryptographic point of view since having a secure privacy-preserving linear
programming solver would allow secure computation of some graph-related problems.

11

3 Privacy of Linear Programming

In this section, we give some examples of tasks that require privacy-preserving linear
programming. We give an overview of the existing works, and then state a stronger
security definition that seems to be reasonable for real world problems.

Suppose that there are several companies that produce malt beverages. It may happen
that each company is responsible for its own products, and the recipes are held in secret.
Each company has its storage of corn, hops, and malt, whose amount they also do not
want to reveal. However, all the companies belong to a larger organization, and they
are interested that they all get their maximum profit. In this case, they would like to
solve the linear program that corresponds to the data of all the companies, but without
revealing any private data.

Another potential use is related to the shortest path problem. Suppose that some
organization has hidden dangerous, possibly explosive devices underground in a particular
area. It is however still possible to move through this area knowing the locations of the
devices. The landscape may be represented by a grid that forms a graph where the
dangerous spots have no edges. Now suppose that the organization has some friends
who would like to cross this area from point s to point t. The problem is that the
organization does not trust their friends with the complete plans, and it does not want
to reveal anything except the shortest path, since otherwise these friends may be moving
around too much, or even try to dig out some of the devices. On the other hand, the
friends also do not want to reveal their movement path. This is the case of a shared
linear program where one party holds the constraints (where the points s and t denote
the source and the target vertices), and the other party the cost vector (that represents
the graph). Some parts of the constraints are public since they correspond to a standard
graph representation.

There have been attempts to implement an effective privacy-preserving version of
linear programming. In general, there are two main approaches to this problem.

1. One approach is the straightforward cryptographic implementation of a privacy-
preserving version of some LP solving algorithm [19, 23]. The main problem of
this approach is efficiency since the entire optimization process must be performed
online. The users are also restricted to particular implemented algorithms, and each
new modification of an LP solving algorithm should be each time translated to its
privacy-preserving version.

2. Another approach is to transform the program in such a way that it could be
given to a solver for offline computation without fearing that the solver gets some
useful information out of it. This has turned out to be challenging since the op-
timal solution to the initial program has to be recoverable from the optimal solu-
tion to the transformed program. This approach can be further divided into alge-
braic transformation-based methods and potential decomposition based approaches,
which are surveyed and generalized in [26] (that relates not just to linear program-
ming, but to optimization tasks in general).

In this work, we focus on the algebraic transformation-based approach. It seems
more tempting since it would potentially allow much more efficient solutions. We try to
formalize the security requirements and see if any of them can be actually achieved.

12

3.1 Security Definition

In the transformation-based approach, the input data of the users is being disguised
using some cryptographic operations (that should be less complex than solving the linear
program itself) and afterwards sent to a server (or a computing cloud) for solving. The
security requirement is that the server should not extract any information about the
initial input data. The brewery owners do not want to reveal their recipes not only to
each other, but also to the server, since he may be not trustworthy. But what does it
actually mean that the server should not learn anything? For example, the number of the
variables in the input program will barely be hidden since the only way to do it would be
to introduce exponential number of variables, and in practice it would be too inefficient.
The security requirements have to be formalized more precisely.

The security definition that has been used in the previous works related to the
transformation-based approach is the acceptable security. This notion was first used
in [10].

Definition 13. A protocol achieves acceptable security if the only thing that the adversary
can do is to reduce all the possible values of the secret data to some domain with the
following properties:

1. The number of values in this domain is infinite, or the number of values in this
domain is so large that a brute-force attack is computationally infeasible.

2. The range of the domain (the difference between the upper and lower bounds) is
acceptable for the application.

It turns out that such a security definition is too weak. For example, as mentioned
in [3], there are infinitely many ways of multiplying a linear equation (or an inequality)
by a constant, but actually each of them represents the same constraint. For the brewery
owners, this would mean that they just give out almost in plaintext the bounds of their
resources. When we talk about practical problems, using such a definition may be just
illegal since it violates the requirement that no single bit of information should be revealed
about private data.

Some works have tried more formal approaches to security analysis. For example, [3]
proposes some ideas based on computing the probability that the adversary derives some
secret value. However, such analysis is difficult since for example, in order to discover
some values from a permutation, the adversary may use more specific algorithms than
just guessing and checking.

The transformations of [8] are provided with some proofs of the leakage bounds using
channel-based definitions. However, such a security analysis seems not quite correct for
the given problem since the analysis works well if the channel selects a new randomness
each time a value passes through it. In practice, the adversary may use the channel with
the same randomness several times with different inputs by obtaining several distinct,
probably non-optimal solutions from the same linear programming task.

There is one problem that narrows the possible usage of privacy-preserving linear
programming. Namely, the security of the existing constructions is too dependent on
the initial sharing of the problem. There exist constructions that work relatively well
for horizontally-partitioned linear programs (each constraint entirely belongs to a single

13

user), but not vertically-partitioned (where the same constraint is distributed amongst
several users). It would be nice to have a more general security definition that would
work well for any partitioning. In this work, we are going to state a pretty standard,
indistinguishability-based confidentiality definition, since it seems a quite reasonable se-
curity requirement. The idea of indistinguishability-based security is that the adversary
is unable to distinguish two different linear programs after their transformation.

In the context of linear programming, it is quite possible that the adversary has
some significant partial information about the initial linear program. We do not know
exactly how the linear program is partitioned, and the server who solves the problem may
collaborate with some users. Our security definition states that even if the adversary has
some information about the initial linear program, he is unable to get any information
provided by the other users. Such information is completely unavoidable for example
in the shortest path problem, where the structure of the constraint matrix is almost
entirely public. Additionally, the indistinguishability-based definition is quite standard
in cryptography, and the techniques of integrating the transformation into a more complex
protocol are well-known.

In our security definition, we have the following settings. The adversary is allowed
to use any polynomial-time algorithm. First, the adversary chooses the dimensions m,n
and two instances of linear programming tasks A0,b0, c0 and A1,b1, c1 that share a
common optimal solution xopt. The reason why we let the adversary to choose m and
n is that it gives a much stronger security definition since some choices of m and n
might be weaker than the others, and we want to ensure that the linear program is
secure also for its worst-case parameters. After choosing everything, the adversary sends
m,n,A0,A1,b0,b1, c0, c1,xopt to the environment. The environment checks that xopt is
an optimal solution to both linear programming tasks. Then it chooses a bit b, performs
a transformation T on the task Ab,bb, cb and sends the transformed program back to the
adversary. The adversary attempts to guess b. The transformation T is secure if whatever
polynomial-time algorithm A the adversary uses, he is unable to guess the value of b much
better than simply guessing it randomly.

Definition 14. The transformation algorithm T is secure if, for any polynomial-time
algorithm A, the probability that the following program code returns true (on the condition
that it does not return ⊥) is 1

2
+ α(t):

G(t)

m,n,A0,b0, c0,A1,b1, c1,xopt ← A(t)

if S(m,n,A0,b0, c0,xopt) = false or S(m,n,A1,b1, c1,xopt) = false then return ⊥

b
$← {0, 1}

T ← T (Ab,bb, cb, t)

b′ ← A(T)

return b = b′

where:

• the parameters m and n define the size of the initial linear program;

14

• S(m,n,A,b, c,xopt) returns true iff indeed A is a m × n matrix, b is a vector of
length m, c is a vector of length n, and xopt is a valid optimal solution to a linear
program stated as “maximize cT · x, subject to Ax ≤ b,x ≥ 0”;

• t is the security parameter (the parameter that sets bounds on the time that the
adversary may spend on solving the problem, and on the probability that he guesses
the secret correctly).

• α is a negligible function (a function that approaches 0 faster than any inverse
polynomial; a function f : N→ R+ such that ∀c ∈ N : limt→∞ t

c · f(t) = 0).

Why is the probability that the adversary guesses b correctly is defined as 1
2

+ α(t)
for negligible α? It may seem that the less the probability is, the more secure is the
transformation. However, the adversary may always guess b with probability 1

2
just by

guessing randomly. On the other hand, if he is so unlucky that he guesses the right answer
with probability ε < 1

2
, he may just flip his “yes” and “no” answers, changing his winning

probability to 1 − ε > 1
2
. Hence 1

2
is indeed the worst case for the adversary, and if we

want a secure construction, we want the probability of a correct guess to be as close to 1
2

as possible.
An indistinguishability-based approach would allow to make the security independent

from the initial sharing, since whatever evil information is inserted into the transformed
program, the adversary cannot identify his own transformed program afterwards. Un-
fortunately, even such a definition is still not enough in the case if revealing the optimal
solution is dangerous. Namely, as mentioned in [3], no matter how secure the scheme
is, even in the cryptography-based approach, if one of the parties knows the constraints
and the other one the objective function, then knowing the optimal solution and the
constraints may already reveal some information about the possible directions of the ob-
jective function. This fact may be harmful for example for the shortest path problem,
where the graph is actually represented by the objective function. This case is not covered
by our security definition since the adversary is obliged to choose two programs that have
the same optimal solution.

3.2 Existing Approaches and their Problems

Several transformations of linear programs have been proposed beforehand [4,8,9,15,20,
21, 24, 25]. Unfortunately, these transformations either lack statements of security at all
(or the statements are informal), or are difficult to combine with usual cryptographic
security definitions in the construction of larger applications.

In this section, we give an overview of some existing approaches that are not sufficient
for the indistinguishability-based security. We describe in more details the proposal by
the authors of [8] since it generalizes to some extent the other works. We find out the
particular problems of [8] and suggest some attacks against them.

3.2.1 Basic Operations from Related Works

Let us first give an overview of the basic hiding operations proposed in the previous works.
More or less all of them are used in [8]. Let a linear programming task be given in its
standard form (2).

15

Multiplying from the left. The idea of multiplying A and b by a random invertible
matrix P from the left was first introduced in [9]. Since P is invertible, all the solutions
to the system, including the optimal solution, remain the same. This means that the
transformation is not harmful for the correctness. However, it conceals only the outer
appearance of A and b, but the inner essence of the linear program remains the same
(the feasible region does not change). This is not enough for our security definition, since
only the matrices that have exactly the same feasible region would be indistinguishable.

Multiplying from the right. The idea of multiplying A and b by a random invertible
matrix Q from the right was also proposed in [9]. This operation hides also the cost vector
c. This would make the transformation perfectly secure, but unfortunately it changes the
optimal solution if some external constraints of the form Bx ≥ b′ are present. In this
case, the vector b′ should also be modified according to the transformation, but that in
fact reveals all the information about Q. Since in practice linear programs do require
such constraints (in general of the form x ≥ 0), this solution is not enough.

Scaling and Permutation. Using only Q without P was proposed in [24]. It improved
correctness a bit, but the problem was still in Q, not in P. This problem has been
discovered afterwards in [4]. The main result is that in order to preserve the inequality
x ≥ 0, the most general type of matrix by which we may multiply from the right is a
positive monomial matrix (see Definition 15). Multiplying by a positive monomial matrix
results in scaling and permuting the variables. This is again not enough since it just scales
the corresponding polyhedron and permutes its coordinates. We show in the section 4.4
that there exist attacks based on finding projections of polyhedrons.

Definition 15. A matrix is called monomial if it contains exactly one non-zero entry per
row and column (its other name is generalized permutation matrix).

Some interesting hiding provided with security analysis has been proposed in [8]. The
initial variable vector x is not only scaled, but also shifted. As we see later, the shifting
actually reduces to scaling. Let us look at this work in more details.

3.2.2 Example of a Transformation

The authors of [8] propose to hide the variables by shifting. The initial linear program is
given in its canonical form (1), the equalities intentionally separated from the inequalities.

min cTx

A1x = b1

A2x ≤ b2

x ≥ 0

By assumption, the initial constraints are split into two parts: A1x = b1 and A2x ≤
b2. When a linear program solver gets a linear program as an input, it translates inequal-
ities into equalities by introducing slack variables. The idea of this work is that only the
x variables have to be hidden, and the slack variables may remain public.

16

A positive monomial matrix Q is used to hide c. We have already seen from the
previous works that it has been proven to be the most general type of matrix that is
allowed for multiplication from the right.

min cTQ(Q−1x)

A1Q(Q−1x) = b1

A2Q(Q−1x) ≤ b2

(Q−1x) ≥ 0

Besides scaling, the variables x are also shifted. A positive vector r is used to hide x.

min cTQ(Q−1x + r)

A1Q(Q−1x + r) = b1 + A1Qr

A2Q(Q−1x + r) ≤ b2 + A2Qr

(Q−1x + r) ≥ r

Since the vector r is supposed to be secret, it cannot be exposed in plaintext. The
last inequality is therefore multiplied by a positive diagonal matrix S and is rewritten as
S(Q−1x + r) ≥ Sr.

min cTQ(Q−1x + r)

A1Q(Q−1x + r) = b1 + A1Qr

A2Q(Q−1x + r) ≤ b2 + A2Qr

S(Q−1x + r) ≥ Sr

The inequalities are transformed to equalities by introducing slack variables s. Let
y = (Q−1x + r). An inequality of the form aT

i y ≤ bi can be transformed into an equality
by rewriting it as aT

i y + si = bi. The conditions si ≥ 0 ensure that the value of aT
i y

is not greater than bi. For additional hiding, the equations that correspond to yi ≥ ri
are rewritten into the form −Siyi + si = −Siri, where Si is the non-zero entry of the
diagonal matrix S that is associated with the variable yi. The slack variables si are
randomly permuted amongst the slack variables of the A2x ≤ b2 inequality by introducing
a permutation matrix T instead of just an identity matrix.

A′ =

A1Q 0
A2Q
−S

T



b′ =

b1 + A1Qr
b2 + A2Qr
−Sr


The quantities A′ and b′ are multiplied from the left by a random invertible matrix

P to conceal the appearance of A′ and b′. The published linear program is

min c′
T
z

PA′z = Pb′

z ≥ 0

17

where c′T = cTQ extended with zeroes for the slack variable costs, and z =

(
y
s

)
.

In general, the only difference between the equality and the inequality constraints is
that the values of the slack variables in the inequality constraints are not supposed to be
hidden. However, it is essential to treat them separately since the security analysis of the
transformation is based on the assumption that the adversary has no information about
A1, A2, b1, b2. If the columns of slack variables would be included into the equialities
A1x = b1, then they would most probably be represented by at most a positive monomial
matrix, and this would be some kind of information about A1.

3.2.3 Some New Attacks

We describe some new attacks that may be used to disable some previously proposed
protection methods.

Reducing Shifting back to Scaling The transformation maps each variable xi to a
new variable yi = qi·xi+ri where qi and ri are random positive real numbers. The problem
is that the scaled values of xi leak through the slack variables. The slack variables si are
used in equations of the form −Si · (qi · xi + ri) + si = −Si · ri where Si is the non-zero
entry of the matrix S that corresponds to the variable xi. From these equations, we get
si = Si · qi · xi, what means that si actually obtain the scaled values of xi, and hence
shifting does not give more security than just scaling (multiplying by a positive monomial
matrix from the right). The same problem is present in [25], another work that is based
on shifting the variables.

For the given construction, this shifting is better than nothing since otherwise both
c and x would be scaled by the same monomial matrix Q (actually, while c is scaled by
the entries of Q, the vector x is scaled by their inverses). However, in any case s still
contains the same factors, although its entries are additionally multiplied by entries of
S. As proposed in [8], selecting the matrix T as a positive monomial matrix may also
contribute to scaling of s, but then si = T−1i · Si · qi · xi, and it is still just scaling of x.

Removing the Permutation Another type of hiding used in [8] is permutation. Af-
ter the variables x are shifted, the new slack variables that come from the shifting are
permuted amongst the slack variables of the inequalities A2x ≤ b2. It seems that it gives
additional security since the adversary does not know which variables correspond to the
scaled x. However, the permutation may still be easily traced down.

Each shifted initial variable from y is associated with exactly one slack variable from
s, and the adversary may therefore look through all the pairs of columns and recover the
relations. He even does not need to take into account all the possible pairs of columns in
PA′ since he can distinguish the initial variables from the slack variables.

This problem can be stated more generally. Suppose that we have a linear equation
system Ax = b. Consider the solution space of this system. If the space contains small
sets of t variables that are in affine relationship α1xi1 + . . .+αtxit = β for some αi, β ∈ R
(that may be not obvious from the outer appearance A), then these equations may be
recovered by looking through all the sets of columns of size t using Gaussian elimination.

1. Fix a set of t columns indexed i1, . . . , it from the matrix A.

18

2. Take any other non-fixed column (that has not been deleted yet). Let it be with
index j.

3. Take an equation where xj has non-zero coefficient. Express the variable xj in
terms of the other variables. Substitute it into all the other equations. Remove the
equation and the j-th column. If a column contains only zeroes, then remove just
the column without removing any rows.

4. Continue removing until only the initially fixed t columns are left.

5. Note that all the previous operations do not change the solution set of the system.
Therefore, if there are any rows left, then there exist αi, β ∈ R (not all αi = 0) such
that α1xi1 + . . .+ αtxit = β.

Therefore if the constraints contain initial-slack variable pairs, the adversary may
easily recover which initial variable is in the relation with which slack variable. He
could potentially get such related pairs also purely from A, but in this case the initial
variables should be indistinguishable from the slack variables, which is not the case of [8]
transformation.

What if the slack variables s were permuted also amongst the y variables? It would
not help since y and s are clearly distinguishable because of their distinct lower bounds
(0 vs some element of r). Finding the lower bounds of variables is easy, it is just a linear
programming task where the value of a particular variable is being minimized.

The Problems with Inequality Constraints We introduce an attack that allows to
remove the scaling and the permutation of variables. This is possible in the setting where
all the constraints are represented by inequalities, one of the parties knows at least two
inequality constraints, and the locations of the slack variables can be traced down. Some
similar steps can be found in the attacks introduced in [3], but these attacks are actually
different and are based on looking through an exponential number of combinations. Our
attack is polynomial-time. Let us state this problem in general.

Suppose that the initial linear program is given in its canonical form (1). In the
standard approach proposed by the previous works, the inequalities are transformed to
equalities by bringing the linear program to its standard form (2).

maximize

(
c
0

)T

·
(

x
xs

)
, subject to

(
A I

)(x
xs

)
= b,

(
x
xs

)
≥ 0 .

The columns of the matrix are first being scaled and permuted multiplying it by a
monomial matrix Q from the right. Then it is multiplied by a random invertible matrix
P from the left.

If the vector c is treated separately from the constraints as it was done in the previous
works, then the slack variables are clearly visible since they do not participate in the cost
vector. This allows to use row operations to reduce the constraints back to the standard

form
(
A′ I

)(x
xs

)
= b′. Here A′ and b′ may be different from A and b. However,

since we know that the feasible region is just scaled, the inequalities A′x ≤ b′ define the

19

scaled polyhedron of the initial program. We may use the knowledge about the initial
inequalities to cancel out the scaling as follows.

Suppose that one of the parties knows at least two inequalities from Ax ≤ b. Take any
two of them, let these inequalities be ak1x1 + . . .+aknxn = bk and a`1x1 + . . .+a`nxn = b`
for some k, `. We want to find the corresponding scaled inequalities from the transformed
polyhedron A′x ≤ b′. Let us take any two inequalities a′k′1x1 + . . . + a′k′nxn ≤ b′k′ and
a′`′1x1 + . . .+ a′`′nxn ≤ b′`′ . We may verify if they are indeed the same as follows.

With inequality replaced by an equality, each constraint corresponds to a hyper-
plane that bounds the polyhedron. The idea is to find the points where the hyper-
planes cut a particular axis. For the variable xi, the axis is being cut in the points
(0, . . . , 0, bk

aki
, 0, . . . , 0) and (0, . . . , 0, b`

a`i
, 0, . . . , 0) in the constraints coming from the initial

program. Let i′ denote the index that corresponds to the location of the variable xi in the
transformed program. In the constraints coming from the transformed program, the axis

is being cut in the points (0, . . . , 0,
b′k′
a′
k′i′
, 0, . . . , 0) and (0, . . . , 0,

b′`′
a′
`′i′
, 0, . . . , 0). Since the

transformed polyhedron is actually a scaled initial polyhedron, we have bk/aki
b`/a`i

=
b′k′/a

′
k′i′

b′`′/a
′
`′i′

.

Although the variables are permuted, these ratios can be sorted. The bounds from the
transformed polyhedron correspond to the bounds in the initial polyhedron only if the
sorted ratios are exactly the same. Since some ratios may actually repeat, knowing more

initial inequalities allows better testing. The scaling for xi can be computed as qi =
bka

′
k′i′

b′
k′aki

,

and it will be uniquely determined at least for those variables whose ratios in the obtained
sequence are unique.

This attack does not allow to discover precise permutations if the known inequalities
are symmetric with respect to some variables, and the scaling cannot be derived for the
variables whose coefficients in all the known inequalities are 0. It is also impossible if
the right sides of all the known inequalities are 0. However, it would already reduce
the number of secure linear programming tasks significantly. While it would not work
well with the shortest path problem (there are equalities instead of inequalities), it can
be very well applied to the situation similar to the brewery example where each party
yields several inequalities that correspond to different products. It is very likely that the
same product (the same variable) is also produced by some other party, and revealing the
scaling of this particular variable could be interesting.

Therefore, hiding the cost vector c just by scaling is not sufficient since it reveals the
locations of the slack variables. We propose to solve this issue by using the augmented
form of linear programming (3) that includes the cost vector into A. There may never-
theless be other means of locating the slack variables. We consider them in the section
4.6.

3.2.4 Implementation-Related Problems

In the real world, the computation is not as nice as in ideal mathematics. The theory of
privacy-preserving linear programming is based on the assumption that we are dealing
with true real numbers. However, this situation is not achievable in practice. Real
numbers are actually represented by fixed/floating point numbers, and their precision is
finite.

The authors of [8] take into account the possibility of factoring attacks. This may

20

indeed be a problem since two random numbers are coprime with a relatively high prob-
ability. The described attacks are related to the common factors of column entries that
can be read directly from the transformed matrix. For example, if an arbitrary integer
matrix is being multiplied by an integer monomial matrix from the right, then any column
in the resulting matrix has each entry containing the same factor. The same problem
generalizes to rational numbers.

Since the variables are just scaled, the search for common factors may be possible
also in the solution vectors, depending on the implementation details. Modifying the cost
vector allows to obtain several distinct solutions that all contain the same scaling factor.
Extracting these factors allows to eliminate the scaling from any solution. In theory,
there would be no factoring problems if we were dealing with true real numbers. On the
other hand, in practice the factoring attack also seems not to work well due to imprecision
of solving algorithms, and thus the problem can be solved by giving the server a linear
program that is a bit rounded. Hopefully, the real computer arithmetic will not be too
harmful for the correctness.

21

4 Bounds of Transformation-Based Linear Program-

ming

In this section, we are trying to define a construction that would be secure according
to our indistinguishability-based definition. First of all, we show that achieving perfect
secrecy is impossible. Then we focus on computational assumptions. We show that linear
programming does not work correctly in finite fields, and thus the assumptions need to be
defined in R. In the end, we prove that, whatever affine transformation we use, there is an
attack against which there is no protection with respect to the indistinguishability-based
definition.

4.1 The Problems of Perfect Secrecy

Theoretically, it is possible to transform the linear program in such a way that it is
perfectly secure. A suitable transformed program would be any random polyhedron that
has the same optimal solution. The question is how to do this transformation efficiently if
the optimal solution is initially unknown. We show that if there is a way of constructing
a random linear program with the same optimal solution, then the optimal solution can
be approximated efficiently (up to an arbitrary small error ε) with a workload that is not
significantly higher than the workload of the transformation.

Definition 16. The `2-norm of a vector x =

x1...
xn

 is the quantity ||x|| =
√
x21 + . . .+ x2n.

Definition 17. The distance of a point x from a hyperplane H is the quantity

min
y∈H
||x− y|| .

Assume that we have achieved perfect secrecy for our security definition. This means
that we have a black-box algorithm T that, given an objective vector c and a set of
bounds Ax ≤ b (let the x ≥ 0 bounds be for simplicity included in Ax ≤ b) as an
input, outputs another linear program that has exactly the same optimal solution, but
otherwise:

• The objective function is independent from A,b,c (however, it may depend on the
values m,n).

• The bounding hyperplanes are independent from A,b,c (probably dependent on the
values m,n).

Now, given a linear program in its canonical form (1), the error bound ε, and the
algorithm T , the goal is to find a solution vector x such that ||x− xopt|| < ε.

Let the bounding hyperplanes be located at the distance at most d from the optimal
solution (the value of d may either depend or not depend on m and n, but it should be
independent from A, b, c).

First, we will bound the error with 2d. Then we will see if it is possible to reduce the
error by scaling the initial polyhedron.

22

1. Treating the hyperplanes as equalities, find a point x that minimizes the sum of the
distances from all the hyperplanes. Since each hyperplane by assumption contains
a solution that is at most d apart from xopt, the better solution will be not worse
than the optimal one. By triangle inequality, we get ||x− xopt|| ≤ 2d.

The question is whether the point x can be found efficiently. This can be done for
example using least squares method that is just one iteration and may therefore be
computed efficiently using ordinary cryptographic operations. According to [14],
this can be done by computing

β = (ATA)−1ATb ,

then the optimal answer is x = Aβ. There is just one matrix multiplication (the
transposes do not matter), three multiplications of a matrix by a vector from the
right, and one inverse. According to the method of computing inverse functions pro-
posed in [2] and afterwards applied particularly to matrix inverses in [13], computing
the inverse needs just one random matrix generation and two matrix multiplications.

2. The next problem is that we do not have any assumptions about d. It may be
selected by T independently from the input, or it may depend on some parameters
of the input program.

(a) Let d be independent from the input. If the distance of the hyperplanes from
the optimal solution is chosen randomly, there still exists some upper bound
on that value, so d <∞. We may multiply each column of A by ε

2d
so that the

elements in xopt will increase 2d
ε

times. Let this new scaled solution be denoted
yopt := xopt · 2dε , and its approximated solution y. Then still ||y − yopt|| ≤ 2d,
since the value of d does not depend on the input. Then:

||y − yopt|| ≤ 2d

||y − 2d

ε
· xopt|| ≤ 2d

2d

ε
· || ε

2d
· y − xopt|| ≤ 2d

|| ε
2d
· y − xopt|| ≤ ε

The quantity ε
2d
· y is the required approximation for xopt.

(b) What if d actually does depend on the input? Let us split this situation into
two mutually exclusive events.

• If scaling of the initial polyhedron affects the value of d, then it reveals
information about the initial program, and the transformation is therefore
not perfectly secure. The adversary may break the security assumption
by selecting the initial programs whose polyhedrons have different sizes.

• If scaling does not change the value of d, then we may again scale it in
the same way we do it in the case where d does not depend on the input.

The conclusion is that if an efficient transformation that provides perfect secrecy was
possible, its perfect secrecy would be unnecessary since there would be an easier way of

23

finding the optimal solution. In other words, having such a transformation algorithm
implies having the optimal solution, and it is quite possible that knowing the optimal
solution is essential for constructing a perfectly secret transformation. Therefore, this
work will be based on the computational security.

4.2 Computational Security Assumptions

From the previous works, it seems that there are just two main operations that might be
useful:

• Multiplying by a random invertible matrix from the left hides the outer appearance
of A and b, but does not modify the feasible region at all.

• Multiplying by a random positive monomial matrix from the right scales and per-
mutes the variables, and thus stretches the polyhedron.

As we have seen before, this is not enough for indistinguishability-based security.
Therefore we need something new. Could we use the permutation of columns more
efficiently than in the previous works?

Although the previous solutions propose hiding of the cost vector c by scaling, we
will use the augmented form of linear programming (3) that includes the cost vector into
A. As we have shown in the section 3.2.3, if the cost vector c is not included into A,
the linear program becomes insecure since the zero entries of the cost vector reveal the
locations of the slack variables. This also makes the security analysis simpler since we
no longer need to think on hiding the cost vector separately. However, we must assume
that the location of the column that corresponds to the cost variable must be public.
Otherwise the solver has to solve the same task multiple times, optimizing each variable
separately. We assume that revealing one column does not affect the security too much
since the adversary could guess it on his own.

Using the augmented form allows us to use some approach based on difficulty of
distinguishing the variables. In this way, using permutation of columns for hiding becomes
reasonable since we may mix the variables that do participate and that do not participate
in the cost vector.

We are going to try the approach based on the computational difficulty of recovering t
columns from the matrix whose columns are randomly permuted. This is tightly related
to the Strong Secret Hiding Assumption (SSHA) [1] defined over finite fields. The aim of
SSHA is to introduce two distributions that are indistinguishable from each other. While
one of them contains actual secret data, the other one is completely random, and if the
real data is indistinguishable from random data, then the scheme is secure. The definition
may look a bit specific since it was designed for a particular secret sharing system based
on polynomial interpolation.

The SSHA is defined as follows. There are two distributions, denoted U(t,m, e, p) and
R(t,m, e, p), over the set of (2t+ 2e+ 2)×m matrices of values in Zp. The distribution
U(t,m, e, p) chooses all values uniformly from Zp. The distribution R(t,m, e, p) results
from the following process:

1. Choose values k1, . . . , kt+1 uniformly from Z∗p. Choose mt values uniformly from Zp,
denote them by aij (i ∈ [1,m] and j ∈ [1, t]). For a particular i, the values aij will

24

represent coefficients of a polynomial of degree t (its free term is 0), and the values
k1, . . . , kt+1 will be the points on which each of these polynomials will be evaluated.

2. For r = 1 to t+e+1 compute the r-th row of the matrix as [
∑t

j=1 a1jk
j
r, . . . ,

∑t
j=1 amjk

j
r].

These rows are referred as “special”.

3. For r = t + e + 2 to 2t + 2e + 2 choose the r-th row by choosing each component
from Zp uniformly. These rows are referred as “non-special”.

4. Choose a random permutation π of the set {1, . . . , 2t+ 2e+ 2} and set the i-th row
of the final matrix to be the π(i)-th row in the matrix defined above.

The SSHA states that the distribution R(t,m, e, p) is computationally indistinguish-
able from U(t,m, e, p). The idea behind it is that the only thing that makes one dis-
tribution different from the other one is the existence of the “special” rows. Note that
the i-th entry of the r-th “special” row

∑t
j=1 aijk

j
r equals to the value of the polynomial

ai(x) = ai1x + ai2x
2 + . . . + aitx

t of degree t at the point kr. Given at least t + 1 points
a(ki1), . . . , a(ki(t+1)) for distinct ki1, . . . , ki(t+1), there is a known non-trivial linear combi-
nation α1, . . . , αt+1 such that α1a(ki1) + . . . + αt+1a(ki(t+1)) = 0. This means that if the
adversary somehow guesses the “special” rows correctly, he may verify his guess by check-
ing if the linear combination works. However, it is known that less than k + 1 points do
not reveal any information about the corresponding polynomial of degree k. The SSHA
assumes that there is no efficient algorithm other than just guessing and verifying all the
sets of rows of size t+ 1 by exhaustive search, and therefore the problem is hard.

We could try to use something similar by adding randomly generated columns to our
matrix and trying to hide the initial program amongst them. If we would like to use this
assumption directly, we would have to think on how to solve a linear program over Zp.
Another approach would be to think of translating this security assumption to R. Let us
see which of them seems better.

4.2.1 Linear Programming over Zp

If it was possible to solve a linear programming task in Zp, there could be even more hard
problems other than SSHA that could potentially be used (like the minimum-distance
problem in the linear codes, or security of some McEliece-type cryptosystem [22]). This
is the reason why linear programming over Zp could be interesting.

Suppose that we have some transformation T , the security of which is based on some
computational assumption related to Zp. Given the initial constraints A and b (the cost
vector is contained in A), we have T (A,b) = (A′,b′). Since T works in Zp, the elements
of A′ and b′ belong to Zp, and the linear program to be solved is

maximize w, subject to A′x = b′ (mod p), x ≥ 0 ,

where w ∈ x is the variable that represents the cost. This is equivalent to introducing
additional variables ki such that each equation of the form aT

i x = bi becomes aT
i x −

p · ki = bi. However, in this case a linear program becomes an integer program (since
we are working in Zp), and solving it may become very slow. We could use different
approximation algorithms that might work relatively well in practice (like the lattice

25

basis reduction algorithm LLL [18]). Nevertheless, since integer programming is known
to be NP-complete, solving the program itself might actually mean breaking the security
assumption, and therefore it may be difficult to use computational assumptions correctly.

However, the main problem of this approach is that it is not correct. There may be
additional solutions that are optimal for the transformed program, but infeasible for the
initial program. Suppose that we have the following 3-variable linear programming task:

minimize w,

subject to

x− z = 2

2x− w = 0

x, z, w ≥ 0

The constraint x − z = 2 ensures that x ≥ 2, and the optimal solution in R is
therefore x = 2, z = 0, w = 4. If we solve the same program in Zp, then for example
x = (p + 1)/2, z = x − 2, w = 2x = p + 1 ≡ 1 (mod p) is an optimal solution for any
odd p. For p = 2 we would clearly have problems with the programs that use numbers
greater than 1, for example all the even numbers would be mapped to 0. We could try
to use rings instead of fields, but a ring would have the same problems. There would be
even more possibilities of getting false zeroes (if the matrix entries turn out to be zero
divisors). For example, for any even n, the following linear program would have a wrong
solution in Zn:

minimize w,

subject to

x− z = 1

2x− w = 0

x, z, w ≥ 0

The optimal solution in R is x = 1, z = 0, w = 2, while the optimal solution in Zn is
x = n/2, z = x− 1, w = 2x = n ≡ 0 (mod n).

Since linear programming does not work correctly in Zp, the preferable field is either
Q or R. We may try to use something similar to the security assumptions over finite
fields, but we will need to define new assumptions that hold over Q or R. Since Q may
be vulnerable to number-theoretical attacks, we will choose R.

4.2.2 Security Assumptions over R

Working with R, we would most likely have to define some completely new assumption,
because cryptography over reals has not received much attention so far (although there
have been some related works, for example [7]). The assumptions that work well in
Zp may be not so easily extendable to R. If we try to use a transformation similar to
SSHA in some other fields, we may have problems. For example, if we just take the
same description over Z, we get that all the entries of the “special” rows are divisible by
the same number (the powers of kr that appear in each term of the sum), and since two
random numbers are coprime with a high probability, these rows may be easily discovered.

26

This problem may be solved by going from Z to R, then the number-theoretical problems
will be avoided. Still, another problem is that the entries in the special rows are sums
of numbers with large exponents, and they will be just visually distinguishable unless we
start selecting the entries of the “non-special” rows from some distribution other than just
from the span [0, p) as in the initial SSHA definition. Even if we fix these issues, we still
cannot be sure that there are no other problems.

For a linear program, the difference in the sizes of the columns may be harmful. Even
though the variables are permuted, if one column is sufficiently larger than the others, it
may already reveal some information. In the brewery example, it may show that there
is a product that consumes significantly more resources per unit than the others, and
the adversary may use this fact to identify to what actual product that variable might
correspond. This may be partially avoided by scaling the columns by a number that comes
from a sufficiently big range (like multiplying the initial matrix by a positive monomial
matrix Q in [8]). The problem is that if we use scaling to make the columns more or
less of the same size, then the same scaling causes the corresponding variables to differ
in sizes and leak the same information.

To our knowledge, there have been no solutions for this problem. We propose a
solution that brings the columns to similar size.

Let us introduce some definitions and propositions that will be needed for convincing
why this approach might work.

Definition 18. The normal distribution with mean µ and standard deviation σ, denoted
N (µ, σ2), is defined by its probability density function fN (µ,σ2)(x) = 1

σ
√
2π

exp(−1
2
(x−µ

σ
)2).

Proposition 3. If X1, . . . , Xn are independent random variables sampled from the dis-
tribution N (0, 1), then the variable Z =

∑n
i=1 aiXi (for fixed ai) is distributed according

to N (0,
∑n

i=1 a
2
i).

Proof: This property can be derived from the definition of the probability density func-
tion of normal distribution [11]. �

The sizes of the columns of the matrix A will be normalized in the following way:

1. Let L be the maximal `2-norm of the columns of A.

2. The goal is to bring the `2-norms of each column to the value L (or some larger
value, which gives better results). There are several ways to do it:

• Scale the columns. This may unfortunately produce some other security leak-
age since it at the same time scales the variables.

• Add a row of positive entries where the value of each entry is equal to the value√
L2 − L2

i , where Li is the `2-norm of the corresponding column. For the cor-
rectness of the linear program, it requires introduction of an additional variable
that compensates the entire sum (the entry in the corresponding column of the
added row should be a negative value).

• Multiply A from the left not just by any invertible matrix, but more precisely,
by a matrix P whose entries are sampled from N (0, 1).

27

Treating the entries of A as arbitrary constants, each entry in the matrix obtained
after the multiplication will be distributed according to N (0, L) due to the linearity of
N (0, 1) distribution. There however are still some problems with this approach:

• The entries of A are not quite constants, they are used several times in the matrix
multiplication. This construction may produce slightly different distributions in
practice.

• Actually, the indistinguishability of the columns should not depend on the distri-
bution of P since the adversary may always bring the matrix to its reduced row
echelon form, and it will be the same regardless of the choice of P. A better secu-
rity analysis should be based on comparing the sizes of columns in the reduced row
echelon form.

• If a new variable is introduced, it is difficult to make it indistinguishable. Namely,
although its `2-norm can be set to L by scaling, this scaling makes the size of the
variable itself too different. Most probably, we should assume that this variable is
distinguishable from the others, and it may reveal some information.

In practice, the columns become very similar when L is sufficiently larger that the
initial `2-norms.

4.3 Possible Ways of Hiding

Since we have proven that obtaining a transformed polyhedron with perfect secrecy is
impossible, the next goal is to make the transformed polyhedrons at least computationally
indistinguishable from each other. We will consider the approach that is based on making
the variables indistinguishable by permuting the columns. We will also make use of the
existing methods, such as multiplying the matrix from the left and scaling the columns.

Since just permuting the initial columns amongst each other will barely be useful, we
need to add more columns and hide the real ones amongst them. Each column introduces
a new variable. The new variables may in general be added in two different ways:

• included into additional row constraints;

• augmented to the columns of the initial matrix.

We must be careful that adding these variables still make it possible to recover the
optimal solution of the initial program.

We will further assume that the linear program is given in its augmented form (3) as
minimize w, subject to Ax = b, where w ∈ x. The constraint x ≥ 0 is being added by
the solver for correctness. The system may already be multiplied by an invertible matrix
from the left, and its columns scaled and permuted. Since we have shown that these
operations do not provide enough privacy, we assume that revealing information about
the solution space of Ax = b violates the security requirements. In our analysis, we will
not treat the column that corresponds to the cost variable w separately. Revealing one
column does not affect the security too much since the adversary could guess it on his
own.

28

4.3.1 Adding Constraints

In general, additional constraints can be added to the system Ax = b in the following
way: (

A 0
D E

)(
x
y

)
=

(
b
b′

)
,

where D and E are arbitrary matrices, and b′ is an arbitrary vector. Of course, this
system in turn needs to be multiplied by an invertible matrix P from the left, otherwise
the structure of A would remain clearly visible. The system is also multiplied by a positive
monomial matrix Q from the right to scale and permute the variables.

The new constraints reduce the solution space in the initial dimension, and some more
dimensions are added due to the new variables y. The matrices D and E and the vector b′

have to be chosen in such a way that at least one optimal solution of the system Ax = b
is still feasible. Since we assume that the users do not have any information about the
optimal solution initially, we require that all the solutions are still feasible.

An example that does not affect the initial solution space is where E = −I, b′ = 0, and
D is a matrix with non-negative entries. In this case, the variables y represent positive
linear combinations of the variables x.

Definition 19. Linear equation systems are called equivalent if their solution spaces are
equal.

An important requirement is that the variables y should be indistinguishable from the
variables x. Otherwise the adversary may get rid of them using Gaussian elimination, by
expressing the variables y as linear combinations of the variables x.

• If the rank of E is equal to the number of its rows, then after eliminating all the y
variables the adversary is left with the system that is equivalent to initial system
Ax = b.

• Otherwise it is possible that after eliminating the constraints the adversary is left

with a system equivalent to a system of the form

(
A
D′

)
x =

(
b
b′′

)
for some matrix

D′ and a vector b′′. However, this means that before the Gaussian elimination the
system already sets some constraints on the variables x. Setting these constraints
properly (without affecting the optimal solution xopt) would require some knowledge
about xopt, and we assume that the users who want to compute the linear program
securely do not have any information about it. Therefore this case is impossible.

The conclusion is that the indistinguishability of x and y is essential.

4.3.2 Augmenting the Columns

We may get additional solutions for the initial variables by adding columns to A(
A C

)(x
y

)
= b ,

followed by multiplying the system by a random invertible matrix P from the left and a
positive monomial matrix Q from the right.

29

The optimal solution has to be still easily recoverable. An example that does not
change the optimal solution is C = AV, where V is a matrix whose rows have positive
entries except the one that corresponds to the variable w that is being optimized. If w is
being minimized, then this row is negative, otherwise it is also positive.

This adds more solutions by extending the polyhedron to new dimensions. The opti-
mal solution remains in the region where all the new variables have the value 0.

Why can the optimal solution be still correctly recovered? Let B =
(
A −b

)
. Let

us add one empty row to V, so that AV = BV. Now consider the matrix
(
B BV

)
=(

A −b AV
)
. This matrix has one extra variable z that corresponds to the column −b.

If we fix the value of z to 1, then the solution set to the system

(
A −b AV

)x
z
y

 = 0

is equivalent to the solution set of the system(
A AV

)(x
y

)
= b .

Definition 20. The null space of a matrix A is the solution space of the system Ax = 0.

Definition 21. Let A be a m×n full-rank matrix. A kernel matrix A⊥ is a (n−m)×n
matrix whose rows generate the null space of A.

One important property of the kernel matrix is that A(A⊥)
T

= A⊥AT = 0.
Consider the null space of

(
B BV

)
. It is generated by the rows of the matrix

K =

(
B⊥ 0
−VT I

)
,

where B⊥ is a kernel matrix of B. By definition, B⊥ is a matrix whose rows generate the
null space of B, and one if its important properties is that BB⊥ = 0.

The definition of K is correct since(
B BV

)
·
(

B⊥ 0
−VT I

)T

=

(
B BV

)
·
(

(B⊥)
T −V

0 I

)
=(

(B(B⊥)
T

+ BV · 0) (B · (−V) + BV)
)

= 0

30

The solution space for
(
B BV

)
x = 0 is represented by linear combinations of the

rows of K. A linear combination of the rows of K is a feasible solution to the initial
linear program iff the entry that corresponds to z equals 1, and all the other entries are

non-negative (due to the

(
x
y

)
≥ 0 requirement). This implies that the lower rows of K

that are associated with I must have non-negative coefficients in such a feasible linear
combination. On the other hand, decreasing the coefficients of these lower rows will
improve the value of the objective function w since the corresponding column of −VT

contains only numbers with the sign opposite to the optimization direction of w. Hence
the best value for w is achieved when y = 0, and this is definitely not harmful for the
correctness since it returns just the initial equation system Ax = b.

Also, no solution to the initial linear program becomes infeasible by the same reasoning
that any solution for the initial linear program is available when y = 0.

This approach is described more precisely in [6].
Another possible method is to replace each initial variable with a positive linear com-

bination of t new variables. This is equivalent to replacing each column of A with several
scaled instances of the same column. Recall that we want to obtain a system of the

form
(
A C

)(x
y

)
= b. Without loss of generality, assume that at least one coefficient

in each of these linear combinations is 1. In this case, the other coefficients introduce
scaled copies of the columns of A as the columns of C. If we do not require that one of
the coefficients should be 1, then the columns of A will also be scaled, but the scaled A
still leaks the same information as the non-scaled A (since we initially assumed that A is
already scaled).

This transformation produces additional solutions since the optimal solution may be
obtained not only from the variables x, but also from the variables y, and each variable
may now take value down to 0.

It is again essential that the elements of x would be indistinguishable from the elements
of y. Otherwise, setting these new variables to 0 will return back the initial program.

This issue can be solved by generalizing the transformation to(
A C

)(x
y

)
= b′′ ,

where b′′ is some new vector different from b. Setting y = 0 yields the system Ax = b′′

instead of Ax = b. However, the adversary may easily set the right hand side of the
equation to 0, obtaining the equation system Ax = 0. This violates our security definition
since the two initial equation systems A1x = b1 and A2x = b2 that the adversary has to

31

distinguish may have different solution sets for A1x = 0 and A2x = 0. Another question
is how to introduce b′′ so that all the solutions would still be feasible.

4.3.3 Combining Different Types of Variables

Suppose that we have added variables that at once extend the columns of A and partici-
pate in the constraints (

A C
D E

)(
x
y

)
=

(
b′′

b′

)
,

and multiplied the system by a random invertible matrix P form the left.
In this case, the adversary may again use Gaussian elimination to get rid of y. There

are now two possible outcomes of this operation.

1. If he is left with a system that has more equations than the number of rows in A,
then we have the same problem as we had in the case of just adding constraints.
Namely, the system sets some additional constraints on the variables x which re-
quires knowledge about the optimal solution. Hence such an outcome is impossible.

2. If he is left with a system that has less equations than the number of rows in A,
then he may already lose some important information about A. However, if in the
process of Gaussian elimination he stops at the moment where the number of rows
in the matrix is the same as it should be in the rows of A, then knowing the locations
of the y variables allows to set them to 0. Due to correctness of the transformation,
the solutions to the initial system Ax = b should be still recoverable, otherwise it
would be the case where the initial program contained additional constraints set on
x. Hence the adversary gets the initial linear program.

Again, we get that indistinguishability of x and y is essential.
For example, in [15], the constraints are applied only to the additional variables.

These variables indeed participate in the equations, but their effect is already included
in b. In this particular case, the additional variables are used to hide b. The partially
transformed program (without taking into account scaling etc) looks like(

A T
0 I

)(
x
y

)
=

(
b + Tr

r

)
,

where T is a diagonal matrix. Since the variables are clearly distinguishable (y is fixed),
the adversary may get a system equivalent to the initial system Ax = b just by using
Gaussian elimination. However, this transformation does not hide the feasible region of
Ax = b anyway, its goal is just to hide the initial outer appearance of b.

4.4 Indistinguishability of the Variables

The conclusion from the previous is that if we use additional variables in the transforma-
tion, then their effect on the feasible region may be easily removed unless these variables
are indistinguishable from each other. We will analyze the requirements that must be
fulfilled for the indistinguishability of the variables. Then we propose a construction in
which we are trying to achieve these properties.

32

4.4.1 Security Requirements

Suppose that after the transformation we obtain a matrix with k columns meaning that
the transformed system has k variables. Let t of them be the “special” variables, knowing
whose location may allow the adversary to perform an attack (such as applying Gaussian
elimination to them). A necessary requirement is that the values k and t must be large
enough, so that the adversary would require a big computational effort to look through
all the

(
k
t

)
sets of variables.

But can we be sure that he definitely needs to guess correctly all the t “special”
variables at once in order to perform his attack? It may happen that the initial variables
take values from different spans, and thus the adversary may discover the type of a variable
just by minimizing and maximizing its value (using the same linear programming solver
algorithm). To avoid this, we may scale the variables and make all their upper and lower
bounds similar. This is possible if the lower bound of all the variables is 0, otherwise
we cannot use scaling to adjust both the upper and the lower bound. But even if each
single variable comes from the same span, what about the linear combinations of pairs of
variables, or their triples?

We will state this problem more generally. The adversary may try to project the
solution space of the system to some space with small dimension (for example, to three
dimensions, then he even has a visual picture). There exists an efficient algorithm for that
according to [16], and therefore it is a real attack. The algorithm works in polynomial
time with respect to the number of halfspaces that define the projection. Since each
halfspace that defines a polyhedron that corresponds to a linear program is represented
by an inequality, the algorithm works in polynomial time with respect to the number of
rows in the constraint matrix. There is no way to increase this number exponentially
since it affects the efficiency of solving the linear program. Even a small projection may
already reveal too much. For example minimizing and maximizing each variable would
be equivalent to looking for the one-dimensional projections.

Let us consider the case where the initial polyhedron has been objected to some
kind of affine transformation (scaling and shifting). The adversary may extract small
projections of the initial polyhedron whose structures may seem familiar even after such a
transformation. This may allow to distinguish the two initial linear programs by choosing
them in such a way that they have some interesting special small projections of their
feasible regions. For example, if one of them contains tetrahedrons and pyramids as
projections, and the other one just cubes, then even if similar projections will occasionally
be produced by the additional variables y, the probability of getting sufficient number of
exactly the same projections is very small.

Suppose that we are going to hide x amongst additional variables y. We have shown
before that indistinguishability of x and y is essential. Although all the variables may
have the same upper and lower bounds, they may be still distinguished by their higher-
dimensional projections. Even if the adversary finds a way of distinguishing whether
all t variables come from x only, or they involve also some variables of y, he would get
much additional power. Therefore we require that not only all projections to the initial
variables x should look the same, but also all projections onto any t variables from the

entire

(
x
y

)
should look the same.

We are going to define a transformation where we are trying to compose a secure

33

structure step by step. Then we analyze the security requirements of our construction
and see if they can be achieved at all.

4.4.2 Defining a Construction

Suppose that we have transformed Ax = b into
(
A C

)(x
y

)
= b by replacing each

column of A with a positive linear combination of t columns. Of course, everything is
multiplied by a random invertible matrix P from the left to hide the outer appearance of
the system.

As we have shown before, each variable may now take value down to 0. We may hope
that if t is large enough, then it is difficult for the adversary to recover even a single
variable. However, the problem is that the faces of the polyhedron that are located in
the direction of the objective function will not be changed. The projections to smaller
dimension will be not exactly the same as before, but there will still be something special.
For each projection to t coordinates, we need to cut off the part of the polyhedron that
has not changed. Therefore we have to introduce inequalities that add bounds also on
the initial variables. The question is how to do it without losing the optimal solution.

Since we have replaced each initial variable with a positive linear combination of t
new variables, we may bound each single variable in such a way that the optimal solution
is still achievable. This is possible if positive linear combinations of the copies of a
single initial variable still achieve the necessary bounds for that variable. Taking into
account the convexity property of a polyhedron, we may define an artificial bound for
each variable so that the shape of the polyhedron is no longer seen at least for the sets
of t initial variables.

We may try different formations inside the smaller region, possibly some hypercube
(like on the picture) since making the variables too dependent on each other may affect
the correctness. Let us make it step by step.

• If we start introducing upper bounds on some linear combinations of the variables,
then each bound requires a unique slack variable (although we can probably reduce
the number of slack variables somehow by using them multiple times). Since small
sets of related variables can be discovered using Gaussian elimination (as we have
shown in the attack on [8]), we need to involve at least t variables in each equation.
We may either group the initial variables, or introduce more slack variables.

• Now the problem is that any bound can be removed just by allowing the corre-
sponding slack variable to take negative values. In order to remove a single bound,

34

it is sufficient to free at least one variable from the corresponding equation, and
therefore adding more slack variables to the same equation does not help. We need
at least t instances of each bound as t separate inequalities.

• But can we be sure that the adversary indeed has to try all the sets of t columns?
If he finds a way of distinguishing the slack variables from the non-slack variables,
he may easily remove all the bounds and recover the initial linear program without
affecting its correctness. Therefore, the slack variables should be indistinguishable
from the other variables, so that the bounds could not be removed. This means that
any projection to t variables (including the slacks) should look exactly the same to
the adversary. We will see in which case it is possible.

Definition 22. An affine space is a set of points that can be represented as a solution
set of some linear equation system.

Since we are now interested in the indistinguishability of both the initial and the
slack variables, let us consider the standard form of linear programming (2). Let us for
simplicity denote the matrix of the linear equation system by A:

maximize cTx, subject to Ax = b,x ≥ 0 .

Let the length of x be n. Then the solution set of the system Ax = b defines an
affine space V in Rn. The polyhedron that corresponds to that linear program can thus
be seen as the intersection V ∩ Rn

+. In further analysis, we will treat linear programs as
affine spaces.

4.5 Proofs of Insecurity

We will show that, whatever affine transformation we use, it is impossible to protect
the linear program against projection-based attacks. First, we formally define what the
transformation of a linear program means mathematically. Then we find the possible
classes of affine spaces that achieve the desired security properties (make all projections
to any t variables look the same). It turns out that the corresponding class of linear
programs would be very small and not interesting in practice.

4.5.1 Formal Definition of a Transformation

Let P0 ⊆ Rn be the affine space that corresponds to the initial linear program. By the
principle of transformation-based linear programming, P0 should be transformed to some
other affine space P ⊆ Rk. It is possible that n 6= k since we may introduce additional
variables, or probably even reduce their number in some way (although it is not clear
how we preserve the correctness in this case).

An important requirement is that it must be possible to extract at least one optimal
solution xopt of the initial program from any optimal solution yopt of the transformed
program. Therefore, there must exist a function f : Rk → Rn such that f(yopt) = xopt.
Initially, there is no information about xopt or yopt, so let f(P) = P0. Since a linear
program is being transformed into another linear program, we may assume that the
function f is an affine transformation. Then P = f−1(P0) ∩ Rk

+ ∩ V , where V ⊆ Rk

35

is an affine space that represents the additional constraints that may be added to the
transformed program. We must be sure that these constraints do not affect the feasible
region of the initial program (that still f(P) = P0).

In order to protect the initial program against projection-based attacks, we require
that all projections of P to any t coordinates must look the same. Formally, if I ⊆
{1, . . . , k}, define WI := πI(P). We require that, for any rearrangement of the coordinates
of two sets I and I ′ of size t, the sets WI and WI′ must be exactly the same.

The question is whether there are non-trivial possible classes of P that could be useful
in practice.

4.5.2 Possible Classes of Affine Spaces

We will show that even if we take t = 2, the class of suitable affine spaces is very small.
Namely, we show that P must be either a single point (0, . . . , 0), the entire Rk

+, or a set
of the form {(x1, . . . , xn) | x1 + . . .+ xn ≤ c} for some c > 0.

Let the transformed affine space P be defined by a system A′x = b′, where A′ is an
m×n matrix for m ≤ n− 1. If m = n− 1, then we would unfortunately have to consider
more different cases in our proof. Anyway, m = n − 1 would be a very special case of
one-dimensional linear programming, and that’s why we decided not to adjust the proofs
to it.

If m ≤ n − 2, then the linear equation system A′x = b′ definitely contains solutions
where at least two variables are 0 since A′ contains a m ×m invertible submatrix, and
setting the two remaining columns to 0 still yields a solvable linear equation system.

Let us now construct an arbitrary two-dimensional projection of P in dimensions x1
and x2 that contains the point (0, 0). Since P is a polyhedron, this projection must be a
convex polygon. Suppose that one of the bounds defining this polygon is α1x1 +α2x2 ≤ c
for some c ∈ R, α1 ∈ R, α2 ∈ R. More precisely, c ≥ 0 since otherwise the point (0, 0)
would not belong to the projection.

• If both α1 ≤ 0 and α2 ≤ 0, then the inequality has no meaning. Multiplying
both sides by (−1), we see that it actually states that non-negative combinations
of non-negative values should be non-negative.

• Otherwise, we may divide everything by max {α1, α2}, and we get an inequality of
the form αx1 + x2 ≤ c for some −∞ < α ≤ 1 (the variables x1 and x2 may switch
their places, depending on whether α1 > α2).

Hence without loss of generality we may assume that any bound may be given in the
form αx1 + x2 ≤ c for c ≥ 0, −∞ < α ≤ 1.

Since all projections onto any pair of variables should look exactly the same, we get
a system of 2 ·

(
n
2

)
such inequalities for a single bound in the projection. Here

(
n
2

)
is the

number of possible pair choices, and this number is multiplied by 2 since the inequality
αx1+x2 ≤ c implies the existence of the inequality x1+αx2 ≤ c, otherwise the projection
would not be symmetric and would make the two coordinates distinguishable.

36

Let our projection be defined by an arbitrary number of bounds. Let us take the
bound with minimal value of c. This means that each variable may take any value in the
span [0, c], otherwise it would mean that there exists a bound with a lower value c′ < c.
Due to convexity of the projection, we may say more precisely that any valuation (vi, vj)
of xi and xj such that vi + vj ≤ c must be possible.

Given n variables, any inequality αx1 + x2 ≤ c comes from some equation of the form
αx1 + x2 + a3x3 + . . .+ anxn = c defined by P , where ai ≥ 0, and aj > 0 for some j (the
variable xj acts as a slack variable for the inequality). In total, we get 2 ·

(
n
2

)
equations

that all follow from the equations defined by P :

αx1 + x2 + a123x3 + . . .+ a12(n−1)xn−1 + a12nxn = c
x1 + αx2 + a213x3 + . . .+ a21(n−1)xn−1 + a21nxn = c
a231x1 + αx2 + x3 + . . .+ a23(n−1)xn−1 + a23nxn = c
a321x1 + x2 + αx3 + . . .+ a32(n−1)xn−1 + a32nxn = c

. .
an(n−1)1x1 + an(n−1)2x2 + an(n−1)3x3 + . . .+ αxn−1 + xn = c
a(n−1)n1x1 + a(n−1)n2x2 + a(n−1)n3x3 + . . .+ xn−1 + αxn = c

(4)

where aijk ≥ 0 for all i, j, k ∈ {1, . . . , n}, and each equation contains at least one positive
aijk. We will show that these equations imply x1 + . . .+ xn = c.

1. The case α ≤ 0. The lines of the bound are either parallel to the xj axis, or are
tilted in the direction opposite from the xj axis.

37

Consider a point v = (v1, . . . , vn) ∈ P where (vi, vj) = (c − αε, ε) for some ε > 0.
Although there may be other bounds, such a point (vi, vj) definitely exists on the
projection to (xi, xj) since otherwise the bound would not add anything new to the
projection.

Consider the equation aij1x1 + . . . + xi + . . . + αxj + . . . + aijnxn = c. Since each
equation represents an inequality, there exists some ak > 0 that corresponds to
some variable xk, k 6= i, k 6= j (xk acts as a slack variable).

(a) The case α = 0. Since α = 0, there is nothing that would compensate too
large positive values. At the same time, due to the symmetry of the projections,
there must exist a point v′ = (v′1, . . . , v

′
n) ∈ P such that (v′i, v

′
k) = (c−αε, ε) =

(c, ε). Then v′i + akv
′
k = c+ akε > c. Contradiction!

(b) The case α < 0. We have vi + αvj = c − αε + αε = c. Hence for the
valuation v we already have at least c in the left-hand-side of the equation.
Since the coefficient of xk in this equation is ak > 0, it must be vk = 0,
otherwise we get something larger than c. Now we have (vi, vk) = (c− αε, 0).
Consider the equation aik1x1 + . . .+ xi + . . .+ αxk + . . .+ aiknxn = c. We get
vi + αvk = c− αε+ 0 > c. Contradiction!

Thus the only possible case is α > 0.

2. The case α > 0. If c = 0, then the only possible solution for the system (4) would
be x1 = . . . = xn = 0, since there are no negative entries at all. Consider the case
c > 0.

Take the equation aij1x1+. . .+xi+. . .+αxj+. . .+aijnxn = c. Let v = (v1, . . . , vn) ∈
P be such that vi = c. Then we already have c in the left-hand-side of the equation.

38

Since α > 0, the value of vj must be 0 since otherwise it would only increase the
value of the left-hand-side.

Analogically, consider one by one all the equations aik1x1+ . . .+xi+ . . .+αxk+ . . .+
aiknxn = c for k 6= i. Similarly, we get vk = 0 for all k 6= i. The entire valuation v
must be therefore (v1, . . . , vi−1, vi, vi+1, . . . , vn) = (0, . . . , 0, c, 0, . . . , 0).

If the system (4) contains any equation where the coefficient of xi is a 6= 1, we get
a contradiction since avi 6= vi = c, and the other variables cannot affect this value
since they are all 0. We get that the coefficient of xi should be 1 in each equation.

In the same way, we get that the coefficients of all the variables in all equations
should be 1. This means that the only equation that remains is x1 + . . .+ xn = c.

Another thing that we would like to show is that if the equation system defined by P
contains a constraint x1 + . . .+ xn = c for some c > 0, then it is not allowed to have any
other constraints. Suppose that the system contains the following two equations:

x1 + . . .+ xn = c

a1x1 + . . .+ anxn = b

where ai, b ∈ R. We will show that the second equation can be at most a multiple of the
first equation, representing the same constraint.

Without loss of generality, let a1 = mini ai, a2 = maxi ai. Then a2 > 0 since otherwise
all the ai would be non-positive, and the only possible solution would be xi = 0 in the
case b = 0. For b > 0, there would be no solution at all. We may also assume that a2 > a1
since if it was the case a2 = a1, then all the ai would be equal, and the only possible
way to avoid contradiction with the first equation would be to assign b = aic, making the
second equation a multiple of the first one.

Multiplying the first equation by a1, we get the following:

a1x1 + . . .+ a1xn = a1c

a1x1 + . . .+ anxn = b

Subtracting the first equation from the second one, we get

(a2 − a1)x2 + . . .+ (an − a1)xn = b− a1c

Since a2 > a1, we may express the variable x2 in terms of other variables:

x2 =
1

a2 − a1

(
b− a1c−

n∑
i=3

(ai − a1)xi

)

We know that the only allowed valuations of xi are positive.

• Since x2 ≥ 0, the right-hand-side must also be positive.

b− a1c ≥
n∑
i=3

(ai − a1)xi

39

• From the first equation, we may express x1 = c−
∑n

i=2 xi. We get

0 ≤ x1 = c− 1

a2 − a1

(
b− a1c−

n∑
i=3

(ai − a1)xi

)
−

n∑
i=3

xi

=
1

a2 − a1

(
(a2 − a1)c− (b− a1c−

n∑
i=3

(ai − a1)xi − (a2 − a1)
n∑
i=3

xi

)

=
1

a2 − a1

(
a2c− a1c− b+ a1c+

n∑
i=3

(ai − a1)xi −
n∑
i=3

(a2 − a1)xi

)

=
1

a2 − a1

(
a2c− b−

n∑
i=3

(a2 − ai)xi

)

This means that

a2c− b ≥
n∑
i=3

(a2 − ai)xi

We obtain two inequalities, b− a1c ≥
∑n

i=3(ai− a1)xi and a2c− b ≥
∑n

i=3(a2− ai)xi.
Recall that any variable must be allowed to take any value in the span [0, c]. Consider the
evaluation where xi = c for some i. From the first equation, we get that ∀j 6= i : xj = 0.
We get the following system:{

aic− a1c ≤ b− a1c
a2c− aic ≤ a2c− b

=⇒

{
aic ≤ b

−aic ≤ −b
=⇒ ai =

b

c
.

Similarly, we can show that for any i 6= 1, 2 we have ai = b
c
. What about a1 and a2?

From the first equation, we get that x3 + . . .+ xn = c− x1 − x2.

a1x1 + . . .+ anxn = b

a1x1 + a2x2 +
b

c
x3 + . . .+

b

c
xn = b

a1x1 + a2x2 +
b

c
(x3 + . . .+ xn) = b

a1x1 + a2x2 +
b

c
(c− x1 − x2) = b

a1x1 + a2x2 + b− b

c
x1 −

b

c
x2 = b(

a1 −
b

c

)
x1 +

(
a2 −

b

c

)
x2 = 0

If either
(
a1 − b

c

)
6= 0 or

(
a1 − b

c

)
6= 0, then one variable may be expressed in terms of

the other one, what means that the projection to (x1, x2) can be only a line. This would
mean that the entire P is actually represented by a line, and as we have told before, this
is a very particular case of linear programming. Therefore we need a1 = a2 = b

c
.

We have obtained an equation b
c
x1 + . . . + b

c
xn = b, and multiplying both sides by c

b

we get the same equation x1 + . . .+ xn = c.

40

4.5.3 Conclusions for the Indistinguishability-Based Security

If we want to protect the transformed linear program against distinguishing projections
up to t coordinates for some security parameter t, then we definitely have to protect it
against projections to 2 coordinates. The set of such linear programs has turned out to
be very limited. We have shown that the only possible class of a transformed program is
the equation x1 + . . .+ xn = c for some c ≥ 0 (c = 0 defines a single point (0, . . . , 0)).

The transformation may still possible if it is not affine. In this case, the requirement
that the projections to t coordinates must be the same may be unnecessary. However, it
is not clear how a polyhedron could be efficiently transformed to a polyhedron with some
other kind of transformation while preserving the correctness. For example, theoretically
it could be a function that solves the linear program by itself and does not use the optimal
solution of the transformed linear program in any way.

4.6 Weaker Security Requirements

It may seem that the indistinguishability-based security definition is too strong. It would
be nice to state more precisely what kind of information about the initial program is
sufficient for the adversary to conduct his evil deeds.

As we have shown in 3.2.3, revealing the locations of the slack variables may be fatal if
the adversary holds at least two inequality constraints. The proposed solution was to use
the augmented form of linear programming that hides the cost vector into the constraint
matrix. However, the adversary may trace down the locations of the slack variables by
some other means.

Our initial idea was that performing optimization in random direction may give situa-
tions where the slack variables take values 0 much more often than the non-slack variables.
We have tried to verify it experimentally, and it has turned out that sometimes, this is
indeed true. In order to describe our experiments in details, we have to first define the
following probability distribution:

Definition 23. If a random variable X is distributed according to the normal distribu-
tion N (µ, σ2), then the distribution of the absolute value |X| is called a folded normal
distribution and is denoted Nf(µ, σ

2).

The outline of our experiments is the following:

1. Fix the parameters m,n that denote the size of the linear program, p ∈ [0, 1) ⊆ R
that denotes the fraction of zero entries of A, and e ∈ {0, . . . ,m− 1} that denotes
the number of equations that will be removed from the transformed system before
commencing with the optimization task.

2. Generate a random point v = (v1, . . . , vn) where vi is chosen uniformly from (0, 100] ⊆
R. The idea is that in order to ensure that the polyhedron is non-empty, we gener-
ate the bounding hyperplanes in such a way that the polyhedron contains at least
the point v.

3. Generate a random m×n matrix A whose entries are assigned in the following way:

• The value 0 is taken with the probability p.

41

• A random value is taken uniformly from [−100, 100] ⊆ R with probability
1− p.

We have experimented with p ∈ {0, 0.25, 0.5, 0.75}. We have also tried the cases
where all the entries are non-negative since that may correspond to a wide class of
real-world linear programs, such as profit maximization task.

4. Generate the entries of vector b of length m in such a way that the polyhedron
defined by Ax ≤ b definitely contains the point v. That is, for each i ∈ {1, . . . ,m},
compute bi = ai1v1 + . . . + ainxn + r, where r can be any positive random value.
We have chosen r uniformly from [1000, 2000] ⊆ R since in this case the projections
of the polyhedron to 2-dimensional spaces gave nice pictures in the area [0, 100] ×
[0, 100].

5. Augment the m×m identity matrix to the right of A. Get the system of equations(
A I

)
x = b.

6. Multiply
(
A I

)
and b from the left by a random invertible (m + n) × (m + n)

matrix P whose entries are sampled uniformly from [−100, 100] ⊆ R. It does not
affect the feasible region in any way, but it was interesting for our experiment since
we started removing equations from the transformed program at some point.

7. Scale and permute the columns of P
(
A I

)
. Remove the first e equations from the

obtained system. Let the transformed system be denoted A′x = b′.

8. Generate a cost vector c sampling each entry from the distribution Nf(0, 1). Our
experiments have shown that sampling from Nf(0, 1) provides at least as good dis-
tinguishability of slack and non-slack variables as N (0, 1).

9. Construct a linear program “minimize cT ·x, subject to A′x = b′,x ≥ 0”. Feed the
program to a linear programming solver. Use the one that outputs basic solutions.

10. Repeat the steps 8 and 9 k times. For each variable count the frequency, in how
many solutions it has been 0. We have tried it with k = 100. Larger value of k
does not seem to give any significant difference.

We have performed our experiments with different settings. Each row of each subtable
of Table 1 represents the settings for which 20 experiments have been conducted. In each
experiment, we made a guess that the slack variables are exactly those that have taken the
value 0 with the highest frequencies. The success rate denotes the number of outcomes
for which the guess was perfectly correct.

It can be seen that for m > n it may happen that even the slack variables will not
be allowed to take the value 0 at all because of too tight bounds. In this case, some
equations may be just eliminated from the transformed program. This is not equivalent
to removing bounds from the initial polyhedron, and it is not quite clear what exactly
happens to it. However, there are definitely less constraints than before, and the slack
variables again have higher probabilities of becoming 0.

The worst case for our algorithm is when m is much smaller than n and the fraction of
zero entries in A is large. The problem is that there are too few inequalities already in the

42

m n A ≥ 0 e Success Rate

5 25 True 0 10
5 25 False 0 5
15 15 True 0 10
15 15 False 0 5
25 5 True 20 14
25 5 True 15 15
25 5 True 10 11
25 5 True 5 1
25 5 True 0 0
25 5 False 20 7
25 5 False 15 14
25 5 False 10 10
25 5 False 5 1
25 5 False 0 0

m n A ≥ 0 e Success Rate

5 25 True 0 9
5 25 False 0 2
15 15 True 0 10
15 15 False 0 2
25 5 True 20 12
25 5 True 15 18
25 5 True 10 13
25 5 True 5 0
25 5 True 0 0
25 5 False 20 11
25 5 False 15 11
25 5 False 10 4
25 5 False 5 5
25 5 False 0 0

p = 0 p = 0.25

m n A ≥ 0 e Success Rate

5 25 True 0 3
5 25 False 0 0
15 15 True 0 7
15 15 False 0 2
25 5 True 20 17
25 5 True 15 14
25 5 True 10 10
25 5 True 5 0
25 5 True 0 0
25 5 False 20 11
25 5 False 15 10
25 5 False 10 9
25 5 False 5 4
25 5 False 0 0

m n A ≥ 0 e Success Rate

5 25 True 0 0
5 25 False 0 0
15 15 True 0 2
15 15 False 0 0
25 5 True 20 14
25 5 True 15 12
25 5 True 10 4
25 5 True 5 0
25 5 True 0 0
25 5 False 20 4
25 5 False 15 3
25 5 False 10 1
25 5 False 5 0
25 5 False 0 0

p = 0.5 p = 0.75

Table 1: Results of the experiments

43

beginning, and the zeroes make the initial matrix A even sparser and less constraining.
The initial variables thus do not differ too much from the slack variables.

The results also show something interesting about the effect of the structure of A on
the outcome of the attack. It can be seen than the attack performs better when all the
entries of A are non-negative. The success rate is in general higher for smaller fraction of
zero elements in A, especially for the smaller number of constraints.

The results of these experiments still do not mean that we may apply this attack to
any transformed linear program. We have discovered that locating the slack variables
allow to perform an attack if all the constraints are inequalities, but it is still not clear
how to apply it if any equalities are present. Nevertheless, the class of secure linear
programs still gets reduced. The attack is applicable at least to the brewery example and
many similar profit maximization problems.

Although it may seem that there are not so many direct attacks that can be conducted
nicely and clearly without additional thinking, it is still possible that there are some
insecure settings that have just not been noticed yet. Using indistinguishability-based
security definition would protect us against such unexpected problems. Unfortunately, it
has been proven to be impossible.

44

5 Conclusion

In this thesis, we have given an overview of existing techniques of transformation-based
privacy-preserving linear programming. Since the existing security definitions in this
field are too weak, we have tried to establish a more reasonable indistinguishability-based
security definition that would make the privacy independent on the way the initial data
is shared, and at the same time would be pretty standard to be integrated into more
complex protocols.

First of all, we have shown that achieving perfect secrecy with respect to this definition
is impossible for any transformation. Hence we have concentrated on computational
security. We have found the requirements that a transformation has to satisfy in order
to achieve this security property. It has turned out that it is impossible for any affine
transformation. It may still happen that this kind of security can be achieved by using
some other kind of transformation, but there are no other known entirely correct and
efficient methods yet.

45

Privaatsust säilitav lineaarne planeerimine

Magistritöö(30 EAP)
Alisa Pankova
Lühikokkuvõte

Rakendusmatemaatika on matemaatika osa, mis tegeleb teistes teadusharudes rak-
endatavate matemaatiliste mudelite ja nende uurimiseks määratud meetodite loomisega.
Seega on see tihedalt seotud reaalse maailma probleemidega. Üks suur ülesannete klass,
mida kasutatakse päris paljudes valdkondades, on optimeerimisülesanded. Rakendus-
matemaatika pakub erinevaid meetodeid nende probleemide lahendamiseks.

Optimeerimisülesandeid on sageli tarvis lahendada mitme sõltumatu asutuse andmete
põhjal. On aga täiesti võimalik, et need asutused ei taha avaldada oma isiklikke andmeid
või see lihtsalt ei ole lubatud seaduse järgi. Siis on vaja, et optimeerimise käigus ei lekiks
mitte ühtegi bitti tundlikkest andmetest. See on koht, kus tasub mõelda krüptograafiliste
meetodite kasutamise peale.

On tõestatud, et suvalist funktsiooni saab arvutada turvaliselt, ilma sisendandmete
lekitamiseta. Küsimus on selles, kuidas seda teha efektiivselt. Kitsendades matemaatiliste
ülesannete hulka väiksematele klassidele on võimalik leida lihtsamaid ja efektiivsemaid
meetodeid, mis sobivad hästi just nende probleemide jaoks. Käesolevas töös vaadeldakse
lineaarse planeerimise optimeerimisülesandeid.

Selles valdkonnas on juba tehtud palju tööd. Viimastes töödes käsitletakse muuhul-
gas ka transformatsioonipõhise privaatsust säilitava lineaarse planeerimise meetodeid.
Olemasolevad turvadefinitsioonid on aga väga nõrgad. Selles töös on toodud uus eris-
tamatusel põhinev definitsioon, mis tundub piisavalt standardne, et sellele vastava trans-
formatsiooni saaks pärast keerulisema protokolli sisse integereerida. Lisaks on toodud
mõned konkreetsed uued ründed olemasolevate skeemide vastu, mis näitavad, et kuigi
käesolevas töös toodud turvadefinitsioon võib tunduda liiga tugev, on see tegelikult väga
mõistlik.

Käesolevas töös on kõigepealt näidatud, et täielik turvalisus on sellise definitsiooni-
ga võimatu. Edaspidi on uuritud, mis tingimustel on võimalik saavutada arvutuslikku
turvalisust. On avastatud mõned tingimused, mida transformatsioon peab sellisel juhul
rahuldama. Siis on tõestatud, et affinse transformationi korral on nende tingimuste rahul-
damine võimatu. On võimalik, et sellist turvadefinitsiooni on endiselt võimalik saavutada
kasutades mingit muud transformatsiooni, kuid muud efektiivset ja korrektset transfor-
matsiooni hetkel teada ei ole.

46

References

[1] Mikhail J. Atallah and Keith B. Frikken. Securely outsourcing linear algebra compu-
tations. In Dengguo Feng, David A. Basin, and Peng Liu, editors, ASIACCS, pages
48–59. ACM, 2010.

[2] Donald Beaver, Silvio Micali, and Phillip Rogaway. The Round Complexity of Secure
Protocols (Extended Abstract). In Harriet Ortiz, editor, STOC, pages 503–513.
ACM, 1990.

[3] Alice Bednarz. Methods for two-party privacy-preserving linear programming. PhD
thesis, University of Adelaide, 2012.

[4] Alice Bednarz, Nigel Bean, and Matthew Roughan. Hiccups on the road to privacy-
preserving linear programming. In Proceedings of the 8th ACM workshop on Privacy
in the electronic society, WPES ’09, pages 117–120, New York, NY, USA, 2009.
ACM.

[5] Robert G. Bland. The allocation of resources by linear programming. Scientific
American, 244(6):108–119, June 1981.

[6] Dan Bogdanov, Roberto Guanciale, Liina Kamm, Peeter Laud, Riivo Talviste, and
Jan Willemson. Advances in SMC techniques, January 2013. UaESMC Deliverable
2.2.1.

[7] Benny Chor and Eyal Kushilevitz. Secret sharing over infinite domains. J. of Cryp-
tology, 6:87–96, 1989.

[8] Jannik Dreier and Florian Kerschbaum. Practical privacy-preserving multiparty lin-
ear programming based on problem transformation. In SocialCom/PASSAT, pages
916–924. IEEE, 2011.

[9] Wenliang Du. A Study Of Several Specific Secure Two-Party Computation Problems.
PhD thesis, Purdue University, 2001.

[10] Wenliang Du and Zhijun Zhan. A practical approach to solve secure multi-party
computation problems. In New Security Paradigms Workshop, pages 127–135. ACM
Press, 2002.

[11] Charles M. Grinstead and J. Laurie Snell. Introduction to probability, chapter 5.2
“Important Densities”. 2nd ed. American Mathematical Society, 1997.

[12] Branko Grünbaum. Convex polytopes. Graduate texts in mathematics. Springer,
New York, Berlin, London, 2003.

[13] Shuguo Han and Wee Keong Ng. Privacy-preserving linear fisher discriminant anal-
ysis. In Proceedings of the 12th Pacific-Asia conference on Advances in knowledge
discovery and data mining, PAKDD’08, pages 136–147, Berlin, Heidelberg, 2008.
Springer-Verlag.

47

[14] Fumio Hayashi. Econometrics, chapter 1.2 “ The Algebra of Least Squares”. Prince-
ton University Press, 2011.

[15] Yuan Hong, Jaideep Vaidya, and Haibing Lu. Secure and efficient distributed linear
programming. Journal of Computer Security, 20(5):583–634, 2012.

[16] Colin N. Jones, Eric C. Kerrigan, and Jan M. Maciejowski. Equality set projection:
A new algorithm for the projection of polytopes in halfspace representation. Tech-
nical Report CUED/F-INFENG/TR.463, Department of Engineering, University of
Cambridge, 2004.

[17] William Kocay and Donald L. Kreher. Graphs, Algorithms and Optimization, chapter
15.5 “The dual of the shortest-path problem”. Chapman & Hall/CRC, 2004.

[18] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[19] Jiangtao Li and Mikhail J. Atallah. Secure and private collaborative linear program-
ming. In International Conference on Collaborative Computing, pages 1–8, 2006.

[20] Olvi L. Mangasarian. Privacy-preserving linear programming. Optimization Letters,
5(1):165–172, 2011.

[21] Olvi L. Mangasarian. Privacy-preserving horizontally partitioned linear programs.
Optimization Letters, 6(3):431–436, 2012.

[22] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Technical report, Jet Propulsion Lab Deep Space Network Progress report, 1978.

[23] Tomas Toft. Solving linear programs using multiparty computation. In Roger Din-
gledine and Philippe Golle, editors, Financial Cryptography and Data Security, pages
90–107, Berlin, Heidelberg, 2009. Springer-Verlag.

[24] Jaideep Vaidya. Privacy-preserving linear programming. In Sung Y. Shin and Sascha
Ossowski, editors, SAC, pages 2002–2007. ACM, 2009.

[25] Cong Wang, Kui Ren, and Jia Wang. Secure and practical outsourcing of linear
programming in cloud computing. In INFOCOM, 2011 Proceedings IEEE, pages
820–828, 2011.

[26] Pradeep Chathuranga Weeraddana, George Athanasiou, Martin Jakobsson, Carlo
Fischione, and John S. Barras. Per-se privacy preserving distributed optimization.
CoRR, abs/1210.3283, 2012.

[27] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

48

Non-exclusive licence to reproduce thesis and make thesis public

I, Alisa Pankova (date of birth: 20.10.1989),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2. make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

“Insecurity of Transformation-Based Privacy-Preserving Linear Programming”,

supervised by Peeter Laud and Margus Niitsoo,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2013

