
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Kaarel Hanson

Context Sensor Data on Demand
for Mobile Users Supported by

XMPP
Master Thesis (30 EAP)

Supervisor: Satish Narayana Srirama, PhD

Co-supervisor: Huber Flores, MSc

Author:................................... ”.....” May 2012

Supervisor:............................... ”.....” May 2012

Co-supervisor:............................ ”.....” May 2012

Professor:................................ ”.....” May 2012

TARTU, 2012

Abstract

Nowadays, technological achievements in user context monitoring tech-

niques enable automating certain computational tasks which are ex-

ecuted by anticipating the user’s intention. Smartphones enrich the

mobile applications with proactive behavior in usability that allows

fitting contextual requirements in real-time. Generally, such behavior

is achieved by the mobile device itself through the use of embedded mi-

cromechanical artifacts that enable perceiving the environment. Fur-

thermore, mobile applications can benefit from distributed pervasive

services located in the environment in order to enhance the mobile ex-

perience of the user, like in the case of context-aware games, domotic

applications, etc. However, pervasive services for mobile users are con-

strained to the hardware limitations of the electronic appliances (e.g.

CPU power, memory, storage, energy, etc) used for sensing the con-

text. Thus, pervasive services are not able to scale on demand and

perform data-intensive processing. To overcome the issues regard-

ing scalability, data integrity and processing power deficiencies and

to enrich the smartphone applications with detailed and consistent

contextual information, current thesis proposes an optimized imple-

mentation of XMPP for transporting sensor data from Arduino mi-

crocontroller to the cloud. Arduino provides low-cost hardware, while

the cloud offers the reliable and high-availability means for storing

and processing sensor data.

Contents

List of Figures v

1 Introduction 1

1.1 Introduction . 1

1.1.1 Motivation . 3

1.1.2 Contributions . 3

1.1.3 Outline . 3

2 State of the Art 5

2.1 Jabber . 5

2.2 Mobile Computing . 6

2.2.1 Smartphones . 7

2.2.1.1 Accelerometer . 7

2.2.1.2 Magnetic Field 7

2.2.1.3 Gyroscope . 8

2.2.2 Mobile platforms . 8

2.2.2.1 Android . 8

2.2.2.2 iOS . 10

2.3 Cloud Computing . 11

2.3.1 Cloud Services . 11

2.3.2 Cloud Providers . 12

2.3.2.1 Amazon . 12

2.3.2.2 Azure . 14

2.3.2.3 Google App Engine 14

2.3.2.4 Eucalyptus . 15

ii

CONTENTS

2.3.3 Cloud and XMPP . 15

2.4 Arduino . 16

2.4.1 Arduino Mega ADK . 18

2.4.2 Android and Arduino . 18

2.4.3 TinkerKit . 19

2.4.3.1 Sensors . 20

2.4.4 Shields and Modules . 21

2.4.4.1 Ethernet Shield 21

2.4.4.2 Wireless Shield 21

2.4.4.3 WiFly Wireless Module 22

2.4.5 Arduino and XMPP . 23

2.5 Summary . 24

3 Problem Statement 26

3.1 Environmental Sensor Data for Mobile Users 26

3.2 Summary . 27

4 From Arduino to the Cloud using XMPP 29

4.1 Architecture and Implementation Details 29

4.2 Fundamentals . 33

4.2.1 Stanzas . 33

4.2.2 Address Definitions . 34

4.3 Session Negotiation . 34

4.4 Arduino Client . 39

4.4.1 WiFly Libraries . 44

4.4.2 Sensor Data Transmission 45

4.5 Server-side Client . 46

4.6 Countered Issues . 47

4.6.1 Debugging . 47

4.7 Summary . 49

iii

CONTENTS

5 Evaluation 50

5.1 Testing the duration of 9V battery with Wireless and Ethernet

interfaces . 50

5.2 Load testing OpenFire XMPP server 53

5.3 Summary . 56

6 Related Work 58

7 Conclusions and Future Research Directions 60

Abstract (in Estonian) 63

Bibliography 65

iv

List of Figures

2.1 Android Architecture . 9

2.2 iOS Architecture . 10

2.3 Levels of Abstraction in Cloud Computing 13

2.4 Arduino IDE with Sample Sketch 17

2.5 Arduino Mega ADK . 19

2.6 TinkerKit Mega Sensor Shield . 20

2.7 Arduino Ethernet Shield . 22

2.8 Arduino Wireless Shield . 23

2.9 Roving Networks WiFly RN-XV Wireless Module 24

4.1 Wireless Architecture . 30

4.2 Assembled Composition with Wireless Shield 31

4.3 Ethernet Architecture . 32

4.4 Assembled Composition with Ethernet Shield 32

4.5 Stream Header . 35

4.6 Response Stream Header from Server 35

4.7 Authentication Stanza with PLAIN Mechanism 36

4.8 Successful Authentication Message Received from Server 36

4.9 Unsuccessful Authentication Message Received from Server 36

4.10 Resource Binding IQ Stanza . 37

4.11 Response from Server for Resource Binding 37

4.12 Resource Binding Stanza without Explicit Resource 37

4.13 Sample Presence Stanza sent when Becoming Online 38

4.14 Presence Stanza Received when a Friend Logs in 38

4.15 Presence Received When a Friend Logs Out 38

v

LIST OF FIGURES

4.16 Lifecycle of XMPP Session . 40

4.17 Sample Stanza Template Saved in Flash Memory 40

4.18 Sample loop() Method of Arduino Sketch 43

4.19 Message Stanza Complemented with Sensor Data 45

4.20 Initialization of LEDs, Thermistor, Hall and Light Sensors 45

4.21 Server-side In-memory Database Data Model 46

4.22 USB-to-Serial Adapter . 48

5.1 Assembled Composition with Wireless Shield and 9V battery . . . 52

5.2 Battery Test Results . 53

5.3 Load Test Setup for OpenFire . 54

5.4 OpenFire Load Test Results . 55

vi

1

Introduction

1.1 Introduction

Nowadays, technological achievements in user context monitoring techniques en-

able automating certain computational tasks which are executed by anticipating

the user’s intention. This kind of techniques are based on the processing of sensor

information that is collected from multiple sources such as smartphones, environ-

ment, etc.

In the case of smartphones, sensor information is gathered by embedded mi-

cromechanical artifacts (e.g. accelerometer, gyroscope, etc) and processed locally

in real-time (in the phone) for changing some usability aspects in the mobile ap-

plications. For instance, the accelerometer sensor can be used for rotating the

screen of the device depending on how the user is holding the handset. An-

other example is the light sensor which enables augmenting and decreasing the

brightness of the mobile screen according to the situation of the environment (e.g.

indoor, outdoor, etc).

Similarly, environmental sensor information is provisioned as a service (raw

data) to mobile users by locating multiple microelectromechanical appliances

within the environment. For instance, a thermistor sensor can be located for

perceiving the temperature in the context of the user so that a mobile applica-

tion can use that information for a proactive reaction (e.g. displaying different

background screens or triggering a vibration event in the case of mobile pervasive

games).

1

1.1 Introduction

However, more sophisticated sensor mining approaches that enable extracting

relational trends, combining data from multiple sources (e.g. motion detection

combined with light sensing for determining occupancy) and identifying more

complicated patterns (e.g. indoor positioning) require more computational power

and storage space. In this context, mobile applications are constrained to the

implementation of such techniques due to the limited capabilities of the handset

(e.g. battery, etc).

Furthermore, electronic appliances that are used for sensing information from

the context (aka smart technologies) and publishing pervasive services for mobile

consumption are not scalable (amount of concurrent users) and lack of quality of

service. Moreover, such systems are usually costly to implement, and thus they

are not feasible in all kinds of scenarios.

On the other hand, cloud computing is arising as a uniform and ubiquitous

technology that allows deploying services on the fly without managing the under-

lying technology, scaling the applications based on demand (multi-tenancy) and

benefiting from the pay-as-you-go utility model in order to reduce costs. Mobile

technologies are drawing the attention to the cloud due to the demand of the

applications, processing power, storage space and energy saving.

Collecting sensor data with the mobile and sending it to the cloud has been

simplified significantly as most of the mobile platforms support the implemen-

tation of embedded databases (e.g. SQLite) and offloading of data based with

REST clients.

However, transportation of sensor data from the environment to the cloud

is a complex process that involves working with low-level power devices limited

in memory, in storage, etc. Moreover, environmental information is sensitive

to drastic changes and, thus an optimized approach that allows monitoring the

context in real-time must be considered.

In order to investigate the transportation of sensor data to the cloud from

electronic appliances such as those positioned in isolated locations, this thesis

studied XMPP protocol as a light and real-time mechanism for data commu-

nication. Once in the cloud, the environmental sensor data may be processed

(e.g. MapReduce), combined, etc, for mobile consumption using push technolo-

2

1.1 Introduction

gies (e.g. AC2DM, APNS, etc.) or middleware frameworks (such as MCM) that

allow establishing asynchronous communication with the handset.

1.1.1 Motivation

Pervasive services for mobile users are constrained to several hardware limitations

such as memory, storage, etc. Thus, such kind of services are not able to scale on

demand. Moreover, smart technologies are rather expensive. Consequently, their

adoption is far from being ubiquitous.

Alternatively, some low-cost technologies, such as Arduino, can be imple-

mented for the consumption of context-aware services. However, they suffer from

the same hardware deficiencies.

1.1.2 Contributions

To overcome the issues regarding scalability, data integrity and processing power

deficiencies and enrich smartphone applications with detailed and consistent con-

textual information, current thesis proposes an optimized implementation of

XMPP for transporting sensor data from Arduino microcontroller to the cloud.

Arduino provides the low-cost hardware, while the cloud offers a reliable and

dependable means for storing and processing sensor data.

In order to prove our concept, we have implemented XMPP on an Arduino

Mega ADK and extended the OpenFire server (running on Amazon) with a dash-

board that relies on a database (MySQL) for storing the data sent by Arduino.

Once the data is gathered by the dashboard, it can be routed to a specific cloud

service (e.g. S3 or EC2).

The prototype was extensibly analyzed, in terms of energy consumption (Ar-

duino) and concurrent users (OpenFire dashboard). According to the results,

XMPP enables to transport data to the cloud with considerable ease.

1.1.3 Outline

Chapter 2: discusses the state of the art addressed by this thesis. First, the

chapter introduces the protocol in question (XMPP), cloud and mobile comput-

3

1.1 Introduction

ing terms are presented. Later, some cloud terminology is introduced. Finally a

brief overview of Arduino framework is given.

Chapter 3: explains the problems regarding provisioning of pervasive services

to mobile users and the transportation issues of sending environmental data to

the cloud from electronic appliances.

Chapter 4: addresses the realization details of the prototype. The chapter first

introduces the architecture of the prototype. Later, describes the fundamentals

of XMPP together with examples of communication messages. Further, gives

details about the implementation of the complete framework, the XMPP client

on Arduino and the OpenFire dashboard. The chapter is concluded by discussing

some issues occurred during the development.

Chapter 5: introduces couple of real-life scenarios and their analysis (energy

consumption and server scalability).

Chapter 6: provides the conclusion of the results achieved of the thesis together

with future research directions.

Chapter 7: discusses related work of the field.

4

2

State of the Art

The continuous improvements in real-time communication have provided us the

means for ubiquitous presence in our daily lives. One of these achievements is

instant messaging (IM). Basically, IM consists of several clients (buddies) that

exchange information between them using a central server (e.g. OpenFire, etc.)

that manages/orchestrate the communication. The most well-known examples

are MSN, AOL , Yahoo Messenger and Jabber.

In this chapter, we present a complete description of Jabber and pointed out

some opportunities that emerge when extending the protocol to transport sensor

data to the cloud. Finally, we focus on describing Arduino microprocessor as open

source electronic platform and its integration with the Android mobile platform.

2.1 Jabber

Jabber or XMPP(aka eXtensible Messaging and Presence Protocol), is a near-

real-time communication protocol that relies on Extensible Markup Language

(XML) and enables the exchange of structured data between any number of net-

work entities (1). XMPP protocol was developed by the Jabber open-source

community in 1999, initially as an instant messaging protocol. Since then the

technology has been extended from network management systems to online gam-

ing among others.

The protocol enables the exchange of small pieces of structured data (called

”XML stanzas”) between two or more entities over the network. XML streams

5

2.2 Mobile Computing

and XML stanzas make possible the rapid, asynchronous and synchronous ex-

change of data between XMPP entities. XMPP employs the use of Transport

Layer Security (TLS) and Simple Authentication and Security Layer (SASL) to

ensure the security and authenticity of the communication channel. There are

three core stanza types - presence, message and iq - discussed in further sections.

XMPP uses decentralized client-server model, where each user connects to the

server that controls its own domain. There is no central authoritative server as in

the case of MSN, AOL or ICQ messengers. Moreover, there are many open-source

implementations of XMPP servers that can be deployed in a private domain. For

example, by encapsulating XMPP to transmit over another protocol (for example

HTTP) for fitting specific requirements in the rules of firewall, one can deploy

a server for internal communication within an organization and extend its com-

munication with another server entities that are spread over a large geographical

area.

XMPP can be envisioned as a push technology to deal with offline operations

(asynchronous operation). In this kind of operation, XMPP delivers the message

to the server, so that once it has reached there, the input stream is delivered to

the corresponding buddy depending on his/her status (online, offline, etc.). If

the status is offline, the message is located in a queue and will be delivered once

the user comes online.

Since XMPP has been around for a while, additional requirements and func-

tionality has been added over the time. These have not been added to the core

XMPP but are documented as XMPP extension protocols (XEP).

2.2 Mobile Computing

Improvements in mobile device technology, hardware (embedded sensors, mem-

ory, power consumption, touchscreen, better ergonomic design, etc.), software

(more numerous and more sophisticated applications due to the release of iPhone (2)

and Android (3) platforms) and transmission technology (higher data transmis-

sion rates achieved with 3G and 4G technologies) have contributed towards having

higher mobile penetration and better services provided to the customers. Also,

6

2.2 Mobile Computing

those improvements have enabled the mobiles to become the source of informa-

tion and understand the user in multiple ways (interaction, movement, location

etc.) (4).

2.2.1 Smartphones

A smartphone is a device that extends the capabilities of mobile phone by adapt-

ing a higher application layer that enables managing any artifact attached to the

mobile resources. Modern smartphones usually have high-end touchscreens and

high-speed data access via Wi-Fi or mobile broadband (e.g. 3G/4G).

Smartphones are equipped with embedded cameras and micromechanical ar-

tifacts such as accelerometer sensor, proximity sensor, gyroscope sensor, compass

and global positioning system among others. The number and type of sensors

may vary depending on the manufacturer and the model of the device itself. For

example, the gyroscope is a fairly new addition that is only available for a few

handsets such as Samsung Galaxy S2 and Apple iPhone 4S.

2.2.1.1 Accelerometer

The accelerometer is an artifact that measures the acceleration of a device which

it has been embedded in. Usually a triaxial accelerometer is incorporated in

smartphones, and thus acceleration can be tracked along the x, y and z axis.

Each axis measure is related to the movement towards a single direction (for-

ward/backward, right/left and up/down). For example, in the case of a person

walking in a museum tour, forward/backward is related to speeding up and slow-

ing down, up/down involves going upstairs or downstairs in the museum, and

left/right is recorded when the person is making turns while walking (5).

2.2.1.2 Magnetic Field

Magnetic field sensor (aka hall sensor) is used for sensing magnetic disruption in

the environment. Depending on how disruptive is the measurement, this infor-

mation can be used for approximating orientation and direction of the device.

7

2.2 Mobile Computing

2.2.1.3 Gyroscope

The gyroscope sensor is an actuator based on the principles of angular momentum

conservation that is used for establishing position, navigation and orientation of

the device, among others. It consists of three axis or freedom degrees (spinning,

perpendicular and tilting) mounted in a rotor which consists of two concentrically

pivoted rings (inner and outer). The gyroscope is used within the mobile for en-

hancing techniques such as gesture recognition and face detection. Furthermore,

the combination of accelerometer and gyroscope sensor data increases motion ac-

curacy, and thus techniques such as video stabilization are implemented on the

mobile (6).

2.2.2 Mobile platforms

Mobile platforms are the base for every mobile device. They provide SDK, the

tools and the operating system that make it possible to develop applications for

that platform. Usually they have their own distribution model which is supplied

by the platform developer. For example Apple iOS has AppStore, Google An-

droid has Play Store and Windows Phone has Windows Marketplace. Mobile

applications are developed for a diversity of mobile platforms including Android,

iOS (iPhone), Symbian (Nokia), Windows Mobile (Microsoft), Blackberry (Sony

Ericsson), etc. Recently, Symbian has been replaced by Windows Mobile since

the popularity has decreased in the mobile market.

Since the introduction of iOs (2007) and Android (2008) as mobile platforms

for smartphones, huge popularity has been growing around these two operating

systems as basis for the development of mobile applications. Apple released iOs

as a platform for their own devices (iPhone, iPod Touch). In contrast, Android

was released as open source by the Open Handset Alliance. Currently, Android

is supported by several vendors such as Samsung, Sony Ericsson, HTC, Toshiba,

LG among others.

2.2.2.1 Android

Android is a mobile platform released by the Open Handset Alliance that consist

of a software stack composed by an operating system, middleware and key ap-

8

2.2 Mobile Computing

Figure 2.1: Android Architecture

plications (3). The development of the software is tied to the use of the Dalvik

Virtual Machine (Android Runtime) that enables using Java as programming

language. Most of the libraries that are compatible with JDK can be deployed on

an Android device. However, some of them may present issues concerning com-

patibility with the compiler, and thus are unable to execute. For example, typica

API, a Java library for accessing Amazon Web Services, presents such integration

problems.

Android architecture consists of multiple layers that rely on a Linux kernel

as shown in Figure 2.1. The application layer includes a set of default applica-

tions in the operating system such as calendar, contacts, etc. Those applications

can be synchronized with the cloud using Google Sync. The application frame-

work consist of predetermined services for managing hardware resources (sensors,

screen, etc), software (alarms, background services) and integrating with external

resources (location information systems, AC2DM notification service, etc).

In its native libraries, Android incorporates applications that provide excellent

real time performance. An example of such application is the light version of

SQLite database.

9

2.2 Mobile Computing

Figure 2.2: iOS Architecture

Although, Android applications are mainly distributed in the Android Market,

applications can be distributed freely over the Internet once they are packed in

APK (Android Application Package) files. However, if the application is not

purchased in the Android Market, there is the risk of acquiring Android malware.

2.2.2.2 iOS

iOS is a mobile platform created by Apple, Inc and is deployed on its mobile

devices (iPhone, iPod Touch). Since it is a proprietary technology, most of its

core functionality altogether with the hardware is not accessible to the developer.

iOS consists of multiple software layers, each allowing application development.

iOS architecture is depicted in Figure 2.2. The complexity of each layer

is related to the lines of code needed to achieve the objective in the mobile

application. In general, the higher the level, less effort required for building the

application.

Cocoa Touch Layer is the highest layer of the iOs platform, written in Objective-

C language. The layer provides services such as Push Notification Service, Game

Kit Frameworks, among others. Media Layer provides capabilities for reproduc-

ing audio and video together with graphics capabilities for animations. The Core

OS Layer lies at the bottom of the iOS stack and, as such, sits directly on top of

the device hardware. The layer provides a variety of services including low level

10

2.3 Cloud Computing

networking, access to external accessories and the usual fundamental operating

system services such as memory management, file system handling and threads.

The distribution of applications is exclusively arranged through the iPhone

AppStore. Developer who desires to publish applications must first submit them

for inspection to the iOS Dev Center. Once the review is completed and the appli-

cation fits the mandatory requirements set by Apple, the application is published

to the AppStore.

2.3 Cloud Computing

Recently, there has been growing interest in adapting the cloud computing paradigm

for delivering services that require high demand. Services provided through the

Internet are moving to the cloud due the scalability benefits in its infrastructure,

the ease of the deployment of services without managing the underlying technol-

ogy (software and hardware) and the pay-as-you-go model that enables reducing

costs. Business companies are also migrating to the cloud to leverage the poten-

tial of their internal infrastructure (using the computing power when needed).

Cloud services can be provided by public cloud vendors (Amazon AWS, Google

App Engine, Microsoft Azure, etc.) or own private cloud implementations (Eu-

calyptus). Cloud domain is strongly dominated by proprietary solutions (public

clouds). Hence, there exist various cloud architectures that may use different

styles (SaaS, PaaS and IaaS) for delivering the cloud supplies. Such architectures

are accessible through particular implementations, API set, etc, provided by one

specific vendor.

2.3.1 Cloud Services

Cloud services are provided on demand at different levels. Figure 2.3 shows

the layers of cloud services, in terms of level of abstraction. The provisioning

of services can be at the Infrastructural level (IaaS), Platform level (PaaS) or

the Software level (SaaS). In IaaS, commodity computers, distributed across the

Internet, are used to perform parallel processing, distributed storage, indexing

and data mining. IaaS provides complete control over the operating system and

11

2.3 Cloud Computing

the clients can fully benefit from the computing resources like processing power

and storage. One IaaS level provider is Amazon EC2 (7).

Virtualization is the key technology behind realization of these services. PaaS

mainly offers hosting environments for other applications. Clients can deploy

domain specific applications on these platforms, one of which is Google App

Engine (8). These applications are in turn provided to the users as SaaS.

SaaS is generally accessible from web browsers, e.g. Facebook. Web 2.0 is

the main technology behind the realization of SaaS. However, the abstraction

between the layers is not concrete and several of the examples can be argued for

other layers.

While there are several public clouds on the market, Google Apps (Google

Mail, Docs, Sites, Calendar, etc), Google App Engine (provides elastic platform

for Java and Python applications with some limitations) and Amazon EC2 are

probably the most popular and widely used. Elastic Java Virtual Machine on

Google App Engine allows developers to focus on developing applications rather

than bother about maintenance and system setup. Such sandboxing, however,

places some restrictions on the allowed functionality. Amazon EC2 on the other

hand allows full control over the virtual machine, starting from the operating

system. It is possible to choose a suitable operating system and platform (32 or

64 bit) from many Amazon Machine Images (AMI). In addition, there are several

possible virtual machines that differ in CPU power, memory and disk space. This

structure of service enables choosing the right resource for any particular task. In

the case of EC2, price of the service depends on the machine figures, its uptime,

and used bandwidth, both into and out of the cloud.

2.3.2 Cloud Providers

2.3.2.1 Amazon

Amazon (7) AWS (Amazon Web Services) is a public cloud computing provider

that offers a variety of infrastructure and platform services (e.g. Hadoop) over

the Internet. Amazon AWS relies on the top of the cloud computing infrastruc-

ture for delivering services that can be accessed using REST (REpresentational

State Transfer) and SOAP (Simple Object Access Protocol). Within the bundle

12

2.3 Cloud Computing

Figure 2.3: Levels of Abstraction in Cloud Computing

of services provided in the Amazon stack, EC2 (Elastic Compute Cloud) and S3

(Simple Storage Service) can be mentioned as these are the most popular and

well-known services. Other services have been developed around these basic ser-

vices such as EBS (Amazon Elastic Block Store), AWS Management Console,

etc. Moreover, one of the latest services provided by Amazon is CloudWatch for

monitoring the applications that are running in the cloud.

Amazon services are paid according to the user’s consumption of resources

(number of requests, amount of bandwidth, etc). However, in February (2011),

Amazon released a free tier account for the developers in order to foster the

creation of applications based on their cloud infrastructure.

EC2 EC2 (Elastic Compute Cloud) is the central part of Amazon Web Ser-

vices. EC2 provides the means to rent instances of virtual machines for specific

purpose. For example, it can be used for implementing parallel computing algo-

rithms with distributed frameworks such as Hadoop among others.

Instances are launched on demand, which in turn enable creating highly scal-

able web applications. Furthermore, EC2 gives the users control to choose the

geographical location of instances in order to optimize latency and therefore allow

high levels of redundancy.

S3 Amazon S3 (Simple Storage Service) is a scalable, high-speed, low-cost

13

2.3 Cloud Computing

Web-based service offering means for data storage and backup, and web and

image hosting. The service can be connected to over Web service interfaces, e.g.

SOAP, REST. Furthermore, BitTorrent protocol is supported to provide high-

scale distribution at lower cost.

S3 allows uploading, storage and downloading of practically any file or object

up to five terabytes (5 TB) in size. Amazon imposes no limit on the number of

items that a subscriber can store and claims that subscribers have access to the

same storage infrastructure Amazon uses to run its own Web applications.

2.3.2.2 Azure

Windows Azure is Microsoft’s platform for cloud computing. Windows Azure

was created with the purpose to simplify IT management and minimize upfront

and ongoing expenses. By design, Azure facilitates managing of scalable Web

applications over the Internet. Microsoft data centres take care of and maintain

the hosting and management environment.

The platform can be used to create, distribute and upgrade Web applications

without the necessity to maintain the resources in use. Web services and ap-

plications can be created and debugged with ease and low personnel expense.

What is more, new capabilities can be added ”on the fly” to existing packaged

applications.

2.3.2.3 Google App Engine

The Application Engine contains all the services provided by Google. It uses a

SaaS approach for delivering services over the Internet. Among the most well-

known services are Google Analytics, Google docs, Picasa, etc. Google App

Engine also supports data storage (Google for developers).

Android mobile platform is tied to the solutions provided by Google, and thus

most of the services released over the Internet have been extended to provide a

mobile version. As an example, Android applications, such as Calendar, E-mail,

Contacts, can be easily synchronized with Google services if the user has a Google

Account.

14

2.3 Cloud Computing

2.3.2.4 Eucalyptus

Eucalyptus is a platform for the implementation of private cloud solutions. It

offers an enterprise solution for business in general and a version for the open-

source community. Eucalyptus architecture is based on Amazon, and thus share

similar composition for provisioning of services. Walrus provides the support

for storage (similar to S3) and Eucalyptus provides the computational service

(like EC2). However, applications that are developed for Eucalyptus are not

highly compatible with Amazon. Therefore, applications must be modified is the

necessity to migrate from one architecture to another.

2.3.3 Cloud and XMPP

There exist public clouds and private clouds. Public clouds are free for use for

anyone who needs to use the available resources offered by a service provider,

similar to ISP-s offering connectivity to the Internet. Private clouds are de-

ployed by organizations for their private purposes, e.g. Eucalyptus. Then there

are Intercloud Exchanges where the clouds can interoperate. To tie the clouds

together a central and structured system is needed. Intercloud Root is such

an instance, providing all kinds of root services, including Naming Authority,

Trust Authority, Directory Services, etc. In order to establish secure and reli-

able communication between the instances, a suitable protocol is required. There

are popular standards and protocols, like HTTP, for such a job. Unfortunately,

the synchronous communication that Hyper Text Transfer Protocol (HTTP) of-

fers is unsuitable for time-consuming operations, like computationally demanding

database lookups. Server timeouts are common obstacles for such operations. In

contrast, XMPP based services are capable of asynchronous communication and

are ideal for lightweight service scenarios. In (9) XMPP is employed as an In-

tercloud communication and service request protocol. As a viable control plane

presence and dialogue protocol, it is perfect for this purpose. XMPP allows cloud

instances to dialogue with each other and find one or more clouds that are ready

and willing to exchange any kind of information. In addition, the protocol sup-

ports many-to-many messaging across service provider domains and can be used

to carry messages of different types.

15

2.4 Arduino

Bioinformatics widely utilize clouds and Web services technologies like Simple

Object Access Protocol (SOAP) and REpresentational State Transfer (REST).

These technologies have some severe drawbacks, including lack of service discov-

ery and inability to send status notifications (10). A problem is that SOAP

services, which are common in the field, are typically using HTTP as communi-

cation channel. Complex communication is common in bioinformatics, however,

HTTP was designed to accommodate query and web pages retrieval. Also, the

SOAP specification does not by itself provide means of service discovery. To

overcome the drawbacks, IO Data, which is an extension to XMPP, has been

taken into use. The difference between HTTP and XMPP is their wrapping -

HTTP is unstructured while XMPP is formatted as XML, allowing integration

with the abundance of XML languages used in bio- and cheminformatics. The

extension enables services to publish their own input and output data types,

asynchronous invocation, and allows existing XMPP infrastructure to discover

services. Besides the aforementioned, XMPP supports determining their status

and availability. Although, XMPP cloud services offer numerous advantages,

there are some limitations when transferring large data for two reasons. First,

all data transmitted with XMPP must be wrapped in XML which requires data

conversions that might be less efficient when compared to a plain binary stream.

Second, each XMPP message has to wait for its own turn to be transmitted over

the XMPP stream. In case a large message is being sent, the following messages

are retained until the transmission of the large message is completed.

2.4 Arduino

Arduino (11) is an open-source electronics prototyping platform based on flexible,

easy-to-use hardware and software. It’s intended for anyone interested in creating

interactive pervasive applications. Arduino senses the surrounding environment

via a variety of sensors and can control various gadgets, such as lights, relays

and servos. The microcontroller on the board is programmed using the Arduino

programming language (based on Wiring) and the Arduino development envi-

ronment (based on Processing). The program that can be written and uploaded

to the microcontroller with Arduino IDE is called a sketch. The sketch has two

16

2.4 Arduino

Figure 2.4: Arduino IDE with Sample Sketch

mandatory functions - setup and loop. When Arduino is started or restarted, the

first function called is setup, which usually contains settings initializations (e.g.

Serial port). If setup has finished, loop function is called over and over again

without any delay until Arduino is restarted or has crashed. In the latter case

the program is restarted. Crashes can occur if main memory use is exceeded or a

pointer error occurs. Arduino sketches are written in C/C++ and support most

of standard C/C++ libraries.

Figure 2.4 shown above depicts Arduino IDE 1.0 with a simple Arduino

sketch that manipulates an LED light. In the setup method, pin 13 is initialized

as output. This is the pin that an LED light is connected to. In the loop method,

17

2.4 Arduino

the output power for pin 13 is set to maximum and then back to minimum.

One second delay is set between each of the commands. The loop method runs

infinitely. In order to actually run the sketches, appropriate hardware is needed.

Arduino offers several different microcontroller boards, some of which are Uno,

Duemilanove and Mega ADK.

2.4.1 Arduino Mega ADK

Arduino Mega ADK board, based on the ATmega2560, has the best technical

characteristics of all the Arduino boards. It has the largest SRAM (8 KB), flash

for storing code (256 KB of which 8 KB is used for bootloader) and EEPROM (4

KB) memory. It is equipped with a USB host interface to directly connect with

Android based devices. The board has 54 digital input/output pins, 16 analog

inputs, 4 UARTs (hardware serial ports), a power jack for external power source

and a reset button. The Mega ADK board is based on an earlier Mega 2560

board. Similarly to the Mega 2560, it features an ATmega8U2 programmed as a

USB-to-serial converter. This artifact is used for connecting with the computer

to upload sketches.

The Arduino ADK can be powered via the USB connection or with an external

power supply. The power source is selected automatically. External (non-USB)

power source can be either an AC-to-DC adapter or battery which can be con-

nected by a 2.1mm center-positive plug. Arduino Mega ADK microcontroller can

be seen in Figure 2.5.

2.4.2 Android and Arduino

The USB accessory mode allows connecting host hardware using USB, but the

limitation is that the used hardware must be specifically designed for Android-

powered devices. However, if the accessories adhere to the Android accessory

protocol outlined in the Android Accessory Development Kit documentation,

we can still use the Android-powered device to interact with USB hardware,

although, the device cannot act as a USB host. Android turns normal USB

relationship upside-down and the accessory added to the Android powered device

acts as host and the Android device itself is the USB Device. The USB accessory

18

2.4 Arduino

Figure 2.5: Arduino Mega ADK

APIs were introduced in Android version 3.1, however, it is available in Android

2.3.4 using the Google APIs add-on library.

It is possible to establish a connection between Arduino microcontroller and

Android powered device when using Android Open Accessory Development Kit

or other USB Host Shield compatible with Arduino. Android Accessory library

can be used to implement the protocol. The most suitable microcontroller is

Arduino Mega ADK, which is specially developed for working side by side with

Android powered devices.

2.4.3 TinkerKit

TinkerKit (Figure 2.6) is a set of electronic sensors and actuators mounted on

boards that can be hooked up to the Arduino via a Sensor Shield. It enormously

simplifies electronic prototyping, because the unnecessary and time consuming

soldering and sensor building out of breadboard, wiring and resistors is skipped.

The kit has been created for education and design, allowing setting up interactive

and smart environments quickly. The shield used to test the implementation is

called Mega Sensor Shield, which is specifically created for Arduino Mega boards,

19

2.4 Arduino

Figure 2.6: TinkerKit Mega Sensor Shield

regarding the physical dimensions.

2.4.3.1 Sensors

TinkerKit offers various kinds of different sensors that enable reading information

from the environment as well as influence the environment via lights, motors and

control other electronic devices via relays or mosfets.

Thermistor Thermistor sensor has been designed to measure temperature of

the room or any location for that matter. Electromechanically, this sensor de-

creases the resistance of the circuit as the temperature rises, therefore opening

up the circuit. The raw output reading is between 0 and 1023, but TinkerKit

library provides functions for converting the readings to Celsius and Fahrenheit

degrees.

Light Dependant Resistor Light dependant resistor is used for measuring light

intensity in the environment. When no light is falling on the sensor, the resistance

is maximum and the circuit is closed. If the light becomes more intense, the

resistance starts decreasing and the circuit is opened up. Maximum voltage this

sensor outputs is 5V and expected reading is from 0 to 1023.

20

2.4 Arduino

2.4.4 Shields and Modules

Several shields and modules have been developed for specific purpose that can

be attached to the microcontroller. These components make hardware assembly

a lot simpler and can be directly attached on top of the microcontroller without

the need of building one out of breadboard, wiring and resistors. Some popular

shields are Wireless, Ethernet, Motor and Proto Shield. These are manufactured

by Arduino but addition to them there are many other makers, like Sparkfun,

DFRobot, and shields, like GPS, MP3 and LCD shield.

2.4.4.1 Ethernet Shield

The Ethernet Shield is used to connect to the internet via CAT5E cable with

RJ45 jack. It supports both 10 and 100 MB connection speeds, operating voltage

needed is 5V and connects with Arduino on SPI port. The shield is based on the

Wiznet W5100 ethernet chip (12). Both TCP and UDP are supported by the

network stack on the chip and is capable of maintaining up to four simultaneous

socket connections. The connection between an Arduino board and the shield is

enabled by long wire-wrap headers which extend through the shield. This keeps

the pin layout intact and allows another shield to be stacked on top. For con-

venience, there is an official Ethernet Library for managing internet connection,

using Arduino as a client or a server. In addition, the shield offers micro-SD

card connectivity, which comes in handy when serving files over the network is

required. Arduino Ethernet Shield can be seen in Figure 2.7.

2.4.4.2 Wireless Shield

The Wireless Shield (Figure 2.8) enables communicating using a wireless module.

Like the Ethernet shield, it has an onboard SD-card connection capability for

serving data on the card over the network.

The shield has an on-board switch labelled Serial Select. It determines how

the Wireless Shield’s serial communication connects to the serial communication

between the microcontroller and USB-to-serial chip on the Arduino board.

21

2.4 Arduino

Figure 2.7: Arduino Ethernet Shield

The switch has two settings - Micro and USB. In Micro mode, the wireless

module communicates with the microcontroller. Data sent from the microcon-

troller will be transmitted to the computer via USB as well as being sent wirelessly

by the wireless module. In this mode the microcontroller cannot be programmed

via USB. In USB mode, the microcontroller on the board is bypassed and the

module can communicate directly with the computer.

When configuring the module, we need to remember to upload an empty

sketch to the microcontroller before. Such a sketch consist only of empty setup()

and loop() methods. This is the case since the configuration is done over Serial

communication port (COM), but also the microcontroller communicates with the

wireless module over the same port. When an active sketch is running on the

microcontroller, it is going to interfere.

2.4.4.3 WiFly Wireless Module

The RN-XV WiFly radio module (13) is a standalone embedded Wi-Fi access

device pre-loaded with manufacturer firmware simplifying integration and devel-

opment time. It is based on Roving Networks RN-171 robust Wi-Fi module and

22

2.4 Arduino

Figure 2.8: Arduino Wireless Shield

is equipped with 32 bit processor, TCP/IP stack, real-time clock, crypto accelera-

tor, 8 Mbit flash memory and 128 KB RAM. Only initial configuration is required

to access network and start sending and receiving serial data over UART. The

module requires quite low power and has several transmit power levels from 0

to +12dBm. It can be configured over Wi-Fi or UART using ASCII commands.

Several Wi-Fi authentication algorithms are supported, including WEP, WPA-

PSK (TKIP), WPA2-PSK. The nature of the module enables it to use in wide

range of applications including industrial metering, room temperature sensors,

pump configuration and control, telemetry and robotics. The module is shown

in Figure 2.9.

2.4.5 Arduino and XMPP

At the time of writing there are no public XMPP implementations for Arduino.

There is some code published at GitHub (https://github.com/adamvr/XMPPArduino)

but unfortunately it does not work with the latest Arduino IDE 1.0. Quite several

public implementations have been created that execute on the computer, request

sensor data from the microcontroller over Serial and then send it to an XMPP

23

2.5 Summary

Figure 2.9: Roving Networks WiFly RN-XV Wireless Module

server like OpenFire. This kind of approach does not deplete the whole potential

that Arduino hardware and framework offer. Otherwise we could just attach sen-

sors directly to the computer, read data and send it to the web or even process

and present it on the same computer. The whole idea behind Arduino is that it

is an independent entity that can be physically placed to unimaginable locations

and does not need to depend on the resources provided by the computer.

Although there is not anything similar developed for Arduino, there is an

XMPP implementation created for Contiki operating system (14). Contiki is

an open-source and portable operating system, designed mainly for memory-

constrained network systems and embedded systems on microcontrollers. This

approach relies on info/query requests received from XMPP clients over the In-

ternet in order to obtain the sensor data.

2.5 Summary

In this chapter, there were several prominent technologies outlined, which can

be combined to provide better user experience and enrich mobile applications.

XMPP protocol was described as a promising communication protocol as the

basis of real-time sensor data transmission. A brief overview of smartphones,

smartphone embedded sensors and mobile platforms, including Android and iOS,

was given. Both private and public clouds were discussed together with specific

vendors. Furthermore, an overview of XMPP as a cloud service communication

24

2.5 Summary

protocol was presented on the example of the two existing cloud infrastructure

implementations. In the last subsection, Arduino and related hardware, including

communication shields and sensors, were reviewed.

25

3

Problem Statement

Even though, the integration between mobile devices and electronic appliances is

feasible for creating pervasive mobile applications, the hardware limitations of the

appliances (e.g. memory, storage, etc) restrict the solutions to scale on demand.

Moreover, smart technologies are rather costly and far to become ubiquitous.

In this chapter we present the drawbacks that emerge when providing environ-

mental information to smartphones from electronic platforms such as Arduino.

Finally, we introduce some possible solutions to tackle those issues.

3.1 Environmental Sensor Data for Mobile Users

Nowadays, smartphones enrich the mobile applications with proactive behavior in

usability that allow fitting contextual requirements. Generally, such behavior is

achieved by the mobile device itself through the use of embedded micromechanical

artifacts that enable environment perception. Furthermore, mobile applications

can benefit from distributed sensors located in multiple areas in order to enhance

the mobile interactive experience, like in the case of pervasive games, domotic

applications, etc.

However, pervasive services for mobile users are constrained to the amount

of users that can be handled (due hardware limitations). Thus, such kind of

services are not able to scale on demand. Furthermore, Smart technologies are

rather expensive. Consequently, their adoption is far from being ubiquitous.

26

3.2 Summary

Alternatively, some low-cost technologies, such as Arduino, can be imple-

mented for the consumption of context-aware services. However, Arduino is not

reliable and scalable enough to deal with a huge number of simultaneous users.

For instance, the Wiznet W5100 chip on the Ethernet Shield supports only up

to four concurrent socket connections and the WiFly module is limited to one,

which is below expectations for a server. This is feasible for personal use but for

wider audience is out of question.

Data storage problems are also going to be addressed. Although, Arduino can

save sensor data to an SD card, it does not have the means to do complex data

analysis of the environment with historical data, if needed. Furthermore, the

data on the SD-card could get corrupted or destroyed altogether, if something

happens to the Arduino. For example if the Arduino is set up in an outdoor

environment, the hardware can be damaged by the climate. Therefore, to ensure

data integrity, it is lucrative to save the data on the cloud.

To address most of these problems, this thesis proposes the implementation

of a low-cost system based on Arduino and Cloud technologies that is able to

serve a huge amount of concurrent users. The system relies on XMPP in order

to establish the communication between Arduino and cloud. XMPP is based on

jabber technologies (open-source) and it was preferred in order to avoid the effect

of polling (caused by protocols such as HTTP) and thus, increase the battery life.

The system takes care of sending sensor information to the cloud storage. Once

at the cloud, anything can be done with the data - use sensor data to predict,

recognize or detect multiple environmental patterns (e.g. create statistics about

weather in certain locations, etc). The possibilities are practically endless.

Moreover, XMPP server can be integrated with other XMPP servers to publish

the data to other domains with little to no effort, thus, providing an easy and

flexible approach to maintain, port and combine sensor information with other

solutions.

3.2 Summary

To overcome scalability, data integrity and processing power deficiency problems

and enrich smartphone applications with detailed and consistent contextual in-

27

3.2 Summary

formation, current thesis proposes a solution to gather data from the sensors and

deliver the information from Arduino microcontroller to the cloud using XMPP

protocol. Arduino provides a low-cost hardware, while the cloud offers a reliable

and dependable means for storing and processing sensor data, and XMPP fulfills

the requirements for successful data transportation.

28

4

From Arduino to the Cloud using

XMPP

There are several issues that were discussed in the previous chapter, regarding the

utilization of pervasive services within the mobile applications. Current solutions

that target mobile consumption, are not scalable on demand (e.g. hardware

limitations) and at the same time are costly. In this chapter, the thesis attempts

to tackle such issues by proposing a low-cost approach based on Arduino and

cloud computing.

In the first part of this chapter, the overall architecture of the solution is

described along with some fundamentals of XMPP, in order to understand, how

the protocol is adapted to microprocessor for sending sensor information. Later,

the chapter provides an overview of the Arduino and server-side clients. Finally,

some details about problems/facts that occurred during the development are

discussed.

4.1 Architecture and Implementation Details

The implementation of XMPP protocol is written in C++. This is the case

because Arduino platform is written in that language. Moreover, this implemen-

tation is written for Arduino IDE 1.0, which is the latest version at the time of

writing. Some features have changed, new have been added since the last version.

29

4.1 Architecture and Implementation Details

Figure 4.1: Wireless Architecture

The implementation comprises base64 encoder (taken from an XMPP imple-

mentation that has been written for earlier Arduino IDE version), sensor protocol

precisely created for sensor data transfer, utility methods and XMPP protocol

that handle negotiating connection with an XMPP server, stanza creation and

message handling. There are two hardware architectures taken into account dur-

ing the implementation of XMPP protocol. The first one uses Wi-Fi for trans-

mitting data to the server while the other uses Ethernet. Abstract overviews of

wireless architecture can be seen in Figure 4.1.

Arduino microcontroller is the bottommost component of the physical hard-

ware setting. Wireless Shield is mounted on top of the Arduino using long wire-

wrap headers which extend through the shield. Wireless module is situated on

the Wireless Shield and communicates with it over UART. Finally, Mega Sensor

Shield is mounted on top of the wireless shield. There are 7 components attached

to the sensor shield with cables - four LED lights and three sensors. LED lights

are used as indicator lights to show the current state of the sensor. Red indi-

cates that the program has started but network and TCP connection has not

30

4.1 Architecture and Implementation Details

Figure 4.2: Assembled Composition with Wireless Shield

been established yet. When yellow LED turns on, TCP connection with XMPP

server has been created. The green light notes that the stream negotiation has

been successfully finished and the entity is online. Every time data is sent to the

server blue LED flickers. All of the lights are connected to digital pins. Thermis-

tor sensor measures the temperature of the surrounding environment, hall sensor

is used for detecting magnetic field and light sensor is a variable resistor, that

decreases its resistance when light falls on the sensor. The sensors are connected

to analog pins. Physical setting of the wireless system can be seen on Figure 4.2.

The overall architecture of the prototype with Ethernet Shield can be seen in

Figure 4.3. The only difference with these two architectures is that the Wireless

Shield is swapped with the Ethernet Shield and everything else stays the same.

Physical setting can be seen in Figure 4.4.

31

4.1 Architecture and Implementation Details

Figure 4.3: Ethernet Architecture

Figure 4.4: Assembled Composition with Ethernet Shield

32

4.2 Fundamentals

4.2 Fundamentals

To understand the details of the implementation, one must get acquainted with

the fundamentals and essence of XMPP protocol. XMPP functionally is consum-

ing and demanding for low power and minimal resource hardware, in terms of

battery and memory, respectively. Therefore only the essential core requirements

have been implemented.

XMPP utilizes input/output XML streams during all the communication pro-

cess. Basically, an XML stream is a container for exchanging XML stanzas be-

tween entities. The stream is started by sending a stream header tag (<stream>)

with appropriate attributes and namespace declarations. During an open stream,

the amount of XML elements and stanzas exchanged between entities is not

bound. XML stream can be thought of as a large, if not infinite, XML document.

The receiving entity must negotiate a stream, called the response stream, in the

opposite direction if an entity wants to exchange stanzas with another entity.

An XML stanza is the base of the XMPP protocol. A stanza is a first-level

XML element whose element name can be message, presence or iq and whose

qualifying namespace is ’jabber:client’ or ’jabber:server’ depending on the entity.

In essence, the communication between client and server can be thought of as

two open XML documents. One is acting as an envelope for sending stanzas to

the server, the other one acts as an envelope for the XML stanzas received during

a session.

4.2.1 Stanzas

After a client and a server have completed stream negotiation, either party can

send XML stanzas. There are three different types of stanzas: <message/>,

<presence/> and <iq/> (short for info query). The first stanza type is quite

trivial, used for pushing information to another entity.

The second stanza is used for sending presence notifications. For example,

when a user logs into server, the client sends a presence stanza to the server indi-

cating that the user has changed status. The server sends this status notification

to every entity that is online and is in the user’s buddy list.

33

4.3 Session Negotiation

Info query is a request-response mechanism, similar to the Hypertext Transfer

Protocol. IQ enable an entity to make a request to and receive a response from

another entity. For example, iq is used to request roster (buddy list) after a client

has logged into the server.

In addition, five common attributes apply to these stanza types. These at-

tributes are ’to’, ’from’, ’id’, ’type’ and ’xml:lang’. The ’to’ attribute specifies the

recipient of the stanza. In contrast, ’from’ attribute specifies who is sending the

stanza. ’id’ attribute is used to track any response or error stanza that it might

receive related to the generated stanza from an entity. The purpose or context

of the message, presence, or IQ stanza is specified by ’type’ attribute. ’xml:lang’

attribute should be added to the stanza if it contains XML character data that is

intended to be presented to a human user. The value of the ’xml:lang’ attribute

specifies the default language of any such human-readable XML character data.

4.2.2 Address Definitions

XMPP uses globally unique addresses in order to route and deliver messages over

the network. All XMPP entities are addressable over the network using unique

identifiers. The server identifier is called a domainpart, similar to an e-mail

server address, whereas account’s identifier is called a JID (Jabber ID). There

are two types of JIDs 1) bare JID, and 2) full JID. Bare JID consists of localpart

and domainpart (e.g. arduino@amazon-xmpp, where arduino is the localpart and

amazon-xmpp is the domainpart). Typically a localpart uniquely identifies the

entity requesting and using network access provided by a server. Full JID consists

of localpart, domainpart and resourcepart (e.g. arduino@amazon-xmpp/sensor).

Typically a resourcepart uniquely identifies a specific connection (e.g. a device

or location) or object belonging to the entity associated with an XMPP localpart

at a domain.

4.3 Session Negotiation

The first thing done in starting the communication is open a TCP connection

to an XMPP server. Typically this is initiated by the client, but also can be

34

4.3 Session Negotiation

Figure 4.5: Stream Header

Figure 4.6: Response Stream Header from Server

created between servers. There are many open and closed-source XMPP server

implementations available to choose from. One of the most popular and complete,

regarding the features and functionality, is OpenFire. This implementation was

also tested with OpenFire XMPP server. Typically, XMPP reserves port 5222.

The XML stream is started when the client sends an unambiguous stream

header to the server. This is the root tag of the document, which also contains

some necessary attributes and namespace declarations. Example of stream header

is shown in Figure 4.5.

The ’to’ attribute has information about the server domain where the client

wishes to connect to. The default namespace indicates whether a client or a server

is initiating the session, while stream namespace declares the XML stream tags.

The server responds with similar header, but different attributes, if the initiating

header contained correct attribute values (e.g. server domain, namespaces). If the

attributes are incorrect, the server closes the stream by sending an unambiguous

closing stream tag (</stream>), then closes the TCP connection. Example of

response stream header is shown in Figure 4.6.

In addition to the stream header, the server sends a first level child element

<features/> if the stream opening was successful. This tag contains features

that the server is offering for the client for the next action. For example, the

features contain <starttls/> - enables the client to negotiate a TLS encrypted

connection -, <mechanisms/> - serves the methods or authentication (PLAIN,

DIGEST-MD5, etc) -, <compression/> - enables transferable data compression.

The XMPP protocol specification strongly recommends using TLS to encrypt

the communication, but since secure connection creation needs quite a bit of

resources (Arduino has an 8 bit processor) and Arduino does not have libraries for

35

4.3 Session Negotiation

Figure 4.7: Authentication Stanza with PLAIN Mechanism

Figure 4.8: Successful Authentication Message Received from Server

SSL/TLS support, it is unable to use the encryption in this case. Furthermore,

SSL/TLS is out of the scope of this thesis. XMPP employs the use of SASL

(Simple authentication and security layer) (15) as a mechanism for authenticating

the user. The simplest and most insecure mechanism to authenticate is PLAIN

(16). In this case the authentication token consist of username and password

delimited by NULL character (‘\0’ in C++) in Base64 encoding. Example of an

authentication element for username “arduino” and password “arduino” is shown

in Figure 4.7.

Servers turn is to respond whether the authentication was successful or user

was not authorized. The stanza received from the server can be seen in Figures

4.8 and 4.9 accordingly.

If the user has been successfully authenticated, the XML stream must be

restarted by sending the stream header to the server once again. The server an-

swers in the same way as before but the list of stream features does not contain

<mechanism/> options anymore since the authentication has been completed al-

ready. As one option has been left out, another has been added, namely <bind/>.

Binding resource is obligatory action and an XMPP server and client must sup-

port the implementation. Resource must be bound to the stream so that the

server can properly address the client. This means that a resource must be asso-

ciated with the bare JID (localpart@domainpart) of the client so that the address

for use over that steam is a full JID of the form localpart@domainpart/resource.

This ensures that the server can deliver XML stanzas to and receive XML stanzas

from the client in relation to entities other than the server itself or the client’s

Figure 4.9: Unsuccessful Authentication Message Received from Server

36

4.3 Session Negotiation

Figure 4.10: Resource Binding IQ Stanza

Figure 4.11: Response from Server for Resource Binding

account. After a client has bound a resource to the stream, it is referred to as a

connected resource. A server should enable an entity to maintain multiple con-

nected resources simultaneously. An example resource binding iq stanza is shown

in Figure 4.10. An example of response from server is in Figure 4.11.

Actually there are two ways to bind a resource 1) explicitly setting the resource

name, as show in Figure 4.10, 2) not specifying any resource. In the latter case

the server itself assigns a resource to the user. If the user does not fancy it

(basically it is a random alphanumeric), it can be changed with the stanza in

Figure 4.10. Example command without explicitly setting the resource is shown

in Figure 4.12.

For now the entity has logged in and is able to start communicating with any

other entity. Although, one more useful step should be done, send a presence

stanza to tell the server that the entity is present and available for chatting.

Sample presence stanza is shown in Figure 4.13.

The presence stanza above sets the user’s status to chat (meaning available)

and status message to “sending data” which is shown in traditional IM clients.

Figure 4.12: Resource Binding Stanza without Explicit Resource

37

4.3 Session Negotiation

Figure 4.13: Sample Presence Stanza sent when Becoming Online

Figure 4.14: Presence Stanza Received when a Friend Logs in

When the user has sent the presence stanza, the server will respond with

presence stanzas for every online buddy that is in the user’s buddy list, called

roster. Sample stanza of the latter is show in Figure 4.14.

In the example above there is no show element set, since it is optional and

therefore is assumed to be online and available. Values that are applicable for

show element are

Away the entity or resource is temporarily away

Chat the entity or resource is actively interested in chatting

Dnd the entity or resource is currently busy (Do Not Disturb)

Xa the entity or resource is away for an extended period (eXtended Away)

If an entity or resource logs out from the server, unavailable presence stanza

is sent to every buddy, as show in Figure 4.15.

When the presence for the entity or resource has been set, the client is able to

exchange unbounded number of XML stanzas with other entities on the network

until the stream is closed. The stream closing is rather simple. If the client

wishes to log out from the server, it only needs to send the closing tag of the

stream (</stream:stream>). The closing entity must not immediately close the

Figure 4.15: Presence Received When a Friend Logs Out

38

4.4 Arduino Client

TCP connection but wait for the receiving entity to respond with the same. This

indicates that the server has halted any data transmission to the entity and is

in state to end the connection. Usually the server closes the connection and the

client does not have to do anything. Figure 4.16 depicts the lifecycle of an XMPP

session regarding the implementation for Arduino.

4.4 Arduino Client

XMPP Arduino implementation can be used with any network or communication

interface that extends Stream class of Arduino base library. Stream class has

necessary methods for checking whether there is any data in the receiving byte

buffer, reading from the buffer one byte at a time and printing data to the stream.

Since Arduino microcontrollers have little RAM memory (1K to 8K, tested

Arduino Mega ADK has 8K) but enough flash memory and to simplify the cre-

ation of stanzas, templates of stanzas with format tags are saved in flash memory.

The Atmel microprocessors that are used on Arduino microcontrollers have their

own library with some useful functions. For example, as mentioned before, it

enables saving any type of data in flash memory and the data can be retrieved

from there any time needed. This approach is used in the XMPP library.

In Figure 4.17, stream header is saved as char array in program memory,

which is the same as flash. Keyword PROGMEM indicates that the data is to be

saved in program memory. PROGMEM is part of the pgmspace.h library and it

is not automatically included in Arduino sketches but must be included explicitly

(include <avr/pgmspace.h>). Also it is important to use the datatypes outlined

in pgmspace.h . Some cryptic bugs are generated by using ordinary datatypes for

program memory calls. While PROGMEM could be used on a single variable, it

is really only worth the fuss if a larger block of data needs to be stored, which is

usually easiest in an array.

If an array has been saved in program memory, it must be read back into

SRAM when one wishes to use the underlying data. The program space library

offers several useful functions for that matter. There are simple string copy

functions as well as formatted copy to string. All of the functions are named

similarly as the standard C++ functions, only P is added to the end of the

39

4.4 Arduino Client

Figure 4.16: Lifecycle of XMPP Session

Figure 4.17: Sample Stanza Template Saved in Flash Memory

40

4.4 Arduino Client

function name, indicating PROGMEM function. To copy data to main memory,

the first thing to do is create an array of same standard data type as the type

used in program memory. In this case, it is simple char array. The next thing to

do is set the size of the buffer the same length as the original array. This can be

done with function strlen P(). Finally there are two options 1) do simple string

copy, or 2) do formatted string copy. If there are format tags in the array, the

simpler option is the second one. Also this is one can cause some trouble, as it

was experienced during the development. The destination array’s sizes must be

set correctly and precisely, otherwise the microcontroller tends to crash or the

value of the array after copying does not appear to be the same as the original -

several characters missing in the middle, several last characters are omitted. In

many cases where this happened, the long way to copy and format the string was

used. First, the array was simply copied from program to main memory and then

the array was formatted with standard C++ functions (sprintf() mainly).

The XMPP library does not handle the connection to the Internet or to an

XMPP server. This is the case since one cannot be sure that every communi-

cation interface library is built in the same structure or inherit from the same

parents. For example, the Ethernet Shield must be started with a method called

begin(byte mac[]) and it requires mac address of the shield as a parameter. On the

other hand, the WiFly library has a method called begin(Stream *serial, Stream*

debug), which tries to get the connection to the router. The first parameter is the

Serial port used for communication between the WiFly module and microcon-

troller, the second is used for debugging. The library takes into account the fact

that Wireless Shield hijacks the main Serial port and therefore cannot be used for

both communication and debugging. With WiFly, begin() does not establish the

connection yet to the router, but initializes the Stream objects and configures the

WiFly module. Next, the router is configured (SSID, passphrase) and is joined

by calling join() method. If the module is previously configured to automatically

connect to the router after startup, then there is no reconnection done. Also it

is checked whether there is any incoming or outgoing connection. If there is, it is

closed because WiFly module supports only one concurrent connection.

XMPP object must be first initialized with the entity’s username, password,

resource, server domain and the stanza receiving recipient. After the TCP con-

41

4.4 Arduino Client

nection has been established the XML stream negotiation is started by calling

the connect() method of the XMPP library.

Stream negotiation is done in different states. Identifiable states are CLOSED,

OPEN, AUTH, AUTH OPEN, BIND, AVAILABLE and SENDING.

CLOSED state is quite trivial, means that stream negotiation has not been

started yet or has been closed already. First state after CLOSED is OPEN. This

state is reached when successful response to stream header has been received from

the XMPP server.

In general there are many different possibilities what to do in OPEN state

but this library currently supports only authentication at this point and only

with plain SASL mechanism. None of the other mechanism were implemented

because those concern security and improve the confidentiality when transmitting

data but they are not relevant to prove this concept. Furthermore, this approach

saves precious memory and resources. If authentication stanza gets a success

response from the server, current state is set to AUTH.

After authentication the stream is restarted with the stream header as before

in CLOSED state. If restart is successful, AUTH OPEN is obtained. In this

state again there are several possible actions. Currently only resource binding

is supported. Next, the same resource that was passed as a resource parameter

in the XMPP object constructor is bound with the entity. If resource binding is

successful, current state is set to BIND. Although, after resource binding there

are again several possible actions that are left over from the features list from

restarting the stream after authentication, none of them are supported in the

prototype.

The last state, that the Arduino can achieve on its own, is AVAILABLE.

This state is obtained after presence stanza is sent to the server. At this point

Arduino is basically staying idle and the processing is returned to the sketch.

To capture any further received packets, handleIncoming() must be called from

loop() method. This method has similar functionality as connect(), but this way

the control stays in the Arduino sketch. An example of loop() with incoming data

handling is shown in Figure 4.18.

If presence stanza with recipient credentials is captured, the state is changed to

its final possible status, SENDING. Now the microcontroller is reading the sensor

42

4.4 Arduino Client

Figure 4.18: Sample loop() Method of Arduino Sketch

43

4.4 Arduino Client

data, adding it to the message and transmitting to the server. The transmission

delay between the messages is configurable in the sketch. This state is maintained

until either the recipient goes offline or the server closes the stream.

In any states if negotiation step fails, the connection is not closed unless the

server itself closes the connection. If step fails, processing is returned to Arduino

sketch.

4.4.1 WiFly Libraries

Due to the fact that the RN-XV WiFly module is relatively new (released at the

second half of 2012), no official library is present at the time of writing. Therefore

the attention is turned to unofficial libraries created by open-source communities.

Happily there exist some of these libraries but as expected they have some serious

problems and are a bit unreliable. The first library that was discovered is called

WiFly-Shield library. At first it showed a lot of potential but after some testing it

turned out that the communication between the library and the module was not

working properly. For example, the library could not detect whether the module

was in command or idle mode and at times tried to configure the module when

command mode was not entered yet. In addition, at times joining the access

point failed several times before connecting successfully. The module had to be

configured for the access point before uploading the program sketch. This was the

case because the library was unsuccessful at configuring the module with proper

access point credentials due to the communication issues between the library and

the module. At the top of these, the library does not properly support hosting

Arduino as a server. Another library, called WiFlySerial, that was discovered.

This library unfortunately is only usable in cases where the module is manually

wired to Arduino and the default Serial port pins (0 and 1) are not used. Since

Wireless Shield is used, that approach was discarded and therefore this library is

unusable. The last and by far the most reliable library found is called WiFlyHQ.

This library did not show the faults described previously. Joining an access point

did not pose any problems and the module can be configured from the code. For

example, the credentials and security algorithm can be configured in a sketch and

anytime Arduino is taken to another access point, only the sketch is needed to

44

4.4 Arduino Client

Figure 4.19: Message Stanza Complemented with Sensor Data

Figure 4.20: Initialization of LEDs, Thermistor, Hall and Light Sensors

be changed. Although it supports hosting Arduino as a server, the connection

handling is faulty as is admitted by the developer. The library successfully sends

close command to the module but unfortunately the command is discarded. And

because WiFly module only supports single connection at a time, the server is in

a dead circle, since the old connection cannot be closed and new ones cannot be

made.

4.4.2 Sensor Data Transmission

JSON standard is used for sensor data transmission. This approach was taken

since it is a lightweight data transmission protocol and provides all the necessary

features. Also mapping JSON objects to Java objects on the server-side is very

simple due to JSON processor APIs. The main object is named SensorData. It

consists of location identification and a list that contains the actual sensor data.

Since the data in turn consist of the id of the sensor and the actual reading,

another object called Data is required. An example of XMPP message stanza

with sensor data is shown in Figure 4.19.

Arduino must be explicitly programmed to use specific sensors. Every sensor

has its own object and pin address is required as the only constructor parameter.

Sensor initialization is shown in Figure 4.20.

45

4.5 Server-side Client

Figure 4.21: Server-side In-memory Database Data Model

4.5 Server-side Client

The server-side client is implemented in Java and uses XMPP API called Smack

(?). This API is developed by the same company that developed OpenFire

XMPP server. OpenFire server does not need any kind of modifications for this

server-side client to work.

Database used for storing sensor data is H2. Due to the proof of concept there

was no need to set up full-scale database, but H2 with its in-memory approach is

suitable. The database is run in mixed mode, meaning that several connections

can be made to it as opposed to embedded mode.

The database contains 3 tables - locations, sensors and data. Locations table

contains entries of the locations where the microcontroller can be placed. There-

fore, only the id of the location is sent from Arduino, keeping message size smaller.

Similarly, sensors table contains rows of different possible sensors that are used

for gathering data from the environment. Again, only the id of the sensor is sent

over the network to keep the message small. The last table holds the data that

is received. Every record contains info about the sensor, location, measured data

and the time of arrival. Data model of the database can be seen in Figure 4.21.

For data processing Jackson JSON Processor is used. The processor provides

simple JSON to object mapping and only model classes corresponding to the

JSON message are needed. The client can be easily modified and enhanced to

send the data to S3 bucket or full-scale database and process the data according

to requester needs. For example, a weather application could be developed out

from this.

46

4.6 Countered Issues

4.6 Countered Issues

It seems that the receiving data buffer, in the case of WiFly module, is not filled

correctly so the XMPP library must check whether the stanza that has been read

is in fact complete and ready for further processing. To check for completeness,

it is unwise to compare it with expected char arrays but since it is and XML tag,

the easiest way is to count all the signs starting and ending a tag or in other

words count the more-than and less-than signs.

If it turns out that the data is indeed complete, it is further processed. If it is

not complete, the incoming buffer is checked again whether there are some bytes

left. This process is continued until the stanza received is complete.

Another problem that has risen, is that if Arduino has been connected to the

server for a while, the connection is dropped, but WiFly does not sense that and

keeps sending data, although there is no connection.

Also the data messages seem to be complete when it has arrived to the server.

Previously some of the message stanzas were not complete when they arrived. For

example couple of characters were missing in the middle of the stanza and because

of that the JSON data could not be processed because it was erroneous. This was

caused because of the data was divided into small packages of 64 bytes (WiFly’s

default package size) and some of the characters from the end of a packet went

missing since the average stanzas are about 200 bytes. So to transfer 200 bytes,

it takes 4 packets by default. To overcome the problem and also maximise the

transmission speed, the communication packet size was set to maximum, which

is 1460 bytes.

4.6.1 Debugging

Debugging the code when Wireless Shield is connected is not as simple as with

Ethernet Shield. The Ethernet Shield does not have the abovementioned Serial

Select switch, meaning that the network communication is not done over Serial.

Everything that is printed out to the Serial port is not going to be sent over TCP

connection to the receiving end. Ethernet Shield uses SPI bus for communicating

with microcontroller leaving pins 0 and 1 (RX and TX respectively) untouched.

47

4.6 Countered Issues

Figure 4.22: USB-to-Serial Adapter

SPI uses digital pins 10 (SS), 50 (MISO), 51 (MISO), 52 (SCK) and 53 (Hardware

SS) as communication pins.

This is not the case with Wireless Shield. If anything is printed out to the

Serial port, it is directly sent to the receiving party of the underlying TCP con-

nection. This poses a problem since any debugging information sent over TCP

could jeopardize the stream negotiation between the XMPP server and client.

Fortunately, there are two ways around it.

The first possibility is to wire the pins with Wireless Shield and Arduino

manually. This way we can use different pins (default are 0 and 1) as RX and

TX pins on the Arduino to avoid hijacking of the Serial by Wireless Shield. This

idea seems quite straightforward but it is not that elegant since the shield is built

to be mounted directly to the Arduino.

The second alternative is only applicable for Arduino Mega boards. This is

the case because these boards are the only ones that have multiple Serial ports -

4 to be exact. In addition to Serial, there are Serial1, Serial2 and Serial3, which

have their own RX and TX pins. To use any of the additional ports, a USB-to-

Serial adapter is needed. Such an adapter was used in testing the implementation

and can be seen in Figure 4.22.

The adapter has a mini USB that is connected to the computer and communi-

cates over COM port, and necessary pins for connecting with the Arduino board.

The adapter has ground, 5V, reset, TX and RX pins but we are interested only

in the transmit and receive pins because the board is powered by the USB that

is connected to itself. While testing the implementation, Serial1 port, which is

connected to pins 19 (RX) and 18 (TX), was used.

48

4.7 Summary

4.7 Summary

In this chapter was described a prototype solution for a sensor network gather-

ing contextual information from the environment. First of all, an architectural

overview of the prototype was given for both Ethernet and Wireless communica-

tion interfaces. To understand the details of the prototype, fundamentals (session

negotiation, stanzas, address format) of XMPP protocol were discussed.

The solution proposed is based on low-cost Arduino microcontroller hardware

and sensors, which is relatively easy to construct and install. To encounter the

scalability problem, regarding Arduino, cloud was presented as the central server

and data storage facility. In order to tie the components together, XMPP was

proposed as an ideal near-real-time communication protocol to deliver the sensor

data from microcontroller to server. Moreover, since the prototype relies on

instant messaging technique, saving data on the server is done by a second user,

server-side client. Due to the proof of concept there was no need to set up full-

scale database, but H2 with its in-memory approach was suitable.

What is more, custom sensor encapsulation protocol was created based on

JSON format, in order to simplify data mapping on the server side.

Finally, some problems and solutions were discussed that arose during the

development of the prototype.

49

5

Evaluation

5.1 Testing the duration of 9V battery with Wire-

less and Ethernet interfaces

The tests were carried out with Energizer 9V alkaline batteries (17). In the case

of Ethernet the battery lasted for ≈ 100.5 minutes, excluding the time needed to

connect to the network, server and negotiate the stream. In total the actions sum

up to ≈ 101 minutes. The microcontroller read information from 3 different sen-

sors - thermistor, hall, light - and for state indication 4 led lights were connected.

The data was read and sent to the server every 10 seconds and in total there were

1809 data reads and 603 data transmissions performed by the microcontroller.

Therefore we can compute the amount of data that can be delivered with one

battery. The stanza sizes and detailed comments about the stanzas can be seen

in Table 5.1.

Testing WiFly module with battery was quite troublesome. The main problem

arose was that the connection between the Arduino and the server was dropped

at some arbitrary time during the test. Although, the indicator lights on the

microcontroller denoted that the TCP connection, XML stream were still viable

and data was being transmitted, nothing reached the server client. Furthermore,

the server had the information that the entity was still online. At first, it was

concluded that probably the battery did not have as much power anymore to

maintain TCP connection but had enough power to read the data from the sensors

50

5.1 Testing the duration of 9V battery with Wireless and Ethernet
interfaces

Stanza Size Comments

Header 168 bytes This stanza is sent twice, at the beginning

and again after authentication

Authentication 96 bytes Username and password used were

both “arduino”, resulting base64: AG-

FyZHVpbm8AYXJkdWlubw==

Resource binding 101 bytes Resource used was “sensor”

Presence 115 bytes Included both show and status tags with

“chat” and “sending data” accordingly

Message 231 bytes Included JSON object with data for 3 sensors

Total 139773 bytes Total includes 603 transmitted message stan-

zas

Table 5.1: Battery test results with Ethernet connection

and print it to Serial port. This idea arose after testing the wireless module with

USB cable. In that scenario the connection was not lost like before. In the last

test, the server-side client log was closely followed. Also a packet sniffer utility

called tcpdump was executed to log any incoming packet on Amazon instance

and Tx transmit power level of WiFly module was set to be comparable with the

Ethernet Shield (10 on the scale from 0 to 12).

Contrary to the expectations, the battery lasted ≈ 161,5 minutes, excluding

connection establishing, although, hardware setup was exactly the same. Alto-

gether with TCP connection creation and session negotiation the result was ≈
162 minutes. This is more than an hour longer than the Ethernet. The outcome

was very surprising, since it was expected that maintaining Wireless communi-

cation needed more power compared to Ethernet. During the test ≈ 2907 sensor

read operations were called and ≈ 969 messages were delivered from Arduino to

the server. The amount of data transmitted can be derived from the number of

data transmissions, since the stanza sizes are known. The capacity and comments

of the transmitted data can be seen in Table 5.2. Furthermore, the assembled

hardware with Wireless Shield powered by the 9V Energizer battery can be seen

in Figure 5.1.

51

5.1 Testing the duration of 9V battery with Wireless and Ethernet
interfaces

Stanza Size Comments

Header 168 bytes This stanza is sent twice, at the beginning

and again after authentication

Authentication 96 bytes Username and password used were

both ”arduino”, resulting base64: ”AG-

FyZHVpbm8AYXJkdWlubw==”

Resource binding 101 bytes Resource used was ”sensor”

Presence 115 bytes Included both show and status tags with

”chat” and ”sending data” accordingly

Message 231 bytes Included JSON object with data for 3 sensors

Total 224487 bytes Total includes 969 transmitted message stan-

zas

Table 5.2: Battery test results with Wireless connection

Figure 5.1: Assembled Composition with Wireless Shield and 9V battery

52

5.2 Load testing OpenFire XMPP server

Figure 5.2: Battery Test Results

The collocated results of the two scenarios tested can be seen in Figure 5.2.

The energy consumption line is depicted linearly on the graph for illustration,

although, in practice the line might be more softer, similar to a curve.

5.2 Load testing OpenFire XMPP server

In order to show the performance offered by OpenFire XMPP server, several

load tests were carried out. There were two scenarios considered - replicated

dashboard and single dashboard. The dashboard consists of a full-scale MySQL

database. In the case of a single dashboard, all of the OpenFire servers share

the same transactional space. In contrast, replicated dashboards contain their

own database for every individual OpenFire instance (databases are synchronized

later). Tsung, an open-source implemented load testing tool, and HAProxy, a

high performance TCP/HTTP load balancer, are considered for applying heavy

loads to the whole system.

Tsung was deployed on single virtual machine instance in the Amazon EC2

Cloud. The test plan is structured by blocks and consists of three parts, the

server/client configuration, in which the machines’ information is defined. The

load part that contains the information is related to the mean inter-arrival time

between new users and the phase duration. Here, the number of concurrent users

is defined. For instance, for generating a load of thousand users in one minute

53

5.2 Load testing OpenFire XMPP server

Figure 5.3: Load Test Setup for OpenFire

a mean of 0.06 was used. And finally, the sessions part, in which the testing

scenario that is conformed by the client requests is configured.

HAProxy was deployed on a separate machine instance and up to 8 Open-

Fire worker nodes were setup (Figure 5.3). Servers running on Amazon EC2

infrastructure were using EC2 small instances (a small instance has 1.8 GB of

memory). One EC2 computational instance is equivalent to a CPU capacity of

2.66 GHz Intel R©XeonTMprocessor. Both load balancer and OpenFire nodes were

running on 64 bit Linux platforms (Ubuntu). The load balancer was setup for

using Round-robin scheduling, so the load can be divided into equal portions

among the worker nodes.

The first scenario was considered since XMPP servers can be configured to

communicate with each other and a shared database tends to become a bottleneck

in situations where high concurrency is required. Tsung can be configured to use

usernames and passwords from a range and since it cannot be predicted which

server HAProxy directs the connection to, all of the users had to be replicated to

every database.

54

5.2 Load testing OpenFire XMPP server

Figure 5.4: OpenFire Load Test Results

In order to determine whether OpenFire server is capable of serving high vol-

ume of concurrent users, another scenario was considered, where every XMPP

server node was connected to the same database, residing on a separate vir-

tual machine instance. Such an approach simplifies the topology of the archi-

tecture and increases data integrity by avoiding data synchronization with other

databases. The same users that were created for the first scenario were also used

in the second scenario.

Regarding the scenario as the details of the requests, the scenarios were as

follows. Every user started a TCP connection with XMPP server. The request

was made to HAProxy, which redirected it to appropriate XMPP server. Sec-

ondly, XMPP stream headers were exchanged. When the stream was opened,

authentication, resource and presence stanzas were exchanged. Once the user

was online, it sent a random alphanumeric message to any user online. Thus the

tested scenario is the same as the one applied to the Arduino sensor. The results

of the tests can be seen in Figure 5.4.

The tests were carried out from 1 to 8 concurrently running XMPP working

nodes, altogether 16 test runs. Comparing the two scenarios, the results were

almost identical, regarding every number of working nodes. New users were

added at the same pace in every tested setting. Therefore the line is a bit concave

55

5.3 Summary

Nodes 1 2 3 4 5 6 7 8

Separate Dashboards 5247 9455 15491 27005 28229 28197 28233 28299

Shared Dashboard 5703 9770 15384 27693 28226 28220 28229 28229

Table 5.3: The number of users reached in every node setting

at the beginning, because as new nodes are added the performance of each node

increases since the number of new users for a node in a time unit decreases. When

six and more instances were running, Tsung and HAProxy became the bottleneck

in both of the testing scenarios. The maximum number of concurrently running

users were 28233 with the current test environment setting. The numbers can be

probably further increased with distributed Tsung instances and more powerful

virtual machine deployed for HAProxy instance, but as proof of concept we have

shown that OpenFire is highly scalable XMPP server and can be successfully

used in live environments. The overall results for every XMPP working node can

be seen in Table 5.3.

5.3 Summary

In order to test the reliability of the prototype, battery tests were carried out

with both setups - Ethernet and Wireless. Regular 9V battery was used to power

the hardware. The initial expectations assumed that the Ethernet setup would

definitely last longer that the Wireless. Surprisingly, the test proved us wrong and

by a considerable margin. Transporting the data over wire lasted ≈ 101 minutes,

including the connection negotiation. In contrast, Wireless scenario lasted ≈ 162

minutes, a whole hour longer. Although, the WiFly module was configured to

use the same amount of power for transmission as the Ethernet Shield, the latter

exhausts considerably more power.

The chip can be configured to send sensor data with different transmission

power levels (0dBm to +12dBm).

Furthermore, several load tests were carried out to discover the performance

of an OpenFire XMPP working node. Two different scenarios were considered

- separate dashboards and shared dashboard. The dashboard in both scenarios

56

5.3 Summary

consisted of a full-scale MySQL database. These two scenarios were taken into

consideration to find out whether the dashboard might become the bottleneck

of the overall system. The results of the tests proved that the setting does not

have any considerable impact on the system and for simplicity and data integrity,

it is preferable to configure a shared dashboard. Although, from six and more

deployed working nodes the testing environment setting itself became the bot-

tleneck of the test, 28233 concurrent online users were achieved. What is more,

to give a meaning to test regarding the prototype, the commands exchanged by

every user were exactly the same as in the case of the prototype.

57

6

Related Work

Although there isnt anything similar published for Arduino, there are some similar

proposals published.

An XMPP implementation has been created for Contiki operating system

(14). Contiki is an open-source and portable operating system, designed mainly

for memory-constrained network systems and embedded systems on microcon-

trollers. The approach created for Contiki relies on info/query requests. XMPP

clients can add the sensor entities to their buddy list and if one wishes to request

sensor data, he/she simply sends and iq request over the Internet to the sensor

entity in order to obtain the information. Furthermore, the creators have only

implemented the bare minimum of XMPP to spare the limited resources of the

system. The lightweight, open-source XMPP implementation has been named

microXMPP.

Message Queue Telemetry Transport (MQTT) is somewhat similar protocol

to XMPP. It supports publish/subscribe technique and instant messaging. An

extension of the protocol, MQTT-S, alongside with MQTT has been employed

as a data transfer protocol for sensor networks in (18). The consuming applica-

tions, in their approach, register as subscribers and the sensors act as publishers.

Whenever sensor data is available, the appropriate applications can receive it. In

order to manage such data delivery, a message broker, similar to an XMPP server,

is set up between the sensors and applications. This way the sensors do not have

to maintain several connections to the applications that request the data and

save the limited resources and memory of the device. Although, there is a broker

58

between the requester and the sensor, the latter does not directly communicate

with the broker. Because the broker does not understand MQTT-S protocol,

there is yet another component, gateway, established between the actuators and

the broker to translate the protocol to MQTT which can be understood by the

broker.

59

7

Conclusions and Future Research

Directions

Pervasive services for mobile users are constrained to the amount of users that

can be handled and smart technologies are rather expensive to install and main-

tain. The thesis thus proposed a solution to counter these problems, aiming to

provide mobile users with contextual information about the environment. The

implementation takes advantage of Arduino low-cost microcontroller and sensor

hardware, real-time XMPP communication protocol and the cloud infrastructure

to store the data.

The data read from the sensors is sent to the cloud where it can be further

processed for any desired purpose. The cloud was preferred since it offers means

for simple application setup and scales on demand, whenever deemed necessary.

Furthermore, a virtual machine instance has access to an order of magnitude

more powerful resources than Arduino itself.

The prototype was developed to work with two different network interfaces

- Ethernet and Wireless. Since the underlying class structure of communication

interfaces is the same for all Arduino communication devices, the solution can be

easily complied with other means of communication, e.g. Bluetooth, GPRS.

A particular advantage of XMPP over other protocols is that it provides asyn-

chronous communication and is widely used as an IM protocol in several popular

instant messaging clients. This gives assurance that the protocol is here to stay

and the open-source community is continuously developing it further. Besides

60

the aforementioned, XMPP is designed to grant any kind of custom extensions

that comply with XML guidelines. What is more, the implementation demon-

strates that the core version of the protocol can be easily implemented on low-cost

limited resource devices.

To test the reliability of the prototype, battery tests were carried out with

both setups - Ethernet and Wireless. Regular 9V battery was used to power

the hardware. The initial expectations assumed that the Ethernet setup would

definitely last longer that the Wireless. Surprisingly, the test proved us wrong

and by a considerable margin. Transporting the data over wire lasted for 101

minutes, including the connection negotiation. In contrast, Wireless scenario

lasted for 162 minutes, a whole hour longer. Although, the WiFly module was

configured to use the same amount of power for transmission as Ethernet Shield,

the latter is exhausting more power.

Furthermore, several load tests were carried out to discover the performance

of an OpenFire XMPP working node. Two different scenarios were considered

- separate dashboard for every working node and a shared dashboard for all

of the working nodes. The dashboard in both scenarios was implemented as a

database. These two scenarios were taken into consideration to find out whether

the dashboard might become the bottleneck of the overall system. The results of

the tests proved that the setting does not have any considerable impact on the

system and for simplicity and data integrity, it is preferable to configure a shared

dashboard. Although, from six and more deployed working nodes the testing

environment setting itself became the bottleneck of the test, 28233 concurrent

online users were achieved. What is more, to give a meaning to test regarding

the prototype, the commands exchanged by every user were exactly the same as

in the case of the prototype.

Regarding further development of the proposed prototype, there are some

ideas. The prototype captures data from the sensors and delivers it to the server

at precise intervals as configured in the Arduino sketch. Therefore, the current

solution is rather stiff and does not offer dynamics. A rather useful feature is re-

questing the data on demand, hence enhancing the solution by adding versatility.

Furthermore, the prototype delivers the sensor data to only one user at a

time, keeping it static. If the receiving user’s credentials change, the whole sketch

61

needs to be re-configured and uploaded to Arduino. Although, this approach is

fully functional, its rather cumbersome, time-consuming and does not deplete the

possibilities of XMPP.

To overcome the problem explained, publish-subscribe technique can be ap-

plied. XMPP has an extension implemented to support such behaviour. In this

case the static receiver configuration can be omitted altogether and Arduino in-

stance does not need the knowledge who is at the receiving end of the transmission

channel. Thus the information can be published to unlimited amount of entities.

Such entities could be simple users or other servers.

Since XMPP is not limited to communicate in only single domain, an XMPP

server can communicate to several other servers in different domains altogether.

This opportunity provides the means for integrating the sensor server with other

servers without the tedious service integration as is necessary with SOAP or

REST.

62

Sensoritelt kogutud

keskkonnapõhiste andmete

edastamine mobiilsetele

kasutajatele toetudes XMPP

protokollile

Magistritöö (30 EAP)

Kaarel Hanson

Resümee

Tänapäeval võimaldavad tehnoloogilised edusammud kasutaja käitumise seire-

meetodites automatiseerida teatud arvutusülesandeid, mis täidetakse kasutaja

kavatsust prognoosides. Nutitelefonid rikastavad mobiilseid rakendusi prognoosiva

käitumisega kasutatavuses, mis võimaldab käitumismustritega sammu pidada.

Üldiselt on sellist käitumist võimalik saavutada nutitelefoni enda vahenditega,

kasutades telefoni sisse ehitatud mikromehaanilisi seadmeid, mis võimaldavad

keskkonda tajuda. Lisaks võivad mobiilsed rakendused kasutaja mobiilse ko-

gemuse rikastamiseks lõigata kasu keskkonda integreeritud hajuslausteenustest,

nagu näiteks ümbrustundlike mängude, kodu automatiseerimise tarkvara jms

puhul.

Ent mobiilikasutajatele suunatud lausteenuseid pakkuvatel elektroonilistel sead-

metel, mis koguvad sensorite abi keskkonnast informatsiooni, on teatavad riistvar-

alised piirangud (arvutusjõudlus, mälu, salvestusmeedia, energiatarbimine jne).

63

Seega, lausüsteemid ei ole võimelised nõudluse suurenemisel skaleeruma ega rak-

endama suurt arvutusjõudlust.

Töö eesmärgiks on pakkuda lahendus ületamaks skaleeruvuse, andmete ter-

viklikkuse säilitamise ja vähese arvutusjõudluse probleeme ning rikastada nu-

titelefoni rakendusi detailsete kasutajapõhiste andmetega. Eesmärgi saavutamiseks

transporditakse sensoritelt kogutud informatsioon optimiseeritud XMPP pro-

tokolli abiga Arduino mikrokontrollerist pilvesüsteemi. Süsteemi ehitamiseks ka-

sutatakse Arduino poolt pakutavat odavat riistvara, samas kui pilvesüsteemi us-

aldusväärset ja kõrge kättesaadavusega vahendeid kasutatakse mikrokontrollerist

saadetud andmete salvestamiseks ja edaspidiseks töötlemiseks.

Töö käigus testiti mikrokontrolleri energia nõudlust, kasutades 9V patareid,

nii juhtme kui ka juhtmevaba liidesega. Tulemused tõestasid eeldustele vas-

tupidiselt, et juhtmevaba süsteemi energia nõudlus on suurem. Lisaks testiti

vabavara XMPP serveri jõudlust pilvesüsteemi keskkonnas ning tulemused näitasid,

et XMPP võimaldab üheaegselt serveerida suure hulga kasutajaid.

64

Bibliography

[1] RFC6120, Extensible Messaging and Presence Protocol

(XMPP): Core, http://xmpp.org/rfcs/rfc6120.html. 5

[2] Apple Inc, IPhone, http://www.apple.com/iphone/. 6

[3] Google Inc, Android, http://www.android.com/. 6, 9

[4] H. Flores, S. N. Srirama, C. Paniagua, A Generic Mid-

dleware Framework for Handling Process Intensive Hy-

brid Cloud Services from Mobiles, in: The 9th Interna-

tional Conference on Advances in Mobile Computing &

Multimedia (MoMM-2011), ACM, 2011, pp. 87–95. 7

[5] S. Srirama, H. Flores, C. Paniagua, Zompopo: Mo-

bile Calendar Prediction based on Human Activities

Recognition using the Accelerometer and Cloud Ser-

vices, in: Next Generation Mobile Applications, Ser-

vices and Technologies (NGMAST), 2011 5th Interna-

tional Conference on, IEEE, 2011, pp. 63–69. 7

[6] H. Flores, S. N. Srirama, MCM: Mobile Cloud Middle-

ware, submitted for publication in IEEE transactions on

mobile computing (2012). 8

[7] Amazon, Inc, Amazon - Amazon Web Services,

http://aws.amazon.com/. 12

[8] Google Inc., Google Code - google application engine,

http://code.google.com/appengine/ (2011). 12

[9] D. Bernstein, D. Vij, Using XMPP as a transport in In-

tercloud Protocols, DOI= http://www. cloudstrategy-

partners. com/6. html. 15

[10] J. Wagener, O. Spjuth, E. Willighagen, J. Wikberg,

XMPP for cloud computing in bioinformatics supporting

discovery and invocation of asynchronous web services,

BMC bioinformatics 10 (1) (2009) 279. 16

[11] Arduino Inc., Arduino, http://www.arduino.cc. 16

[12] WIZnet, W5100 Datasheet,

http://www1.futureelectronics.com/doc/WIZNET

21

[13] Roving Networks, RN-XV Wireless Module Datasheet,

http://www.rovingnetworks.com/. 22

[14] A. Hornsby, E. Bail, µxmpp: Lightweight implemen-

tation for low power operating system contiki, in: Ul-

tra Modern Telecommunications & Workshops, 2009.

ICUMT’09. International Conference on, IEEE, 2009,

pp. 1–5. 24, 58

[15] RFC4422, Simple Authentication and Security Layer

(SASL), http://www.ietf.org/rfc/rfc4422.txt. 36

[16] RFC4616, The PLAIN Simple Authentica-

tion and Security Layer (SASL) Mechanism,

http://www.ietf.org/rfc/rfc4616.txt. 36

[17] Energizer, Energizer 522 9V Battery Datasheet,

http://data.energizer.com/PDFs/522.pdf. 50

[18] U. Hunkeler, H. Truong, A. Stanford-Clark, MQTT-

SA publish/subscribe protocol for Wireless Sensor Net-

works, in: Communication Systems Software and Mid-

dleware and Workshops, 2008. COMSWARE 2008. 3rd

International Conference on, IEEE, 2008, pp. 791–798.

58

65

	List of Figures
	1 Introduction
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 Contributions
	1.1.3 Outline

	2 State of the Art
	2.1 Jabber
	2.2 Mobile Computing
	2.2.1 Smartphones
	2.2.1.1 Accelerometer
	2.2.1.2 Magnetic Field
	2.2.1.3 Gyroscope

	2.2.2 Mobile platforms
	2.2.2.1 Android
	2.2.2.2 iOS

	2.3 Cloud Computing
	2.3.1 Cloud Services
	2.3.2 Cloud Providers
	2.3.2.1 Amazon
	2.3.2.2 Azure
	2.3.2.3 Google App Engine
	2.3.2.4 Eucalyptus

	2.3.3 Cloud and XMPP

	2.4 Arduino
	2.4.1 Arduino Mega ADK
	2.4.2 Android and Arduino
	2.4.3 TinkerKit
	2.4.3.1 Sensors

	2.4.4 Shields and Modules
	2.4.4.1 Ethernet Shield
	2.4.4.2 Wireless Shield
	2.4.4.3 WiFly Wireless Module

	2.4.5 Arduino and XMPP

	2.5 Summary

	3 Problem Statement
	3.1 Environmental Sensor Data for Mobile Users
	3.2 Summary

	4 From Arduino to the Cloud using XMPP
	4.1 Architecture and Implementation Details
	4.2 Fundamentals
	4.2.1 Stanzas
	4.2.2 Address Definitions

	4.3 Session Negotiation
	4.4 Arduino Client
	4.4.1 WiFly Libraries
	4.4.2 Sensor Data Transmission

	4.5 Server-side Client
	4.6 Countered Issues
	4.6.1 Debugging

	4.7 Summary

	5 Evaluation
	5.1 Testing the duration of 9V battery with Wireless and Ethernet interfaces
	5.2 Load testing OpenFire XMPP server
	5.3 Summary

	6 Related Work
	7 Conclusions and Future Research Directions
	Abstract (in Estonian)
	Bibliography

