
University of Tartu
Faculty of Science and Techonology

Institute of Technology

Anders Martoja

FAULT TOLERANT NETWORKING USING LINUX
BASED SYSTEMS AND OBSOLETE HARDWARE

Bachelor’s Thesis (12 ECTS)
Computer Engineering

Supervisor: Artjom Lind,
Researcher,
Distributed Systems Group,
Institute of Computer Science

Tartu 2016

Tõrkeid taluv võrk, mis baseerub Linux süsteemil ja kasutab
vana riistvara

Lühikokkuvõte: Arvuti võrk on ala, mida on kõige lihtsam mõista, kui panna
see onlain kaubamaja konteksti. Arvuti võrk opereerib normaalselt siis, kui klient
saab poele internetist ligi. See tähendab, et müügi sait saab raha teenida oma
kleintidelt. Juhul, kui nüüd võrk peaks katki minema, siis ei saa enam klient poele
ligi ega ka see onlain kaubamaja kasumit teenida.

Tõrkeid taluv võrk on võrgunduse üks alamosa, mis üritab vältida eelpool mai-
nitus stsenaariumi ehk online kaubamaja oleks alati kättesaadav kleindile. Tõrkeid
taluv võrk sisaldab endas tagavara kommutaatoreid ja ruutereid, mida kasutatakse
koos spetsiaalse tarkvaraga, et luua võrk, mis kannatab eelpool mainitud seadmete
tõrkeid.

Käesoleva bakalaureuse töö põhieesmärk on pakkuda dokumenteeritud lahe-
nuds, mis oleks odav, lihtne üles seada ja pakuks head käitset võrgu tõrget vastu.

Üldjuhul on võimalik luua võrk, mis kannatab tõrkeid oma töös, aga samal ajal
võib selle võrgul olla probleeme suure läbilaske võimega. Suur läbilaske võimekus
pole selle töö eesmärk ja käesolevas tööks oleks selle probleemi allikaks vanad ja
vähem võimekad võrgu komponendid.

Suures kontekstis, idee luua tõrkeid taluv võrk, pole uus. Leidub küllaldaselt
võrgu lahendusi, mis pakuvad tõrke kindlust, aga autori arvates on need lahendused
kas liiga kallid või on viletsalt dokumenteeritud.

Bakalaureuse töö pakub võrgulahendust, mis on odav ja lihtne üles seada, seega
igaüks, kellel on juurdepääs vanale, mahakantud riistvarale saaks luua, kasutades
selles töös esitatud dokumentatsiooniga. Autori arvates on selle töö suurim panus
just dokumentatsioon, mis üritab võimalikult detailselt lugejat juhtida võrgu üles-
seadmisel koos viidetega allikatele, kust informatsioon pärit on.

Võtmesõnad: tõrkeid taluv võrk, võrk, ruuter, Linux, vana riistvara

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia

2

Fault tolerant networking using Linux based systems and
obsolete hardware

Abstract: Networking at enterprise level is fast, reliable,fault-tolerant, expensive
and usually includes a vendor lock-in. This thesis tries to take the good qualities
of the enterprise level networking and remove the negative side effects. One possi-
ble way to solve the problem is to create a networking solution that uses obsolete
hardware and free software to neglect the negative properties of enterprise net-
working. This kind of solution can be achieved without any need for more system
administration knowledge or know-how.

Moreover, the thesis conducts an analysis of the previous work done by other
people on fault tolerance in networking and offers the author’s own solution imple-
mentation. The main result of this thesis is a low-cost solution to Internet service
provider and router failover. The tests that were carried out show that it is pos-
sible to create a network that, even in the case of ISP and/or router failure, can
continue functioning at full speed without significant delays and without disrupt-
ing the presently occurring data transmission. The thesis’s work uses computer
hardware that has been announced old by its previous owners and software that
is open source and readily deployable with a little skill.

From a theoretical point of view it should be acknowledged that the author
understands that software routing is not as good as hardware routing, however
the overall idea was to offer a solution which could theoretically perform as similar
as possible to the hardware routing.

Keywords: fault tolerant networking, network, router, Linux, obsolete hardware

CERCS: T120 Systems engineering, computer technology

3

Contents
List of Figures 6

List of Configuration Files 6

Acknowledgements 7

1 Introduction 8

2 Overview 9
2.1 Introduction to fault-tolerant networking 9
2.2 Fault-tolerant network composition 9

2.2.1 Protocols . 9
2.2.2 Switches . 12
2.2.3 Routers . 12

2.3 Requirements for fault-tolerance . 12
2.4 Common solutions . 13
2.5 Related work . 13

2.5.1 A Scalable and Fault Tolerant Network Structure for Tree
Networks of Mission Critical Systems 14

2.5.2 A New Fault Tolerant Multistage Interconnection Network . 15
2.5.3 The Augmented 3D-Tree Fault-Tolerant Network 16
2.5.4 Conclusion . 18

3 Network hardware configuration 19
3.1 Used technologies . 19

3.1.1 DHCP . 19
3.1.2 NFS . 20
3.1.3 iPXE . 20
3.1.4 Apache2 . 20
3.1.5 BIND . 20
3.1.6 iptables . 21
3.1.7 TFTP . 21
3.1.8 Keepalived . 21

3.2 Configure the main server . 21
3.2.1 /etc/network/interfaces . 22
3.2.2 /etc/resolv.conf . 23
3.2.3 /etc/hosts . 23
3.2.4 iptables rules . 23
3.2.5 BIND . 25
3.2.6 DHCP server configuration 26

4

3.2.7 TFTP . 27
3.2.8 Apache2 . 28
3.2.9 iPXE . 29
3.2.10 NFS . 30

3.3 Adding nodes to the configuration 31
3.3.1 Creating bootable media . 31
3.3.2 Making changes to the main server 32
3.3.3 Configuring the Live image 32

3.4 Second stage of the network setup 35

4 Testing 39

5 Conclusion 40

References 41

5

List of Figures
1 Overall Architecture . 15
2 FT MIN of size N=16 . 16
3 MFT MIN of size N=16 . 16
4 An 8 × 8 3D-Tree network . 17
5 First stage of network topology . 19
6 Second stage of network topology 36

List of Listings
1 /etc/networks/interfaces configuration 22
2 /etc/resolv.conf configuration 23
3 /etc/hosts configuration . 23
4 iptables configuration . 23
5 /etc/bind/db.127 configuration 25
6 db.local configuration . 25
7 db.pxe.local configuration . 26
8 named.conf.options configuration 26
9 /etc/bind/named.conf.default-zones configuration 26
10 /etc/dhcp/dhcpd.conf configuration 27
11 /etc/default/tftpd-hpa configuration 28
12 pxe.local.conf configuration . 28
13 apache2.conf configuration . 29
14 menu.cfg configuration . 30
15 /etc/exports configuration . 31
16 /etc/exports configuration . 32
17 fstab configuration . 34
18 etc/network/interfaces configuration 34
19 etc/keepalived/keepalived.conf configuration 37

6

Acknowledgements
I would like to thank Artjom Lind for giving me an interesting topic for writing
my thesis on while keeping in mind wishes for doing the practical work. In my
mind my thesis would not have been possible if I had not received help from Kersti
Taurus from the Faculty of Mathematics and Computer Science and Urmas Lett
from EENet, both of whom generously gave me old computers which they did not
need anymore. I would also like to thank Michael Brown and Christian Nilsson
for helping me with my issues regarding iPXE and all of its wonders - both were
readily available at iPXE IRC chat room.

7

1 Introduction
The idea is to create a computer network which can handle errors. Routers are
integral parts of a modern networks along with switches. When a router and/or
switch and/or Internet Service Provider (ISP) fails the user usually loses internet
connection. The goal of this thesis was to create a computer network which could
handle router and ISP fail overs so that the end user would not have connectivity
issues.

The author of this thesis created a solution that utilizes old computer hard-
ware along with dated networking gear. When the failure happens the network
must retain connectivity and the ongoing processes can not be disturbed by the
failure of network components. The solution offers protection against ISP and/or
router failure. While fault tolerance is an prerequisite, high throughput is not, be-
cause the networking gear that is used is not capable of handling high bandwidth
connections.

The thesis offers a solution to situations where fault tolerance is required but
a lot of resources are not available. Also the solution offers a fine grained control
over the network, since all of the parts making up the network can be chosen and
replace if necessary by the administrator. For example if one part of the network
is not performing as well as needed it can be changed easily, whether it is the
software or the hardware — there is no vendor lock-in.

The literature review presented in this thesis can be categorized into two main
groups. The first one offers solutions in theory that can tolerate failures to various
degrees. Meanwhile, the second group offers solutions that increase fault tolerance
in networks and uses more hardware. Moreover, there is a lack of documentation
on how those networks were setup.

Author of the thesis learned to use all of the components making up the offered
fault tolerant network and configured them in a way that produced said solution.
The author also extensively documented how to get the work done, so that it can
be replicated by other parties , with references to the source of the information.

Chapter 3 contains information about fault tolerance in general, different kinds
of protocols used in fault tolerance, solutions that exist for the problem at hand
and related works. In addition the the documentation for the created solution,
which is written in great details. The 4th chapter talks about tests that network
was put through and the outputs that were received. Chapter 5 is the conclusion
of the thesis with a paragraph about future work.

8

2 Overview
The following chapter talks about fault tolerance, what kind of protocols allow for
fault tolerant setup, what kind of network devices are used in redundancy. Also
what are the requirements for fault tolerance and what kind of enterprise solutions
are used by companies. Related works are included as well.

2.1 Introduction to fault-tolerant networking
Fault tolerance is a subject when put to todays business perspective is the easiest
to understand. Considering online businesses, the service availability is the top
priority. These businesses heavily rely on their availability. In case there is no
network redundancy — there is a single copy of every computer component on
what the server runs. In case of a hardware failure, at any level, the online business
will not be accessible to the clients, which means a financial loss for the business.
The spatial redundancy is missing in this case. The worst case scenario would not
happen if there was hardware redundancies set up. Simple redundant router could
easily take over the traffic if the main router fails. The redundant router does
not have to be as good as the main router, it just has to keep the site available
while the main one is fixed. Redundancy creates a fallback option which in online
businesses is vital. [1]

2.2 Fault-tolerant network composition
The following subsection describes the protocols that are vital for achieving fault
tolerance.

2.2.1 Protocols

TCP

Transmission Control Protocol (TCP) is a protocol which complements the Inter-
net Protocol (IP). TCP is extensively utilized by many applications on the internet.
Major applications like World Wide Web, mail, ftp, media streaming, ssh, heavily
rely on it. TCP is focused on reliable, ordered and errorless delivery. Since TCP
is focused on precise delivery of data, it may produce delays in data trasnmission
— not focused on in-time delivery. TCP detects problems that might occur on
lower levels of the Internet model and might request retransmission of data that
is lost in transmission, rearrange data that is out of order, help minimize conges-
tion problems. TCP hides all the aspects of lower layers from the upper layers.
TCP focuses on reliable data transmission and it uses positive acknowledgement
with retransmission to assure the quality of reliable packet delivery. The sending

9

party also keeps a record of packets that have been sent. In addition there is also
a timer that checks if acknowledgement has been received before the timer runs
out — latter is needed if the data should get lost, automatic retransmission is
activated. [2]

IP

Internet protocol is in charge of addressing hosts and making sure that the data-
gram (encapsulated packet) reaches from the source host to the destination host.
Datagram consists of an IP header and a payload. The header contains the source
and destination IP addresses with some other necessary information like: header
checksum, Time To Live, Protocol, Total Length, Flags, etc. The header is used
for routing the packet on its journey. IP addressing includes giving IP addresses
to hosts and handing out the necessary information to the hosts.[3, 4]

Virtual Router Redundancy Protocol

Virtual Router Redundancy Protocol (VRRP) is an open standard networking
protocol. VRRP offers available routers to hosts that are connected to the sub-
network. VRRP automatically offers default gateways in subnetworks to increase
fault tolerance and reliability. VRRP creates abstract representations of virtual
routers, which act in master slave configuration. The default gateway is assigned
to a virtual router, which can "move" from one physical router to another. This
is achieved through voting of master and slave routers. When the master router
(physical router) can not service the data trasnmission anymore (fails), the slave
router (physical router) takes over the tasks of the master. VRRP can be used with
IPv4 and IPv6 addresses. Routers in VRRP configuration have set priorites rang-
ing from 1-255. When the routers started, the router with a higher priority wins
the election and becomes the master router. Physical routers that are connected
via VRRP, communicate with each other using a multicast IP (224.0.0.18) —
heartbeat mechanism. VRRP is based on Hot Standby Router Protocol (HSRP),
which is Cisco’s proprietary protocol. [5]

Common Address Redundancy Protocol

Common Address Redundancy Protocol (CARP) is an free standard networking
protocol. CARP allows routers in the same subnetwork to use a set of same
predefined IP addresses — router redundancy. CARP is similart to VRRP and
HSRP in its functionality. The redundancy the CARP offers is called "group
redundancy" — group is divided to Master and Slaves. If the Master router fails
the Slave router takes over the data transmission. To make sure that the Slave
takes over at the right moment, the Master fails synchronization of state must

10

be supported. From a machine’s perspective being behind the default gateway
nothing changes if the Master should fail. CARP and VRRP can not exist in
the same network simultaneously due to their MAC address conflicts if the VRRP
group ID and CARP host ID’s match. [6]

Hot Standby Router Protocol

Hot Standy Router Protocol (HSRP) is Cisco’s proprietary networking protocol.
It offers default gateway redundancy. When the routers are activated they notify
each other of their priorities and their status. Again, the router with the highest
priority wins, when deciding which router should be the "Master", that handles
all the traffic. In case the "Master" fail the router with the next highest priority
takes over. Besides, the same rule applies to the machines outside of the network
nothing changes if one of the router fails and another takes over. Similar to VRRP
and CARP. [7]

Extreme Standby Router Protocol

Extreme Standby Router Protocol (ESRP) is Extreme Networks’s proprietary net-
working protocol, which offers quick failover and layer 2 protection. [8]

Gateway Load Balancing Protocol

Gateway Load Balancing Protocol (GLBP) is a Cisco proprietary networking pro-
tocol. GLBP provides automatic router backup, much like VRRP,CARP and
HSRP, but with a added packet load sharing between a group of redundant routers.
All routers which form the redundant configuration share one IP while maintain-
ing their individual MAC addresses. When the Active Virtual Gateway (AVG)
fails, the redundant routers become active and take over the tasks that the AVG
was handling. GLBP’s additional feature is providing load balancing over multiple
routers. Therefore, sharing the load more equally among available resources. [9, 10]

Routed Split multi-link trunking

Router Split multi-link turnking (R-SMLT) is a proprietary developed by Nortel.
It provides high-speed failover for networks designed with SMLT and Distributed-
SMLT topologies. RSMLT forwards packets in routers and in case of a failure
switches over to another router.RSMLT works with Avaya’s Ethernet routing
switches (few models). [11]

11

2.2.2 Switches

Switches are devices that connect different computers on the same network. Switches
use packet switching to analyze, receive and forward packets. Switches, unlike
hubs, can send packets to the specified targets, there may be one or more recip-
ients. Switches have multiple ports, which are all internally connected, but the
processor makes sure that only the right port gets the information that was meant
for it. Ethernet switches use MAC addresses from packet headers to direct traffic in
the network. Switches can operate on several OSI layers. Physical layer switches,
hubs, are simple devices that do not manage anything that passes through them,
the incoming packet is sent out to every connected port, except for the port from
where it originates. Ethernet switches operate on Data link layer and acts like a
bridge. The latter uses Spanning Tree Protocols to avoid loops in a Local Area
Network (LAN). Microsegmentation and full duplex mode are used to prevent colli-
sions between devices connected to the switch. The most common ability of layer-3
switch is IP multicast awareness - device has to signal if it wants to listen on the
multicast, more efficient way to multicast. Layer 4 switches is defined differently
by its manufacturers. The most common addition is NAT, but switches may have
load balancing, firewall, VPN - depends on the company. Application layer switch
may distribute load based on URLs or by using some fancy technique, which may
include web cache and participate in content delivery network. [12, 13, 14]

2.2.3 Routers

Routers are devices that connect different networks together. Routers represent
the backbone of the whole internet. One of their roles is to read addresses on the
data packets sent by a client and figure out where to redirect it in order to reach
the final destination. Moreover, routers are capable of forwarding the traffic that
flows through them to assure the packets delivery. While processing data packets
the router consults its routing table which tells the router what to do with the
packet. Routers possess a central processing unit and some form of memory to
keep the routing table accessible. Most routers are dedicated hardware units. This
makes routing faster than it would be when software routing, although the latter
is not that uncommon these days. This thesis also implements software routers,
since the whole idea is free and open source networking. [15]

2.3 Requirements for fault-tolerance
Fault-tolerance in networks can be broken down to two different forms of redun-
dancy. Firstly, there is spatial redundancy which means there is more than one
copy of the computer hardware, software and/or data used in the network. Sec-

12

ondly, there is the temporal redundancy which means that if data packet is sent
and there is no aknowledgement packet received during the timeout interval, about
successful reception, the packet is resent. This kind of fault tolerance is provided
by Automatic Repeat reQuest (ARQ protocols). [16, 17]

In a good fault tolerant network setup both spatial and temporal redundancy
are taken into consideration when designing the system. Spatial redundancy offers
good protection against hardware failures, where the hardware device can not reset
- permanent failures. Temporal failures can pass if for example a network interface
which is at one point under huge transmission load, gets the load serviced or shared
by another interface. Therefore temporal redundancy requires less resources [17].
In case there is extra ethernet interfaces free, temporal redundancy could take a
form ethernet bonding. The latter would allow for ethernet port fail over, also
load balancing is possible, if configured correctly.

2.4 Common solutions
Cisco offers a whole range of networking devices for networking along with their
own operating system for the devices. Using Cisco’s networking solution means
that the users accept vendor lock-in. Cisco’s solutions offer reliable and fast redun-
dancy for routers and switches. Cisco’s networking gear offers high performance,
scalability, automation and redundancy. Cisco also offers a wide range of routers
and switches for different types of working conditions. [18, 19]

HP also offers their own routers and switches which bring consistent and open-
standard networking to the enterprise level networks. HP also offers full support
to their products and their networking solution is rich with features necessary
for reliable networks. HP also claims that their networking solutions features
dramatically reduces the network complexity and lowers the cost of ownership. [20,
21]

Juniper Networks also offers their own networking hardware with complete kit:
switches, routers, etc. Besides, they offer a wide range of products for their net-
working solutions which deliver high-availability, fault tolerance, high throughput
and scalability. [22, 23]

2.5 Related work
The following subsections cover several scientific research papers that offer different
solutions to the fault tolerant networking problem.

13

2.5.1 A Scalable and Fault Tolerant Network Structure for Tree Net-
works of Mission Critical Systems

Hierarchical Scalable Fault-tolerant Ethernet (H-SAFE) offers fault-tolerance on
two levels. Firstly, on the hardware level, the topology consists of subnets. Each
subnet contains two switches and a fixed number of nodes. In the subnets each
node has two NICs which are connected to the two switches of the subnet. The
switches of the subnets are in turn connected to the core switches of the network
and thus creating a hierarchical network structure. The core switches have dual
connectivity to the subnet switches and the subnet switches have a dual connectiv-
ity to the nodes of the subnet. This creates multiple pathways for the information
to travel along in case of a network error. Scaling this kind of topology is easy
since additional subnets can be added easily and each subnet only takes up two
ports of one core switch. [24]

Secondly, on the software level fault tolerance is implemented with the heart-
beat mechanism to detect and recover from network faults. Each node has Fault
Tolerant Ethernet (FTE) software installed and it operates within a subnet. Since
there are two NICs per node, the two NICs broadcast their heartbeats in two
different groups, group A and group B. Heartbeats are sent to everyone in the
designated group (different multicast addresses) and if more than two heartbeats
have not been received by other interfaces the software knows there is a fault in
the path. The fault is usually detected within 750ms. [24]

Each subnet has a master node which has the job to maintain information about
its own subnet and communicate that information to other master nodes within
other subnets. When there is a path information in the subnet, the master node
broadcasts it to other master nodes. Communication between subnets happens
through master nodes. [24]

14

Figure 1: Overall Architecture [24]

2.5.2 A New Fault Tolerant Multistage Interconnection Network

A Four Tree network is an N × N network with multiple stages. Usually, the first
and last stages of the network have 2 × 2 interconnects and the rest have 3 × 3
interconnects. Four Tree (FT) network is irregular network since it contains an
unequal number of switches at its different stages. It also supports several paths
from input to output and the path lengths may vary. A FT is constructed of
two identical groups (MDOT networks [25]) on top of each other. Aforementioned
groups are made with MSB in mind of the source-destination terminals. Every
switching element of 3 × 3 in a stage is looped together with another switching
element (SE) from another group in the corresponding stage. Inputs and outputs
of the whole network are connected to both subgroups (MDOT networks [25]) via
multiplexers and demultiplexers. This approach assures that if the primary path
is busy or out of order, the data can be routed through a secondary path of the
other sub-network. FT network can only survive one switch error. If more than
one switch dies in a certain stage of the FT network, there are going to be some
inputs and outputs disconnected. [26]

Modified Four Tree network (MFT) is an irregular network that provides several
paths from source to destination. MFT also has a property of regular networks
since it has the same number of switches in all the stages except for the first and
last stage. MFT applies the same methodology to 3 × 3 SEs as does FT. It loops
the SEs in the same stage together to boost its fault tolerance. Therefore, the SEs
in the same stage are looped together with the SEs in the sub-groups but also in

15

the same stage. Every input and output is connected to both of the sub-groups
via multiplexers and demultiplexers. MFT approach ensures that if two switches
in the loop (talking about the same stage SEs) are faulty even then some form
of connectivity is preserved in the network - some inputs are connected to the
outputs. While the FT is more cost effective, the MFT is more fault tolerant. [26]

The paper also shows and analyses how the Permutation passable (one to
one communication of the input and output) is better in the case of MFT when
compared to a FT. The communications always along the most suitable (shortest)
path, if the path is busy or faulty a secondary path is used. If no alternative
path is found then the request is simply dropped or reported as having a clash.
Permutation parameter also varies with path length. [26]

Figure 2: FT MIN of size N=16 [26] Figure 3: MFT MIN of size
N=16 [26]

2.5.3 The Augmented 3D-Tree Fault-Tolerant Network

The Augmented 3D-Tree (A3DT) is an augmented version of 3D-Tree, it was
designed because of fault tolerance issues the 3D-Tree suffered from. 3DT is based
on 2×4 SEs and it has issues with certain failure patterns which cause the network
to fail under a dynamic rerouting scheme even when fault free paths exist in the
network. The A3DT is based on 4 × 6 SEs connected together in such a way
that protects against the 3DT failures, but still keeping the underlying network
properties. [27]

In 3DT consists of 2×4 SEs, two inputs and four outputs per switching element.
Each consecutive stage contains double of the amount of SEs creating a 3D network
topology - one layer of the 3DT looks like a tree graph and the 3 dimensions are
achieved when these trees are stacked on top of each other. When a two-SE-fault
pattern occurs (two switches fail in the same branch and same stage) a portion
of the destinations would become unreachable. The dynamic rerouting property

16

of the 3DT would not be able to preserve connectivity even through a previous
stage of the network. A3DT solves this two-SE-fault pattern by connecting the
tree points which are in the same branch and same stage - although this assumes
that the SEs are of crossbar-type and 4 × 6 SEs. [27]

The routing algorithm of the 3DT is similar to the A3DT when the network
is not experiencing a critical two-SE-fault as mentioned above. If the latter does
occur the A3DT routing scheme would offer an alternative path through previous
stage to avoid counteract such occasion. [27]

The research paper analyses the effectiveness of the A3DT vs 3DT and points
out that the A3DT topology is granted a better multiple-fault tolerance capability
when compared to a 3DT. The fault tolerance could be even greater if the SEs in
the same level are connected in a form of a chain, but this would result in additional
complexity of the network which is not desired. The paper also analyses the mean
time to failure (MTTF) and displays results which state that the MTTF of a
3DT is higher because there needs to be less fault-free SEs when compared to
A3DT. The proposed A3DT is designed to address the two-SE-fault issue and it
achieves it. "The advantage of the proposed augmentation scheme is the multiple-
fault tolerance improvement along with the preservation of the basic properties of
the original 3D-Tree network such as dynamic rerouting, nonblocking (under the
fault-free behavior) and cell sequencing." [27]

Figure 4: An 8 × 8 3D-Tree network [27]

17

2.5.4 Conclusion

The second chapter has covered prerequisites for fault tolerant networking. Differ-
ent solutions were offered. Considering the available hardware for this thesis, the
offered networks can not be implemented. Therefore, the following chapter, draw-
ing knowledge from the related works and overall composition of the fault tolerant
networks, focuses on a solution that is achievable with the possessed hardware.
Chapter 3.1 firstly provides explanation on what software is necessary for the pro-
posed solution. In 3.2-3.3 the author explains in detail how the main server and
additional nodes were setup.

18

3 Network hardware configuration
Previous chapter gave an overview of fault tolerant networking — what it embod-
ies, consists of and uses to achieve redundancy technologies were used on it. The
following chapters 3.1-3.3 will explain in detail how to setup the first stage of the
network — the main emphasis is on the main server. The main server will start
to provide a bootable images with iPXE and NFS. The picture below illustrates
the first stage of the network.

Internet (University’s)

Main server

Node 1 Node 2

Figure 5: First stage of network topology

3.1 Used technologies
is subsection covers the technologies used on the main server in order to achieve
the required features for the thesis. The over all guide for the 3.2.1-3.2.10 is based
on Jacek Kowalski’s blogpost "Debian Live webboot & DNS" [28].

3.1.1 DHCP

Dynamic Host Configuration Protocol (DHCP) is protocol that enables the com-
puter it is installed on to hand out IP addresses to computers connected to it

19

in a given network. These IP addresses are predefined as a range in the DHCP
configuration and whenever a new computer is connected to the DHCP server.
The latter automatically hands out necessary information for the new computer
to access the network. There might be a conflict with computers that request the
IP address when two computers are configured to use the same static IP address,
but when the computers are configured to use DHCP such conflicts are avoided.
/etc/default/isc-dhcp-server and set INTERFACES="eth0" — this is the in-
terface that serves the DHCP. [29]

3.1.2 NFS

Network file system (NFS) is a service that allows computers to mount file systems
over the network. The mounted file system acts as a directory from where files can
be read and written to, as if the directory is part of the computer it is mounted
too. The latter option allows to save resources — no need for hard drives on
local machines. NFSv4, which is also used in this thesis, works via firewalls and
internet. NFSv4 requires TCP protocol communication in order to provide the
service. NFSv4 uses TCP port 2049 for communication. [30]

3.1.3 iPXE

iPXE is an open source network boot firmware which is used in the thesis’s setup.
iPXE features full implementation of PXE but with added enhancements. It allows
booting from a web server, wide area networks, Infiniband network, wireless net-
work and via other technologies. Everything is controlled by a iPXE script. iPXE
community offers a IRC chat where most problems which are not documented can
be solved with the help of other users. [31]

3.1.4 Apache2

Apache HTTP server is a open-source web server software. The software is robust
and able to handle commercial-grade sites with ease. It is currently the most used
web server software. Apache software is highly configurable and is able to operate
on many various operating systems. [32, 33]

3.1.5 BIND

Berkeley Internet Name Domain (BIND) is an open source software that imple-
ments Domain Name Server (DNS), protocols which specify how computers can
find each other over the internet, based on their names, service for Unix-like sys-
tems. It offers a robust and reliable service for the users, at the same time offering
a fine grained control for the administrators. [34, 35]

20

3.1.6 iptables

iptables is a command line program used to configure packet filtering ruleset on
Linux systems — linux kernel based firewall. iptables is also configured to allow
Network Address Translation (NAT) configuration (masquerading, port forward-
ing, transparent proxying). [36, 37]

3.1.7 TFTP

tftpd-hpa Trivial File Transfer Protocol (TFTP) is a file transfer protocol used for
remote booting diskless devices. HPA’s implementation of TFPT has many bugs
fixed when compared to the original and is portable on almost all modern Unix
variants. It is very simple to implement which can also be seen in Chapter 4 of
this thesis. TFTP can only read/write files to/from the remote server. It lacks
security features and therefore should be placed behind a firewall. [38, 39, 40]

3.1.8 Keepalived

Keepalived is project written in C to provide a Linux Virtual Router, with a robust
and reliable fail over feature. Keepalived implements the VRR Protocol to handle
router failures. Keepalived also includes load balancing through Linux Virtual
Server and health checks of network servers. Keepalived allows administrators to
build Virtual routers and load balancing with one single package without having
to install and configure multiple packages like lvs, mon, fake, heartbeat. Sending
notifications about the health of the network is also included in the package. [41, 42]

3.2 Configure the main server
The previous subsection described technologies that will be used in the main server
setup. The following subsection will present the setup in detail with configuration
file examples.

The main server has 5 ethernet interfaces, one is built in onto the motherboard
and the other four are courtesy of a Mikrotik 4 port Gigabit ethernet PCIe card.
These ports are configured as declared in the Listings 1 illustration. To briefly
summarise, the first interface is devoted to joining the ISP network and the the
Network Interface Card (NIC) — this offers a private network via DHCP which
is also configured on the main server. The NIC’s interfaces are joined under the
software bridge which is given a static address and serves as a default gateway for
the private network.

21

3.2.1 /etc/network/interfaces

1 auto lo
2 iface lo inet loopback
3

4 auto eth0
5 allow-hotplug eth0
6 iface eth0 inet dhcp
7

8 iface eth1 inet manual
9 up ifconfig eth1 up

10 down ifconfig eth1 down
11

12 iface eth2 inet manual
13 up ifconfig eth2 up
14 down ifconfig eth2 up
15

16 iface eth3 inet manual
17 up ifconfig eth3 up
18 down ifconfig eth3 up
19

20 iface eth4 inet manual
21 up ifconfig eth4 up
22 down ifconfig eth4 down
23

24 auto br0
25 iface br0 inet static
26 bridge_ports eth1 eth2 eth3 eth4
27 address 192.168.66.40
28 broadcast 192.168.66.63
29 netmask 255.255.255.224
30 network 192.168.66.32
31 bridge_stp off
32 bridge_waitport 0
33 bridge_fd 0
34 bridge_ports none

Listing 1: /etc/networks/interfaces configuration

22

3.2.2 /etc/resolv.conf

The address of the closest DNS resolver, may be the ISP one - assigned by DHCP
or set manually to any public DNS resovler. In our setup the University’s resolver
was the closest. /etc/resolv.conf should contain the DNS address.

1 nameserver 193.40.5.39

Listing 2: /etc/resolv.conf configuration

3.2.3 /etc/hosts

Hosts configuration file provides the hostname aliases for IP. Which makes it pos-
sible to use the service by hostname as opposed to by IP. Extremely useful in
absence of Name Resolver by DNS server. /etc/hosts should contain

1 127.0.0.1 localhost
2 127.0.1.1 cockshot

Listing 3: /etc/hosts configuration

3.2.4 iptables rules

1 -A INPUT -p tcp -m state --state NEW -m tcp --dport 2049 -j ACCEPT
2 -A INPUT -j DROP
3 -A FORWARD -i br0 -o eth0 -j ACCEPT
4 -A FORWARD -i eth0 -o br0 -m state --state RELATED,ESTABLISHED -j ACCEPT
5 -A FORWARD -m limit --limit 50/min -j LOG --log-prefix "Firewall denied

50/m: "↪→

6 -A FORWARD -j DROP
7 -T NAT -A POSTROUTING -o eth0 -j MASQUERADE

Listing 4: iptables configuration

Make sure your port 2049 is open, it is necessary for TFTP server communica-
tion (rule 1). Afterwards, if the communcation was not meant to pass port 2049,
deny other port interactions. Rules 3-6 denote classic gateway and router serving
between ISP and private LAN. Here we allow all the packets from the private LAN

23

(br0) to be sent to ISP network (eth0) - rule 3. Backwards we allow only in case
connection was previously established or if it is related to previously established
one - so cutting of the undesired incoming communication (rule 4). The last rules
are for logging before cutting off (rule 5) and the actual cut off (rule 6). Rule 7
hides the private network connections behind a NAT with the command. Run the
following commands as root:

sysctl net.ipv4.conf.all.forwarding=1
sysctl net.ipv4.conf.default.forwarding=1

Iptables’ FORWARD chain of the INPUT table will not be accepted by the kernel,
if the /etc/sysctl.conf is not configured correctly — will not allow kernel to
actually forward packages between interfaces. Therefore, these lines have to be
appended to the /etc/sysctl.conf file in order for the system to fetch them
automatically after a reboot.

/etc/hosts.allow and /etc/hosts.deny are configuration files which make
sure, that the services that are accessed by other computers on the main server are
legitimate — not some unaccounted for computers on the network. hosts.allow
and hosts.deny configuration files are currently empty since this way all connec-
tions are allowed. But the hosts.deny should contain ALL:ALL and hosts.allow
should contain services and IP addresses which should be allowed - this is a more
secure and proper way to use these files. Since the setup network was a third
private subnet from the outside world, the security threats were small.

These commands download the files which are needed for iPXE boot. The first
four are needed to boot Debian Live. The last two are necessary for iPXE boot.

$ wget http://cdimage.debian.org/debian-cd/current-live/amd64/webboot/
debian-live-8.4.0-amd64-standard.squashfs↪→

$ wget http://cdimage.debian.org/debian-cd/current-live/amd64/webboot/
debian-live-8.4.0-amd64-standard.initrd.img↪→

$ wget http://cdimage.debian.org/debian-cd/current-live/amd64/webboot/
debian-live-8.4.0-amd64-standard.squashfs.packages↪→

$ wget http://cdimage.debian.org/debian-cd/current-live/amd64/webboot/
debian-live-8.4.0-amd64-standard.vmlinuz↪→

$ wget http://ftp.de.debian.org/debian/pool/main/g/glibc/
libc6-udeb_2.19-18+deb8u4_amd64.udeb↪→

$ wget http://ftp.de.debian.org/debian/pool/main/g/glibc/
$ wget http://boot.ipxe.org/ipxe.pxe

24

3.2.5 BIND

Copy the default /etc/bind/db.127 as a template for your bind setup. In this
case /etc/bind/db.192, which should contain the following. By default iPXE will
try to fetch the following web address: http://pxe.local/menu.cfg. Therefore,
the local network’s DNS has to resolve the adderss pxe.local into an actual IP
of the local network — DNS server is necessary. The BIND9 was selected and
configured as follows.

1 ...
2 @ IN SOA pxe.local. root.pxe.local. (
3 ...
4 @ IN NS ns.pxe.local.
5 1 IN PTR pxe.local.
6 2 IN PTR pc.pxe.local.

Listing 5: /etc/bind/db.127 configuration

The db.local also has to be modified. "A" kind of record is needed for resolving
iPXE’s http://pxe.local/menu.cfg into a preferrable IP address.

1 ...
2 @ IN SOA localhost. root.localhost. (
3 ...
4 @ IN NS localhost.
5 @ IN A 127.0.0.1
6 PXE IN A 192.168.66.40

Listing 6: db.local configuration

This file will contain a NS pointer for a pxe.local. Create a file db.pxe.local
and fill it with.

25

1 ...
2 @ IN SOA pxe.local. root.pxe.local. (
3 ...
4 @ IN NS ns1.pxe.local.
5 @ IN A 193.40.5.39
6 ns1 IN A 193.40.5.39

Listing 7: db.pxe.local configuration

Enabling recursion allows iteration over queries. Setting bind9 to listen on the
private LAN./etc/bind/named.conf.options has to have the following two lines
added into the options’ parentheses:

1 ...
2 listen-on {127.0.0.1;192.168.66.40;};
3 recursion-yes;
4 ...

Listing 8: named.conf.options configuration

Make sure that the /etc/bind/named.conf.default-zones contains the fol-
lowing:

1 ...
2 zone "localhost" {
3 type master;
4 file "/etc/bind/db.local";
5 };
6 ...

Listing 9: /etc/bind/named.conf.default-zones configuration

3.2.6 DHCP server configuration

The hosts that join the private LAN have to be given an IP, subnet, default
gateway and DNS information, in order for the hosts to be able to access the
internet. Therefore, edit the /etc/dhcp/dhcpd.conf, so it contains the necessary
information.

26

1 ...
2 #the next line helps dchp to understand the network it is on.
3 subnet 192.168.66.0 netmask 255.255.255.0{}
4 ...
5 subnet 192.168.66.32 netmask 255.255.255.224 {
6 range 192.168.66.34 192.168.66.62;
7 option domain-name-servers 192.168.66.40;
8 option domain-name "local";
9 option routers 192.168.66.40;

10 option broadcast-address 192.168.66.63;
11 default-least-time 600; # 10 minutes
12 max-lease-time 3600; # 1 hour
13 next-server 192.168.66.40;
14 if exists user-class and option user-class = "iPXE" {
15 filename "http://pxe.local/menu.cfg";
16 } else {
17 filename "ipxe.pxe"; #alternative "undionly.kpxe"
18 }
19 }
20 ...

Listing 10: /etc/dhcp/dhcpd.conf configuration

In our custom settings we additionally provide next-server option pointing
to the address of the TFTP server. Additionally the filename option is used to
point the TFTP client to the corresponding file which to download. This is crucial
for achieving PXE HTTP boot functionality. In our setup we have a conditional
file name option for the "two-step" iPXE firmware boot. First, the BIOS starts the
PXE boot sequence issuing a DHCPDISCOVER and receives a "ipxe.pxe" firmware
to execute. Afterwards, the running iPXE firware issues DHCPDISCOVER once
again and is pointed at "http://pxe.local/menu.cfg" for iPXE configuration. Rest
of the dhcpd.conf file can be left like it is by default.

3.2.7 TFTP

In the previou section we described the iPXE boot process. The DHCP options
next-server and filename only make sense in a presence of a TFTP server. The
BIOS PXE boot sequence needs to know from where to fetch the PXE firmware
(and we provide it through DHCPOFFER using option next-server). Addition-
ally, the BIOS PXE boot sequence is using TFTP protocol to actually fetch the
firmware data, and following the TFTP protocol we need to provide the filename
to fetch (we do this with DHCP option filename). In our setup the host carrying
the DHCP server is also the one serving the TFTP. Therfore, the same IP address

27

is used for the next-server option. Finally, we point the context ROOT of the
TFTP to /srv/tftp. Latter contains all the files we are going to provide over
filename DHCP option.

When setting up tftp-hpa package, the installation destination is /etc/srv/.
In the following setup username "tftp" is required for the /srv/tftp director,

in order to let TFTP share the files. By having permissions 755 on directory and
644 on files. The address assigned as such to listen by default to all IPs attached
to the network interfaces of the host. The secure option is the most critical here.
Before starting TFTP, it will actually change-root into /srv/tftp and switch to
tftp user, so the server process will never run in root permission or in / directory.

Make sure the /etc/default/tftpd-hpa has the following content (should be
the default):

1 TFTP_USERNAME="tftp"
2 TFTP_DIRECTORY="/srv/tftp"
3 TFTP_ADDRESS="0.0.0.0:69"
4 TFTP_OPTIONS="--secure"

Listing 11: /etc/default/tftpd-hpa configuration

3.2.8 Apache2

After iPXE firmware is loaded and menu configuration is applied, the actual
boot data (OS, kernels, etc.) is obtained from web. The default location is
http://pxe.local/. Therefore, we setup the Apache2 web server with Vir-
tualHost reference pxe.local serving the contents of /var/www/tftp. Create
/etc/apache2/sites-available/pxe.local.conf file and fill it with:

1 <VirtualHost *:80>
2 ServerName pxe.local
3 DocumentRoot "/var/www/tftp"
4 </VirtualHost>

Listing 12: pxe.local.conf configuration

In apache2.conf file there is an option that /srv/ directory can be set to
service the tftp and nfs, but for the sake of this thesis this option was left com-
mented. Therefore, the directory that the Apache2 services is /var/www/. The
apache2.conf should contain the following lines:

28

1 ...
2 <Directory /var/www/>
3 Options Indexes FollowSymLinks
4 AllowOverride None
5 Require all granted
6 </Directory>
7 ...

Listing 13: apache2.conf configuration

Use the following command to make your newly created site available to the
network:

a2ensite pxe.local.conf

3.2.9 iPXE

This subsection contains the customised iPXE configuration. We added a start
point for an actual disk-less installation of the Debian8 on the mainserver host.
We provide its kernel with essential arguments to find its rootfs using Network
File System (NFS). The rootfs is afterwards mounted with read and write flags
and therefore it is used by host to store all the changes.

29

1 #!ipxe
2 iseq ${mac} ac:9e:17:f0:61:fd && goto noblesse ||
3 iseq ${mac} 00:26:55:3c:65:09 && goto mainserver ||
4 iseq ${mac} 00:16:36:d2:ed:91 && goto minazuki ||
5 iseq ${mac} 00:16:36:68:51:b5 && goto yachiru
6

7 :minazuki
8 kernel minazuki-root/vmlinuz noswap noprompt

ip=192.168.66.39:::255.255.255.224:minazuki:eth3:off netboot=nfs
nfsroot=192.168.66.40:/srv/nfs/minazuki rw root=/dev/nfs

↪→

↪→

9 initrd minazuki-root/initrd.img
10 boot
11

12 :noblesse
13 kernel noblesse_boot/vmlinuz noswap noprompt

ip=192.168.66.62:::255.255.255.224:noblesse:eth0:off netboot=nfs
nfsroot=192.168.66.40:/srv/nfs/noblesse rw root=/dev/nfs

↪→

↪→

14 initrd noblesse_boot/initrd.img
15 boot
16

17 :mainserver
18 kernel mainserver-root/vmlinuz noswap noprompt

ip=192.168.66.45:::255.255.255.224:mainserver:eth1:off netboot=nfs
nfsroot=192.168.66.40:/srv/nfs/main_server rw root=/dev/nfs

↪→

↪→

19 initrd mainserver-root/initrd.img
20 boot
21

22 :yachiru
23 kernel yachiru-root/vmlinuz noswap noprompt

ip=192.168.66.37:::255.255.255.224:yachiru:eth3:off netboot=nfs
nfsroot=192.168.66.40:/srv/nfs/yachiru rw root=/dev/nfs

↪→

↪→

24 initrd yachiru-root/initrd.img
25 boot

Listing 14: menu.cfg configuration

3.2.10 NFS

In the previous section we described the disk-less host installation of Debian8. The
NFS server however is crucial for the setup. The NFS server is storing the root file
system for all the hosts we setup in disk-less mode. In the setup we host NFSserver
on the same nodewith DHCP and TFTP. This one line exports the main_server
directory to the static IP-address that the main_server node holds:

30

1 /srv/nfs/main_server 192.168.66.45(rw,sync,subtree_check,no_root_squash)

Listing 15: /etc/exports configuration

3.3 Adding nodes to the configuration
In order to start adding machines to the network a live boot must be performed.
Simply installing Debian onto the PCs will not work since. None of the computers
on the network, with the exception of the main server, have any storage devices
installed in them. After the live environment is up and running, debootstrap
tool must be used which allows to install the operating system into the exported
directory. The latter is offered by the main server which has NFS setup. While no
storage devices are present (not essential) an access to the Debian repository has
to be available. A private network was used, that was specifically created for this
thesis, in order to access the internet and the NFS server.
In the following section we describe how to create a bootable media device. The
latter is necessary for firstly configuring the client to accept PXE boot. Afterwards,
an momentary environment is needed, where the necessary steps can be performed,
to make the client fully part of the disk-less boot setup.

3.3.1 Creating bootable media

While it is easy to configure iPXE menu.cfg to offer Debian Live image to every
new client, that is connected to the network, the author opted for a bootable USB
way. This way any computer connected to the network via ethernet cable can not
be booted via iPXE automatically. This adds a layer of security to the network
setup.

The USB bootable media was created using UNetbootin software, available at
http://unetbootin.github.io (available for: Windows, Linux, OS X). Debian Live
CD image is also needed, and it can be downloaded form Debian’s homepage. Us-
ing the UNetbootin software is self explanatory and all what needs to be done is
to follow the instructions presented by the software. Bootable media device can
also be created by using alternative software (e.g. Universal USB installer (Win-
dows), Rufus USB installer(Windows) , Startup Disk Creator (Ubuntu),Winusb
(Ubuntu). After the bootable media is ready the BIOS settings of the target
machine may have to be tweaked to allow USB boot.

31

3.3.2 Making changes to the main server

Go to your nfs directory which contains all the exported file systems - /srv/nfs/.
Create a new directory to where the new node will be installed to.

mkdir yachiru

Create another directory to keep the files essential for iPXE boot in /var/www/tftp/
directory - vmlinuz, initrd, System.map binary and configuration binary for the
debian image.

mkdir yachiru_boot

Thirdly a symlink is needed to create a shortcut for the /srv/nfs/yachiru to
be accessible in the /var/www/tftp/ directory.

ln -s /srv/nfs/yachiru yachiru-root

After the necessary directories are created a line should be appended to the
/etc/exports file. Something like this:

1 ...
2 /srv/nfs/yachiru 192.168.66.37(rw,sync,subtree_check,no_root_squash)
3 ...

Listing 16: /etc/exports configuration

Entering the correct IP address does assume that the Debian Live image has
successfully booted from the USB stick and the IP address given by the DHCP
on the main server has been checked - commands like ifconfig and ip addr l
accomplish the last task just fine.

3.3.3 Configuring the Live image

Now that the Live image has successfully booted the first thing to do would be
to check what is the IP address given by the DHCP and whether or not the new

32

node is able to ping the main server.

ifconfig
ping 192.168.66.40

Both of these commands should have a positive output — DHCP has given the
new node an IP and the node is able to ping the main server.

Now to check if the /etc/exports file is exporting the right directory to the
new node the following command should be run:

showmount -e 192.168.66.40

After the last command has returned a successful response, two directories have
to be created to where to mount the exported NFS folder and finally to mount the
exported directory in the new node.

mkdir /mnt/nfs
mkdir /mnt/nfs/yachiru
mount -t nfs 192.168.66.40:/srv/nfs/yachiru /mnt/nfs/yachiru

To check if the NFS is really mounted in the read-write mode on all computers
a test file should be created into the /mnt/nfs/yachiru. The latter should show
up on the main server in the /srv/nfs/yachiru directory. The server will see the
files stored by the client and allow making modifications to them.

Afterwards debootstrapping tool has to be installed to install the Debian Jessie
operating system into the /mnt/nfs/yachiru directory.

debootstrap jessie /mnt/nfs/yachiru http://ftp.ee.debian/org/debian

If everything installed where it was supposed to, the etc/fstab should be given
a proper mounting configuration. In order to avoid writing everything by hand
the following command can be executed.

mount | tail -n1 >> etc/fstab

33

The appended line should also be modified since the current syntax does not
work for the fstab file.

1 192.168.66.40:/srv/nfs/yachiru / nfs
rw,relatime,vers=4.0,rsize=524288,wsize=524288,namelen=255,hard,
proto=tcp,port=0,timeo=600,retrans=2,sec=sys,clientaddr=192.168.66.37,
local_lock=none,addr=192.168.66.40 0 0

↪→

↪→

↪→

Listing 17: fstab configuration

Change the hostname to represent the new node on the network and add proper
nameservers to etc/resolv.conf. The etc/network/interfaces needs to be
modified according to the network requirements as well.

1 auto lo
2 iface lo inet loopback
3

4 auto eth3 -192.168.66.37
5 iface eth3 inet static
6 address 192.168.66.37
7 netmask 255.255.255.224
8 network 192.168.66.32
9 broadcast 192.168.66.63

10 gateway 192.168.66.45

Listing 18: etc/network/interfaces configuration

The /proc /dev /sys directories can be linked to the freshly installed image
with --bind option of the mount command.

While in /mnt/nfs/yachiru directory a chroot . should be executed to change
the current root to a freshly installed Debian’s root. Now the following packages
should be installed - locales,tzdata,ntp,pciutils,aptitude,ssh. The locales config-
ures the language settings. tzdata configures time zone information. ntp allows
for automatic time adjustments. pciutils is necessary for hardware inspection.
aptitude is used for package managemet. ssh is essential for remote access. The
root password should be set and a non-root user should be created. pciutils
package contains tools to figure out the node’s current hardware configuration
and allows to check which firmware packages should be installed. With Aptitude
the following packages were installed on yachiru:

34

initramfs-tools, binfmt-support, binutils, nfs-common, alsa-firmware-loaders,
alsa-utils, autoconf, bison, broadcom-sta-dkms, db5.3-util, debian-keyring, dh-
make, ed, firmware-atheros, firmware-b43-installer, firmware-bnx2, firmware-bnx2x,
firmware-brcm80211, firmware-linux, firmware-linux-free, firmware-ralink, firmware-
realtek, firmware-samsung, flex, g++-4.9-multilib, g++-multilib, gcc-4.8-locales,
gcc-4.8-multilib, gcc-4.9-locales, libtool, linux-wlan-nf-firmware, subversion-tools,
extlinux, linux-image-3.16.0-4-amd64, linux-image-amd64

Finally ls /boot/ should contain the initrd image, vmlinuz image, System.map
binary and configuration binary for the Debian image if all of the packages installed
in Aptitude were successfully set up.

3.4 Second stage of the network setup
The second stage of the hardware configuration means, that the nodes that were
configured previously will now be made into routers with firewalls. Also the private
networks DHCP server will be moved behind the routers. While allowing more
machines to be added to the private network, by setting them up as shown in
chapter 3.3 and connecting them to the switch that connects the main server and
routers. Previously we had the DHCP, NFS, TFPT, iPXE and the default gateway
on the same machine. Now we separate the DHCP, PXE, TFTP, NFS from the
firewall, iptables and default gateway. The last three are moved onto the previously
configured disk-less boot hosts. Which will now act as firewalled routers for the
private network. The figure below illustrates the aforementioned second stage.

35

Main Server

Internet (University’s)

Switch

Switch

Node (router - S)Node (router - M)

Figure 6: Second stage of network topology

To enable router fail over the keepalived package needs to be installed on the
routers. The /etc/keepalived/keepalived.conf file is configured as follows.

36

1 vrrp_instance public_ips {
2 state MASTER
3 interface eth0
4 priority 101
5 virtual_router_id 12
6 advert_int 1
7

8 virtual_ipaddress {
9 192.168.66.224 dev eth0 label eth0:VirtIP

10 }
11 }
12 vrrp_instance private_ips{
13 state MASTER
14 interface eth1
15 virtual_router_id 13
16 priority 101
17 advert_int 1
18

19 virtual_ipaddress {
20 192.168.66.45 dev eth1 eth1:VirtIP
21 }
22 }

Listing 19: etc/keepalived/keepalived.conf configuration

When changes are made to /etc/keepalived/keepalived.conf the service
needs to be restarted. This latter is accomplished by using service command
with restart option. Now check your interfaces with ip addr l command. The
output should contain two IPv4 addresses per interface with one having an ending
that states eth1:VirtIP. The latter one is the virtual IP set by the keepalived
package.

Now, since the machines that have keepalived installed on them are going
to be the routers, then iptables has to be configured. The following commands
should be entered:

1 # iptables -A FORWARD -i br0 -o eth0 -j ACCEPT
2 # iptables -A FORWARD -i eth0 -o br0 -m state --state

RELATED,ESTABLISHED -j ACCEPT↪→

3 # iptables -A FORWARD -m limit --limit 50/min -j LOG --log-prefix
"Firewall denied 50/m: "↪→

4 # iptables -A FORWARD -j DROP
5 # iptables -A POSTROUTING -o eth1 -j MASQUERADE

37

Save the iptabels configuration and also make sure, that these rules are acti-
vated after every system reboot. [43]

Finally, make sure, that the /etc/sysctl.conf has net.ipv4.ip_nonlocal_bind=1 set.
Load the parameter with sysctl -p command. [44]

38

4 Testing
There are two different scenarios tested within this thesis. First, there is a file that
is copied with rsync over SSH to another server. During the transmission, the ssh
channel can not be closed or the data transfer will fail. To test if a router failure
would cause an SSH channel shut down, the following command was executed.

$ rsync --bwlimit=100 /backup.tar ssh
andersm9@newmath.ut.ee:/home/pohl01/andersm9/backup.tar↪→

At first the previous command was executed. The console displayed an active
data transmission. Then the MASTER router was disconnected from the network.
Then the transmission was checked, if it continued to trasmit data, the first part of
the test was considered a success. If the data transfer failed, the test was considered
a failure. In case the open channel was ported onto the SLAVE router successfully
without cancelling the transfer, the disconnected router was reconnected. The
status of the MASTER router was also checked, if it entered the MASTER state.
Then the SLAVE router was disconnected, and the author checked if the MASTER
router was healthy and the data transfer was also ongoing. After verifying that
the connection was still alive, the SLAVE was reconnected and the overall rsync
shh test was considered a success.

The second command used for testing is wget, which is put to download a big
.iso file. The --limit-rate=200K option limits the download speed.

$ wget --limit-rate=200K http://cdimage.debian.org/debian
-cd/current-live/amd64/iso-hybrid/debian-live-8.4.0-amd64-standard.iso
--progress=dot

↪→

↪→

The active download test was conducted exactly like the open channel rsync
ssh test. Keeping the same prerequisites for a success and failure.

39

5 Conclusion
The goal of this thesis was to create a computer network which could handle router
and ISP fail overs so that the end user would not have connectivity issues. Should
the network suffer a router failure and/or a ISP failure, the end user’s internet
connection should not be diconnected nor should the ongoing data trasnmission
be cancelled.

The overall requirements for the thesis was that the MASTER router failure
and the automatic data trasmission switching over to the SLAVE router would
not cause any issues in the data transfer. This was tested with an active SSH
connection which by default will not reconnect once the channel is broken. Also
the wget was used which does not re-establish the download connection by default.
Both of the tests were successful, the ongoing channels and active data trasmissions
were not broken during the MASTER or SLAVE failures.

The final network topology looks like in the figure 6.
Two router computers that were setup like firewalled routers, are the gateways

for the private network. Whenever one of them fails, the other one takes over —
the main server will not fail the ongoing internet connection.

The future work includes adding an ISP failover to the network and achieving
the same results. Additionally, if some new hardware is aquired, it would be
possible to try and implement high-availability into the network. Also, the author
would like to research if it is possible to implement self healing into the network,
to preserve connectivity at the expense of computing power.

40

References
[1] R. Shimonski, “The Importance of Network Redundancy.” http:

//www.windowsnetworking.com/articles-tutorials/netgeneral/
Importance-Network-Redundancy.html, 2010. [Accessed: 18.05.2016].

[2] Wikipedia, “Transmission Control Protocol — Wikipedia, The Free Encyclo-
pedia.” https://en.wikipedia.org/w/index.php?title=Transmission_
Control_Protocol&oldid=719428729, 2016. [Accessed: 18.05.2016].

[3] Wikipedia, “IP address — Wikipedia, The Free Encyclopedia.” https://en.
wikipedia.org/w/index.php?title=IP_address&oldid=714596935, 2016.
[Accessed: 18.05.2016].

[4] Wikipedia, “Internet Protocol — Wikipedia, The Free Encyclopedia.”
https://en.wikipedia.org/w/index.php?title=Internet_Protocol&
oldid=720906813, 2016. [Accessed: 18.05.2016].

[5] Wikipedia, “Virtual Router Redundancy Protocol — Wikipedia, The
Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=
Virtual_Router_Redundancy_Protocol&oldid=717542673, 2016. [Ac-
cessed: 18.05.2016].

[6] Wikipedia, “Common Address Redundancy Protocol — Wikipedia,
The Free Encyclopedia.” https://en.wikipedia.org/w/index.php?title=
Common_Address_Redundancy_Protocol&oldid=706709601, 2016. [Ac-
cessed: 18.05.2016].

[7] Wikipedia, “Hot Standby Router Protocol — Wikipedia, The Free Ency-
clopedia.” https://en.wikipedia.org/w/index.php?title=Hot_Standby_
Router_Protocol&oldid=720743530, 2016. [Accessed: 18.05.2016].

[8] Wikipedia, “First-hop redundancy protocols — Wikipedia, The Free En-
cyclopedia.” https://en.wikipedia.org/w/index.php?title=First-hop_
redundancy_protocols&oldid=709049366, 2016. [Accessed: 18.05.2016].

[9] Wikipedia, “Gateway Load Balancing Protocol — Wikipedia, The Free
Encyclopedia.” https://en.wikipedia.org/w/index.php?title=Gateway_
Load_Balancing_Protocol&oldid=683593613, 2015. [Accessed: 18.05.2016].

[10] Cisco, “GLBP - Gateway Load Balancing Protocol.” http://www.cisco.
com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html#
wp1027177. [Accessed: 18.05.2016].

41

http://www.windowsnetworking.com/articles-tutorials/netgeneral/Importance-Network-Redundancy.html
http://www.windowsnetworking.com/articles-tutorials/netgeneral/Importance-Network-Redundancy.html
http://www.windowsnetworking.com/articles-tutorials/netgeneral/Importance-Network-Redundancy.html
https://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=719428729
https://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=719428729
https://en.wikipedia.org/w/index.php?title=IP_address&oldid=714596935
https://en.wikipedia.org/w/index.php?title=IP_address&oldid=714596935
https://en.wikipedia.org/w/index.php?title=Internet_Protocol&oldid=720906813
https://en.wikipedia.org/w/index.php?title=Internet_Protocol&oldid=720906813
https://en.wikipedia.org/w/index.php?title=Virtual_Router_Redundancy_Protocol&oldid=717542673
https://en.wikipedia.org/w/index.php?title=Virtual_Router_Redundancy_Protocol&oldid=717542673
https://en.wikipedia.org/w/index.php?title=Common_Address_Redundancy_Protocol&oldid=706709601
https://en.wikipedia.org/w/index.php?title=Common_Address_Redundancy_Protocol&oldid=706709601
https://en.wikipedia.org/w/index.php?title=Hot_Standby_Router_Protocol&oldid=720743530
https://en.wikipedia.org/w/index.php?title=Hot_Standby_Router_Protocol&oldid=720743530
https://en.wikipedia.org/w/index.php?title=First-hop_redundancy_protocols&oldid=709049366
https://en.wikipedia.org/w/index.php?title=First-hop_redundancy_protocols&oldid=709049366
https://en.wikipedia.org/w/index.php?title=Gateway_Load_Balancing_Protocol&oldid=683593613
https://en.wikipedia.org/w/index.php?title=Gateway_Load_Balancing_Protocol&oldid=683593613
http://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html#wp1027177
http://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html#wp1027177
http://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html#wp1027177

[11] Wikipedia, “R-SMLT — Wikipedia, The Free Encyclopedia.” https://en.
wikipedia.org/w/index.php?title=R-SMLT&oldid=659515512, 2015. [Ac-
cessed: 18.05.2016].

[12] Wikipedia, “Network switch — Wikipedia, The Free Encyclopedia.”
https://en.wikipedia.org/w/index.php?title=Network_switch&
oldid=714688611, 2016. [Accessed: 18.05.2016].

[13] J. Tyson, “How LAN Switches Work.” http://computer.howstuffworks.
com/lan-switch.htm, 2001. [Accessed: 18.05.2016].

[14] Wikipedia, “Data link layer — Wikipedia, The Free Encyclope-
dia.” https://en.wikipedia.org/w/index.php?title=Data_link_layer&
oldid=713250654, 2016. [Accessed: 18.05.2016].

[15] Wikipedia, “Router (computing) — Wikipedia, The Free Encyclopedia.”
https://en.wikipedia.org/w/index.php?title=Router_(computing)
&oldid=720269160, 2016. [Accessed: 18.05.2016].

[16] P. L. Dordal, “6 Abstract Sliding Windows — An Introduction to Computer
Networks, edition 1.8.20.” http://intronetworks.cs.luc.edu/current/
html/slidingwindows.html, 2015. [Accessed: 18.05.2016].

[17] M. Médard and S. S. Lumetta, “Network Reliability and Fault Tolerance,” in
Wiley Encyclopedia of Telecommunications, John Wiley & Sons, Inc., 2003.

[18] “All Routers Products — Cisco.” http://www.cisco.com/c/en/us/
products/routers/product-listing.html. [Accessed: 18.05.2016].

[19] Wikipedia, “Cisco Systems — Wikipedia, The Free Encyclopedia.”
https://en.wikipedia.org/w/index.php?title=Cisco_Systems&oldid=
720386486, 2016. [Accessed: 18.05.2016].

[20] “HP Networking Routers.” http://www8.hp.com/us/en/networking/
routers/index.html. [Accessed: 18.05.2016].

[21] “HP Networking Switches.” http://www8.hp.com/us/en/networking/
switches/index.html. [Accessed: 18.05.2016].

[22] “Routers - Secure Network Router Solutions - Juniper Networks.” http:
//www.juniper.net/us/en/products-services/routing/. [Accessed:
18.05.2016].

[23] “Solutions – Juniper Networks.” http://www.juniper.net/us/en/
solutions/. [Accessed: 18.05.2016].

42

https://en.wikipedia.org/w/index.php?title=R-SMLT&oldid=659515512
https://en.wikipedia.org/w/index.php?title=R-SMLT&oldid=659515512
https://en.wikipedia.org/w/index.php?title=Network_switch&oldid=714688611
https://en.wikipedia.org/w/index.php?title=Network_switch&oldid=714688611
http://computer.howstuffworks.com/lan-switch.htm
http://computer.howstuffworks.com/lan-switch.htm
https://en.wikipedia.org/w/index.php?title=Data_link_layer&oldid=713250654
https://en.wikipedia.org/w/index.php?title=Data_link_layer&oldid=713250654
https://en.wikipedia.org/w/index.php?title=Router_(computing)&oldid=720269160
https://en.wikipedia.org/w/index.php?title=Router_(computing)&oldid=720269160
http://intronetworks.cs.luc.edu/current/html/slidingwindows.html
http://intronetworks.cs.luc.edu/current/html/slidingwindows.html
http://www.cisco.com/c/en/us/products/routers/product-listing.html
http://www.cisco.com/c/en/us/products/routers/product-listing.html
https://en.wikipedia.org/w/index.php?title=Cisco_Systems&oldid=720386486
https://en.wikipedia.org/w/index.php?title=Cisco_Systems&oldid=720386486
http://www8.hp.com/us/en/networking/routers/index.html
http://www8.hp.com/us/en/networking/routers/index.html
http://www8.hp.com/us/en/networking/switches/index.html
http://www8.hp.com/us/en/networking/switches/index.html
http://www.juniper.net/us/en/products-services/routing/
http://www.juniper.net/us/en/products-services/routing/
http://www.juniper.net/us/en/solutions/
http://www.juniper.net/us/en/solutions/

[24] R. A. Memon, Y. Ryu, M. Shin, and J. m. Rhee, “A scalable and fault tolerant
network structure for tree networks of mission critical systems,” in ICTC 2011,
pp. 255–256, Sept 2011.

[25] P. Bansal, K. Singh, and R. Joshi, “Routing and path length algorithm for
a cost-effective four-tree multistage interconnection network,” International
Journal of Electronics, vol. 73, no. 1, pp. 107–115, 1992.

[26] S. Sharma and P. K. Bansal, “A new fault tolerant multistage interconnec-
tion network,” in TENCON ’02. Proceedings. 2002 IEEE Region 10 Confer-
ence on Computers, Communications, Control and Power Engineering, vol. 1,
pp. 347–350 vol.1, Oct 2002.

[27] M. Belkadi and H. T. Mouftah, “The augmented 3D-tree fault-tolerant net-
work,” in Circuits and Systems, 1993., Proceedings of the 36th Midwest Sym-
posium on, pp. 621–624 vol.1, Aug 1993.

[28] J. Kowalski, “Debian Live webboot & DNS.” https://blog.jacekk.info/
2016/01/debian-live-webboot-dns/. [Accessed: 20.05.2016].

[29] “What is DHCP? — Indiana University Knowledge Base.” https://kb.iu.
edu/d/adov, 2015. [Accessed: 18.05.2016].

[30] “Chapter 9. Network File System (NFS) — Red Hat Enterprise Linux 6 Stor-
age Administration Guide.” https://access.redhat.com/documentation/
en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_
Guide/ch-nfs.html, 2015. [Accessed: 18.05.2016].

[31] “iPXE - open source boot firmware.” http://ipxe.org/. [Accessed:
18.05.2016].

[32] “Apache HTTP Server Project.” https://httpd.apache.org/ABOUT_
APACHE.html. [Accessed: 18.05.2016].

[33] Wikipedia, “Apache HTTP Server — Wikipedia, The Free Ency-
clopedia.” https://en.wikipedia.org/w/index.php?title=Apache_HTTP_
Server&oldid=719366249, 2016. [Accessed: 18.05.2016].

[34] Wikipedia, “BIND — Wikipedia, The Free Encyclopedia.” https://en.
wikipedia.org/w/index.php?title=BIND&oldid=712320757, 2016. [Ac-
cessed: 18.05.2016].

[35] “BIND — The most widely used Name Server Software.” https://www.isc.
org/downloads/bind/, 2016. [Accessed: 18.05.2016].

43

https://blog.jacekk.info/2016/01/debian-live-webboot-dns/
https://blog.jacekk.info/2016/01/debian-live-webboot-dns/
https://kb.iu.edu/d/adov
https://kb.iu.edu/d/adov
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-nfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-nfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-nfs.html
http://ipxe.org/
https://httpd.apache.org/ABOUT_APACHE.html
https://httpd.apache.org/ABOUT_APACHE.html
https://en.wikipedia.org/w/index.php?title=Apache_HTTP_Server&oldid=719366249
https://en.wikipedia.org/w/index.php?title=Apache_HTTP_Server&oldid=719366249
https://en.wikipedia.org/w/index.php?title=BIND&oldid=712320757
https://en.wikipedia.org/w/index.php?title=BIND&oldid=712320757
https://www.isc.org/downloads/bind/
https://www.isc.org/downloads/bind/

[36] “The netfilter.org "iptables" project.” http://www.netfilter.org/
projects/iptables/index.html. [Accessed: 18.05.2016].

[37] “iptables — Freecode.com.” http://freecode.com/projects/iptables/.
[Accessed: 18.05.2016].

[38] “tftp-hpa — Freecode.com.” http://www.freecode.com/projects/
tftp-hpa/. [Accessed: 18.05.2016].

[39] “tftpd(8) - Linux man page.” http://linux.die.net/man/8/tftpd. [Ac-
cessed: 18.05.2016].

[40] Wikipedia, “Trivial File Transfer Protocol — Wikipedia, The Free
Encyclopedia.” https://en.wikipedia.org/w/index.php?title=Trivial_
File_Transfer_Protocol&oldid=711713587, 2016. [Accessed: 18.05.2016].

[41] “Keepalived for Linux.” http://www.keepalived.org/index.html. [Ac-
cessed: 18.05.2016].

[42] A. Fletcher, “LVS NAT + Keepalived HOWTO.” http://www.keepalived.
org/LVS-NAT-Keepalived-HOWTO.html, 2002. [Accessed: 18.05.2016].

[43] “Bringing VM online, initial network configuration.” https://courses.cs.
ut.ee/2016/sa/spring/Main/Week004. [Accessed: 19.05.2016].

[44] “VRRP (Virtual Router Redundancy Protocol) Keepalived
Configuration.” https://www.atlantic.net/community/howto/
vrrp-keepalived-configuration/. [Accessed: 19.05.2016].

44

http://www.netfilter.org/projects/iptables/index.html
http://www.netfilter.org/projects/iptables/index.html
http://freecode.com/projects/iptables/
http://www.freecode.com/projects/tftp-hpa/
http://www.freecode.com/projects/tftp-hpa/
http://linux.die.net/man/8/tftpd
https://en.wikipedia.org/w/index.php?title=Trivial_File_Transfer_Protocol&oldid=711713587
https://en.wikipedia.org/w/index.php?title=Trivial_File_Transfer_Protocol&oldid=711713587
http://www.keepalived.org/index.html
http://www.keepalived.org/LVS-NAT-Keepalived-HOWTO.html
http://www.keepalived.org/LVS-NAT-Keepalived-HOWTO.html
https://courses.cs.ut.ee/2016/sa/spring/Main/Week004
https://courses.cs.ut.ee/2016/sa/spring/Main/Week004
https://www.atlantic.net/community/howto/vrrp-keepalived-configuration/
https://www.atlantic.net/community/howto/vrrp-keepalived-configuration/

Non-exclusive licence to reproduce thesis and make thesis public

I, Anders Martoja (date of birth: 19th of February 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Fault tolerant networking using Linux based systems and obsolete hardware

supervised by Artjom Lind

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2016

45

	List of Figures
	List of Configuration Files
	Acknowledgements
	Introduction
	Overview
	Introduction to fault-tolerant networking
	Fault-tolerant network composition
	Protocols
	Switches
	Routers

	Requirements for fault-tolerance
	Common solutions
	Related work
	A Scalable and Fault Tolerant Network Structure for Tree Networks of Mission Critical Systems
	A New Fault Tolerant Multistage Interconnection Network
	The Augmented 3D-Tree Fault-Tolerant Network
	Conclusion

	Network hardware configuration
	Used technologies
	DHCP
	NFS
	iPXE
	Apache2
	BIND
	iptables
	TFTP
	Keepalived

	Configure the main server
	/etc/network/interfaces
	/etc/resolv.conf
	/etc/hosts
	iptables rules
	BIND
	DHCP server configuration
	TFTP
	Apache2
	iPXE
	NFS

	Adding nodes to the configuration
	Creating bootable media
	Making changes to the main server
	Configuring the Live image

	Second stage of the network setup

	Testing
	Conclusion
	References

