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1. Introduction 

1.1. Statistical description of weakly nonlinear stochastic wave 
systems and the kinetic equation 

In nature the fields of hydrodynamic motions are, as a role, extreme­
ly complex systems consisting, formally, of a vast number of wavelike har­
monics. They can be treated as random wave fields with continuous spectral 
density (spectrum) of energy. In that case the behaviour of the particular 
wave compoaents is usually of no interest, and the wave field evolution is 
determined by the temporal behaviour of its statistical moments or cumu­
lants. Their evolution is described by an infinite system of coupled equa­

tions similar to the BBGKY system. As a general rule, this system cannot 
be truncated because of the incessant generation of the higher moments by 
the nonlinear coupling (Monin and Yaglom, 1967). Truncation is possible 

only in a few particular cases; for example, in the case of the Gaussian 
systems the third and higher order cumulants are identically zero. 

Of particular interest are weakly nonlinear waves - a wave class "in­
termediate' between linear and nonlinear waves. They are usually defined 
heuristically as waves for which nonlinear effects are negligible in the 

time scale comparable with their characteristic period, but for longer 
time scales nonlinearity may have significant impact. Mathematically, »uch 

waves are described by an equation in which the nonlinear terms are multi­
plied by a small parameter, e, called the measure of nonlinearity. Physi­
cally, this means that the particle's velocity in a particular wave is ex­
pected to be small as compared to the letter's phase velocity. 

Hasselmann (1962), studying weakly nonlinear surface waves, pointed 

out that the initial correlations between the harmonics are broken down 
relatively fast by dispersive effects in comparison with the rate of 
growth of the correlations by nonlinear effects. Consequently, he argued, 

a weakly nonlinear dispersive wave field can be assumed to be approxi­
mately Gaussian in the sense that the fourth and higher order cumulants 

can be discarded. This assumption, called the quasi-Gaussian approxima­
tion, makes it possible to obtain a closed equation describing the evol­

ution of the energy spectrum (the second-order cumulant). This equation is 



- 4 -

called the kinetic equation and describes the slow (as compared to the 
characteristic period of the waves) spectral evolution of a wave system 
due to the lowest-order resonant interactions between the wave harmonics 
(triad interactions for capillary waves, Rossby waves, internal waves 
etc., four-wave interactions for surface waves). Below we shall deal only 
with the class of waves allowing triad interactions. 

The kinetic equation is a hydrodynamical analogue of the Boltzmann 
equation for an idealized gas. In order to establish this analogy it is 
convenient to consider a wave field as a superposition of a huge number of 
localized wave packets, each associated with its mean wave vector and fre­

quency. As distinct from the classical kinetic theory, interaction ("col­

lision") between packets may occur only if at least three of them are sim­
ultaneously present within a small area of space. Although at any given 

point there may coexist a continuum of different packets, actual energy 

exchange occurs only if the wave vectors and frequencies of three packets 

satisfy certain geometrical conditions called resonance conditions (see 
below). These conditions "preselect" the "colliding" waves, limiting the 

"number" of the interacting waves and ensuiing that the triad interactions 
occur relatively rarely and the time of "free" propagation of the packets 

is much longer than the duration of the "collision". 

Travelling through each other during a short time interval (as com­

pared to the time scale of spectral evolution), the interacting waves ex­

ecute an "elementary" interaction, and propagate into various directions 

afterwards. The "elementary" interactions are assumed to be independent 

and separated in time and space. These interactions are integrated by the 

collision integral of the kinetic equation in the same way as the colli­

sion integral of the Boltzmann equation integrates the collisions of par­

ticles. 

1.2. Rotoby waves 

The Rossby wave is an example of low frequency oscillation found in 

rotating systems and which owes its existence to the variation of the ver­

tical component of the background rotation (or, equivalently, the Coriolis 

parameter). Rossby waves represent the so-called synoptic-scale motions in 

the oceans and the atmosphere. For Earth's conditions these motions nor­

mally have the horizontal length scale 100 kilometers, the vertical 

length scale of the order of the full depth of the ocean (atmosphere) and 

the time scale of several dozens of days. As the synoptic motions contain 
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a notable part of the whole wave energy in the Earth's oceans and atmos­
phere, a clearer understanding of their main properties will be unques­
tionably useful for the promotion of the study of the dynamics of the at­

mosphere and the oceans. 
Below we shall limit ourselves to a simplified treatment of the syn­

optic motions, in which only the main factors of those forming the Rossby 
wave field are included. Namely, the variation of the Coriolis force 
(^-effect), the vertical structure ui the motions (baroclimcity), the 
nonlinear effects and the presence of a great number of wave harmonics are 
taken into account. No forcing, and usually no dissipation, is taken into 

account. The propagation of Rossby waves on the Earth may be described by 
treating the Earth's surface as an infinite flat plane in which the 
Coriolis parameter varies in the North-South direction; such a rotating 
plane is known as a уЗ-planc (Kamenkovich, 1972). This approximation, al­
though it excludes several interesting features associated with a count­
able set of wave harmonics on a sphere and the effect of the shores, 
greatly simplifies the analytical investigation into the equations of the 
motion. The equation for the weakly nonlinear Rossby waves in a barotropic 
(vertically homogeneous) ocean (atmosphere) of constant depth within the 

bounds of the described model has the following form: 

d(Ay/-v?y/)lbt + dy/dx = ej (Ay/,y/), (1) 

where yt is the stream function, (x,y) - the Cartesian coordinates on the 
)?-plane; the x-axis directed to the North and the y-axis to the Bast; 
t-time, £=U/(/?L2)<l - the measure of nonlinearity; ß - the North-South de­

rivative of the Coriolis parameter, U - characteristic velocity scale, 
J('»8)—a1 - Rossby deformation radius, depending on the back­
ground physics. The equation for the Rossby waves in a baroclinic ocean is 
qualitatively similar to Eq. (1). Also, Eq. (1) turns out to be identical 

(to within the physical meaning of parameters and coordinates) to the 

equation for drift waves in plasma (Hasegawa, Maclennan and Kodama, 1979). 
The main mathematical advantages of basing this study on Rossby waves 

are the following: 
(1) Rossby waves are two-dimensional (2D) waves; 

(2) Three-wave resonance takes place in this wave system (unlike, for 
example, the surface gravity waves); 

(3) Unlike most wave classes of physical interest, Rossby waves have an 
explicit algebraic (polynomial fractional) dispersion relation; 
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(4) Rossby waves are anisotropic: their frequency depends on the direc 
tkm of wave propagation. 

The first two features reduce the number of the geometrical condi­
tion* for the interacting waves as well as the multiplicity of the colli­

sion integral as compared to the case of 3D waves The third property 

greatly simplifies the analytical investigation of the solutions of the 
kinetic equation. Also, it makes possible complete analysis of the res­

onance and double resonance conditions. The last feature gives- rise to an­

isotropic thermodynanrically fcquiübrium solutions, which do not exist, for 
example, within the bounds of the gsneral theory of isotropic 2D and 3D 
turbulence. 

2. Kinetic equation for Rossby waves 

2.1. The kinetic equation for barotropic waves 

The kinetic theory of Rossby waves goes bade to a report by Kenyoo 
(1964), who derived the kinetic equation for barotropic waves within the 
bounds of the described model: 

i7 " (2) 

Here F=F( k , t ) is the energy spectrum, к =(k,I)™(Kcos^xrsiny) - the wave 

vector, Скк =(к X к^Хд^-*ф/2 - interaction coefficients; x=e2t - slow 

time, Fi-F(ri,T), i=l,2; N=(jc2+a2X^+aW+a3); <5(x) - Dirac delta fonc­

tion, <v0L*™<o(^)+<y(*tiX<)=-k/(< 4-a2) - dispersion relation (fre­

quency) of the linear barotropic Rossby waves; *012
e * + *,+ 

dtu=dki<flidk2di2; 

Eq. (2) saves as an integro-differential equation containing the 

sinkest partial differential operator and the kernel with quadratic non-

linearity. The unknown fonction, F, depends on three variables: slow time 

and two wave vector components. Additionally, the kernel contains three 

Dirac delta functions, which means that the right-hand side of Eq. (2) 

(called collision integral) may be reduced to a one-dimensional integral 

over a specified curve. These delta functions reflect the well-known fact 

that the most intensive energy exchange occurs between Rossby wave har­

monics, the wave vectors and frequencies of which satisfy the resonance 

conditions <you=0; * =9. 
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2.2. Kinetic equation for two-layer model 

Synoptic motions in nature ere, as ж rule, essentially depth-
dependant (baroclinic). Mathematically, the vertical structure of the mo­

tions in a stratified fluid may be described in terms of a linear combina­
tion of a barotropic and a certain (maybe infinite) number of baroclinic 
modes (Phillips, 1966). This decomposition is equivalent to a model con­
sisting of several non-mixing vertically homogeneous layers. Since a sub­
stantial amount of the energy of the synoptic motions of the ocean is 

usually contained in the barotropic and first baroclinic modes, we shall 
mostly use the traditional two-layer model in which the motion is decom­
posed into the barotropic and the (first) baroclinic vertical mode. 

The slow evolution of the energy spectra of baroclinic and barotropic 
modes within the bounds of the two-layer model is described by the follow­
ing system of integro-differential equations (Kozlov, Reznik and Soomere, 
1987): 

ЯР p 

dx - s*i w u - j (3) 

where Fp=F ( к ,т) is the spectrum of the barotropic (p=0) or the baroclinic 
(p=l) mode, I p,m,n=0,l - interaction (collision) integrals describing 
the energy alteration of the wave with к of mode p due to the interaction 
with waves belonging to modes m, n; К -С*" F^+C^F F1 +C^aF F2; P" *1*2 ш a KKi p в KK2 p в 

n =(^+«X+i> +̂*!); 
cr;-'L<;,x 7x+,̂ -i)/2 • ü,tcrecu°° 

coefficients, the coefficients yp depending on the particular vertical 
structure of the motion, co°12»<y (*)+<y (< ,)+<y (к J; со (к)=-к/(кд+а2) - dis-рош p ш 1 в 2 p pr 
persion relation of the Rossby waves of the p-th mode. The quantities a^ 
are called the barotropic (p—0) and baroclinic (p=l) Rossby radii and de­

pend on the background physics. Further on we regard the waves with 
vectors *,* ,* as always representing the modes with the numbers p,m,n, 
respectively. For simplicity, we shall call the system (3) a baroclinic 

kinetic equation. 

3. Double resonance 

3.1. Correctness of the kinetic equation 

The correctness of the derivation of the kinetic equation as well as 
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its applicability has been discussed for a long time. Hasselmann (1962), 
who first derived this equation for hydrodynamical systems, used the 
quasi-Ganssian approximation. Although in the course of time even an in­

itial Gaussian state will be distorted by nonlinear effects, he argues 
that probably this distortion has no significant impact on the evolution 

of the second cumulant if the nonlinearity is weak. Benney and Newell 
(1969) showed .that higher cumulants, formally omitted from the derivation 
of the kinetic equation, but incessantly regenerated by the nonlinear 

coupling, indeed grow up fast and soon develop a cusp-like structure in 

Fourier space. Fortunately, this effect does not distort the kinetic equa­
tion. 

Reznik (1984b) elaborated the derivation of the kinetic equation, 
taking into account the full behaviour of the fourth-order cumulants and 

ignoring the fifth and higher order moments. He reached exactly the same 

shape of the equation as in the earlier derivations. He argues that the 

kinetic equation does not depend on the particular truncation of the hier­
archy of the cumulant equations of weakly nonlinear wave systems. 

The mathematical question of the validity of the kinetic equation in 

wave vector space was first discussed by Hassclmann (1962), This equation 

works only for limited time, intervals т«б"2 and for limited wave vector 
areas K<.E2. If t is of greater value, higher order interactions will be­

come significant, and spectral evolution will be described by another 

equation (Benney and Newell,* 1969). For interactions of very short waves 

the initial assumption of weak nonlinearity is not valid (Reznik, 1986). 

3.2. Double resonance 

In addition to the above-mentioned general limitations, the kinetic 

equation may fail if the function <you has multiple zeros on the hypcrsur-

face *012
=0. For several two- and higher dimensional waves (sound waves, 

shallow water waves etc., called semi-dispersive waves) Newell and Aucoin 

(1971) obtained a closure of the hierarchy of the moment equations despite 

the double zeros of the function <you. As distinct from the fully disper­

sive case, the linear dispersion, breaking down the initial correlations 

and approaching the wave system towards the Gaussian state, works only 

along specified rays in the 2D semi-dispersive case. " 

Reznik (1984b; 1986) proposed a general condition ensuring the cor­

rectness of the kinetic equation. This equation is valid for a specified 

wave vector к only on condition that the quantity A = | V<y( ("к 2) I 
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(t^ = (d/dk,d/dl) is the group velocity operator), oas a nonzero lower 
boundary for all vectors^ *i>*2 resonantly interacting with к. The case 
A =0 was mentioned first by Benney and Saffman (1966) in their one-
dimensional analysis and was called double resonance. We shall call the 
corresponding waves (wave vectors к, points in wave vector space or triads 
к, double resonance waves (wave vectors, points or triads). 

The equality J =0 means that interacting waves with have equal 
group velocities. In that case the breakdown of the kinetic equation is 
anticipated: since these waves (or wave packets) travel together for a 
long time, their initial correlations will not break down, and an approxi­
mately Gaussian state will not be achieved. Mathematically, the collision 
integral may have nonintegrable singularities, as distinct from the quite 
usual situation when it has integrablc singularities (Valenzuela and 
Laing, 1972; Hasselmann and Hasselmann, 1985). 

3.3. The set of double resonance points for Rossby waves 

The set of double resonance points forms a proper subset of the (k,l) 
plane. The system of equations with respect to six coordinates of the 
double resonance wave vectors *,* ,* associated with the mode numbers 
p,m,n, consists of the resonance conditions <u012= 0; к =TÎ and A= 0 рпш 012 
(Soomere, 1990; 1992a). Generally, these conditions form a system of alge­
braic equations of the 180-th degree. Also, this system contains three, 

parameters ap,am,&n- As a rule, the described equations have a one-
dimensional set of solutions §2R(P m>n)> called the double resonance 
curve. This curve is symmetrical to both coordinate axes and always con­
tains the 1-axis. For brevity, we shall sometimes speak of the double res­
onance curve, having in mind the set S2R(p,m,n)=S2f.(p,m,n)\{ к — (0,!)}. The 
complete set of the double resonance points for a certain mode p is de­
scribed by 

S2R(p) = US2R(p,m,n). (4) 

Analyzing the double resonance conditions if k$0, it is convenient to 
use  the  pola r  coord ina tes  K ,<p , K Q , < P \  where  1 ^ 2 ^ +к,  #c q  = |  |  ,  = к  ,  к  

(Longuet-Higgins and Gill, 1967). Applying these unknowns, the condition 

'por brevity, we shall speak of interactions of the wave vectors #c, 
meaning wave interactions with these wave vectors. 



- 10 -

'?012= TT is satisfied identically. The set S2„(p,m,n) consists of solutions 
of the system 

(o°*l = дсо012/дкп = doj0l2/ty = 0; *;>0,x>0 (5) 
pom pom 0 psm 0 

and of double resonance points with *0=0. 
The case'* =0 means that к = к =-к 12. This type of double resonance 0 12 Jr 

generally occurs only when an arbitrary wave interacts with the waves re­
presenting the fixed mode (a_=an). The set of such double resonance points 

consists either of the 1-axis and the circle 3*^=4(8 2-a2) (case a2 > a2) or 

only of the 1-axis (case 
Eqs. (5) can be reduced to a certain algebraic equation 0^=0. The 

letter's left-hand side serves as a polynomial of the fifth degree with 

respect to in which the quantities ко,<ЛрЛ-Лв occur jointly to an 
even degree. The polynomial generally has no nontrivial polynomial fac­

tors with rational coefficients. In the case of synoptic motions in the 

oceans the values of the Rossby radii for dissimilar modes normally differ 

greatly, which means that usually we have either a =a^ or a2»«82. In these 

two cases of significant practical interest decomposition of the poly­

nomial is possible. 
In the first case the complete set of double resonance triplets con­

sists either of the i-axis only (a2 sa2), or of the 1-axis, the circle 

SR={/с I 3*2=4(a2-a2)} and a certain curve S(, linking the origin with a 
specified point of the circle mentioned. The described set contains seven 
singularity points: the origin, two crosspoints of the circle SR with the 
1-axis and four coinciding points of this circle and the curve (Figure 
1). The singularity points of the double resonance curve correspond to the 
special case of the double resonance triplets, in which all the group vel­
ocities are the same. 

In the second case one can apparently take *n=0 (or 8^=0) expecting 

that this approximation will not distort the double resonance curve sig­

nificantly. The resulting equation exactly describes the double resonance 

curve for interactions with a barotropic wave in the case of the infinite 

Rossby radius. Here the polynomial has a decomposition Q2=Q3Q4, where 

<^>0, provided #c>0, and Q4 is a cubic polynomial with respect to к*. 
The equation Q =0 describes a unique real branch of the double reson­

ance curve in each quadrant. This branch is placed in a bounded relatively 

close vicinity of the 1-axis, touches it at the origin and links the ori­

gin with a specified point of the I-axis, forming the image of a flower-
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leaf. In each quadrant, it has the shape of a fishhook, containing one 
broken point and having continuous derivatives elsewhere (Figure 2). The 
set S2it(p,m,n) contains three • singularity points: the origin and two 
crosspoints of the described branch with the 1-sxis. 

In the most general case a *a ; a a >0, the equation 0=0 always de-
m в ш D X 

scribes a fishhook-like branch of the curve S^O^.m.n), similar to the one 
just described. In case *p<»m; a

p
sa

n, relatively close to the à-axis there 
exists an oval branch of the double resonance curve, twice crossing this 
axis, and in the case &p=0 going through the origin (Figure 2). Usually 
the set S2R(p,m,n) contains three singularity points lying on the 1-axis. 
Two additional singularity points on the k-axis exist iff a^ > > 0. 

It is of interest to consider the behaviour of the branches of the 
double resonance curve if ^=>8^; ap fixed (Figure 2). There exists only 
the fishhook-like branch on condition that a >a . The oval branch arises 

P n 
in case a -a as a separated singularity point on the k-axis and increases 

0.5 

-1.5 

-1.5*-

Figure 1. The double rçson^nce curve (solid curve) and the locus 
of the other members к š, к 2 of the double resonance triplets for 
Figure 1. The double rçson^nce curve (solid curve) and the locus 1 The the double curve) and r; curve 

the ease a^ = 1, a^=a^ = 1 ; ltlžO. The small circles mark the singu­

larity points of the double resonance curve. 



as the difference between a^ and a^ decreases. If a =>a , one part of the 
oval combines with the upper part of the fishhook and with it forms the 
circle SR. Another pan merges with the lower part of the fishhook and in 
case *D—*m forms the "double" curve S , linking the origin with a spec­
ified point of the circle SR. 

The question concerning all real branches of the double resonance 
curve is not yet completely solved, but probably there exist only the two 
branches described above. 

A significant feature of double resonance triplets is that these 
triads usually contain one double resonance wave and two "normal" waves. 

For these "normal" waves all interactions are simple resonant interactions 

and the kinetic equation is valid for them. 

3.4. Topology of the resonance carves 

The conditions for Rossby wave harmonics forming a resonance triplet 
represent three relations between six quantities; if any two of these are 

specified, the others form a system possessing one degree of freedom. Sup­

posing the vector * is given, these relations determine, generally spea­

king, certain curves G^G^K f); G2=G„(k J, called resonance curves. These 

curves for Rossby waves are usually smooth oval> egg-like or hourglass-

I 7, 
r± 

Figure. 2. The double resonance curve (solid curve) in the domain 
k.lžO and a -0.5, a2 = 1, for the cases: a2=0 (a); a =0.5 (6); 
a2=0.55 (c); a2=0.7 (d)\ a2 = 9.9 (e); a2 — 1 if). The dotted line 

shows the circle acq=0. The small circles mark the singularity 

! joints of the double resonance curve. 
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X -a 

i.-

0.75 

-2 

-X = 0.618 

-2 

X =0.59 

Figure 3. A selection of resonance curves, corresponding to wave 
vectors lying on the double resonance curve and containing singu­
larity point in the case a =a =1, a^=0. The position of the wave 

vector on the double resonance curve (solid line on the central 
picture) is shown using the fine straight lines. The small 
circles mark the separated singularity points of the double reso­
nance curve. 
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like curves (Longuct-Higgins and Gill, 1967, Soomere, 1990). 
A displacement of the wave vector causes only a smooth deformation 

of the resonance curve unless this vector passes through a point for w'lich 
the resonance curve contains a singularity. For a given 1? the curves G1,G2 

remain differentiable everywhere except for the points satisfying 
the condition J= 0; i.e. if double resonance occurs for this wave, the wave 
vectors j?,j?t,j?2 representing a double resonance triplet. The connnexion 
between the double resonance (or, equivalently, validity of the kinetic 
equation) and the occurrence of singularity points of the resonance euros 
is in force in the case of all wave systems with three-wave resonant 
interactions. 

As topological interactions of the resonance curve may occur only 
when the wave vector "ic crosses the double resonance curve, the description 
of the set of double resonance points permits to sketch the topological 
description of the resonance curves and their singularities for Rossby 
waves (Figure 3, Soomere, 1990) 

4. Applicability of the kinetic equation 
4.1. Breakdown of the kinetic equation 

The kinetic equation apparently fails at the points of the double 
resonance curve. The quantity which is usually a continuous function 
of its arguments, may also be infinitesimally small for waves close to the 
double resonance waves. Thus, the kinetic equation may fail in the neigh­

bourhood V of the set S2R(p) of the double resonance points. 

The greater part of the energy alteration of the double resonance 

waves with J? occurs as a result of simple resonant interactions. Gen­

erally double resonance takes place only in the case of interactions with 
=>* =»* 

one or two pairs of specified harmonics with к i, к 2. A breakdown cf the 
kinetic equation occurs owing to the inability of a certain collision in­

tegral 1^ to describe the interactions of vectors к » к with vectors 
к i « a* <2* к „, the other integrals I : | q-m | + | r-n | >0 having generally 
nothing extraordinary. Thus, only a rather limited set of interactions 
cannot be described by the kinetic equation. 

All collision integrals turn into zero provided k=0 because then the 
interactions coefficient С£ш° vanishes. Thus, double resonance of waves 

1 2 
with k=0 has no impact on the total energy exchange and the kinetic equa­
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tion remains valid on the >axis. This conclusion serves as a generaliz­
ation of the result obtained by Reznik (1986) and reflects a well-known 
feature of Rossby waves: triad interactions do not alter the amplitude of 

the zonal flow. 

4.2. Convergence of the collision integrals 

Obviously, the kinetic equation is valid at a specified point ? only 
if all its collision integrals converge in this point. Any wave' system 
governed Ну a kinetic equation conserves the enstrophy of the motion. Con­

sidering the Rossby wave systems with finite enstrophy only, we have 
Fp=o(#c"4), *=*<». It follows from the latter that the functions and 
С'" are bounded for the arbitrary set off parameters p,m,n and the finite 

I j 
. By virtue off this relation collision integrals always converge in 

the neighbourhood off the 1-axis, 
After performing integration over k2,l2 and introducing polar coordi­

nates K,w,KQ,q>' we can conclude that, in the case arbitrary spectrum F, an 
integral I converges iff the integrals 

2 л 
J = Г #c3sin2p'(#C ACCOSÇ>'+a2-a 2 ) | R"1 | dp' (6) 

рпш J о 0 um рпш 
о 

converge for all the branches KQ(p')^0. Here *o(?') is defined as the 
positive solution of the equation P =-16k-1N <y012=0 and 
г ^ pmn рпш pmn 
R =0.25dP / д к .  Obviously, these integrals converge if the quantities 

pmn pmn 0 
к ,R"1 are bounded. Thus, all collision integrals describing the interac­
tion between waves with a sam=an (in particular, the interaction integral 
of the barotropic kinetic equation) converge. Also, all collision inte­

grals converge for all "simple" points. 
For the particular case of double resonance points we have 

P (p')-dR (<р')/дк =dP (ç?')/dp'=0 for a specified <p'. The function 
pmn ' pmn 0 pmn .. a 

R (if defined in the vicinity of the point <p') generally satisfies the 

relation R аф'-ф' if <р'=*<р\ therefore the collision integral (if it 
exist» as an improper integral) can diverge for double resonance points 
with I к I ž<5>0. Also, this integral may not exist for certain double reson­

ance points. For example, there are several cases when the resonance curve 
is defined for the double resonance value <p' only, but the integrand in 

(6) is infinite in this point, and the actual value of the integral re­

mains undefined. 
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4.3. Energy alteration of the double resonance waves 

Reznik (1986) argued that the barotropic kinetic equation remains 
correct in the vicinity of the 1-axis. Estimating the energy balance with­
in "almost" double resonance triplets (i.e. the vector к lying close to 
the 1-axis, J«l), it was shown that the resonant interactions mostly lead 

to energy exchange between waves with ^j»*2 and have practically no impact 
on the energy of the wave with It. Thus, the amplitude of an "almost" 

double resonance wave alters mainly owing to simple resonant interactions. 
On the other hand, the contribution to the energy exchange rate of an "al­
most* double resonance wave due to the interactions within the "almost" 

double resonance triplets, computed by formally applying the kinetic equa­

tion, is infinitesimally small. Thus, the kinetic equation remain* correct 
in the vicinity of the 1-axis in the sense that the error of computing the 

energy exchange rate for waves with | k | «1 is apparently negligible as com­

pared to the total energy exchange rate of these waves. Below we shall 

treat the correctness of the kinetic equation and the collision integrals 
just in this sense. 

An analogous speculation holds true in the case of interactions be­

tween harmonics representing arbitrary modes, and the kinetic equation for 

baroclinic Rossby waves is also valid in the vicinity of the 1-axis. 

Mathematically, these arguments reflect the fact that the collision 

integral converges in the vicinity of the 1-axis and the energy exchange 

rate for "almost" double resonance waves computed by formally applying the 

kinetic equation is of the same order (i.e. negligible) as the actual 

value. 

The integral (6) converges for double resonance points lying on 

either of the coordinate axes, or for double resonance vectors = The 

former case corresponds to the interaction of collinear wave vectors.. The 

latter occurs in the case of the branch of the double resonance curve de­

scribed by Зк2=4(a^-a^), provided. ap>am=a
n- The kinetic equation remains 

valid in the vicinities of both the above-mentioned sets of double reson­

ance points (in particular, in the vicinities of all the singularity 

points of the double resonance curve) and apparently fails in certain vi­

cinity of the rest of the set 8ж(р). 

4.4. Double resonance and total energy alteration 

Let us apply formally the kinetic equation to describe the temporal 
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evolution of the whole Rossby wave field. A certain collision integral 
fails in the vicinity У^=Утвд\У |̂\У^ of the curve S2R(p,m,n), where 0*1 

is the width of the vicinity, V^ denotes the vicinity of the coordinate 
axes, У. - the vicinity of the circle 3*2=4<a2-a2) if a -a or V« = e if 

02 ' m p m n 02 

*e**n. This integral generally overestimates the absolute value of the en­

ergy exchange rate for "almost" double resonance triplets The maximum er­
ror due to its inability to describe the energy exchange rate of the waves 
with 1? =(k,p)EVj can be estimated roughly as 

2 я 2 я 

1Г" lt"4J J I I d»'<l*dy s м J J ЦИ.1 dfd*d»,<7) 
v , o  v , o  

where M<00.  It can be shown that R aip-çf2 or R aip-çf3 if <p*+<p on А А рПШ рПШ 
condition that the point (#c,p) is not a singularity point of the double 
resonance curve or does not lie on the k-axis. After performing the inte­
gration in (7) over <p first, it is easy to verify that 1^™° < 00 and 
liml^mn=0; <$-*0. This result essentially depends on correctness of the ki­
netic equation in the vicinity of the singularity points of the double 

resonance curve. 
The latter relations mean that the error caused by the inability of 

the kinetic equation to describe the energy exchange of "almost" double 

resonance Rossby waves is in a certain sense small in comparison with the 

integral intensity of nonlinear interactions. Accordingly, it can be sup­

posed that during the numerical solution of the kinetic equation for 

Rossby waves we may disregard the evolution of the spectrum in the vicin­

ity of S^, expecting that the arising inaccuracy will not essentially 

distort the whole spectrum. 
Thorough understanding of the geometry of the set of the -double res­

onance points and triplets is necessary to establish the applicability of 

the kinetic equation in the case of other wave systems. This equation is 

apparently applicable in the case of arbitrary waves if (1) the length of 

the double resonance curve (more precisely, of that branch of the double 

resonance curve in the vicinity of which the kinetic equation fails) is 

finite, (2) the number of the double resonance triplets corresponding to 

each double resonance point is limited, (3) there exist no singularity 

points of the double resonance curve, or the kinetic equation remains cor­

rect in the vicinity of these points. 



5. Stationary and equilibrium solutions 

5.1. Conservation laws and irreversibility 

The wave systems governed by a kinetic equation conserve their ene­
rgy, enstrophy and wave momentum. The idea of proving that within the 

bounds of the kinetic equation, used widely in proving the other asser­
tions given below, is as follows (Soomere, 1983). The interaction coeffi­
cients of the barotropic kinetic equation satisfy the Jacobi identity 
CK K lo>Ot)=CKK /со(к2)=CKK ItoOc t)=h on the hypersurfsce <u01"=0; *012=^ 

12 12 ^ 
(Kenyon, 1964). Multiplying (2) by an arbitrary function S(#c,r), inte­
grating it over /с and adding the resultant equation to the equations ob­
tained from the latter by means of substitutions к <==» к ^~k <==* *2, we obtain: 

J S(K ,T)--— = 8^[j^S(K,T)<uCK)+S(Ki,T)<y(Ki)+S(K2,T)ti>(K2)j X 

Г со(к) со(к ) о>(к )] b 2FF F 
X + + — Ô((ûm)â^)dtd^n  (8)  

F F i У 2 J 3N on 12 

The latter integral vanishes if the expression in the small square 
brackets equals the argument of a delt?. function. The choices S=const; 
S=const(K2+a2) and S=constl(K2+a2)/k yield E=jFd* = const; 
Y=jo^+a^Fd* = const or L=|lk"1(#c2+a2)FdK = const, respectively. 

Furthermore, by taking S=F' we get jF"'(dF/DT)d к =d(J InFd к )/držO. The 
latter inequality serves as an analogy to Boltzmann's H-tbeorem and proves 
the irreversibility of the spectrum changes; the quantity H=JlnFd* playing 
the role of entropy. Analogous results hold true also for the baruclinic 
kinetic equation (Kozlov, Reznik and Soomere, 1987). 

5.2. Differeutiable thermodynamicaJEy equilibrium solutions 

Thermodynamically equilibrium solutions of the kinetic equation are 
defined as a subclass of its stationary solutions, satisfying the condi­
tion dH/dT=0. In principle, Eq. (2) has at least two classes of stationary 

solutions. The first consists of positively defined cpectra satisfying the 
system of equations о>(к)¥[ +o)(Tc ()F '+<y(K2)F2'=0; <y012=0; ̂ 12~0. The sec­

ond class consists of spectra in which the product F.F^ is nonzero unly at 

points к ,'к , whose coordinates satisfy the condition С =0. 
i J 



- 19 -

There exists only one family of differentiable solutions 
F^Cp+qx2)"1 in tke first class, with p>0; qžO as arbitrary constants 
(Reznik, 1984a). These solutions are linearly stable with respect to small 
disturbances. It is of importance that these spectra are isotropic and co­

incide with the well-known equilibrium spectrum of 2D isotropic turbu­
lence. 

As for the two-layer model, the only family of differentiable equi­
librium solutions has the following form (Kozlov, Reznik and Soomere, 
1987): Fwi=îp+q(x?+a^)]"1; =[p+qt*2+a2)]"1. These solutions are lin­

early stable with respect to small disturbances. The arbitrary constants 
p>0; qfcO are the same for both spectrum components. Thus, the final state 
of the spectral evolution of baroclinic Rossby wave systems must be essen­

tially baroclinic, and no decaying of the higher mode(i) should be ex­
pected. Although in case ao=0 there exists a purely barotropic solution 

(G*C) of the baroclinic kinetic equation, this solution is apparently un­
stable. 

5.3. Generalized equilibrium solutions 

One of the most distinctive features of the evolution of Rossby waves 

is a relatively intensive energy transfer to the zonal component of mo­

tion, i.e. mainly to the relatively close vicinity of the 1-axis. As will 

be seen below, this transfer takes place irrespective of the initial form 

of the spectrum and gives rise to essentially anisotropic spectra. This 

feature contradict» the fact that the only possible equilibrium-state sol­
ution of the kinetic equation in the space of functions differentiable in 

the usual sense is isotropic. Reznik and Soomere (1983b) have introduced 

solutions from a wider class of functions, including Dirac delta func­

tions, which they called generalized spectra. 

The simplest generalized solution of the kinetic equation is 

Fz=f(l)J(k), where f(l)S;0 is an arbitrary continuous function. This spec­

trum corresponds to a stationary rectilinear zonal motion and is stable 

with respect to arbitrary perturbations. 
The function Г^=Г(1)5(к)4 Ftf, equal to the sum of an arbitrary dif­

ferentiable symmetric [Fd(-k,l)=Fd(k,l)] solution Fd of Eq. (2) and of the 

spectrum of a zonsl current F , also satisfies the kinetic equation. The 

law of the increasing of the entropy Hd=J lnF^d/с of the non-zonal part of 
the motion holds true, law guaranteeing that the spectral evolution of 

this wave system is also irreversible, and will tend to an equilibrium 
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state. The letter is described by the anisotropic spectrum 
f(I)J(k)+(p+qtc3)"1; p>0; qžO, consisting of the sum of an arbitrary zonal 
flow and of the differentiable equilibrium spectrum. This spcctrum is also 
linearly stable with respect to small perturbations. Therefore, an inten­

sive energy transfer to the vicinity of the vertical axis by no means con­
tradicts the fact that the system tends towards the thermodynamics! equi­
librium. However, the distribution of energy between the zonal and non-
zonal components as well as the shape of the function f(l) depends on the 

initial state. 
All the results presented in this section have been generalized for 

the case of the baroclinic kinetic equatior (3) (Kozlov, Reznik und 
Soomere, 1987). The anisotropic generalized thermodynamically equilibrium 
spectrum, linearly stable with respect to small perturbations, is ex­
pressed by F =Fz+Feq=f(l)d(k)+[p+q(K2+a^-1]; G^=Gzd+Geq=f(I)<$(k)+ 

+ [P+<ï(*2+8q) 1; P>0; qžO. The continuous functions f(l), g(l) repre­
senting the barotropic and baroclinic parts of the zonal flow are indepen­
dent here, whereas the smooth .parts of the spectra are related. 

5.4. Generalized stationary solutions 

There exists a much wider class of generalized solutions of the kin­

etic equation, consisting of spectra in which the product F.F is nonzero 
only at points к.,к., whose coordinates satisfy the condition 
Ckk=(V^X*K)/2--0 (Soomere, 1987). All such spectra are concen­

trated either on an arbitrary line passing through the origin or on an ar­

bitrary circle centered at the origin, i.e. spectra of the forms 
F(1)=f(K)J(pk+ql) or F(2)=f(i^)<5(*-r), f,r^0. The spectrum F(1> represents 

a straight line flow on the /?-plane; the spectrum F(2) - a system of waves 
of equal length. The existence of these solutions to the kinetic equation 

results from a well-known property of Rossby wave triad interactions, 

namely, that neither the waves with collinear wave vectors nor the waves 

of equal length exchange energy between each other. But in physical Venns, 

the existence of the solutions F(1) with q^O is not entirely comprehen­

sible, because nonzonal straight flow does not satisfy the initial equa­
tion (1) for Rossby waves (Kamenkovich and Reznik, 1978). 

Analysis of the spectra F(')=F(1)+F • F^2)=F(2)+F . where F is an d d d d d 
arbitrary continuous function, shows that the evolution of the spectrum F 

z2X d 

is irreversible. The spectra F* ' with feO cannot be equilibrium solutions 
of the kinetic equation. The spectrum F l̂) represents an equilibrium state 
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only when F<0=F . 
d req 

Physically, the existence of a unique equilibrium spectrum F^ among 
the solutions of the kinetic equation F*l),F*2) i» a fine expression of 
the "equilibrium" between the impact of the /?-effect and weak nonlineari­
ty. The presence of nonlinearity results in an expansion of the initially 
narrow spectral peaks, causing the spectra to tend towards the isotropic 

equilibrium state. But as a result of the />-effect, the zonal component of 
motion is simultaneously intensified to a certain degree. The "interac­
tion" of these two factors makes possible the existence of the anisotropic 

equilibrium spectra F . 
The results described in this section have also been generalized for 

the case of the baroclinic kinetic equation (3). 

6. Numerical method for solving the Cauchy problem 
for the kinetic equation 

6.1. Principles of the numerical method: barotropic case 

The problem consists in solving the Cauchy problem for the nonlinear 

integro-differential equation (2) in the infinité domain (Soomere, 1983; 

Reznik and Soomere, 1983a; 1984a,b). It is convenient to reduce the delta 

functions of the collision integral I , by first performing the integra­

tion over k2,l2 and then introducing the polar coordinates к,<р,к(Sec­

tion 3.2). After performing the integration over к , the collision inte­

grals are reduced to certain single integrals over a bounded interval. 

The function F is calculated at the nodes of a rectangular grid 

covering the bounded region Q of the k, l  plane.  The values of  F(  к j),F( K 2) 
at points Kf,K2, not coinciding with the grid nodes, are interpolated be­

tween the nodes adjacent to these points. Collision integrals are approxi­

mated by using the Gauss' quadrature formula. 

The resulting system of ordinary differential equations is not closed 

because in any finite region Q there exist vectors к , which interact with 
vectors lying outside Q. Two methods were used in order to handle such in­

teractions. According to the first method, we assumed F( к ) = 0 outside the 
region Й (scheme A). Physically, this is equivalent to the introduction of 
infinite viscosity outside of Q. Since the Rossby wave spectrum F=o(/c-4); 
к=»оо, in the event of a sufficiently large region Q, the error introduced 

by this truncation is very small. Another truncation scheme was also used, 
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consisting in completely ignoring all interactions involving vectors lying 
outside Q (scheme B). This method is equivalent to replacing the infinite 
region of integration in Eq. (2) by a finite region Q(k {)xQ(TZ J. It is of 
importance that all conservation laws of the kinetic equation (2) remain 
in force in this approximation. 

The greatest difficulty in the development of the numerical scheme 
was the proper choice of the grid size, tüe interpolation method, the 
quadrature and the finite-difference representation of the time deriva­
tive, all of which together determine the operational effectiveness of the 
scheme. The listed parameters were optimized according to the demand that 
the rms. error of the calculations must be less than 1% per unit of time 
(Soomere, 1983). Most of the calculations were carried out for the nodes 
of a 97x114 rectangular grid covering the region û={ks4}. The grid has a 
finer resolution in the vicinity of the 1-axis. The collision integral was 
replaced by the Gauss' quadrature formula with 24 nodes in the segment 

[0,7г]. A double linear interpolation method was used. The resulting system 
of ordinary differential equations was solved by using an implicit second-
order Adams' scheme. 

A check was made on the proper operation of the scheme from the be­
haviour of the conservation integrals. Still another property that permits 

judging the operational correctness of the scheme is the average modulus 
<к> = f/cFd*ZE of the wave vectors. Analogically with 2D turbulence, the 
quantity <к> should decrease with time, as noted in all cases observed. 
Every time step of this numerical scheme takes about 15 minutes of the CPU 
time of EC-1022 (IBM 360). The evolution of more than ten initial spectra 
was investigated during maximally 1000 time steps. 

6.2. Specificity of the numerical scheme in the baroclinic case 

The numerical scheme for solving the Cauchy problem for the baro­

clinic kinetic equation (3) is rather similar to the analogous scheme for 

the barotropic case (Soomere and Rannat, 1990; 1991) and we shall describe 
only its specific features. 

Since the density of water masses in the Earth's oceans varies insig­

nificantly, for practical purposes in Eqs. (3) it is allowed to disregard 
the quantities of the order of the relative density alteration. In that 
case the expressions for the coefficients (Kozlov, Reznik and Soomere, 
1987) are greatly simplified. In particular, we obtain Iooi = Ioio = I,oo=0, 

which reflects the fact that the interactions between twe barotropic and 
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one baroclinic Rossby wave are much less intensive than other resonant in­
teractions. 

The boundary between the layers is the main thermocline, usually lo­
cated at a depth of roughly 1 kilometer (hp. The mean depth of the ocean 
(I^+h ) is approximately 5 kilometers. With these values, the kinetic 
equation contains factors Q^=(h2/hi±l)2. It is convenient to remove these 
coefficients by defining the new time scale T=tQ^. By replacing Fq=»F and 
Fi-*G=a2FJ, we obtain: 

dF dG 
— - — - 8л(1-а,11и+16п1|10, (9) 

where asli /h and the kernels of the collision integrals are modified in 
an obvious manner. Eqs. (9) have similar conservation laws as those of the 
full equations (3). Also, the H-theorem dH/dT=d(JlnFGd к )/dTžO is in force 
for Eqs. (9). Thus, in this approximation all the main features of the 
original wave system hold true. 

Each collision integral is reduced to a single integral as described 
in the previous section. Integrals and Im are identical (to within 
the values of the parameters with the interaction integrals of the 
barotropic kinetic equation. In computing the integral IQu one must take 
into account that some of the barotropic waves cannot interact with the 
baroclinic waves at all. The integrands of I and IU3 may contain non-
integrable singularities at the double resonance points. The actual behav­

iour of the spectrum in the vicinity of the double resonance curve is ne­

glected, and its value is estimated after each time step on the basis of 

its adjacent values. Only a modification of the scheme В is used in the 
numerical simulations, i.e. the interactions with wave vectors lying out­
side the computational area are neglected. As in the barotropic case, the 

mean error of the calculations is less than 1% per unit of time T. Every 

time step of the described numerical scheme takes about 40 minutes of the 

CPU time of PC ATZSMHz. The evolution of about 10 initial spectra is in­

vestigated during 200-350 time steps. 

7. Numerical simulations 

7.1. Evolution of barotropic wave systems: amplification of the zonal 

component 

The numerical simulations of the spectral evolution of barotropic 
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weakly nonlinear Rossby wave systems are mostly performed with the scaling 
a= 1 (Soomere and Reznik, 1984a,b, Soomere, 1983). The results are reviewed 
in some detail by Reznik (1986). 

An interesting coexistence of two tendencies was established in all 
numerical experiments. First, a portion of the energy is concentrated near 
the 1-axis to form a well<lefined peak in the spectrum, thereby enhancing 
the zonal component of the flow. Second, in a region sufficiently far from 
the 1-axis the spectrum tends to become isotropic. However, the intensity 
of the peak referred to depends crucially on the initial conditions. 

The phenomenon of reinforcement of the zonal component of motion is 
analogous to the well-known phenomenon of negative viscosity, consisting 
in energy transfer from turbulent fluctuations to an average state- Ac­
tually, energy transfer to the wave vectors of almost meridional orien­
tation means the existence of an energy flow from motion components which 

change rapidly in time to slowly changing components here. This phenomenon 
is created only by the /?-effect and nonlinearity, and, in our opinion, is 
of fundamental significance, since it points to the possibility of energy 
transfer from synoptic eddies to the average flows. This mechanism may 

also play a direct role in the formation and maintenance of zonal currents 
in the atmospheres of the Earth and other planets, and also of the ring 
currents occurring ш plasma (Hasegawa, Maclennan and Kodama 1979). 

Beginning at some instant, something like saturation of the zonal 
component of the motion occurs. The rest of the energy is distributed more 
or less isotropically over the wave vectors. As the frequency of the 
Rossby waves <y»k, a rather interesting "singular" equilibrium is notice­

able between the slowly-changing, almost zonal component and the rapidly-

changing component of the motion responsible for the isotropic portion of 
the spectrum. 

7.2. Evolution of barotropic wave systems: general features 

The evolution of an asymmetric spectrum was also investigated. The 

initial asymmetry quite rapidly tends towards a symmetrical state. This 

tendency is closely related to the effect of the generation of the nearly 

zonal current. Nevertheless, by virtue of the maintenance of the meridi­

onal component of the momentum, complete symmetrization of the spectrum is 
not possible. 

Some of the calculations were repeated in the so-called "rigid lid" 

approximation (i.e. a=0). The introduction of this approximation does not 
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change tbe results qualitatively, but only increases the rate of energy 
transfer to some extent. 

Most of the calculations were carried out in parallel, using schemes 
A and B. This permits the evaluation of tbe effect of weak dissipation on 
the nonlinear evolution of the spectrum. Dissipation has almost no effect 
(during the time of calculation) on the energy distribution for #c ~ 1 (i.e. 
in those regions where energy differs considerably from zero) and becomes 
significant only for large к. Although the dissipation itself is iso­
tropic, its effect is highly anisotropic, leading to a damping of the 

fairly short wave components, whose propagation direction is far from mer­

idional. The intensity of the short-wave components, propagating primarily 
along a meridian, remains practically unchanged. Thus, dissipation is an 

additional factor enhancing the concentration of energy near the 1-axis. 

7.3. Numerical simulations versus thermodynamics 

The tendency of the Rossby wave system to evolve towards a thermody-

namically equilibrium state was investigated on the basis of the integral 

intensity of the interactions I=J | OF/дт | d* as well as on the behaviour of 
the entropy and its time derivative (in simulations by using scheme В 
only). The evolution of an initial spectrum was computed normally unless 
the quantity I decreased 10 times as compared to its value at т=0. Appar­
ently by that time the wave system had reached a nearly "final" state of 

evolution. During the computational time, the entropy derivative of the 

wave system decreases by three to live orders of magnitude. Accordingly, 

the entropy at the origin increases very rapidly, and it finally becomes 

nearly constant. Such behaviour of the entropy and its derivative makes it 

possible to conclude that the system in question actually approaches the 

thermodynamical equilibrium. From the general picture of the evolution de­

scribed in tlie preceding section it follows that the spectrum of weakly 

nonlinear Rossby waves evidently tends to a distribution consisting of the 

sum of a delta-shaped spectrum corresponding to the zonal flow and an iso­

tropic spectrum (Reznik and Soomere, 1984b). 

7.4. Evolution of baroclink wave systems 

Numerical experiments with the baroclinic kinetic equation are per­

formed mostly in cooperation with K.Raanat (Ph.D. student). Preliminary 

results of these experiments are published by Soomere and Rannat 

(1990,1991); a review of the results is in preparation. The main con-
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elusions of the experiments have also been presented at several meetings 
and lectures. 

Let us discuss in some detail the evolution of the initial spectra 
f(k,l)=posin4yexp(-K4); g(k,I)=P,sin4yexp(-ic4) in case aQ=0; a =1; a=0.2. 
The values of pQ,p, are selected so that the full energy of the system E= 1 
at T=0. These initial conditions correspond to the system of synoptic mo­

tions in which the zonal component of motion is predominating. Of interest 
is the behaviour of both the spectra and their time derivatives (Figures 
4,5). At the moment T=0 the field 9F/9T is divided into four parts by the 
curves 9F/9T=0; these parts are marked with Roman numbers I-TV. There are 

two areas of energy inflow I,HI near the I- and к-axes, respectively, and 
two areas of energy outflow П JV. The absolute values | 9F/3T | in area IV 
are at least by an order smaller than the analogous values in area П, and 
this area does not play any essential role in the total energy transfer. 
Physically, there exist two directions of energy redistribution: into an 
almost-zonal flow with к ~ 1 and into an almost-meridional flow, which are 
generated by the rest of the wave field. In the course of time areas 1ДП 
as well as the values of 9F/9T in these areas decrease and relatively far 
from the origin there arises a new inflow area V. Area П increases to 
some extent and stretches out in the direction of the 1-axis. 

In the case of the baroclinic component G of the motion we see a 
somewhat different distribution of its time derivative. At T=0 there is an 
area of intensive energy inflow I in the lower half of the area repre­
sented in Figure 5, and an area of energy outflow П, approximately of the 
same size as area I. Area in of weak outflow in the close vicinity of the 
1-axis plays a negligible role in the total energy redistribution. Ibis 
distribution of dG/dT indicates that only the almost -meridional baroclinic 
flow will be generated. In the course of time the outflow area decreases 
and stretches out in the direction of the 1-axis and, in the end, divides 
the inflow area into two parts I and TV. By the moment T=2.5 the integral 
intensity ol nonlinear interactions I=j( | dF/dT | +a | dG/dT | )d* has decreased 
10 times as compared to its value at T=0. This feature allows us to con­
clude that the distributions of F,G at T=2.5 are quite close to the final 
state of the evolution. 

In conformity with the distribution of dF/dT, a narrow and high baro-

tropic spectral peak arises in the very near vicinity of the 1-axis. The 
peak, corresponding to the almost-zonal flow, appears to be much higher 

and nearer to the 1-axis as compared to the pure barotropic case. Physi-
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Figure 4. Instantaneous fields of the spectrum F (left column) of the baro-
tropic mode and its time derivative dF/dT (right column) at the time moments 
T=0; 0.25; 1; 2.5. Distance between main isolines (continuous lines) is 0.1 
(F) or +0.05 (dF/dT). Area 0=sk,I:s2 is represented in every box. Dotted line 
marks the curves dF/dT=0. The energy inflow and outflow areas are marked by 
symbols " + " and respectively. 
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Figure 5. Instantaneous fields of the spectrum G (left column) of the baro­
clinic mode and its time derivative dG/dT (right column) at the time moments 
T=0; 0.25; 1; 2.5. Distance between main isolines (continuous lines) is 0.1 
(F) or +0.05 (dF/dT). Area 0sk,ls2 is represented in every box. Dotted line 
marks the curves dG/dT=0. The energy inflow and outflow areas are marked by 
symbols " + " and respectively. 
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cally, this means that a quite powerful practically zonal flow is gener­
ated by the nonlinear interactions. In the area, far from this axis, the 
spectrum F apparently tends towards some isotropic state. Again, a singu­
lar equilibrium is established between the nearly stationary zonal compo­
nent and the rapidly-changing component of the motion. 

The zonal component cf the baroclinic part of the motion does not in­
crease significantly and the whole "final* spectrum is nearly isotropic. 
Further, there occurs no significant energy exchange between the baro-
tropic and baroclinic components during the whole computational period. 

This result is in good agreement with the theoretical prediction con­
cerning the essential baroclinicity of the final state of the evolution. 

The main features of the spectral evolution of the other initial 
spectra are qualitatively similar to these described above and may be sum­

marized as follows. (1) In the course of time an intensive almost-zonal 

nearly barotropic flow arises. The peak in the spectrum of the barotropic 

mode is significantly higher and nearer to the 1-axis than in the purely 
barotropic case. This quality suggests that the baroclinic mode may play 

the roie of a "catalyst" in amplifying the effect of negative viscosity 

and speeding up the generation of large-scale zonal barotropic flows in 

the ocean. Hence, the existence of more powerful currents may be antici­

pated in relatively well-stratified regions of oceans. (2) Although the 

zonal component of the baroclinic motions has increased to some extent in 

several experiments, the relative height of the spectral peak near the 
1-axis remains essentially lower than the analogous peak in the spectrum 

of the barotropic mode. Thus, the almost-zonal flow generated by weakly 

nonlinear interactions of Rossby waves torns out to be practically baro­

tropic. (3) In the areas fax from the 1-axis the sj<ectra of both modes fi­

nally become almost isotropic. (4) During all our numerical experiments 

the full spectrum of the motion retains its essentially baroclinic nature. 

The last two features suggest that the effect of the barotropization of 

synoptic motions observed in oceans mainly results from the formation of 

intensive large-scale almost-zonal practically barotropic flows. However, 

the field of relatively small-scale synoptic motions may retain its depth-

dependant nature. The listed features also indicate that an arbitrary in­

itial wave system will apparently tend to the anisotropic thermodynami-

cally equilibrium state F , G 
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8. Summary 

The main results of the investigations presented are the following: 
(1) the kinetic equation for weakly nonlinear Rossby waves has been 

generalized for the baroclinic case within the bounds of the two-layer 
model; 

(2) a theory of stationary and thermodynamically equilibrium smooth 
and generalized solutions of the kinetic equation has been worked out; 

(3) the geometrical conditions for Rossby wave harmonics to form a 
double resonance triplet are studied in detail and the set of double res­
onance waves as well as the topology ot the resonance curves is described; 

(4) the applicability of the kinetic equation for a wave system with 
doubie resonance is discussed and the correctness of this equation for 
baroclinic Rossby waves has keen established; 

(5) an effective numerical method for solving the Cauchy problem for 
the kinetic equation has been constructed; 

(6) a rather detailed picture of the spectral evolution of barotropic 

Rossby wave systems has been given; 
(7) the general features of the evolution of baroclinic wave systems 

within the bounds of the two-layer model have been explained. 
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Abstract 

The subject of the thesis is the kinetic theory of stochastic weakly 
nonlinear wave systems, mostly on the example of Rossby waves. The main 
object of the investigations is the kinetic equation - a nonlinear 
integro-diffafential equation (similar to the Bcltzmann equation) 
describing the slow temporal evolution of the spectral density of the 
energy (spectrum) of the wave system. 

The kinetic equation for baroclinic Ros&by waves within the bounds of 
two-layer model is derived. The existence and uniqueness of the smooth and 
generalized stationary a» well as thermodynamically equilibrium solutions 
of this equation and the stability of these solutions is established. The 

topology of the set of double resonance points for Rossby waves is studied 
in some detail. *!he correctness of the kinetic equation for wave systems 
with double resonance is discussed and its applicability in ca?e of Rossby 
waves is proved. 

An effective numerical method far solving the Cauchy problem for 
barotropic and the simplest baroclinic (including only barotropic and the 
first baroclinic modes) kinetic equation is proposed. A fairly detailed 

picture of the main features of the free spectral evolution (without 

energy sources and sinks) of barotropic and two-modal Rossby wave systems 

is given on the basis et the computer simulations with the mentioned 
numerical method. 



Rossby lainete kineetiline teooria 

Annotatsioon 

Vaitekiijas käsitletakse pideva energnspektriga nõrgalt mitte­
lineaarsete atohhastiliste lainesusteemide teooria kusimusi peamiselt 
Rossby lainete näitel (Rossby larned e. planetaarsed lained kujutavad 
endast teatavaid lainelisi liikumisi õhukeses vedelikukihis pöörleva kera 
pinnal). Selliste lainesusteemide energiaspektri aeglast evolutsiooni 
kiijeldab nn. kineetiline võrrand (teatav mittelineaarne integro 
diferentsiaal võrrand; Boltzmanni võrrandi analoog). Käsitletakse nii baro-
troopset (vedeiikukihti vaadeldakse vertikaalsuunas homogeensena) kui ka 
barokliinset (stratifitseeritud vedeliku kiht) juhtu. 

Toos tuletatakse kineetiline võrrand b.irokliinsete Rossby lainete 
jaoks ookeani (atmasfaari) kahekihilise mudeli raames. Tõestatakse kinee-
tilise võrrandi statsionaarsete ja tasakaaluliste lahendite (sh. üldista­
tud lahendite) eksisteerimine, uhesus ning stabiilsus teatavas üldistatud 
funktsioonide klassis. Demonstreeritakse Rossby lainete topeltrcsonantsi 
ning esitatakse resonantsi- ning topeltresonantsikõverate geomeetria ning 
topoloogia põhjalik kirjeldus. Uuritakse kineetilise võrrandi kasutatavust 
topeltresonantsiga lainesusteemide puhul ning tõestatakse selle võrrandi 
korrektsus baroküinsrte Rossby lainete puhul. 

Vaitekiija arvutuslikus »sas konstrueeritakse efektiivne arvutus? keem 

Cauchy ülesande lahendamiseks kineetilise võrrandi jaoks ube- ja kahekihi­
lise ookeani (axmosfaari) mudeli puhul ning esitatakse nii barotroopsete 
kui ka barokliinsete Rossby lainete süsteemide vaba evolutsiooni põhijoon­
te detailne kirjeldus. 
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