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ABSTRACT

In the field of image processing, image resolution enhancement plays a foremost
role. Resolution enhancement provides a clearer image with a higher resolution.
So far, the enhancement technique is widely applied in various photogrammetric
images. However, due to the restriction of the CCD sensors, the number of pixels
in the sensor is not sufficient in some cases. The image quality is affected and re-
stricted. To solve this problem, the enhancement techniques are expended mainly
in two categories: one is a hardware solution; another is a software solution. In
this thesis, an investigation has been done on both hardware and software solu-
tions.

First, an adaptive liquid lens is proposed [98] as well as two passive autofocusing
systems [99, 100] for the hardware side, due to a lack of sufficient room in cell
phones or small cameras that allow users to move a rigid lens in a range of focal
lengths. For this purpose, a new Dielectric Elastomer Stack Actuator autofocus
liquid lens is designed and fabricated that shows more advantages in comparison
to the available dielectric elastomer base liquid lens.

Second, in the software approach, a new algorithm for the enhancement of satel-
lite images [106], new interpolation kernels to improve resolution [104] and a
new dictionary based Super resolution (SR) algorithm are proposed in order to
enhance the resolution of images. The quantitative and qualitative analyses of
the experimental results show the superiority of the proposed techniques over the
conventional and state-of-the-art methods.

Third, an investigation has been done on the advantages of using SR algorithms in
other areas of computer vision, such as automatic action recognition, face recog-
nition, and pain detection.
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CHAPTER 1

INTRODUCTION

The resolution of any image is an important property of the image which directly
describes the expected amount of details that can be represented through the im-
age. This is, however, limited to the capabilities of the image acquisition device,
mainly the imaging sensor [74]. The size of this sensor defines the available spa-
tial resolution of produced images. Thus, for increasing the spatial resolution of
an image, one could increase the sensor density by reducing the spaces allocated
to each pixel on the sensor, or simply by increasing the size of the sensor. The
latter solution is expensive and slows down the imaging process, while the for-
mer solution decreases the amount of light incident on each sensor, which in turn
increases the shot noise [74].

Applying various signal processing techniques is another approach for en-
hancing the resolution of an image. One of the famous techniques for this pur-
pose is super-resolution (SR) [79, 24]. The basic idea behind SR methods is to
recover/estimate one or more high-resolution (HR) image(s) from one or more
low-resolution (LR) images [128, 95, 102]. Huang and Tsai [43] as pioneers of
SR proposed a method for improving the spatial resolution of satellite images of
earth, where a large set of translated images of the same scene is available. They
showed that SR, using multiple offset images of the same scene and a proper reg-
istration, can produce better HR images compared to spline interpolation. Since
then, SR methods have become common practice for many applications in differ-
ent fields, such as remote sensing [66, 101]; surveillance video [20, 67]; medical
imaging, such as ultrasound, magnetic resonance imaging (MRI), and computer-
ized tomography (CT) scan [47, 70, 71, 82]; optical character recognition (OCR)
problems or face recognition [16, 38, 114, 36, 77].

Different techniques have been developed for performing SR [79]. One such tech-
nique is based on sparse representation.

On the other hand, there is not enough room in cell phones or small cameras that
allow users to move a rigid lens in a range of focal lengths. To solve the prob-
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lem, an adaptive liquid lens [60] is proposed that enables small cameras to focus
without needing any extra room. However, traditional approaches, which use an
electric current to change the surface shape of a liquid, require a lot of power.
Auto-focus liquid lenses are divided into two primary types [61, 41]: the reflec-
tive type that is used as a variable mirror, as applied in reflector telescopes, and
the transmissive type that is based on an active change of the convex/concave lens
shape over immiscible fluids with a different refractive index.

One or more fluids are used to make an infinitely variable liquid lens without any
moving parts by controlling the meniscus shape, i.e. the shape of the liquid/liquid
or liquid/air interface. The fluids could be manipulated mechanically and elec-
trically, which takes advantage of the surface tension of the liquid [126]. In the
mechanical method, a mechanical displacement of surfaces is used in order to
adjust the shape of the lens [33, 84], while electrowetting [13, 109] is used to
change the surface tension in the electric method. Liquid lenses are suitable for
some applications, such as endoscopic medical imaging [19], fiber-optic telecom-
munication systems or micro cameras, due to the boundary between the two fluids
which forms an extremely regular and smooth surface [61]. In this work, we de-
velop a Dielectric Elastomer Actuator (DEA) liquid lens with a passive auto-focus
system.

Overall, we are contributing to the field of optics and image SR by introducing
the following new steps:

* Design and fabrication of a novel dielectric elastomer stack actuator auto-
focus liquid lens with a new design that shows more advantages compared
to available dielectric elastomer base liquid lenses.

* A new algorithm for the denoising and enhancement of satellite images.

* Introducing new interpolation kernels of Lanczos and sicexrp and a «
blending algorithm to improve resolution in SR algorithms. These kernels
are tested on two state-of-the-art SR algorithms and show a better perfor-
mance compare with using normal bicubic kernel.

* A novel low complexity dictionary based SR algorithm which shows a bet-
ter performance when compared with the state-of-the-art SR algorithms.

* Demonstration of advantages of using SR algorithms in other areas such as
action recognition and face recognition and pain detection.

The rest of this thesis is organized as follows. A literature review on available
liquid lenses, as well as a detailed overview of the proposed auto-focused liquid
lens, are presented in Chapter 2. Chapter 3 contains a comprehensive literature
review of SR algorithms. All proposed SR algorithms, as well as the effects of
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SR algorithms on different computer vision applications (in particular, biometric
recognition), are provided and discussed in Chapter 3. In Chapter 4, the experi-
mental results on the auto-focused liquid lens and the proposed SR techniques are
reported, and detailed discussion of the results is provided. Finally, the conclusion
section concludes the thesis.
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CHAPTER 2

LIQUID LENSES

2.1 Autofocus Fluid Lenses

Autofocus fluid lenses can be divided into two primary types: transmissive and
reflective. The reflective type works as a variable mirror applied in reflector tele-
scopes. The principal of the reflective liquid lens is based on the variable mir-
ror (for example, by using mercury and applying centripetal forces to create a
smooth reflective concavity), that reduces the cost of such lenses by a factor of
ten when compared with the traditional ways of fixed curved glass. The telescope
based on the liquid reflective mirror (mercury) resides at the University of British
Columbia.

In contrast to the reflective fluid lens, the transmissive fluid lens is based on an
active change of the convex/concave lens shape over immiscible fluids with a dif-
ferent refractive index. The change of the liquids can be obtained mechanically
or electrically. The advantage of such transmissive fluid lenses is the high optical
quality in the range of 10 m.

Figure 2.1 shows a design of a fluid lens of Varioptic [3]. Varioptics uses manip-
ulation of two fluids electrically based on electrowetting techniques.

The liquid lens uses two isodensity liquids, an insulator, and a conductor. The
variation of voltage leads to a change of curvature of the liquid-liquid interface,
which in turn leads to a change of the focal length of the lens [13]. A simi-
lar design of the liquid lens cell has been made by Philips using electrowetting
techniques. The difference can be found in the coating of the tube with one part
hydrophobic and the other with a hydrophilic material forming a hemispherical
lens-shaped mass at the end of the tube. Both electrical induced shape lens devices
require a high voltage between 2-4 kV to obtain focus changes. The mechanical
manipulation of the surface tension between the two liquids is introduced over
functional elements, such as pumping liquids, forcing the lens shape based on the
Singapore type [35].
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Figure 2.1: Design of the Varioptic fluid lens. The image is taken from [3].

Many extremely small cameras and cell phones simply do not have enough
room for moving a rigid lens in the distance that is required for a range of focal
lengths. An adaptive liquid lens, however, enables small cameras to focus without
requiring any extra room. However, traditional approaches, which use an electric
current to change the surface shape of a liquid, require a lot of power. The fluid
lens technology needs to be adapted on the conducting polymer membrane actu-
ator and where the changes of the shape of the drop can thereby be achieved by
low energy actuator forces.

2.1.1 Related Work

Due to some problems of the liquid lenses which limit their practical use, such as
membrane puncture, high stress, and a high driving voltage requirement, Lau et
al. [62] separated dielectric elastomer actuator (DEA) from lens membrane. In
fact, they used a liquid-immersed DEA as a diaphragm pump to inflate or deflate
the liquid lens by hydraulic pressure. They generated an 8 mm lens by using VHB
4910 as an actuator material, graphite powder with oil immersion as an electrode
material and a driving voltage of up to 1.8 kV. Figure 2.2 shows the lens and the
concepts of its principal working area.

In [115] the authors presented a liquid lens system which makes use of an in-
line, transparent electroactive polymer actuator. Their lens was constructed from
a transparent liquid of fixed volume, a stiff frame, a passive elastomer membrane
and an electroactive elastomer membrane. In their work, VHB 4910 as an actuator
material and a single-walled carbon nanotube as an electrode material are used for
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Figure 2.2: schematic (A) and principal concepts of the lens (B) [62].

the fabrication of the lens. The driving voltage of their lens is up to 5 kV. Figure

2.3 shows the structure of the lens.
2 3 4
—
. ‘D, H
— ]

Figure 2.3: Construction of the tunable lens, consisting of 3 main parts: dielectric elas-
tomer actuator membrane (part 1), frame (parts 2 and 3), and passive elastomer membrane
(part 4). The aperture of the lens is defined by the smallest diameter of the frame cavity
or D1 [115].

Transparent
Electrode -

Terminal L

Carpi et al. [18] made a liquid lens that consists of a fluid-filled elastomeric
lens integrated with an annular elastomeric actuator working as an artificial mus-
cle. In order to generate an 8 mm lens, they used VHB 4905 as an actuator mate-
rial, Carbon grease as an electrode material and a driving voltage of up to 4 kV. A
schematic of the lens is shown in figure 2.4.

25



lens "flattened’ lens rounded’
DE actuator
electrically
deactivated

fiuid DE actuator
DE membrane electrically

ompliant electrode activated

Figure 2.4: The schematic of the lens [18].

2.2 Design and Fabrication of the Proposed Liquid
Lens

In order to fabricate the proposed liquid lens, two insoluble liquids and a mem-
brane actuator are needed. In this case, distilled water and silicon oil are used,
which are separated with a membrane actuator. The membrane has a hole with a
diameter of 4 mm in the middle. A meniscus is formed by the liquids in corre-
spondence to the central hole of the actuator as shown in figure 2.5.

Water

Figure 2.5: The working principal of an autofocus liquid lens based on mechanical lens
change in applying membrane actuators [55].

The diameter and the shape of the meniscus are changeable by field-induced
actuator deformation. The meniscus will work as a lens if light passes through the
hole. The focal length of the lens is adjustable by applying the different electrical
potential to the membrane actuator, which modifies the meniscus shape. A rectan-
gular shape is considered for all parts of the initial device. The fabricated device
through this research work is assembled easily in a flexible design with actuator
membranes of various sizes [55]. Figure 2.6 shows the prototype device.

DEA transforms electric energy into mechanical work which consists of an
elastic dielectric sandwiched between two compliant electrodes. Maxwell stresses
force a compression of the dielectric material sandwiched between the electrodes
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Figure 2.6: The prototype device which consists of a frame, a thin DESA membrane with
a hole in the middle, silicon oil and water.

when a potential difference is applied to them. In this work, two DESA are fab-
ricated by a fully automated fabrication process [68, 110]. Membranes are made
of 30 layers that each layer has a thickness 45 pm but with a different active area.
One of the membranes has an active area of 40 mm and another membrane has an
active area of 20 mm. Figure 2.7 and figure 2.8 shows the principal design of a
DESA and our proposed membranes, respectively.

Figure 2.7: The principal design of a DESA.

Figure 2.8: (A) membrane with an active area of 40 mm and (B) membrane with an active
area of 20 mm.

According to [68], the polymer should fulfill three main requirements in order
to produce a thin elastomer film. These requirements are fast cross-linking, cross-
linking by polyaddition to avoid scission products and uncured components with
a low viscosity. Due to these reasons, the Elastosil P7670 (Wacker Silicones) was
used as an elastomeric film that meets these demands. The fabrication process of
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membranes consists of three steps. In the first steps, two components of uncured
polydimethylsiloxane (PDMS) are mixed in order to make an elastomer film and
applied onto the disk of a spin coater. The thickness of the dielectric is directly
dependent on the rotational speed of the spin coater that varies between 5um to
100pm. In the second steps, thermal heating is used in order to speed up the curing
process of the elastomer. Finally, in the last step, graphite powder is sprayed onto
the dielectric through a shadow mask. These steps are repeated consecutively
30 times to fabricate the membranes. It is important to notice that in order to
ensure encapsulation, a PDMS layer covers the last sprayed electrode of the DESA
membrane. This process takes approximately 150 min for each membrane. A
schematic of the fabrication process is shown in figure 2.9.

component graphite powder

<] (B9~0)

film fabrication cross-linking elactrode deposition

Figure 2.9: Process steps of fabrication of DESA. The image is taken from [68].

The thickness of the resulting film can be predicted by Eqn. (2.1) [68].

h(r) = —"o(r) K=

V1+4Kho(r)2t 3n

where h(r) is thickness distribution, -y is material properties as density, w is rota-
tion speed, 7 is viscosity, ¢ is time and hg(r) is initial thickness of the film.

A significant decrease in driving voltage shows the superiority of the proposed
work in comparison with previous works. A comparison of the proposed work
and some of the state-of-the-art methods is presented in section 4.1.

2.1
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CHAPTER 3

IMAGE SUPER-RESOLUTION

3.1 Introduction

In this section, first, we present some notation. The LR and HR images are rep-
resented as matrices ¥; € RV>*Miand ¥;, € RN2*Mn where N;, = €N, and
My = EM; and £ > 1 is a integer scale-up factor. The blur operator is de-
noted by H : RN»>*Mn _ RNwXMn and the decimation operator for a factor
¢ in each axis is denoted by Q : RNw*Mn _y RNXMi \which discards rows/-
columns from the input image (the nearest neighbor interpolation function is used
as a decimation function in this work). A sigmoid function is denote by S is
real-valued and differentiable, having a non-negative or non-positive first deriva-
tive, one local minimum, and one local maximum. The sigmoid function, also
called the sigmoidal curve [123] or logistic function is defined by the equation
S(z) = H% A convolution operation between an image and a kernel is repre-
sented by (*) which mathematically explains A [x4, Ya]* B [zp, yp] = C [, Y| =
f;;l ?":Il Ali,j| Bz — i,y — j] where z, and y, are a pixel location in im-
age A. x;p and y are a pixel location in kernel B.
Image resolution refers to the number of pixels in an image. The resolution, called
spatial resolution as well, is sometimes identified by the width and height of an
image as well as the total number of pixels in the image. The resolution of an im-
age is one of its important properties. However, this is limited to the capabilities
of the image acquisition device, mainly the imaging sensor [74]. The size of this
sensor defines the available resolution of produced images. Thus, for increasing
the resolution of an image, one could increase the sensor density by reducing the
space allocated to each pixel on the sensor, or simply by increasing the size of
the sensor. The latter solution is expensive and slows down the imaging process,
while the former solution decreases the amount of light incident on each sensor
which in turn increases the shot noise [74].
Applying various signal processing techniques is another approach for en-
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hancing the resolution of an image. One of the famous techniques for this purpose
is SR [79, 24]. The basic idea behind SR methods is to recover/estimate one or
more HR image(s) from one or more LR images [128, 95, 102]. HR image offers
a high pixel density and thereby more details about the original scene. Huang and
Tsai [43], as pioneers of SR, proposed a method for improving the resolution of
satellite images of earth, where a large set of translated images of the same scene
are available. They showed that SR, using multiple offset images of the same
scene and a proper registration, can produce better HR images compared to spline
interpolation. Since then, SR methods have become common practice for many
applications in different fields, such as remote sensing [66, 101]; surveillance
video [20, 67]; medical imaging, such as ultrasound, magnetic resonance imaging
(MRI), and computerized tomography (CT) scans [47, 70, 71, 82]; optical char-
acter recognition (OCR) problems or face recognition [16, 38, 114, 36, 77]. SR
algorithms are divided into two main categories of frequency domain algorithms
and spatial domain algorithms [77]. These categories consist of several subcat-
egories which are described in the sequel. Figure 3.1 shows a block diagram of
these categories.

Super
Resolution

v \ 4

Spatial Frequency
Domain Domain

Figure 3.1: Main Categories of SR methods.

3.1.1 Frequency Domain SR Algorithms

SR algorithms of this group first transform the input LR image(s) to the frequency
domain and then estimate the HR image in this domain. Finally, they transform
back the reconstructed HR image to the spatial domain [31, 22, 121, 46, 75,
85]. Depending on the transformation employed for transforming the images to
the frequency domain, these algorithms are generally divided into two groups:
Fourier-transform based and wavelet-transform based methods. Figure 3.2 shows
a block diagram of these algorithms.
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Figure 3.2: Subcategories of SR frequency domain.

3.1.2 Spatial Domain SR Algorithms

Based on the number of available LR observations, SR algorithms can be gener-
ally divided into two groups: single image based and multiple image-based algo-
rithms. The algorithms included in these groups are explained in the following
subsections.

Multiple Images based SR

Multiple-image SR algorithms receive several low-resolution images of the same
scene as input and usually employ a registration algorithm to find the transfor-
mation between them. This transformation information is then used along with
the estimated blurring parameters of the input low-resolution images to combine
them into a higher scale framework to produce a super-resolved output image.
For multiple-image SR algorithms to work properly, there should be sub-pixel
displacements between input LR images. Furthermore, these sub-pixel displace-
ments should be estimated properly by the registration algorithm, which is usually
a challenging task, especially when a complicated motion of non-rigid objects,
like the human body, needs to be modeled. These algorithms are guaranteed to
produce proper higher resolution details; however, their improvement factors are
usually limited by factors close to two [79]. Figure 3.3 shows subcategories of
these types of SR algorithms.

Iterative back projection (IBP) methods are among the first methods developed
for spatial-based SR. Some recent works are done based on the IBP method, such
as works at [102, 95, 101, 97, 96]. The IBP model has two critical steps: the first
step is construction of the model for the imaging process, and the second step is
image registration. The first step can be described as

U, (y) = QH x T, (2) + (3.1)
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Figure 3.3: Subcategories of Multiple Images based SR.

where W, are k' observed LR images, y denote the pixel of LR images influ-
enced by the area of x of the SR image W,, H is a blur kernel, () means deci-
mating operator and ny, is an additive noise term. More specifically, () performs
a down-sampling with an integer factor of £, and ny, is an independent identically
distributed additive white Gaussian noise. In the first part of this method, a true
(initial) SR image is assumed. Based on the imaging model given in Eqn. (3.2),
different LR images are evaluated. Given the calculated LR images, a new SR
image is obtained. Afterward, this new SR image is used to generate the new set
of LR images. If this new set of LR images is the same as the earlier (previous)
set, then the assumed SR image is the true SR image; otherwise, the error image
obtained from the difference between the LR images is back projected to the as-
sumed SR image. This process is repeated until no error image is left. IBP can be
mathematically represented as

Wt (@) = WL (@) + ) (U (y) — Wi () x HPP 3.2)

where W is the estimated SR image after n iteration, W7, are calculated LR im-
ages from the imaging model of W” after n iteration, and H 57 is the back projec-
tion kernel. Back projection kernel is a deblurring kernel which has the following
relationship with the blurring kernel of the imaging model of Eqn. (3.1).

Single Image based SR

As shown in figure 3.4, single image SR algorithms are divided into subcategories
of learning based methods and reconstruction based methods.

Single-image SR algorithms do not have the possibility of utilizing sub-pixel dis-
placements because they only have a single input. Instead, they employ a training
step to learn the relations between a set of high-resolution images and their low-
resolution counterparts. This learned relation is then used to predict the missing
high-resolution details of the input low-resolution images. Depending on the rela-
tions between the training low- and high-resolution images, these algorithms can
produce HR images that are far better than their inputs, by improvement factors
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Figure 3.4: Subcategories of Single Image based SR.

that are much larger than two [79].

We focus on this type of algorithm in the rest of this thesis. The following sub-
sections will present some approaches in order to find a good solution for image
SR.

3.1.3 Background

Before talking about proposed algorithms, we introduce problems that we are fac-
ing as well as methods that can hep in implementing the proposed algorithms.
There are various quality factors in satellite images. Two of the most important
ones are noises and resolution issues. When a satellite image is being captured
there are some noise added to the images and these noise have different sources,
such as noise added during the data transmission from the capturing station to the
research centers, or noises added by the image acquisition tools [116]. Interpreta-
tion of a noisy image is difficult for human observers. Such a noisy image needs
to be denoised. Furthermore, the noisy images sent by satellites cannot be directly
processed. A pre-processing stage is needed whereas image denoising is one of
these pre-processing stages. The aim of image denoising is to remove the noise
while keeping significant features of the image [117].

Interpolation in image processing is a method to increase the number of pixels in
a digital image and is widely used in many image processing applications such
as real-time actuator positioning [21], multiple description coding [108], and SR
[102, 23]. There are three well-known interpolation techniques, namely nearest
neighbour, bilinear and bicubic which use nearest neighbour, bilinear and bicubic
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kernels for interpolation, respectively. It should be noticed that in sampling, ker-
nel is a core function which is being defined to estimate the value of the created
position in a sampling scenario. Bicubic interpolation is more sophisticated than
the other two techniques and produces smoother edges. The bicubic kernel that is
used for interpolation is defined in Eqn. 3.3.

(a+2)faf’ = (@ +3) |z +1 2| <1

V()= alz]® —balz)* +8alz] —4 1< |z <2 (3.3)
0 otherwise
where a = —0.5 in the present implementation.

Wavelets are also play a significant role in many image processing applications.
The wavelet analysis procedure for adoption of a wavelet prototype function,
called an analyzing wavelet or mother wavelet. The two-dimensional wavelet
decomposition of an image is performed by applying the one-dimensional Dis-
crete wavelet Transform (DWT) along the rows of the image first, and then the
results are decomposed along the columns. This operation results in four decom-
posed subband images referred to the approximate band (LL), vertical band (LH),
horizontal band (HL), and diagonal detail band (HH). The frequency components
of those subbands cover the full frequency spectrum of the original image.

Image resolution enhancement by using wavelets is a relatively new subject and
recently many new algorithms have been proposed [25, 132, 118]. Carey et al.
[17] have attempted to estimate the unknown details of wavelet coeffcients in an
effort to improve the sharpness of the reconstructed images. Their estimation was
carried out by investigating the evolution of wavelet transform extrema among the
same type of subbands. Edges identifed by an edge detection algorithm in lower
frequency subbands were used to prepare a model for estimating edges in higher
frequency subbands and only the coeffcients with signifcant values were estimated
as the evolution of the wavelet coeffcients. Another wavelet based image super
resolution technique is Wavelet Domain Zero Padding and Cycle-Spinning (WZP
and CS) [119]. The proposed method adopts the cycle-spinning methodology
in the wavelet domain [119]. There are more state-of-the-art techniques which
are using Dual Tree Complex Wavelet Transform (DT-CWT), Stationary Wavelet
Transform (SWT), and also DWT [8, 23, 24].

A popular image denoising method is Local Adaptive Bivariate Shrinkage Func-
tion (LA-BSF) which requires priori knowledge of noise and marginal variances
[112, 92]. This method uses non-Gaussian bivariate distributions and benefts from
the dependencies between the wavelet coeffcients and their parents. It is reported
that the models exploiting the dependency between wavelet coeffcients give better
results than the ones using an independence assumption [112]. The performance
is improved by estimating model parameters in a local neighbourhood. Satisfac-
tory image denoising results have been obtained using DT-CWT based LA-BSF
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in [112, 92].

The DT-CWT has been developed by N. G. Kingsbury [52, 53, 54] in order to
overcome the disadvantages of classical DWT (i.e. lack of shift-invariance and
poor directional selectivity). The DT-CWT uses specially designed real filters in
order to provide the desired characteristics of the transform (i.e. approximately
shift-invariance, good directional selectivity (for two or more dimensions), perfect
reconstruction, limited redundancy, 2:1 for 1-D (2m for m-D), efficient computa-
tion, only twice the simple DWT for 1-D (2m times for m-D)) [54]. A one level
DT-CWT decomposition results in two parallel trees (real and imaginary). The
DT-CWT has the advantages of approximately shift-invariance and good direc-
tional selectivity (for two or more dimensions) over the classical DWT which are
essential for many signal processing applications [52, 54].
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3.2 Proposed Algorithms

3.2.1 Satellite Image Enhancement: Systematic Approach for
Denoising and Resolution Enhancement

There are two significant parts, namely, denoising [116] and resolution enhance-
ment in this proposed method [106]. Firstly, the noisy image is decomposed into
subbands by using six-level DT-CWT. A one level 2D DT-CWT results in two
complex-valued low frequency subband coefficients and six complex valued high
frequency subband coefficients oriented at +75°, +45°, +15°, —15°, —45°, and
—75° [54]. The DT-CWT uses specially designed real filters which are different
at the first-level and remaining levels of the transform. In this algorithm, a (9,7)-
tap Antonini biorthogonal filter set is used at the first-level, and 6-tap Q-shift dual
filters are used at the remaining levels of the DT-CWT [53]. The reason for using
the DT-CWT in the denoising algorithm is that it has the properties of approx-
imately shift-invariance and good directional selectivity lacking in the classical
DWT. These properties are essential for many signal processing applications, in-
cluding denoising [52, 54]. These noisy subband coefficients are denoised using
the LA-BSF algorithm [112, 92]. The LA-BSF requires prior knowledge of the
noise variance on? and marginal variance o for each wavelet coefficient. In the
denoising algorithm, the marginal variance for the k" coefficient is estimated us-
ing neighboring coefficients in a region N (k). Where N (k) is defined as all the
coefficients within a square shaped window that are centered at the k™ coeffi-
cient. The LA-BSF is applied to the magnitude of complex coefficients since the
real and imaginary parts are not shifted invariant. It is assumed that the images
are corrupted by the Gaussian noise. A 7 x 7 window size N (k) is used for the
best denoising results [113].

In image resolution enhancement by using interpolation the main loss is on its
high frequency components (i.e., edges), which is due to the smoothing caused by
interpolation. Hence, in order to increase the quality of the super-resolved image,
preserving the edges is essential. As it was previously mentioned, in this work
DWT [72] has been employed in order to preserve the high-frequency components
of the image. In the resolution enhancement stage, DWT is used to decompose
an input image into subband images. LH, HL, and HH subband images contain
the high-frequency components of the input satellite image which are obtained,
respectively, as follows:

P

Ljii[rowlly] = ' w(i] x LLj[row|[y — i (3.4

~
I
o
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Hj[row]ly] = hli] x LLj[row]ly — 1 — 1] (3.5)
i=0
N-1
LLj[x][col] = w(i] x Ljx —1i][col] (3.6)
=0
N-1
LHj[x][col] = hli] x Lj[z — 1 — i][col] (3.7)
=0
N—-1
HLji[z][col] = w(i| x Hj[x — i][col] (3.8)
=0
N-1
HHj1[z][col] = > hli] x Hjlz — 1 — i][col] (3.9)
=0

where j = {0,1,...,L —1},z = {0,1,..., X/27 ! —1},y = {0,1,...,Y/27/+1 —
1}, row = {0,1, ..., X/27 =1}, col = {0,1,...,Y/27 L -1}, LLo[z][y] = ¢¥[z][y]
and i[a][y] € RVN

In the resolution enhancement step, the bicubic interpolation is applied to high-
frequency subband images. Here, instead of using LL, which contains less high
frequency information compare to the input image, we are using the input satellite
image for re-sampling by interpolation which increases the quality of the super-
resolved image. By applying interpolation to the input satellite image and high-
frequency subbands and then by using the inverse DWT (IDWT), the output image
will contain sharper edges than the image obtained by re-sampling of the satellite
image directly. This is due to the fact that the interpolation of isolated high-
frequency components in HH, HL, and LH will preserve more high-frequency
components after the interpolation of the respective subbands separately than in-
terpolating the satellite image directly. In all steps of the proposed noisy satellite
image resolution enhancement technique, the db.9/7 wavelet as mother wavelet
function and a bicubic kernel as interpolation technique have been used. Figure
3.5 and algorithm 1 show the proposed noisy satellite image resolution enhance-
ment system. Experimental results and comparison of the algorithm with state-of-
the-art algorithms are described in section of 4.2
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Figure 3.5: The proposed noisy satellite image resolution enhancement technique. De-
noising part of the figure is taken from [116].

3.2.2 New Two-Dimensional Sampling Kernel-based Resolution
Enhancement

In this section, some new kernels and an « blending algorithm are introduced
which help to improve image resolution in SR algorithms. The main contribution
of this work [104] is deriving new sets of kernels which can be used in sampling.
The term of o blending algorithm in this thesis refers to a process of combining
two different images.
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Algorithm 1 Satellite image enhancement

Require: LR Noisy Satellite Image

Ensure: HR Image
Decomposition of noisy image to subbands by using a six-level DT-CWT.
Keep the first level output and repeat the process for five more times.
Applying LA-BSF denoising algorithm on results of the first level and sixth
level.
Inverse decomposition by using IDT-CWT.
Applying DWT on the output of IDT-CWT .
Applying interpolation on LH, HL. and HH subbands by a factor of £ in paral-
lel.
Applying interpolation on the output of IDT-CWT by a factor of %
Replace the interpolated image of the output of IDT-CWT to LL subband
Inverce DWT on interpolated subbands.

Problem

SR algorithms usually employ one of the common upsampling kernels, like bi-
linear or bicubic, as an initial guess for desired HR image, and then they differ
from each other in the way they fine tune this initial HR image and/or converge
to desired HR image [30, 32, 76]. Though these common kernels are simple and
efficient, we show in this section that they can be replaced by better alternatives
resulting in better super-resolved images quantitatively in terms of known assess-
ment measures, like Peak Signal to Noise Ratio (PSNR) and Structural Similarity
Measure (SSIM) and qualitatively in terms of the visual appearance of the gener-
ated super-resolved images.

More specifically, we introduce two kernels of Lanczos and Sincexp for upsam-
pling, instead of bicubic interpolation, in the context of SR. The resulted super-
resolved images by these two kernels, alone, are not always better than the super-
resolved images generated by SR algorithms that are built upon bicubic inter-
polation, but the combined results of these two kernels are always better than
the results obtained by SR algorithms when they use bicubic interpolation for
their initial guess. To show this, we have employed the introduced kernels in two
known SR algorithms of [83] and [50].

In order to show the efficiency of the proposed kernels, we have chosen the res-
olution enhancement problem. The general algorithm of the proposed resolution
enhancement technique is shown in figure 3.6. Firstly the LR image is super-
resolved by using [83] and [50] techniques in which Lancoz and Sincexp kernels
are adopted. The final HR image is achieved by combing the output of each ker-
nel. The best value of « is chosen by monitoring the performance of the system for
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over 1000 images and observing the v value which results in the best quantitative
output during the training stage.

__________ v
F Super Resolution by using 71T “Super Resolufion by using |
Lanczos Kernel | sincexp Kernel

7/
LY

Surpudiq
eydry

Figure 3.6: The block diagram of the proposed method.

Sampling Kernels

An image is a combination of contours and smooth areas. For smooth areas, a
kernel which has good approximation properties for smooth functions is needed
(which is guaranteed if we have an estimate of the order of approximation via
high order of modulus of smoothness). A good candidate is the sinc function, but
it is not in L' where L! is the 1-norm which mathematically deffined ||z||, =
> iy |xi|. Therefore, another kernel is needed with good properties. The Lanc-
zos kernel [59] can be a good candidate due to its simple structure (the kernel will
be described later). At the same time, Lanczos kernel is a reproducing kernel of a
space which coincides with a corresponding L (p > 1) Bernstein space [80] (like
the sinc kernel for 1 < p < o0) and this Bernstein space are dense in LP (p > 1)
where L? is the p-norm which mathematically defied |||, = (3_i; |2[”). This
gives an estimate of the order of approximation via an arbitrary order of modu-
lus of smoothness. For the contour parts of an image, a kernel whose derivatives
are rapidly decreasing with a good energy concentration is needed, like Sincexp,
which has exponential decay.
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For sampling, we usually use the interpolation methods that fit into a general
scheme of interpolation with convolution where their spectral properties are de-
scribed at [48, 40]. In the convolution, we can use an even kernel sy defined via
the Fourier cosine transform of an even window function A and given by

sx(z) = //\(u) cos(mzu) du. (3.10)
0

In the above equation, x is a space variable, v is a dummy variable and )\ is an
arbitrary continuous even function which satisfies A\(0) = 1, A(2k) = 0 (k € Z).
With the window function

1 0<u<—,

2n
Apn (u) =< 21 +n(1-2u) %1 <u< B, (3.11)
0 u> L

the Eqn. (3.10) defines the Lanczos n-kernel [59]

sp.n(x) = sinc — sinc z, (3.12)
n

in which n € N is a parameter. Figures 3.7 and 3.8 show the Lanczos kernel in
spatial and frequency domain respectively.

-02

-04

Figure 3.7: The Lanczos function in the spatial domain.

Some other kernels are defined, by using the window functions with the sup-
port [—1,1], i.e.
_ ) us
Aw) = { 0 elsewhere (3.13)
where [(u) is some window function with conditions as in (3.10). For example,
the cosine based function 7 (u) := 5(1 + cos(ru)) defines the Hann kernel [57]
_ lsincz
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Figure 3.10: The Hann function in the frequency domain.

Figures 3.9 and 3.10 show the Hann kernel in spatial and frequency domain re-
spectively. The general cosine-sum lp a(u) 1= Y.~ ai cos(kmu) with parame-
ter vector a = {ay } defines the Blackman-Harris kernel [58]

—_

SBa(z) == Z ak<sinc(a: — k) + sinc(x + k)) (3.15)

2
k=0

provided the sums of odd and even coefficients are both equal to 1/2, i.e. (|z] is
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the largest integer less than or equal to z € i)

agy, = agg—1 = - (3.16)
k=

o
=
Il

—

In fact, kernel in Eqn. (3.14) is a special case of the Blackman-Harris kernel
and can be obtained by taking m = 1 in 3.15. Figures 3.11 and 3.12 show
the Blackman-Harris kernel in spatial and frequency domain respectively. The

Figure 3.11: The Blackman-Harris function in the spatial domain.

08

06

02
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Figure 3.12: The Blackman-Harris function in the frequency domain.

function I 5(u) = 5 [erf (“5%) — erf (“5%)], where erf is an error function
erf(z) = % Iy et dt and § > 0 is a parameter, which defines the sinc kernel
with a Gaussian multiplier (the corresponding interpolation technique is further
referred to as Sincexp) [111]

sas(x) = e %7 ginc . (3.17)
Figures 3.13 and 3.14 show the Sincexp kernel in spatial and frequency domain
respectively.

The described kernels are more sophisticated than the common linear and cu-

bic spline kernels as they are closer approximations to the theoretically optimal
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Figure 3.13: The Sincexp function in the spatial domain.
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Figure 3.14: The Sincexp function in the frequency domain.

stnc function, and thus often yielding a sharper image. The quality of the ker-
nels can be described in terms of the k-order modulus of smoothness [15]. The
higher order it is, the better interpolation results we have for the smooth functions
(images) or smooth regions of functions (images).

The cubic spline is a positive kernel. Such kernels have many advantages,
but also some disadvantages such as the impossibility of obtaining a modulus of
smoothness of an order higher than 2. On the contrary, kernels defined in (3.12),
(3.15), (3.17) are not positive kernels, and this fact yields a high-order modulus of
smoothness [111].

Among all kernels, the Blackman-Harris kernel has the most possibilities to
set its free parameters; therefore, using it can be more complicated. If the partic-
ular Blackman-Harris kernel corresponds to the k-order modulus of smoothness,
then we have good interpolation results for the polynomial function of degree less
than or equal to % (in terms of images, the higher degree of the polynomial corre-
sponds to a smoother image). Some choices of parameters may result in the fact
that at the sample points, the evaluated pixel value does not equal the initial value.
To fix this, ag = 1/2 must be taken in ( 3.15) [59].

It may be noticed that Eqn. (3.10) can also be used to obtain common in-
terpolation kernels, such as cubic and spline (in this case, we must take the win-
dow function Ag3(u) := sinc®(%)). Note that for a given scale factor w which
determines the length (hereinafter support-length) of the truncated kernel sup-
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port, which is [5%; ] in the case of upsampling and [(26)’ @] in the case of
downsampling, the number of support points involved in the computation is n =
support-length+2. Hence, there is no connection between n in the kernel (3.12)
and the number of support points (this n merely defines the shape of the kernel
function). In order to increase the number of support points, the support-length
should be increased (i.e. the support should be less truncated). Computations
show that increasing the number of support point leads to a slightly better per-
formance (provided the number of points is chosen wisely, i.e. the symmetry of
the kernel is preserved; in our case, an even number should work well). It is also
possible to increase the support-length and therefore the number of points not by
taking less truncated support, but by scaling the kernel function. However, this
will not give good results because of the smoothing effect. We will use these
kernels for initial enlargement in SR algorithms and help them to show better per-
formances.

Adopted SR Techniques

In general, there are two models of image decimation in the literature. In the
first one, a blur operator and a decimation operation plus an additional noise are
applied to the input image in order to decimate it to an LR image, as shown in
Eqn. (3.18):

\I/l = QH\I/h—i-n (3.18)

where ¥, is the LR image, ¥}, is defined as the input HR image, H € RN¥»*Nn
is a blur operator, Q € RN >N is a decimation operator for a factor ¢ in each
axis, which discards rows/columns from the input image where £ > 1, and n is
additional noise.
In the second approach, a decimation operation is used for the decimation, as
shown in Eqn. (3.19):
U =QVy, (3.19)

In this research work, the second approach has been used in order to represent
the effectiveness of the proposed kernels. Two state-of-the-art techniques, namely
a statistical prediction model based on sparse representations [83] and example-
based learning [50] are adopted by using the proposed kernels in order to generate
an HR image.

Statistical Prediction Model based on Sparse Representation Resolution En-
hancement

The technique proposed in [83] benefited sparse representation for generating an
HR image. Here, we briefly introduce this algorithm.

The LR image can be seen as a blurred and down-sampled version of the HR

45



image. This observation model can be formulated as follows:
U, =QHYy, +n (3.20)

Since there are many HR images satisfying the reconstruction constraint for a
given LR image, the process of recovering ¥j, from ¥, is ill-posed. An effective
way to deal with this problem is sparse representation.

Sparse representation has become an important tool for single image SR. The
single image SR problem via sparse representation consists of the coding stage
and the linear combination stage. The coding stage is formulated as follows:

Min ~ ~ 2
¢ {H‘I’l — Dy +2 rsolll} (3.21)
where \f'l = [Eﬁ\gl} and D = [ Bi%h]’ Dy, and D; are HR dictionary and

LR dictionary respectively, E is a feature extraction operator, ¥; is the input LR
image patch, P extracts the region of overlap between the current target patch and
previously reconstructed image patch, ¢ is the sparse coefficients matrix and z
contains the values of the previously reconstructed HR image on the overlap. The
parameter 3 controls the tradeoff between matching the LR input and finding a
HR patch that is compatible with its neighbors.

In the linear combination stage, the i*" image patch ph; € R, which is extracted
from the HR image W}, can be represented as a sparse linear combination in the
HR dictionary Dj, € R™*X:

ph, = Drpi, i € R¥ |loill, < K (3.22)

where ¢; is the sparse coefficient vector which is computed by the input LR image
patch and the LR dictionary.

Example-based learning for single-image resolution enhancement
The work in [50] is an extension of [49], which uses kernel ridge regression in
order to estimate the high-frequency details of the underlying HR image. Also,
a combination of gradient descent and kernel matching pursuit is considered and
allows time-complexity to be kept to a moderate level. Actually, the proposed
method improves the SR method presented in [30]. In this algorithm, for a given
set of training data points (x1,y1), ..., (x;,y1) C
mathbbRM x
mathbbR™, the following regularized cost functional is minimized.

1 . . 1 .
Ot D= 32 |5 2 () —u) + 07
i=1,..,N j=1,..,N
(3.23)
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where y; = [y]l, o y]N ] and H is a reproducing kernel Hilbert space. Due to

the reproducing property, the minimizer of Eqn. (3.23) is expanded in kernel
functions:

Frey= > dk(z,), i=1,.,N (3.24)

j=1,.
where k is the generating kernel for H, which is chosen as a Gaussian kernel
(k (x,y) = exp (— |z — 1y /ok>>. Eqn. (3.23) is the sum of individual convex
cost functionals for each scalar-valued regressor and can be minimized separately.

The final estimation of pixel value for an image location (z, y) is then obtained as
the convex combination of candidates given in the form of a softmax:

Uy ()= Y wi(x,y)Z(x,y,i) (3.25)
i=1,.N

where w; (z,y) = exp (—%) / {ZFL...,N exp (—W)} and Z is the
initial SR image that is generated by a bicubic interpolation.

Actually, the proposed kernels improves the SR method presented in [30].

a-blending

Each super-resolved image includes some special details of the image. In order to
incorporate all these details, we need to combine the super-resolved images in a
single image. For this purpose, the following « blending technique by using an «
is adopted:

\I/H:aX\I/HL—l-(l—Oz)X\I/HS, (3.26)

in which Uy, and ¥y, are the HR images produced by the Lanczos (we set in
Eqn. (3.12) n = 2) and Sincexp (we set in Eqn. (3.17) § = 1) based SR al-
gorithms, respectively. The experimental results over 1025 non-facial images and
1013 facial image sample images randomly selected from some databases, showed
that the considered forms of Lanczos and Sincexp are more effective than the con-
sidered form of Blackman-Harris (we set in Formula 3.15 m = 3 and parameter
vector a corresponding to 4" order modulus of smoothness and minimal first ab-
solute moment); hence, in « blending, only the HR images produced by Lanczos
and Sincexp were used. The reason for the weaker performance of Blackman-
Harris could be that in this particular case at the sample points the evaluated pixel
value did not equal the initial value.
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The reason why such a a-blending of kernels works well is that Lanczos is good
for smooth parts but generates Gibbs phenomenon on contours, while Sinexp
follows the image more precisely on contours but is not so good on smooth ar-
eas (more sensitive to noise). The parameter a characterizes the proportions of
smoothness and contour parts for given types of images.
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3.2.3 Reducible Dictionaries for Single Image Super-Resolution
based on Patch Matching and Mean Shifting

In the proposed algorithm, we are contributing to the field of image SR by intro-
ducing the following new approach:

* We do not employ complex techniques such as sparse representation[129]
that make the system slow. We just utilize separate dictionaries for LR and
HR patches.

* The minimum distance between input LR patches and LR patches in the
LR dictionary is used for choosing a corresponding HR patch in the HR
dictionary.

¢ A mean shift method is used for illumination enhancement in order to avoid
blocking effects in the super-resolved image.

Two acquisition models are commonly used in the literature [83] to describe how
an LR image is generated from an HR image, and each of them has a different
rationale. The first assumes that prior to decimation, a known low pass filter is
applied on the image,

W = Q{H{¥\}} +v (3.27)

where v is an additive noise in the acquisition process. The corresponding prob-
lem of reconstructing ¥y, from ¥, is also referred to in the literature as zooming
deblurring [131]. The second acquisition model assumes [83, 129, 28] that there
is no blur prior to decimation, namely ¥; = Q{¥,} + v, so that image recon-
struction is cast as a pure interpolation (zooming) problem. In other words, the
problem is only filling out the missing pixels between the original pixels in the in-
put LR image, which remain unaltered in the recovered HR image. In this work,
the second model is considered, and also the images are assumed to be noise free,
ie. v =0.

Let P* = REW be an image patch of size n x n centered at location & and ex-
tracted from the image W by the linear operator R in spatial domain with a range
of n in two dimensions. Hence the LR and HR patches are extracted as

Pf = Ry,

(3.28)
PF = R’gn\ph

where £ is the scale-up factor, h refers to HR and [ refers to low resolution. Ex-
tracted patches of HR images and their corresponding LR patches are saved in
two dictionaries of HR patches Dj, and LR patches Dy, respectively. Hence, every
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Plk € D has a correspondence in Dj,. The mapping between these two pairs can
be expressed by f as shown below:

P =f () (329)

where f is a mapping function that shows the location of P,’f in Dy, which is
correspondence with Plk in D;. The main motivation for the proposed model is
the desire to predict for each LR patch a missing HR detail via a pair in the created
D; and Dy, dictionaries. Following the block diagram of the proposed system,
shown in figure 3.15, we first find all the patches of the input LR image,(Ile, using
R} centered at location g:

(3.30)

Figure 3.15: The block diagram of the proposed system.

Then the minimum distance between each patch, P?, and all the patches in D
will be calculated by

dy = mkin (d(Plkv ﬁ[q)>
~ — (3.31)
where d (PF.B1) = [>T (P!~ P
i
where £ refers to the index of the patch in D, which has the minimum distance
from the qu of the input LR image.
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Having found a patch in the LR dictionary with a minimum distance to P/, its HR
corresponding patch is found in Dy, and replaced in the HR image by

Pl = f(PF) (3.32)

In order to avoid a sudden change of illumination [7], a simple illumination en-
hancement will be applied to P} by moving its mean, pa» towards the mean of
h

P, Fpa using
K pa

a _ pa
P, =P x oo (3.33)
where p = and po are a mean of LR and HR patches respectively.

This process is repeated until the last patch of the input LR image. Finally, all
founded HR patches are merged together according to their location in order to
get the HR image, \T/h. The generated image has some blocking effect, which
is not desired. In order to remove this effect, the LR input image, i’l, is also

interpolated using bicubic interpolation with the same scaling factor, using
U = Be {0} (3.34)

where B is the bicubic interpolation operator with a scaling-up factor of £. Finally,
the HR image, T k- 18 calculated by averaging the HR image obtained by merging
patches, ¥, and the HR image obtained by bicubic interpolation, ¥?, as shown
in B _
%, — Uy, + 0
2

The general steps of the proposed single image SR method are summarized and
shown in Algorithm 2 and are illustrated also in figure 3.15.

One of the main constraints of dictionary based SR algorithms is the huge size of
the dictionaries. There exist many patches within the dictionaries which are very
similar to each other. As one contribution to this work, in order to reduce the num-
ber of patches in the dictionary, we have tried to find the set of patches which span
the vector space, which includes all the patches as well as the structural similarity
between patches. For the first approach, the selected patches are independent or
almost independent from each other. In order to find the independent and almost
independent patches, we have used SVD. Then the Euclidean distance between
the vector of singular values of patches has been calculated. The patches that are
discriminant enough from the others (i.e., the calculated cross distance is bigger
than the threshold value, 7) are kept in the dictionary. The threshold, 7, can be
selected based on the application. In this work, we have reduced the size of the
dictionary by 30 percent, while the visual quality has dropped only 0.07 dB (dis-
cussed more in the next section).

(3.35)
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Algorithm 2 Single image SR scheme

Require: LR Image and scale-up factor
Ensure: HR Image
Image interpolation by using bicubic interpolation with the scale-up factor to
generate a scaled-up image from \f/l.
Extract LR patches centered at locations ¢ from the LR image, described at
Eqgn. (3.30).
for ¢ do
Compute the minimum distance between the LR patch and the LR
patches in Dy, described at Eqn. (3.31).
Find the corresponding HR patch with the LR patches that has minimum
distance, described at Eqn. (3.32).
Enhance the illumination of HR patch by using a mean shift technique,
described at Eqn. (3.33) .
Replace the HR patch in v h-
end for
Find the average between v n and \T!Z
Generate HR image, described at Eqn. (3.35).

Another approach of dictionary reduction proposed in this work is based on the
structural similarity index (SSIM). In order to remove patches which are struc-
turally similar to other patches, a similarity between all patches is calculated by
using SSIM; then patches with a similarity index more than threshold 7 are re-
moved from the dictionaries. Similar to the previous approach, the threshold, T,
can be selected based on the application. In this approach, we have reduced the
size of the dictionary by 45 percent, while the visual quality has dropped only
0.08 dB (discussed more in the next chapter).
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3.3 Super Resolution Applications

3.3.1 Deep Learning Convolutional Network Super Resolution for
Improving Face Recognition in Surveillance Monitoring

In this work, first the Viola-Jones [122] algorithm was used to extract only faces
from each image to reduce the effects of background and clothing to face recogni-
tion results. Also, all images are downsampled by a factor of 4 in order to simulate
the situation of images taken by using surveillance cameras.
In this proposed system, we use the SR method of [27], which is based on a CNN
with three layers. Given an image ¥, a low-resolution upscaled image W; is cre-
ated using bicubic interpolation. The first layer extracts overlapping patches from
the image ¥; and represents each patch as a high-dimensional vector. Instead of
using pre-trained bases, such as PCA, DCT or Haar, in this case, these bases are
optimized during the network optimization. This first layer can be expressed as
an operation Fi:

Fl(\:[ll) = maX(O, Wy x U, + Bl) (3.36)

where W7 and B; represent the filters and biases, respectively. In our case, W;
is of a size 9 X 9 x 64, where 9 x 9 is the spatial size of the filters and 64 is
the number of the filters. B is a 64 dimensional vector, where each element is
associated with a filter.

The second layer performs a non-linear mapping of each of the 64-dimensional
vectors from the first layer to a 32 dimensional vector. The operation performed
by this second layer can be formulated as

FQ(\I/l) = maX(O, W2 * Fl(\I/l) + BQ) (3.37)

where W is of the size 64 X 5 x 5 x 32 and By is 32-dimensional. Each of
those output 32-dimensional vectors is conceptually a representation of a high-
resolution patch that will be used for reconstruction in the last layer. Although
more convolutional layers can be added to increase the non-linearity, we use the
configuration of [27] to avoid computational complexity of the method.

The output from the second layer is then passed to the last layer, where the recon-
struction is performed. This layer emulates the classical method that averages the
predicted overlapping high-resolution patches to create the final full image. This
process can be formulated as

F(U;) = W3 x Fy(¥;) + Bs (3.38)
where W is of size 32 x 5 x 5 and B3 is a 1D vector (since we use single channel

images). The logic after this formulation is that if the high-resolution patches are
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in the image domain, the filters act as an averaging filter, while if the representa-
tions are in some other domains, W3 behaves like first projecting the coefficients
onto the image domain and then averaging. In both cases, W3 is a set of linear
filters.

Learning the end-to-end mapping function F' requires the estimation of parame-
ters © = {Wy, Wy, W3, By, B2, Bs}. Following the work in [26], this is achieved
through minimizing the loss between the reconstructed images F'(¥;; ©) and the
corresponding ground truth high-resolution images W;. Given a set of high-
resolution images {¥}} and their corresponding low-resolution images {U}},
Mean Squared Error (MSE) is used as the loss function. This loss is minimized
using stochastic gradient descent with the standard backpropagation. In particular,
the weight matrices are updated as

OL
S Wi =W+ A (3.39)

Air1=09 -A;+n-
where [ € {1, 2,3} and 7 are the indices of layers and iterations, 7 the learning rate
(10~* for [ € {1,2} and 10~° for [ = 3) and % is the I*" derivative. The filter
weights of each layer are initialized by drawing randomly from a Gaussian dis-
tribution with zero mean and standard deviation 0.001 (and O for biases). Figure
3.16 shows an overview of the SR method that is used in the proposed method.
Each database used in our work has 10 poses per person. Five of each pose of per-

Feature Maps of High
Resolution Image

High Resolution Image

Figure 3.16: The flowchart of the SR method. Image is taken from [28].

sons are used to train HMM [73], and the remaining 5 are used for testing. Both
training and test images go through a face recognition process which is divided
into seven steps as will be explained in detail here. These steps are: filtering,
generating observation vectors, feature extraction, feature selection, quantization,
training and face recognition. In filtering, a 3x3 minimum filter is applied to the
face image to remove unwanted artifacts, such as highlights in subjects’ eyes due
to flash, and salt noise. After the filtering is done, the face image is converted into
a one-dimensional sequence. This is done by sliding a . X W window from the
top to the bottom of the image, which creates a sequence of overlapping blocks of
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width W and height L of each face image of width I and height H. Next, the
features are extracted. Here, instead of using gray values of pixels in sampling
windows, SVD coefficients are used as features. Once the features are extracted,
a subset of features that lead to the smallest classification error and computational
cost are extracted from SVD which contains three matrices (U, > and V): two
first coefficients of X (217 and X99) and one first coefficient of U (U71) are used
to associate each block. This significantly decreases the length of the observation
vectors and also the computational complexity and sensitivity to noise, changes in
illumination, shift and rotation. Since SVD coefficients have innately continuous
values, which can lead to an infinite number of possible observation vectors that
can’t be modeled by discrete HMM, the features need to be quantized. Consider-
ing vector X = (x1, x9, ..., T, ) the quantized value of z; is computed as below:

Ti — Timin

Fiquantized = (ximam - xzmzn) /Dz (340)
(Zimaz) and (Timin) are the maximum and minimum that (z;) can get in all pos-
sible observation vectors, respectively, and (D;) is the number of quantization
levels. Here the first feature (311) is quantized into 10, second (¥22) into 7 and
third (U11) into 18 levels. After each face image is represented by observation
vectors, they are modeled by seven-state HMM. The Baum-Welch algorithm [91]
is used to train the HMM model for each person in the database. Finally, for each
test image, the probability of the observation vector (O) in respect to each HMM
face model () is calculated for classification. A person on a test image (m) is
classified as person (a) if

P <o(m> yea) = max P (o<m> | en) (3.41)

Figure 3.17 shows an overview of the proposed method.

Figure 3.17: The flowchart of the proposed system.
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3.3.2 Deep Learning based Super-Resolution for Improved Action
Recognition

In this section, we investigate the importance of the state-of-the-art deep learning-
based CNN super-resolution algorithm of [28] in improving recognition accu-
racies of the state-of-the-art activity recognition algorithm of [124] for working
with low-resolution images. To the extent of our knowledge, activity recognition
in different resolutions has not been studied that much, except in Ahad et al. [5]
in which appearance-based directional motion history image has been used to rec-
ognize various levels of video resolutions. However, our proposed system is the
first one in which super-resolution algorithms have been employed for improv-
ing quality of low-resolution input images before action recognition. We show in
this section, that such superresolution algorithms produce high-resolution details
that are not necessarily recovered by simple upscaling algorithms, like bicubic
interpolation. It is shown in this paper, that combining the results of the deep
learning-based super-resolution and the bicubic interpolation, through an alpha
blending approach, produces images that are of better quality compared to the
input low-resolution images. We show that employing such higher resolution im-
ages improves the recognition accuracy of a state-of-the-art action recognition
algorithm. Figure 3.18 shows the importance and need for an upsampling algo-
rithm in low-resolution images for action recognition algorithms. It is shown in
this figure that regardless of the targeted action, the recognition accuracy of action
recognition algorithms drops considerably as the resolution of the images drops.

The block diagram of the proposed system is shown in figure 3.19. Having a
low-resolution input video, the proposed system upsamples it by a bicubic inter-
polation and the deep learning SR algorithm of [27] in parallel. Then these two
upsampled videos are combined using a simple « blending technique to produce
a high-resolution video. Next, the dense trajectories of [125] are used to perform
action recognition on the high-resolution video. These algorithms are briefly re-
visited in the following subsections.

a blending of different upsampled videos

Following the block diagram of the proposed system shown in figure 3.19, having
upsampled low-resolution videos by the bicubic algorithm and the above men-
tioned deep learning-based SR algorithm, we need to combine them. To do so, we
use the following « blending technique:

Uy =al,+ (1—a)l, (3.42)
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Figure 3.18: The importance of resolution in action recognition algorithms: recognition
accuracy of the state-of-the-art action recognition algorithm of [125] drops as the resolu-
tion of images of different actions of the Hollywood2 dataset drops.

Deep learning-based super-resolution
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Figure 3.19: The block diagram of the proposed system.

in which, ¥ and Uy, are the high-resolution images produced by the SR and bicu-
bic algorithms, respectively. The reason for using these two different upsampling
algorithms is that they produce different high-resolution details. This can be seen
from the difference images (fourth column) of figure 3.20. These images have
been obtained by subtracting the two upsampled images from each other after
mean filtering the super-resolved image by a kernel of size 3x3. It can be seen
from these different images that these two upsampling algorithms produce high-
resolution images that are not necessarily the same. These high-resolution details
mostly focus around the subject of interest and thus are important for action recog-
nition. Having produced the high-resolution image, hereafter shown by W, it is
fed to the action recognition algorithm described in the next section.
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Figure 3.20: A few examples from the Hollywood2 database (first column) and their
upsampling counterparts by bicubic interpolation (second column) and deep learning-
based SR (third column). Difference between the two upsampling algorithms is shown
in Difference image (fourth column). It can be seen from Difference images that the
two upsampling algorithms do not necessarily produce similar high-resolution images,
and hence complement each other (last column) for recognition purposes. This is further
verified in the experimental results section.

Dense trajectories-based action recognition

This algorithm starts with a feature extraction step, in which the dense trajectories
are considered as the criteria, which help determine the type of action perceived.
To do that, first, feature points are densely sampled on a grid spaced by K pixels,
and then tracked in each spatial scale separately. A median filter is used to track
each point U}, = (z,,9,) from the p™ frame to the p + 1™, in a dense optical
flow field W; = (hy, v;), where v; denotes the vertical component, and h; stands
for the horizontal component of the optical flow:

\iﬂ;—f—i_l - (xp'i‘layp-f-l) = (xpvyp) + (M * W)‘(xp,yp)7 (343)

where M is the median filter kernel of size 3 x 3. It is worth mentioning that me-
dian filter is more robust compared to bilinear interpolation, and improves trajec-
tories for points at motion boundaries. Afterward, the points associated with sub-
sequent frames are concatenated to form trajectories in the form (0%, i”;l, c)s
for each of which, five descriptors are extracted: the trajectory itself, in other
words, the concatenation of normalized displacement vectors, along with HOG,
HOF, and MBH [125].
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Dense trajectories and the corresponding descriptors are extracted from training
and test videos, and the descriptors are normalized by means of the so-called
RootSIFT approach, i.e. square root after L1 normalization.

For the aim of this work, following the same strategy as the one utilized in [125],
100, 000 training descriptors were randomly selected for clustering, whereby train-
ing and test videos were represented through the aforementioned bag-of-features
representation. Then feature spaces were combined by the classification model,
which is tantamount to taking an SVM with an X2 kernel into account [125].
Finally, for the classification procedure, Fisher Vectors from the latter descriptors
were concatenated so as to represent each video on the basis of a linear SVM.
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3.4 Spatio-Temporal Pain Recognition in CNN-based
Super-Resolved Facial Images

In this section, we first describe the facial pain-expression database to be used in
our investigation. We then describe the procedure of generating facial images with
different resolutions and, finally, the deep learning-based classification framework
for the experiment.

3.4.1 The database

We use the UNBC-McMaster Shoulder Pain database collected by the researchers
at McMaster University and the University of Northern British Columbia [69].
The database contains facial video sequences of participants who had been suffer-
ing from shoulder pain and were performing a series of active and passive range
of motion tests to their affected and unaffected limbs on multiple occasions. The
database also contains FACS information of the video frames, self-reported pain
scores in sequence level and facial landmark points obtained by an appearance
model. The database was originally created by capturing facial videos from 129
participants (63 males and 66 females). The participants had a wide variety of
occupations and ages. During data capturing, the participants underwent eight
standard range-of-motion tests: abduction, flexion, and internal and external ro-
tation of each arm separately. Participants’ self-reported pain score, along with
offline independent observers’ rated pain intensity, were recorded. At present,
the UNBC-McMaster database contains 200 video sequences with 48398 FACS
coded frames of 25 subjects.

3.4.2 Obtaining Pain-Expression Data with Varying Face
Resolution

We created multiple datasets by obtaining the original images from the UNBC-
McMaster database and then varying the resolutions by down-up sampling or SR
algorithms. The down-up sampling was accomplished by simply down-sampling
the original images and then up-sampling the down-sampled images to the same
resolution of the original images by employing a cubic-interpolation.

In order to generate SR images, a state-of-the-art technique, namely example-
based learning [50], is adopted. We use the down-sampled images as input to the
SR algorithm and obtain the super-resolved images.
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3.4.3 Deep Hybrid Classification Framework

We use a hybrid framework that is a combination of CNN and RNN to exploit
both spatial and temporal information of facial pain expressions for pain detec-
tion. The hybrid pain detection framework is depicted in figure 3.21. In order to
extract discriminative facial features, we fine-tune VGG_Faces [81], a 16-layer
pre-trained CNN with 2.6M facial images of 2.6K people. Concretely, we replace
the last layer of the CNN by a randomly initialized fully-connected layer with the
three pain levels to recognize and set its learning rate as ten times the learning rate
of the rest of the CNN.

Once fine-tuned, we extract the features of the £c7 layer of the fine-tuned model
and use them as input to a Long-Short Term Memory (LSTM) Recurrent Neural
Network (RNN) [39]. LSTMSs are particular implementations of RNN that make
use of the forget (F'), input (2), and output (o) gates so as to solve the vanishing or
exploding gradient problems, making them suitable for learning long-term time
dependencies. These gates control the flow of information through the model by
using point-wise multiplications and sigmoid functions S, which bound the infor-
mation flow between zero and one:

i(t) = SWaniyz(t) + Wigoing(t — 1) + baiy) (3.44)

F(t) = SWeorz(t) + W(g = F)g(t — 1) + bar)) (3.45)
2(t) = tanh (W0 @(t)) + Wigoog(t — 1) + bae) (3.46)

c(t) = F(t)e(t — 1) +i(t)=(t), (3.47)

o(t) = SW(z—0)%(t) + Wig0)9(t = 1) + b(150)) (3.48)

g(t) = o(t) tanh (c(t)) , (3.49)

where z(t) is the input to the cell at time ¢, ¢ is the cell,W is a weight matrix,
b represent a bias vector and g is the output of the cell. W(,_,, are the weights
from x to y. More detail can be found in the original implementation [65].

Labels are predicted sequence-wise, i.e. given a sequence of n frames f; €
{f1, ..., fn}, the target prediction is the pain level of the f,, frame. Thus, training is
set so that the information contained in the past frames is used in order to predict
the current pain level. We optimize the LSTM with Adam [51] with an initial
learning rate of 0.001 so as to alleviate the hyper-parameter tuning problem.
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Figure 3.21: The block diagram of the deep hybrid classification framework based on a
combination of CNN and RNN.
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CHAPTER 4

EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this chapter, experimental results of our proposed algorithms are shown and
comparison between our results with several state-of-the-art algorithms have been
done. It should be noticed that all algorithms which are used for comparison are
re-built with the same parameters used in the literature (in some cases original
codes of the algorithm were downloaded from the website of corresponding au-
thors) except properties of liquid lenses mentioned in section 4.1 which is taken
directly from the literature.

4.1 Auto-focus Fluid Lenses

The shape of the meniscus is changed by applying different voltage. A laser beam
is guided through the lens in order to show the change of the meniscus and to
measure it. Figure 4.1 shows the measurement setup of this research.

As is shown in figure 4.3, changes in the size of the laser beam image depend
on the applied voltage on the actuator membrane. When the voltage is increased,
the hole dimension is decreased, which makes a change in the meniscus. Due to
this reason, the size of laser beam image is increased. The red dots show the size
of the laser beam image versus applied voltage for an actuator membrane with an
active area of 40mm, and blue dots show the size of the laser beam image verses
applied voltage for an actuator membrane with an active area of 20mm.

The hole diameter variations (strain (L — L)/ Lg in percent) also are optically
measured with a CMOS camera, as shown in figure 4.2.

As was observed, the focal length of the lens is decreased by applying more
voltage. Although the maximum applied voltage on the membrane varies be-
tween 1150V to 2250V, depending on the thickness of the membrane actuator, the
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Figure 4.3: Change of laser beam image size on the plane versus applied voltage to mem-
brane actuator.

change in the size of the central hole and shape of meniscus starts from 50V to
approximately 750V. Figure 4.4 illustrates the laser beam image on the plane.

Table 4.1 shows a comparison of the proposed work and some of the state of
the art methods. A maximum driving voltage of 750V is required to achieve far
focus (at 44cm) for the prototype. A significant decrease in driving voltage shows
the superiority of the proposed work compared with previous works.
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Figure 4.4: Image of laser beam (a) 6v on the actuator membrane with active area of
20mm, (b) 700V on the actuator membrane with active area of 20mm, (c¢) 6v on the
actuator membrane with active area of 40mm, (d) 700V on the actuator membrane with
active area of 40mm.

Table 4.1: Performance comparison among various designs of tunable liquid lens using

DEA.

Carpi et al [18] | Shianetal [115] Lau et al [62] Proposed Work

Actuator material VHB 4905 VHB 4910 VHB 4910 PDMS
Electrode material Carbon grease Single-walled C.}rapl'ut.e powdf:r Graphite powder

carbon nanotube | with oil immersion
Lens diameter 7.6 mm — 8 mm 4 mm
Driving voltage Upto 4kV Up to 5kV Upto 1.8kV Up to 750 V

Accommodation or tuning range | 3cmto 10cm | 16 cm to 770 cm 15 cm to 50 cm 19 cm to 44 cm

4.2 Satellite Image Enhancement: Systematic
Approach for Denoising and Resolution
Enhancement

In this section, the proposed algorithm in section 3.2.1 is tested and compared
with some state-of-the-art algorithms. Figures 4.5 and 4.6 illustrate LR images
taken from several aerospace and geosciences resources. We assume that Gaus-
sian white noise (GWN) of zero mean and standard deviation (STD) ¢ = 25 is
added to the images as shown in (b). The denoised images via the DT-CWT based
LA-BSF algorithm are given in (c). Then the denoised images are super-resolved
by using bicubic interpolation (d), WZP (e) and DWT (proposed) (f). Objective
test (PSNR) results of the proposed image enhancement system are given in Table
4.2.

It should be notice that the term PSNR is an expression for the ratio between the
maximum possible value (power) of a signal and the power of distorting noise
that affects the quality of its representation. Because many signals have a very
wide dynamic range, (ratio between the largest and smallest possible values of a
changeable quantity) the PSNR is usually expressed in terms of the logarithmic
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decibel scale. PNSR is a standard quality metric of a reconstructed image. If we
can show that an algorithm or set of algorithms can enhance a degraded known
image to more closely resemble the original, then we can more accurately con-
clude that it is a better algorithm.

The quantitative test results and visual qualities of the final results indicate that
the proposed technique achieves sharper images than the ones achieved by direct
interpolation and WZP.

(@)
@ -

Figure 4.5: Original low contrast image from Antarctic Meteorological Research Centre
(a), the noisy image (PSNR=20.41 dB at STD=25) (b), denoised image using DT-CWT
based LA-BSF algorithm (PSNR=29.58 dB at STD=25) (c), resolved images (after de-
noising) by using: bicubic interpolation (d), WZP (e), and DWT (proposed) (PSNR=31.78
dB at STD=25) (f).

(b)
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Figure 4.6: Original low contrast image from Antarctic Meteorological Research Centre
(a), the noisy image (PSNR=20.79 dB at STD=25) (b), denoised image using DT-CWT
based LA-BSF algorithm (PSNR=26.12 dB at STD=25) (c), resolved images (after de-
noising) by using: bicubic interpolation (d), WZP (e), and DWT (proposed) (PSNR=28.74
dB at STD=25) (f).

Table 4.2: Objective test (PSNR) results of proposed image enhancement system (denois-
ing and resolution enhancement).

PSNR (dB) of enhanced image
Method Fig. 4.5 Fig. 4.6
Gaussian filter + WZP (o = 15) 28.04 26.07
Gaussian filter + WZP (o = 25) 23.67 22.59
LA-BSF + WZP (o = 15) 28.26 26.78
LA-BSF + WZP (o = 25) 23.08 23.33
Gaussian filter + (WZP and CS) (¢ = 15) | 29.11 27.48
Gaussian filter + (WZP and CS) (o = 25) | 24.97 24.25
LA-BSF + (WZP and CS) (o = 15) 31.49 30.11
LA-BSF + (WZP and CS) (o = 25) 25.15 25.89
Gaussian filter + DWT (o = 15) 30.03 29.92
Gaussian filter + DWT (o = 25) 25.45 26.01
Proposed Technique (o = 15) 33.09 31.78
Proposed Technique (o = 25) 30.82 28.74
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4.3 New Two-Dimensional Sampling Kernel based
Resolution Enhancement

To show that replacing the bicubic interpolation kernel of an SR algorithm with
the introduced kernels and then combining the results using the « blending tech-
nique, discussed in the previous section, improves the results of the used SR al-
gorithm, we have chosen two state-of-the-art SR algorithms, namely Sparse-SR
[83] and Example-SR [50]. In addition to the proposed kernel and bicubic ker-
nel, a Bicubic-spline (B-spline) kernel is used in SR algorithms. The B-spline
preserves the shape of the data by inserting one or two additional knots in the
subinterval where the interpolants do not attain the desired shape characteristics
of data [4, 29].

The Sparse-SR technique proposed in [83] avoids any invariance assumption,
which is a common practice in sparsity-based approaches treating this task. A
parametric model which captures the statistical dependencies between the sparsity
patterns of the LR and HR coefficients and between the corresponding nonzero
coefficients is used. The HR patches are predicted by using minimum mean square
error estimation. The work in [50] which is an extension of [49] uses kernel ridge
regression in order to estimate the high-frequency details of the underlying HR
image. Also, a combination of gradient descent and kernel matching pursuit is
considered, which allows time-complexity to be kept to a moderate level.

To conduct the experiments, we have created a database of 1025 non-facial
images and 1013 facial images from multiple databases, such as LFW [42], the
Helen database [63] and Van Hateren’s Natural Image Database [37], as shown
in figure 4.7. Then the following experiments have been run:

* Have applied the Sparse-SR algorithm of [83] to the dataset without chang-
ing the original bicubic interpolation kernel.

» Have applied the Example-SR algorithm of [50] to the dataset without chang-
ing the original bicubic interpolation kernel.

* Have applied the Sparse-SR algorithm of [83] to the dataset when the origi-
nal bicubic kernel of the algorithm has been replaced by the B-spline Kernel
[64, 11].

* Have applied the Example-SR algorithm of [50] to the dataset when the
original bicubic kernel of the algorithm has been replaced by the B-spline
Kernel [64, 11].

* Have applied the Sparse-SR algorithm of [83] to the dataset when the orig-
inal bicubic kernel of the algorithm has been replaced by the kernels in-
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troduced in this work and the results are combined using the mentioned «
blending.

* Have applied the Example-SR algorithm of [50] to the dataset when the
original bicubic kernel of the algorithm has been replaced by the kernels
introduced in this work and the results are combined using the mentioned «
blending.

Figure 4.7: Some facial and non-facial images.

Quantitative comparison of the obtained results for the above-mentioned ex-
periments can be found in Tables 4.4 and 4.6 for an enlargement size of 2 and in
Tables 4.5 and 4.7 for an enlargement size of 4. These tables report the results us-
ing the common factors that are used for assessing the quality of SR algorithms,
namely PSNR and SSIM, respectively. The results in these tables are given in-
dividually for some known benchmark images and also for the total dataset (in
the last row of the tables). Figure 4.8 also shows the results generated using the
above-mentioned experiments for some of the known benchmark images.

It can be seen from both Tables 4.4 and 4.6 and figure 4.8 that the results gener-
ated by both SR algorithms using the proposed kernels (the last two columns of
the tables and also the figure) are both quantitatively and visually (qualitatively)
better than the results of the SR algorithms when their original bicubic interpo-
lation kernel has been used. Figures 4.9, 4.10 and 4.11, as well as Table 4.3,
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Figure 4.8: Visual comparison of adopted algorithms where bicubic and proposed kernels
are used. From left to right, the first column shows LR images, the second and third
columns show the super resolved-images by using Example-SR with proposed kernels
and bicubic kernel respectively. The fourth and fifth columns show super-resolved images
by using Sparse-SR with proposed kernels and bicubic kernel respectively.

show the same comparison on several remote sensing images. Table 4.3 shows
the average PSNR results of 21 classes of remote sensing images, in which each
category consists of 100 images [130]. The magnification used is 2 in all of the
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Figure 4.9: Visual comparison of adopted algorithms where bicubic and proposed kernels
are used. From left to right, the first column shows LR images, the second and third
columns show the super-resolved images by using Example-SR with proposed kernels
and bicubic kernel respectively. The fourth and fifth columns show super-resolved images
by using Sparse-SR with proposed kernels and bicubic kernel respectively.

experiments.

In order to show the effect of changing « values in the alpha blending technique,
the outputs of the Sparse-SR [83] through using each of the proposed kernels have
been combined by using different alpha values, and accordingly, the PSNR val-
ues have been calculated for facial and non-facial images separately. Figure 4.12
illustrates the change in the quality of the output based on different alpha values.
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Figure 4.10: Visual comparison of adopted algorithms where bicubic and proposed ker-
nels are used. From left to right, the first column shows LR images, the second and third
columns show the super-resolved images by using Example-SR with proposed kernels and
bicubic kernel respectively. The fourth and fifth columns show super-resolved images by
using Sparse-SR with proposed kernels and bicubic kernel respectively.

By picking the best value of « for facial images, which is @ = 0.8, 2330
faces in the Helen database [63] have been super-resolved by a factor of 2. As
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Figure 4.11: Visual comparison of adopted algorithms where bicubic and proposed ker-
nels are used. From left to right, the first column shows LR images, the second and third
columns show the super-resolved images by using Example-SR with proposed kernels and
bicubic kernel respectively. The fourth and fifth columns show super-resolved images by
using Sparse-SR with proposed kernels and bicubic kernel respectively.

shown in Table 4.8, the quantitative results by means of PSNR show that the
proposed method performs 1.41dB, on average, better than the bicubic. This can
be observed from SSIM results as well.
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Figure 4.12: Average PSNR results of facial and non-facial images with Sparse-SR algo-

rithm of [83] on different value of alpha.

Table 4.3: The Average PSNR values in dB for 21 categories of remote sensing images
adopting Sparse-SR [83] and Example-SR [50] with bicubic and the proposed kernels
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based resolution enhancement for enlargement factor of 2.

PSNR Value

Bicubic Kernel

Proposed kernels
with « blending

Sparse-SR | Example-SR | Sparse-SR | Example-SR
Agricultural 25.49 24.98 24.98 25.10
Airplane 25.86 25.53 25.53 25.53
Baseballdiamond 30.56 30.00 30.00 30.03
Beach 33.63 33.05 33.05 33.11
Building 23.90 23.61 23.61 23.61
Chaparral 24.03 23.82 23.82 23.88
Denseresidential 24.01 23.81 23.81 23.79
Forest 26.02 25.58 25.58 25.65
Freeway 26.88 26.47 26.47 26.57
Golfcourse 30.61 30.06 30.06 30.09
Harbor 21.86 21.52 21.52 21.52
Intersection 25.24 24.93 24.93 24.93
Mediumresidential 23.55 23.27 23.27 23.27
Mobilehomepark 22.14 21.88 21.88 21.86
Overpass 23.92 23.51 23.51 23.52
Parkinglot 21.14 20.71 20.71 20.72
River 26.02 25.53 25.53 25.60
Runway 27.21 26.57 26.57 26.77
Sparseresidential 26.20 25.86 25.86 259
Storagetanks 25.67 25.30 25.30 25.30
Tenniscourt 26.74 26.38 26.38 26.38
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Table 4.4: The PSNR values in dB for the used images adopting Sparse-SR [83] and
Example-SR [50] with B-spline, bicubic and the proposed kernels based resolution en-
hancement for an enlargement factor of 2.

PSNR values
Images B-spline Kernel Bicubic Kernel nggoieslrsg?:;s

Sparse- | Example- | Sparse- | Example- | Sparse- | Example-

SR[83] | SR[50] | SR[83] | SR[50] | SR[83] | SRI[50]
Anna 29.12 28.73 31.93 30.82 32.53 31.53
Butterfly 19.57 19.48 21.89 21.52 23.20 21.54
Comic 19.01 18.90 20.59 20.47 22.15 20.51
Flowers 23.67 23.12 24.58 24.23 26.12 24.25
Foreman 22.49 27.44 30.52 30.37 32.36 31.39
Francoise 19.86 20.19 22.79 22.32 24.38 22.36
Girl 23.73 27.78 29.02 28.49 30.62 28.53
Lena 24.39 26.39 28.49 27.46 30.09 28.05
Man 22.59 21.95 23.61 23.21 25.24 23.23
Pepper 25.09 25.89 27.06 26.79 27.85 26.83
Starfish 21.77 22.09 23.99 22.71 25.69 23.73
Zebra 22.16 22.68 23.94 23.17 25.07 23.79
Averageof | 5,0 | )543 2739 | 26.10 2864 | 27.85
2000 images

Table 4.5: The PSNR values in dB for the used images adopting Sparse-SR [83] and
Example-SR [50] with B-spline, bicubic and the proposed kernels based resolution en-
hancement for an enlargement factor of 4.

PSNR values

Proposed kernels
with o blending
Sparse- | Example- | Sparse- | Example- | Sparse- | Example-
SR[83] | SR[50] | SR[83] | SR[50] | SR[83] | SR[50]
Anna 26.05 24.92 25.50 27.95 2591 28.16
Butterfly | 16.87 16.44 16.33 18.16 16.54 18.68
Comic 16.91 17.24 15.88 17.25 15.98 17.68
Flowers 21.25 21.18 20.77 21.48 20.80 21.94
Foreman | 23.96 24.68 25.52 27.86 25.49 28.47

B-spline kernel Bicubic Kernel
Images

Girl 27.27 27.37 2742 26.64 27.45 27.12
Lena 22.69 24.38 21.84 25.62 22.05 26.24
Man 20.94 21.27 20.41 21.23 20.51 21.67

Pepper 23.72 24.25 22.74 25.28 23.13 25.69
Starfish 20.55 19.80 20.49 20.77 20.61 21.24
Zebra 18.16 18.20 17.05 20.02 17.19 20.53

4.4 Reducible Dictionaries for Single Image
Super-Resolution based on Patch Matching and
Mean Shifting

In this work, 581 HR images from different standard test image databases [2] are
used to make the HR dictionary, Dy, and its corresponding LR dictionary, D;.



Table 4.6: The SSIM values for the used images adopting Sparse-SR [83] and Example-
SR [50] with B-spline, bicubic and the proposed kernels based resolution enhancement
for an enlargement factor of 2.

SSIM Values

Images B-spline kernel bicubic kernel l::i.;ll)lociel()il:;;?rf:

Sparse- | Example- | Sparse- | Example- | Sparse- | Example-

SR[83] | SR[50] | SR[83] | SR[50] | SR[83] | SR[50]
Anna 0.8409 0.8355 0.9254 0.9097 0.9349 0.9168
Butterfly 0.7423 0.7535 0.8323 0.8349 0.8701 0.8395
Comic 0.6667 0.6623 0.7427 0.7409 0.7788 0.7450
Flowers 0.7634 0.7366 0.8014 0.7885 0.8359 0.7911
Foreman 0.8668 0.8489 0.8987 0.8920 0.9218 0.8997
Francoise 0.7951 0.7529 0.813 0.7872 0.8701 0.7877
Girl 0.7541 0.6891 0.7347 0.7137 0.7799 0.7150
Lena 0.8181 0.9117 0.9243 0.9059 0.9475 0.9189
Man 0.7030 0.8571 0.8603 0.8409 0.9059 0.8417
Pepper 0.8344 0.909 0.9187 0.9006 0.9410 0.9093
Starfish 0.7600 0.7499 0.8124 0.8080 0.8480 0.8204
Zebra 0.7835 0.904 0.9023 0.8918 0.9313 0.8987
Averageof | o\ 15 | (8493 | 0855 | 08126 | 08750 | 0.8405
2000 images

Table 4.7: The SSIM values for the used images adopting Sparse-SR [83] and Example-
SR [50] with B-spline, bicubic and the proposed kernels based resolution enhancement
for an enlargement factor of 4.

SSIM values

Images B-spline kernel Bicubic Kernel l:;i(;[l)nocsyel()lll(lf;?s:

Sparse- | Example- | Sparse- | Example- | Sparse- | Example-

SRI[83] | SR[50] | SR[83] | SRI[50] | SRI[83] | SRI[50]
Anna 0.6952 0.7729 0.6010 0.7973 0.6174 0.8127
Butterfly | 0.5481 0.6881 0.5213 0.6890 0.5241 0.7091
Comic 0.4255 0.5472 0.4008 0.5352 0.4044 0.5483
Flowers | 0.6051 0.6822 0.6023 0.6570 0.6035 0.6706
Foreman | 0.7965 0.8289 0.8195 0.8391 0.8209 0.8495
Girl 0.6998 0.7377 0.6905 0.6284 0.6909 0.6427
Lena 0.7313 0.7589 0.7068 0.8509 0.7072 0.8605
Man 0.5682 0.6348 0.5578 0.7181 0.5584 0.7323
Pepper 0.7665 0.7782 0.7415 0.8511 0.7417 0.8631
Starfish 0.5955 0.6582 0.5982 0.6692 0.6014 0.6814
Zebra 0.5545 0.598 0.5436 0.7482 0.5471 0.7596

These images are selected from different categories, such as face images, natural
images, and texture images. Some of these images are shown in figure 4.13.
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Table 4.8: The average result with the best alpha value for the Helen Database [63].

PSNR(dB) | SSIM
Bicubic 27.44 0.8774
SR algorithm Sparse-SR [83]
with new kernel

28.85 0.9002

In order to make HR and LR dictionaries, the nearest neighbor interpolation is
used to decimate HR images to LR images by a factor of 2, i.e. in our experimen-
tal results we are conducting SR with a scaling factor of & = 2. Then patch sizes
of 8 x 8 and 4 x 4 are chosen for making HR and LR dictionaries, respectively.
Also, the input LR test images to all SR techniques used for the experimental re-
sults have been obtained by downsampling their HR original counterparts using
the nearest neighbor kernel. It should be mentioned that the test images are not
used in constructing the dictionaries.

In the experimental results, many well-known benchmark images such as Butter-
fly, Comic, Flowers, Foreman, Girl, Lena, Man, Pepper, Starfish, and Zebra, as
well as the LFW face database [42] with 13259 images, are used. PSNR, SSIM
index, Visual Information Fidelity in Pixel Domain (VIFP), universal quality in-
dex (UQI), noise quality measure (NQM), Weight signal to noise ratio (WSNR)
and mean square error (MSE) are used in order to evaluate imperceptibility char-
acteristics quality measurement. Table 4.11 shows the PSNR values, SSIM val-
ues, VIFP values, UQI values, NQM values, WSNR values and MSE values for
the convolutional neural network SR method [28], Peleg and Elad [83], the Yang
method [127] that is called KK, the A+ method [120] and the proposed SR tech-
niques for the aforementioned images.

For Lena’s image, the PSNR of the proposed method is 3.50 dB and 3.01 dB
higher than those of the convolutional neural network SR method (SRCNN) [28]
and the SR method proposed by Peleg et al. [83], respectively.

Table 4.11 illustrates that the greatest difference is for the pepper image that
is about 4.06 dB and 4.48 dB more than the Peleg and Elad method in [83] and
SRCNN in [28], respectively. The average of the PSNR results of our proposed
method are approximately 1.4 dB and 0.7 dB more than the SRCNN method in
[28] and Peleg and Elad’s method in [83], respectively. Figure 4.14 shows the
visual comparison of the SRCNN [28], the proposed method in [83] and the pro-
posed method for some of the images used in the comparison. The results show
that the proposed method performs better than the conventional and the state-of-
the-art methods. The proposed method also shows a good performance in the
area of remote sensing images. Tables 4.9 and 4.10 show the average PSNR and
SSIM results of the proposed algorithm on 21 classes of remote sensing images,
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Figure 4.13: Some images that are used for making dictionaries which are employed with
the experimental results of this work.

in which each class consists of 100 images.

Table 4.9: The Average PSNR values in dB for 21 categories of remote sensing images.

Sparse-SR | SRCNN | Proposed Method
Agricultural 25.49 26.43 27.42
Airplane 25.86 26.53 27.63
Baseballdiamond 30.56 31.33 32.09
Beach 33.63 34.28 35.09
Building 23.90 24.64 25.43
Chaparral 24.03 25.02 25.90
Denseresidential 24.01 24.86 25.57
Forest 26.02 26.80 28.08
Freeway 26.88 27.59 28.40
Golfcourse 30.61 31.36 32.29
Harbor 21.86 22.46 23.37
Intersection 25.24 26.06 26.78
Mediumresidential 23.55 24.35 25.44
Mobilehomepark 22.14 2291 23.78
Overpass 23.92 24.63 25.94
Parkinglot 21.14 21.63 22.48
River 26.02 26.77 28.11
Runway 27.21 27.81 29.23
Sparseresidential 26.20 27.05 27.99
Storagetanks 25.67 26.44 27.38
Tenniscourt 26.74 27.60 28.42
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Figure 4.14: Visual comparison of state-of-the-art algorithms. From left to right, the first
column shows LR images, the second and third columns show the super-resolved images
by using SRCNN [28], Sparse-SR [83] respectively. The fourth and fifth columns show
super-resolved images by using the KK method [127] and A+ [120] respectively. The last
column shows the proposed method with mean shift.

4.5 Deep Learning Convolutional Network Super
Resolution for Improving Face Recognition in
Surveillance Monitoring

Four face databases are used in the experiments. These databases are the facial
recognition technology (FERET) database [87, 86], the Essex Faces facial images
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Table 4.10: The Average SSIM values in dB for 21 categories of remote sensing images.

Sparse-SR | SRCNN | Proposed Method
Agricultural 0.6876 0.6922 0.7280
Airplane 0.8219 0.8188 0.8450
Baseballdiamond 0.8265 0.8253 0.8522
Beach 0.8943 0.8932 0.9060
Building 0.8187 0.8158 0.8326
Chaparral 0.7509 0.7473 0.7863
Denseresidential 0.8095 0.8085 0.8277
Forest 0.7274 0.7223 0.7702
Freeway 0.8072 0.8036 0.8267
Golfcourse 0.8216 0.8198 0.8499
Harbor 0.8334 0.8263 0.8458
Intersection 0.8130 0.8108 0.8316
Mediumresidential 0.7575 0.7543 0.7921
Mobilehomepark 0.7710 0.7653 0.7956
Overpass 0.7581 0.7559 0.7943
Parkinglot 0.7892 0.7782 0.8050
River 0.7505 0.7443 0.7880
Runway 0.8052 0.7987 0.8394
Sparseresidential 0.7503 0.7490 0.7877
Storagetanks 0.8127 0.8092 0.8330
Tenniscourt 0.8160 0.8151 0.8370

collection [1], the Head Pose Image database (HP) [34] and our recently intro-
duced iCV Face Recognition database (iCV-F). The iCV-F database consists of
face images of 31 subjects with 10 images for each subject. The database in-
cludes people wearing glasses or not and with varying skin color. Models were
asked to make different facial expressions while the photos were taken. Figure
4.15 shows some images of the iCV-F database.

The facial images first have been passed through the Viola-Jones face detector,

Figure 4.15: Figures of our own database.
and the segmented faces are resized to 60 x 60 pixels. These images are then

downsampled by a factor of 4 in order to achieve LR input images. Figure 4.16
shows the LR and super-resolved images. The LR images have the size of 15 x
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Table 4.11: Comparison of results of the proposed method with SRCNN [28], Peleg &
Elad method [83], KK [127] and A+ [120], where bold numbers show the best perfor-
mance.

1000 facial
images
PSNR 22.45 21.03 23.58 30.33 30.95 24.93 23.68 27.21 24.52 20.75 31.95
SSIM | 0.8282 | 0.7360 | 0.7679 | 0.8898 | 0.8012 | 0.8277 | 0.7423 | 0.8814 | 0.8045 | 0.7275 0.9452
SRCNN [28] | VIFP | 0.3752 | 0.2893 | 0.3069 | 0.5110 | 0.3883 | 0.4021 | 0.3104 | 0.4486 | 0.3538 | 0.2727 0.5842
UQI 0.7542 | 0.7426 | 0.6821 | 0.7202 | 0.6738 | 0.7581 | 0.6995 | 0.8045 | 0.7699 | 0.7180 0.8561
NQM 16.36 14.77 15.83 20.89 21.95 | 16.65 | 16.13 | 1749 | 16.62 11.94 20.49
WSNR | 24.92 26.02 24.58 34.61 30.48 | 27.56 | 2478 | 27.71 27.78 | 24.23 29.25
MSE 369.61 497.12 | 284.85 60.30 52.24 | 208.97 | 278.43 | 123.51 | 229.47 | 546.64 49.52

Butterfly | Comic | Flowers | Foreman | Girl Lena Man | Pepper | Starfish | Zebra

PSNR 22.95 21.68 24.13 30.55 31.69 | 2542 | 2432 | 27.63 2512 | 21.67 3233
SSIM | 0.8415 | 0.7499 | 0.7857 | 0.9011 | 0.8291 | 0.8416 | 0.7638 | 0.8941 | 0.8205 | 0.7502 0.9516
Peleg [83] VIFP 0.3858 | 0.2973 | 0.3176 | 0.5260 | 0.4111 | 0.4141 | 0.3229 | 0.4650 | 0.3661 | 0.2845 0.5997

UQIl 0.7756 0.7587 | 0.7056 | 0.7409 | 0.6775 | 0.7792 | 0.7221 | 0.8252 | 0.7894 | 0.7407 0.8549
NQM 16.36 14.80 15.84 20.79 22.02 16.58 16.14 17.44 16.55 12.10 20.46
WSNR 24.94 26.09 24.60 34.60 30.54 | 27.51 2479 | 27.72 27.76 24.41 29.42

MSE 329.52 428.53 | 251.08 | 57.30 44.02 | 186.70 | 240.65 | 112.26 | 200.17 | 442.50 45.08

PSNR 21.64 20.25 22.76 30.34 29.76 | 25.08 | 22.83 | 25.39 | 24.08 19.95 31.01
SSIM | 0.8410 | 0.7420 | 0.7700 | 0.8899 | 0.7785 | 0.8336 | 0.7380 | 0.8789 | 0.8133 | 0.7206 0.9342
KK [127] VIFP 0.3705 | 0.2808 | 0.2985 | 0.5084 | 0.3724 | 0.4063 | 0.3027 | 0.4366 | 0.3507 | 0.2634 0.5762
UQI 0.7782 | 0.7551 | 0.6914 | 0.7238 | 0.6788 | 0.7636 | 0.7090 | 0.8149 | 0.7905 | 0.7205 0.8381
NQM 16.72 15.00 16.06 20.95 2226 | 16.75 | 1638 | 17.04 16.95 12.15 20.49
WSNR | 24.07 25.07 23.32 34.60 29.18 | 27.55 | 23.54 | 25.88 26.84 | 23.28 27.96
MSE 44529 | 614.01 | 344.68 60.13 68.77 | 202.04 | 338.53 | 188.13 | 254.40 | 658.52 168.24

PSNR 18.79 17.37 21.19 25.59 24.66 | 24.66 | 20.69 | 2431 20.41 20.10 31.82
SSIM | 0.7015 | 0.6359 | 0.6842 | 0.8071 | 0.6254 | 0.7367 | 0.6095 | 0.6881 | 0.7051 | 0.6769 0.9186
A+[120] VIFP 0.3140 | 0.2366 | 0.2790 | 0.4292 | 0.2740 | 0.3452 | 0.2464 | 0.3115 | 0.2960 | 0.2901 0.5788

UQI 0.6594 | 0.6423 | 0.5799 | 0.6168 | 0.5060 | 0.5706 | 0.5492 | 0.5203 | 0.6764 | 0.6719 0.7917
NQM 12.33 12.57 18.36 16.65 17.26 | 21.01 | 2044 | 21.50 12.52 15.66 23.40
WSNR | 2049 19.88 22.27 29.90 2337 | 2630 | 21.23 | 25.55 23.13 | 22.58 27.18
MSE 858.68 | 1190.32 | 494.01 179.65 | 222.24 | 222.34 | 554.82 | 241.22 | 591.87 | 635.56 122.98

PSNR 23.82 22.75 25.11 32.83 32.49 | 2843 | 2550 | 31.69 | 2621 | 22.44 31.82
SSIM | 0.8675 | 0.7882 | 0.8394 | 0.9462 | 0.8706 | 0.8974 | 0.8106 | 0.9836 | 0.8695 | 0.7848 0.9412
VIFP 0.4046 | 0.3192 | 0.3419 | 0.5436 | 0.4289 | 0.4707 | 0.3565 | 0.6372 | 0.3932 | 0.3021 0.5893
UQI 0.7916 | 0.7801 | 0.7307 | 0.7502 | 0.7193 | 0.8082 | 0.7553 | 0.9336 | 0.8133 | 0.7526 0.8495
NQM 17.29 16.38 17.69 22.02 24.30 | 19.70 | 18.33 | 21.85 18.41 14.38 22.71
WSNR | 2448 26.00 24.51 35.49 30.89 | 30.06 | 2531 | 30.21 | 27.93 | 24.77 29.96
MSE 283.52 | 355.22 | 206.09 34.25 3771 | 9543 | 187.54 | 45.10 | 159.32 | 379.07 40.44

Proposed
method

Table 4.12: Comparison of results of the proposed method with SRCNN [28], Peleg &
Elad method [83], KK [127] and A+ [120] on 13259 images of LFW database [42], where
bold numbers show the best performance.

Bicubic | SRCNN [28] | Peleg [83] | A+[120] | KK [127] | Proposed method
PSNR 31.97 31.95 32.33 25.16 30.76 33.07
SSIM | 0.9449 0.9439 0.9504 0.8528 0.9400 0.9524
VIFP | 0.5965 0.5828 0.5984 0.4648 0.5684 0.6058
UQI 0.8639 0.8585 0.8550 0.7478 0.8703 0.8885
NQM 21.28 20.59 20.56 16.33 20.86 23.02
WSNR 28.4 29.32 29.31 23.96 28.13 30.23
MSE 47.83 49.54 45.12 220.25 64.72 37.84

15 and super-resolved images 60 x 60.
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Figure 4.16: LR (15 x 15 at left) and SR (60 x 60 at right) version of images of different
databases. The first row belongs to the Essex database, the second row is for the FERET
database, and the third and forth rows belong to the HP and iCV-F databases, respectively.

Databases

The FERET program was sponsored by the Department of Defense Counter-
drug Technology Development Program through the Defense Advanced Research
Products Agency (DARPA). It ran from 1993 through 1997, and its primary mis-
sion was to develop an automatic face detection system to assist security, intel-
ligence, and law enforcement. The FERET database was collected to support
testing and evaluation of face recognition algorithms. The photos were taken in
a semi-controlled environment. The same physical setup was used in each pho-
tography session to maintain consistency throughout the whole database. There
are some minor differences in images gathered on different dates due to reassem-
bling the equipment for each session. The final corpus consists of 14051 eight-bit
grayscale images with views of model heads ranging from frontal to both left and
right profiles. [87, 86]. In 2003 a color version of the database was released by
DARPA. It included 2413 high-resolution, 24-bit color still facial images of 856
individuals. The selected subset of FERET images database consists of 500 color
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images.

The selected subset of Essex Faces94 facial images collection consists of 1500
images. The subjects of Essex database sat at a fixed distance from the camera
and were asked to speak during the photoshoot. Speaking is for introducing vari-
ations of facial expressions. The original images of the database are 180 x 200
pixels. The background of all photos is plain green. No head scale is used. Mi-
nor changes in head turn, tilt and slant and in a position of the face appear in the
images. No lighting variation occurs in the photos. Also, there is no individual
hairstyle variation since the photos were taken in a single session [1].

The HP database consists of 2790 face images of 15 individuals with variations of
pan and tilt angles from -90 to +90 degrees. It has 2 series of 93 images, all in dif-
ferent poses, for each person. The reason for having 2 series is to have both known
and unknown faces for training and algorithms. The database features people of
various skin colors and with or without glasses. The background of the images
is neutral and uncluttered for focusing on face operations [34]. The subset of HP
database used in this work includes 150 images. Faces in the selected subset are
turned only in the horizontal direction.

Our own faces database (iICV-F) consists of 310 images. Photos were taken in 2
sessions in similar conditions. The database includes people wearing glasses or
not and with various skin colors. Subjects were asked to make different facial
expressions for each photo.

Results

The results of the face recognition are given in Table 4.13. By comparing the
recognition performances, it can be observed that super-resolved images result
in an increase in recognition rate for all the databases used in the experimental
procedures. Also, one may note that the recognition rate for the FERET and HP
face databases are relatively low and this is because the HMM-based face recogni-
tion algorithm [73] is not robust in the pose changes, where both aforementioned
databases are well-known for including faces with varying poses.

All in all, SR gives better results in face recognition in all cases. In this work, we
have shown that super resolving the LR facial images will boost the face recogni-
tion rate.
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Table 4.13: The correct recognition rate (in %) for different face databases with different
resolution.

LR images | SR images | Original size
Essex 75.82 86.8 99.20
HP 26.67 37.33 50.67
FERET 20 21.60 31.6
iCV-F 72.83 78.1 98.06

4.6 Deep Learning based Super-Resolution for
Improved Action Recognition

In order to show the effectiveness of the proposed system in improving the quality
of low-resolution images, and hence increasing the recognition accuracy of the
dense trajectories-based action recognition algorithm of [125], we performed the
following two experiments on the Hollywood2 database. On one hand, we assess
the action recognition performance when processing LR videos. The goal of this
experiment is to show how performance degrades when decreasing the resolution
of videos. On the other hand, we evaluate the recognition performance after ap-
plying the super resolution method described in Section 3.3.2. The goal is to
assess the recognition rate improvement obtained when the quality of LR videos
has been enhanced. In the following, we first explain the employed databases, and
then the details of the experimental results are given.

The Hollywood2 database has been employed. The database includes 12 classes
of human actions with 10 classes of scenes distributed over 3669 video clips. The
actions are answer phone, drive a car, eat, fight the person, get out of a car, hand
shake, hug person, kiss, run, sit down, sit up and stand up. The database contains
various video clips from about 70 movies. The database introduces a comprehen-
sive benchmark for human action recognition in realistic and challenging settings
and is used in experimental results in many state-of-the-art action recognition sys-
tems.

Two experiments were performed for the evaluation of the benefits of the men-
tioned upsampling technique for improving the action recognition performance
on low-quality videos. In the first experiment, we evaluated the recognition per-
formance of the dense trajectories method using low-resolution videos of differ-
ent resolutions. For this experiment, we down-sampled the employed databases
by down-sampling factors of four and eight. Each of these down-sampling fac-
tors results in a new database in which we applied the action recognition method
described in Section 3.3.2. Results in this experiment on the entire database of
Hollywood2 are shown in Figure 3.18. It can be seen from this figure that the
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recognition rate generally drops as the resolution of the input images drops. This
verifies the need for upsampling techniques for action recognition algorithms to
work with low-resolution images.

In the second experiment, we assess the benefits of using the alpha blending

technique in combining the super-resolved videos obtained by the deep learning
algorithm and those obtained by the bicubic interpolation. To do that, a subset
of the Hollywood2 database has been chosen and down-sampled by a factor of
two. This subset contains 53 videos for training and 59 videos for testing, cover-
ing all the actions of the database by at least eight to ten videos for each action
of the database. The images in the down-sampled subset have been upsampled
by a factor of two by both the bicubic interpolation and the deep learning-based
super-resolution of [27], separately. The recognition rate of the dense trajectories-
based super-resolution algorithm of [125] have been obtained for these two up-
sampling cases and are reported in Table 4.14. Then the images upsampled by
these two upsampling techniques (bicubic interpolation and deep learning-based
super-resolution) are combined using the mentioned alpha blending technique,
with an (experimentally determined) alpha value of 0.2. Next, recognition rates
of the dense trajectories-based super-resolution algorithm of [125] have been ob-
tained for the images that are combined using the alpha blending technique. The
results are shown in the last column of Table 4.14.
The recognition results in Table 4.14 are reported for different descriptors ob-
tained by the dense trajectories of [125], using a bag of words (BoW) technique.
These descriptors are the trajectory (TRT), HoG, HoF, MBH, and their combined
version following the method of [125]. For the classification purpose, the code
words for each of the descriptors are classified using a Neural Network (with one
hidden layer of neurons, trained for 50 epochs, with a learning rate of 0.1) and
a linear SVM. It can be seen from this table that the proposed upsampling tech-
niques using alpha blending produce better results compared to the other two cases
using the Neural Network classifier. This verifies that deep learning-based super-
resolution algorithms and other upsampling techniques (like bicubic interpolation)
can complement each other in enhancing the quality of videos and hence improve
the recognition performance of the state-of-the-art action of [125]. It should be
also noted that the best performance among the approaches under consideration
has been obtained by using the Neural Network with the TRT, while in [125] the
best recognition rate has been obtained by using SVM from the combined classi-
fier. However, the system of [125] uses the original images, while we have first
down-sampled and then upsampled them. This means that the proposed combined
classifier of [125] is not robust against down-sampling compared to TRT.
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Table 4.14: The recognition accuracy of the dense trajectories-based action recognition
algorithm of [125] for a subset of images of the Hollywood2 database that are first down-
sampled by a factor of two and then are upsampled by different upsampling algorithms,
including the one proposed in this thesis.

- - Upsampling method
Classification method | Descriptor | Interpolated by bicubic | Super-resolved by deep learning | Combined by alpha blending
Neural Network TRT 36.78 % 36.18% 39.28%
Neural Network HoG 24.92% 24.02% 26.98%
Neural Network HoF 23.62% 23.16% 20.22%
Neural Network MBHx 20.37% 21.76% 25.69%
Neural Network MBHy 20.51% 20.45% 19.80%
Neural Network combined 29.87% 23.57% 34.47%
Liner SVM TRT 13.74% 11.26% 13.10%
Liner SVM HoG 11.47% 14.18% 13.32%
Liner SVM HoF 14.19% 11.97% 11.32%
Liner SVM MBHXx 12.78% 13.06% 11.21%
Liner SVM MBHy 10.33% 12.28% 12.92%
Liner SVM combined 14.04% 13.73% 14.50%

4.7 Spatio-Temporal Pain Recognition in CNN-based
Super-Resolved Facial Images

4.7.1 Experimental Environment

As stated in Section 3.4, we evaluated the performance of pain detection in varying
face resolution by employing the hybrid deep learning framework on the UNBC-
McMaster Shoulder Pain database [69]. The video frames of the database showed
patients who were suffering from shoulder pain while they were performing a se-
ries of active and passive range-of-motion tests. The pain indexes were computed
by following the Prkachin and Solomon Pain Intensity (PSPI) scale from [89],
and the pain levels vary in the interval 0-16 based on the FACS codes. Follow-
ing [45], we classified each pain index into three categories of no pain (pain index
lower than 1), weak pain (pain index between 2 and 6) and strong pain (pain index
greater than 6). The three categories have been balanced by dropping consecutive
no-pain frames at the beginning and at the end of each video, or by discarding
entire video sequences which do not contain pain.

We applied the down-up sampling and SR algorithm described in Section 3.4.2
to generate three experimental datasets. The first dataset was created by using
the original images from the UNBC-McMaster database (also used by [44]). The
second and third datasets were denoted by 'SRi'and 'SR%’, and were created by
employing down-up sampling with the values % and 1, respectively, on the first
dataset. The fourth dataset was denoted by 'SR2', and was created by employ-
ing the SR algorithm from Section 3.4.2 on the down-sampled images with factor
%. The LSTM network was configured with 3 hidden-layers of 64 hidden-units
each and a temporal window of 16 consecutive video frames. For the purpose
of comparison, the experimental setup of the LSTM was kept fixed for all the
experiments against the three datasets. The performances were estimated with
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leave-one-subject-out cross-validation protocol.

4.7.2 The Obtained Results

Table 4.15 shows the results of the proposed system against the three sets. Here
we report the accuracy in percentage for each of the three categories, namely "No
Pain”, ”Weak Pain” and ”Strong Pain”. From the experiments, we can claim that
the proposed method applied to super-resolved images is crucial since it reaches
better performance than using the plain down-sampled versions. The latter is
denoted by the amount of improvement appearing in the pain detection rate using
the super-resolved images as the subjects while being compared against that of
the LR ones. In other words, when recognizing the pains using the super-resolved
images, a more powerful SR method leads to recognition rates closer to the case
of considering the original ones. From the results, we can see that pain detection

Table 4.15: Pain detection results for the four experimental datasets created from the
UNBC-McMaster [69] database.

Semantic Ground Truth | Pain Index SR% SR% SR2

No Pain 0,1 55.3% | 62.22% | 55.78%
Weak Pain 2,3,4,5 73.1% | 67.7% | 75.94%
Strong Pain >6 18.36% | 5.86% | 39.45%

F1-score 0.67 0.66 0.69

Total 0-16 62.43% | 62.64% | 65.34%

is much better in super-resolved images compared to down-sampled ones by a
large margin in the case of strong pain, while for the other two levels, namely
no pain and weak pain, the performances are slightly better. This is due to the
fact that stronger pain (compared to the weak and no pain cases) imposes more
changes on the face, and these changes are more pronounced on super-resolved
images; hence, the detection accuracy improves more by far in the strong pain
class in comparison to the other classes. In order to see how temporal information
affects the final results, we provide the SR2 accuracy when using a linear classifier
on the plain CNN features against the LSTM predictions, which aggregates the
temporal information in Table 4.16. Here the results are reported for each subject
in the considered data set. As can be seen, temporal information improves the
predictions by a large margin, 16% on average, meaning that spatial features are
not enough for determining the pain level on facial images. Thus, the temporal
variation of the frames allows for finding higher level facial features, like FACS,
which are central for predicting the PSPI pain score [90].

From Table 4.16, we notice that in two cases, specifically subject number 7 and
subject number 8, the LSTM failed to improve the accuracy of the CNN. After a
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detailed study of the dataset, we notice that sometimes, for both subjects, the pain
index changes very rapidly among consecutive frames. The same pattern occurs
(in a lighter form) also for subject 6, where improvement in the accuracy is not as
good as for the other subjects. In addition, subject 7 is the only one that features
only one video for the validation set, while subject 8 features three videos, one
of which is very noisy with only 20 frames. We think that the aforementioned
differences could be the key problems that lead to such a different performance
for the different subjects.

Table 4.16: Comparison between CNN and LSTM performances on the SR2 dataset (in
accuracy %). The CNN relies on the information of a single frame, while the LSTM takes
into account variations in the images on the temporal axis. As can be seen, the LSTM
enhances the accuracy prediction for all subjects, reaching 16% on average.

subj. | CNN | LSTM
1 409 | 58

2 50.3 | 61.5
3 52 63

4 50.7 | 65.6
5 503 | 825
6 425 | 48

7 293 | 28

8 473 | 40

9 504 | 81
10 44 65.4
11 50 82
12 51.3 | 66
13 51.9 | 65.5
14 30.2 | 60.5
AVG | 458 | 619
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CONCLUSIONS

In this thesis, a study of both hardware and software solutions for image enhance-
ment has been done. On the hardware side, a new liquid lens design with a DESA
membrane located directly in the optical path has been demonstrated. Two pro-
totypes with two different DESA, which have a 40 and 20 mm active area in
diameter, were developed. The lens performance was consistent with the mechan-
ics of elastomer deformation and relative focal length changes. A laser beam was
used to show the change in the meniscus and to measure the focal length of the
lens. The experimental results demonstrate that voltage in the range of 50 to 750
V is required to create change in the meniscus.

On the software side, a new satellite image enhancement system was proposed.
The proposed technique decomposed the noisy input image into various frequency
subbands by using DT-CWT. After removing the noise by applying the LA-BSF
technique, its resolution was enhanced by employing DWT and interpolating the
high-frequency subband images. An original image was interpolated with half of
the interpolation factor used for interpolating the high-frequency subband images,
and the super-resolved image was reconstructed by using IDW'T.

A novel single-image SR method based on a generating dictionary from pairs of
HR and their corresponding LR images was proposed. Firstly, HR and LR pairs
were divided into patches in order to make HR and LR dictionaries respectively.
The initial HR representation of an input LR image was calculated by combining
the HR patches. These HR patches are chosen from the HR dictionary corre-
sponding to the LR patches that have the closest distance to the patches of the in-
put LR image. Each selected HR patch was processed further by passing through
an illumination enhancement processing order to reduce the noticeable change of
illumination between neighbor patches in the super-resolved image. In order to
reduce the blocking effect, the average of the obtained SR image and the bicubic
interpolated image was calculated.

The new kernels for sampling have also been proposed. The kernels can improve
the SR by resulting in a sharper image. In order to demonstrate the effectiveness
of the proposed kernels, the techniques from [83] and [50] for resolution enhance-
ment were adopted. The super-resolved image was achieved by combining the HR
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images produced by each of the proposed kernels using the alpha blending tech-
nique.

The proposed techniques and kernels are compared with various conventional and
state-of-the-art techniques, and the quantitative test results and visual results on
the final image quality show the superiority of the proposed techniques and ker-
nels over conventional and state-of-art techniques.
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KOKKUVOTE
(SUMMARY IN ESTONIAN)

VEDEL-OBJEKTIIV ABIL
SALVESTATUD KAUGSEIRE PILTIDE
ANALUUS KASUTADES
SUPER-RESOLUTSIOONI MEETODEID

Kéesolevas doktorit6ds uuriti nii riist- kui ka tarkvaralisi lahendusi piltide téotlemiseks.
Riistvaralise poole pealt pakuti lahenduseks uudset vedelléddtse, milles on dielekt-
rilisest elastomeerist kihilise tdituriga membraan otse optilisel teljel. Doktoritdo
kdigus arendati vilja kaks prototiilipi kahe erineva dielektrilisest elastomeerist ki-
hilise tdituriga, mille aktiivne ala oli lihel juhul 40 ja teisel 20 mm. Laitse t60 vas-
tas elastomeeri deformatsiooni mehaanikale ja suhtelistele muutustele fookuskau-
guses. Muutuste demonstreerimiseks meniskis ja lditse fookuskauguse modtmiseks
kasutati laserkiirt. Katseandmetest selgub, et muutuste tekitamiseks on vajalik
pinge vahemikus 50 kuni 750 volti.

Tarkvaralise poole pealt pakuti uut satelliitpiltide parandamise siisteemi. Paku-
tud siisteem jagas miirase sisendpildi DT-CWT laineteisenduse abil mitmeteks
sagedusalamribadeks. Pdrast miira eemaldamist LA-BSF funktsiooni abil suu-
rendati pildi resolutsiooni DW'T-ga ja korgsagedusliku alamriba piltide interpo-
leerimisega. Interpoleerimise faktor algsele pildile oli pool sellest, mida kasutati
korgsagedusliku alamriba piltide interpoleerimisel ning superresolutsiooniga pilt
rekonstrueeriti IDWT abil.

Kiesolevas doktoritods pakuti tarkvaraliseks lahenduseks uudset sdnastiku baasil
tootavat superresolutsiooni (SR) meetodit, milles luuakse paarid suure resolut-
siooniga (HR) ja madala resolutsiooniga (LR) piltidest. K&igepealt jagati vastava
sonastiku loomiseks HR ja LR paarid omakorda osadeks. Esialgse HR kujutise

105



saamiseks LR sisendpildist kombineeriti HR osi. HR osad valiti sdnastikust nii,
et neile vastavad LR osad oleksid vdimalikult 1dhedased sisendiks olevale LR pil-
dile. Iga valitud HR osa heledust korrigeeriti, et vihendada korvuti asuvate osade
heleduse erinevusi superresolutsiooniga pildil. Plokkide efekti vihendamiseks ar-
vutati saadud SR pildi keskmine ning bikuupinterpolatsiooni pilt.

Lisaks pakuti kdesolevas doktoritdos vilja kernelid, mille tulemusel on vdimalik
saadud SR pilte teravamaks muuta. Pakutud kernelite tGhususe tdestamiseks ka-
sutati [83] ja [50] poolt pakutud resolutsiooni parandamise meetodeid. Superreso-
lutsiooniga pilt saadi iga kerneli tehtud HR pildi kombineerimise teel alpha blen-
dingu meetodit kasutades.

Pakutud meetodeid ja kerneleid vorreldi erinevate tavaliste ja kaasaegsete mee-
toditega. Kvantitatiivsetest katseandmetest ja saadud piltide kvaliteedi visuaal-
sest hindamisest selgus, et pakutud meetodid on tavaliste kaasaegsete meetoditega
vorreldes paremad.
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