
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Software Engineering

Mikk Pavelson

The deficiencies in the Apple iOS SDK with the

example of third party frameworks usage

Master’s Thesis (30 EAP)

Supervisor: Marko Peterson, M.Sc

TARTU 2014

 2

The deficiencies in the Apple iOS SDK with the example of third party

frameworks usage

Abstract:

The objective of this thesis is to find weak spots in the iOS SDK, a programming library

used to develop applications for the iOS operating system running on Apple’s mobile

devices. The method to finding these deficiencies is to first index the most frequently

used third party frameworks used by iOS developers and analyze the reasons for their

popularity. The first step to achieve this will be looking at the most liked frameworks in

the GitHub hosting service. The second step will conduct a survey among iOS

programmers with questions regarding these very same frameworks. The results will

then be analyzed and summarized.

Keywords:

iOS SDK, frameworks, Apple, software development

Apple’i iOS SDK puudujäägid kolmanda osapoole teekide

kasutatavuse näitel.

Lühikokkuvõte:

iOS SDK on Apple’i iOS operatsioonisüsteemile mõeldud rakenduste prog-

rammeerimisel kasutatav tarkvaraarenduskomplekt. Käesoleva magistritöö eesmärk on

leida iOS SDK silmatorkaimavad puudujäägid. Selle tulemuse saavutamiseks tuleb

kõigepealt leida iOS-i programmeerijate poolt kõige enimkasutatavad kolmanda

osapoole vabavaralised teegid ja analüüsida nende populaarsuse põhjuseid. Esimene

samm selliste raamistike leidmiseks on vaadata võõrustusdomeeni GitHubi kõige

laialtrakendatavaid tarkvaraprojekte. Järgnev samm näeks ette iOS-i arendajate seas

küsitluse läbiviimist, mille päringud põhineks eelmisel etapil saadud teadmistel.

Viimase osana tuleks saadud tulemusi sügavamalt analüüsida ja neist järeldusi teha.

Võtmesõnad:

iOS SDK, teegid, Apple, tarkvaraarendus

 3

Table of Contents

Introduction ... 4	

1	
 Background ... 7	

1.1	
 iOS SDK Version History .. 7	

1.1.1	
 iPhone	
 OS	
 2.0	
 ..	
 7	

1.1.2	
 iPhone	
 OS	
 3.0	
 ..	
 9	

1.1.3	
 iOS	
 4.0	
 ..	
 11	

1.1.4	
 iOS	
 5.0	
 ..	
 12	

1.1.5	
 iOS	
 6.0	
 ..	
 14	

1.1.6	
 iOS	
 7.0	
 ..	
 15	

1.2	
 Conclusions .. 16	

2	
 An overview of related and similar works .. 17	

3	
 External frameworks selection .. 20	

3.1	
 Selection and evaluation ... 20	

3.1.1	
 Initial	
 listing	
 ..	
 20	

3.1.2	
 Filtering	
 ..	
 21	

3.2	
 Conducting a survey ... 22	

3.2.1	
 Results	
 ...	
 23	

4	
 External frameworks analysis ... 27	

4.1	
 AFNetworking - usage reasoning and comparisons with the iOS SDK 27	

4.1.1	
 Simple	
 interface	
 ..	
 27	

4.1.2	
 Blocks	
 ...	
 32	

4.1.3	
 Powerful	
 serialization	
 capabilities	
 ...	
 34	

4.2	
 MagicalRecord - usage reasoning and comparisons with the iOS SDK 37	

4.2.1	
 The	
 absence	
 of	
 boilerplate	
 code	
 ...	
 37	

4.3	
 Conclusions of AFNetworking and MagicalRecord’s advantages 47	

5	
 Summary ... 49	

6	
 Bibliography .. 50	

Appendices .. 54	

Appendix 1. The total list of iOS SDK frameworks .. 54	

Appendix 2. The final list of selected third party frameworks .. 54	

Appendix 3. The contents of the survey .. 54	

 4

Introduction

With the introduction of the iPhone in 2007 and the subsequent revealings of other

mobile operating systems and the devices running them, including the Android in 2008

and Windows Phone in 2010, the world saw a pivoting change in the usage of mobile

hand-held devices [1]. It was no longer a complex and exclusive commodity for the

enterprise market, used only by executives in a need of a personal assistant and a

portable e-mailing device but rather an everyday utility device used for socializing,

photography, day-to-day planning and a million other trivial tasks, recognized by

everybody from teenagers to CEO’s.

The last years have seen a lot of competition and tug-of-wars between the developers of

these operating systems and different hardware manufacturers, which has laid ground

for a rapid progress in technological development and the number of users as well as the

number of software developers [2]. All the major mobile operating systems of today are

surrounded by open environments used by millions of software developers in order for

them so create their own applications. While Android remains to be an open source

platform, Apple’s iOS and Microsoft’s Windows Phone maintain a proprietary nature

[3]. This makes Android open to altering for everybody but makes it impossible for

third parties to change the appearance of iOS or Windows Phone. Although the

operating systems themselves cannot be changed, applications, or so-called “apps”, can

be built by anyone, albeit for a small fee [4], [5].

The three most popular operating systems all have their own software development kits

(SDKs), environments, tools, and frameworks. Apple came out with their own object-

oriented programming language Objective-C, which was meant for building

applications for their Mac OS X and iOS operating systems. It was expanded from a

mixture of ideas from Smalltalk-80 and the C languages [6], [7]. During the iPhone era,

the main tool used by developers for building Apple products has been Xcode, Apple’s

own integrated development environment for the Cocoa and Cocoa Touch frameworks,

used respectively by Mac OS X and iOS. While Cocoa is a set of basic frameworks used

for Mac OS X development, Cocoa Touch adds the abilities to use hardware tools and

features that are only available on Apple’s touch screen devices, such as animations,

 5

multitasking and gesture recognizers [8], [9]. These two sets of frameworks together

make up the iOS software development kit (SDK) that is used for creating all of the

native iOS applications currently available in the Apple App Store. The iOS SDK offers

a huge variety of possibilities from database management to multi-finger touch screen

manipulations, but third party libraries and frameworks are still almost a daily appliance

for many developers and plenty of their projects. Ever since the iPhone OS SDK was

made public in 2008 it has gone through a great number of updates, but even today there

are a lot of deficiencies in the iOS software development kit [10]. The need for external

frameworks directly derives from these deficiencies with developers eagerly

constructing new and better tools for making tedious tasks easier and more efficient.

The software development community decidedly advocates for an open source

mentality, making most of the available libraries free to use and rebuild in any way

other developers see fit. According to the popularities of certain third party frameworks

it should be rather visible what are the current weak spots of the iOS SDK.

The objective of this thesis will be to map the influential updates made to the iOS SDK

by Apple and find third party frameworks that are currently most used by iOS

developers. There are two ways of finding this out:

• looking for the most downloaded frameworks for iOS;

• asking developers’ personal opinion via a questionnaire.

Apple’s previous updates to the iOS SDK can give an interesting insight to which areas

Apple themselves has redeemed most update-worthy in the past. Put together and cross-

referenced, these two sources of information should provide for a deep base of

knowledge.

The first part of this thesis will cover the iOS SDK with its most significant updates and

the background of external frameworks. It will be followed by an overview of the most

popular currently available third party iOS frameworks.

The second part of this thesis will concentrate on finding the most popular third party

frameworks. This will be done by looking through one of the most popular source on

the web for software development libraries – GitHub, and by creating a survey among

iOS programmers in order to find out the preferences of iOS developers in regard to

external libraries.

 6

In the final part of this thesis, these two aspects will be analyzed and compared to each

other. The criteria for a deficiency in a framework will be defined, so that the

deficiencies could be established and dissected. The outcome of this thesis will

hopefully be to find an area in which there is still a need for enhancements, which could

be a good basis for further work for the author as an iOS developer.

This thesis has been written with the assumption that the reader has some basic

understanding of programming. Although not necessary, it helps to give a more

comprehensive understanding of the code examples, which in turn makes it easier to

make sense of the surrounding arguments.

 7

1 Background

Apple usually releases a new SDK concurrently with every major and minor iOS

update. The latest version of the iOS developer’s library at the moment of writing this

thesis on the 28 of October 2013 is iOS SDK 7.0.3. It was released alongside iOS 7

[11]. Many beta SDKs are released to developers before publicly releasing the Golden

Master (GM) edition.

1.1 iOS SDK Version History

The first iPhone was officially unveiled on the 9 of January 2007 together with its new

operating system, the iPhone OS. It was a closed environment, where the users were not

meant to develop native applications, but rather come up with web pages customized for

the smaller mobile screen [12]. Soon Apple changed their mind and made the first beta

iPhone OS SDK available for developers in March of 2008, called the iPhone OS 2.0

[13]. In July the same year the tech giant officially made the new version of iPhone OS

public, together with the new iPhone 3G and the App Store, which was to become the

channel for developers to share their applications to the public. The name did not

change to iOS until version number 4. [14]

1.1.1 iPhone OS 2.0

The first publicly obtainable iPhone OS SDK came with the following frameworks

ready to be used [Table 1].

Framework Summary of Contents
AddressBook Address Book is a framework that enables the use of the device owner’s

contact list, the same that is used by the native Mail and Messages
applications.

AddressBookUI Controllers that facilitate displaying, editing, selecting, and creating
records in the Address Book database.

AudioToolbox Interfaces for recording, playback, and stream parsing. iOS specific:
additional interfaces for managing audio sessions.

AudioUnit Interfaces for using built-in and custom audio processing plug-ins,
known as audio units, the lowest programming layer in the iOS audio
stack. In iOS, your application can use the built-in audio units.

CFNetwork A framework in the Core Services framework that provides a library of
abstractions for network protocols. These abstractions make it easy to
perform a variety of network tasks.

CoreAudio Interfaces for implementing audio features in applications you create for

Table 1. The short summaries of each framework from the first public iPhone OS SDK [15].

 8

iOS and OS X. Under the hood, it handles all aspects of audio on each of
these platforms. In iOS, Core Audio capabilities include recording,
playback, sound effects, positioning, format conversion, and file stream
parsing.

CoreFoundation The most basic services used commonly in most applications. It also
includes abstractions the most common data types, facilitates
internationalization with Unicode string storage, and offers a suite of
utilities such as plug-in support, XML property lists, URL resource
access, and preferences.

CoreGraphics A C language based API that is based on the Quartz advanced drawing
engine. It provides low-level, lightweight 2D rendering.

CoreLocation The framework that deals with the device’s physical location, using the
available hardware. Can be used to deliver location-based events.

Foundation As the name says it is the framework that provides the API to satisfy the
most basic needs with primitive object classes, utility classes, adds
functionality and conventions not covered by the Objective-C language.
It can also be looked at as a wrapped for Core Foundation classes.

MediaPlayer An Objective-C framework adding the ability to play video and audio
files, also with built-in classes for UI elements and controls. Also
facilitates access to the device’s iPod music library.

OpenAL An API for the use of the cross-platform standard known as OpenAL,
which is used for rendering multichannel three dimensional positional
audio, which is a common way of manipulating with the origin of a
sound.

OpenGLES A C language based framework to help draw 2D and 3D content. It is
often used for high quality graphic renderings in games.

QuartzCore An advanced low-level 2D drawing engine, independent of screen
resolution. Part of the Core Graphics framework [20].

Security A C language level framework that defines an interface for information
protection and software access control. Part of the Core OS Layer.

SystemConfiguration An interface for establishing and keeping network connections.
UIKit The main infrastructure for building an application, among which are the

main elements in the UI, handling the events those elements may fire
and interacting with the rest of the system.

The overview shows that there are several frameworks dealing with audio technology.

Although there might be some overlapping, each framework has a focus. Core Audio is

the digital audio infrastructure of iOS and OS X. In iOS it is optimized for the specific

computing resources available on the mobile platform. There are additional services in

iOS not present in OS X. The Core Audio framework, which itself provides data types

and low level services, is considered to be a peer not an umbrella for the rest. It can be

broken down as following: Audio Toolbox lets you manage the audio behavior of your

application on a device that works as a telephone and an iPod; Audio Unit works with

audio plug-ins and codecs and the OpenAL provides interfaces to work with the open-

source cross-platform audio technology. Another thing to take away from this summary

is that 14 out of the 18 listed frameworks are all C-based.

Since Objective-C is based on the C language and they can both be used to develop iOS

apps, these frameworks can be used interchangeably. The remaining 4 frameworks can

 9

be looked at as wrappers that were created in order to have common basic data

structures and services available in Objective-C.

1.1.1.1 iPhone OS 2.1

While no new frameworks were added with the final release of iPhone OS 2.1 on the

September 12th in 2008, there were additions to some existing ones such as Audio

Toolbox, Audio Unit and UI Kit [15].

1.1.1.2 iPhone OS 2.2

The next small release was the iPhone OS 2.2. It marked the addition of the iOS specific

AV Foundation framework, which provides a simple Objective-C programming

interface for audio playback [Table 2].

It also featured extensions of the Audio Toolbox, Core Foundation, Core Location,

Foundation and UI Kit frameworks. Most of these updates were modifications or

inclusions of new variables, new methods calls and constants.

1.1.2 iPhone OS 3.0

The next major release of the iPhone OS was unveiled together with Apple’s new

hardware release of the iPhone 3GS. The software came a year after the previous one,

along with an updated SDK. The new operating system had such new features as copy –

paste, setting up a WiFi hotspot and MMS [25]. Along with these feature updates for the

iPhone OS came out the updated version of the SDK [Table 3].

Framework Summary of Contents
AVFoundation An easy to use Objective-C framework for creating and playing time-

based audio and video files. It also includes manipulating live video
streams from the device [24].

Table 2. Frameworks added during the release of the iPhone OS 2.1 SDK [15].

 10

Framework Summary of Contents

CoreData An Objective-C framework that provides an API for object graph

management and data persistence for Foundation and Cocoa

applications.

ExternalAccessory A framework that enables the usage of external devices through the 30-

pin dock connector or wirelessly using Bluetooth.

GameKit A framework added to support Apple’s Game Center functionality,

along with such social features as peer-to-peer connectivity, multiplayer

systems and leaderboards.

MapKit This framework added the possibility to add maps to views and use

annotations, overlays and coordinate lookups.

MessageUI Supplies the presentation of views for sending e-mails and SMS

messages without leaving an app.

MobileCoreServices A framework that defines the low-level types used in uniform type
identifiers (UTIs) [26].

StoreKit An interface for allowing the acceptance of payments from users for

additional services or products.

1.1.2.1 iPhone OS 3.1

Yet again there were no new frameworks in the 3.1 version of the SDK, but Apple

updated the AV Foundation, Audio Toolbox, Media Player, Open GLES, Quartz Core

and UI Kit frameworks.

1.1.2.2 iPhone OS 3.2

The third major version of the iPhone OS 3 contained one new framework [Table 4].

Framework Summary of Contents
CoreText A low-level high performance framework that provides text layouts and

font handling.

Table 3. Frameworks added with the release of the iPhone OS 3.0 SDK [15].

Table 4. Frameworks added with the release of the iPhone OS 3.2 SDK [15].

 11

Together with the new Core Text framework there were updates to the CF Network,

Core Foundation, Core Location, Foundation, Map Kit, Media Player, Quartz Core and

UI Kit frameworks.

1.1.3 iOS 4.0

The first of the Apple mobile operating system to bear the name iOS, it came out with a

heap of new features. The biggest of which was multitasking, the functionality that gave

the users the ability to switch between apps without closing them. The new software

also included orientation lock, FaceTime calling, the iAd advertising network, folders

on the home screen and so on. The iOS SDK had grown by 11 new frameworks that

were designed to support the programming for these added features [Table 5].

As is visible from this table there were 11 new tool kits added to the iOS SDK, 4 of

which were based on C, a clear sign of Apple moving away from C and more towards

creating Objective-C wrappers around the existing functionality. But it is worth

mentioning that iOS 4 was the biggest major release from Apple to its mobile software

so far: every framework besides External Accessory, Mobile Core Services and Store

Kit received some updates and new tools.

Framework Summary of Contents
Accelerate A C framework with the API for complex math operations and graphics

processing.
AssetsLibrary A framework that allows access to the device’s images and videos.

CoreMedia A C framework for playing and managing audio and video media.
CoreMotion The framework to use when access to the device’s gyroscope or

accelerometer is needed.
CoreTelephony Gives access to everything related to the device’s cellular service

provider, from information about a current call to whether VoIP is
allowed.

CoreVideo A C-level framework for managing videos frame by frame in the
application.

EventKit A gateway to the device’s calendar events and reminders.
EventKitUI A framework providing the necessary customizable UI elements for

accessing the calendar.
iAd The tools necessary to add ads to an application and earn revenue

through them.
ImageIO Reading and writing most image formats, also includes access to image

metadata and color management.
QuickLook Adds the possibility to preview files in formats which the application

doesn’t support.

Table 5. Frameworks added with the release of the iOS 4 SDK [15].

 12

1.1.3.1 iOS 4.1

The next smaller release of the iOS SDK saw a lot of bug fixes and some new features

such as moving an event from one calendar to another, adding support for peer-to-peer

apps, TV show rentals for the iTunes US store and so forth. The following libraries

were further polished: Accelerate, Address Book, Assets Library, AV Foundation, Core

Data, Core Text, Game Kit, iAd, Security, System Configuration and UI Kit. Unlike the

next minor release, there were no new frameworks added.

1.1.3.2 iOS 4.2

This version of the operating system SDK introduced one new framework [Table 6] and

promised a longer battery life, added a text search to web pages, some new fonts and

allowed .ics files to be imported to the calendar. This was also the first version with the

possibility of playing music and print using a wireless network, features possible thanks

to AirPlay and AirPrint. Also added was the free use of the Find My iPhone location

service, which was meant for people who’s device got stolen, so that they could lock it

and initiate a single-sided communication with whoever finds it.

1.1.3.3 iOS 4.3

On March 9 in 2011 the next minor version of the iOS was released, among other things

it featured video playing through AirPlay, improved Safari performance, the personal

WiFi Hotspot for the iPhone 4 and added a full screen iAd banner format. The affected

frameworks were Audio Toolbox, Audio Unit, AV Foundation, Core Audio, Core

Foundation, Core Media, Core Telephony, Core Text, Core Video, Foundation, iAd,

Image IO, Media Player and UI Kit.

1.1.4 iOS 5.0

On October 11 Apple released their new iPhone 4S mobile phone alongside the new

version of their mobile operating system, the iOS 5. It witnessed a big set of new

Framework Summary of Contents
CoreMIDI A framework for communicating with musical hardware devices through

the dock or a network.

Table 6. Frameworks added with the release of the iOS 4.2 SDK [15].

 13

features, such as Siri, the voice activated intelligent personal assistant feature [27]; the

Notification Center; a free messaging system called iMessages; the Newsstand special

folder, which was to became the center point of all periodicals and the Reminders

application, which supplies the adding of tasks and alerts. The social aspect of iOS was

also greatly improved with Twitter integration. Also the camera app could now be easily

accessed from the lock screen. But probably the biggest new feature was iCloud,

Apple’s own built-in cloud syncing service for users to keep tabs on their music,

images, pictures and more. The new operating system also allowed for wireless syncing

with iTunes. These new features prompted for 7 new frameworks in the iOS SDK

[Table 7].

Framework Summary of Contents
Accounts Gives access to the user’s accounts stored in the device so that the

developer would not have to be responsible for storing account login
credentials.

CoreBluetooth A framework that provides access to devices that are connected through
Bluetooth.

CoreImage Advanced features for image processing.
GLKit A helper framework meant for creating shader-based apps.
GSS A standard set of services dealing with security.

NewsstandKit A framework responsible for the client side of a Newsstand application.
Twitter A framework that sends Twitter requests on the applications behalf and

also manages authentication.

Since iOS 5 was a relatively notable release, very few of the existing frameworks in the

SDK were left untouched, the only ones being Core MIDI, Core Telephony, External

Accessory, Mobile Core Services and System Configuration.

1.1.4.1 iOS 5.1

While iOS 5 saw many new features and frameworks, its minor successor only saw a

minimal amount of existing libraries being changed: Assets Library, Audio Toolbox,

Audio Unit, AV Foundation, Core Audio, Core Foundation, Core Video, Foundation

and UI Kit; and these were introduced to just one or two new constants and methods

each.

Table 7. Frameworks added with the release of iOS 5 SDK [15].

 14

1.1.5 iOS 6.0

Three months before the unveiling of the iPhone 5, Apple gave a preview of the iOS 6

by releasing it and its corresponding SDK to registered developers. The sixth major

version if iOS introduced users to the long awaited Facebook integration; the Passbook

app that manages a users boarding passes, tickets, coupons etc.; also the Photos app was

given a social feature, which allowed sharing photo streams; the Maps app started using

Apple’s own technologies instead of Google’s; FaceTime was given the freedom of

making calls over a cellular network; the App Store, Weather and iTunes’ UI got

polished and so on. Four new frameworks were inserted [Table 8]:

One of the biggest changes prompted by the numerous new social features were the

security and privacy settings. Until then the only thing configurable under the Privacy

section of the Settings app was Location Services, but in iOS 6 that section grew with

Photos, Contacts, Calendars, Reminders, Bluetooth sharing, Twitter, Facebook and Sina

Weibo (a Chinese equivalent of a hybrid of Facebook and Twitter). This version of the

SDK was followed by probably the smallest update to the tool kit in the iOS 6.1.

1.1.5.1 iOS 6.1

This version of the Apple operating system, released on the 28 of January 2013, was

relatively unremarkable. There were no new added frameworks and the only current

frameworks updated were the UI Kit and Map Kit – the latter being pressured to be

updated by the general public’s opinion that the Maps app was severely flawed and of

inferior quality to its previous version that used Google’s map engine.

Framework Summary of Contents
AdSupport This framework provides applications with an ID for serving

advertisements.
MediaToolbox Contains the interfaces for playing audio content.

PassKit Provides access to the user’s pass library.
Social This framework grants the user access and a view for posting to social

media without the developer worrying about creating the necessary
requests.

Table 8. The frameworks added with the release of the iOS 6 SDK [15].

 15

1.1.6 iOS 7.0

This version of the iOS was seen as the biggest change to the operating system since it

first came out, mostly thanks to the total revamping of the user interface. But the design

was not the only thing that changed; it also introduced a lot of new functions. Alongside

a lot of utilitarian features such as the Control Center and AirDrop, there were also

updates in the Camera, Multitasking, Music and many other apps’ user interfaces. As

for the SDK, the number of added frameworks remained relatively modest with 6

[Table 9].

It is visible from this list that the newly appended frameworks had very little to do with

the vastness of visual updates in this iOS version.

1.1.6.1 iOS 7.1

The currently latest version update of the SDK was not very big, but notable in the fact

that it was surrounded by a rather vocal media attention: a noticeable security flaw was

found in the mobile operating system that made the software vulnerable to main-in-the-

middle attacks [16]. There were no new frameworks added to the SDK, but just small

changes to AVFoundation, CoreBluetooth, CoreMedia, iAd, OpenGLES, StoreKit and

SpriteKit, which had the infamous bug fix; and some more substancial updates to

MapKit and MediaPlayer.

Framework Summary of Contents
GameController A framework used to receive inputs from game controllers form

inside a game.
JavaScriptCore A framework used to evaluate JavaScript programs from an

Objective-C app.
MediaAccessibilty A framework with functions to access the users preferences on

captioning.
MultiPeerConnectivity Support for finding and communicating with services provided by

other iOS devices nearby via WiFi or Bluetooth.

SafariServices Support for adding URL’s to Safari’s Reading List and other
services.

SpriteKit The rendering and animations tool kit that can be used to animate
textured images.

Table 9. The frameworks added with the release of the iOS 7 SDK [15].

 16

1.2 Conclusions

The operating system currently known as iOS and its development kit both have had

seven major versions with numerous smaller updates. The latest bigger version was

released on September 18 2013. During almost seven years of continuous development,

Apple has created a total of 55 frameworks for the developers to use as they please,

although they do attach some restrictions by setting rules, which every app has to

comply with when it goes through a verification process before being allowed to the

App Store. The total list of currently available iOS SDK frameworks can be seen in

Appendix 1.

In the beginning of the iOS SDK’s lifetime it was a relatively low-level C package with

some initial rather basic Objective-C introductions. One of the main emphases of the

SDK development has so far been on trying to escalate the coding level to a more iOS-

specific Objective-C level, a feat that would incrementally lessen the role of C in

application development. The reason for this is that Objective-C is a higher-level

programming language than C, which in software development usually means that it is

easier to obtain and use, albeit with some performance drawbacks. This has most likely

been imperative to make the learning and coding of applications simpler to developers,

which in turn would make it more popular and help increase Apple’s revenues.

Another aspect visible from these observations is that the number of added frameworks

is declining almost with every major update. This signals the common notion of

maturing, which means further improvements are more detailed, specific and rather

performance-oriented.

Before continuing with further investigative work with these frameworks it seems

appropriate to find the most applicable methods on doing so, considering the objective

and preferred outcomes. This will be the subject of the following section of this thesis.

 17

2 An overview of related and similar works

There are several aspects to the field of software development frameworks and

component-based software engineering; some of these areas and subjects have been

covered by earlier literature. A key problem it seems is the methodologies and criteria

on how to choose the most efficient frameworks to an existing software system.

The paper “Maintenance-oriented selection of software components” written by P.

Ardimento, A. Bianchi, G. Visaggio from the University of Bari [28], stresses the need

for a systematic strategy for choosing components when building new software systems.

Since the system itself and the components it comprises of can take different routes in

evolving, maintenance becomes the key concern when adopting third party frameworks

to your software. Also stressed is the competence of the developers on knowing the

system as a whole, not just the parts that come into contact with the integrated

components.

They execute the study by using four principle characteristics: adequateness of the

component with respect to the target system, the costs associated with the

implementation and usage of the component, the familiarity of the team towards the

new software and the level of support provided by the component’s provider. Since this

is a very close subject to the one of this thesis, there are elements that can be learned

from, such as the detailed dissection and description of the basis that was used to select

the frameworks to be analyzed.

A similar topic of study was covered in “A Framework for Systematic Evaluation of

Software Technologies” by A. W. Brown and K. C. Wallnau from the Carnegie Mellon

University [29]. These two works overlap in the solution area that tries to find a best

practice for choosing software from a financial and pragmatic point of view. The part

where they start to differ is that the former deals with the problems of integrating

software to existing systems, the latter has to deal with integrating a complete software

solution to an existing eco-system of employees and technologies. The authors of this

study introduce a solution called the Feature Delta Framework that tries to find a

solution by emphasizing the differentiating features of each proposed software.

 18

The main outline of this method would be a good example of a way to measure how a

third party framework is different from its closest counterpart from an iOS SDK

framework it is trying to enhance.

The adoption of new technologies from an economical and managerial point of view is

also further covered in a study by P. M. Herceg called “Defining Useful Technology

Evaluations” [30]. Since the aim of this thesis is directed more towards the

technological aspects of decision-making, the administrative facets of these papers serve

less meaning than the aspects of component integration.

When discussing the more specific technological methods on determining the right

frameworks for a solution domain, several different approaches can be scrutinized. An

example of a process of choosing iOS apps for a detailed analysis can be found in an

article called “Status and trends of mobile-health applications for iOS devices: A

developer’s perspective” written by C. Liu, Q. Zhu, K. A. Holroyd and E. K. Seng from

the Ohio University [31]. Thanks to the large number of available apps in their area of

study and the accessibility of different user-based statistics, they were able to use very

simple but convincing criteria for filtering out just the right applications to be used in

their further work. This is an approach with characteristics that could be implemented in

the thesis at hand.

When the phase of choosing the right frameworks from an extensive pool is completed,

the next phase will have to deal with evaluating the remaining libraries in a way to find

out the specific areas these very frameworks were built to enhance. The methods for

doing this can also be inspired from earlier works. Such as the “Development

Frameworks for Mobile/Wireless User Interfaces: A Comparative Case Study” by

Simon Pestina from the Concordia University [32]. It conducted a comparative survey

of mobile web development frameworks using subject-relevant criteria such as data

interactivity, the cross-platform or device specific availability, scalability, extensibility,

learnability, etc. It continues by showing the strengths and weaknesses of each software

library and pointing out the fields for potential future improvements. A list of questions

are highlighted in the beginning to which the author tries to answer by analyzing each of

the frameworks separately according to the aforementioned criteria and then comparing

them to each other in a later, conclusions chapter of the paper. The advantage of such a

 19

method is the impartiality reflected towards each object under assessment, a mentality

that can also be used in the current thesis. A comparison between the examined

frameworks can be done via more generic and abstract measures afterwards.

In conclusion, the field of integrated software libraries and related problems is not a

very studied one, but in a relatively strong need of being so. The process of finding the

best new technology to use is still a problematic one; there are no standards for it --

most of these situations have been addressed with an ad hoc solution and it still heavily

relies on subjective experience-based opinions and expert advice. This paper will deal

with choosing a selection of third party iOS frameworks that will be analyzed and

compared to their iOS SDK counterparts to find the most deficient areas of the SDK.

This will be a procedure that will somewhat rely on the strategies found in these

previous related works. The process itself and its results will be thoroughly explained in

the following paragraph, which will explain how the most popular third party

frameworks were found.

 20

3 External frameworks selection

This chapter will focus on the methods used to select the open source public external

third party frameworks written in Objective-C and used for iOS development. Filtering

out the non-essentials and less popular ones will leave the libraries that will then be

used in a successive analysis.

3.1 Selection and evaluation

The evaluation process for selecting frameworks for further analysis will comprise of

three parts. In the end of the first phase there will be a list of the selected most popular

external frameworks currently available. The second phase will determine the libraries

most appropriate for further analysis and the third part will consist of a public survey

among iOS developers to find out their experience-based opinions on what are the

frameworks most frequently used by themselves.

3.1.1 Initial listing

The objective of the first stage of the selection process was to find the most popular

frameworks currently available. In order to do this, some statistics were necessary and it

was the opinion of the author that one of the best places to find such numbers is to use

an almost industry-standard portal that is used most widely for downloading public third

party frameworks: GitHub. It contains a feature called Star, which GitHub themselves

describe as following: “Starring a repository allows you to keep track of projects that

you find interesting, even if you aren't associated with the project” [33].

Every user can star every GitHub project exactly once and a project can also be un-

starred. Thanks to this feature GitHub can sort projects by popularity according to their

Star count. In order to do this a custom query string has to be written in the GitHub

search field [34]. The strategy of using GitHub and its Star feature carries several

positive qualities: it is always up to date, it is based on user-created statistics and it

allows for the same criteria for describing each available framework. For reasons

explained in the next section, 84 of the most starred libraries were initially chosen.

 21

3.1.2 Filtering

The 84 most starred frameworks chosen from GitHub were given a short summary of

their contents and a type, which would describe the field of expertise. The available

types were as follows:

• “Network” – includes all the libraries that dealt with network connectivity, data

transfer and different format parsing;

• “View” – libraries that were related to views, view hierarchies and view

animations;

• “Utilities” – frameworks that consisted of helper methods/classes, frequently

used boilerplate code and modular components, collections of small

enhancements etc.;

• “Graphics” – everything to do with low-level graphics and drawing: plots, 2D

and 3D physics, visualizations, games;

• “Data Store” – libraries that dealt with Core Data or other storing, fetching and

sorting of data in general;

• “Debug” – tools that help with debugging in the development process;

• “Testing” – frameworks used for writing unit tests for apps in development;

• “Non-framework” – frameworks that are no longer useful or projects that were

not frameworks for iOS development or frameworks at all (iOS apps, Mac OS

apps, other utilities).

The number of initial frameworks to be chosen stemmed from the number of categories

listed here. Excluding the “Non-framework” type, there are seven groups, so to give

each group an equal chance to accumulate the same number of popular frameworks it

made sense to select at least 70 frameworks. A later revelation made it clear that some

additional libraries would have to be tallied in order to give each of the planned

framework types a sufficient number of frameworks as options to be included in the

questionnaire.

The goal was to have at least three frameworks in each category, but since this became a

problem with some types, an extra measure was needed. In the “iOS Frameworks” web

page there is a catalogue of almost seventy iOS frameworks available [35].

 22

After categorizing all of these with the above labels, it was possible to collect at least

the required three frameworks under each type.

The next step for further segmentation was to give each of these frameworks an

estimation that would characterize their difficulty and size. One of three evaluations was

assigned:

• “Easy” – small sized frameworks, low complexity; enhancements to one class or

object; templates;

• “Medium” – medium sized; packaging functionalities from different

development areas, while not covering a whole subject area; full functionality of

a small area;

• “Difficult” - frameworks with a large size, great complexity or covering a whole

subject field.

It was decided that only libraries assigned with the “Medium” and “Difficult” label

were going to be used for further comparisons. The final list of included libraries with

their corresponding name, star count, type, evaluation and brief summary can be found

in Appendix 2.

Some of these GitHub projects had to be excluded from subsequent consideration

because they were redundant, deprecated, no longer supported, because they were not

frameworks or they were built for the Mac OS X system – these were all labeled “Non-

frameworks”. The reason for the presence of Mac OS X libraries was that GitHub

differentiates projects by programming language and Objective-C is a language

designed for the development of both iOS and Mac OS X.

3.2 Conducting a survey

A survey among iOS programmers was conducted in order to draw comparisons

between statistically popular frameworks and the ones that developers themselves

empirically consider the most useful and why. The objective of this questionnaire was to

get more details about the most popular frameworks previously selected with the help of

the GitHub Stars feature.

 23

The introductory questions were targeted at getting some background of the responders.

The easiest and most anonymous way to comply with the goal was to ask about the

length of their tenure as a software developer in general as well as an iOS developer.

The main content of the inquiry was meant to get some insight on why developers use

specific frameworks. To achieve this, every previously mentioned framework type was

examined separately. A list of frameworks was offered for each type for the respondent

to choose from, marking the ones he or she had used. Each of these questions had an

“Other” option, offering the respondent the possibility to add unlisted libraries. Each of

these questions was followed by an open-ended inquiry asking them to explain in more

detail the reasons for using the frameworks they did.

The closing questions of the survey were also open-ended, targeting the iOS SDK in

general. These questions were added to get insight on the developers’ subjective

opinions of the iOS SDK, with the prospect of adding context to their previous answers.

The full list of questions can be found in Appendix 2.

3.2.1 Results

Given the very specific segment of people who are qualified to answer this

questionnaire it was relatively complicated to find a sufficient number of respondents.

Looking for developers with at least some experience in developing with the iOS SDK

was made difficult by several factors. Firstly, the iOS developer community in Estonia

is not as coherent and active as the international ones, which makes finding the

developers somewhat difficult. Secondly, although the iOS developer society is very

large on the world wide scale, finding people who would comply with helping was

made more challenging by the fact that posting this sort of content in corresponding

forums and other sites is rather hastily regarded as spam and thereafter deleted or moved

to an according segment of said web page.

After exhausting the author’s personal acquaintance circle, the number of replies was

only 11. The next round of answers was compiled by posting to thematic forums like

the “iPhone Dev Forums” (www.iphonedevforums.com) and other sites such as “reddit”

(www.reddit.com). This raised the number of respondents to 14.

 24

It was clear by this time that the expectations on the number of replies should not

exceed 20. Finding developers from stackoverflow (www.stackoverflow.com) and

writing them personally produced 8 of the last responses.

While a considerable number of replies were informative and helpful, there were also

entries that only contained answers to the optional and none of the open-ended

questions. Nevertheless, they revealed some concrete insights.

Out of the 20 people who answered the survey, 9 had been software developers for more

than 6 years, 10 had been doing it for 3 to 5 years and one for only 1 to 2 years. This

then made for a rather experienced set of developers, but only one of the respondents

had been developing for iOS for more than 6 years, 12 of them for 3 to 5 years and 7

had been doing it for 1 to 2 years. The latter numbers are being backed by the fact that

the iOS development environment has been available for only about 6 years now. But

since Objective-C can also be used to program for the Mac OS X operating system, its

possible that people considered these two things interchangeable.

The answers to the open-ended questions were mostly positive, praising Apple’s good

documentation, its responding to developers’ feedback, the iOS SDK’s unified patterns,

the general design and implementation maintenance. Inevitably some of the answers

surfaced comparisons to the Android SDK, with all of the mentions leaning more

towards the iOS SDK, citing a more coherent and polished API. Also mentioned were

the tools used with the SDK, such as the iOS Simulator, which avoids building on the

ARM architecture, a fact that in turn makes the process faster. The Xcode IDE is said to

be more pleasant and has more built-in development tools than the ones in any other

platform’s development domain. People also seem to feel that the iOS development

community is very large and usually helpful.

One of the neutral notions repeatedly brought out was the closed source mentality and

the big number of black box components. The negative aspects included the lack of unit

and beta testing capabilities, bug reporting options, some documentation errors and the

somewhat complex nature of delegating and protocols. The full list of questions and

answers can be seen in Appendix 3.

 25

The most relevant part of the survey was of course the questions targeted at the third

party frameworks usage. Out of the 7 categories listed, the most mentioned one was

“Networking”; it was indicated on 17 responses out of 20. The “Data Store” and “View”

with each of them being noted 12 and 10 respectively. The least noted group turned out

to be “Debug”, with only 3 people acknowledging it. The full distribution is visible in

figure 1.

Figure 1. The number of times each category was mentioned in the conducted survey’s 20
responses.

Since the next step of this thesis is going to be the deeper analysis of the most widely

used third party frameworks, it was decided that the two most popular framework types

would be selected to provide the frameworks. But before the next step, a short review of

reasons for using some of the other libraries will be listed.

The testing framework usage was mainly explained with the reasoning that Apple

themselves have yet not provided any good testing frameworks so far. The most popular

libraries were GHUnit and Kiwi, with the latter repeatedly being said to have a more

readable syntax than any of Apple’s own testing libraries.

The most-used view-related frameworks seem to be the ones that implement the side

menu functionality, a feature visible in many mainstream applications such as

Facebook, Foursquare, YouTube, etc.

0
2
4
6
8

10
12
14
16
18

Mentions

 26

For example the ECSlidingViewController framework, which can be seen here:

https://github.com/ECSlidingViewController/ECSlidingViewController. It is a good

example of how the iOS development community has adopted a feature to a point where

it can almost be seen as an industry standard solution. And since Apple themselves have

not yet offered a solution, a large number of developers produce a solution themselves.

Another good example of such behavior would be the “pull to refresh” feature, often

seen on top of a table view functionality. This feature first grew popular among

developers who very often built their own custom software to implement it, then a large

number of libraries were being made available in open source communities such as

GitHub and finally Apple made their own version of this component available [36]. This

also supports the opinion that Apple listen and react to their developers’ feedback. Other

popular view libraries included DTCoreText [37], which allows editing the appearance

of strings in the user interface and iCarousel [38] – a library offering a different way to

present views in a scrollable way.

The most frequently mentioned utility framework by far was Appirater, accumulating 4

out of the 6 total times anyone admitted to using a utility-related library. It is used to

remind users to go and rate the app in the App Store with an alert [39]. In the “Debug”

section only 3 different frameworks were mentioned by the respondents altogether and

all of them were related to crash reporting. Since they were all different, any single one

will not be highlighted here.

Among the graphics libraries brought up were GPUImage, Box2D, and Chipmunk2D.

The first of these works with image and video processing, citing faster handling times

compared to Core Image. The two other frameworks are used for drawing 2D graphics,

mostly utilized in game developments.

As for the selection of the most popular frameworks from the most popular categories,

two libraries stood out the most: AFNetworking from the “Networking” and

MagicalRecord from the “Data Store” category. The “Networking” type was noted 18

times and AFNetworking in turn was mentioned in 16 out of these 18 times. The “Data

Store” type was acknowledged 12 times, 6 of which had mentions of MagicalRecord.

These two then seem to provide a legitimate and sufficient foundation for further

analysis – a process described in the next paragraph.

 27

4 External frameworks analysis

This part of the thesis will focus on a deeper analysis of the most popular libraries that

emerged from the preparative process described in the previous paragraph. Two

libraries were chosen for this for three reasons. Firstly, choosing three or more seemed

redundant; secondly, having two options seemed to provide more possibilities of

comparison than one; and thirdly, there were coincidentally exactly two frameworks

from two different categories that stood out as the most prevalent: AFNetworking and

MagicalRecord. Looking at the initial list made up of the most Starred open source

codes from GitHub, AFNetworking held the topmost position with 10375 Stars and

with MagicalRecord not far along, boasting 4047 Stars (as of the 19th of January 2014).

4.1 AFNetworking - usage reasoning and comparisons with

the iOS SDK

As previously mentioned and obvious from the name, AFNetworking was listed under

the “Networking” category. Its GitHub page summarizes the framework as follows:

“AFNetworking is a delightful networking library for iOS and Mac OS X. It's built on

top of the Foundation URL Loading System, extending the powerful high-level

networking abstractions built into Cocoa. It has a modular architecture with well-

designed, feature-rich APIs that are a joy to use” [40].

It was visible from the survey that among reasons why iOS developers like to use this

library were the facts that it provides a simple interface for making requests; heavy

usage of blocks instead of delegation methods; having powerful serialization

capabilities, which come in handy with RESTful services; and the overall ease of use.

Analyzing these arguments in detail is the objective of the next sub-sections.

4.1.1 Simple interface

The interface of the AFNetworking library consists of four main types of classes: the

ones implementing NSURLConnection-related functionality, NSURLSession-related

functionality, classes regarding serialization and additional components.

 28

The classed related to NSURLConnection contain three different objects:

AFURLConnectionOperation, AFHTTPRequestOperation and AFHTTPRequest-

OperationManager. The latter is the one that is considered to be the starting point for a

programmer; it “encapsulates the common patterns of communicating with a web

application over HTTP, including request creation, response serialization, network

reachability monitoring, and security, as well as request operation management.”[40]

The operation manager object is a singleton: a shared single instance is used throughout

the application’s lifetime. The singleton mechanism has seen a rise in overall usage in

recent years, owing most of its thanks to the simplifying effect it has on code quality

and usage. Having a single object of a class is good for several reasons:

• an instance of it can be retrieved from anywhere in the code at any time without

passing it along from object to object or initiating a totally new one,

• it makes is easy to create or fetch it and use its properties without having to

worry about their thread safety – meaning that you do not have to think about

decoupling this object,

• it maintains its state throughout the applications lifetime.

The only negative side to a singleton object is its memory usage -- it might take a bit

more of it than creating and releasing a new class instance at will and need.

AFHTTPRequestOperation objects are created with every request, with the success and

failure events of these operations defined in the method’s parameters as blocks.

AFURLConnectionOperation is a subclass of NSOperation that implements

NSURLConnection delegate methods, used mainly for callbacks that give information

about the status of the URL connection. [40]

The request serialization classes are used for creating requests from URL strings; also

serializing JSON formatted files, property lists, HTTP bodies, XML strings and images.

The additional functionality classes include AFSecurityPolicy and AFNetwork-

ReachabilityManager. The first is used for establishing server trust against man-in-the-

middle attacks and the latter for evaluating the reachability of IP addresses.

 29

The latest update to the AFNetworking library added the session classes

AFURLSessionManager and AFHTTPSessionManager. These create and operate an

NSURLSession object, which are used for downloading content through HTTP. Its API

provides many delegate methods to observe and control the content transfer [41].

In contrast, Apple have created a number of libraries related to URL loading in the

Foundation framework, which include classes that cover the same area of functionality

as the AFNetworking does. The “NS” prefix in Apple’s class names has a historic

reason: it is an acronym that stems from the company name “NeXTSTEP”, which

developed the Objective-C language, later purchased by Apple. These can be considered

as equivalents:

• NSURL,

• NSURLAuthenticationChallenge,

• NSURLCache,

• NSURLConnection,

• NSURLCredential,

• NSURLCredentialStorage,

• NSURLProtectionSpace,

• NSURLProtocol,

• NSURLRequest,

• NSURLResponse,

• NSURLSession,

• NSURLSessionConfiguration,

• NSURLSessionDataTask,

• NSURLSessionDownloadTask,

• NSURLSessionTask,

• NSURLSessionUploadTask.

NSURLCredentialStorage is the only one that cannot be found in the AFNetworking

framework. This list comprises of a total of 16 classes with an additional 10 protocols

that define some delegation methods that programmers can implement either optionally

or by being required to do so. It must be noted that some of these classes are in

themselves and provide for some extra functionality compared to AFNetworking.

AFNetworking uses these classes in its architecture – the reason behind it being said

 30

that AFNetworking was built on top of the Foundation URL Loading System. In order

to clarify the simple interface argument an example will follow.

4.1.1.1 Example

To make it more obvious how AFNetworking has a simple programming interface, an

example of a simple URL request will be outlined. In order for every kind of reader to

better understand the delegation mechanism, it will be explained in short. A URL

request can be started to fetch data if one needs some from a web service. Delegation is

the method used to retrieve responses form URL requests. First you set an object as a

“delegate” to a URL request object and then later some delegation methods (which are

defined in delegate protocols and implemented by the programmer) get called to notify

you of the success or failure and contents of the answer from the web server. The same

goal can be achieved using blocks, a feature that it will be examined later in this thesis.

iOS SDK

This iOS example is largely based on and comments are copied from Apple’s own

sample project “AdvancedURLConnections”, available from the NSURLRequest class

reference web page [42]. Example 1 shows the creation of a URL request, starting a

connection and setting the delegate.

Example 1. The URL request initialization

NSURL *url = [NSURL URLWithString:@"http://example.com"];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
self.connection = [NSURLConnection connectionWithRequest:request
 delegate:self];

This example illustrates a very common way of creating, altering and using objects in

the Objective-C language: first it is created using the NSURL class method

URLWithString: while passing the web site URL as the only parameter (class methods

are the ones that can be called to a class in general, while instance methods can be

called to a single object of a class). The NSURL object is then used to create an

NSURLRequest object, which is needed to start a connection to the aforementioned

 31

URL. This is done using an NSURLConnection object, while setting self as the delegate

callback listener. We can see how the delegation methods are used in example 2.

Example 2. Handling URL request responses. The iOS SDK has defined 4 delegate
methods for separate purposes.

- (void)connection:(NSURLConnection *)conn
didReceiveResponse:(NSURLResponse *)response
{
 NSHTTPURLResponse *httpResponse = (NSHTTPURLResponse *)response;
 [self handleURLRequestResponse:httpResponse];
}

- (void)connection:(NSURLConnection *)conn didReceiveData:(NSData
*)data
{
 [self handleReceivedData:data];
}

- (void)connectionDidFinishLoading:(NSURLConnection *)conn
{
 [self handleFinishedConnection:conn];
}

- (void)connection:(NSURLConnection *)conn didFailWithError:(NSError
*)error
{
 [self handleURLRequestError:error];
}

The first three methods are used to observe the data exchange and the last one is called

at most once to notify the listener of a failed request loading. The difference between

the first two methods is that while the first one is called once the connection has

delivered a sufficient amount of data to build an NSURLResponse object, the second

one is called repeatedly as the response information is incrementally being loaded. The

third callback is executed when the connection has finished and no further data

exchange will occur.

AFNetworking

It is visible from example 3 how the same thing with the same parameters would have to

be implemented using the AFNetworking framework by starting a connection and

handling the URL request responses. AFNetworking has a single method with two

callback blocks as parameters for this purpose.

 32

Example 3. The URL request initialization and handling responses.

AFHTTPRequestOperationManager *manager =
[AFHTTPRequestOperationManager manager];
 [manager GET:@"http://example.com"
 parameters:nil
 success:^(AFHTTPRequestOperation *operation, id responseObject)
 {
 [self handleReceivedObject:responseObject];
 }
 failure:^(AFHTTPRequestOperation *operation, NSError *error)
 {
 [self handleURLRequestError:error];
 }];

This is a good example of why block callbacks are more efficient than delegate

callbacks: instead of handling the URL request response in a different method or even a

different class, it can be done in the same place where the request was initiated in,

alongside the same object instances or variables surrounding that object in the scope of

the initialization.

It is fairly obvious why respondents from the conducted survey considered the

AFNetworking syntax simpler than that of the iOS SDK. Not only is the total number of

code lines written considerably smaller, but it also does it through a singleton object that

encapsulates all the initializations, parameter handlings and callbacks. This being a

rather simple example, the differences between the two frameworks’ implementations

are not as distinct as they would be when dealing with more complex and error prone

operations. But then again, one must consider that, like with any simplified tool,

flexibility is not its strongest suite. It might happen that when a situation calls for more

complex solutions, Apple’s URL loading classes can be the more efficient solution.

4.1.2 Blocks

The heavy usage of blocks, also known as callbacks, is considered a convincing reason

for preferring the AFNetworking framework to the Foundation’s networking classes.

There are several reasons why blocks are more economical than delegation, some of

which were mentioned earlier as well.

 33

The first advantage would be the obvious fact that one has to write fewer lines of code

in order to implement the desired functionality, this aspect is clear from examples 2 and

3. In contrast, when using delegation, the programmer must follow these steps:

1. find the respective delegate protocol,

2. look up and copy the methods he or she wants to use,

3. declare the class in which the request will be used as conforming to the

aforementioned protocol,

4. use the delegate methods in a way deemed necessary by the developer.

A total of 4 tedious steps, while using blocks would only require the last step.

4.1.2.1 Example

Another leverage blocks have over delegation is the fact that a variable scope extends

inside the contents of the blocks. An example from Apple’s own iOS SDK will be laid

out to illustrate this point.

Example 4. A method with a callback block from the iOS SDK.

int i = 5;
NSNumber *five = [NSNumber numberWithInt:i];
NSDate *today = [NSDate date];

UIViewController *viewController = [[UIViewController alloc] init];
[self presentViewController:viewController animated:YES completion:^
{
 [self udpateViewForCount:five date:today];
}];

The method used in example 4 presents a modal view controller and gives the

programmer an option to implement some code after the presentation has finished

performing its animation. The three lines prior to the presentation are variables that can

be used in the block code. If the same functionality were written using delegation

methods, these three variables would have to be referenced and later received through

instance variables or some other practice in order to be used in the methods found in the

protocol. This feature makes coding more efficient for the writer and more readable for

the reader.

The final considerable convenience is the absence of plurality. For example, when

initializing several URL requests their responses would somehow have to be

 34

differentiated from each other in the delegate callback methods. A problem that cannot

occur when using blocks since every request has its own response callback.

Next to these highlighted advantages there are also some things to keep in mind with

blocks. One of the things developers have to think about is avoiding retain cycles. A

retain cycle is a memory management problem, it occurs when two objects, each with

their own allocated memory spot, have a strong reference to each other and this can

cause issues in a situation when one of these would have to be released in order to free

some memory from under it. An object can be killed and removed from memory and its

slot de-allocated only when that object no longer has any strong references to it. Blocks

always create a strong reference to every object passed into them, and in a case where

an object has a strong reference to a block, neither of them can ever be released because

of the two-way strong reference. This problem can seamlessly occur when a block is

declared as a property to a class instance. In order to avoid this conundrum, objects

passed on to a block should be marked with a special keyword: “__weak”,

“__unsafe_unretained” or “__block”. All of these have specific use cases and

implications, which are out of the scope of this thesis. It is enough to know that using

any of these is better than nothing in a straightforward block usage. A correct block

property usage will be demonstrated in example 5.

Example 5. The correct way to avoid retain cycles.

__weak ExercisePlayerView *weakSelf = self;
self.timerFinishBlock = ^{
 [weakSelf setupViewForFinishedTimer];
};

While this was a simple solution to a specific situation, there are a lot of nuances to

using blocks dependent on the application being developed, but all in all blocks do call

for some precaution.

4.1.3 Powerful serialization capabilities

Serialization in software development in general refers to a restructuring of data from

one format to another, a necessity in some cases where data is transported between

technically different domains. As mentioned earlier, the serialization classes in

AFNetworking help with creating URL requests from different available formats. These

 35

are URL query strings, URL Form Parameter Encoding and JSON encoding. This field

of functionality is also available in the iOS SDK, but the methods of usage do vary to

some extent.

Starting from iOS 5, Apple added the NSJSONSerialization class to the Foundation

framework. As the name suggests, it creates Foundation objects (an NSString,

NSNumber, NSArray, NSDictionary, or NSNull) from JSON data and vice versa.

4.1.3.1 Example

A comparison example will be shown between the usages of the iOS SDK

NSJSONSerialization and the AFJSONRequestSerializer. The contents of the

illustration will be a POST request to a web service; the body of the request will come

from a Foundation NSDictionary object.

iOS SDK Foundation

It is visible from this case that a single NSJSONSerialization class method does all the

serializing, which creates a JSON-format object that can be appended to the request

body. The rest of the code is the same as in example 1.

Example 6. Creating a URL request with the NSJSONSerialition class.

NSDictionary *postDictionary = [NSDictionary
 dictionaryWithObject:@"value1" forKey:@"key1"];
NSError *error = nil;
NSData *jsonData = [NSJSONSerialization

 dataWithJSONObject:postDictionary
 options:NSJSONReadingMutableContainers
 error:&error];

NSMutableURLRequest *request = [NSMutableURLRequest
requestWithURL:[NSURL URLWithString:@"http://example.com"]];
[request setHTTPBody:jsonData];
self.connection = [NSURLConnection connectionWithRequest:request

delegate:self];

The NSJSONSerialization class method dataWithJSONObject:options:error: is used to

create data from a dictionary, which in turn is later used to create a URL request and

start a connection. This is the same process as seen in example 1 with the exception that

this time there is some extra data sent along with the request.

 36

AFNetworking

As it will be seen in the next example, the interface of the operation in AFNetworking is

quite efficient: the AFHTTPRequestOperationManager object returns a mutable request

with a single method call and therefore does not have to be initialized separately.

Example 7. Creating a URL request with an AFHTTPRequestOperationManager object.

NSDictionary *postDictionary = [NSDictionary
dictionaryWithObject:@"someValue" forKey:@"someKey"];
NSError *error = nil;
NSMutableURLRequest *request = [[AFJSONRequestSerializer serializer]
 requestWithMethod:@"POST"
 URLString:@http://example.com
 parameters:postDictionary
 error:&error];
AFHTTPRequestOperationManager *manager =
 [AFHTTPRequestOperationManager manager];
 [manager HTTPRequestOperationWithRequest:request
 success:^(AFHTTPRequestOperation
*operation, id responseObject)
 {
 [self handlePOSTResponseOperation:operation];
 }
 failure:^(AFHTTPRequestOperation
*operation, NSError *error)
 {
 [self handlePOSTResponseOperation:operation error:error];
 }];

It was mentioned in the survey that an added value of the AFNetworking framework

was its powerful serialization capabilities, an aspect that does not necessarily mean that

it is in any way better than Apple’s own, but rather just good added value to have

bundled with the rest of its functionality.

Three of the AFNetworking framework’s most relevant advantages over the iOS SDK’s

URL loading library have been dissected. Looking at the high popularity of this

framework on GitHub, it can be understood that these are enough for a great deal of

people to prefer this library to Apple’s solutions. The next section of this thesis will

focus on the second framework that surfaced in the conducted survey and its virtues

over the corresponding Apple counterparts: MagicalRecord.

 37

4.2 MagicalRecord - usage reasoning and comparisons with

the iOS SDK

MagicalRecord is a framework developed to ease the process of using relational

databases in iOS programming. Its name derives from the active record pattern that is

used in relational database manipulation. The creators of MagicalRecord describe their

library as follows: ” MagicalRecord was inspired by the ease of Ruby on Rails' Active

Record fetching. The goals of this code are:

• Clean up my Core Data related code

• Allow for clear, simple, one-line fetches

• Still allow the modification of the NSFetchRequest when request optimizations

are needed”. [43]

Apple has its own framework for managing databases called Core Data. Although this

framework is considered very comprehensive and capable, it is also seen as slightly

tedious and demanding of a lot of boilerplate code. Boilerplate code is the kind that calls

for a lot of rewriting the same things with very little alternations to it every time you

want to implement it. The expression derives from the makers’ labels that were once put

on steam boilers.

Just like AFNetworking is built on top of Apple’s URL loading classes, the

MagicalRecord framework is constructed on Apple’s Core Data. This has its benefits

that will be analyzed in a later section. But unlike the case with AFNetworking, the

carried out survey only revealed one broad upside to using MagicalRecord: its great

power to simplify the use of database management by removing the need for boilerplate

code. Although MagicalRecord uses the Core Data library, they will be treated as

separate entities in the context of this paragraph in order to simplify the styling of text.

4.2.1 The absence of boilerplate code

In order to make this point as clear as possible, the gap between the implementation

complexities of MagicalRecord and Core Data will be illustrated. An example of a

typical database setup and usage will follow using both of these libraries.

 38

4.2.1.1 Example

A typical database manipulation cycle starts with setting up a database, which includes

coming up with an appropriate data model with all of its objects, relationships and

attributes. Once the data model is up and running, one can then create, change, delete

and fetch instances of objects defined in that data model. The simple example to show

the process of implementing this with iOS SDK’s Core Data framework and

MagicalRecord’s library in this thesis will be in the context of an application that shows

planned purchases in a list.

Core Data

Since the process of creating a data model is mutual for the operation methods of these

two libraries, it will be assumed to be existent beforehand. Although the Xcode IDE

could automatically generate a large portion of the boilerplate needed to set up Core

Data, it is still something that in principal has to be added manually. An initial setup of

a database using Core data is shown in example 8.

Example 8. The initial code required for setting up the Core Data implementation.

@property (strong, nonatomic) NSManagedObjectContext
*managedObjectContext;
@property (strong, nonatomic) NSManagedObjectModel
*managedObjectModel;
@property (strong, nonatomic) NSPersistentStoreCoordinator
*persistentStoreCoordinator;
@property (strong, nonatomic) NSFetchedResultsController
*fetchedResultsController;

- (void)viewDidLoad
{
 [super viewDidLoad];

 NSError *error;
 if (![[self fetchedResultsController] performFetch:&error])
 {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 }
}

 39

- (NSManagedObjectContext *)managedObjectContext
{
 if (_managedObjectContext != nil)
 {
 return _managedObjectContext;
 }

 NSPersistentStoreCoordinator *coordinator = [self
 persistentStoreCoordinator];
 if (coordinator != nil) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:coordinator];
 }
 return _managedObjectContext;
}

- (NSManagedObjectModel *)managedObjectModel
{
 if (_managedObjectModel != nil)
 {
 return _managedObjectModel;
 }
 NSURL *modelURL = [[NSBundle mainBundle]
URLForResource:@"ProductList" withExtension:@"momd"];
 _managedObjectModel = [[NSManagedObjectModel alloc]
initWithContentsOfURL:modelURL];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator
{
 if (_persistentStoreCoordinator != nil)
 {
 return _persistentStoreCoordinator;
 }

 NSURL *storeURL = [[self applicationDocumentsDirectory]
URLByAppendingPathComponent:@"ProductList.sqlite"];

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator
addPersistentStoreWithType:NSSQLiteStoreType configuration:nil
URL:storeURL options:nil error:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return _persistentStoreCoordinator;
}

 40

- (void)saveContext
{
 NSError *error = nil;
 NSManagedObjectContext *managedObjectContext =
self.managedObjectContext;
 if (managedObjectContext != nil)
 {
 if ([managedObjectContext hasChanges] && ![managedObjectContext
save:&error])
 {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
 }
}

- (NSURL *)applicationDocumentsDirectory
{
 return [[[NSFileManager defaultManager]
URLsForDirectory:NSDocumentDirectory inDomains:NSUserDomainMask]
lastObject];
}

- (NSFetchedResultsController *)fetchedResultsController
{
 if (_fetchedResultsController != nil)
 {
 return _fetchedResultsController;
 }

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription
entityForName:@"Product"
inManagedObjectContext:self.managedObjectContext];
 [fetchRequest setEntity:entity];

 NSSortDescriptor *sort = [[NSSortDescriptor alloc]
initWithKey:@"name" ascending:NO];
 [fetchRequest setSortDescriptors:[NSArray arrayWithObject:sort]];

 NSFetchedResultsController *theFetchedResultsController =
 [[NSFetchedResultsController alloc]
initWithFetchRequest:fetchRequest

managedObjectContext:self.managedObjectContext
 sectionNameKeyPath:nil
 cacheName:@"Root"];
 self.fetchedResultsController = theFetchedResultsController;
 [_fetchedResultsController setDelegate:self];

 return _fetchedResultsController;
}

 41

All of the previous lines were written in order to build and use a database, except the

last method, which sets up a way to collect data from the database. Most of these

methods are essentially using lazy loading and are in themselves getter methods,

meaning that none of them are called and their contents not implemented until

necessary. For example, the managedObjectContext function is not called until a new

object needs to be inserted into the database. The calling of this method can be seen in

example 9 as the line self.managedObjectContext.

The first method illustrated in example 8 – viewDidLoad – is an iOS SDK built-in

function that is called every time a view controller’s view is loaded for the very first

time; Apple describes it in their auto-generated code comments as a place where one

can “Do any additional setup after loading the view”. In example 8 this functionality is

used to set up the fetched results controller. There are several different ways to fetch

objects from the database, one of the most common ways of doing so is using an

NSFetchedResultsController, which returns objects in a manner that makes it easy to

present them in a table view – using an NSIndexPath object, which defines an object’s

location with a section and a row. This location object is later used in table views and

fetched results controllers alike, it will see usage in further code examples as well. The

actual creation of the fetched results controller is demonstrated in the contents of the last

method. In order to create a fetched results controller, it has to be passed a few

arguments: a fetch request, which will describe the object entity that will be returned,

and a sort descriptor, which sets up the way these fetched objects will be ordered.

The essence of the second method in example 8 is the creation of a managed object

context, which is an object that manages the state of a single data model. In Apple’s

own words, it can be viewed as a “scratch pad” – a space where one can insert, alter and

delete objects; all the changes made will be committed to the database when a “save”

function is called. In most common situations there will be a single context, but

extraordinary situations might call for a larger number of instances. This can create a

complex situation where the programmer has to be aware of potential issues that stem

from thread safety, concurrency and syncing of contexts, but it is a deeper subject field

that deviates from the topic of this thesis.

 42

The following method creates a managed object model instance, which is responsible

for describing the schema of the data model that the developer has previously defined,

including the entities and relationships in the database necessary for the application.

The succeeding step is the building of a persistent store coordinator. This is where

things get a bit more complicated. Since it is possible to have several persistent data

stores and several managed object contexts, there needs to be something that facilitates

between those two layers of core data management and this is exactly what a persistent

store coordinator does. Thanks to the coordinator, the managed object context sees only

one persistent store, although there might actually be several of them; and all of the

persistent data stores receive objects from a single coordinator object. Again, this object

is only directly used on extraordinary occasions with a more complicated data model.

The saveContext and applicationDocumentsDirectory methods are simply convenience

methods, meaning that they are written just to make the code elsewhere a little more

clear. The first is used to commit changes done in a managed object context to the

database and the second returns the path to the device documents folder.

Once an object is obtained, it can be altered or deleted. Before fetching a class instance,

it has to be created and saved. The following code is written in order to create and alter

objects in the database.

Example 9. Manipulating the database.

- (void)addProductWithName:(NSString *)name shopName:(NSString
*)shopName
{
 Product *newProduct = [NSEntityDescription
 insertNewObjectForEntityForName:NSStringFromClass([Product class])
 inManagedObjectContext:self.managedObjectContext];
 [newProduct setName:name];

 Shop *newShop = [NSEntityDescription
 insertNewObjectForEntityForName:NSStringFromClass([Shop class])
 inManagedObjectContext:self.managedObjectContext];
 [newShop setName:shopName];
 [newShop addProductsObject:newProduct];

 [self saveContext];
}

 43

This example is rather straightforward despite its appearance: you create an object by

calling an NSEntityDescription class method and telling it which class’ object is needed

and which managed object context to use. Then any of the newly created object’s

properties can be changed according to the programmer’s wishes and a save call

executed to finish the altering process.

It should be mentioned that there was a tool called “mogenerator”[44] used in order to

simplify object alterations. “mogenerator” is a command line utility used to create two

classes for each database entity. One of them is intended only for machine reading and

the other one is where the programmer can insert custom code. Generating these two

wrapper classes is actually a disputed topic on its own right, but out of the scope of this

thesis. Since it is used with both Core Data and MagicalRecord and it has no impact on

the results of this research, it will not be discussed further.

In case an instance of a class is no longer needed, it can be deleted. Example 10 will

demonstrate how to delete an object from the database using Core Data. It also

demonstrates the fetching of an object through a fetched results controller using an

NSIndexPath object.

Example 10. Deleting an object.

- (void)deleteProductAtIndexPath:(NSIndexPath *)indexPath
{
 Product *product = [self.fetchedResultsController
 objectAtIndexPath:indexPath];
 [self.managedObjectContext deleteObject:product];

 [self saveContext];
}

These were the most basic and common operations that can be done with Core Data

managed objects. As one could see, it requires quite a large number of lines of code to

set up a database using Core Data. A following comparison will highlight the

differences between Core Data and MagicalRecord.

 44

MagicalRecord

Starting to code using MagicalRecords requires one to set up a Core Data stack, using

on of five potential class method calls, each of which has their own specific advantages.

In keeping with this thesis’ examples the simplest one will be used.

Example 11. The initial code required for setting up the MagicalRecord implementation.

- (void)viewDidLoad
{
 [super viewDidLoad];

 [MagicalRecord setupCoreDataStack];

 NSError *error;
 if (![[self fetchedResultsController] performFetch:&error])
 {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 }
}

- (NSFetchedResultsController *)fetchedResultsController
{
 if (_fetchedResultsController != nil)
 {
 return _fetchedResultsController;
 }

 NSFetchedResultsController *theFetchedResultsController =
 [Product MR_fetchAllSortedBy:@"name"
 ascending:NO
 withPredicate:nil
 groupBy:nil
 delegate:self];
 self.fetchedResultsController = theFetchedResultsController;
 [_fetchedResultsController setDelegate:self];

 return _fetchedResultsController;
}

The viewDidLoad is used again as the starting point to build a database. The

[MagicalRecord setupCoreDataStack]; line creates a persistent store coordinator,

essentially the same as the persistentStoreCoordinator method in the Core Data

example. The succeeding part is the creation of the fetched results controller, the

contents of which are exactly the same as they were in the previous example.

It is obvious that MagicalRecord encapsulates a lot of the tediousness of initializing a

database using Core Data. Although Xcode offers ways to create the necessary Core

 45

Data setup code automatically, they currently only come as a package when one starts a

new project with the “Master-Detail Application” template. So it seems that using

MagicalRecords in this situation would give the programmer greater flexibility.

The next example in the previous section was that of creating and altering objects in the

database. Example 12 will illustrate how that can be done using MagicalRecord. All of

MagicalRecord’s method calls use the “MR_” prefix to differentiate them from the rest

– a feature that can also be turned off.

Example 12. Manipulating the database.

- (void)addProductWithName:(NSString *)name shopName:(NSString
*)shopName
{
 Product *newProduct = [Product MR_createEntity];
 [newProduct setName:name];

 Shop *newShop = [Shop MR_createEntity];
 [newShop setName:shopName];
 [newShop addProductsObject:newProduct];

 [[NSManagedObjectContext MR_defaultContext]
 MR_saveToPersistentStoreAndWait];
}

The difference here with Core Data is that the creation of an object does not require the

passing of the desired class name and managed object context used: it knows the class

because the class itself is used to create a new object and it just uses the default context

created during the initialization of the MagicalRecord database. All of this is followed

by a custom “save” method call just like in Core Data.

The last use case in the previous section was deleting an object, a function that will be

laid out in example 13 using MagicalRecord.

Example 13. Deleting an object.

- (void)deleteProductAtIndexPath:(NSIndexPath *)indexPath
{

 Product *product = [self.fetchedResultsController
 objectAtIndexPath:indexPath];
 [product MR_deleteEntity];

 [[NSManagedObjectContext MR_defaultContext]
 MR_saveToPersistentStoreAndWait];
}

 46

The distinctions between Core Data and MagicalRecord for altering objects are not as

contrasting as with the creation of a database, but MagicalRecord does make it a bit less

verbose, which in turn makes the method names easier to remember and use. This feat is

achieved using a lot of default values, a practice that also has its potential downsides.

While this is normally a sign of rigidness and it may make some more complex

operations implausible or hard to achieve because it is not possible to modify the

contents of black box components, MagicalRecord has worked around this issue thanks

to the fact that its whole feature set is built on top of Core Data’s libraries.

Since MagicalRecord is an open source framework, it can theoretically be changed by

anyone in order to support a programmer’s any wish. In software development’s good

practices it is advised against changing someone else’s code, since the threat of

rendering some unknown parts of it faulty can only increase. There is an alternative

when the alteration of the code base is excluded from possible options. Due to the fact

that MagicalRecord is built using Core Data, it also means that Core Data’s

functionality can be used interchangeably with the one from MagicalRecord, which

gives the programmer all the simplified syntax advantages of MagicalRecord as well as

all the dynamic lower level feature advantages of Core Data. This is also true in the

previous case with AFNetworking and the Foundation framework’s URL loading

capabilities.

As was mentioned in the introduction of this subsection and visible from the above

examples, there is a lot less coding required to use a database when utilizing the help

from MagicalRecord. As with any framework, there are of course its own drawbacks,

but the most common ways of using a database are far more comfortably and efficiently

done with MagicalRecord then they would be when using only Core Data. The next

section will focus on summarizing the qualities that make the most wide spread third

party frameworks used in iOS development so popular.

 47

4.3 Conclusions of AFNetworking and MagicalRecord’s

advantages

As it turned out in the survey carried out earlier, the most popular third party

frameworks used in iOS development were AFNetworking and MagicalRecord. The

advantages noted for AFNetworking were its simple programming interface for making

requests, heavy usage of blocks and its powerful serialization capabilities. It was later

illustrated how AFNetworking’s simple interface is superior to that of Apple’s iOS

SDK’s Foundations frameworks URL loading classes and how they can come up useful

during programming.

The widely spread use of blocks was also analyzed and it was demonstrated how and

why can using blocks be advantageous compared to using delegation practices. The last

aspect of AFNetworking that was considered an upside was its powerful serialization

capabilities. Although this field of functionality does also exist in Apple’s iOS SDK,

these were considered more convenient and thought to give even more extra value to the

AFNetworking framework in general.

While the AFNetworking-related results of the survey could boast with three different

noticeable positive qualities, there was only one major one regarding MagicalRecord –

its capability to avoid boilerplate code. This should not be misunderstood: it can at

times be a very difficult feat to accomplish. MagicalRecord is a framework built entirely

on the functionality of Apple’s Core Data framework, which in addition to its ease of

use makes it very flexible and powerful, because all of Core Data’s features can also be

used in MagicalRecord. This is also true for AFNetworking and the Foundation

framework’s URL loading library, but not definitely true for all third party frameworks.

One example of the opposite would be libraries where the features are built on very

low-level C or C++ code, which a lot of developers are not that familiar with. Another

case when a third party framework can be very unaccommodating is when the contents

of it are closed-sourced, also known as a black box framework, and inaccessible to the

programmer.

During the last previous years it has been quite clear that Apple has more and more tried

to introduce these listed aspects to its own iOS SDK’s frameworks: blocks are

 48

becoming more common in everyday tasks, singletons are seeing increasingly more

usage and programming interfaces are constantly being updated in widely varying

fractions of the iOS SDK.

The simple fact of the matter is that the iOS SDK is still relatively young – a point also

brought up in the conducted survey. As with any new thing, it still has its flaws and

deficiencies, but is also keenly calling to be improved. A positive thing about Apple is

that they seem to be learning a fair amount from their developers. As it was pointed out

in the survey, Apple responds to user feedback and in the author’s opinion, they do it

directly and as well as indirectly. The direct way being reading and listening to users’

complaints and ideas from their feedback submission system and the indirect way being

learning from the users’ habits, as with the “pull to refresh” example explained in the

survey results subsection. So it would make sense to believe that Apple, in order to

strive to make its SDK follow the preferences of its users, would accommodate the

aspects that make AFNetworking and MagicalRecord so popular, into its own software

development kit.

It would make sense to apply the positive aspects of these third party frameworks in

anyone’s future enterprises as much as possible. But it seems that the biggest deficiency

of the iOS SDK is the simple fact that it is still rather new and it is not even close to

being fully developed. All the while, it seems to be on the course to being a fully-

fledged and capable software development kit – a course that is greatly influenced by

lessons learned from its users.

 49

5 Summary

The aim of this thesis was to take deeper look into Apple’s iOS SDK, try to map the

changes made in it during its lifetime and locate its weak spots if it had any. This was

achieved by taking a closer look at the most popular third party frameworks utilized in

iOS development.

The first part of this dissertation focused on the changes made in the iOS SDK during

its nearly 10 years of existence. It evolved from the initial 17 frameworks in its first

release to 55 of them in the latest version. It was revealed that Apple has a history of

listening to the opinions of its development community and adapting the SDK

appropriately, although it might occasionally take time to implement some new features.

The second part of the thesis was subjected to the finding of the most popular third

party frameworks by using the Star feature in GitHub and then asking the iOS

development community to voice their opinions through conducting a survey. It was

found that the most popular third party libraries – AFNetworking and MagicalRecord –

were used because of reasons including simplicity of the programming interface, usage

of blocks and the removal of boilerplate code.

In the final part of the thesis these two frameworks were analyzed more closely to

explain the reasons of their high popularity. Although a specific area of weakness in the

iOS SDK was not found, a larger number of smaller ones were highlighted. It was

concluded that the SDK’s current biggest weakness is its relatively young age and raw -

but constantly improving - evolutionary phase.

This thesis has hopefully helped pinpoint the deficiencies of the iOS SDK, which would

in turn help current and future developers improve their technical skills and applications

by using the observed useful iOS programming practices. The results and observations

of this dissertation can be used as a basis for future works in order to even further

scrutinize the state of this subject.

 50

6 Bibliography

1. Smartphones to Overtake Feature Phones in U.S by 2011,

http://www.nielsen.com/us/en/newswire/2010/smartphones-to-overtake-feature-

phones-in-u-s-by-2011.html, (28. December 2013)

2. Samsung Wins U.K. Apple Ruling Over “Not As Cool” Galaxy Tab,

http://www.bloomberg.com/news/2012-07-09/samsung-wins-u-k-apple-ruling-over-

not-as-cool-galaxy-tablet.html, (28. December 2013)

3. Open Handset Alliance, http://www.openhandsetalliance.com/press_110507.html,

(28. October 2013)

4. Apple Developer Programs, https://developer.apple.com/programs/, (28 October

2013)

5. Windows Phone Application Publishing,

http://msdn.microsoft.com/library/windowsphone/help/jj206719(v=vs.105).aspx,

(28. October 2013)

6. A Brief History of Mac OS X,

http://osxbook.com/book/bonus/ancient/whatismacosx/history.html, (28. October

2013)

7. Smalltalk, http://www.smalltalk.org/main/, (28 October 2013)

8. Cocoa Touch Frameworks, https://developer.apple.com/technologies/ios/cocoa-

touch.html, (28. October 2013)

9. Cocoa Frameworks, https://developer.apple.com/technologies/mac/cocoa.html, (28.

October 2013)

10. Apple releases iPhone SDK,

http://www.gsmarena.com/apple_releases_the_iphone_sdk-news-454.php, (28.

October 2013)

11. iOS Developer Library Release Notes,

https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&to

pic=Release%20Notes, (28. October 2013)

12. The Evolution Of iOS: From iPhone OS to iOS 7,

http://www.cultofmac.com/191340/the-evolution-of-ios-from-iphone-os-to-ios-6-

gallery/, (28. October 2013)

 51

13. Live from Apple’s iPhone SDK press conference,

http://www.engadget.com/2008/03/06/live-from-apples-iphone-press-conference/,

(28. October 2013)

14. Apple Unveils iPhone, http://www.macworld.com/article/1054769/iphone.html, (28.

October 2013)

15. iOS Developer Library Release Notes

https://developer.apple.com/library/ios/navigation/#section=Resource%20Types&to

pic=Release%20Notes (02. December 2013)

16. Apple Fixes a Bevy of Serious Flaws with Latest iOS 7.1 Update,

http://www.infosecurity-magazine.com/view/37399/apple-fixes-a-bevy-of-serious-

flaws-with-latest-ios-71-update/, (06. April 2014)

17. iOS Developer Library Frameworks,

https://developer.apple.com/library/ios/navigation/#section=Frameworks (29.

October 2013)

18. Introduction to CFNetwork Programming Guide,

https://developer.apple.com/library/mac/documentation/Networking/Conceptual/CF

Network/Introduction/Introduction.html, (30. October 2013)

19. Core Audio Overview,

https://developer.apple.com/library/ios/documentation/MusicAudio/Conceptual/Cor

eAudioOverview/Introduction/Introduction.html, (30. October 2013)

20. iOS Technology Overview

https://developer.apple.com/library/ios/documentation/miscellaneous/conceptual/iph

oneostechoverview/MediaLayer/MediaLayer.html (30. October 2013)

21. Quartz 2D Programming Guide

https://developer.apple.com/library/mac/documentation/graphicsimaging/conceptual

/drawingwithquartz2d/Introduction/Introduction.html (30. October 2013)

22. Core OS Layer

https://developer.apple.com/library/ios/documentation/miscellaneous/conceptual/iph

oneostechoverview/coreoslayer/coreoslayer.html (30. October 2013)

23. Core App Objects

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneO

SProgrammingGuide/AppArchitecture/AppArchitecture.html (30. October 2013)

 52

24. About AV Foundation

https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AV

FoundationPG/Articles/00_Introduction.html (30. October 2013)

25. Mixed reaction to iPhone update http://news.bbc.co.uk/2/hi/technology/8090513.stm

(30. October 2013)

26. Mobile Core Services

https://developer.apple.com/library/ios/documentation/MobileCoreServices/Referen

ce/UTTypeRef/Reference/reference.html#//apple_ref/doc/uid/TP40008771-CH1-

SW1 (02. December 2013)

27. Siri, http://www.apple.com/ios/siri/, (07. December 2013)

28. Maintenance-oriented selection of software components,

http://www.it.iitb.ac.in/%7Epalwencha/mtp_first/lic/lic/pap1412/maintenance%20or

iented%20selection%20of%20aoftware%20components.pdf, (06. January 2014)

29. A Framework for Systematic Evaluation of Software Technologies,

http://www.free-conversant.com/mindspill/140/enclosure/brown96framework.pdf,

(06. January 2014)

30. Defining Useful Technology Evaluations,

http://www.dtic.mil/dtic/tr/fulltext/u2/a476811.pdf, (06. January 2014)

31. Status and trends of mobile-health applications for iOS devices: A developer’s

perspective,

http://www.ohioupsychology.com/files/images/holroyd_lab/Liu,%20C%20et%20al

%20%282012%29%20Status%20and%20Trends%20in%20mobile-

health%20J.%20Sysm%20Soft.pdf, (11. January 2014)

32. Development Frameworks for Mobile/Wireless User Interfaces: A Comparative

Case Study, http://spectrum.library.concordia.ca/1706/1/MQ68478.pdf, (11. January

2014)

33. GitHub Stars feature, https://help.github.com/articles/stars, (19. January 2014)

34. GitHub most starred custom query, https://github.com/search?l=objective-

c&o=desc&q=stars%3A%3E1&s=stars&type=Repositories, (19. January 2014)

35. iOS Frameworks, http://iosframeworks.com, (22. January 2014)

36. UIRefreshControl Class Reference,

https://developer.apple.com/library/ios/documentation/uikit/reference/UIRefreshCon

trol_class/Reference/Reference.html, (6. April 2014)

37. DTCoreText, https://github.com/Cocoanetics/DTCoreText, (6. April 2014)

 53

38. iCarousel, https://github.com/nicklockwood/iCarousel, (6. April 2014)

39. Appirater, https://github.com/arashpayan/appirater, (6. April 2014)

40. AFNetworking on GitHub, https://github.com/AFNetworking/AFNetworking, (6.

April 2014)

41. NSURLSession Class Reference,

https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSUR

LSession_class/Introduction/Introduction.html, (18. April 2014)

42. NSURLRequest Class Reference,

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation

/Classes/NSURLRequest_Class/Reference/Reference.html#//apple_ref/doc/uid/TP4

0003762, (18. April 2014)

43. MagicalRecord on GitHub, https://github.com/magicalpanda/MagicalRecord, (01.

May 2014)

44. mogenerator, https://github.com/rentzsch/mogenerator, (04. May 2014)

 54

Appendices

Appendix 1. The total list of iOS SDK frameworks

A file named “Appendix 1. The total list of iOS SDK frameworks” is also appended to

this thesis: it summarizes all of Apple’s iOS SDK frameworks available to developers,

categorized by iOS SDK versions. It contains the name of the framework, the

programming language it is written in and a URL to its framework reference web page.

Appendix 2. The final list of selected third party frameworks

A file named “Appendix 2. Third party frameworks” is appended to this thesis, which

contains the final and total list of public open source third party frameworks selected to

be included in the conducted survey. It consists of the name, its GitHub Stars count, a

short summary, their GitHub web site URL and the type of the library, assigned by the

author. The color marks the level of complexity of each framework – definitions are

included.

Appendix 3. The contents of the survey

The final appendix is a PDF file named “Appendix 3. Questions and answers of the

survey”, which contains the full list of questions and answers accumulated by

conducting it.

 55

Non-exclusive license to reproduce thesis and make thesis public

I, Mikk Pavelson (date of birth: 08.04.1988),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of

Tartu, including via the DSpace digital archives until expiry of the term of

validity of the copyright, “The deficiencies in the Apple iOS SDK with the

example of third party frameworks usage”, supervised by Marko Peterson,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 25.05.2014

