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1. INTRODUCTION

Why polytopes?

The goal of linear programming is optimizing a linear function, known as ob-
jective function, over a subset of Euclidean space defined by a system of linear
equations and inequalities, usually represented by Ax ≤ b. Feasible solutions to
the problem are the ones that satisfy all the constraints. The set of all feasible
solutions can be represented in the Euclidean space with the dimension equal to
the number of variables and it is most likely in a high dimension. Each inequality
constraint is a half-space and the intersection of these half-spaces gives us a ge-
ometric object. Imagine a two-dimensional polygon surrounded by a set of lines
(see figure 1). It is possible to end up with an unbounded or empty feasible region,
but this is not of our interest here.

Figure 1. Inequality constraints making a polygon in dimension 2 [34].

There are already very good techniques for solving a linear program problem
such as the simplex, the ellipsoid method and the interior point method. To effi-
ciently apply these methods, it might be of advantageous to have a description of
the feasible set in the form of {x ∈Rn|Ax≤ b}. If this happens and the number of
inequalities which are defining the region is not that high, then everything is fine.
But most of the times this is not the case!

When applying the linear programming methods, two difficulties may arise.
In some cases, the linear description for the problem is known, but the number
of constraints are exponential in terms of variables, which gives an exponential
running time 1. In some other cases, particularly in combinatorial optimization
the feasible set, aka polytope (higher dimensional polygon), is given as a convex
hull of points and the main task is finding a system of linear inequalities which
defines the polytope.

Imagine that the vertices of the polygon in figure 1 were given as a set T . The
convex hull of the vertices, the blue area, is denoted by conv(T ). Finding the
inequalities corresponding to the lines or planes which are defining the area is not

1This can sometimes be avoided through the use of Separation Algorithms. This thesis does not
discuss the pros and cons of extension vs separation, and their connections.
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difficult in dimension 2 or 3, but it is usually challenging in higher dimensions
[68].

Let us have a closer look at one of the best-known problems in combinatorial
optimization, the Traveling Salesman Problem, or TSP for short. A salesman
wants to visit every one of n cities and return to the first point. Given the cost
of the travel between all pairs of cities, he wants to find the cheapest tour for his
travel.

There are a total number of
(n

2

)
roads between each pair of cities and each tour

can be specified as a Boolean vector of size
(n

2

)
. An entry of the vector is 1 if the

corresponding road is a part of the tour and 0 otherwise. The incidence vector of
each tour can be regarded as a point in the space R(

n
2) and the convex hull of all

the points gives a geometric object known as TSP polytope.
Let T be the set of all the tours. If c is the cost vector, showing the cost of

travel between cities, then the linear program formulation the TSP is

minimizecx subject to x ∈T .

There are (n− 1)!/2 tours for n cities. The set T is so huge that optimizing
over it looks impossible. For n = 49, there are already

|T |= 6.20695779626803633543114452368668751926074317733888×1060

tours! Dontzig, Fulkerson, and Johnson in their breakthrough paper [13] attacked
the problem by linear programming and illustrated the efficiency of their method
for solving TSP for n = 49 cities — an enormous task for that time.

This is the intuition of their method, which is actually the basis of the current
developments on solving TSP [2]. The first step is to replace T with the TSP
polytope, because linear programming always returns one of the points which
defines the convex hull (“vertices”). Since the TSP polytope itself is too compli-
cated2 to be represented by a linear discreption, Dontzig, Fulkerson, and Johnson
had the idea to use a relaxation polytope.

An overview of their method is as follows: First, a suitable system of linear
inequalities Ax ≤ b is found, such that it is satisfied by all the x ∈ conv(T ),
and also by some other x 6∈ conv(T ). It gives another polytope containing the
TSP polytope (see figure 2). Then the algorithm detects an optimum solution
x∗ there. However, x∗ is most likely not one of the points in T , since the the
space defined by the linear description is looser than TSP polytope. Keep in mind
that the optimal solution of a linear program can be always found in a vertex of
the underlying polytope. Therefore cx∗ gives the first lower bound to the actual
problem, and it is one of the vertices of the “outer” polytope.

The next step is separating x∗ from the space of feasible solutions. This is
indeed the most challenging part of the method. A new linear inequality (hyper-
plane) has to be found which is satisfied by all x ∈ T but not by x∗. By adding

2 Thare are 15,379 types of inequalities in linear description of TSP for n = 10 cities, and it is
not even certain that the list is complete.
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Figure 2. A complicated polytope contained in a cube in dimension 3.

the new hyperplane to the constraints, the algorithm gets a tighter feasible region
and now a new x∗ is gained, which is hopefully closer to the actual optimum, by
repeating the procedure. It is like cleaving the space repeatedly to reach the the
“inner” polytope. This method is called the cutting plane and it applies to many
other combinatorial optimization problems. Finding the cutting plane requires
establishing a common combinatorial property among the feasible solutions and
describing it with linear inequalities. This approach led to bilateral developments
of combinatorial polyhedral theory and linear programming.

The other idea for speeding up the process is the branch and cut algorithm.
It splits the feasible solutions into branches usually by assigning a value to some
variables and optimizing the linear program in the nodes which are sub-problems
actually. Whenever x∗ is found — the lower bound for the solution obtained by
the relaxation of the linear program — larger than the optimal solution in that
branch, the node is pruned.

The method can be used for tackling other combinatorial optimization prob-
lems and it is the base idea behind the Concord TSP Solver 3, written by David
Applegate, Robert E. Bixby, Vašek Chvátal and William J. Cook. The software
is currently the fastest TSP solver and can solve tremendously large instances.
In April 2006 an instance with 85,900 points was solved using Concorde TSP
Solver, taking over 136 CPU-years, a major breakthrough within almost 50 years
of solving TSP form 49 cities to 85,900 cities.

All this rapid development of applications of linear programming would not
be possible without taking the advantage of “Polyhedral Theory”.

Outline and contributions

In Chapter 2, we provide preliminary definitions and results on linear program-
ming and polytopes. In particular we introduce extended formulations in linear
programming, combinatorial methods for lower bounding the extension complex-
ity of polytopes and the graph a polytope. We discuss briefly some important
examples of polytopes and the known results about their extension complexity.

In Chapter 3, we discuss a brief overview of the the following paper:

3http://www.math.uwaterloo.ca/tsp/concorde/
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• Makkeh, A.; Pourmoradnasseri, M. and Theis, D.O. “The Graph of the
Pedigree Polytope is Asymptotically Almost Complete (Extended Abstract)”.
In Proceedings of The International Conference on Algorithms and Discrete
Applied Mathematics, CALDAM 2017.

The author’s contribution among the others, is introducing the stochastic process
(s, t), describing the number of common edges and connected components and
analyzing its return to s = 0.

In Chapter 4, we present an introduction on communication complexity and
discuss the connection of nondeterministic communication complexity for lower
bounding the extension complexity of polytopes.

In Chapter 5, we discuss a brief overview of the the following paper:
• Pourmoradnasseri, M. and Theis, D.O. “Nondeterministic Communication

Complexity of Random Boolean Functions (Extended Abstract)”. In Pro-
ceedings of Theory and Applications of Models of Computation, TAMC
2017.

The paper abounds in application of chernoff bounds, estimates and delicate in-
equalities which the author worked out for the most part. Also the author’s con-
tribution among the others, is designing the “conditioning on matching” approach
to linking fooling set size to independence number in Theorem 3.1(a).

In Chapter 6, we discuss a brief overview of the the following paper:
• Pourmoradnasseri, M. and Theis, D.O. “The (Minimum) Rank of Typical

Fooling Set Matrices”. In Proceedings of International Computer Science
Symposium in Russia, CSR 2017

The author’s contribution among the others, is applying the theorem by Ronyai,
Babai and Ganapathy to the fooling set case also flushing out the details of the
counting arguments involving sparse tee-matrices.
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2. POLYTOPES AND EXTENSIONS

2.1. Preliminaries

In this thesis, we take the pre-knowledge of Discrete Mathematic as granted. For
terminology, definitions and basic results we refer to the text book by Matoušek
and Nešetřil [76]. Also vectors are always represented by boldface characters.

2.1.1. Linear programming and sizes of linear programming
formulations

The linear programming problem, LP for short, seeks an optimal solution — such
as minimum cost or maximum profit— of a linear function subject to linear con-
straints. A linear program is a special case of mathematical optimization. LP has
found a numerous application in many real life problems [15, 24, 66].

There are several equivalent forms of representing a linear programming prob-
lem. One of the most common forms is

minimizex cT x
subject to Ax≥ b

Dx = e

where A ∈ Rm×n, D ∈ Rk×n, c ∈ Rn and b and e ∈ Rm.
The first general method for solving LP was proposed and developed by Kan-

torovich in 1939 during World War II to optimize the cost of armies. At approxi-
mately the same time, Koopmans independently used the linear program formula-
tion in classical economic problems. Later, in 1975, Kantorovich and Koopmans
shared the Nobel prize in economics.

In 1947 Dantzig published a method for solving LPs called the simplex method
[14] which is still noteworthy for its efficiency in practice. Soon after that, in
1948, von Neumann conjectured the so-called theory of duality, immediately after
Dantzig presented his simplex method, realizing the connection with the problem
he had been working on in game theory.

To state it roughly, the simplex method starts from an initial feasible solution,
a vertex of the polytope, and moves to another vertex of the polytope P, which
is the representation of the feasible solutions, along the edges. The procedure is
finding an edge of a polytope P whose direction decreases the value of objective
function. The algorithm achieves an optimal solution as soon as it encounters a
vertex where no such edge exists. The average case complexity of the simplex
method is polynomial [10] and so it is efficient in practice, but its worst case
complexity is exponential [56].

For more than half a century, there have been extensive attempts to theoreti-
cally explain the good performance of the simplex method. A popular approach
in this area was proving that there is always a short walk from every vertex to
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the optimal vertex. The Hirsch conjecture is an example of attempts for lower
bounding the steps of simplex method. It was posed in 1957 in a question from
Hirsch to Dantzig and states that the edge-vertex graph of an n-facet polytope in
d-dimensional space has diameter no more than n− d (see section 2.3 for defi-
nition of diameter of a polytope.). Despite being one of the most fundamental,
basic and old problems in polytope theory, Hirsch’s conjecture was disproved in
general 1 more than 50 years later in 2010 by Santos [91]. In 1992, Kalai and
Kleitman [50] proved that there always exists a walk of length at most nlog2 d+2

between every two vertices of a polytope. However the existence of a short walk
in the polytope does not guarantee that it can be found by simplex method.

A natural question that could arise was: Is LP solvable in polynomial time, in
terms of n= dim(x) and L, where L is the bitlength of the input? The question was
answered affirmatively in 1979 by Khachiyan [52] by introducing the ellipsoid
method. However, although the method was theoretically the first polynomial-
time algorithm for solving LP, it was not efficient in practice.

A few years later, in 1984, the interior point method was introduced by Kar-
makar [51]. The method has proven to have good result in theory and practice and
has been investigated extensively in several variations. It uses the standard form
of the linear program as

minimizex cT x
subject to Ax = b

x≥ 0

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm. However, all the other forms of the linear
programs can be converted to the standard form by adding slack variables to in-
equalities.

Intuitively, given a polytope P and an interior point a ∈ P, the algorithm pro-
duces a sequence of pairs of solutions for primal and dual problem which converge
to the optimal solution using a sequence of projections. The computational com-
plexity of the algorithm is O(n3.5L) in general, with L be the size of input [101].
The running time of this method is polynomial in the number of variables and
inequalities [98]. Unfortunately, in most of the combinatorial optimization prob-
lems, the number of inequality constraints is exponential in terms of variables.
Therefore, finding the methods which can give smaller linear description for the
problems is of the interest.

2.1.2. Polytopes and their facets

Polytopes are the generalization of polygons in higher dimensions. Convex poly-
topes are fundamental geometric objects in optimization since they describe the

1 The Hirsch conjecture is still true for (0,1) polytopes [73]
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feasible solution space of the linear programs. In particular, combinatorial opti-
mization searches for an optimum object in a finite set of objects. The objects
are represented by vectors and construct the vertices of a convex polytope. The
number of vertices is usually exponential in the size of the problem (e.g. all the
Hamiltonian cycles or all the spanning trees of a complete graph). In combinato-
rial optimization, the challenge is not only to reduce the running time of the LP
algorithms but also to find an appropriate linear description of the feasible solution
space.

In this section we give the basic definitions and fundamental properties of poly-
topes which will be used in following chapters. For all notions and results from
polytope theory mentioned in the presented work, we refer to Ziegler [104].

A V -polytope is the convex hull of a finite set of points K = {v1, · · · ,vn} ⊂Rd

with n≥ 1:

P = conv(K) = {λ1v1 + · · ·λnvn :, λi ≥ 0,
n

∑
i=0

λi = 1}.

An H -polytope is a bounded intersection of a finite number of half-spaces in
some Rd , which can be presented in the form:

P = P(A,z) = {x ∈ Rd : Ax≤ z} for some A ∈ Rm×d and z ∈ Rm.

An H -polyhedron is the intersection of finitely many half-spaces in Rd . An
H -polyhedron can be unbounded. In this thesis we are only concerned with
polytopes.

A polytope is a point set P⊂Rd which can be presented either as a V -polytope
or H -polytope. The Minkowski-Weyl theorem states that these two representa-
tions are equivalent.
Theorem 1. [70] A subset P ⊂ Rd is the convex hull of a finite set of points (a
V -polytope) if and only if it is a bounded intersection of a finite number of half-
spaces (an H -polytope).

The importance of the theorem 1 comes from the fact that it ensures that every
polytope has both V -polytope representation and H -polytope representation and
either of them can be referred whenever needed.

A face F of a polytope P is defined as an intersection P∩H where H is an
affine hyperplane for which the polytope is contained entirely in one of the two
halfspaces determined by the hyperplane. Equivalently, a face F is a subset of the
polytope P such that there exists an inequality aT x ≤ b which is satisfied by all
x ∈ P and F = {x|aT x = b}.

For every polytope, the empty set and the polytope itself are considered as the
(non-proper) faces. Vertices of a polytope are dimension zero faces. Line seg-
ments, known as edges, are faces of polytope with dimension one. The maximal
proper faces of a polytope are facets. In the other word, facets are faces with di-
mension dim(P)−1. For example, the proper faces of a 3-dimensional polytope
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are its vertices, edges and the boundary polygons. We do not give the exact def-
inition of the “dimension” here and ask the reader to rely on his/her intuition to
understand it.

Having a linear description of a polytope with the minimum number of in-
equalities, each inequality corresponds to a facet, such as giving shape to the
polytope with cutting the space with hyperplanes.

2.1.3. Examples of polytopes

Combinatorial optimization is used to find an optimal value among the set of
feasible solutions of a problem. Feasible solutions, can be considered as vectors
in some Rn and the convex hull of these vectors constitutes a polytope.

In this section, we present three well-studied examples of combinatorial poly-
topes.

Spanning tree polytope. Spanning tree polytope PST is the convex hull of the
characteristic vectors of all spanning trees of the complete graph Kn = (V,E).
Letting T (n) be the set of all spanning trees of the complete graph Kn, then

PST = conv{χ(T ) ∈ RE : T ∈T (n)}.

χ(T ) denotes the characteristic vector of the spanning tree, that is χ(T ) ∈
{0,1}E . An entry of the vector is equal to 1 if and only if its corresponding edge
belongs to the spanning tree T .

Edmonds showed that the spanning tree polytope admits the following linear
description. E(S) stands for the set of edges induced by the vertex set S.

∑
e∈E

xe = n−1

∑
e∈E(S)

xe ≤ |S|−1 for all nonempty S (V

xe ≥ 0 e ∈ E.

In this linear formulation, there are exponentially many inequalities, respec-
tively facets. Also, none of the inequality constraints is redundant [22].

Perfect matching polytope. The perfect matching polytope PPM is the convex
hull of all characteristic vectors of the perfect matchings of the complete graph
Kn = (V,E). If M (n) is the set of all the perfect matching of Kn,

PPM = conv{χ(M) ∈ RE : M ∈M (n)}.

There is also a linear description by Edmonds [21] for the perfect matching poly-
tope.
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∑
e∈δ (v)

xe = 1 for all v ∈V

∑
e∈δ (U)

xe ≥ 1 for all U ⊆V with |U | odd

xe ≥ 0 e ∈ E.

Here δ (v) is the set of all incident edges to the vertex v and δ (U) is the set of
all edges with exactly one end point in U .

In the linear description of PPM there are n equality constraints in total, one for
each vertex and O(n2) non-negativity constraints, but exponentially many odd-
set constraints. Perfect matching polytope is an interesting polytope for its lower
bound on extended formulation size which will be discussed later.

Traveling salesman polytope. Another example we go through here, is the
traveling salesman polytope, PT SP associated with the traveling salesman problem.
It is probably one of the most intensively studied problems in combinatorics and
computer science. It was first defined in the 1800s by the Irish mathematician
W. R. Hamilton and by the British mathematician Thomas Kirkman. Assume a
salesman who wants to visit n cities and come back to the first city again. All cities
are connected and traveling between every two cities has a cost (flight ticket, time,
etc). The goal is choosing an order of cities to travel to that keeps the total cost of
the travel as low as possible.

The traveling salesman problem is a typical example of the class of NP-hard
problems in mathematics and it has vast applications in science and industry.

More formally, the traveling salesman problem (TSP for short) is this: given
a complete graph Kn = (V,E) along with cost ci j for the edge {i, j}, find a cycle
(Hamiltonian cycle) with the minimum cost. Here we consider only the symmetric
TSP which means edges of the Kn are not directed (ci j = c ji).

Every feasible solution of TSP is a cycle and each cycle is expressed by its
Boolean characteristic vector of size

(n
2

)
. The convex hull of all these vectors

makes the TSP polytope. In other words, letting C (n) be the set of all Hamiltonian
cycles of the complete graph Kn, then

PT SP = conv{χ(C) ∈ RE |C ∈ C (n)}.

The dimension of PT SP is known by Grötschel and Padberg to be n(n−3)/2 [38].
There have been many attempts to understand the TSP polytope and illuminate

the structure of its faces and facets 2 [35, 95] but only a few are known. Even for
the case n = 10, it is an open problem whether the current linear description is the
complete one or not.

2See http://www.iwr.uni-heidelberg.de/groups/comopt/software/SMAPO/tsp/
tsp.html for the library of known linear descriptions and clasification of faces of TSP up to 10
cities.
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2.2. Extensions of polytopes

The idea of lifting a polytope for finding a more efficient representation of it —
mainly for optimizing more efficiently over the polytope — is a well-known topic
in linear programming. Extension of a polytopes means basically lifting the poly-
tope into a higher dimensional space by adding more variables.

2.2.1. Extension

An extended formulation of a polytope P ⊆ Rd is the polytope Q ⊆ Re with an
affine map 3

π : Re→ Rd such that π(Q) = P. Then Q is the extension of P. The
number of facets of Q is known as the size of the extension.

The extension complexity of a polytope P, xc(P) is the minimum number
of facets among all possible extensions of P. As mentioned earlier, in the H -
polytope representation with the minimum number of inequalities4, every inequal-
ity corresponds to a facet of the polytope. So extension complexity is the mini-
mum number of inequalities (not equalities) that can describe an extension of the
polytope.

Figure 3. Q with 6 facets is an extension of P with 8 facets [27].

The idea behind the extension of polytopes is as follows: sometimes a poly-
nomial increase in dimension of a polytope makes an exponential decrease in the
number of inequalities describing the polytope. Viewed differently a projection
of a polytope to a lower dimension, may have larger number of facets. Decreas-
ing the number of facets (inequalities), yields a considerable improvement in the
running time of optimizing over the polytope using methods like interior point
method since the complexity of the interior point method is polynomial in the size
of inequalities and variables.

Among the polytopes associated with combinatorial optimization problems,
some of them like the spanning tree polytope of the complete graph or permuta-
hedron have surprisingly small extended formulation. For some like the traveling

3The affine map can be considered safely as a linear map here such that it does not necessarily
preserve 0.

4We only talk about inequalities and not equalities
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salesman problem or matching polytope, it is proven that no polynomial extended
formulation exists and there are still many unresolved problems regarding upper
and lower bounds on extension of polytopes.

2.2.2. Slack matrix

Let the polytope P be the convex hull of V = {v1, · · · ,vn} ⊂ Rd and also repre-
sented by {x ∈ Rd : Ax ≤ z} for some A ∈ Rm×d and z ∈ Rm. The slack matrix
of P (with respect to V , A, and z) is the m× n matrix S whose i j-th entry is
si j := zi−Aiv j, the slack of the j-th element of V with respect to the i-th inequal-
ity.

In almost all techniques that provide a lower bound on the size of extended
formulation, the slack matrix plays the main role. The non-negative rank and
rectangle covering of the slack matrix will be discussed in the following sections.

2.2.3. Non-negative factorization

Yannakakis in his seminal paper [102] showed the equivalence of the geometric
parameter, extension complexity and the algebraic parameter, non-negative rank
of the slack matrix associated with the polytope. In this section we study the
relationship among these parameters.

The non-negative rank of a matrix M, rank+(M), is the smallest r ∈ N such
that M can be expressed as M = TU where T ∈Rm×r

+ , U ∈Rr×n
+ are non-negative

matrices. Equivalently rank+(M) can be defined as the minimum number r such
that M can be decomposed to the sum of r non-negative rank-1 matrices, M(i) ,

M =
r

∑
i=1

M(i). In this thesis the latter one is taken as the definition.

Theorem 2. [102] The extension complexity of a polytope P of a dimension
greater than zero, is equal to the non-negative rank of its slack matrix.

Theorem 2 states that finding the lower bound on extension complexity of poly-
topes is equivalent to finding the lower bound on non-negative rank of the slack
matrix. Although determining a non-negative rank of a matrix is a difficult prob-
lem in itself [12], matrices are more familiar objects for study. Clearly the normal
rank of a matrix is always a lower bound for its non-negative rank but deciding
on whether the non-negative rank of a matrix is equal to its normal rank is NP-
hard [100]. Finding a reasonable lower bound for non-negative rank is a topic of
interest not only for linear programming, but also for other areas such as analyz-
ing data, image and clustering [19, 71]. There are still many unknown problems
regarding the non-negative rank and its complexity [55]. A combinatorial method
for lower bounding the non-negative rank is determining the rectangle covering
number of the matrix, which will be discussed in the next section.
Remark 1. The slack matrix of a polytope can be defined more generally. In
section 2.2.2, only the slack of vertices and facets are considered, but one may
define the slack matrix containing the slack of vertices and some other additional
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faces or even all the faces. In this case, the dimension of the slack matrix is larger
than the one defined in 2.2.2, but the positive rank of the matrix stays unchanged
[27, 102].

2.2.4. Rectangle covering and non-negative rank

For a positive integer n, a rectangle is a product of R = K×L ⊂ [n]× [m] (with
[n] := {1, . . . ,n}).

Given a Boolean n×m matrix M, a 1-rectangle is rectangle R with Mk,` = 1 for
all (k, `) ∈ R. A rectangle covering of M is a collection of 1-rectangles R1, . . . ,Rr

such that {(k, `) |Mk,`= 1}=
⋃

i

Ri, or, informally, every 1-entry of M is contained

in one of the 1-rectangles chosen. The rectangle covering number [61, 62], C(M),
of M is the smallest number of 1-rectangles in a rectangle covering of M.

According to the definition, the non-negative rank of a matrix M is equal to the

minimum number r, such that M =
r

∑
i=1

M(i). Each M(i) is a positive rank-1 matrix,

thus its non-zero entries give a rectangle. Obviously, if we discard the values of
the non-zero entries in M and just look at the zero-non-zero pattern, the non-zero
entries of each M(i) induces a rectangle Ri. So the set of rectangles R1, · · · ,Rr will
cover all the non-zero entries of M.

The support of matrix M is the matrix obtained by keeping the zero entries
and replacing the non-zero entries with 1, denoted by supp(M). So rectangles of
R1, · · · ,Rr give a rectangle covering for the support of the matrix M. Put differ-
ently, the C(supp(M)) is a lower bound for rank+(M).

2.2.5. Lattice embedding

The set of all faces of a polytope can be regarded as a lattice. A lattice is a partially
ordered set such that every two elements have a unique supremum and infimum.
The face lattice of a polytope P, noted by L (P), is the set of all faces of the
polytope, including the trivial faces /0 and P, partially ordered by inclusion. In
L (P) facets are the proper maximal faces of L (P).

Let π : Re→ Rd be an affine map and let Q⊂Re be a polytope. Then π(Q) is
the projection of Q under π .

A map f is an embedding of a partially ordered set (O,≤) into (S,v) if it
preserves the order. It means for u,v ∈ O, u≤ v if and only if f (u)v f (v).
Proposition 1. [27] Let Q ⊂ Re along with the affine map π : Re → Rd with
π(Q) = P be the extended formulation of P ⊂ Rd . Then the map h : L (P)→
L (Q) which assigns h(F) := Q∩π

−1(F) to each face F of P is an embedding.

Proof. Obviously h( /0) = /0 and h(P) = Q. If F is a face of P, then according to
the definition there exists an inequality aT x ≤ b which represents F . It is also
satisfied by all y ∈ Q with aT

π(y)≤ b and equality holds if and only if π(y) ∈ F .
Hence h(F) is a face of Q represented by the inequality aT

π(y) ≤ b. The map
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h preserves the order and π(h(F)) = F , for every face F ∈L (P), therefore it is
injective and so, embedding.

Some facts can be concluded from the proof of proposition 1. The image h(F)
of a face F is a face. Moreover every extension Q of a polytope P, induces an
embedding from L (P) into L (Q). Hence, the minimum number of facets of a
polytope Q, such that the face lattice of P can be embedded into the face lattice of
Q, gives a lower bound on the extension complexity of the polytope P.

The embedding h : L (P)→L (Q) induces a rectangle covering for the sup-
port of the slack matrix of P, S, of the size of number of facets in Q [27]. Let
{F1, · · · ,Fk} be the set of facets of Q. Define the rectangles Ri = Ii × Ji for
i = {1, · · · ,k} as following. Let Ii be the set of all rows of the slack matrix in-
dexed by faces U of P such that h(U) ⊆ Fi and let Ji be the set of all columns
indexed by the vertices v such that h({v})* Fi. The set {R1, · · · ,Rk} indeed gives
a rectangle covering for the support of S because every non-zero entry of S corre-
sponds to a face U and a vertex v of P, such that {v} * U . Since the embedding
h is order preserving, h({v})* h(U). By lattice properties, there exists a facet Ft

such that it contains h(U) but not h({v}).

2.2.6. Extended formulation of some polytopes

After being known that LP is solvable in polynomial time, there had been a se-
quence of attempts to prove P=NP via finding a polynomial size linear description
for known hard problems– in particular TSP [97]. Due to the large size and com-
plicated formulation, it was “ hard to tell what they do or do not express” [102].
In his seminal paper, Yannakakis [102] ruled out all the attempts in this direction
conveniently by proving that every symmetric 5 linear formulation of TSP must
have an exponential size.

A natural question that may arise is which problems admit polynomial size
extended formulation and which do not. Many open problems remain in this area.
A few known bounds are mentioned briefly in this section and in the next chapter.

Extended formulation of spanning tree polytope. In this section, we give
the polynomial size extended formulation of spanning tree polytope which is due
to Martin [67]. It is one of the well-known and simple examples of extended
formulation. As it was mentioned earlier, the spanning tree polytope is defined as
follows:

PST = {x ∈ RE : ∑
e∈E

xe = n−1

∑
e∈E(S)

xe ≤ |S|−1 for all nonempty S (V

xe ≥ 0 e ∈ E}.
5“an LP is called symmetric if every permutation of the cities can be extended to a permutation

of all the variables of the LP that preserves the constraints of the LP” [28].
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The size of the spanning tree polytope is exponential and the following formu-
lation gives a polynomial size extension of PST :

QST = {(x,y) ∈ RE ×Rn(n−1)(n−2)

x{v,w}− yv,w,u− yw,v,u = 0 u,v,w are distinct

x{v,w}+ ∑
u∈V\{v,w}

yv,u,w = 1 v,w are distinct

∑
e∈E

xe = n−1

x,y≥ 0 e ∈ E}.

To see how a spanning tree T satisfies the new formulation, it is sufficient to
assign the value 1 to yv,w,u if (v,w) ∈ T and u is on w’s side of the edge (v,w) in
T and 0 otherwise. It gives the inclusion P ⊆ π(Q). For the proof of the reverse
inclusion we refer to [67].

From this formulation, xc(PST (n)) = O(n3). It is an open problem whether
xc(PST (n)) = Θ(n3).

Lower bound on the extension complexity of the perfect matching poly-
tope. The perfect matching polytope is a distinguished example by its extension
complexity. The linear program description of this problem as given in 2.1.3, has
an exponential size. But there are polynomial algorithms for optimizing a linear
function over the perfect matching polytope [21]. The question about the exis-
tence of polynomial size extended formulation for matching polytope remained
unsolved since Yannakakis’ paper [102]. The problem was settled by Rothvoß in
2013 [88] and he showed that surprisingly every extension of the matching poly-
tope has super polynomial size.
Theorem 3. [88] For all even n, xc(PPM(n)) = 2Ω(n).

This result is particularly interesting because all the other exponential lower
bounds on extension complexity of the polytopes are among the polytopes asso-
ciated with NP-hard problems.

The best previous known lower bound for xc(PPM(n)) was Ω(n2) [102]. Also,
upper bound O(n4) on the rectangle covering number of the slack matrix S [27],
ensured the rectangle cover by itself can not give any super polynomial lower
bound for the extension complexity of the perfect matching polytope. Here we
depict the rough idea on the upper bound on the rectangle covering number of S.

There are three types of constraints in 2.1.3. The number of degree constraints
and non-negativity constraints is Θ(n2) and only the number of odd set constraints
is exponential. So it is sufficient to only look at the odd set constraints. If U is
an odd set and M is a matching, then it is not difficult to observe that SUM =
|{δ (U)∩M}|− 1, where SUM is the entry of the slack matrix corresponding to
the odd set U and the matching M. For every pair of edges e1,e2, the rectangle
Re1e2 := {U |e1,e2 ∈ δ (U)}×{M|e1,e2 ∈ M} induces a 1-rectangle in the slack
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matrix. There are O(n4) many such rectangles and it deduces an upper bound of
O(n4) on the rectangle covering number.

Rothvoß showed [88] that an entry with SUM = k is covered by θ(k2) many
rectangles. Therefore every polynomial size rectangle cover of the slack matrix,
over-covers the non-zero entries of the slack matrix and there is a large gap be-
tween rank+(S) and C(S) in this problem, hence the rectangle cover bound is not
useful in this problem. Then using hyperplane separation lower bound suggested
by Fiorini, he concluded that the extension complexity of the matching polytope
is exponential.

2.3. Graph of a polytope

The k-skeleton of a d dimensional polytope is the set of all faces of the polytope
with dimension less than or equal to k. The 1-skeleton or the graph of a polytope
P, G(P), is the set of vertices and edges of the polytope. Two vertices are ad-
jacent if they are end-points of an edge (1-dimensional face) of the polytope. A
fundamental theorem in polyhedral theory by Balinski states that the graph of a
d-dimensional polytope is d-connected [6] (see theorem 3.14 of [104]). As a con-
sequence, the minimum degree of a graph of a polytope is at least the dimension
of the polytope.

The graph of a polytope can be regarded as an abstract graph and investigating
the graph theoretical properties of it reveals meaningful information about prop-
erties of the polytope. For instance, the theorem by Blind and Mani [9] states
that so-called simple polytopes6 are determined by their graphs. The famous the-
orem by Steinitz [8] characterizes exactly the 3-dimensional polytopes as the 3-
connected planar graphs.

Understanding the graph of polytopes of higher dimensions and in more gen-
eral form has been more challenging, however [6, 25]. The concept is of interest
not only in combinatorial polyhedral theory, but also in combinatorial optimiza-
tion and theoretical computer science [1, 7, 65].

In combinatorial optimization, particularly after developments of linear pro-
gramming, polytopes received a considerable amount of attention. Some of the
motivations were understanding the running time of simplex method, improving
the linear programming techniques and even attacking P vs. NP [102]!

For instance, learning the diameter of a polytope (= diameter of graph of the
polytope) gives a lower bound for the number of iterations in simplex and ran-
domized simplex method [47, 48]. The famous example was the Hirsch conjec-
ture which was answered by Santos [91] after fifty years. Although the Hirsch
conjecture was disproved in general, attempts for proving an upper bound for di-
ameter of polytopes which is polynomial in the number of facets of polytope are
still undergoing [23, 53, 92].

6A d-polytope is simple if each of its vertices is adjacent to exactly d edges and also d facets.
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Among all the attempts to understand the graph of combinatorial polytopes,
TSP polytope and also TSP related polytopes have gotten a considerable amount
of attention (e.g., [96]; cf.[35, 74, 77] and their references). The presence of long
cycles has been studied ([95], see also [72, 75]), as has the graph density and
vertex degrees (e.g., [93], see also [41, 45]).

In theoretical computer science, finding an algorithm which can verify a poly-
tope from its k-skeleton is of interest [29, 46]. Deciding whether a given lattice is
a face lattice of a polytope is known to be NP-hard [85]. There are several inter-
esting algorithmic problems regarding the graph of a polytope and unknown facts
about computational complexity of them (see [44] for a collection of problems).

For more results on the skeleton of polytopes we refer to the book chapter by
Kalai [49].

The natural question that arises is about the connection between graphs of two
polytopes P and Q, when Q is an extension of P.

In general, the projection π : Q→ P may project a vertex of Q somewhere in
middle of the polytope P and not onto vertices. This type of vertex is called a
hidden vertex [81]. If a projection projects all the vertices of Q onto vertices of P,
then the extension is without hidden vertices.
Definition 1. A graph H is a minor of a graph G if it can be obtained from G by
any sequence of contracting edges, deleting edges, and deleting isolated vertices.
Definition 2. G(V,E) contains H(V ′,E ′) as a model, if G consists |V ′| vertex-
disjoint connected subgraphs B1, · · · ,B|V ′| such that for all distinct i and j some
vertex in Bi is adjacent to some vertex in B j if {i, j} ∈ E ′ in H.

Clearly, H is a minor of G if and only if G contains H as a model.

The following proposition shows the connection between the graph of two poly-
topes, while one is an extension of the other. Since a polytope and its graph are
essentially the same object, we may refer to the polytope P as its graph G(P).

Proposition 2. If Q is an extension of P with π : Q→ P, then
(a) G(P) is a minor of G(Q).
(b) If Q is an extension of P without hidden vertices, then G(P) is a model of

G(Q).
(c) If V (Q) and V (P) are in bijection then G(P) is a spanning subgraph of

G(Q).

Proof. We start with the general case (a). For every v in vertices of P, the set
Fv := π

−1({v})∩Q is a face of Q and hence a polytope itself. Balinski theorem
[6] states that the graph of every polytope of dimension k is k-connected. So, every
vertex in G(P) corresponds to a connected subgraph of G(Q) and this subgraphs
are disjoint.

The preimage of every edge e = {v1,v2}, Fe := π
−1({e})∩Q is also a face of

Q and by proposition 1, it contains Fv1 and Fv2 . Hence, there is a path between
Fv1 and Fv2 in G(Fe). It remains to prove that for every two disjoint edges {v1,v2}
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and {u1,u2} in G(P) there exist two vertex disjoint paths in G(Q), one between
Fv1 and Fv2 and the other between Fu1 and Fu2 .

Let Sv1v2 and Su1u2 be the shortest paths between Fv1 and Fv2 and between
Fu1 and Fu2 . Assume w ∈ Sv1v2 ∩ Su1u2 . It implies w ∈ F{v1,v2} ∩F{u1,u2} and so
w ∈ π

−1({v1,v2}∩{u1,u2})∩Q. It means {v1,v2}∩{u1,u2} 6= /0 which is con-
tradiction.

In the case (b), there is no hidden vertex in the extended formulation. So, the
vertex set of the face Fe, e = {v1,v2}, can be partitioned to two subsets Fv1 and
Fv2 . Since Fe is connected, there must be an edge between Fv1 and Fv2 . Therefore
G(Q) is a model of G(P).

In the case (c), π induces a bijection between the vertex sets of P and Q. Using
part (b), there has to be an edge between Fv1 and Fv2 in G(Q) for e = {v1,v2} in
G(P). Hence G(P) is a spanning subgraph of G(Q).
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3. ON THE GRAPH OF THE PEDIGREE POLYTOPE

In this chapter, we discuss the motivation and results of the paper [64], reprinted
as the Appendix B of this thesis.

3.1. Motivation and previous works

In this paper, we studied the graph of the pedigree polytope. Our original moti-
vation was the thirty year old conjecture by Grötschel and Padberg [35] stating
that the diameter of the graph of TSP polytope is 2. Grötschel and Padberg also
extended their question to the family of TSP-related polytopes [35] since there are
quite few known facts about the structure of TSP polytope. The conjecture was
already proven for the asymmetric TSP [78], but for the symmetric case only the
upper bound 4 has been obtained [86].

Padberg and Rao in [78], proved the upper bound 2 on diameter of a class
of “algorithmically well-solved” combinatorial problems containing assignment
problem, the edge-matching problem on complete graphs, the multi-dimensional
assignment problem and many other set partitioning problems. They proposed
the diameter of a polytope associated with a combinatorial problem as a measure
of complexity of the problem and surprisingly they proved the asymmetric TSP
polytope also falls in the same category of the polytopes with small diameter.

The theorem by Papadimitriou [79] states that the non-adjacency of vertices of
(Symmetric) Traveling Salesman Problem (TSP) polytopes is NP-complete. The
question about non-adjacency of vertices in other families of polytopes has also
been studied (cf. [1, 65]).

Pedigree polytopes are a family of TSP-related polytopes introduced by Artha-
nari [5]. The graph of the pedigree polytope has a nice combinatorial structure
and adjacency of vertices can be decided in polynomial time [3].

As in the case of TSP, the vertices of the pedigree polytope, correspond to the
Hamiltonian cycles of the complete graph Kn. Therefore the number of vertices
is equal to (n−1)!/2. In the Arthanari’s idea of the pedigree, cycles evolve over
the time. The initial cycle is {1,2,3} at time 3 and at time n ≥ 4, the vertex n
is inserted into an existing edge of the the cycle with the vertex set [n− 1] and
subdivides it into two new edges.
Lemma 1 ([4]). The pedigree polytope is an extension of TSP polytope, without
“hidden” vertices.

In fact, the vertex set of TSP polytope and pedigree polytope are in bijection.
Hence, by the proposition 2, the graph of the TSP polytope is a spanning sub-
graph of the pedigree. Unlike TSP polytope graphs, pedigree polytope graphs are
not vertex transitive and not even regular. Arthanari’s construction removes the
symmetry from the graphs of the polytopes.
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3.2. Our result

In our paper we proved the following about the graph of the pedigree polytope.
Theorem 4. The minimum degree of a vertex on the Pedigree polytope for n cities
is (1−o(1)) · (n−1)!/2 (for n→ ∞).

Theorem 4 means that the graph of the pedigree polytope is “asymptomatically
almost complete”. However, in the numerical simulations we observed even for
large n (≈ 100) the graph of the pedigree polytope is not complete.

Arthanari defines some combinatorial conditions on the adjacency of the ver-
tices in the pedigree polytope. We do not discuss the conditions here because of
being too technical. But fortunately, the proof idea can be understood without the
technical details. We refer to the paper [64] for the precise statements.

Consider two cycles A and B, say Alice’s cycle and Bob’s cycle, on vertex set
[n]. The adjacency of A and B can be seen as a process over the time too by the
pedigree graph GAB

n . At time n+1, Alice and Bob insert the vertex n+1 to their
cycles. The pedigree graph GAB

n+1 either stays the same as GAB
n or it arises from

GAB
n by adding the vertex n+1 together with edges between n+1 and vertices in

[n].
Adjacency of two cycles in the pedigree polytope is determined by the follow-

ing condition:
Theorem 5 ([3]). At all times n ≥ 4, the two vertices of the Pedigree polytope
for n cities corresponding to the cycles A and B with node set [n] are adjacent in
the Pedigree polytope, if and only if the graph GAB

n is connected.
For a fixed cycle A and a random cycle B, the pedigree graphs GAB

� will make
a sequence of random graphs. At time n, whether the vertex n is added or not
or with how many edges is attached to GAB

n−1 are random events. The necessary
condition for having disconnected pedigree graph GAB

� is that an isolated vertex
has been created in some step of this random process.

Isolated vertices . For deterministic cycle A and random cycle B, let the ran-
dom variable Y count the total number of times that an isolated vertex is created

in the pedigree graph GAB
� . In other words, Y =

∞

∑
n=4

1In , where In denotes the event

that, at time n, n is added as an isolated vertex to GA,B
n (and 1� is the indicator

random variable of the event).
Lemma 2. Whatever Alice does, EY = 2.

To understand the importance of the lemma, consider a pedigree graph GAB
n−1,

just before Alice and Bob make their choices of cycle edges for inserting their new
nodes n into it. If they make their choices in a way that n is not a vertex of the new
pedigree graph GAB

n , the number of connected components of it doesn’t change.
If n is a vertex with incident edges, then the number of connected components can
only decrease. The only way that the number of connected components of Gn can
increase is if n is an isolated vertex in the new pedigree graph. Hence, Lemma 2
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gives an upper bound on the expected number of connected components as well.
From Lemma 2, it is unlikely that the pedigree graph will have many com-

ponents. The expected number of 2 for the number of components gives this
intuition that in the random process of creating GAB

� , most of the time either noth-
ing happens (no new vertex) or edges are created, ultimately reducing the number
of components, so the pedigree graph is connected at the end.

This intuition is basically correct, but looking at the process more carefully
shows that Alice can pick a strategy that she reduces the chance of merging com-
ponents in GAB

� .
Theorem 4 actually states, for a random cycle B, chosen uniformly at random

from all cycles on the vertex set [n],

min
A

P
(
{ the pedigree graph is connected }

)
= 1−o(1), (3.1)

where the minimum is over all cycles on [n].
Adjacency game. We proved the lower bound (3.1), by describing the “adja-

cency game” between Alice and Bob. Alice’s goal is to make the graph G dis-
connected using a sophisticated strategy; whereas Bob makes uniformly random
choices all the time, blindfolded. We proved that Alice loses with probability
1− o(1). To analyze the game, we study a Markov-like Decision Process with
state space Z+×Z+. The states are pairs (s, t), where s is the number of common
edges in Alice’s and Bob’s cycles, and t is the number of connected components
of the current pedigree graph. We proved that ultimately this process will reach to
a state with t = 1, i.e. connected pedigree graph, and stays there forever.

The “adjacency game” is as follows: At each time, Alice moves first. She
determines her cycle An, by choosing an edge of An−1 at each time n and inserting
her node n into it. Then Bob moves. He determines Bn in the same way, but he will
draw the edge of Bn−1 into which his new node n is inserted uniformly at random
from all edges of Bn−1, and his choice is independent of his earlier choices.

We say that Bob wins, if there exists an n0 such that for all n≥ n0, the pedigree
graph GAB

n is connected. We need Bob to win “uniformly”, i.e., n0 must not depend
on Alice’s moves.

Using super-martingales, we proved that for large enough n0, Alice has to in-
sert her new vertices to A, in a way that decreases the probability of creating
isolated vertex in GAB

� between n0 and 2n0. We proved for large enough n′0 the
number of components will not increase anymore and drops to 1 with high prob-
ability hence, GAB

� stays connected ever after. Therefore Bob wins.
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4. FROM COMMUNICATION COMPLEXITY TO
EXTENDED FORMULATION

In the first chapter we studied the basic ideas about extended formulation and
how these may help to rule out an exponential number of inequalities. Having a
polynomial size linear description of a polytope, it is possible to optimize over it
in a polynomial time. But, what are the limitations of this method? Does every
polytope admit a polynomial size extended formulation?

Communication complexity is a strong tool for proving lower bounds on dif-
ferent areas of computer science. Usually the basic idea is: if we have some
properties of interest — say polynomial size linear description of a polytope, sub-
linear space complexity for an algorithm, small query time for a data structure,
etc.— then it implies small communication complexity for some known problem,
using reduction. Therefore, linear bounds in communication complexity drive
lower bounds to the other problems.

In this chapter we will study the connection of communication complexity and
extended formulation. Also we briefly mention the exponential lower bound on
the extension complexity of the TSP polytope.

4.1. Basic Model and definitions

The important sub-area of complexity theory, communication complexity, studies
the amount of communication needed to learn or calculate a function. The concept
of communication complexity was introduced by Yao [103] in 1979. In general
the problem is a system has to do a task, but the information needed for doing the
task is distributed among different parties. One obvious solution to the problem is
to let all parties reveal their information. But if the communication is expensive,
we need to minimize the amount of communication.

In fact, communication complexity is a measure for hardness of a problem
when the whole input is not available and it focuses only on the exchanged infor-
mation and not on the computational ability of the parties for calculation.

Here we introduce the basic model of communication which contains only two
parties. We refer to [57] for exact definitions and more details on communication
complexity and to [90] for general applications of communication complexity for
proving lower bounds in different areas of computer science.

4.1.1. Deterministic communication complexity

In the simplified communication complexity model, the function f : X×Y → Z is
given with X , Y and Z being arbitrary finite sets. There are two players, Alice and
Bob and the task is evaluating f (x,y), for x∈ X and y∈Y . Alice only knows x and
Bob only knows y, they communicate according to a protocol to verify f (x,y). A
naive protocol which always works can be: Alice sends all her input x to Bob,
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then Bob determines the value of f (x,y). Although sometimes it is not possible
to do better, a protocol with the least communication is of interest.

The so-called deterministic communication complexity of f , D( f ), is the min-
imum number of bits communicated according to a best protocol P on the worst
case input (x,y).

Let f : X×Y → Z be a function, then M f is the corresponding matrix of f , such
that rows are indexed by different values of X and columns are indexed by values
of Y and for (x,y) ∈ X×Y , M f (x,y) := f (x,y). In this work, we only consider the
Boolean functions ( f : X×Y → Z = {0,1}). So the matrix M f is Boolean.

Let us look at an easy example. Assume Alice and Bob have their inputs x and
y both in {0,1}n and they are asked to compute the function NEQ(x,y). They have
to output 1, if x 6= y and 0 otherwise. It is not difficult to observe that they can not
compute NEQ(x,y) with communication fewer than n bits (one has to send the
whole input) and therefore D(NEQ) = n.

4.1.2. Nondeterministic communication complexity

In the nondeterministic model, there is a third party, the prover, who sees x and
y and tries to convince Alice and Bob that f (x,y) = z by sending them certifi-
cates. The minimum number of bits communicated by Alice, Bob and the prover
according to the best protocol and the worst input, is known as nondeterministic
communication complexity.

Looking at the previous example in the nondeterministic case, assume the
prover wants to convince Alice and Bob that NEQ(x,y) = 1. In this case, the
prover can send the index of the bit in which x and y differ as the certificate. Thus
N(NEQ) = dlog2 ne.

Nondeterministic communication complexity also can be regarded as a two-
party model, without the prover, when Alice and Bob can make nondeterministic
decisions.

The application of communication complexity in the extended formulation of
polytopes is via nondeterministic communication complexity so we are particu-
larly interested in this model here.

Rectangle cover and nondeterministic communication complexity. As we
defined in section 2.2.4, a rectangle is a product of R = K×L ⊂ [n]× [n] (with
[n] = {1, · · · ,n}). Given an n×n Boolean matrix f , a rectangle R is a 1-rectangle
if f (k, `) = 1 for all (k, `)∈ R and it is a 0-rectangle if f (k, `) = 0 for all (k, `)∈ R.
Definition 3. The nondeterministic communication complexity of a Boolean func-
tion f is dlog2C(M f )e.

The intuition behind this definition is: Let R1,R2, · · · ,Rc be the rectangles that
cover all the 1 values of f . Assume that Alice and Bob want to verify whether
f (x,y) = 1 via communication among each other and with the prover. If f (x,y) =
1 there exists at least one rectangle which covers f (x,y). The prover should only
send the index of that rectangle as the certificate. So N( f ) = dlog2(c)e.
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Remark 2. Let us look back one more time to proposition ??. In the deterministic
model of communication, using the small partitioning of the matrix, M f , we can
conclude log2 rank(M f ) lower bound. We should point out here that it can be
a large gap between the “covering number” and the “partitioning number”. For
example in the non-equality example, since N(NEQ) = dlog2 ne there exists 1-
rectangle covering for MNEQ of size dlog2 ne (it is not hard to find it), whereas the
1-rectangle partition is of size n. So the rank’s lower bound is not relevant to the
nondeterministic communication complexity.

Fooling set. Calculating the nondeterministic communication complexity
(equivalently the rectangle cover) is not always easy and sometimes methods for
lower bounding the quantity is of interest. One of these methods is finding a large
fooling set in the communication complexity function.

A fooling set is a subset of the domain of the function f , such that no two
elements of it can lie in the same 1-rectangle. The size of the largest fooling set
of matrix M is denoted by F(M).
Definition 4. A fooling set of the function f : X ×Y → {0,1} is the subset F ⊆
X×Y such that f (xi,yi) = 1 for all (xi,yi) ∈ F and for each distinct pair of inputs
(xi,yi) and (x j,y j) in F , either (xi,y j) 6= 1 or (x j,yi) 6= 1 or both.
Proposition 3. If a Boolean function f has a fooling set of size k, then C(M f )≥ k.
In particular log2 k ≤ N( f ).

For the proof of the proposition 3, the main point is: no 1-rectangle can cover
two elements of a fooling set at the same time.

The fractional cover number. We briefly review the definition of the frac-
tional cover number which is also used as a bound for rectangle covering number
of the matrix of a Boolean function. Let f be a fixed Boolean function, and let R
be a random 1-rectangle of f , drawn according to a distribution π . Define

γ(π) := min
{

P
R∼π

(
(x,y) ∈ R

)
| (x,y) ∈ supp f

}
.

The fractional cover number is C*(M f ) := min
π

1/γ(π), where the minimum is
taken over all distributions π on the set of 1-rectangles of f .

The following inequalities are well-known [57]. R1(M f ) denotes for the num-
ber of 1s in the largest 1-rectangle.

∣∣suppM f
∣∣

R1(M f )

F(M f )




≤ C*(M f )≤ C(M f )≤

(
1+ lnR1(M f )

)
C*(M f ).

4.2. From nondeterministic communication complexity to
extended formulation

Communication complexity is a powerful tool for proving lower bounds on differ-
ent computational problems. One surprising connection is between nondetermin-
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istic communication complexity and the extension complexity of polytopes. The
following evolved communication problem explains this connection (see [90] for
more details).

Let P to be a polytope and FV ( f ,v) to be the non-incidence face-vertex func-
tion. It means FV ( f ,v) = 1 if and only if v 6∈ f . It is easily seen that the
M(FV ( f ,v)) is the support of a slack matrix of the polytope P. The equivalent
representation of Yannakakis’ theorem (theorem 2) in the communication com-
plexity terminology is as follows:
Theorem 6. [102] If the polytope P has an extension Q of size r, then the nonde-
terministic communication complexity of FV ( f ,v) of P is at most log2 r.

Sketch of the proof. Let S be the face-vertex slack matrix of P, rows are indexed
by all the faces and columns are indexed by the vertices of P. Assume that S
admits a non-negative factorization of size r (as we mentioned in the remark 1,
all the slack matrices of a polytope have the same non-negative rank). Let F be
the number of faces of the polytope P and V be the number of vertices of it and
the factorization S = XY , such that XF×r and Yr×V are positive matrices known to
Alice and Bob.

If S f v > 0, it means
r

∑
j=1

X f j ·Yjv > 0. Since all the entries are non-negative,

there exists at least one index k ∈ {1, · · · ,r} such that X f k ·Ykv > 0. It is sufficient
if the prover sends this index k to Alice and Bob as the certificate. Alice and Bob
accept under the condition that their corresponding entries are positive and the
communication complexity is at most log2 r.

Theorem 6 reduces the problem of proving a lower bound for extension com-
plexity of the polytope P to proving a lower bound on nondeterministic commu-
nication complexity of FV ( f ,v).

4.2.1. Lower bounds on extension complexity of TSP polytopes

As it was explained earlier in 2.2.6, the first lower bound on the size of extended
formulation of TSP was given by Yannakakis [102]. The exponetial lower bound
was given only for symmetric formulation (see also [42, 43]). The problem was
left open in general case for 20 years. In 2012, Fiorini, et al. [28] showed that
the exponential lower bound holds also in the non-symmetric case. Their tech-
nique is to use a new connection between semidefinite programming reformu-
lations of LPs and a special case of communication complexity, in addition to
reducing set disjointedness. They first proved the lower bound of 2Ω(

√
n) and then

after Rothvoß result on the lower bound of the extension complexity of the per-
fect matching polytope, their lower bound was improved as below. We will not
provide the proof here and refer to the paper [28] for the details and more results
on other polytopes.
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Theorem 7. [28] For every n, xc(PT SP) = 2Ω(n).

4.3. Connection to rectangle graph

The (Lovász-Saks) rectangle graph, [61] G�(M) of the matrix M has as its vertices
the 1-entries of M, with two 1-entries being adjacent, if they span a 2×2 rectangle
containing a 0-entry of M. More precisely:

V (G�(M)) =
{
(k, `) ∈ [n]× [n] |Mk,` = 1

}

E(G�(M)) =
{
{(k, `),(k′, `′)}

∣∣Mk,`Mk′,`′ = 1 & Mk,`′Mk′,` = 0
}
.

Example 1. Here is an example of a matrix and its corresponding rectangle graph.




1 0 0

0 1 1

1 1 0

1 1 1




The rectangle graph connects communication complexity to graph theory in a
satisfactory way.

The inclusion-wise maximal 1-rectangles of M are precisely the vertex sets of
the inclusion-wise maximal independent sets of G�(M) because if we look at a
maximal 1-rectangle and corresponding vertices in the rectangle graph, no two
vertices can be adjacent. In particular, α(G�(M))– the size of largest independent
set in the graph– is equal to the size of the largest 1-rectangle of M. Also, as a
consequence, χ(G�(M)) = C(M). χ(G) stands for the chromatic number of G, the
minimum number of colors needed for coloring the vertices of G such that no two
adjacent vertices are in the same color.

Each maximal clique of the rectangle graph, also coincides with the maximal
fooling set in the matrix and thus ω(G�(M)) = F(M), where ω(G) stands for the
size of the maximum clique in G.

This relationship is mainly important because it eventuates the equivalence of
two main conjectures, one in communication complexity and the other in graph
coloring.
Conjecture 1. [61] There exists a constant c such that for every Boolean function
f ,

D( f )≤ (log rank(M f ))
c.

Conjecture 2. [26, 99] For every graph G,

χ(G)≤ explogO(1)(rank(M f )).

33



The equivalence of these two conjectures was expressed by Lovász and Saks
[61] who showed that every graph G is the induced subgraph of G�(J−Adj(G))
where J is the all one matrix. We are not concerned with these conjectures and
they are only mentioned here for their importance to computer science.
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5. NONDETERMINISTIC COMMUNICATION
COMPLEXITY OF RANDOM BOOLEAN FUNCTIONS

In this chapter, we discuss the motivation and results of the paper [84], reprinted
as the Appendix A of this thesis.

5.1. Motivation and previous works

The application of communication complexity grows every day in different fields
of computer science. The communication complexity model is so easy and clean
that can be applied to very diverse areas of computer science by providing lower
bounds on algorithms. In addition to combinatorial optimization which is dis-
cussed in this chapter, it has been used for finding the lower bounds for sublin-
ear algorithms, compressive sending [20], space-time trade-offs in data structures
[69, 82] , algorithmic game theory etc. [28, 89, 90].

Studying the communication complexity of random functions is particularly
interesting because it tells about the existence of hard functions in a model.

By random function we mean f : X ×Y → {0,1}, with |X | = |Y | = n. We
take f (x,y) to be independent Bernoulli random variables with f (x,y) = 1, with
probability p and f (x,y) = 0, with probability 1− p when p = p(n).

Most research on the communication complexity of random functions and their
properties, focus on the case that the probability p is constant and especially with
p = 1/2 [18]. Whereas in the application, most of the time we are dealing with
the functions with high density. For instance in combinatorial optimization, when
we consider the slack matrix of a polytope, the 0’s in a row correspond to the
vertices incident to the face and the number of them is very often a polylog of n.
It justifies the study of random functions with high density (p = p(n)→ 1 when
n→ ∞). Similar to the random graphs field, this probability function makes the
study more challenging and more interesting.

Properties of random matrices with Bernoulli distribution of entries has been
considered previously. Izhakian, Janson and Rhodes [39] have studied the asymp-
totic behavior of the triangular rank of random Boolean matrices. The triangular
rank is itself important in communication complexity, and is a lower bound to the
size of a fooling set. But the case p→ 0,1 is left as an open question in their
paper.

The size of the largest monochromatic rectangle in a random Bernoulli matrix
was determined in [80] when p is bounded away from 0 and 1, but their technique
fails for p→ 1.

The nondeterministic communication complexity of the clique-vs-stable set
problem on random graphs was studied in [11].

Apart from the communication complexity, the studied parameters in the pa-
pers coincide to other parameters in other areas. In combinatorics, the rectangle
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covering number is equivalent to the strong isometric dimension of graphs [33],
and has connections to extremal set theory and coding theory [36, 37]. The size
of the largest monochromatic rectangle has application in the analysis of gene
expression data [80], and formal concept analysis [17].

The other important connection, as we described in section 4.3, is the rectan-
gle graph with Lovász and Saks construction [61]. The 1-rectangles, covers and
fooling sets of a function f correspond to independent sets, colorings and cliques,
resp., in a graph constructed from the function. The random rectangle graph ob-
tained from the random function f has considerable differences with the other
studied random graph models. For example, in the usual random graph models
(Erdős-Renyi, uniform regular), the chromatic number is within a constant factor
of the independence ratio (i.e., the quotient independence number over the num-
ber of vertices), and, in particular, of the so-called fractional chromatic number
(which lies between the two). However, the corresponding statement does not
hold in the random graph model deduced by the random Boolean function.

5.2. Our results

We give tight upper and lower bounds for the nondeterministic communication
complexity and its most important lower bounds: the fooling set bound; the ratio
number of 1-entries over largest 1-rectangle; the fractional cover number. In this
chapter the function f often refers to the matrix MF .

We study the case when probability of a family of events En, n ∈ N tends to 1 as
n→ ∞, i.e. lim

n→∞
Pr(En) = 1. As is customary, we use the terminology “asymptot-

ically almost surely, a.a.s.,” to stand for “with probability tending to 1 as n tends
to infinity”.

Largest 1-rectangle

The size of the largest monochromatic rectangle in a matrix with independent
(Bernoulli) entries, has been studied due to its application in bioinformatics [58,
59] and the shape of the 1-rectangles was conjectured. The conjecture was proven
by Park and Szpankowski [80].

For the random Boolean function f : X ×Y → {0,1} with parameter p, they
proved if Ω(1) = p ≤ 1/e, then, a.a.s. the largest 1-rectangle consists of the 1-
entries in a single row or column and if p ≥ 1/e but not close to 1, then with
a := argmaxb∈{1,2,3,...} bpb, the largest 1-rectangle has a rows and pan columns,
or vice-versa.

We extended the theorem in [80] for the case that p tends to 0 or 1 quickly.
For K ⊆ X , we say the 1-rectangle of f generated by K is R := K× L with

L :=
{

y ∈ Y | ∀ x ∈ K : f (x,y) = 1
}

. The 1-rectangle generated by a subset L
of Y is defined similarly.
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Theorem 8. Let f : X ×Y → {0,1} be a random Boolean function with parame-
ter p = p(n).

(a) If 5/n≤ p≤ 1/e, then a.a.s., the largest 1-rectangle is generated by a single
row or column, and if p� (lnn)/n, its size is (1+o(1))pn.

(b) Define

a− := blog1/p ec,
a+ := dlog1/p ee, and

a := argmaxb∈{a−,a+} bpb = argmaxb∈{1,2,3,...} bpb.

(5.1)

There exists a constant λ0, such that if 1/e ≤ p ≤ 1− λ0/n, then, a.a.s., a
largest 1-rectangle is generated by a rows or columns and its size is (1+
o(1))apan.

The existence of 1-rectangles is rather easy, but proving no larger one exists is
fairly difficult. We proved the upper bounds using Chernoff concentration for dif-
ferent shapes of rectangles in the p range, particularly when p tends to 1 quickly.

Proof idea of case (a). We consider three types of rectangles in the matrix.
First, rectangles consisting exactly one row or column. Second, rectangles extend
over at least 2 rows and 2 columns and they are square. Third, rectangles extend
over at least 2 rows and 2 columns and they are not square.

First we proved that there exist a row (or a column) with pn 1s, using median
of binomial distribution and independence of rows. Then using Chernoff bound
we proved the probability that a row exists with at least (1+ε)pn is o(1). Finally
by counting argument and union bound we conclude the probability of existing a
1-rectangle of type two and three tends to 0.

Proof idea of case (b). For this part, we look at the rectangles of dimension
k× ` with k ≤ `. Using union bound, we prove every 1-rectangle must have
k ≤ n/λ

2/3 when λ is defined through p = 1− λ/n. Again using union bound and
Chernoff concentration, we establish the upper bound.

Fooling sets

An obvious lower bound to the fooling set size is the triangular rank, i.e., the size
of the largest triangular submatrix, after permuting rows and columns. Triangular
rank has been studied in [39] for random matrices with independent Bernoulli
entries with constant parameter p. But the case when p→ 0 or 1 is left as open
problem.

In our paper, we studied upper and lower bounds on the size of fooling set
pattern contained in a random matrix for different range of p. In particular, we
studied the cases p→ 0 or 1.

We obtained the upper bounds by first and second moment calculations on ran-
dom variable Xn,p,r which is the number of fooling set patterns of size r contained
in a random Boolean matrix of size n and parameter p.
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For the lower bounds, we used some results from random graph theory. First of
all, having a random Boolean function f : X×Y{0,1}, consider the bipartite graph
H f whose vertex set is the disjoint union of X and Y , and with E(H f ) = supp f .
For random f , this graph is an Erdős-Renyi random bipartite graph: each edge is
picked independently with probability p.

If F ⊆ X ×Y is a fooling set, then F is a matching in the corresponding bi-
partite graph H. i.e., F ⊆ E(H). Also F is a cross-free matching, i.e., for all
(x,y),(x′,y′) ∈ F , if (x,y) 6= (x′,y′) then (x,y′) /∈ E or (x′,y) /∈ E.

Denote by ν(H) the size of the largest matching in a bipartite graph H and let
ν
×(·) denote the size largest cross-free matching of a bipartite graph.

Let H be a bipartite graph, and m = {e1, . . . ,er} ⊆ E(H) a matching in H.
Define the graph G′ = G′(H,m) with vertex set V (G′) = {1, . . . ,r} and {k, `} ∈
E(G′) if ek, e` induce a K2,2 in H. Then ν

×(H) ≥ α(G′) holds: for any stable
set A of G′, the set {e j | j ∈ A} is a cross-free matching in H.

Our strategy for obtaining a large cross-free matching will be this: fix a large
matching m in H f , then find a large stable set in the corresponding random graph
G′n,p(m) := G′(H f ,m). This random graph behaves similarly to an Erdős-Renyi
random graph with |m| vertices and edge-probability p2.
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Figure 4. Upper and lower bounds on fooling set sizes. (δ := 1− p2)

Theorem 9. Let f : X ×Y → {0,1} be a random Boolean function with parame-
ter p = p(n). Define p̄ := 1− p and δ := 1− p2.

(a) For n−3/2 ≤ p = o(1/
√

n), a.a.s., we have

F( f ) = (1−o(1))ν(H f ).

(b) If pn− lnn→ ∞, then, a.a.s., F( f )≥ a(p2).
(c) If p�

√
(lnn)/n and p̄≥ n−o(1), then, a.a.s.,

F( f )≤ 2log1/δ
(pn2).

(d) If a ∈ ]0,4[ is a constant and p̄ = n−a, then F( f ) ≤ 4/a+1. If, in addition,
a< 1, then F( f ) = b4/ac+1
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Figure 4 summarizes the upper and lower bounds that are obtained from theo-
rem 9 and the methods hwich are used.

Fractional cover number and cover number

With the results obtained from the size of the fooling set in the random function
and the size of largest 1-rectangles, we can now bound the rectangle covering
number and the fractional covering number.

The case p≤ 1/2 is easy. Let f be a random Boolean function X ×Y → {0,1}
with parameter p.

If 1/n � p ≤ 1/2, we have C( f ) = (1− o(1))n. For p = o(1/
√

n), Theo-
rem 5.2(a) gives the lower bound based on the fooling set lower bound and for
1/e ≥ p� (lnn)/n, Theorem 8(a) provides R1( f ) = (1+ o(1))pn, a.a.s. and for
1/e ≤ p ≤ 1/2, the value of a in Theorem 8(b) is 1, so that R1( f ) = (1+ o(1))pn
there, too. We conclude that, a.a.s.,

C( f )≥ |supp f |
R1( f )

=
(1−o(1))pn2

(1−o(1))pn
= (1−o(1))n.

The case p > 1/2 is more challenging in techniques and more interesting in the
applications. Define p̄ := 1− p, and λ := p̄n.

Recall again the following inequalities:

|supp f |
R1( f )
F( f )



≤ C*( f )≤ C( f ) ≤

(∗)

(
1+ lnR1( f )

)
C*( f ). (5.3)

Lower bound. Using theorem 8(b), we can establish a lower bound on C*( f ).
With λ/n = p̄ = 1− p, we have a.a.s.,

|supp f |
R1( f )

≥ (1+o(1))pn2

(1+o(1))n/e ln(1/p)
= (1+o(1)) ep ln(1/p)n≥ (1−o(1)) epλ

(5.4)
For p̄ = o(1), this is asymptotic to eλ .

Upper bound. Then we gave upper bounds on C*( f ) on the fractional cover-
ing number by defining suitable distribution on 1-rectangles of f .
Theorem 10. Let 1/2 > p = 1− p̄ = 1− λ/n.

(a) If lnn� λ < n/2, then, a.a.s., (1−o(1)) peλ ≤ C*( f )≤ (1+o(1)) eλ

(b) If λ = Θ(lnn), then, a.a.s., C*( f ) = Θ(lnn).
(c) If 1� λ = o(lnn), then, a.a.s.,

(1−o(1)) λ ≤ C*( f )≤ (1+o(1)) emax
(

2λ ,
lnn

ln((lnn)/λ )

)

Finally, using inequality (∗) in (5.3), we prove the following upper bounds on
the rectangle covering number.
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Corollary 1. We have (1−o(1))λ ≤ C( f ), and:
(a) if lnn� λ = O(n/ lnn), then, a.a.s., C( f ) = O(λ lnn);
(b) if λ = Θ(lnn), then, a.a.s., C( f ) = O(ln2 n);

(c) if 1� λ = o(lnn), then, a.a.s., C( f ) = O
(

max
(

λ lnn,
ln2 n

ln((lnn)/λ )

))
.
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6. THE (MINIMUM) RANK OF TYPICAL FOOLING
SET MATRICES

In this chapter, we discuss the motivation and results of the paper [83], reprinted
in the Publication part of this thesis.

6.1. Motivation and previous works

In the section 5.2, we introduced fooling set as a lower bound for the rectangle
covering number of a matrix. So, one may be interested to know whether a large
fooling set is contained in a given matrix. However, identifying the large fooling
sets in a matrix, according to Lovász-Saks rectangle graph construction, is equiv-
alent to detecting large clicks in a graph. Deciding whether a matrix contains a
fooling set of a certain size is known to be NP-hard [94]. Therefore, finding an
upper bound on the size of the fooling set in terms of some computable properties
of the underlying matrix would be interesting.

A fooling set is known under different names in other fields of computer sci-
ence and mathematics. It is usually used to provide the lower bound on some
desired factors. Due to the diverse application of fooling set type lower bounds
in different areas, knowing a priori upper bound on the size of the fooling set can
show the usefulness of the method in advance.

In polytope theory and combinatorial optimization, the fooling set gives a
lower bound on the extension complexity of a polytope and the minimum size
of a linear program [27, 102].

In computational complexity, as we discussed before, the logarithm of the size
of a fooling set induces a lower bound on the communication complexity of a
function [54, 57, 60].

In graph theory, considering the matrix as the adjacency matrix of a bipartite
graph, the fooling set corresponds to a cross-free matching, which provides a
lower bound on the size of the biclique covering of a graph. A matching is cross-
free if no two matching edges induce a C4 (cycle of size 4) subgraph [16, 40].

Let f : X×Y →{0,1} be a function with the fooling set (x1,y1), · · · ,(xn,yn) ∈
X ×Y . A straightforward upper bound on the size of fooling sets due to Diet-
zfelinger et al. [18], states that no fooling set in a function f is larger than the
square of min

A
rankF, when the minimum ranges over all X×Y matrices A over the

field F with Ax,y = 0 if and only if f (x,y) = 0.
The proof follows from the fact that if B := A◦AT then

n≤ rankB≤ rankA2,

where ◦ is the entry-wise (Haramard) product.
In general the fooling set can be defined on the matrices with entries in the arbi-

trary field F (not Boolean entries) and actually in some applications it is important
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to consider the matrix in a general field [54].
For fields F with non-zero characteristics, the upper bound is asymptotically

tight [31], and for general fields, it is attained up to a multiplicative constant [30].

6.2. Our results

A natural question would be is the rank of a typical fooling set of size n, closer to
its trivial upper bound n or its lower bound

√
n? In this paper we tried to answer

this question. The question turns out to be surprisingly difficult.
A fooling-set pattern of size n is a matrix R with entries in {0,1} ⊆ F with

Rk,k = 1 for all k and Rk,`R`,k = 0 whenever k 6= `. We say that a fooling-set pattern

of size n has density p ∈ ]0,1], if it has exactly dp
(

n
2

)
e off-diagonal 1-entries.

In our paper, we gave partial results for a fooling-set pattern chosen at random
according to a sensible distribution. We studied the following distributions:
Q(n) denotes a fooling set pattern drawn uniformly at random from all fooling

set patterns of size n;
R(n, p) denotes a fooling set pattern drawn uniformly at random from all fooling

set patterns of size n with density p.
We allow that the density depends on the size of the matrix: p = p(n). As is
customary, we use the terminology “asymptotically almost surely, a.a.s.,” to stand
for “with probability tending to 1 as n tends to infinity”. σ(M) is the zero-nonzero
pattern of M, that is σ(M(i, j)) = 0 if and only if M(i, j) = 0 and σ(M(i, j)) = 1
otherwise.
Theorem 11. (a) For every field F, if p = O(1/n), then, a.a.s., the minimum

rank of a matrix with zero-nonzero pattern R(n, p) is Ω(n).
(b) Let F be a finite field and F := |F|. (We allow F to grow with n.) If

100max(1, ln lnF)/n ≤ p ≤ 1, then the minimum rank of a matrix over F
with zero-nonzero pattern R(n, p) is

Ω

( log(1/p)
log(1/p)+ log(F)

n
)
= Ω(n/ log(F)).

(c) For every field F, if p ∈ ]0,1] is a constant, then the minimum rank of a
matrix with zero-nonzero pattern R(n, p) is Ω(n). (The same is true for
zero-nonzero pattern Q(n).)

We used different techniques in the proofs of the three parts of the theorem and
here we give a brief sketch for each part. For the details we refer to the paper.

In part (a), we study the case that p tends to 0 quickly enough. The idea of
the proof comes from the results in random graph theory. We construct a graph G
with vertex set [n] from R(n, p) and there is an edge between vertices k and `
with k > `, if and only if Mk,` 6= 0. This construction gives the random graph
Gn,m,1/2. Using Theorem 1.4 in [32], this random graph behaves similarly to the
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Erdős-Rényi graph with q := p/2. Since Gn,p/2 has an independent set of size
Ω(n), Gn,m,1/2 will also have. Independent sets in G are just the lower-triangular
submatrices of R(n, p). Therefore in this case rank of the fooling set pattern is
lower bounded by Ω(n).

In part (b), we study the rank of a fooling set pattern R(n, p) when p tends to 0
slowly, and |F|= O(1). Consider the event:

“There is a matrix M over F with σ(M)=R(n, p), and rkM≤ r := n/(2000lnF).”
We calculate the probability of this event in the case:
1. M contains a dense sub-structure (tee-matrix) of rank rkM.
2. M contains a sparse sub-structure (tee-matrix) of rank rkM.
The sub-structure, tee-matrix, is dense if the Hamming weight of its support is

of size at least 15pr(n− r) and it is spars otherwise.
In the first case, using Chernoff-like bound, the probability of the event is

at most e−Ω(r) and in the second case, with counting argument in some steps,
we prove that the probability of this event tends to 0. Ultimately the rank of
every fooling set pattern with the density in the defined range lower bounds by
Ω(n/ log(F)).

In part (c), we study the rank of R(n, p) when p ∈ ]0,1] is a constant. In this
case, we apply a theorem of Ronyai, Babai, and Ganapathy [87] on the maxi-
mum number of zero-patterns of a family of polynomials for upper bounding the
number of all fooling set pattern matrices of rank at most r := ρn, when ρ < 1/2.
Theorem 12 (Ronyai-Babai-Ganapathy-2001). If f is an k-tuple of polynomials
in n variables over a field F with k ≥ n and each f j has degree at most d then, for
all m
∣∣∣∣
{

y ∈ {0,1}k
∣∣∣ |y| ≤ m and y = σ( f (u)) for some u ∈ Fn

}∣∣∣∣≤
(

n+md
n

)
.

In other words, the number of zero-nonzero patterns with Hamming weight at

most m is at most
(

n+md
n

)
.

Let M be a fooling set of size n and rank at most r. We factorize M to M = XY
with X ∈ Rn×r and Y ∈ Rr×n in a way that for Y :

There are three types of entries in Y : 0, 1 or ∗ (no restriction). In every column
there exists at most one 1 and in a column with 1, there is no ∗. First nonzero in
every row is 1 and there is at most one 1 in a row. All-zero rows, at the bottom.

This factorization is always possible using Gaussian elimination row opera-
tions. For details we refer to the paper.

Having this special factorization for M, next, we assign the variables Xi, j to
all entries of X and assign Yi, j, to all entries of Y which are ∗-type. In the next
step, using theorem 12, we upper-bound the number of zero-nonzero patterns of
the polynomials obtained in M. The number of variables are the total number
of Xi, j’s and Yi, j’s. Every polynomial assigned to the entries of M has degree at
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most 2 and the Hamming weight of M is at most m := p
(

n
2

)
. Finally, with upper

bounding the number of possible different Y ’s in the factorization, we conclude
the probability that a fooling set matrix with zero-nonzero pattern R(n, p) has rank
at most r is at most

(
n
r

)(
2rn− r2/2+2m

2rn− r2/2

)

((n
2

)

m

)
2m

−→ 0 (With ρ < 1/2 and r := ρn). (6.1)

The proof for the distribution Q(n) is easier. In fact for the uniform distribu-
tion, the total number of fooling set patterns is 3(

n
2) and it will be replaced in the

denominator of 6.1.
The bound in (b) does not give an Ω(n) lower bound for infinite fields, or for

large finite fields, e.g., GF(2n). We conjecture that the bound is still true:
Conjecture 3. For every field F and for all p = p(n), the minimum rank of a
fooling-set matrix with random zero-nonzero pattern R(n, p) is Ω(n).
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7. CONCLUSION

The linear program method plays an important role in solving optimization prob-
lems. In this setting, studying the methods for improving the running time of the
LP is crucial and in each problem studying the properties of the feasible space in
geometric point of view, polyhedral theory, seems inevitable.

Extended formulation is a method for describing the connection between ge-
ometric representation of the feasible space and the amount of the information it
contains. In other words, extension of a polytope is, in fact, a compressed way
of representing a polytope. That is, it provides the connection between linear
optimization and communication complexity.

Specifically, nondeterministic communication complexity is a powerful tool
for proving lower bounds on the extension complexity of polytopes. Finding a
suitable communication complexity problem corresponding to a polytope P and
proving a linear lower bound for the nondeterministic communication complexity
of it will rule out all the attempts for finding sub-exponential size extension Q of
P.

Studying the nondeterministic communication complexity and the parameters
related to it, as a rectangle covering number and the fooling set size, is particu-
larly important for showing the limitations of finding polynomial size extension
for a polytope associated to an optimization problem. Of these, the communi-
cation complexity of random functions is more interesting because it tells about
the existence of hard functions in a model. Most studies on the communication
complexity of random functions and their properties, focus on the case that the
probability p is constant [18]. Whereas in the application, very often we are deal-
ing with functions with high density. For instance in combinatorial optimization,
when we consider the slack matrix of a polytope, the 0’s in a row correspond to
the vertices incident to the face and the number of them is very often the polylog
of n. It justifies the study of random functions with high density (p = p(n)→ 1
when n→∞). Similar to the random graphs field, this probability function makes
the study more challenging and more interesting.

In our paper [84], we have focused on the random Boolean functions f :
X ×Y → {0,1}, with |X | = |Y | = n and density p = p(n). We gave tight up-
per and lower bounds for the nondeterministic communication complexity and its
important lower bounds: the fooling set bound, the ratio number of 1-entries over
largest 1-rectangle and the fractional cover number. The parameters we study are
of importance beyond Communication Complexity and its direct applications.

The fooling set is an important lower bound for the rectangle covering number
of a matrix. While, one may be interested to know whether a large fooling set
is contained in a given matrix, identifying the large fooling sets in a matrix is
a hard problem in itself. Therefore finding a priori upper bound on the size of
the fooling set in terms of some computable properties of the underlying matrix,
such as rank of the matrix, would be valuable. Regarding the typical minimum
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rank of a fooling-set matrix, we asked: Is the minimum rank of a matrix with that
zero-nonzero pattern over a field F closer to its lower bound

√
n or to its upper

bound n? We studied random patterns with a given density p, and proved an Ω(n)
bound for some. We have to leave open the case when p→ 0 slowly and F is a
large or infinite field. We conjecture that the minimum rank of a fooling set matrix
with random zero-nonzero pattern drawn uniformly at random from all fooling set
patterns of size n with density p is Ω(n).

Finally, we investigated the graph of the pedigree polytope. The pedigree poly-
tope is an extension of TSP (traveling salesman problem; the most extensively
studied problem in combinatorial optimization) polytopes with a nice combina-
torial structure. The graph of a polytope can be regarded as an abstract graph
and it reveals meaningful information about the properties of the polytope. We
proved the minimum degree of a vertex on the Pedigree polytope for n cities is
(1−o(1)) · (n−1)!/2 (for n→ ∞).
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1 Introduction

Communication Complexity lower bounds have found applications in areas as
diverse as sublinear algorithms, space-time trade-offs in data structures, com-
pressive sensing, and combinatorial optimization (cf., e.g., [30,11]). In combina-
torial optimization especially, there is a need to lower bound nondeterministic
communication complexity [33,20] .

Let X,Y be sets and f : X × Y → {0, 1} a function. In nondeterministic
communication, Alice gets an x ∈ X , Bob gets a y ∈ Y , and they both have
access to a bit string supplied by a prover. In a protocol, Alice sends one bit
to Bob; the decision whether to send 0 or 1 is based on her input x and the
bit string z given by the prover. Then Bob decides based on his input y, the
bit string z given by the prover, and the bit sent by Alice, whether to accept
(output 1) or reject (output 0). The protocol is successful, if, (1) regardless of
what the prover says, Bob never accepts if f(x, y) = 0, but (2) for every (x, y)
with f(x, y) = 1, there is a proof z with which Bob accepts. The nondeterministic
communication complexity is the smallest number ℓ of bits for which there is a
successful protocol with ℓ-bit proofs.

Formally, the following basic definitions are common:

– The support is the set of all 1-entries: supp f := {(x, y) | f(x, y) = 1};
– a 1-rectangle is a cartesian product of sets of inputs R = A×B ⊆ X×Y all

of which are 1-entries: A×B ⊆ supp f ;
– a cover (or 1-cover) is a set of 1-rectangles {R1 = A1×B1, . . . , Rk = Ak×Bk}

which together cover all 1-entries of f , i.e.,
⋃k
j=1 Rj = supp f ;



– the cover number C(f) of f is the smallest size of a 1-cover.

One can then define the nondeterministic communication complexity simply as
N(f) := log2 C(f) [23].

In combinatorial optimization, one wants to lower bound the nondeterminis-
tic communication complexity of functions which are defined based on relations
between feasible points and inequality constraints of the optimization problem
at hand: Alice has an inequality constraint, Bob has a feasible point, and they
should reject (answer 0) if the point satisfies the inequality with equality.

Consider, the following example (it describes the so-called permuthahedron).
Let k ≥ 3 be a positive integer.

– Let Y denote the permutations π of [k]—the feasible points.
– Let X denote the set of non-empty subsets U ( [k]; such an U corresponds

to an inequality constraint
∑
u∈U π(u) ≥ |U |(|U | + 1)/2.

Goemans [15] gave an Ω(log k) lower bound for the nondeterministic communi-
cation complexity of the corresponding function:

f(π, U) =

{
0, if

∑
u∈U π(u) = |U |(|U | + 1)/2;

1, otherwise, i.e.,
∑

u∈U π(u) > |U |(|U | + 1)/2.

For k = 3, see the following table. The rows are indexed by the set X , the
columns by the set Y .

123 132 213 231 312 321
{1} 0 0 1 1 1 1
{2} 1 1 0 1 0 1
{3} 1 1 1 0 1 0

{1, 2} 0 1 0 1 1 1
{1, 3} 1 0 1 0 1 1
{2, 3} 1 1 1 1 0 0

In this situation, the nondeterministic communication complexity lower bounds
the logarithm of the so-called extension complexity: the smallest number of lin-
ear inequalities which is needed to formulate the optimization problem. This
relationship goes back to Yannakakis’ 1991 paper [33], and has recently been
the focus of renewed attention [2,22] and a source of some breakthrough re-
sults [10,9]. Other questions remain infamously open, e.g., the nondeterministic
communication complexity of the minimum-spanning-tree function: For a fixed
number k, Bob has a tree with vertex set [k], Alice has one of a set of inequality
constraints (see [31] for the details), and they are supposed to answer 1, if the
tree does not satisfy the inequality constraint with equality.

In this paper, we focus on random functions, and we give tight upper and
lower bounds for the nondeterministic communication complexity and its most
important lower bounds: the fooling set bound; the ratio number of 1-entries
over largest 1-rectangle; the fractional cover number. For that, we fix |X | =
|Y | = n, and, we take f(x, y), (x, y) ∈ X × Y , to be independent Bernoulli



random variables with parameter p = p(n), i.e., f(x, y) = 1 with probability p
and f(x, y) = 0 with probability 1 − p.

In Communication Complexity, it is customary to determine these parame-
ters up to within a constant factor of the number of bits, but in applications, this
is often not accurate enough. E.g., the above question about the extension com-
plexity of the minimum-spanning-tree polytope asks where in the range between
(1 + o(1))2 logn bits and (1 + o(1))3 logn bits the nondeterministic communi-
cation complexity lies. (Here n should taken as |Y | = 2k − 2.) Therefore, in
our analyses, we focus on the constant factors in our communication complexity
bounds.

1.1 Relationship to related work

In core (Communication) Complexity Theory, random functions are usually used
for establishing that hard functions exist in the given model of computation.
In this spirit, some easy results about the (nondeterministic) communication
complexity of random functions and related parameters exist, with p a constant,
mostly p = 1/2 (e.g., the fooling set bound is determined in this setting in [8]).

In contrast to this, in applications, the density of the matrices is typically
close to 1, e.g., in combinatorial optimization, the number of 0s in a “row”
{y ∈ Y | f(x, y) = 0}, is very often polylog of n. This makes necessary to look at
these parameters in the spirit of the study of properties of random graph where
p = p(n) → 1 with n → ∞. In an analogy to the fields of random graphs, the
results become both considerably more interesting and also more difficult that
way.

The random parameters we analyze have been studied in other fields beside
Communication Complexity. Recently, Izhakian, Janson, and Rhodes [18] have
determined asymptotically the triangular rank of random Boolean matrices with
independent Bernoulli entries. The triangular rank is itself important in Com-
munication Complexity [27] (and its applications [24]), and it is a lower bound
to the size of a fooling set. In that paper, determining the behavior for p → 0, 1
is posed as an open problem.

The size of the largest monochromatic rectangle in a random Bernoulli matrix
was determined in [29] when p is bounded away from 0 and 1, but their technique
fails for p → 1.

The nondeterministic communication complexity of a the clique-vs-stable set
problem on random graphs was studied in [4].

The parameters we study in this paper are of importance beyond Communication
Complexity and its direct applications. In combinatorics, e.g., the cover number
coincides with strong isometric dimension of graphs [14], and has connections to
extremal set theory and Coding Theory [16,17].

The size of the largest monochromatic rectangle is of interest in the analysis
of gene expression data [29], and formal concept analysis [6].

Via a construction of Lovász and Saks [27], the 1-rectangles, covers, and fool-
ing sets of a function f correspond to stable sets, colorings, and cliques, resp.,



in a graph constructed from the function. Consequently, determining these pa-
rameters could be thought of as analyzing a certain type of random graphs.
This approach does not seem to be fruitful, as the probability distribution on
the set of graphs seems to have little in common with those studied in random
graph theory. Here is an important example for that. In the usual random graph
models (Erdős-Renyi, uniform regular), the chromatic number is within a con-
stant factor of the independence ratio (i.e., the quotient independence number
over number of vertices), and, in particular, of the fractional chromatic number
(which lies between the two). The corresponding statement (replace “chromatic
number” by “cover number”; “independence ratio” by “Hamming weight of f
divided by the size of the largest 1-rectangle”; “fractional chromatic number”
by “fractional cover number”) is false for random Boolean functions, as we will
see in Section 4.

This paper is organized as follows. We determine the size of the largest monochro-
matic rectangle in Section 2. Section 3 is dedicated to fooling sets: we give tight
upper and lower bounds. Finally, in Section 4 we give bounds for both the cov-
ering number and the fractional covering number.

1.2 Definitions

A Boolean function f : X × Y → {0, 1} can be viewed as a matrix whose rows
are indexed by X and the columns are indexed by Y . We will use the two
concepts interchangeably. In particular, for convenience, we speak of “row” x
and “column” y. We will always take n = |X | = |Y | without mentioning it.
Clearly, a random Boolean function f : X × Y → {0, 1} with parameter p is the
same thing as a random n × n matrix with independent Bernoulli entries with
parameter p.

We use the usual conventions for asymptotics: g ≪ h and g = o(h) is the
same thing. As usual, g = Ω(1) means that g is bounded away from 0. We
are interested in asymptotic statements, usually for n → ∞. A statement (i.e.,
a family of events En, n ∈ N) holds asymptotically almost surely, a.a.s., if its
probability tends to 1 as n → ∞ (more precisely, lim

n→∞
P(En) = 1).

2 Largest 1-rectangle

As mentioned in the introduction, driven by applications in bioinformatics,
the size of the largest monochromatic rectangle in a matrix with independent
(Bernoulli) entries, has been studied longer than one might expect. Analyz-
ing computational data, Lonardi, Szpankowski, and Yang [25,26] conjectured
the shape of the 1-rectangles. The conjecture was proven by Park and Sz-
pankowski [29]. Their proof can be formulated as follows: Let f : X×Y → {0, 1}
be a random Boolean function with parameter p.

– If Ω(1) = p ≤ 1/e, then, a.a.s., the largest 1-rectangle consists of the 1-entries
in a single row or column, and R1(f) = (1 + o(1))pn.



– If p ≥ 1/e but bounded away from 1, then with a := argmaxb∈{1,2,3,... } bp
b,

a.a.s. the largest 1-rectangle has a rows and pan columns, or vice-versa.

The existence of these rectangles is fairly obvious. Proving that no larger
ones exist requires some work. The problem with the union-bound based proof
in [29] is that it breaks down if p tends to 1 moderately quickly. In our proofs,
we work with strong tail bounds instead.

Our result extends the theorem in [29] for the case that p tends to 0 or 1
quickly.

For K ⊆ X , the 1-rectangle of f generated by K is R := K × L with

L :=
{
y ∈ Y | ∀ x ∈ K : f(x, y) = 1

}
.

The 1-rectangle generated by a subset L of Y is defined similarly.

Theorem 2.1. Let f : X × Y → {0, 1} be a random Boolean function with pa-
rameter p = p(n).

(a) If 5/n ≤ p ≤ 1/e, then a.a.s., the largest 1-rectangle is generated by a single
row or column, and if p ≫ (lnn)/n, its size is (1 + o(1))pn.

(b) Define
a− := ⌊log1/p e⌋,
a+ := ⌈log1/p e⌉, and

a := argmaxb∈{a−,a+} bp
b = argmaxb∈{1,2,3,... } bp

b.

(1)

There exists a constant λ0, such that if 1/e ≤ p ≤ 1 − λ0/n, then, a.a.s., a
largest 1-rectangle is generated by a rows or columns and its size is (1 +
o(1))apan.

The proof requires us to upper bound the sizes of square 1-rectangles, i.e.,
R = K × L with |K| = |L|. Sizes of square 1-rectangles have been studied,
too. Building on work in [7,6,29], it was settled in [32], for constant p. We need
results for p → 0, 1, but, fortunately, for our theorem, we only require weak
upper bounds.

For the proof of (a), we say that a 1-rectangle is bulky, if it extends over at
least 2 rows and also over at least 2 columns. We then proceed by considering
three types of rectangles:

1. those consisting of exactly one row or column (they give the bound in the
theorem);

2. square bulky rectangles;
3. bulky rectangles which are not square.

For the proof of (b), we also require an appropriate notion of “bulky”: here,
we say that a rectangle of dimensions k×ℓ is bulky if k ≤ ℓ. By again considering
square rectangles, we prove that a bulky rectangle must have k < n/λ

2/3. (We
always define λ through p = 1 − λ/n.) By exchanging the roles of rows and



columns, and multiplying the final probability estimate by 2, we only need to
consider 1-rectangles with at least as many columns as rows (i.e., bulky ones).
Following that strategy yields the statement of the theorem.

The complete proof is in Appendix A.

Remark 1. (a) If p ≥ 1/e, then

1/e2 ≤ p

e
≤ p · plog1/p e ≤ pa ≤ 1

p
· plog1/p e ≤ 1

pe
≤ 1/e, (2)

i.e., pa ≈ 1/e, more accurately pa = (1 − op→1(1))/e.
(b) With p = 1 − p̄ = 1 − λ/n, the following makes the range of R1(f) clearer:

Since p̄ ≤ ln(1/(1−p̄)) ≤ p̄+ p̄2 holds when p̄ ≤ 1 − 1/e, we have

1

ep̄
=

n

eλ
≤ p

n

λ
=
p

p̄
≤ 1

1 + p̄
· 1

p̄
≤ log1/p e ≤ 1

p̄
=
n

λ
(3)

Corollary 1. For p = 1 − λ
n with λ0 ≤ λ = o(n), we have R1(f) =

n2

eλ
+O(n).

See Appendix A for the proof.

3 Fooling sets

A fooling set is a subset F ⊆ X×Y with the following two properties: (1) for all
(x, y) ∈ F , f(x, y) = 1; and (2) and for all (x, y), (x′, y′) ∈ F , if (x, y) 6= (x′, y′)
then f(x, y′)f(x′, y) = 0. When f is viewed as a matrix, this means that, after
permuting rows and columns, F identifies the diagonal entries of a submatrix
which is 1 on the diagonal, and in every pair of opposite off-diagonal entries, at
least one is 0. We denote by F(f) the size of the largest fooling set of f . The
maximum size of a fooling set of a random Boolean function with p = 1/2 is easy
to determine (e.g., [8]).

An obvious lower bound to the fooling set size is the triangular rank, i.e.,
the size of the largest triangular submatrix, again after permuting rows and
columns. (There is also an upper bound for the fooling set size in terms of the
linear-algebraic rank, cf. [8,13], but since our random matrices have high rank,
we cannot use that here.) In a recent Proc. AMS paper, Izhakian, Janson, and
Rhodes [18] determined the triangular rank of a random matrix with independent
Bernoulli entries with constant parameter p. They left as an open problem to
determine the triangular rank in the case when p → 0 or 1, which is our setting.

Our constructions of fooling sets of random Boolean functions make use of
ingredients from random graph theory. First of all, consider the bipartite Hf

whose vertex set is the disjoint union of X and Y , and with E(Hf ) = supp f ⊆
X . For random f , this graph is an Erdős-Renyi random bipartite graph: each edge
is picked independently with probability p. Based on the following obvious fact,
we will use results about matchings in Erdős-Renyi random bipartite graphs:

Remark 2. Let F ⊆ X × Y . The following are equivalent.



(a) F is a fooling set.
(b) F satisfies the following two conditions:

– F is a matching, i.e., F ⊆ E(H);
– F is cross-free, i.e., for all (x, y), (x′, y′) ∈ F , if (x, y) 6= (x′, y′) then

(x, y′) /∈ E or (x′, y) /∈ E.

Secondly, fooling sets can be obtained from stable sets in an auxiliary graph:
For a random Boolean function f , this graph is an Erdős-Renyi random graphs,
for which results are available yielding good lower bounds.

Fig. 1 summarizes our upper and lower bounds: Upper bounds are above the
dotted lines; lower bounds are below the dotted lines; the range for p is between
the dotted lines. All upper bounds are by the 1st moment method.

We emphasize that the upper and lower bounds differ by at most a constant
factor. If p → 1 quickly enough, i.e., p̄ = 1 − p = n−a for a constant a, then the
upper bounds and lower bounds are even the same except for rounding.
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(1 − o(1))×matching 2nd moment
stable set in Gn,p2

Fig. 1. Upper and lower bounds on fooling set sizes. (δ := 1 − p2)

3.1 Statement of the theorem, and a glimpse of the proof

Denote by ν(H) the size of the largest matching in a bipartite graph H . For
q = q(m), denote by Gm,q the graph with vertex set {1, . . . ,m} in which each of
the

(
m
2

)
possible edges is chosen (independently) with probability q. Let a(q) =

am(q) be a function with the property that, a.a.s., every Erdős-Renyi random
graph on m vertices with edge-probability q has an independent set of size at
least am(q).

Theorem 3.1. Let f : X × Y → {0, 1} be a random Boolean function with pa-
rameter p = p(n). Define p̄ := 1 − p and δ := 1 − p2.

(a) For n−3/2 ≤ p = o(1/
√
n), a.a.s., we have

F(f) = (1 − o(1))ν(Hf ).



(b) If pn− lnn → ∞, then, a.a.s., F(f) ≥ a(p2).
(c) If p ≫

√
(lnn)/n and p̄ ≥ n−o(1), then, a.a.s.,

F(f) ≤ 2 log1/δ(pn
2).

(d) If a ∈ ]0, 4[ is a constant and p̄ = n−a, then F(f) ≤ 4/a + 1. If, in addition,
a < 1, then F(f) = ⌊4/a⌋ + 1

The proof is in Appendix B.
To obtain the bounds in Fig. 1, the following facts from random graph theory

are needed.

Theorem 3.2 (Matchings in Erdős-Renyi random bipartite graphs, cf.,
e.g., [19]). Let H = (X,Y,E) be a random bipartite graph with |X | = |Y | = n,
and edge probability p.

(a) If p ≫ 1/n, then, a.a.s., H has a matching of size (1 − o(1))n.
(b) If p = (ω(n) + lnn)/n for an ω which tends to ∞ arbitrarily slowly, then,

a.a.s, H has a matching of size n.

Theorem 3.3 (Stable sets in Erdős-Renyi random graphs). Let G =
([m], E) be a random graph with {u, v} ∈ E with edge probability q = q(m).

(a) E.g., [19]: Let ω = ω(m) tend to ∞ arbitrarily slowly. If ω/m ≤ q = 1−Ω(1),
then a.a.s., G has a stable set of size at least

2
ln(qm) − ln ln(qm)

ln(1 − q)
.

(b) Greedy stable set: If q = Ω(1), then, a.a.s., G has a stable set of size at least

ln(m)

ln(1 − q)
.

For the region p = Θ(1/
√
n), there is a corresponding theorem (e.g.,[5]). We

give here an argument about the expectation based on Turán’s theorem. Turán’s
theorem in the version for stable sets [1] states that in a graph with vertex set V ,
there exists a stable set of size at least

∑

v∈V

1

deg(v) + 1
,

where deg(v) denotes the degree of vertex v. For random graphs on vertex
set V = [m] with edge probability q = c/m for a constant c, using Jensen’s
inequality, we find that there expected size of the largest stable set is at least

E

(∑

v∈V

1

deg(v) + 1

)
=
∑

v∈V
E

(
1

deg(v) + 1

)

≥
∑

v∈V

1

E deg(v) + 1
=

2m

q(m− 1) + 1
≥ 2m

c+ 1
= Θ(m).



4 Fractional cover number and cover number

Armed with the fooling set and 1-rectangle-size lower bounds, we can now bound
the cover number and the fractional cover number. We start with the easy case
p ≤ 1/2.

Let f be a random Boolean function X × Y → {0, 1} with parameter p, as
usual. If 1/n ≪ p ≤ 1/2, we have C(f) = (1 − o(1))n. Indeed, for p = o(1/

√
n),

Theorem 3(a) gives the lower bound based on the fooling set lower bound. For
1/e ≥ p ≫ (lnn)/n), Theorem 2.1(a) yields R1(f) = (1 + o(1))pn, a.a.s., and
for 1/e ≤ p ≤ 1/2, the value of a in eqn. (1) of Theorem 2.1(b) is 1, so that
R1(f) = (1 + o(1))pn there, too. We conclude that, a.a.s.,

C(f) ≥ |supp f |
R1(f)

=
(1 − o(1))pn2

(1 − o(1))pn
= (1 − o(1))n.

As indicated in the introduction, the case p > 1/2 is more interesting, both from
the application point of view and from the point of view of the proof techniques.

For the remainder of this section, we assume that p > 1/2. Define p̄ := 1 − p,
and λ := p̄n.

4.1 The fractional cover number

We briefly review the definition of the fractional cover number. Let f be a fixed
Boolean function, and let R be a random 1-rectangle of f , drawn according to
a distribution π. Define

γ(π) := min
{

P
R∼π

(
(x, y) ∈ R

)
| (x, y) ∈ supp f

}
.

The fractional cover number is C*(f) := minπ 1/γ(π), where the minimum is
taken over all distributions π on the set of 1-rectangles of f .

The following inequalities are well-known [23].

|supp f |
R1(f)

F(f)



 ≤ C*(f) ≤ C(f) ≤

(∗)

(
1 + ln R1(f)

)
C*(f). (5)

Lower bound Theorem 2.1(b) allows us to lower bound C*(f). Let f be a
random Boolean function X × Y → {0, 1} with parameter p > 1/2. With λ/n =
p̄ = 1 − p, we have a.a.s.,

|supp f |
R1(f)

≥ (1 + o(1))pn2

(1 + o(1))n/e ln(1/p)
= (1 + o(1)) ep ln(1/p)n ≥ (1 − o(1)) epλ (6)

where the last inequality follows from p̄ ≤ p̄+ p̄2/2 + p̄3/3 + · · · = ln(1/(1 − p̄)).
For p̄ = o(1), this is asymptotic to eλ. It is worth noting that the first inequality
in (6) becomes an asymptotic equality if p̄ = o(1).



Upper bound We now give upper bounds on C*(f). To prove an upper bound b
on the fractional cover number for a fixed function f , we have to give a distri-
bution π on the 1-rectangles of f such that, if R is sampled according to π, we
have, for all (x, y) with f(x, y) = 1,

P((x, y) ∈ R) ≥ 1/b.

To prove an “a.a.s.” upper bound for a random f , we have to show that

P

(
∃(x, y) : P

(
(x, y) ∈ R | f & f(x, y) = 1

)
< 1/b

)
= o(1). (7)

Our random 1-rectangle R within the random Boolean function f is sampled
as follows. Let K be a random subset of X , by taking each x into K indepen-
dently, with probability q. Then let R := K × L be the 1-rectangle generated
(see p. 5) by the row-set K, i.e., L := {y | ∀x ∈ K : f(x, y) = 1}.

For y ∈ Y , let the random variable Zy count the number of x ∈ X with
f(x, y) = 0—in other words, the number of zeros in column y—and set Z :=
maxy∈Y Z. For (x, y) ∈ X×Y , conditioned on f and f(x, y) = 1, the probability
that (x, y) ∈ R equals

q(1 − q)Zy ≥ q(1 − q)Z ,

so that for every positive integer z, using 1/b = q(1 − q)z in (7),

P

(
∃(x, y) : P

(
(x, y) ∈ R | f & f(x, y) = 1

)
< q(1 − q)z

)
= P(Z > z). (8)

To obtain upper bounds on the fractional cover number, we give a.a.s. upper
bounds on Z, and choose q accordingly.

Theorem 4.1. Let 1/2 > p = 1 − p̄ = 1 − λ/n.

(a) If lnn ≪ λ < n/2, then, a.a.s., (1 − o(1)) peλ ≤ C*(f) ≤ (1 + o(1)) eλ
(b) If λ = Θ(lnn), then, a.a.s., C*(f) = Θ(lnn).
(c) If 1 ≪ λ = o(lnn), then, a.a.s.,

(1 − o(1)) λ ≤ C*(f) ≤ (1 + o(1)) emax
(
2λ,

lnn

ln((lnn)/λ)

)

To summarize, we can determine the fractional cover number accurately in the
region lnn ≪ λ ≪ n. For λ = Θ(lnn) and for λ = Θ(n), we can determine
C*(f) up to a constant. However, for λ = o(lnn), there is a large gap between
our upper and lower bounds.

Proof. The lower bounds follow from the discussion above.
Proof of the upper bound in (a). For every constant t > 0, let

ψ(t) := 1/
(
(1 + t) ln(1 + t) − t

)
.



With

h(t) = h(t, n) :=
λ

ψ(t) lnn
,

using the a standard Chernoff estimate (Theorem 2.1, Eqn.(2.5) in [19]) we find
that

P
(
Z1 ≥ (1 + t)λ

)
≤ e−λ/ψ(t) ≤ e−h(t)n,

so that, by the union bound,

P
(
Z ≥ (1 + t)λ

)
≤ e−h(t). (10)

For every fixed t > 0, h(t) tends to infinity with n, so that the RHS in (10)
is o(1). Using that in (8), we obtain

P

(
∃(x, y) : P

(
(x, y) ∈ R | f & f(x, y) = 1

)
< q(1−q)(1+t)λ

)
= P(Z > (1+t)λ) = o(1),

and, taking q := 1
(1+t)λ , we obtain, a.a.s.,

C*(f) ≤ 1

q(1 − q)(1+t)λ
≤ 1 + t

1 + 1
(1+t)λ

eλ,

where we used (1−ε)k ≥ (1−kε2)e−kε for ε < 1. Since this is true for every t > 0,
we conclude that, a.a.s., C*(f) ≤ (1 − o(1))eλ.

Proof of the upper bounds in (b), (c). Here we use a slightly different Chernoff
bound (Lemma 13 in the appendix).

For (b), suppose that λ ≤ C lnn for a constant C > 1. Using Lemma 13 with
α = e2C lnn, we obtain

P
(
Z1 ≥ e2C lnn

)
= O

(
1/

√
lnn
)
e−λ

( eC lnn

e2C lnn

)α
= O

(
1/

√
lnn
)
e− lnn.

and thus
P
(
Z ≥ e2C lnn

)
= o(1).

We conclude similarly as above: with q := 1
e2C lnn we obtain, a.a.s., C*(f) ≤

e3C lnn.
Finally, for (c), if λ = o(lnn), let ε > 0 be a constant, and use Lemma 13

again, with

α := max

(
2λ,

(1 + ε) lnn

ln
(

lnn
eλ

)
)
.

We find that
P
(
Z1 ≥ α

)
= o
(
e−α ln(α/eλ)

)
,

and the usual calculation (Appendix C.1) shows that α ln(α/eλ) ≥ lnn, which
implies

P
(
Z ≥ α

)
= o(1).



Conclude similarly as above, with q := 1
α , we obtain, a.a.s.,

C*(f) ≤ eα = emax

(
2λ, (1 + ε)

lnn

ln
(

lnn
eλ

)
)
.

One obtains the statement in the theorem by letting ε tend to 0; the e-factor in
the denominator of the ln of the denominator in α is irrelevant as n → ∞.

The cover number Inequality (∗) in (5) gives us corresponding upper bounds
on the cover number.

Corollary 2. We have (1 − o(1))λ ≤ C(f), and:

(a) if lnn ≪ λ = O(n/ lnn), then, a.a.s., C(f) = O(λ lnn);
(b) if λ = Θ(lnn), then, a.a.s., C(f) = O(ln2 n);

(c) if 1 ≪ λ = o(lnn), then, a.a.s., C(f) = O
(
max

(
λ lnn,

ln2 n

ln((lnn)/λ)

))
.

⊓⊔

4.2 Binary-Logarithm of the number of distinct rows, and the ratio
C / C*

When we view f as a matrix, the binary logarithm of the number of distinct
rows is a lower bound on the cover number of f [23]. We have the following.

Proposition 1.

(a) If 1/2 ≥ p̄ = Ω(1/n), then, a.a.s., the 2-Log lower bound on C(f) is (1 −
o(1)) log2 n.

(b) If p̄ = n−γ for 1 < γ ≤ 3/2, then a.a.s., the 2-Log lower bound on C(f) is
(1 − o(1))(2 − γ) log2 n.

Proof. Directly from the following Lemma 1 about the number of distinct rows,
with λ = n1−γ .

Lemma 1.

(a) If 1/2 ≥ p̄ = Ω(1/n), then, a.a.s., f has Θ(n) distinct non-zero rows.
(b) With p̄ = λ/n, if n−1/2 ≤ λ ≤ 1/2, then, a.a.s., f has Ω(λn) distinct non-zero

rows.

(The constants in the big-Omegas are absolute.)

For the sake of completeness, we sketch the proof in Appendix C.3.

Erdős-Renyi random graphs have the property that the chromatic number is
within a small constant factor from the lower bound one obtains from the inde-
pendence ratio. For the cover number of Boolean functions, this is not the case.
Indeed, Theorem 4.1(c), together with Proposition 1, shows that, a.a.s.,

C(f)

C*(f)
≥ (1 + o(1))

log2 n
lnn

ln
(

ln n
λ

) = Ω

(
ln
( lnn

λ

))
,



which is Ω(ln lnn) if λ = lno(1) n.
This gap is more pronounced in the (not quite as interesting) situation when

λ = o(1). Consider, e.g., λ = n−ε, for some ε = ε(n) = o(1/ ln lnn), say. Similarly
to the proofs of Theorem 4.1, we obtain that C*(f) ≤ emax(10, 2/ε). (The
max-term comes from the somewhat arbitrary upper bound Z ≤ max(10, 2/ε).)
For the Log-2 lower bound on the cover number, we have (1 − ε) log2 n, by
Proposition 1, and thus

C(f)

C*(f)
= Ω(ε lnn).
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J., Pellegrini, M. (eds.) The Seventh European Conference on Combinatorics,
Graph Theory and Applications. CRM series, vol. 16, pp. 383–390. CRM (2013)

14. Froncek, D., Jerebic, J., Klavzar, S., Kovár, P.: Strong isometric dimension, biclique
coverings, and sperner’s theorem. Combinatorics, Probability & Computing 16(2),
271–275 (2007), http://dx.doi.org/10.1017/S0963548306007711

15. Goemans, M.X.: Smallest compact formulation for the permutahedron. Mathemat-
ical Programming 153(1), 5–11 (2015)

16. Hajiabolhassan, H., Moazami, F.: Secure frameproof code through biclique cover.
Discrete Mathematics & Theoretical Computer Science 14(2), 261–270 (2012),
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2131/4075

17. Hajiabolhassan, H., Moazami, F.: Some new bounds for cover-free families through
biclique covers. Discrete Mathematics 312(24), 3626–3635 (2012)

18. Izhakian, Z., Janson, S., Rhodes, J.: Superboolean rank and the size of the largest
triangular submatrix of a random matrix. Proceedings of the American Mathe-
matical Society 143(1), 407–418 (2015)

19. Janson, S.,  Luczak, T., Rucinski, A.: Random graphs. Wiley-Interscience Series in
Discrete Mathematics and Optimization, Wiley-Interscience, New York (2000)

20. Kaibel, V.: Extended formulations in Combinatorial Optimization. Op-
tima – Mathematical Optimization Society Newsletter 85, 2–7 (04 2011),
www.mathopt.org/Optima-Issues/optima85.pdf

21. Karp, R.M., Sipser, M.: Maximum matchings in sparse random graphs. In: FOCS.
pp. 364–375 (1981)

22. Klauck, H., Lee, T., Theis, D.O., Thomas, R.R.: Limitations of convex program-
ming: lower bounds on extended formulations and factorization ranks (dagstuhl
seminar 15082). Dagstuhl Reports 5(2), 109–127 (2015)

23. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, Cambridge (1997)

24. Lee, T., Theis, D.: Support based bounds for positive semidefinite rank. Tech. Rep.
arXiv:1203.3961, arXiv (2012)

25. Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections.
In: Combinatorial Pattern Matching. pp. 102–116. Springer (2004)

26. Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections.
Theoretical Computer Science 368(3), 217–230 (2006)

27. Lovás, L., Saks, M.: Communication complexity and combinatorial lattice theory.
Journal of Computer and System Sciences 47, 322–349 (1993)

28. Mitzenmacher, M., Upfal, E.: Probability and Computing — Randomized Algo-
rithms and Probabilistic Analysis. Cambridge (2006)

29. Park, G., Szpankowski, W.: Analysis of biclusters with applications to gene expres-
sion data. In: International Conference on Analysis of Algorithms DMTCS proc.
AD. vol. 267, p. 274 (2005)



30. Roughgarden, T.: Communication complexity (for algorithm designers). arXiv
preprint p. arXiv:1509.06257 (2015)

31. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency., Algorithms
and Combinatorics, vol. 24. Springer-Verlag, Berlin (2003)

32. Sun, X., Nobel, A.B.: On the size and recovery of submatrices of ones in a random
binary matrix. J. Mach. Learn. Res 9, 2431–2453 (2008)

33. Yannakakis, M.: Expressing combinatorial optimization problems by
linear programs. J. Comput. System Sci. 43(3), 441–466 (1991),
http://dx.doi.org/10.1016/0022-0000(91)90024-Y

A Proof of Theorem 2.1

We will assume, for simplicity, that X = Y = [n].

A.1 Small p: Proof of Theorem 2.1 (a)

We say that a rectangle is bulky, if it extends over at least 2 rows and also over at
least 2 columns. The proof of Theorem 2.1 proceeds by considering three types
of rectangles:

1. those consisting of exactly one row or column (they give the bound in the
theorem);

2. square bulky rectangles;
3. bulky rectangles which are not square.

Let us start with the easiest type (1). The size of such a rectangle is the
number of 1s in the chosen row.

Lemma 2. For all p, n, a.a.s., there exists a row in f containing at least pn 1s.
If p ≫ (lnn)/n, for every constant ε ∈ ]0, 1], a.a.s., no row or column has more
than (1 + ε)pn 1s.

Proof. For the first statement, note that the probability that number of 1s in a
fixed row is less than pn is at most 1/2 (median of a binomial distribution). Since
the rows are independent, the probability that all rows have fewer than pn 1s is
at most 2−n.

For the second statement, we use an easy Chernoff-type bound (Theorem
4.4(2) in [28]). Denote by X the number of 1s in a fixed row of f . Then

P(X ≥ (1 + ε)pn) ≤ e−ε2pn/3 ≤ e−2 lnn = n−2,

where the last inequality holds for large enough n, because pn ≫ lnn implies
pn > 6ε−2 lnn for n sufficiently large. Hence, the probability that a row (or a
column) exists which has at least (1 + ε)pn 1s is o(1).

We now deal with rectangles of type (2).

Lemma 3. If p ≥ 5/n, then, a.a.s., there is no square 1-rectangle of size
√
pn×√

pn.



Proof. We abbreviate κ := pn. By the union bound, for the probability q = q(n)
that there exists a 1-rectangle of size

√
κ× √

κ, we have

q ≤
(
n√
κ

)2

pκ ≤
(
e2n

p

)√
κ

pκ

Applying ln, we find

ln q ≤ √
κ lnn+2

√
κ+

√
κ ln(1/p)−κ ln(1/p) =

√
κ
(
lnn+2−

(√
κ−1

)
ln(1/p)

)
.

(11)
Now we distinguish cases. If (2 lnn)2/n ≤ p ≤ 1/e, then

√
κ ≥ 2 lnn, and hence

we can bound the expression in the parentheses in (11) as follows:

lnn+ 2 −
(√
κ− 1

)
ln(1/p) ≤ lnn+ 2 − 2 lnn+ 1 ≤ − lnn,

for all large enough n. Hence, q → 0 in this region. If, on the other hand,
5/n ≤ p ≤ (2 lnn)2/n, then

ln q ≤
√

5
(
lnn+ 2 −

(√
5 − 1

)(
lnn− 2 ln(2 lnn)

))

≤ −
√

5
(√

5 − 2
)
lnn+O(ln lnn) = −Ω(lnn).

Hence, q → 0 in this region, too, which completes the proof of the lemma.

Finally, we come to rectangles of type (3). Consider the probability, ̺, that
f contains a bulky 1-rectangle of size s. By Lemma 3, if such a 1-rectangle has
dimensions a × b, we must have a <

√
pn or b <

√
pn, or else ̺ = o(1). We

have ̺ ≤ 2̺′, where ̺′ is the probability that f contains a 1-rectangle of size s
consisting of at least as many columns than rows. For ̺′, we need to consider
only 1-rectangles with a <

√
pn. Moreover, increasing b if necessary, w.l.o.g., we

may restrict to rectangles generated by a row-set of size a, with 2 ≤ a ≤ n (the
LB 2 comes from the condition that the rectangle be bulky).

Lemma 4. With κ = pn, if 5 ≤ κ = O(polylog n), then, a.a.s., there is no bulky
rectangle of size at least κ.

Proof. By the remarks above, we have to bound the probability that there exists
a row-set of size a ∈ {2, . . . ,

√
κ} which generates a 1-rectangle of size at least

κ/a.
Firstly, for a given set K of a rows, we bound the probability that the rect-

angle it generates has size at least pn. Denote by S the number of columns in
the rectangle generated by K. This is a Bin(n, pa) r.v. and we find that

P(a · b ≥ κ) = P(S ≥ κ/a) ≤
(
n

κ/a

)
pκ =

(
n

κ/a

)(κ
n

)κ
.

Secondly, we sum over all sets K of cardinality a, and compute

(
n

a

)(
n

κ/a

)
pκ(1 − pa)n−κ/a ≤ na+κ/a−κ+κ logn κ = n−

(
κ(1−1/a)−a−o(κ)

)
,



where κ logn κ = o(κ) follows from κ = O(polylog n).

Now, because a <
√
κ, we have that the exponent on 1/n is κ(1−1/a)−o(κ) ≥

κ/3, as a ≥ 2. Finally, summing over all a, we obtain, as an upper bound for
the probability that one of these rectangles has size κ or larger, the expression
n−(κ/3−1) which is o(1), as κ ≥ 5.

For the remaining case, we will need the following numerical fact, whose proof
we leave to the reader.

Lemma 5. There exists an ε > 0 such that, for all p ∈ ]1/8, 1/e] and a ∈ {2, 3},
(
apa−2

)p/a(
1 − pa

1 − p/a

)1−p/a
≤ 1 − ε. ⊓⊔

Now we deal with bulky rectangles.

Lemma 6. With κ := pn, if ln4 n ≤ κ ≤ n/e, then, a.a.s., there is no bulky
rectangle of size at least κ.

Proof. By the remarks above Lemma 4, we have to bound the probability that
there exists a row-set of size a ∈ {2, . . . ,

√
κ} which generates a 1-rectangle of

size at least κ/a.

For 2 ≤ a <
√
κ, let Xa count the number of columns y with f(x, y) = 1 for

x = 1, . . . , a. We are going to show that

P :=

√
κ∑

a=2

(
n

a

)
P
(
Xa ≥ κ/a

)
= o(1).

The r.v. Xa has Bin(n, pa) distribution. We compute

P
(
Xa ≥ κ/a

)
≤
(
n
κ/a

)
(pa)κ/a ≤

(
en
κ/a

)κ/a
(pa)κ/a =

((
(ea)1/(a−1)p

)κ/a)a−1

.

(12)

Now, there exists an constant ̺ < 1 such that

(ea)1/(a−1) ≤
{

8̺, for all a ≥ 2, and

e̺, for a ≥ 4.
(13)

Consequently, we distinguish two cases:

(i) p ≤ 1/8 and

(ii) 1/8 < p ≤ 1/e.



Case (i): p ≤ 1/8. In this case, we compute

P =

√
κ∑

a=2

(
n

a

)
P
(
Xa ≥ κ/a

)

≤
√
κ∑

a=2

(
n

a

)((
(ea)1/(a−1)p

)κ/a)a−1

[by (12)]

≤
√
κ∑

a=2

(
n

a

)(
̺κ/a

)a−1

[by (13)]

≤
√
κ∑

a=2

(
n

a

)(
̺

√
κ
)a−1

[since a ≤ √
κ and ̺ < 1]

= ̺
√
κ

√
κ∑

a=2

(
n

a

)(
̺

√
κ
)a−2

≤ ̺
√
κ n2

√
κ−2∑

a=0

(
n− 2

a

)(
̺

√
κ
)a

[replacing a a − 2]

≤ ̺
√
κ n2 (1 + ̺

√
κ)n−2 [Binomial theorem]

≤ ̺
√
κ n2 en̺

√
κ

≤ ̺
√
κ n2 en̺

ln2 n

[because p ≥ (ln4 n)/n and ̺ < 1]

= o(1) [because ̺ = 1 − Ω(1).]

Case (ii): 1/8 < p ≤ 1/e. In this case, by (13), the same calculation as in the
p < 1/8-case works if the sum is started with a = 4. For the first two terms of the
sum, a = 2, 3, we use a Chernoff bound on Xa, which gives us (e.g., Eqn. (2.4)
in [19])

P
(
Xa ≥ κ/a

)
≤
((

apa−2

)p/a(
1 − pa

1 − p/a

)1−p/a)n
. (14)

Using Lemma 5, we conclude

P =

√
κ∑

a=2

(
n

a

)
P
(
Xa ≥ κ/a

)

=

(
n

2

)
P
(
X2 ≥ κ/2

)
+

(
n

3

)
P
(
X3 ≥ κ/3

)
+

√
κ∑

a=4

(
n

a

)
P
(
Xa ≥ κ/a

)

= o(1) + o(1) + o(1),

where the first two “o(1)”s follow from (14) and Lemma 5, and the third is the
same calculation as in the previous case.



This concludes the proof of Theorem 2.1(a).

A.2 Large p: Proof of Theorem 2.1(b)

Now we prove the part of Theorem 2.1 about p ≥ 1/e. Again, we first prove a
statement about square rectangles.

Lemma 7. For every ε > 0 there exists a constant λ0 such that, if n ≥ p̄n =
λ ≥ λ0, then, a.a.s., there is no square 1-rectangle of size

n

λ1−ε × n

λ1−ε

Proof. This is a direct union bound computation. With b := n
λ1−ε , the probability

that such a 1-rectangle exists is at most

(
n

b

)2
pb

2

=

(
n

b

)2
(1 − p̄)b

2 ≤ eb(2 ln(en/b)−λb/n) = eb·Ab ,

where

Ab = 2 ln(en/b) − λb/n

= 2 ln
(
e λ1−ε)− λε

≤ −1,

where the last inequality holds if λ ≥ λ0 and λ0 is large enough. The claim
follows because b → ∞.

As above, we need the notion of a “bulky” rectangle: Here, we say that a
rectangle of dimensions k× ℓ is bulky, if k ≤ ℓ. By Lemma 7, in particular, a.a.s.,
a bulky rectangle must have k < n/λ

2/3. Again, by exchanging the roles of rows
and columns, and multiplying the final probability estimate by 2, we only need
to consider 1-rectangles with at least as many columns as rows (i.e., bulky ones).

Proof (Proof of Theorem 2.1(b)). For every b ∈ [n], denote by Xb the number
of columns of the 1-rectangle generated by the row set {1, . . . , b}—a random
variable with Bin(n, pb) distribution. We prove that, for every 1 < u < 2,

n/λ
2/3∑

b=1

(
n

b

)
P(bXb ≥ u apan) = o(1), (15)

which, together with Lemma 7, proves Theorem 2.1(b).

We split the proof into two lemmas, dealing with the cases b ≤ log1/p
e and

b ≥ log1/p e, resp., stated below. Establishing these lemmas completes the proof
of Theorem 2.1(b).



Lemma 8. For every u ∈ ]1, 2[ there exists a constant λ0 ≥ 1 such that, for
every p̄ ≥ λ0/n, and for every 1 ≤ b ≤ log1/p e, we have

(
n

b

)
P
(
Xb ≥ u

a

b
pan

)
= ou(1/n).

Lemma 9. For every u ∈ ]1, 2[ there exists a constant λ0 such that, if p̄n = λ ≥
λ0, and log1/p

e ≤ b ≤ n/λ3/2, then
(
n

b

)
P
(
Xb ≥ u

a

b
pan

)
= ou(1/n).

Proof (Proof of Lemma 8). Define

δ := min

(
u
apa

bpb
− 1, 1

)
.

Note that δ ≥ u − 1 > 0 by the definition of a in (1). The “1” on the RHS
of the minimum is somewhat arbitrary: the particular version of the Chernoff
inequality which we refer to, [28, Thm 4.4-2], requires δ ≤ 1. Using this Chernoff
bound in

P(Xb ≥ u apan/b) ≤ P(Xb ≥ (1 + δ)EXb) ≤ e−δ2 EXb/3,

and the inequality
(
n
b

)
≤ (en/b)b, we estimate

ln

((
n

b

)
P
(
Xb ≥ u

a

b
pan

))
≤ b ln

(en
b

)
− δ2pbn/3

≤ n

(
b

n
ln
(en
b

)
− δ2

3e

)
[since b ≤ log1/p e]. (∗)

For any real b ∈ [1, log1/p
e], denote by Ab the term inside the parentheses in (∗).

Since b 7→ Ab is nondecreasing on [1, n], we have, for every b ∈ [1, log1/p e],

Ab ≤ Alog1/p e

≤ A1/p̄ [A· nondecreasing and log1/p e ≤ 1

p̄
≤ n, by (3)]

≤ An/λ0
[A· nondecreasing and 1/p̄ ≤ n/λ0 ≤ n]

=
ln(eλ0)

λ0
− δ2

3e

≤ ln(e2λ0)

λ0
− (u− 1)2

3e
. [as δ ≥ u − 1.]

Hence, for sufficiently large λ0, depending only on u, we have, for all b ∈
[1, log1/p

e],
Ab = −Ωu(1),

so that
P(Xb ≥ apan/b) ≤ e−nAb = e−Ωu(n) = ou(1/n)

which concludes the proof of the lemma.



Proof (Proof of Lemma 9). By Lemma 7, we already know that, if a bulky 1-
rectangles generated by b rows exists with non-o(1) probability, we must have
b < n/λ

2/3.

Define δ as follows, 0 < u− 1 ≤ δ := (u− 1)ap
a

bpb ≤ uap
a

bpb − 1, and let

ε :=

{
(u− 1)2/3, if δ ≤ 3/2;

ln 5/2 − 1 + 2/5, otherwise.

We do the case distinction because we use two slightly different versions of
Chernoff in our estimate of

̺ := P
(
Xb ≥ u

a

b
pan

)
.

If δ ≤ 3/2, then

̺ ≤ P
(
Xb ≥ (1 + δ)EXb

)

≤ e−δ2pbn/3 [Chernoff, e.g., [19, Cor. 2.3]]

≤ e−(u−1) (u−1) a
b p

an/3 [definition of δ, and δ ≥ u − 1]

= e−ε a
b p

an.

If, on the other hand, δ > 3/2, then

u
a

b
pan = u

apa

bpb
· EXb ≥ (δ + 1) · EXb ≥ 5

2 · EXb,

and we have, by Eqn. (2.10) in [19, Cor. 2.4],

̺ ≤ e−ε a
b p

an.

In both cases, we conclude

ln

((
n

b

)
P
(
Xb ≥ u

a

b
pan

))

≤ b ln(en/b) − ε
a

b
pan

≤ b ln(en/b) − ε
an

e2b
[pa ≥ 1/e2 by (2)]

≤ b ln(en/b) − ε
n2

2e3λb
[a ≥ ⌊n/eλ⌋ by (3), & ⌊n/eλ⌋ ≥ n/2eλ as λ ≤ n/e]

≤ b ln(e2λ) − ε
n2

2e3λb
[as b ≥ log1/p e ≥ n/eλ, by (3)]

≤ n

λ2/3
ln(e2λ) − ε

2e3
n

λ1/3
[as b ≤ n/(

√
λ ln λ)]

=
n

λ1/3

(
− ε

2e3
+ oλ→∞(1)

)
.



Hence, if λ is at least a large enough constant, λ0, then
(
n

b

)
P
(
Xb ≥ u

a

b
pan

)
= e−Ωu(n2/3) = o(1/n),

and the lemma is proven.

A.3 Proof of Corollary 1

Proof (Proof of the corollary from Theorem 2.1). For the given p = 1 − p̄, if
1/e = pa, we have

apa = (1 +O(p̄))
log1/p e

e
=

1 +O(p̄)

e ln 1
1−p̄

=
1 +O(p̄)

e (p̄+ p̄2/2 + p̄3/3 + . . .)
=
(∗)

1 +O(p̄)

ep̄
=

1

ep̄
+O(1) =

n

eλ
+O(1),

where equation (∗) uses p̄ = o(1). Multiplying by n and invoking Theorem 2.1(b),
we obtain the desired bound.

B Proof of Theorem 3.1

The proof of Theorem 3.1 is extends over the following three subsections. We
first treat upper bounds based on the 1st moment method, then we make the
2nd moment calculation (for the case when p → 1 quickly), and finally we show
how to obtain fooling sets by combining a matching in random bipartite graphs
and a stable set in a random (not bipartite) graph.

B.1 Upper bounds: The number of fooling sets of size r

Let the random variable X = Xr = Xr,n,p count the number of fooling sets of
size r in f . For a set F ⊆ [n] × [n], denote by AF the event that F is a fooling
set of f . We have

Xr =
∑

F

I[AF ], (16)

where the sum ranges over all F of the form F = {(k1, ℓ1), . . . , (kr, ℓr)}, with all

the kj ’s distinct, and all the ℓj ’s distinct. There are r!
(
n
r

)2
of these sets F , and

hence

EXr = r!

(
n

r

)2
pr δ

(r
2)
.

Elementary calculus shows that, for fixed r ≥ 2, p 7→ r!
(
n
r

)2
pr δ

(r
2)

is increas-
ing on [0, 1/

√
r] and decreasing on [1/

√
r, 1] (see the proof of the (a)-part of

Lemma 10). The following lemma describes for which values of r the expecta-
tion EXr tends to 0 or infinity, resp., in the relevant range of p.



Lemma 10. (a) If e/n ≤ p ≤ n−1/2
√

lnn, then EXn → ∞.
(b) For constants c > 1, ε > 0 if p = c n−1/2

√
lnn, with r := (1 + ε) n

c2 we have
EXr → 0.

(c) If p ≫ n−1/2
√

lnn and 1 − p = p̄ ≥ n−o(1), letting

r− := 2 log1/δ
(pn2) − 2 log1/δ

log1/δ
(pn2) and

r+ := 2 log1/δ(pn
2)

we have EXr− → ∞, and EXr+ → 0.
(d) If a ∈ ]0, 4[ is a constant and 1− p = p̄ = n−a, then EXr → 0 if r > 4/a+1,

and EXr → ∞ if r < 4/a + 1.

Proof.
(a). First of all, we prove that for r ≥ 2, the function p 7→ EXr,p is non-
decreasing

]
0, r−1/2

]
and non-increasing on

[
r−1/2, 1

[
.

Clearly, only the function

f : p 7→ p(1 − p2)(r−1)/2

is of interest. Taking the derivative, we obtain

f ′(p) = (1 − p2)(r−1)/2 − (r − 1)p2(1 − p2)(r−3)/2.

If 0 < p < 1, then f ′(p) = 0 and is equivalent to

0 = 1 − p2 − (r − 1)p2 = 1 − rp2.

For p < 1/
√
r, we have f ′(p) > 0 and p > 1/

√
r, we have f ′(p) < 0.

Now, for p = e/n, using Stirling’s formula, we have

EXn = n!
( e
n

)n(
1 − e2

n2

)(n
2)

= Θ(
√
n),

so EXn tends to infinity with n → ∞.
Finally, let p = n−1/2

√
lnn. We have

lnEXn

n
=

ln
(
n! pn δ(

n
2)
)

n
= −1 + o(1) + lnn− ln(1/p) − n−1

2 ln(1/δ)

≥ −1 + o(1) + lnn− ln(1/p) − n−1
2 p2,

where we used ln(1/δ) = ln(1/(1 − p2)) ≤ p2 + O(p4) and np4 = o(1) in the last
inequality. Replacing p, we get

lnEXn

n
≥ 1

2 ln lnn+O(1),

which proves the claim in (a) for this particular value of p.



(b). First of all, note that, for 4 ≤ r < n, using the estimates

√
r
(r
e

)r
≤ r! ≤ r

(r
e

)r
, and

1
3
√
r
er−r

2/(n−r)
(n
r

)r
≤
(
n

r

)
≤ er

(n
r

)r
,

we have

1 − r
n−r −O( ln r

r ) ≤
ln
(
r!
(
n
r

)2
pr δ(

r
2)
)

r
−
(

ln(n2) − ln(1/p) − r−1
2 ln(1/δ) − ln r

)

≤ 1 + ln r
r . (∗)

(We will use this for (c), too.)
Now, with c > 1, p = c n−1/2

√
lnn and r = (1 + ε)n/c2 = (1 − Ω(1))n, we

get

lnEXr

r
= ln(n2) − ln(1/p) − r−1

2 ln(1/δ) − ln r +O(1)

= ln(n2) − 1
2 ln(n/ lnn) − r−1

2 ln(1/δ) − lnn+O(1)

= 1
2 lnn− r−1

2 n ln(1/δ) +O(ln lnn)

= 1
2 lnn− r−1

2

(
p2 +O(p4)) +O(ln lnn)

= − ε
2 lnn+O(ln ln lnn),

which proves EXr → 0.

(c). With r := r+ = 2 ln(pn2)/ ln(1/δ), using the upper bound from (∗), we get

lnEXr

r
≤ ln(pn2) − r−1

2 ln(1/δ) − ln r + 1 + ln r
r

= 1
2 ln(1/δ) − ln r + 1 + ln r

r

= −Ω(1),

where the last equation follows from r → ∞ (due to p̄ ≥ n−o(1)), which also
implies EXr → 0.

On the other hand, with r := r− = 2 log1/δ(pn
2) − 2 log1/δ log1/δ(pn

2), using
the upper bound from (∗), we get

lnEXr

r
≥ ln(pn2) − r−1

2 ln(1/δ) − ln r + 1 −O( ln r
r )

≥
(
log1/δ log1/δ(pn

2)
)
ln(1/δ) − ln r + 1 +O( ln r

r )

= ln log1/δ(pn
2) − ln r + 1 +O( ln r

r )

≥ − ln 2 + 1 +O( ln r
r )

= Ω(1).



Again, the last equation and the conclusion EXr → ∞ follows from r → ∞.

(d). Finally, let 0 < a < 4 be a constant and 1 − p = p̄ = n−a. Noting that
δ = (1 + p)p̄ = Θ(p̄), if r = O(1), we have

(
EXr

)1/r

= Θ
(
n2p̄(r−1)/2

)
= Θ

(
n2−a(r−1)/2

)
,

which implies EXr → ∞ if r > 4/a + 1, and EXr → 0 if r < 4/a + 1.

From this lemma, we immediately get the upper bound on F(f) in Theo-
rem 3.1(c).

Proof (Proof of Theorem 3.1(c)). Follows from (c).

Item (a) of the lemma suggests the question, for which p the value of F(f)
drops from (1−o(1))n to (1−Ω(1))n. If the expectation is “right”, this happens
crossing from p =

√
(lnn)/n to p = (1 + ε)

√
(lnn)/n. This is supported by the

fact that our lower bounds in this region—in the next subsection—appear to be
quite simple, in that they only consider one fixed maximal matching in Hf , and
delete edges from it until it becomes cross free.

B.2 Second moment calculation

Lemma 11. If r = O(1) and pδ ≫ 1/n, then Var(Xr) = o
((

EXr

)2 )
.

Proof. With the notations as in equation (16), let F0 := {(1, 1), . . . , (r, r)}, and
abbreviate A0 := AF0 . We have

E(X2) = EX ·
∑

F

P(AF | A0)

where the sum ranges over all F of the form F = {(k1, ℓ1), . . . , (kr, ℓr)}, with all
the kj ’s distinct, and all the ℓj’s distinct, as in (16).

If F ⊂ {r + 1, . . . , n} × {1, . . . , n}, then the events AF and A0 are clearly
independent, so that, with the following sum ranging over these F , we have

∑

F

P(AF | A0) =
(n− r)r

(n)r
EX.

Consequently, we have

E(X2) =
(n− r)r

(n)r

(
EX

)2
+ EX ·

∑

F

P(AF | A0),

where the last sum ranges over all F with F ∩ {1, . . . , r} × {1, . . . , n} 6= ∅. For
each such F ,

P(AF | A0) = O

(
1

pδn

)O(r2)

P(AF ),



with absolute constants in the big-Os.
Hence, if r = O(1) and pδ ≫ 1/n,

E(X2) =
(n)r

(n− r)r

(
EX

)2
+O

(
1

pδn

)O(r2)(
EX

)2
= (1 + o(1))

(
EX

)
.

This proves the statement of the lemma.

Proof (Proof of Theorem 3.1(d)). The upper bound, for general a is in Lemma 10(d).
The lower bound when a < 1 follows from Lemma 10(d) and Lemma 11.

B.3 Lower bounds: Cross-free sub-matchings

Let ν×(·) denote the size largest cross-free matching of a bipartite graph.
Let H be a bipartite graph, and m = {e1, . . . , er} ⊆ E(H) a matching

in H . Define the graph G′ = G′(H,m) with vertex set V (G′) = {1, . . . , r} and
{k, ℓ} ∈ E(G′) if ek, eℓ induce a K2,2 in H . Then ν×(H) ≥ α(G′) holds: for any
stable set A of G′, the set {ej | j ∈ A} is a cross-free matching in H .

Our strategy for obtaining a large cross-free matching will be this: fix a large
matchingm inHf , then find a large stable set in the corresponding random graph
G′
n,p(m) := G′(Hf ,m). This random graph behaves similarly to an Erdős-Renyi

random graph with |m| vertices and edge-probability p2. The following technical
lemma takes care of the dependency issues which arise.

Let Gr,q denote the Erdős-Renyi random graph with r vertices and edge
probability q.

Lemma 12. For all positive integers n, r, a, and p ∈ [0, 1], we have

P
(
ν×(Hf ) < a & ν(Hf ) ≥ r

)
≤ P

(
α(Gr,p2) < a

)
.

Proof. Let M be the set of matchings of size r of Kn,n, and for each m ∈ M
denote by Cm the event that Hf contains m. Fix a matching m ∈ M. For every
edge e ∈ E(Kn,n), we have

P
(
e ∈ Hf | Cm

)
= p,

and these events are jointly independent. Hence, for each potential edge e′ of
G′
n,p(m),

P
(
e′ ∈ G′

n,p(m) | Cm
)

= p2,

again with joint independence of the events.
Now, denote by A the event that there does not exists a cross-free matching

of size larger than a in Hf . By the discussion above, A and Cm together imply
α(G′

n,p(m)) < a, so that

P
(
A | Cm

)
≤ P

(
α(G′

n,p(m)) < a | Cm
)

= P
(
α(Gr,p2) < a

)
.



It follows that

P
(
ν×(Hf ) < a & ν(Hf ) ≥ r

)
= P

(
A ∩

⋃

m

Cm
)

≤
∑

m

P
(
A ∩ Cm

)

=
∑

m

P
(
A | Cm

)
P(Cm) ≤ P

(
α(Gr,p2) < a

)
,

which concludes the proof of the lemma.

Remark 3. We will use Lemma 12 in the following way: If p, r−, r+ are such
that both

P
(
ν(Hf ) < r+

)
= o(1), and

P
(
α(Gr+,p2) < r−

)
= o(1),

(17)

then, a.a.s., f has a fooling set of size r−. Indeed,

P
(
F(f) < r−

)

≤ P
(
ν×(Hf ) < r− & ν(Hf ) ≥ r+

)
+ P

(
ν(Hf ) < r+

)

≤ P
(
α(Gr+,p2) < r−

)
+ P

(
ν(Hf ) < r+

)
[Lemma 12]

= o(1) + o(1) [by (17)].

We are now ready to prove the first two items of Theorem 3.1. We start with
the easiest part.

Proof (Proof of Theorem 3.1(b)). This is a direct consequence of the remark
with r− := a(p2) and r := n, since, if pn − lnn → ∞, then ν(Hf ) = n, a.a.s.
(e.g., [19, Thm 4.1]).

Proof (Proof of Theorem 3.1(a)). Let ε > 0 be a constant. Proceeding as in
Remark 3, with r− := r and r+ := (1 + ε)r, if both a.a.s. ν(Hf ) ≥ r and a.a.s.
α(Gr,p2) ≥ (1 − ε)r, then, a.a.s.,

(1 − ε)ν(Hf ) ≤ F(f) ≤ ν(Hf ).

Letting ε tend to 0 then gives the desired result.

For n−3/2 ≤ p = o(n), a.a.s., the number of edges of Gn,p2 is o(1), and hence
α(Gn,p2) = (1 − o(1))n, while easy arguments show that a.a.s. ν(Hf ) = Ω(n)
with concentration in a window of size O(

√
n). Hence the conditions (17) are

satisfied.

For p = Ω(1/n), a classical result by Karp & Sipser [21] states that there is
a function h : ]0,∞[→ [0, 1] with limc→∞ h(c) = 1 such that if p = c/n, then,
a.a.s., ν(Hf ) = (1 − o(1))h(c)/n. Since p = o(1/

√
n), a.a.s., the number of edges

of Gn,p2 is o(n), and hence α(Gn,p2) = (1 − o(1))n. It follows that F(f) =
(1 − o(1))ν(Hf ). In particular, if p ≫ 1/n, then, a.a.s, ν(Hf ) = (1 − o(1))n.



C Proofs for Section 4

C.1 The “usual calculation”

With

α := max

(
2λ,

(1 + ε) lnn

ln
(

lnn
eλ

)
)
,

we have to show that

α ln(α/eλ) ≥ lnn.

We write it down informally. In the following list of inequalities, the each one is
implied by the next one:

α ln(α/eλ) ≥ lnn [replace α by the 2nd term in the max]

(1 + ε)
ln
(
α
eλ

)

ln
(

lnn
eλ

) ≥ 1

α ≥ ln1/(1+ε) n

(1 + ε) lnn

ln
(

lnn
eλ

) ≥ ln1/(1+ε) n [is true.]

C.2 Chernoff

We have no good reference for the following simple Chernoff estimate (it is almost
exactly Theorem 5.4 in [28], except that we allow λ → ∞ slowly). For the sake
of completeness, we include it here.

Lemma 13. Let p̄ = λ/n with 1 < λ = o(n), and 2λ ≤ α ≤ n/2. The probability
that a Bin(n, p̄) random variable is at least α is at most

O
(
1/

√
α
)

· e−λ
(eλ
α

)α
. (18)

Proof (Proof of Lemma 13). Using Thm 1.1 in [3] (here we need the α ≥ 2λ),
and the usual estimates for binomial coefficients, we find that said probability
(for n sufficiently large) is at most an absolute constant times

P
(
Bin(n, p̄) = α

)
≤ 1.1√

2πα(n− α)/n

(λ
α

)α(n− λ

n− α

)n−α

≤ 1√
α

(λ
α

)α(
1 − α− λ

n− α

)n−α
≤ 1√

α

(λ
α

)α
eα−λ,

as promised.



C.3 Number of distinct rows

Proof (Proof of Lemma 1). For notational convenience, for k = 1, . . . , n, let

Sk := {ℓ | Mk,ℓ = 0}

The Sk are random sets, where the events ℓ ∈ Sk are all independent and have
probability p̄. For m ≥ 0, with 0 := {1, . . . , n}, denoting by

Xm := |{S1, . . . , Sk} \ {0}|,

the number of distinct non-zero rows among the first m rows of f , we need to
show that Xn = Ω(n). This is quite easy for p̄ = Ω(1/n), i.e., Item (a). Here, we
just prove it in the case that p̄ ≤ 1/2n, i.e., Item (b).

Denote by Am+1 the event that the (m + 1)st row is zero or a duplicate of
the first m rows, i.e., that

Sm+1 ∈ {0, S1, . . . , Sm}.

We enumerate the distinct sets: {S1, . . . , Sm} =: {Sk1 , . . . , SkXm
}. Now, for m ≥

1, we have

P
(
Am+1

∣∣∣ |S1|, . . . , |Sm|, Xm

)
= P

(
Sm+1 ∈ {0, S1, . . . , Sm}

∣∣∣ |S1|, . . . , |Sm|, Xm

)

= P(Sm+1 = 0) +

Xm∑

j=1

P
(
Sm+1 = Skj

∣∣∣ |S1|, . . . , |Sm|, Xm

)

= p̄n +

Xm∑

j=1

p̄|Skj
|pn−|Skj

| ≤ p̄n + pn + max(0, Xm − 1)p̄pn−1,

where the last inequality comes from the fact that, since the Skj are all distinct,
at most one of them has cardinality 0. Hence, for m ≥ 2,

P
(
Am+1

∣∣ Xm, X1 = 1
)

≤ p̄n + pn + (Xm − 1)p̄pn−1

≤ p̄n + pn − p̄pn−1 + p̄pn−1Xm.

Now, for m ≥ 1,

E
(
Xm+1

∣∣ Xm, X1 = 1
)

= Xm + 1 − P(Am+1 | Xm, X1 = 1),

≥ Xm + 1 − p̄n − pn + p̄pn−1 − p̄pn−1Xm

= 1 + p̄pn−1 − p̄n − pn + (1 − p̄pn−1)Xm.

Using the law of total probability and solving the recursion1, we find that

E
(
Xm

∣∣ X1 = 1
)

≥ (1 + p̄pn−1 − p̄n − pn)
1 − (1 − p̄pn−1)m−2

p̄pn−1
+ (1 − p̄pn−1)m−1

1 The recursion: µm+1 = α + βµm = . . . = α
m−1∑

j=0

βj + βmµ1 = α
1 − βm

1 − β
+ βmµ1.



With λ := p̄n, again, note that, since, by our assumption above, λ ≤ 1/2, using
the Bernoulli inequalities 1 − tn ≤ (1 − t)n ≤ 1 − tn+ t2

(
n
2

)
for t < 1, we have

1

2
≤ 1 − λ ≤ pn ≤ pn−1 ≤ 1 − λ

(
n− 1

n
+ λ

n− 1

n

)
≤ 1,

so that

(1 − p̄pn−1)m−2 ≤ (1 − p̄/2)m−2 ≤ 1 − λ

2

(
m− 2

n
+
λ

2

m− 2

n

)
.

We conclude that, for m = n,

E
(
Xm

∣∣ X1 = 1
)

≥ (1 − pn)
1 − (1 − p̄pn−1)m−2

p̄pn−1

≥ λ

(
n− 1

n
+ λ

n− 1

n

)
·
λ
2

(
m−2
n + λ

2
m−2
n

)

λ/n
≥ (1 + o(1))

λn

2
.

Since P(X1 = 1) = P(S1 = 0) = (1− p̄n) = 1−o(1), this implies EXn ≥ E(Xn |
X1 = 1)P(X1 = 1) ≥ (1 − o(1))λn/2.

To obtain the a.a.s. statement from the one about the expectation, we use the
usual Martingale-based concentration bound (Corollary 2.27 in [19]): as changing
one row can affect Xn by at most 1, we get

P
(
Xn ≤ λn/4

)
≤ P

(
Xn ≤ EXn − λn/4

)
≤ e−(λn)2/32n = e−Ω(λ2n) = o(1),

where the last equation follows from the condition n−3/2 = o(p̄).



Appendix B. ON THE GRAPH OF THE PEDIGREE
POLYTOPE

The following is copied from [63].
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Abstract

Pedigree polytopes are extensions of the classical Symmetric Traveling Salesman
Problem polytopes whose graphs (1-skeletons) contain the TSP polytope graphs as
spanning subgraphs.

While deciding adjacency of vertices in TSP polytopes is coNP-complete, Arthanari
has given a combinatorial (polynomially decidable) characterization of adjacency in
Pedigree polytopes. Based on this characterization, we study the graphs of Pedigree
polytopes asymptotically, for large numbers of cities.

Unlike TSP polytope graphs, which are vertex transitive, Pedigree graphs are not
even regular. Using an “adjacency game” to handle Arthanari’s intricate inductive
characterization of adjacency, we prove that the minimum degree is asymptotically
equal to the number of vertices, i.e., the graph is “asymptotically almost complete”.

Keywords: Traveling Salesman Polytopes, Probabilistic Combinatorics, Extensions
of Polytopes, 1-Skeletons/Graphs of Polytopes.

1 Introduction

The graph (1-skeleton) of a polytope has as its vertices (edges) the vertices (edges) of the
polytope. The most venerable result on graphs on polytopes: Steinitz’s Theorem states
that 3-connected planar graphs are precisely the graphs of 3-dimensional polytopes.

Properties of graphs of polytopes of higher dimension are of interest not only in the
combinatorial study of polytopes, but also in Combinatorial Optimization, and Theoret-
ical Computer Science.

For example, the famous Hirsch conjecture in the combinatorial study of polytopes,
settled by Santos [15], concerned the diameter of graphs of polytopes.

In Combinatorial Optimization, the study of the graphs of polytopes associated with
combinatorial optimization problems was initially motivated by the search for algo-
rithms for these problems.

In Theoretical Computer Science, the theorem by Papadimitriou [13] that Non-Adjacency
of vertices of (Symmetric) Traveling Salesman Problem (TSP) polytopes is NP-complete,
gave rise to similar results about other families of polytopes (cf. [1, 9] and the references
therein, for recent examples).

There have been particularly many attempts to understand the graph of TSP poly-
topes, and, where this turned out to be infeasible, of TSP-related polytopes (e.g., [19];

˚Supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur), through PUT Exploratory
Grant #620, and by the European Regional Development Fund through the Estonian Center of Excellence in
Computer Science, EXCS.
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cf. [6, 11, 20]). The presence of long cycles has been studied ([18], see also [12, 10]), as
has the graph density / vertex degrees (e.g., [16], see also [8, 7]).

The original motivation for the research in this paper was a 1985 conjecture by
Grötschel and Padberg [6] — well-known in polyhedral combinatorial optimization (Prob-
lem # 36 on Schrijver’s list [17]) — stating that the graph of TSP polytopes has diame-
ter 2. Already in [6], Grötschel and Padberg extend the question for the diameter to a
family of TSP-related polytopes which seemed easier to understand at the time.

Figure 1: Polytopes and graphs

A more recent family of TSP-related polytopes are the Pedigree polytopes of Artha-
nari [4]. For this family of polytopes, adjacency of vertices can be decided in polynomial
time [2]. Moreover, the graphs of the TSP polytopes are spanning subgraphs of the
graphs of the Pedigree polytopes [3]. This follows as the Pedigree polytope for n cities
is an extension, without “hidden” [14] vertices, of the TSP polytope [5]. The vertex set
of the TSP polytope for n cities is in a natural bijection with the set of all cycles with
node set rns :“ t1, . . . , nu; the same is true for the vertex set of the Pedigree polytope for n
cities. See Fig. 1.

The main result of our paper, is the following fact about graphs of Pedigree polytopes.
Recall that the number of vertices of either the TSP polytope or the Pedigree polytope
for n cities is the number of n-cycles, which is pn´ 1q!{2.

Theorem 1. The minimum degree of a vertex on the Pedigree polytope for n cities is
p1´ op1qq ¨ pn´ 1q!{2 (for nÑ8).

In particular, the density graph of Pedigree polytopes is asymptotically equal to 1.
Note, though, that while for TSP polytopes, these two statements are equivalent, this
is not the case of Pedigree polytopes. The reason is that Pedigree polytopes are not as
“symmetric” as TSP polytopes: For every two vertices u, v of the TSP polytope for n cities,
there is an affine automorphism of the polytope mapping u to v. (Similar statements
are true for monotone-TSP and graphical-TSP polytopes.) This is not true for Pedigree
polytopes: Arthanari’s construction removes the symmetry to a large extent.

Numerical simulations show that, even for relatively large n (say, « 100), the graph
of the Pedigree polytope is not complete. We have made no attempt, however, to find a
non-trivial upper bound for the minimum degree.

We now give a non-technical description of the proof of Theorem 1.
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The adjacency game. Alice and Bob play a game on a graph Γ (which both of them
see): Alice picks a vertex, then Bob picks a vertex; if the two vertices are adjacent,
Bob wins, otherwise Alice wins. The game is silly, Bob always wins (unless there is an
isolated vertex). Let us blindfold Bob — he can no longer see the graph or Alice’s move,
so the best he can do is pick a random vertex. Alice will win the game with probability
mindegpΓq{|V pΓq|. The game is still trivial, but note that Alice’s chance of winning is
linked to the minimum degree.

The game becomes interesting if the graph evolves over time. At each time n, each
vertex of the current graph Γn´1 will be replaced by a set of child vertices. Complex rules
(known to Alice1) govern whether or not a particular child vertex inherits the adjacency
relation to a particular child of a neighbor of his parent. Also at each time, both Alice
and Bob have to update their choices for vertices: Alice can pick any child of her current
vertex; Bob, being blindfolded, picks a child of his current vertex uniformly at random.

Now, analyzing the game as a random process (asymptotically for nÑ8) becomes a
non-trivial task, which reveals the minimum degree of Γn, as nÑ8. (Every vertex of Γn
must have the same number of children for Bob’s random decisions to form a uniformly
random vertex.)

We haven’t made clear what exactly Alice’s goal is, or how payout takes place, but
these questions will fall in place naturally in our situation (for n Ñ 8, with probability
tending to 1, Alice will lose in every round).

Our graph Γn is the graph of the pedigree polytope for n cities, whose vertices are
“pedigrees”. Stricly speaking, pedigrees are combinatorial-geometric objects defined
by Arthanari, but to reduce technical overhead, we will work with cycles only. So, at
time n, Alice and Bob each holds a cycle with node set rn´ 1s. A child-vertex is formed
from a parent-vertex by inserting the new node n into the cycle. Alice picking one of
these children amounts to inserting the new node n into her cycle; Bob inserts the new
node n at a uniformly random position into his cycle.

As for the complex rules governing inheritance of adjacency: these are given by
Arthanari’s characterization of adjacency on Pedigree polytopes [2], which are best un-
derstood as a process, updating a combinatorial structure at each time.

Pedigrees and how they are adjancent. Arthanari’s beautiful idea of a pedigree is
that of a cycle “evolving” over time: Starting from the unique cycle with node set t1, 2, 3u
at time 3, at time n ě 4, the node n is added to the cycle by subdividing one of its
cycle-edges. We say that n is inserted into that cycle-edge.

Arthanari’s combinatorial condition for adjancency on the Pedigree polytope has pro-
cess character, too, with a combinatorial structure, the pedigree graph G, evolving over
time. Suppose we have two evolving cycles. Let us refer to A as Alice’s cycle, and to B
as Bob’s cycle. At time n, Alice chooses a cycle-edge of her current cycle A (with node
set rn ´ 1s) and inserts her new node n into that cycle-edge to form her new cycle (with
node set rns). Then Bob chooses a cycle-edge of his current cycle B, and inserts his new
node n into that cycle-edge to form his new cycle.

The pedigree graph G may also change at time n. The new pedigree graph is either
equal to the current one, or arises from the current one by adding the new vertex2 n
with incident edges. The choices of Alice and Bob determine: whether the new vertex
is added or not; the number of edges incident to the new vertex n; the end vertices of
these edges.

Arthanari’s combinatorial characterization of adjacency on the Pedigree polytope is
now this.

1Bob doesn’t need them since he plays randomly.
2Trying to reduce confusion, in our terminology, the polytopes have vertices which correspond to cycles;

the cycles consist of nodes and cycle-edges, and the the pedigree graph of two cycles has vertices.
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Theorem 2 ([2]). At all times n ě 4, the two vertices of the Pedigree polytope for n cities
corresponding to the (new) cycles A and B with node set rns are adjacent in the Pedigree
polytope, if, and only if, the (new) graph G is connected.

Theorem 1 states that, if B is a cycle chosen uniformly at random from all cycles
on rns, then

minA P
`t the pedigree graph is connected u˘ “ 1´ op1q,

where the minimum ranges over all cycles on rns. Lower bounding this quantity amounts
to studying the following adjacency game: Alice’s goal is to make the graph G discon-
nected; whereas Bob makes uniformly random choices all the time. We prove that Alice
loses with probability 1´ op1q. To analyze the game, we study a kind of a Markov Deci-
sion Process with state space Z`ˆZ`. The states are pairs ps, tq, where s is the number
of common cycle-edges in Alice’s and Bob’s cycles, and t is the number of connected
components of the current pedigree graph.

In the next section, we will give rigorous statements corresponding to the hand-
waving explanations above. In Section 3, we discuss some basic facts about Bob playing
randomly, and discuss the intuition of the proof of the main. That section is followed by
a more technical section containing the proofs of the basic properties of pedigree graphs,
random or deterministic. In Section 5, we introduce the Markov-Decision-Problem-ish
situation that Alice finds herself in. The proof of the main theorem is completed in
Section 6. We conclude with a couple of questions for future research which we find
compelling.

2 Exact Statements of Definitions, Facts, and Results

2.1 Cycles, One Node at a Time

Our cycles are undirected (so, e.g., there is only one cycle on 3 nodes). For ease of
notation, let us say that the positive direction on a cycle with node set rns, n ě 3, is the
one in which, when starting from the node 1, the node 2 comes before the node 3; the
other direction the negative direction. When referring to the kth cycle-edge of a cycle,
we count the cycle-edges in the positive direction; the 1st one being the one incident on
node 1. E.g., in the unique cycle with node set t1, 2, 3u, the 1st cycle-edge is t1, 2u, the
2nd is t2, 3u, and the 3rd is t3, 1u.

As mentioned in the introduction, Arthanari’s Pedigree is a combinatorial object
representing the “evolution” of a cycle “over time”, and the combinatorial definition of
adjacency of pedigrees makes use of that step-by-step development. The set of Pedi-
grees is in bijecton with the set of cycles. In our context (we do not have to associate
points in space with Pedigrees), defining Pedigrees and then explaining the bijection
with cycles is more cumbersome than necessary. For convenience, we use the follow-
ing more convenient definitions, which mirror the definition of Pedigrees, but they use
cycles only. Let us say that an infinite cycle3 is a sequence A “ c˝ Pś8

n“3rns. An infinite
cycle A gives rise to an infinite sequence A˝ of finite cycles (in the usual graph theory
sense), defined inductively as follows:

• A3 is the unique cycle with node set t1, 2, 3u;
3The reason why we use this notion of “infinite cycle” is pure convenience. It does not add complexity, but

it makes many of statements and proofs less cumbersome. Indeed, instead of an infinite cycle, it is ok to just
use a cycle whose length M is longer than all the lengths occuring in the particular argument. So instead of
“let A be an infinite cycle, and consider Ak, A`, An” you have to say “let M be a large enough integer, AM a
cycle of length M , and Ak, A`, An sub-cycles of AM ”. All the little arguments (e.g., Fact 8 below) have to be
done in the same way.
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• for n ě 3, An is the cycle with node set rns which arises from adding the node n to
An´1 by inserting it into (i.e., subdividing) the cn´1th cycle-edge.

We think of A˝ as a cycle developing over time: At time n, the node n is added.
We will need to access the neighbors of node n in An, i.e., the ends of the cycle-

edge into which n is inserted (i.e., which is subdivided) when n is added to A˝. We
write ν`A pnq for the neighbor of n in An following n in the positive direction, and ν´A pnq
for the neighbor of n in An following n in the negative direction. The unordered pair
νApnq “ tν`A pnq, ν´A pnqu is the cn´1th cycle-edge of An´1, the one into which n was inserted.

These definitions are for n ě 4 but extend naturally for n “ 1, 2, 3: for n “ 3 we let
ν`A p3q “ 1, and ν´A p3q “ 2; for n “ 2, we let ν`A p2q “ ν´A p2q “ 1. The equation νApnq “
tν`A pnq, ν´A pnqu holds for n ě 2 (so |νAp2q| “ 1); for n “ 1 we have νAp1q :“ H.

Remark 3 (Finding νpkq for “old” nodes k). It is readily verfied directly from the defini-
tion, that, for k ě 2, ν˘A pkq can be found as follows: start from node k and walk in positive
direction. The first node smaller than k which you encounter is ν`A pkq. Similarly, if you
walk in negative direction starting from k, the first node smaller than k which you hit,
is ν´A pkq.

A pair of nodes i, j split each cycle An, n ą i, j into two (open) segments (i, j do not
belong to either segment). We say that the segment between i and j is the one which
does not contain the node minpt1, 2, 3uzti, juq (i.e., 1, unless 1 P ti, ju, in that case, 2,
unless t1, 2u “ ti, ju, in that case 3). Note that this does not depend on the choice of
n ą i, j, which justifies to say “the segment of A˝ between i and j”.

Remark 4 (Testing/finding n with νpnq “ ti, ju). Given a pair of nodes ti, ju and n1 ą i, j,
there exists an n ď n1 with νApnq “ ti, ju if, and only if, the segment between i and j
on An1 is non empty and every node in it is larger than both i and j. In that case, the
smallest node, n, in the segment between i and j on A˝ is the one with νpnq “ ti, ju.

2.2 The Pedigree Graph

Two infinite cycles A,B give rise to a sequence of graphs GAB˝ which we call the pedigree
graphs. We omit the superscripted A,B when possible. We speak of vertices of the
pedigree graphs (rather than nodes). We do this to avoid confusion between the nodes
of the cycles A˝,B˝ and the vertices of GAB˝ , because the vertex set of Gn is a subset of
t4, . . . , nu, and hence of the node set of An and Bn. So a node k P rns may or may not be
a vertex of Gn.

The pedigree graph Gn´1 is the subgraph of Gn induced by the vertices in rn´ 1s. In
other words, Gn is either equal to Gn´1 (if n is not a vertex), or it arises from Gn´1 by
adding the vertex n together with edges between n and vertices in rn´ 1s.
Example 5. G1, G2, G3 are graphs without vertices. G4 may be a graph without vertices,
or it may consist of a single isolated vertex 4. G5 could be a graph without vertices; a
graph with a single vertex 5; a graph with two isolated vertices 4, 5, or a graph with two
vertices 4, 5, linked by an edge. Check figure 2 for possible G4 and G5.

According to Arthanari [2, 3] the condition for the existence of vertices is the follow-
ing:

(1) A node n P rns is a vertex of Gn, iff νApnq ‰ νBpnq.
There are several conditions for the presence of edges between the vertex n and earlier
vertices. To make it easier to distinguish these, we speak of edge “types” and give the
edges implicit “directions:” from A to B or from B to A. Here are the conditions for
edges from n to earlier vertices.
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(2) There is a type-1 edge “from A to B” between n and k P rn´1s, if νApnq “ νBpkq. (Note
that the condition implies that k is a vertex.)

(3) There is a type-1 edge “from B to A” Ditto, with A and B exchanged.
(4) There is a type-2 edge “from A to B” between n and ` :“ max νApnq, unless νBp`q X

νApnq ‰ H. In other words, suppose the node n was inserted into the cycle-edge
tk, `u in A, with k ă `. Now look up the end-nodes of the cycle-edge νBp`q into
which ` was inserted when it was added to B. Unless k coincides with one of these
end nodes, there is an edge between n and `.

(5) Type-2 edge “from B to A” Ditto, with A and B exchanged.

Arthanari’s theorem [2] (Theorem 2) states that, if n ě 4, and An, Bn are two cycles
with node set rns, then the two vertices of the Pedigree polytope (for n cities) correspond-
ing to An and Bn are adjacent, if, and only if, GABn is connected.

We will always think of A as “Alice’s cycle” and B as “Bob’s cycle”.

Example 6. Going through an example will help understand the definition of a pedigree
graph. Figure 2 shows two cycles A and B evolving over time n “ 3, . . . , 10, together with
the evolving pedigree graph GAB˝ .

n “ 3: As mentioned above, GAB3 is a graph without vertices.

n “ 4: Alice inserts her new node 4 between into the cycle-edge t1, 2u of her cycle A3;
Bob inserts his new node 4 into the cycle-edge t1, 3u of his cycle B3. Hence, t1, 2u “
νAp4q ‰ νBp4q “ t1, 3u, so vertex 4 is added to GAB3 .

n “ 5: Alice inserts her new node 5 into the cycle-edge t2, 4u of her cycle A4; Bob inserts
his new node 5 into the cycle-edge t1, 2u of his cycle B4. Since t2, 4u “ νAp5q ‰
νBp5q “ t1, 2u, vertex 5 is added to GAB4 . Let us check the edges:

• In B4, the segment between 2 and 4 contains the node 3 which is smaller
than 4. By Remark 4, there is no k with νAp5q “ νBpkq, and hence no type-1
edge from A to B at this time.

• As νBp5q “ νAp4q, there is a type-1 edge between 4 and 5 from B to A.

• Since max νAp5q “ 4 and νBp4q “ t1, 3u S 2, there is also a type-2 edge between
5 and 4 from A to B.

• Since max νBp5q “ 2 and νAp2q “ t1u Q 1, there is no type-2 edge incident to 5
from B to A.

n “ 6: Alices inserts her new node 6 into the cycle-edge t2, 3u of her cycle, Bob inserts
his new node 6 into the cycle-edge t2, 3u of his cycle. Since t2, 3u “ νAp6q “ νBp6q “
t2, 3u, we don’t have a vertex 6 in GAB6 .

n “ 7: Alice throws into t4, 5u, Bob throws into t3, 4u. Since t4, 5u “ νAp7q ‰ νBp7q “ t3, 4u,
the vertex 7 is added to GA,B6 .

• In B6, the segment between 4 and 5 contain nodes 3 and 2 which are smaller
than 5. By Remark 4, there is no k with νAp7q “ νBpkq, and hence no type-1
edge from A to B at this time.

• In A6, the segment between 3 and 4 contains the node 2 which is smaller
than 4. Again by Remark 4, there is no k with νBp7q “ νApkq, and thus no
type-1 edge from B to A.

• As max νAp7q “ 5 and νBp5q “ t1, 2u S 4, we have a type-2 edge from A to B
between 7 and 5.

• As max νBp7q “ 4 and νAp4q “ t1, 2u S 3, there is also a type-2 edge from B to A
between 7 and 4.
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Figure 2: Cycles A˝ and B˝ and corresponding GAB˝
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n “ 8: Alice plays t3, 6u, Bob chooses t1, 4u. Since t3, 6u “ νAp8q ‰ νBp8q “ t1, 4u, the
vertex 8 is added to GA,B7 .

• In B7, the segment between 3 and 6 is empty (just the cycle-edge). By Re-
mark 4, there is no k with νAp8q “ νBpkq, and hence no type-1 edge from A
to B.

• For the same reason (segment between 1 and 4 empty), there is no type-1 edge
from B to A incident to the vertex 8.

• max νAp8q “ 6 and νBp6q “ t2, 3u Q 3. So there is no type-2 edge from A to B
between 8 and a smaller vertex.

• max νBp8q “ 4 and νAp4q “ t1, 2u Q 1. So there is no type-2 edge from B to A
between 8 and a smaller vertex.

Hence, vertex 8 is isolated in G8.

n “ 9: Alice chooses t1, 3u, Bob chooses t1, 8u. As t1, 3u “ νAp9q ‰ νBp9q “ t1, 8u, the
vertex 9 is added to GA,B8 .

• As t1, 3u “ νAp9q “ νBp4q “ t1, 3u, there is a type-1 edge from A to B between 9
and 4.

• The segment between 1 and 8, contains the node 3 which is smaller then 8 so
there is no type-1 edge from B to A incident to the vertex 9.

• As max νAp9q “ 3 and νBp3q “ t1, 2u Q 1, there is no type-2 edge from A to B
between 9 and 3.

• As max νBp9q “ 8 and νAp8q “ t3, 6u S 1, there is a type-2 edge from B to A
between 9 and 8.

n “ 10: Alice chooses t3, 9u, Bob chooses t2, 6u. Since t3, 9u “ νAp10q ‰ νBp10q “ t2, 6u,
the vertex 10 is added to GA,B9 .

• The segment between 3 and 9 in B, contains the node 4 which is smaller then
9 so there is no type-1 edge from A to B incident to the vertex 10.

• Again, in B, the segment between 3 and 9 has a vertex (4) smaller than 9.
Remark 4 gives us that there is no k νBpkq “ νAp10q, so no type-1 edge from B
to A is created.

• As max νAp10q “ 9 and νBp9q “ t1, 8u S 3, there is a type-2 edge from A to B
between 10 and 9.

• As max νBp10q “ 6 and νAp6q “ t2, 3u Q 2, no type-2 edge from B to A is created.

2.3 Rephrasing Theorem 1

We now rephrase Theorem 1, in terms of the pedigree graph. We also unravel the little-o,
and move to the “Alice-and-Bob” letters for the cycles.

Theorem 7 (Theorem 1, rephrased). For every ε ą 0 there is an integer N such that for
all n ě N and all cycles An with node set rns, if Bn is drawn uniformly at random from all
cycles with node set rns, then

P
`
GABn is connected

˘ ě 1´ ε.
In symbols, and using infinite cycles, this reads:

@ε ą 0 DN : @A@n ě N : Pp GABn is connected q ě 1´ ε,
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where the probability is taken over all infinite cycles, see the next section. A close look
at our proof shows that we are actually proving the following stronger statement (we
don’t have any use for it, though):

@ε ą 0 DN : @A : P
` @n ě N : GABn is connected

˘ ě 1´ ε.

3 Pedigree Graphs of Random Cycles

We have to reconcile uniformly random cycles with the “evolution over time” concept
of pedigrees. The definition of an infinite cycle makes that very convenient, just do
the same as with infinite sequences of coin tosses: Take, as probability measure on
the sample space

ś8
n“1rns of all infinite cycles the product of the uniform probability

measures on each of the sets rns, n ě 3. We refer to the atoms in this probability
space as random infinite cycles. The following is a basic property of product probability
spaces. We will use it mostly without mentioning it.

Fact 8. If B is a random infinite cycle, then, for each n ě 3, the cycle Bn is uniformly
random in the set of all cycles with node set rns.

Creating isolated vertices. The first substantial result about the connectedness of
the pedigree graph, concerns the creation of isolated vertices.

As outlined in the introduction, we study the situation in which Alice chooses her
cycle-edge of An´1 according to a sophisticated strategy, whereas Bob always chooses
a uniformly random cycle-edge of Bn´1 to insert his node n into (which amounts to
his cycle Bn being uniformly random in the set of all cycles on rns, by Fact 8). In this
section, we adopt a purely “random graph” perspective. For fixed A and random B, the
pedigree graphs GAB˝ are a sequence of random graphs, with some weirdo distribution:
At time n, whether the new vertex n is added or not, and if it is, how many incident
edges it has, and what their end vertices are — these are all random events/variables.

For deterministic A and random B, let the random variable Y count the total number
of times that an isolated vertex of the pedigree graph is created. In other words, Y “ř8
n“4 1In , where In denotes the event that, at time n, n is added as an isolated vertex to

GA,Bn (and 1˝ is the indicator random variable of the event).

Lemma 9. Whatever Alice does, EY “ 2.
Moreover, for every ε ą 0, if n0 ě 4{ε` 2, then, whatever Alice does

P
´ ď

něn0

In

¯
ď ε.

(We have collected the proofs for this section in the following section, in order not to
interrupt the motivating explanations.)

To understand why the lemma is important, consider a pedigree graph at time n,
just before Alice and Bob make their choices of cycle-edges into which their respective
new nodes n are inserted. If n is not a vertex of the new pedigree graph Gn, the number
of connected components of G˝ doesn’t change. If n is a vertex, and and it does have
incident edges, then the number of connected components can only decrease. The only
way that the number of connected components of Gn can increase is if n is an isolated
vertex in the new pedigree graph. Hence, Lemma 9 provides an upper bound on the
expected number of connected components, uniform over n.

The Intuition. From Lemma 9, it is unlikely that the pedigree graph will have many
components. Indeed, intuitively, if only 2 isolated vertices are ever created, that means
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that most of the time either nothing happens (no new vertex) or edges are created,
ultimately reducing the number of components, so the pedigree graph is connected.

While this basic intuition is essentially correct, a closer look reveals some subtleties.
First of all, Alice has a big sway in choosing the end vertices of new edges: she can pick
the end vertices of type-2 edges from A to B; and she can influence the end vertices of
type-1 edges (both directions).

Secondly, Bob’s choices are reduced by the low degrees of the vertices. (A stronger
version of (a) is proved as Lemma 12 in Section 4; we do not prove the rest of the lemma
because we do not need it for our proof.)

Lemma 10. The maximum degree of a vertex in a pedigree graph is at most 6:
(a) up to 2 to vertices created in the past; and
(b) up to 6 to future vertices.

Hence, if a vertex n0 was created as an isolated vertex or landed in a small connected
component, Bob has only 4–6 shots at connecting it to another connected component.
The good news is that Alice can never “shut down” a connected component completely:
Bob can always extend it by one more vertex.

Lemma 11. Let C be a connected component of the pedigree graph GABn´1. There exists a
k P C such that, no matter what Alice’s move is at time n, Bob has a move which creates
the vertex n and makes it adjacent to k.

However, for Bob to make a disconnected pedigree graph connected, at some time,
he will have to manage to insert his new node in such a way that it has two incident
edges, linking two connected components at the same time.

There is no difficulty in realizing that Alice wouldn’t stand a chance against a strate-
gically playing Bob. But we claim that the game between a clever Alice and a blindfolded
Bob will turn in Bob’s favour almost all of the time.

Computer simulations give another indication that some care has to be taken imple-
menting the basic intuition: Even for n as large as 100, even if Alice’s cycle is chosen
uniformly at random instead of adversarial, the frequency (in 100000 samples) with
which we saw a connected pedigree graph was only about 84%. In the remaining 16%
of cases, the typical situation is that of one giant connected component containing al-
most every vertex, and one tiny component growing only very slowly. This indicates
that even a disinterested Alice can do some damage.

4 Basic Properties of the Pedigree Graph

Lemma 12. Let A,B be two infinite cycles, and n ě 4.

a. If νApnq is a cycle-edge of Bn´1, then, if n is a vertex, there is no edge in GABn “from A
to B” incident on n.

b. If νApnq is not a cycle-edge of Bn´1, then n is a vertex, and the pedigree graph GABn
has an edge “from A to B” incident on n:

b.1. There is a type-1 edge, if and only if every node in the segment on B˝ between
ν`A pnq and ν´A pnq is larger than these two4. In this case, the other end of the type-1
edge is smallest node in the segment on B between ν`A pnq and ν´A pnq.

b.2. There is a type-2 edge, if and only if there is a node in the segment on B˝ between
ν`A pnq and ν´A pnq which is less than at least one of the two nodes. In this case,
the other end of the type-2 edge is maxpν`A pnq, ν´A pnqq.

In particular, there can be at most one edge “from A to B” between n and a vertex k ă n.

4Remember that segments are “open”: they don’t include the end nodes.
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Proof. First of all, that n is a vertex follows immediately, as νApnq “ νBpnq is not possible.
The statements about the edges follow immediately form the definitions of the edges

of the pedigree graph: For the first item, use Remark 4; for the second item, by the
definition of “segment between”, the two nodes ν`A pnq and ν´A pnq are separated on B by
nodes smaller than themselves, so that none of them can be in the νBp¨q-set of the other,
by Remark 3.

Lemma 13. Let A,B be two infinite cycles, and n ě 4. Then n is an isolated vertex in Gn
if, and only if, both

(1) νApnq is a cycle-edge of Bn, and
(2) νBpnq is a cycle-edge of An.

Proof. That the conditions (1) and (2) are sufficient for n to be an isolated vertex is read-
ily verified: Since νApnq is a cycle-edge of Bn, it must still have been a cycle-edge of Bn´1;
similarly νBpnq was a cycle-edge of An´1. Type-1 edges are immediately excluded. As for
type-2 edges, the condition νApmax νBpnqq X νBpnq is trivially satisfied.

For the necessity, suppose (by symmetry) that νApnq is not a cycle-edge of Bn. Then
either it was a cycle-edge of A˝ at time n´ 1 and got destroyed, or it wasn’t a cycle-edge
of A˝ at time n´ 1 in the first place.

In the former case, the cycle-edge must have been destroyed by through νBpnq “
νApnq. But this means that n is not a vertex of the pedigree graph.

In the latter case, Lemma 12 applies, and n is a vertex, but it is not isolated.

4.1 Proof of Lemma 9

Recall from page 9 that In denotes the event that, at time n, the vertex n is added as an
isolated vertex to the pedigree graph.

Lemma 14. For n ě 4, PpInq “ 4

pn´ 1qpn´ 2q .

Proof. For x “ 1, 2, denote by Ex the event of condition (x) of Lemma 13. We need to
compute PpE1 X E2q “ PpE1qPpE2 | E1q. As for E1, we have computed this probability in
the proof of Lemma 21: it is 2{pn´ 1q.

As for PpE2 | E1q, conditioning on νApnq being a cycle-edge amounts to

1. identifying these two nodes to a (super-)node, leaving n ´ 1 nodes to consider, and
taking a uniformly random cycle on these n´ 1 nodes; and then

2. replacing the super-node by the cycle-edge νApnq, which requires deciding which of
the two nodes comes first (in positive orientation).

To calculate the conditional probability PpE2 | E1q, we go over all cycle-edges e of An,
and find the conditional probability of the event that νBpnq “ e. Since these events are
mutually exclusive, we then just add up the probabilities.

Of the n´ 1 nodes after forming the super-node, n´ 2 involve nodes different from n.
Each one of the

`
n´2
2

˘
possible cycle-edges between these nodes has equal chance of

ending up being the one chosen by Bob at time n´ 1. Let us start with the cycle-edges e
of An with νApnqX e “ H, i.e., they are not incident to the super-node. There are n´ 4 of
them. For each one of them, we have

Ppe “ νBpnq | E1q “ 1{
ˆ
n´ 2

2

˙
.

The probability that Bob’s chosen cycle-edge is one of the two cycle-edges incident
on the super-node is 2{`n´2

2

˘
. Let e be one of the two cycle-edges with |νApnq X e| “ 1. The

probability that the orientation of the cycle-edge νApnq of Bn chosen in step (2) above is
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so that Bob’s chosen cycle-edge is equal to e is 1{2. In total, we have, for each of these 2
edges e,

Ppe “ νBpnq | E1q “
1{2`
n´2
2

˘ .

We add up:

PpE2 | E1q “ n´ 4`
n´2
2

˘ ` 1{2`
n´2
2

˘ ` 1{2`
n´2
2

˘ “ n´ 3`
n´2
2

˘ “ 2

n´ 2
.

In total, we have

PpInq “ PpE1qPpE2 | E1q “ 2

n´ 1
¨ 2

n´ 2
“ 4

pn´ 1qpn´ 2q .

We can now complete the proof of Lemma 9.

of Lemma 9. For the expectation, we calculate

EY “
8ÿ

n“4

PpInq

“
8ÿ

n“4

4

pn´ 1qpn´ 2q [by Lemma 14]

“ 4
8ÿ

n“4

ˆ
1

n´ 2
´ 1

n´ 1

˙

“ 4 limnÑ8
`
1{2´ 1{pn´1q

˘

“ 2.

Similarly, for the statement about In, we find that

P
´ ď

něn0

In

¯
ď

8ÿ

n“n0

PpInq “ 4
8ÿ

n“n0

ˆ
1

n´ 2
´ 1

n´ 1

˙
“ 4{pn0 ´ 2q ď ε.

This completes the proof of Lemma 9.

4.2 Proof of Lemma 11

Proof of Lemma 11. Take k :“ maxV pCq. Since k is a vertex, we have |νBpkq X νApkq| ď 1.
Suppose that ν`B pkq R νApkq (the other case is symmetric). Then, the first time Bob inserts
a node, say n1, into the cycle-edge on the positive side of k, this will create a type-2 edge
“from B to A” between n1 and k. Since k is the newest vertex in its component, Bob has
not yet inserted a node there, so he can insert n there, now.

5 The Adjacency Game

At each time, Alice moves first. As already explained, she determines the cycle A by
choosing, at each time n, the cycle-edge of An´1 into which her new node n will be
inserted. Then Bob moves. He determines B in the same way, but (using Fact 8),
he will draw the cycle-edge of Bn´1 into which his new node n is inserted uniformly
at random from all cycle-edges of Bn´1, and his choice is independent of his earlier
choices.

12



We say that Bob wins, if there exists an n0 such that for all n ě n0, the pedigree
graph GABn is connected. We need Bob to win “uniformly”, i.e., n0 must not depend on
Alice’s moves.

Let the random variable Tn denote the number of connected components in the
pedigree graph GABn . To analyze the development of the random process T˝, it turns
out to be useful to consider a second random process, S˝. Denote by EXn the set of
cycle-edges that Alice’s cycle and Bob’s cycles have in common,

EXn :“ EpAnq X EpBnq,
and let

Sn :“ |EXn |
count the number of cycle-edges that Alice and Bob have in common. We will distin-
guish Alice’s moves by whether or not she chooses a common cycle-edge to place her
new cycle node. The set EX˚n holds those common cycle-edges which are not incident
on the cycle-edge which Alice chooses for her new node:

EX˚n :“  
e P EXn | eX νApn` 1q “ H(

;

we let S˚ count the cycle-edges in EX˚:

Sn̊ :“ |EX˚n |.
Finally, denote by Ern the set of cycle-edges in Bob’s cycle which are neither common
nor incident on Alice’s chosen cycle-edge:

Ern :“  
e P EpBnqzEXn | eX νApn` 1q “ H(

; and

Rn :“ |Ern|.
We are now ready to state and prove the transition probabilities. They depend on

whether Alice chooses, for her new node, a common cycle-edge — we refer to that as a
c-move by Alice — or a cycle-edge which is in the difference EpAnqzEXn — we call that a
d-move.

Lemma 15. The conditional probabilities

P
´
Sn`1 “ Sn `∆S ^ Tn`1 “ Tn `∆T | Bn

¯

satisfy these bounds (entries not shown are ““ 0”):

∆T ∆T

`1 “ S˚n
n ď 2

n `1

0 “ Rn

n ď 2
n “ 1

n 0 “ S˚n
n ď Rn´Tn`1

n ď 4
n

´1 ´1 ě Tn´1
n

´2 ´1 0 `1 ∆S ´2 ´1 0 `1 ∆S

c-move d-move
(Alice chooses common cycle-edge) (Alice chooses cycle-edge in EpAnqzEXn )

Proof. Let us start with the case that Alice makes a c-move, i.e., she chooses a common
cycle-edge to insert her new node n ` 1 into. In symbols: νApn ` 1q P EXn . In this case,
there can be no edges “from A to B” incident to the vertex n ` 1 of GABn`1. We split into
disjoint events based on

H :“ |νApn` 1q X νBpn` 1q|

13



Event H “ 2. This happens if Bob’s random choice of a cycle-edge for his new node
n` 1 is the same as Alices, i.e., νApn` 1q. The probability of his happening is 1{n. In that
case, both S and T are unchanged.

Event H “ 1. We split into two sub-events, “H “ 1 and νBpn ` 1q P EXn ” and “H “ 1
and νBpn` 1q R EXn ”. Each has probability at most 2{n.

• H “ 1 and νBpn` 1q P EXn implies that both νApn` 1q and νBpn` 1q are still common
cycle-edges after Alice and Bob have added their new nodes n ` 1. By Lemma 13,
this implies that n ` 1 is an isolated vertex of Gn`1. We have Tn`1 “ Tn ` 1, and
Sn`1 “ Sn ´ 1 (two common cycle-edges destroyed, one new created).

• Suppose H “ 1 and νBpn ` 1q R EXn . Simply from νBpn ` 1q R EXn , applying
Lemma 12b. (with A/B exchanged), the existence of an edge incident on n ` 1
“from B to A” follows. Moreover, that lemma also states that there is only one
such edge. Hence, we have Tn`1 “ Tn, and Sn`1 “ Sn (one common cycle-edge
destroyed, one new created).

Event H “ 0. We distinguish the same two sub-events as for H “ 0: “H “ 0 and
νBpn` 1q P EXn ” and “H “ 0 and νBpn` 1q R EXn ”.

• The sub-event H “ 0 and νBpn ` 1q P EXn occurs if Bob hits a cycle-edge in EX˚n .
The probability of that happening is Sn̊{n. By Lemma 12a., we do not have an edge
in the pedigree graph incident on n ` 1, so an isolated vertex is created. Hence
Tn`1 “ Tn ` 1, and Sn`1 “ Sn ´ 2 (two common cycle-edges destroyed, none new
created).

• That H “ 0 and νBpn ` 1q R EXn means that that Bob hits a cycle-edge in Ern;
the probability of this happening is Rn{n. As in the sub-event above, applying
Lemma 12b. gives the existence of exactly one edge “from B to A” incident on
n` 1. Hence, we have Tn`1 “ Tn, and Sn`1 “ Sn ´ 1 (one common cycle cycle-edge
destroyed, none new created).

This completely partitions the probability space, with probabilities corresponding to
the bounds in the table.

Now let us consider the case that Alice makes a d-move, i.e., she chooses a cycle-edge
which is not common to both cycles, to insert her new node n ` 1 into. In symbols:
νApn`1q R EXn . By Lemma 12, this condition implies that n`1 is a vertex of the pedigree
graph GABn`1 and there is an edge “from A to B” incident on n ` 1. This implies that
Tn`1 ď Tn.

We distinguish cases based on the event νBpn` 1q P EXn .
Event νBpn ` 1q P EXn . We split into three subevents, depending on H (as defined

above):

• νBpn ` 1q P EXn and H “ 0: This means that Bob hits a cycle-edge in EX˚n . The
probability of that happening is Sn̊{n. In that case, by Lemma 12a., there is no
edge “from B to A”, and we have Tn`1 “ Tn. One common cycle-edge was destroyed,
but none was created, so Sn`1 “ Sn ´ 1.

• νBpn ` 1q P EXn and H “ 1: There are at most 2 cycle-edges in Bn which are both
common with An and have a node in common with νApn`1q. Hence, the probability
that Bob hits one of them is 2{n. Again, Tn`1 “ Tn. One common cycle-edge was
destroyed, but another one is created, so Sn`1 “ Sn.

Note that H “ 2 is impossible in a d-move.
Event νBpn ` 1q R EXn . Before we can proceed, we need to extract the following fact

from the proof of Lemma 11:
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Fact 16. If GABn is not connected and C is a connected component, then, no matter
what Alice’s move at time n` 1, there is a cycle-edge tk, k1u of Bn with the properties
(a) k1 ă k and k P C;
(b) if Bob inserts his new node n ` 1 into that cycle-edge, there will be a type-2 edge

“from B to A” betwen n` 1 and k.

We already know that the cycle-edge tk, k1u is not in EX (Lemma 12a.).
Of the Tn connected components at time n, one contains the end vertex of the edge

“from A to B” incident on n` 1. For each of the remaining Tn ´ 1 components, take one
cycle-edge as described in Fact 16. By property (a), all these cycle-edges are distinct.
Hence, the chance that Bob hits one of them is exactly pTn ´ 1q{n. There may be more
possibilities for Bob to reduce the number of connected components, but, by the last
sentence in Lemma 12, the number of components which can be joined at time n` 1 is
at most 2.

Now we can proceed with the event νBpn` 1q R EXn . We split into sub-events:

• νBpn`1q R EXn and Tn`1 “ Tn´1: By what we have discussed, the probability of this
happening is at least pTn ´ 1q{n. As for the change in S˝, no common cycle-edge is
destroyed (Lemma 12a.), but it is possible that one is created, so Sn`1 P tSn, Sn`1u.

• νBpn` 1q R EXn and Tn`1 “ Tn: We split into sub-sub-events:

– The above conditions and H “ 1: The probability of that happening is at most
4{n. Since no common cycle-edge is destroyed, but a new one is created, we
have Sn`1 “ Sn ` 1.

– The above conditions and H “ 0: For that to happen, Bob has to hit a cycle-
edge in Ern. At least Tn ´ 1 of these cycle-edges lead to the situation Tn`1 “
Tn´1, so the probability for this sub-sub-event is at least Rn´Tn`1

n . No common
cycle-edge is destroyed, and none is created, so Sn`1 “ Sn.

This completely partitions the probability space, with probabilities corresponding to
the bounds in the table.

The proof of the main theorem now follows the following idea. From the tables in
Lemma 15, you see that d-moves have chance of reducing the number of connected
components — albeit a small one. Moreover, Alice cannot take a c-move only when
Sn ą 0, but c-moves have a strong tendency to reduce S˝. We prove that the number of
d-moves that Alice has to take are frequent enough to lead to a decrease in the number
of connected components. This suffices to prove Theorem 6, along the lines sketched
on page 9.

The next section gives more details of the proof.

6 Proof of Theorem 7

Using the Azuma-Hoeffding super-martingale tail bound, we prove that, for large enough
n0, Alice has to take many d-moves between times n0 and 2n0.

Lemma 17. For every ε P s0, 1r, if n0 ě maxp900, 8 lnp1{εqq, and n1 :“ 2n0 then, whatever
Alice does, the probability, conditioned on Bn0

and Sn0
ď ln2 n0, that among her moves at

times n “ n0 ` 1, . . . , n1, there are fewer than n0{3 d-moves, is at most ε.

Proof. Denote by C Ď tn0 ` 1, . . . , n1u the set of times in which Alice takes c-move; so
Alice takes d-moves at every time D :“ tn0 ` 1, . . . , n1uzC.
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Denote by Cn the event that Alice chooses a c-move at time n` 1. The reason for the
index n instead of n ` 1 is that Cn and Dn are Bn measureable5;we need that for the
Martingale argument below.

Now, for every n P C, let

Ln :“ 1tSnăSn´1u ´ 1tSnąSn´1u.

Since, by Lemma 15, when Alice decides for a c-move, Sn ą Sn´1 is equivalent to Sn “
Sn´1 ` 1, we have

Sn ď Sn´1 ´ Ln, (1)

and

PpSn`1 ă Sn | Bn, Cnq ě Sn̊
n
` Rn

n
ě Sn ´ 4

n
` n´ Sn ´ 4

n
“ 1´ 8{n;

note that the inequalities remain valid if Sn ă 4. As for increasing S˝, we have

PpSn`1 ą Sn | Bn, Cnq “ 1{n.

Hence

E
`
Ln`1 | Bn, Cn

˘ ě 1´ 9{n ě .99, (2)

where the last inequality follows since n0 ě 900.
For the n P D, i.e., when Alice decides for a d-move, we upper-bound by 1 the

probability that Alices increases S˝, so,

Sn`1 ď Sn ` 1´ 1Cn , (3)

since, by Lemma 15, Sn`1 ą Sn is equivalent to Sn`1 “ Sn ` 1 for d-moves, too.
Combining inequalities (1) and (3), we have

Sn`1 ´ Sn ď 1´ 1Cn ` 1Cn ¨ Ln`1. (4)

We define a super-martingale as follows. Let, Xn0
:“ Sn0

and for each n “ n0, . . . , n1´
1,

Xn`1 “ Xn ` 1Cn
¨ `.99´ Ln`1

˘
.

(We define Ln :“ 0 for n R C.)
By induction, Xn`1 is determined by Bn`1, so the measurability property of a super-

martingale is given. Moreover, by (2), we have

E
`
Xn`1 | Bn

˘ “ Xn ` 1Cn
¨ `.99´ EpLn`1 | Bnq

˘ ď Xn;

hence X˝ is in fact a super-martingale.

Claim 18. For n ě n0, we have Xn ě Sn ` 1.99
n´1ÿ

j“n0

Cj ´ pn´ n0q.

Proof of the claim, by induction. The claim holds for n “ n0. Assume that it holds

5This is the case because Alice’s decision is based on An and Bn in a deterministic way, and An is
deterministically determined from Bn´1 which is determined by Bn, and so on (induction).
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for n ě n0. We have

Xn`1 “ Xn ` 1Cn
¨ `.99´ Ln`1

˘

ě Sn ` 1.99
n´1ÿ

j“n0

Cj ´ pn´ n0q ` 1Cn
¨ `.99´ Ln`1

˘
[I.H.]

“ Sn ` 1.99
n´1ÿ

j“n0

Cj ´ pn´ n0q ` 1.99 ¨ 1Cn
´ 1 ` p1´ 1Cn

q ´ 1Cn
Ln`1

ě Sn ` 1.99
n´1ÿ

j“n0

Cj ´ pn´ n0q ` 1.99 ¨ 1Cn
´ 1 ` Sn`1 ´ Sn [(4)]

“ Sn`1 ` 1.99
nÿ

j“n0

Cj ´ pn` 1´ n0q,

which completes the proof of the claim. ˛
From the claim, since Sn ě 0 always, we have

Xn1
ě 1.99

n1´1ÿ

j“n0

Cj ´ pn1 ´ n0q “ 1.99|C|´ pn1 ´ n0q “ 1.99|C|´ n0.

The event |D| ď n0{3 implies the event |C| ě 2n0{3, and hence the event Xn1
ě 1.2n0.

To apply the Azuma-Hoeffding inequality for super-martingales (e.g., Lemma 4.2
in [21]), we first note that |Xn`1 ´Xn| ď 1.99 deterministically. We conclude that the
probability of the event |D| ď n0{3 is at most

exp

˜
´
`
1.2n0 ´ Sn0

˘2

2 ¨ 1.992 ¨ n0

¸
ď exp

˜
´
`
1.2n0 ´ Sn0

˘2

8n0

¸
ď exp

ˆ
´ n20

8n0

˙
,

where the last inequality follows since Sn0 ď ln2 n0 ď .2n0, whenever n0 ě 300. We
continue, using n0 ě 8 lnp1{εq,

Pp|D| ď n0{3q ď e´n0{8 ď ε,

which concludes the proof of the lemma.

From this, we deduce that must T˝ decrease, but some sophistication is needed,
because of the slow divergence of

ř
1{n: Indeed, between n0 and 2n0, T˝ decreases only

with a constant probability:

Lemma 19. Fix δ :“ 1{42. If n0 ě maxp900, 8 lnp1{δqq, and n1 :“ 2n0 then, whatever Alice
does,

P
´
Dn P tn0 ` 1, . . . , n1u : Tn`1 ă Tn

ˇ̌
ˇ Bn0

, Tn0
ě 2, Sn0

ď ln2 n0

¯
ě 1{7.

Proof. From Lemma 17, with probability at least 1 ´ δ, there are at least n0{3 d-moves
among Alices moves at times n “ n0 ` 1, . . . , n1 :“ 2n0.

Denote by D the set of d-moves by Alice in time tn0 ` 1, . . . , n1u. By Lemma 15, the
probability p that none of these d-moves decreases T˝ is at most

p ď
ź

nPD
P
`
Tn ă Tn´1 | Tn´1 ě 2

˘ ď
ź

nPD

ˆ
1´ 1

n

˙
.

Hence
ln p ď

ÿ

nPD
lnp1´ 1{nq ď ´

ÿ

nPD
1{n.
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The subset D of tn0` 1, . . . , n1u of size at least n0{3 which maximizes the last expression
is D :“ t5n0{3, . . . , n1u, so we get

ln p ď ´
n1ÿ

n“5n0{3
1{n ď ´ ln

´ n1
5n0{3

¯
“ ´ lnp6{5q.

We conclude that p ď 5{6. In total, the probability that T˝ never decreases is at most
5{6` δ “ 5{6` 1{42 “ 6{7.

We can boost the probability to 1 ´ ε, for arbitrary ε ą 0, by iterating the argument
Ωplnp1{εqq times.

Lemma 20. Fix δ :“ 1{42. For every ε P s0, 1{56r, with a :“ 10 lnp2{εq, if

n0 ě maxp900, 8 lnp1{δq, p2aq4{ε, e6{εq,
and n1 :“ 2an0 then, whatever Alice does,

P
´
Dn P tn0, . . . , n1u : Tn`1 ă Tn

ˇ̌
ˇ Bn0 , Tn0 ě 2

¯
ě 1´ ε

Before we can prove Lemma 20, we need to control the size of S˝ through the follow-
ing two lemmas.

Lemma 21. If n0 ě 4, then, whatever Alice does,

PpSn0 ą lnn0q ď 3{ lnn0

Proof. For e “ tk, `u P `rn0s
2

˘
, denote by En0

peq the event that e is a cycle-edge of Bn0
. For

n0 ě 4, by Fact 8,
PpEn0

peqq “ 2{pn0 ´ 1q.
Since

Sn0
“

ÿ

ePAn0

1pEn0
peqq,

we find that ESn0
“ 2n

n0´1 ď 3 (the last inequality follows from n00 ě 3. By Markov’s
inequality, we have

PpSn0 ě lnn0q ď 3

lnn0
.

Lemma 22. For all ε P s0, 1s and b ą 1, if n0 ě maxp10, b4{ε then with n1 :“ bn0, whatever
Alice does,

P
`Dn P tn0, . . . , n1 ´ 1u : Sn ě ln2 n | Bn0

, Sn0
ď ln2n0

˘ ď ε.

Proof. Whatever Alice does, by Lemma 15, we have Sn`1 ď Sn ` 1 always and the prob-
ability that Sn`1 “ Sn ` 1 is at most 4{n. If Sn ě ln2 n for an n P tn0, . . . , n1 ´ 1u, then
either Sn0

ě lnn0, or the number of times n P tn0, . . . , n1´ 1u that Sn`1 “ Sn` 1 is at least
ln2 n´ lnn0. But

ln2 n´ lnn0 ě ln2 n0 ´ lnn0

The expected number of times n P tn0, . . . , n1 ´ 1u that Sn`1 “ Sn ` 1 is

n1´1ÿ

n“n0

4

n
ď 4plnpn1{n0q ` 1{n0 ´ 1{n1q ď 4 lnpn1q ´ lnpn0q.

(We have used the well-known bound
řn
`“m

1
` ď lnpn{pm´ 1qq.)
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Hence, the probability that we have Sn ě ln2 n for some n P tn0, . . . , n1 ´ 1u is at most

4 lnpn1q ´ lnpn0q
ln2 n0 ´ lnn0

“ 4 lnpn1{n0q ´ 1

lnn0 ´ 1
“ 4 ln b´ 1

lnn0 ´ 1
ď ε.

The last inequality follows from 4 ln b ď ε lnn0 ď ε lnn0 ` 1´ ε (as ε ď 1).

We are now ready to prove Lemma 20.

of Lemma 20. For j “ 0, 1, 2, . . . , denote by Uj the event that

@n P tp2j ` 1qn0, . . . , p2j ` 3qn0u : Tn`1 ě Tn.

By Lemma 19, we have, for each j,

P
´
Uj

ˇ̌
ˇ Bp2j`1qn0

, Tp2j`3qn0
ě 2, Sp2j`1qn0

ď ln2pp2j ` 1qn0q
¯
ď 6{7,

so

P
´
@j “ 0, . . . , a´ 1: Uj

ˇ̌
ˇ Bn0

, Tn0
ě 2, Sn0

ď ln2pn0q
¯

(5)

“
a´1ź

j“0

P
´
Uj

ˇ̌
ˇ Bn0 , Tn0 ě 2, Sn0 ď ln2pn0q,@i “ 0, . . . , j ´ 1: Ui

¯

ď
a´1ź

j“0

pε` 6{7q (˚)

ď p7{8qa (˚˚)
ď elnp2{εq “ ε{2.

The last inequality follows from 10 ą 1{ lnp8{7q; inequality (˚˚) follows from ε ď 1{56.
As for inequality (˚), we note that T2jn0 “ 1 implies the event AUj´1 (A is the com-

plement), and, by Lemma 22 the probability that there is exists an n “ n0, . . . , n1, with
Sn ą ln2 n is at most ε.

An application of Lemma 21 gets rid of the conditioning on Sn0
ď ln2pn0q: Indeed,

since from n0 ě e6{ε we have 3{ lnpn0q ď ε{2, this adds another ε{2 to the final probability.
The bound, in total, is ε.

Note that Lemma 20 also gets rid of the conditioning on Sn ď ln2 n.
We are now ready to complete the proof of the main theorem.

of Theorem 7. Let ε1 P s0, 1{2r be given. Set t :“ 6{ε1. Since T˝ can only increase when
an isolated vertex is created, we have Tn ď Y , for all n ě 4, where Y is the number of
isolated vertices. Hence, by Lemma 9 and Markov’s inequality, we have

P
´
Dn ě 4: Tn ě t` 1

¯
ď PpY ě tq ď EpY q{t “ ε1{3.

Now take n10 ě 12{ε1`2, and large enough to apply Lemma 20 n0 :“ n10 and to ε :“ ε1{3t
(note that this is less than 1{56). Denote by a be the number defined in that lemma.
Applying the lemma t times, for n0 ranging over n10`j2an10, j “ 0, . . . , t´1, the probability
that we fail at least once to obtain a decrease in the number of connected components,
T˝, is at most ε1{3. So, with probability at least 1´ 2ε1{3, we must have Tn0

“ 1 for one of
these n0’s or for an n between n10 ` pt´ 1q2an10 and n10 ` t2an10.

Finally, since n10 ě 12{ε1`2, by Lemma 9, with probability 1´ε1{3, T˝ will not increase
after n10, and hence, with probability 1´ ε1, will drop to 1 and stay there for all eternity.
Bob wins.
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7 Some Open Questions

There are two questions which we believe should be asked in the context of our result.
Firstly, are there other polytopes whose graphs are not complete, but the minimum

degree is asymptotically that of a complete graph? Could that even be the case for the
Traveling Salesman Problem polytope itself?

Secondly, in view of the Traveling Salesman Problem polytope, it would be interesting
to find other combinatorial conditions on cycles which are implied by the adjacency of
the corresponding vertices on the TSP polytope. The pedigree graph connectedness
condition is derived from an extension of the TSP polytope, but maybe there are other
combinatorial conditions without that geometric context. The graph resulting from such
a condition might be “closer” to the actual TSP polytope graph.
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Polütoopide laienditega seotud ülesanded

Lineaarplaneerimine on optimeerimine matemaatilise mudeliga, mille
sihifunktsioon ja kitsendused on esitatud lineaarsete seostega. Paljusid igapäeva
elu väljakutseid võime vaadelda lineaarplaneerimise vormis, näiteks
miinimumhinna või maksimaalse tulu leidmist. Sisepunkti meetod saavutab häid
tulemusi nii teoorias kui ka praktikas ning lahendite leidmise tööaeg ja
lineaarsete seoste arv on polünomiaalses seoses. Sellest tulenevalt
eksponentsiaalne arv lineaarseid seoseid väljendub ka ekponentsiaalses tööajas.

Iga vajalik lineaarne seos vastab ühele polütoobi P tahule, mis omakorda
tähistab lahendite hulka. Üks võimalus tööaja vähendamiseks on suurendada
dimensiooni, mille tulemusel väheneks ka polütoobi tahkude arv. Saadud
polütoopi Q nimetatakse polütoobi P laiendiks kõrgemas dimensioonis ning
polütoobi Q minimaalset tahkude arvu nimetakakse polütoobi P laiendi
keerukuseks, sellisel juhul optimaalsete lahendite hulk ei muutu. Tekib küsimus,
millisel juhul on võimalik leida laiend Q, mille korral tahkude arv on
polünomiaalne.

Mittedeterministlik suhtluskeerukus mängib olulist rolli tõestamaks
polütoopide laiendite keerukuse alampiiri. Polütoobile P vastava
suhtluskeerukuse leidmine ning alamtõkke tõestamine väistavad võimalused
leida laiend Q, mis ei oleks eksponentsiaalne.

Juhuslike funktsioonide suhtluskeerukuse uurimine on tunduvalt huvitavam,
kuna selle kaudu on võimalik saada teadmisi ka raskete funktsioonide leidumise
ning nende omaduste kohta. Suurem osa uurimistöid keskendub olukorrale, kus
tõenäosus p on konstantne. Rakendustes on aga tihti tegemist funktsioonidega,
mille tihedus on suur. Seega vaatleme me juhuslikke funktsioone, mille
tihedusfunktsioon on p = p(n), kui n→ ∞.

Käesolevas töös keskendume me juhuslikele Boole’i funktsioonidele f , mille
tihedusfunktsioon on p = p(n). Me pakume välja vähima ülemtõkke ning suu-
rima alamtõkke mittedeterministliku suhtluskeerukuse jaoks. Lisaks uurime me
ka pedigree polütoobi graafi. Pedigree polütoop on rändkaupmehe ülesande polü-
toobi laiend, millel on kombinatoorne struktuur. Polütoobi graafi võib vaadelda
kui abstraktset graafi ning see annab informatsiooni polütoobi omaduste koh-
ta. Me näitame, et n linna korral on pedigree polütoobi minimaalne tipu aste
(1−o(1) · (n−1)!/2) (n→ ∞). Hetkel ei ole lahendust leidnud küsimus, kas lei-
dub polütoop, mille graaf ei ole täisgraaf, kuid mille tihedusfunktsioon koondub
üheks. Täpsemalt, kas selline polütoop võib olla rändkaupmehe ülesande polü-
toop?
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