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Introduction

Finding the best alignment of two DNA, RNA or amino acid sequences has become
almost the standard technique for sequence comparison in molecular biology. It
is used to determine whether and where two sequences are similar (homologous),
to determine evolutionary history between species, to find consensus sequences,
and other significant functions. However, in present methods for evaluating opti-
mal sequence alignment, specific score function (which determines the relationship
between sequence elements) and gap penalty must be specified. Therefore, the
(biological) significance of the optimal alignment depends heavily upon the “right”
choice of parameters. There is considerable disagreement among molecular biolo-
gists about the correct choice and it is probably the case that there is no unique
choice for the parameters.

The significance of an alignment is based either on biological grounds, or on its
sensitivity to the choice of parameters. Instead of repeatedly varying the param-
eter weights, we need to restrict the domain of parameters by using estimation of
their sensitivity. As an example (see, e.g., [SK], pages 290− 293) to demonstrate
the difficulties in finding the relative parameter weights by a specific example: the
comparison of human and E. Coli 5S RNA (two sequences of 120 characters each
over a four-letter alphabet). The solution of [SK] involves varying one parameter,
the number of indels, until its approriate value is found. Similarly [FS] demon-
strates how a biologically accepted alignment may easily be missed if inappropriate
weights are used. The main aim of this thesis is to prove concentration inequalities
for the sensitivity of varying parameters. This can be used to restrict the domain
of parameters that are taken into consideration.

For simplicity, we mainly restrict our theory by only considering binary alpha-
bets. This restriction can most likely be partially eliminated, as [BSS] proved that
binary and non-binary alphabets enjoy many similar properties.

This thesis is composed of 5 chapters.

The first chapter introduces basic theory of random sequence comparison and
other preliminary ideas. It also consists of several examples to illustrate the fun-
damental theory. The second part of the first chapter is devoted to introducing
alignment graphs. There, we deduce the apparatus to do sequence comparison in
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practice.

In the second chapter we investigate the effect of varying gap price in sequence
comparison.

In the third chapter, we generalize the theory that has been introduced in the
second chapter. We derive similar results for the effect of varying score of mis-
match, instead of gap price. This allows us the investigate the effect of varying
both variables (mismatch score and gap price).

In the fourth chapter, we explore the asymptotic properties of random sequences,
as the length of the sequences goes to infinity. We derive asymptotic results for
the proportions (mismatches and gaps) and latter part of the chapter is dedicated
to confirming the results by running simulations.

The fifth chapter is devoted to deriving large deviations inequality for propor-
tions. It allows us to estimate how varying mismatch proportions affects the opti-
mal alignment score.

In the sixth chapter we prove that the two-variable function Bn can be reduced to
the one-variable case. This allows us to prove some basic properties of the two-
variable Bn, while varying only one variable.

When constructing examples, we have used listings from appendix A. Some ex-
amples required slight alteration in code, but changes were trivial and interested
reader can easily reconstruct them.

This thesis is based on author’s own work. Still, it heavily relies on [LMT] and
the supervisor has strongly contributed to proving the results and laying out the
overall backbone of the work.
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Chapter 1

Preliminaries

In this chapter we recall supplementary notation and results needed in
most of the following chapter. These include basics of sequence compar-
ison and introduction to alignment graphs. This chapter relies mostly
on [LMT].

1.1 Basics of Sequence Comparison
Throughout this thesis X = (X1, X2, . . . , Xn), Y = (Y1, Y2, . . . , Yn) and x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn), with n ∈ N being the length of the sequences,
are either two fixed sequences or pairwise independent sequences of iid (indepen-
dent identically distributed) random variables. We reserve x, y for fixed sequences
and X, Y for sequences of random variables. We also let X1 ∼ Y1. Our goal is to
develop a model to quantify the difference between those two sequences.

Each element of the sequences X, Y and x, y is drawn from a finite set A, which
we call an alphabet. Elements of A are called letters.

Definition 1.1. Symmetric and non-constant functional S : A×A→ R is called
a pairwise scoring function.

Pairwise scoring function’s role is to quantify the relationship between sequences
x and y elements. Next example illustrates it.

Example 1.2. Let us fix the alphabet A = {a, b, c}, sequences x = (a, a, b, b, c), y =
(b, b, a, a, c) and the pairwise scoring function as

S(a, a) = 1, S(a, b) = 0, S(a, c) = 0,

S(b, a) = 0, S(b, b) = 1, S(b, c) = 0,

S(c, a) = 0, S(c, b) = 0, S(c, c) = 1.

Pairwise scores of x and y in-line elements are
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x a a b b c
y b b a a c

S(·, ·) 0 0 0 0 1

.

We denote
F := max

(a,b)∈A×A
S(a, b),

as the largest possible score.

Let π = (π1, π2, . . . , πk) and µ = (µ1, µ2, . . . , µk) be two strictly increasing se-
quences of natural numbers, i.e. 1 ≤ π1 < π2 < . . . < πk ≤ n and 0 ≤ k ≤ n.

Definition 1.3. Subsequences (Xπ1 , Xπ2 , . . . , Xπk) and (Yµ1 , Yµ2 , . . . , Yµk) or
(xπ1 , xπ2 , . . . , xπk) and (yµ1 , yµ2 , . . . , yµk) are called the sequences of aligned let-
ters. Remaining letters are called misaligned.

It should be noted that k is the number of aligned letters. An alignment consists
of aligned and misaligned letters. We represent it in a tabular form and set each
misaligned letter in correspondence to an indel (we denote it by −). This allows us
to leave some elements of the sequences “out of comparison” and we are no longer
obligated to only compare in-line elements.

Example 1.4. Let us fix the alphabet A = {a, b} and sequences

x = (a, b),

y = (b, b).

All possible alignments are

x a b
y b b

,
x a − b
y b b − ,

x a b −
y − b b

,

x − a b
y b b − ,

x a − b
y − b b

,
x a b − −
y − − b b

.

We determine each alignment by sequences π and µ. For example we do not
differentiate between the following alignments:

x a b −
y b − b

,
x a − b
y b b − .

We denote the set of all possible alignments, with n ∈ N being the length of
sequences, by

On := {(π, µ) ∈ : 1 ≤ π1 < π2 < . . . πk ≤ n, 1 ≤ µ1 < µ2 < . . . < µk ≤ n, 0 ≤ k ≤ n}.

Definition 1.5. The number

q(π, µ) :=
n− k
n
∈ [0, 1]

is the proportion of gaps of the alignment (π, µ).

7



The average score of aligned letters is defined by

t(π, µ) :=
1

k

k∑
i=1

S(xπi , yµi).

Note that our definition of gap slightly differs from the one that is commonly used
in the sequence alignment literature, where a gap consists of maximal number of
consecutive indels (insertion and deletion) in one side. Our gap actually corre-
sponds to a pair of indels, one in x-side and another in y-side. Since we consider
the sequences of equal length, to every indel in x-side corresponds an indel in y-
side, so considering them pairwise is justified. In other words, the number of gaps
in our sense is the number of indels in one sequence. We also consider a gap price
δ.

Definition 1.6. Given a pairwise scoring function S and the gap price δ, score
of the alignment (π, µ), when aligning x and y is defined by

U δ
(π,µ)(x, y) :=

k∑
i=1

S(xπi , yµi) + δ(n− k).

Score of the alignment can be written down as the convex combination

U δ
(π,µ)(x, y) = n(t(π, µ)(1− q(π, µ)) + δq(π, µ)). (1.1)

In our general scoring scheme δ can also be positive, although usually δ ≤ 0,
penalizing the mismatch. For negative δ, the quantity −δ is usually called the gap
penalty.

Definition 1.7. The optimal alignment score of x and y is defined to be

Ln(δ) := max
(π,µ)∈On

U δ
(π,µ)(x, y).

The alignments achieving the maximum are called optimal. For every δ ∈ R, let
us denote

Bn(δ) :=
Ln(δ)

n
.

Note that to every alignment (π, µ) corresponds an unique pair (t(π, µ), q(π, µ)),
but different alignments can have the same t(π, µ) and q(π, µ), thus from (1.1) we
get that

Bn(δ) = max
(π,µ)∈On

(t(π, µ)(1− q(π, µ)) + δq(π, µ)) = max
(t,q)∈O′n

(t(1− q) + δq), (1.2)

where O′n consists of all possible possible pairs (t, q). In other words, while On
consists of all possible subsequences that produce alignments, O′n consists of all
possible gap proportions and average scores of aligned letters. We usually leave
out arguments (π, µ) and use (t, q) to refer to an alignment.
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Example 1.8. Let us fix sequences

x = (a, b, a, a, b),

y = (b, a, a, b, b)

and the score function as S(a, a) = 1, S(b, b) = 1, S(a, b) = 0. Next, we will
sketch the graph of the function B5.

Figure 1.9: Graph of the function B5

If we fix δ = −1, then B5(δ) =
3

5
and all optimal alignments are

x a b a a − b
y − b a a b b

,
x a b a a b −
y − b a a b b

.

In what follows, we identify alignments with pairs (t, q), such that a pair (t, q)
always corresponds to an alignment (π, µ) of x and y. Let us denote On(δ) for
each δ ∈ R as the set of optimal pairs, i.e. a pair (t, q) ∈ On(δ) if and only if
t(1 − q) + δq = Bn(δ) and (t, q) ∈ O′n. Note that the set On(δ) is not necessarily
a singleton. Let us denote

q
n
(δ) := min{q : (t, q) ∈ On(δ)},
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qn(δ) := max{q : (t, q) ∈ On(δ)}.

If q
n
(δ) = qn(δ), we denote it by

qn(δ) := q
n
(δ) = qn(δ).

Example 1.10. Continuing Example 1.8, we can sketch the graph of q5.

Figure 1.11: Graph of the function q5

If we take δ = 1, then q
5
(δ) 6= q5(δ). All optimal alignments are

x a b a a b −
y − b a a b b

,
x − − − − a b a a b
y b a a b − − − − b

,

x − − a b a a b
y b a a b − − b

,
x − − − − a b a a b
y b a a b − b − − − ,

x − − − a b a a b
y b a a − b − − b

,
x − − − − − a b a a b
y b a a b b − − − − − .

Since each optimal alignment has either 1, 2, 3, 4 or 5 gaps, we can conclude that

q
5
(δ) =

1

5
and q5(δ) = 1. That is in accordance with Figure 1.11.
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1.2 Alignment Graphs
Finding optimal alignments for longer sequences by hand is practically unreason-
able. In this thesis, we use dynamic programming algorithm called Needleman-
Wunsch algorithm to compute optimal alignments of two sequences

x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , yn).

It can be viewed as a procedure for finding a maximum-weight path in a weighted
alignment graph G. The nodes of G are arranged in an (n+1)×(n+1) grid (length
of both sequences are n); rows (columns) are numbered consecutively from top to
bottom (left to right) from 0 to n. We denote the nodes of G by their coordinates
(i, j). Every node has an edge directed to its right neighbor and an edge to its
neighbor below it. These edges have weight δ and they represent an indel in the
alignment. Additionally, for i, j ∈ {1, 2, . . . , n}, there is a diagonal edge directed
into vertex (i, j) from vertex (i− 1, j − 1). The weight of the edge is S(xi, yj) and
it represents an aligned letter pair in the alignment.

Each path Γ from (0, 0) to (n, n) corresponds to a unique alignment. Hence,
we will only consider paths with moves between node (i, j) to (i, j + 1), (i+ 1, j)
or (i + 1, j + 1), for i, j ∈ {0, 1, 2, . . . , n − 1}. All possible paths are displayed in
the Figure 1.12.

Figure 1.12: Paths in an alignment graph

Figure 1.13 displays the alignment graph for x = (b, b, a, c, b, a, c, a, a, b) and y =
(a, b, b, c, a, b, b, a, a, c). Shaded areas are match blocks, which means that there is
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a matching letter pair in the corresponding position in the alignment. The path Γ
shown, corresponds to the alignment

x − b b a c − b − a c a a b
y a b b − c a b b a − a − c

.

(0,0) a b b c a b b a a c

b

b

a

c

b

a

c

a

a

b

(10,10)

Figure 1.13: The alignment graph

Figure 1.13 can be made more thorough using different colors. For example, mis-
match of letters a, b and b, c can be of different colors. This way, the model can be
generalized for all different score functions.

Following pseudocode describes how Needleman-Wunsch algorithm implements
alignment graphs to find the optimal alignment score. It also prints an optimal
alignment as a side effect.
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Algorithm 1: Neeldeman-Wunsch
Input: Two sequences x and y with length n
Output: Optimal alignment score α
for i = 0, 1, 2, . . . , n do
F (i, 0)← iδ

end for
for j = 0, 1, 2, . . . , n do
F (0, j)← jδ

end for
for i = 1, 2, . . . , n do
for j = 1, 2, . . . , n do
F (i, j)← max{F (i− 1, j − 1) + S(xi, yj), F (i− 1, j)− δ, F (i, j − 1)− δ}
Set backtrace T (i, j) to the maximizing pair (i′, j′)

end for
end for
The score is α← F (n, n)
repeat
if T (i, j) = (i− 1, j − 1) then

print
(
xi
yj

)
else if T (i, j) = (i− 1, j) then

print
(
xi
−

)
else
print

(
−
yj

)
end if
Set (i, j)← T (i, j)

until (i, j) = (0, 0).

Algorithm 1 stores (n + 1) × (n + 1) numbers. Each number takes a constant
number of calculations to compute: three sums and a max. Hence, for filling the
matrix F , the algorithm requires O(n2) time and memory. Given the filled matrix,
the construction of the alignment is done in time O(n). In this thesis, we restricted
use of algorithm 1 to n = 1000.

In order to sketch the graph of the function Bn (depending on one variable), the
author developed an algorithm, that sketches the graph with an adjustable error
bound. Error bound describes the maximum difference between the approximated
and the exact graph at each interval’s middle point.
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Algorithm 2: Graph Bn

Input: Interval [a, b], Bn

∣∣∣
a
, Bn

∣∣∣
b
and error bound ε

Output: Graph of Bn

Calculate Bn

∣∣∣
a+b
2

if

∣∣∣∣∣∣
Bn

∣∣∣
a
−Bn

∣∣∣
b

2
−Bn

∣∣∣
a+b
2

∣∣∣∣∣∣ > ε then

Call algorithm 2 with Interval
[
a,
a+ b

2

]
, Bn

∣∣∣
a
, Bn

∣∣∣
a+b
2

and error bound ε

Call algorithm 2 with Interval
[
a+ b

2
, b

]
, Bn

∣∣∣
a+b
2

, Bn

∣∣∣
b
and error bound ε

else
Sketch a straight line through Bn

∣∣∣
a
and Bn

∣∣∣
b
on [a, b]

end if

1.3 Miscellaneous
Definition 1.14. Let X1, X2, . . . be a sequence of random variables defined on a
probability space Ω. We say X1, X2, . . . almost surely converges (denoted a.s.)
to a random variable X, defined on Ω, if

P
({
ω ∈ Ω: lim

n
Xn(ω) 6= X(ω)

})
= 0.

In this thesis, when considering properties on a plane, we say that property A
almost everywhere holds (a.e.), if

Leb({x ∈ R2 : A(x) does not hold}) = 0.

Definition 1.15. Function f : D → R is called affine, if there exists a linear
function g : D → R and a constant C ∈ R, such that for all x ∈ D

f(x) = g(x) + C.
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Chapter 2

Gap price as a variable

In this chapter we introduce basic tools for analysing the change of
optimal alignments, when varying the gap price. Our main focus is on
the score of the optimal alignment and its rate of change in relation
to the gap price. Examples in this chapter help with visualizing and
confirming the theory.

Lemma 2.1 (see, e.g., [LMT] claim 2.1). The function δ 7→ Bn(δ) is non-decreasing,
piecewise linear and convex.

Apart from Bn being piecewise linear, it should be mentioned that the number of
intervals, in which Bn is linear, is finite. This is a result of sequences and alphabet
being finite.

Lemma 2.2 (see, e.g., [CZ], pages 6-7). Let sequences x and y be of length n. The
number of different alignments1 is

2n∑
k=n

(
k

n

)(
n

2n− k

)
.

Example 2.3. The following table demonstrates the number of alignments, de-
pending on the size of the sequences.

n 1 2 3 4 5 6 7 8
number of alignments 3 13 63 321 1683 8989 48639 265729

Table 2.4: Number of alignments

It should be noted that calculating Bn(δ) without an efficient algorithm is prac-
tically impossible. Even for small sequence sizes (n ≈ 200), the number of align-
ments is greater than the number of atoms in the universe. Fortunately we have
dynamic programming algorithms, like Needleman-Wunch algorithm, which can
calculate Bn(δ) with complexity O(n2) (see, e.g., [CZ] page 39).

1In this case we are also counting different permutations of indels that correspond to the same
alignment.
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Lemma 2.5 (see, e.g., [LMT] Claim 2.2). For every δ ∈ R, one-sided derivatives
are

B′n(δ−) = lim
∆δ→0−

Bn(δ + ∆δ)−Bn(δ)

∆δ
= q

n
(δ),

B′n(δ+) = lim
∆δ→0+

Bn(δ + ∆δ)−Bn(δ)

∆δ
= qn(δ).

Corollary 2.6. Functions qn and q
n
satisfy the following properties:

1. Both functions are piecewise constant and non-decreasing.

2. Function qn is right continuous and q
n
is left continuous.

3. Following equalities hold:

lim
δ→∞

qn(δ) = lim
δ→∞

q
n
(δ) = 1,

lim
δ→−∞

qn(δ) = lim
δ→−∞

q
n
(δ) = 0.

Proof. We can conclude from Lemma 2.2 that Bn is not differentiable only in
finitely many values, since there is finite amount of possible alignments. Let δ1 <
δ2 < . . . < δK be such values. Hence, for every

(a, b) ∈ {(−∞, δ1, ), (δ2, δ3), . . . , (δK−1, δK), (δK ,∞)},

function Bn

∣∣
(a,b)

is linear and

Bn(δ) = t(1− q) + δq,

for all δ ∈ (a, b) and fixed (t, q) ∈ On(δ). Therefore On(δ) is a singleton for
δ ∈ (a, b) and we can conclude that

qn

∣∣∣
(a,b)

= q
n

∣∣∣
(a,b)

.

Since
B′n

∣∣∣
(a,b)

(δ) = q,

qn, qn are piecewise constant in R. Functions qn and q
n
are non-decreasing, since

increasing gap price, we increase the number of gaps in the optimal alignments
and the proportion of gaps cannot decrease.

Next, we will prove the second property. Functions qn and q
n
are left and right

continuous in every interval

(a, b) ∈ {(−∞, δ1, ), (δ2, δ3), . . . , (δK−1, δK), (δK ,∞)}.

Therefore, we only need to show that

lim
δ→δi+

qn(δ) = qn(δi),
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lim
δ→δi−

q
n
(δ) = q

n
(δi),

for all i ∈ {1, 2, . . . , K}. Let us fix i ∈ {1, 2, . . . , K − 1}, such that

lim
δ→δi+

qn(δ) = qn(δi + ε) =: q,

for all ε ∈ (0, δi+1 − δi) (for i = K we take ε ∈ (0,∞)) and denote t := tn(δi + ε).
We know that

Bn(δi + ε) = t(1− q) + q(δi + ε)

and using Bn continuity, we can conclude from

lim
ε→0+

Bn(δi + ε) = Bn(δi),

that (t, q) ∈ On(δi). Since qn is non-decreasing, we get q = qn(δi), which means
that qn is right continuous.
Proof for left-continuity is analogous.

Lastly, we will prove the third property. If δ > F , the optimal alignment con-
sists only of gaps and

lim
δ→∞

qn(δ) = lim
δ→∞

q
n
(δ) = 1.

If δ < −nF , each alignment with at least one gap is negative. Therefore the
optimal alignment has no gaps and

lim
δ→−∞

qn(δ) = lim
δ→−∞

q
n
(δ) = 0.

Lemma 2.7. There is a constant δ0 ∈ R, such that Bn is strictly increasing in
(δ0,∞) and

δ0 = min{δ : qn(δ) > 0}.

Proof. Let us assume Bn(δ1) < Bn(δ2) for δ1 < δ2 and Bn is not strictly increasing
in (δ2,∞). In other words, there exists δ3 > δ2, such that Bn(δ2) = Bn(δ3). Let us
fix

λ =
δ3 − δ2

δ3 − δ1

∈ (0, 1),

then δ2 = λδ1 + (1− λ)δ3 and

Bn(δ2) = Bn(λδ1 + (1− λ)δ3)

> Bn(δ1)

= λBn(δ1) + (1− λ)Bn(δ1)

> λBn(δ1) + (1− λ)Bn(δ3),

which is a contradiction with Bn being convex. Therefore there exists a constant
δ0, such that Bn is strictly increasing in (δ0,∞).
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For all δ′1, δ
′
2 ∈ (min{δ : qn(δ) > 0},∞), such that δ′1 < δ′2

Bn(δ′1) = max
(t,q)∈O′n

(t(1− q) + δ′1q)

= t∗(1− q∗) + δ′1q
∗

< t∗(1− q∗) + δ′2q
∗ (2.1)

≤ max
(t,q)∈O′n

(t(1− q) + δ′2q)

= Bn(δ′2),

where (t∗, q∗) ∈ O′n is an optimal pair and (2.1) follows from q∗ 6= 0, which we can
always find, since qn(δ′1) > 0 and qn(δ′2) > 0. It should be noted that the existence
of

min{δ : qn(δ) > 0}

comes from qn right-continuouty.

Example 2.8. Let us fix the alphabet as A = {a, b, c} and sequences

x = (a, c, b, b, c, b, a, a, a, c, b, c, b, b, a, a, c, b, a, c),

y = (c, b, b, b, a, c, a, b, a, c, a, b, c, b, b, c, a, a, c, b).

The score function is appointed as

S(a, b) = 0, S(a, c) = 0, S(b, c) = 0,

S(a, a) = 1, S(b, b) = 2, S(c, c) = 3.

Next, we will sketch the graph of B20.
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Figure 2.9: Graph of the function B20

It is easier to notice each value, in which optimal alignments change, if we sketch
the graph of q20. In each constant piece of q20, optimal alignment stays the same
and the change in the value of B20 comes only from the gap price δ.
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Figure 2.10: Graph of the function q20

We can see from figure 2.10, that δ0 ≈ −10.5, which is defined in Lemma 2.7.
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Chapter 3

Proportion of Mismatches

This chapter is devoted to introducing the theory that covers the effect
of varying score of mismatch has on the optimal alignment score. In
addition, we also define an optimality region and illustrate the theory
with numerous examples. We show that many analogous results hold,
to varying the gap price, that we described in the previous chapter.

In this chapter, we fix the alphabet as A = {a, b} and the score function S : A×A→
R as

S(a, a) = S(b, b) = 1, S(a, b) = S(b, a) = ζ.

We have decided to restrict our theory by fixing the score of matched letters and
letting the score of mismatched letters vary. This can be thought of as a first
step of generalization, extension to only varying the gap price. Theory can be
developed further by considering non-binary alphabets and letting all parameters
of the score function S vary, in addition to the gap price.

Definition 3.1. Let kmatch denote the number of matches. The number

p(π, µ) :=
k − kmatch

n
,

where k is the number of aligned letters, is called the proportion of mismatches.

Proportion of mismatches depends on the alignment (π, µ). Generally, we abandon
the alignment in order to simplify notation. Score of the alignment can written as

U δ,ζ
(π,µ)(x, y) = n((1− p− q) + ζp+ δq)

= n(1 + p(ζ − 1) + q(δ − 1)).

We define the two-variable function Bn : R2 → R as

Bn(ζ, δ) = max
(p,q)∈O′n

(1 + p(ζ − 1) + q(δ − 1)),

The next example displays the behaviour of the two-variable function Bn and
proportions of gaps and mismatches. It turns out that the behaviour is similar to
the one-variable case, that we already covered in Example 1.8 and Example 2.8.
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Example 3.2. Let us fix sequences

x = (a, b, a, a, b, a, b, b, b, a, b, b),

y = (b, a, b, b, b, a, a, b, a, b, b, a).

Next, we will fix ζ∗ = 0.5 and sketch graphs of the one-variable functions δ 7→
B12(ζ∗, δ) and δ 7→ q12(ζ∗, δ).

Figure 3.3: Graphs of δ 7→ B12(ζ∗, δ) and δ 7→ q12(ζ∗, δ)

Let us fix δ∗ = 0.25. We can sketch graphs of the functions ζ 7→ B12(ζ, δ∗) and
ζ 7→ p12(ζ, δ∗).

Figure 3.4: Graphs of ζ 7→ B12(ζ, δ∗) and ζ 7→ p12(ζ, δ∗)

It turns out that considering Bn, considered as a two-variable function, preserves
some fundamental properties from the one-variable case.
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Lemma 3.5. Two-variable function Bn : R2 → R is continuous.

Proof. Let us fix sequences ζi → ζ and δi → δ. Then for every (ζ, δ) ∈ R2

lim
i→∞

Bn(ζi, δi) = lim
i→∞

max
(p,q)∈O′n

(1 + p(ζi − 1) + q(δi − 1))

= max
(p,q)∈O′n

lim
i→∞

(1 + p(ζi − 1) + q(δi − 1)) (3.1)

= max
(p,q)∈O′n

(1 + p(ζ − 1) + q(δ − 1))

= Bn(ζ, δ).

Since the maximum is taken over finite number of possible alignments, function
Bn is defined as a maximum of finite number of affine functions. That justifies the
equality (3.1).

Definition 3.6. Set of 2-tuples On(ζ, δ) is called the set of optimal 2-tuples,
corresponding to sequences x, y and parameters n, ζ, δ, if

(p, q) ∈ On(ζ, δ)⇔ Bn(ζ, δ) = 1 + p(ζ − 1) + q(δ − 1),

where p, q corresponds to an alignment of x and y.

Let us denote
pn(ζ, δ) := max{p : (p, q) ∈ On(ζ, δ)},
p
n
(ζ, δ) := min{p : (p, q) ∈ On(ζ, δ)}.

For convenience, we write

pn(ζ, δ) := pn(ζ, δ) = p
n
(ζ, δ).

3.1 Optimality Regions
It turns out that decomposition of On(ζ, δ) is surprisingly structured. Our main
area of interest is in values (ζ, δ) ∈ R2, where On(ζ, δ) is not a singleton, hence the
optimal alignment is not uniquely determined at (ζ, δ). We refer to [GBN] page
314 for the structure of sets, where On(ζ, δ) is a singleton. They are semi-infinite
cones.

Definition 3.7. Each convex polygon {(ζ, δ) ∈ R2 : On(ζ, δ) is a singleton} is
called a optimality region.

Lemma 3.8 (see, e.g., [GBN], page 319). The number of optimality regions is
bounded by O(n2/3).

Lemma 3.9 (see, e.g., [BSS], Lemma 3 and note that β = −1

2
δ and α = −ζ). All

optimality regions in
{(ζ, δ) ∈ R2 : ζ < 0, δ < 0}

are semi-infinite cones and are delimited by the coordinates axes or by lines of the

form −1

2
δ = c−

(
c+

1

2

)
ζ for some constant c ∈ R.
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3.2 Properties of the Two-variable Function Bn

The next lemma is generalization of Claim 2.1 from [BSS] for the two-variable
case.

Lemma 3.10. The function Bn is piecewise affine, convex and non-decreasing in
relation to each of its variables.

Proof. Using Lemma 3.8, we know that the optimal alignment changes only in
finitely many optimality regions. Let us denote them as V1, V2, . . . , Vj, j ∈ N.
Then for each i ∈ {1, 2, . . . , j}

Bn

∣∣
Vi

(ζ, δ) = 1 + p(ζ − 1) + q(δ − 1),

for (p, q) corresponding to the optimality region Vi. If λ ∈ R and

(ζ1, δ1), (ζ1, δ2), (ζ1 + λζ2, δ1 + λδ2) ∈ Vi,

then Bn is affine, since

Bn(ζ1 + λζ2, δ1 + λδ2) + λ(1 + p+ q) = 1 + p(ζ1 + λζ2 − 1) + q(δ1 + λδ2 − 1)

+ λ(1 + p+ q)

= 1 + p(ζ1 − 1) + q(δ1 − 1)

+ λ(1 + p(ζ2 − 1) + q(δ2 − 1))

= Bn(ζ1, δ1) + λBn(ζ2, δ2).

Since all optimality regions are convex, Bn is piecewise affine in each of them.

For the convexity, let us fix λ ∈ (0, 1), (ζ1, δ1), (ζ2, δ2) ∈ R2 and denote

(ζ∗, δ∗) := λ(ζ1, δ1) + (1− λ)(ζ2, δ2).

For a fixed (p∗, q∗) ∈ On(ζ∗, δ∗), we have

Bn(ζ∗, δ∗) = Bn(λ(ζ1, δ1) + (1− λ)(ζ2, δ2))

= 1 + p∗(λζ1 + (1− λ)ζ2 − 1) + q∗(λδ1 + (1− λ)δ2 − 1). (3.2)

Since

Bn(ζ1, δ1) = max
(p,q)∈O′n

(1 + p(ζ1 − 1) + q(δ1 − 1)) ≥ 1 + p∗(ζ1 − 1) + q∗(δ1 − 1),

Bn(ζ2, δ2) = max
(p,q)∈O′n

(1 + p(ζ2 − 1) + q(δ2 − 1)) ≥ 1 + p∗(ζ2 − 1) + q∗(δ2 − 1).

we get from (3.2)

Bn(ζ∗, δ∗) ≤ λBn(ζ2, δ1) + (1− λ)Bn(ζ2, δ2).

24



Therefore Bn is convex.

For the non-decreasing property, we fix ζ∗ ∈ R. For all δ0 < δ1

Bn(ζ∗, δ0) = max
(p,q)∈O′n

(1 + p(ζ∗ − 1) + q(δ0 − 1))

= 1 + p∗(ζ∗ − 1) + q∗(δ0 − 1)

≤ 1 + p∗(ζ∗ − 1) + q∗(δ1 − 1)

≤ max
(p,q)∈O′n

(1 + p(ζ∗ − 1) + q(δ1 − 1))

= Bn(ζ∗, δ1),

where (p∗, q∗) ∈ On(ζ∗, δ0). Similarly, when fixing δ∗ ∈ R, for all ζ0 < ζ1

Bn(ζ0, δ
∗) = max

(p,q)∈O′n
(1 + p(ζ1 − 1) + q(δ∗ − 1))

= 1 + p∗∗(ζ0 − 1) + q∗∗(δ∗ − 1)

≤ 1 + p∗∗(ζ1 − 1) + q∗∗(δ∗ − 1)

≤ max
(p,q)∈O′n

(1 + p(ζ1 − 1) + q(δ∗ − 1))

= Bn(ζ1, δ
∗),

where (p∗∗, q∗∗) ∈ On(ζ0, δ
∗).

Example 3.11. Let us fix sequences

x = (a, a, b, a, b, b, a, b, a, a),

y = (b, a, b, a, a, a, b, a, a, b).

Let us fix δ∗ = −20 and sketch the graph of ζ 7→ B10(ζ, δ∗).
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Figure 3.12: Graph of ζ 7→ B10(ζ, δ∗)

We can approximate the values ζ1, ζ2, ζ3 ∈ R, at which the optimal alignment
changes and Bn is not differentiable:

(ζ1, δ
∗) ≈ (−20,−20), (ζ2, δ

∗) ≈ (−4,−20), (ζ3, δ
∗) ≈ (12,−20).

Using these points on the plane and since Lemma 3.9 gives us the general form
of all lines, we can sketch optimality regions. Since each line goes through (1, 1)
(see, e.g., [GBN], Theorem 4.1.), we can use approximated (ζ1, δ

∗) and (ζ2, δ
∗) and

draw lines through those two points, to sketch optimality regions in the lower left
quarter of the plane.
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Figure 3.13: Optimality regions

The next lemma is a generalization of Claim 2.2 from [LMT], for the two-variable
case. We denote one-sided partial derivatives as

∂Bn(ζ−, δ)

∂ζ
:= lim

h→0−

Bn(ζ + h, δ)−Bn(ζ, δ)

h
,

∂Bn(ζ+, δ)

∂ζ
:= lim

h→0+

Bn(ζ + h, δ)−Bn(ζ, δ)

h
,

∂Bn(ζ, δ−)

∂δ
:= lim

h→0−

Bn(ζ, δ + h)−Bn(ζ, δ)

h
,

∂Bn(ζ, δ+)

∂δ
:= lim

h→0+

Bn(ζ, δ + h)−Bn(ζ, δ)

h
.

Lemma 3.14. For all (ζ, δ) ∈ R2, one-sided derivatives of Bn are

a)
∂Bn(ζ−, δ)

∂ζ
= p

n
(ζ, δ), b)

∂Bn(ζ+, δ)

∂ζ
= pn(ζ, δ),

c)
∂Bn(ζ, δ−)

∂δ
= q

n
(ζ, δ), d)

∂Bn(ζ, δ+)

∂δ
= qn(ζ, δ).
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Therefore On(ζ, δ) is a singleton, if function Bn has all its partial derivatives at
(ζ, δ).

Proof. We start by proving equation a). Let us fix (ζ∗, δ∗) ∈ R2, s1 > 0 and
(p∗, q∗) ∈ On(ζ∗, δ∗), thus

Bn(ζ∗, δ∗ + s1) = max
(p,q)∈O′n

(1 + p(ζ∗ − 1) + q(δ∗ + s1 − 1))

≥ 1 + p∗(ζ∗ − 1) + q∗(δ∗ + s1 − 1)

= Bn(ζ∗, δ∗) + s1q
∗, (3.3)

similarly we get

Bn(ζ∗, δ∗ − s1) ≥ 1 + p∗(ζ∗ − 1) + q∗(δ∗ − s1 − 1) = Bn(ζ∗, δ∗)− s1q
∗.

Hence

Bn(ζ∗, δ∗)−Bn(ζ∗, δ∗ − s1)

s1

≤ q∗ ≤ Bn(ζ∗, δ∗ + s1)−Bn(ζ∗, δ∗)

s1

.

Letting s1 → 0+ and using the Sandwich Theorem, we get

∂Bn(ζ∗, δ∗−)

∂δ
≤ q∗ ≤

∂Bn(ζ∗, δ∗+)

∂δ
. (3.4)

Existence of one-sided partial derivatives comes from Bn being convex (see, e.g.,
[Roc] Theorem 23.1). Since (3.4) holds for any optimal pair (p, q) ∈ On(ζ∗, δ∗), we
get

∂Bn(ζ∗, δ∗−)

∂δ
≤ q

n
(ζ∗, δ∗) ≤ qn(ζ∗, δ∗) ≤

∂Bn(ζ∗, δ∗+)

∂δ
.

Therefore the partial derivative exists at (ζ∗, δ∗), if On(ζ∗, δ∗) is a singleton. It is
enough to show that there exists (p, q) ∈ On(ζ∗, δ∗), such that

∂Bn(ζ∗, δ∗−)

∂δ
= q

n
(ζ∗, δ∗). (3.5)

Since Bn is piecewise affine, for every small ε1 > 0, the optimal alignment does
not change at (ζ∗, δ∗ − ε1) and Bn is differentiable. Let us denote

q1 := q(ζ∗, δ∗ − ε2) =
∂Bn(ζ∗, δ∗−)

∂δ
,

p1 := p(ζ∗, δ∗ − ε1),

Thus, for every ε1 > 0 small enough there exists (p1, q1) ∈ On(ζ∗, δ∗ − ε1), such
that

Bn(ζ∗, δ∗ − ε1) = 1 + p1(ζ∗ − 1) + q1(δ∗ − ε1 − 1).

From Lemma 3.5, we know that Bn is a continuous function, hence

lim
ε1→0+

Bn(ζ∗, δ∗ − ε1) = Bn(ζ∗, δ∗) = 1 + p1(ζ∗ − 1) + q1(δ∗ − 1).
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Therefore (p1, q1) ∈ On(ζ∗, δ∗), hence (3.5) holds. With similar arguments one can
show b). Next, we will prove c). Let us fix s2 > 0. With similar arguments as in
(3.3), we get

Bn(ζ∗ + s2, δ
∗) ≥ 1 + p∗(ζ∗ + s2 − 1) + q∗(δ∗ − 1) = Bn(ζ∗, δ∗) + s2p

∗,

Bn(ζ∗ − s2, δ
∗) ≥ 1 + p∗(ζ∗ − s2 − 1) + q∗(δ∗ − 1) = Bn(ζ∗, δ∗)− s2p

∗.

Hence

Bn(ζ∗, δ∗)−Bn(ζ∗ − s2, δ
∗)

s2

≤ p∗ ≤ Bn(ζ∗ + s2, δ
∗)−Bn(ζ∗, δ∗)

s2

.

Letting s2 → 0+ and using the Sandwich Theorem, we get

∂Bn(ζ∗−, δ
∗)

∂ζ
≤ p∗ ≤

∂Bn(ζ∗+, δ
∗)

∂ζ
. (3.6)

Existence of one-sided partial derivatives comes from Bn being convex (see, e.g.,
[Roc] Theorem 23.1). Since (3.6) holds for any optimal pair (p, q) ∈ On(ζ∗, δ∗), we
get

∂Bn(ζ∗−, δ
∗)

∂ζ
≤ p

n
(ζ∗, δ∗) ≤ pn(ζ∗, δ∗) ≤

∂Bn(ζ∗+, δ
∗)

∂ζ
.

Therefore the partial derivative exists at (ζ∗, δ∗), if On(ζ∗, δ∗) is a singleton. It is
enough to show that there exists (p, q) ∈ On(ζ∗, δ∗), such that

∂Bn(ζ∗−, δ
∗)

∂ζ
= p

n
(ζ∗, δ∗). (3.7)

Since Bn is piecewise affine, for every small ε2 > 0, the optimal alignment does
not change at (ζ∗ − ε2, δ

∗) and Bn is differentiable. Let us denote

q2 := q(ζ∗ − ε2, δ
∗),

p2 := p(ζ∗ − ε2, δ
∗) =

∂Bn(ζ∗−, δ
∗)

∂ζ
,

Thus, for every ε2 > 0 small enough there exists (p2, q2) ∈ On(ζ∗ − ε2, δ
∗), such

that
Bn(ζ∗ − ε2, δ

∗) = 1 + p2(ζ∗ − ε2 − 1) + q2(δ∗ − 1).

From Lemma 3.5, we know that Bn is a continuous function, hence

lim
ε2→0+

Bn(ζ∗ − ε2, δ
∗) = Bn(ζ∗, δ∗) = 1 + p2(ζ∗ − 1) + q2(δ∗ − 1).

Therefore (p2, q2) ∈ On(ζ∗, δ∗), hence (3.7) holds. With similar arguments one can
show d).
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Example 3.15. In this example we demonstrate the geometric interpretation of
p
n
and pn. Let us fix sequences

x = (a, b, a, a, b, a, b, b, b, a, a, b, a, b, a, a, b, a, a, b),

y = (b, a, b, b, a, b, a, a, b, a, b, b, b, a, b, a, a, b, a, b)

and the gap price as δ∗ = 0.5. Next, we will sketch graphs of the one-variable
functions ζ 7→ p20(ζ, δ∗) and ζ 7→ B20(ζ, δ∗).

Figure 3.16: Graphs of the functions ζ 7→ p20(ζ, δ∗) and ζ 7→ B20(ζ, δ∗)

We can approximate the values ζ ∈ R, at which p
20

(ζ, δ∗) 6= p20(ζ, δ∗), from the
graph in Figure 3.16:

p20(0.5, δ∗) ≈ 0.05, p
20

(0.5, δ∗) ≈ 0,

p20(0.75, δ∗) ≈ 0.25, p
20

(0.75, δ∗) ≈ 0.05,

p20(0.9, δ∗) ≈ 0.7, p
20

(0.9, δ∗) ≈ 0.25,

p20(1.25, δ∗) ≈ 0.8, p
20

(1.25, δ∗) ≈ 0.7,

p20(1.5, δ∗) ≈ 0.85, p
20

(1.5, δ∗) ≈ 0.8.

Fixing δ∗∗ = −2, gives us the following graphs:
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Figure 3.17: Graphs of the functions ζ 7→ p20(ζ, δ∗∗) and ζ 7→ B20(ζ, δ∗∗)

We can approximate the values ζ ∈ R, at which p
20

(ζ, δ∗∗) 6= p20(ζ, δ∗∗) from the
graph in Figure 3.17:

p20(−2, δ∗∗) ≈ 0.05, p
20

(−2, δ∗∗) ≈ 0,

p20(−0.5, δ∗∗) ≈ 0.25, p
20

(−0.5, δ∗∗) ≈ 0.05,

p20(0.75, δ∗∗) ≈ 0.7, p
20

(0.75, δ∗∗) ≈ 0.25,

p20(2.5, δ∗∗) ≈ 0.8, p
20

(2.5, δ∗∗) ≈ 0.7,

p20(4, δ∗∗) ≈ 0.85, p
20

(4, δ∗∗) ≈ 0.8.
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Chapter 4

The Asymptotic Proportion of
Mismatches and Gaps

Following [LMT], we prove analogous results for asymptotic proportion
of mismatches. We prove that Bn converges almost surely in R2 and
that the limit function b is differentiable almost everywhere, similarly
to the one-variable case. The second part of the chapter is devoted to
simulations, that illustrate the geometric meaning of previous results in
this chapter.

4.1 Properties of the Two-variable Limit Function
b

Following theorem and lemma are subsidiary results, which we use to prove almost
surely convegence.

Theorem 4.1 (Kingman’s Subadditive Ergodic Theorem). (see, e.g., [Lem] Teo-
reem 6.10). Let X1, X2, . . . be iid random variables. Let gn, n ∈ N be functions,
such that

E|gn(X1, X2, . . .)| <∞, ∀n ∈ N

and

gm+v(X1, X2, . . .) ≤ gm(X1, X2, . . .) + gv(Xm+1, Xm+2, . . .),∀m, v ∈ N.

Then there exists a constant c ∈ R, such that

lim
n→∞

1

n
g(X1, X2, . . .) = c, a.s. and in L1.

Kingman’s subadditive ergodic theorem holds under more general conditions, but
for this thesis, we have opted for less generalized version.
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Lemma 4.2. For all parameters (ζ, δ) ∈ R2 and sequences of length m, v ∈ N,
where Bm+v is calculated from consequently attaching first m length sequence to
the second v length sequence. Following inequality holds

(m+ v)Bm+v(ζ, δ) ≥ mBm(ζ, δ) + vBv(ζ, δ).

Proof. Let us fix parameters (ζ, δ) ∈ R2, sequences

xm = (x1, x2, . . . , xm),

ym = (y2, y2, . . . , ym),

xv = (xm+1, xm+2, . . . , xm+v),

yv = (ym+1, ym+2, . . . , ym+v),

their optimal pairs (pm, qm), (pv, qv) and number of aligned letters km, kv. Con-
sidering sequences

x = (x1, x2, . . . , xm−1, xm, xm+1, . . . , xm+v),

y = (y1, y2, . . . , ym−1, ym, ym+1, . . . , ym+v),

obviously (pm + pv, qm + qv) ∈ O
′
m+v and

(m+ v)Bm+v(ζ, δ) = max
(p,q)∈O′n

(k + pζ + qδ)

≥ (km + kv + (pm + pv)ζ + (qm + qv)δ)

= km + pmζ + qmδ + kv + pvζ + qvδ

= mBm(ζ, δ) + vBv(ζ, δ).

Lemma 4.3. There exists a limit function b : R2 → R, such that for all (ζ, δ) ∈ R2

lim
n→∞

Bn(ζ, δ) = b(ζ, δ), a.s..

Proof. Let us fix parameters (ζ, δ) ∈ R2 and define functions

gn(x1, x2, . . . , xn; y1, y2, . . . , yn) := −nBn(ζ, δ)x1,x2,...,xn;y1,y2,...,yn ,

for n ∈ N, where Bn(ζ, δ)x1,x2,...,xn;y1,y2,...,yn denotes Bn(ζ, δ) for sequences x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). Lemma 4.2 gives us

gm+v(x1, x2, . . . xm+v; y1, y2, . . . , ym+v) ≤ gm(x1, x2, . . . , xm; y1, y2, . . . , ym)

+ gv(xm+1, xm+2, . . . , xm+v;

ym+1, ym+2, . . . , ym+v).

For each m ∈ N there are finite amount of sequences x = (x1, x2, . . . , xm), y =
(y1, y2, . . . , ym) and for all sequences of length m

|gm(x1, x2, . . . , xm; y1, y2, . . . , ym)| ≤ m(|ζ|+ |δ|+ 1). (4.1)
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Hence
E|gm(X1, X2, . . . , Xm;Y1, Y2, . . . , Ym)| <∞.

Since (Xi, Yi), i ∈ N, are also iid random variables, Theorem 4.1 conditions are
met and we can conclude that

lim
n→∞

gn(X1, X2, . . . , Xn;Y1, Y2, . . . , Yn)

n
= lim

n→∞
−Bn(ζ, δ)

= −b(ζ, δ), a.s.,

where b(ζ, δ) is a constant depending on parameters (ζ, δ).

Lemma 4.4. The limit function b : R2 → R is convex in R2.

Proof. We know from Lemma 3.10 that Bn is convex for all n ∈ N. For every
(ζ1, δ1), (ζ2, δ2) ∈ R2 and λ ∈ (0, 1)

Bn(λζ1 + (1− λ)ζ2, λδ1 + (1− λ)δ2) ≤ λBn(ζ1, δ1) + (1− λ)Bn(ζ2, δ2).

Letting n→∞ and using Lemma 4.3, we get

b(λζ1 + (1− λ)ζ2, λδ1 + (1− λ)δ2) = lim
n→∞

Bn(λζ1 + (1− λ)ζ2, λδ1 + (1− λ)δ2)

≤ lim
n→∞

(λBn(ζ1, δ1) + (1− λ)Bn(ζ2, δ2)

= λb(ζ1, δ1) + (1− λ)b(ζ2, δ2).

Hence the limit function b is convex in R2.

Lemma 4.5. Following holds for the limit function b : R2 → R:

P

 ⋃
(ζ,δ)∈R2

{
ω : lim

n→∞
Bn(ζ, δ)(ω) = b(ζ, δ)

} = 1 (4.2)

Proof. We leave out the argument ω to simplify notation. We know from Lemma
4.3, that for each (ζ, δ) ∈ R2

P
({

lim
n→∞

Bn(ζ, δ) = b(ζ, δ)
})

= 1.

Considering a dense countable subset Q×Q ⊂ R2 and using countable additivity
of probability, we get

P

 ⋃
(ζ,δ)∈Q×Q

{
lim
n→∞

Bn(ζ, δ) 6= b(ζ, δ)
} =

∑
(ζ,δ)∈Q×Q

P
({

lim
n→∞

Bn(ζ, δ) 6= b(ζ, δ)
})

= 0. (4.3)

Function b is continuous, since it is convex, which is stated by Lemma 4.4. Also,
Q×Q is dense in R2 and using (4.3), we get (4.2).

Apart from the convergence of Bn, we are also interested in the behaviour of the
proportions, if n → ∞. In the following section we look into the properties of
asymptotic proportions.
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4.2 Differentiability of b
Lemma 4.6. (see, e.g., [LMT] page 6). Functions’ δ 7→ Bn(δ), n ∈ N, convergence
Bn → b is uniform in R.

Uniform convergence of δ 7→ Bn(δ) in R does not guarantee the convergence of
partial derivatives. Uniform convergence of convex functions only implies the
convergence of one-sided partial derivatives at values, where b is differentiable.
There are examples of uniformly converging sequences of functions with diverging
sequence of one-sided derivatives. The following example demonstrates this.

Example 4.7. Let fn : R→ R, n ∈ N be a sequence of convex functions

fn(x) =

∣∣∣∣x− (−1)n

n

∣∣∣∣ .
Using reverse triangle inequality, we get∣∣∣∣∣∣∣∣∣

∣∣∣∣x− (−1)n

n

∣∣∣∣︸ ︷︷ ︸
fn(x)

− |x|︸︷︷︸
f(x)

∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣x− (−1)n

n
− x
∣∣∣∣ =

1

n
,

hence fn → f converges uniformly in R. One sided derivatives do not converge at
x = 0, since

f ′n(0+) = (−1)n,

f ′n(0−) = (−1)n.

Next, we will consider Bn as a two-variable function again. Instead of convergence
of one-sided derivatives for b, we have the following inequalities.

Lemma 4.8. Following inequalities hold:1

∂b(ζ, δ−)

∂δ
≤ lim inf

n
q
n
(ζ, δ) ≤ lim sup

n
qn(ζ, δ) ≤ ∂b(ζ, δ+)

∂δ
, a.e.

∂b(ζ−, δ)

∂ζ
≤ lim inf

n
p
n
(ζ, δ) ≤ lim sup

n
pn(ζ, δ) ≤ ∂b(ζ+, δ)

∂ζ
, a.e.

Therefore if b has partial derivatives at (ζ, δ), then following proportions converge,
as n→∞:

q
n
(ζ, δ)→ ∂b(ζ, δ)

∂δ
and qn(ζ, δ)→ ∂b(ζ, δ)

∂δ
, a.s.

p
n
(ζ, δ)→ ∂b(ζ, δ)

∂ζ
and pn(ζ, δ)→ ∂b(ζ, δ)

∂ζ
, a.s.

1First line of inequalities is analogously proven in [LMT] (3.2).
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Proof. For all (ζ, δ) ∈ R2 we have

∂b(ζ, δ−)

∂δ
= lim

s→0−

b(ζ, δ + s)− b(ζ, δ)
s

= lim
s→0−

lim
n→∞

Bn(ζ, δ + s)−Bn(ζ, δ)

s

≤ lim inf
n→∞

lim
s→0−

Bn(ζ, δ + s)−Bn(ζ, δ)

s
(4.4)

= lim inf
n→∞

q
n
(ζ, δ)

≤ lim sup
n→∞

qn(ζ, δ)

= lim sup
n→∞

lim
s→0+

Bn(ζ, δ + s)−Bn(ζ, δ)

s

≤ lim
s→0+

lim sup
n→∞

Bn(ζ, δ + s)−Bn(ζ, δ)

s
(4.5)

=
∂b(ζ, δ+)

∂δ
.

Equalities (4.5) and (4.4) hold according to [Roc] Theorem 24.5. Analogously, for
all (ζ, δ) ∈ R, we also get

∂b(ζ−, δ)

∂ζ
= lim

s→0−

b(ζ + s, δ)− b(ζ, δ)
s

= lim
s→0−

lim
n→∞

Bn(ζ + s, δ)−Bn(ζ, δ)

s

≤ lim inf
n→∞

lim
s→0−

Bn(ζ + s, δ)−Bn(ζ, δ)

s

= lim inf
n→∞

p
n
(ζ, δ)

≤ lim sup
n→∞

pn(ζ, δ)

= lim sup
n→∞

lim
s→0+

Bn(ζ + s, δ)−Bn(ζ, δ)

s

≤ lim
s→0+

lim sup
n→∞

Bn(ζ + s, δ)−Bn(ζ, δ)

s

=
∂b(ζ, δ+)

∂ζ
.

Although we cannot prove the convergence of proportions, Lebesque measure of
the set, where the function b is not differentiable, is actually zero. Next lemma
clarifies this notion.
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Lemma 4.9. Limit function b : R2 → R is differentiable almost everywhere in R2.

Proof. Lemma 4.4 states that b is convex in R2. We know (see, e.g., [Roc], Theorem
25.5) that convex function is almost everywhere differentiable.

4.3 Simulations
For the following simulations we have used a binary alphabet A = {a, b} and
generated uniformly random sequences with length n. Considering the extensive
memory usage of Needleman-Wunsch algorithm in implementation with Python,
we have restricted our simulations to n = 10, 100, 500, 1000. First, we fixed have
ζ∗ = 0.5 to plot the graph of δ 7→ qn(ζ∗, δ).
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Figure 4.10: Graphs of δ 7→ qn(ζ∗, δ), where n = 10, 100, 500, 1000

Figure 4.10 illustrates the asymptotic behaviour of gaps. We can see that the dif-
ference between n = 500 and n = 1000 is almost negligible and differences between
qn and q

n
decreases rapidly. There are still 2 values at which the “jump” occurs in

the graph. At first the gap price exceeds the score of the mismatch, substituting
each mismatch in the optimal alignment with a gap. The second “jump” occurs
when the optimal alignment consists only of gaps.
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Next, we have fixed δ∗ = −2 to plot the graph of ζ 7→ qn(ζ, δ∗).

Figure 4.11: Graphs of ζ 7→ pn(ζ, δ∗), where n = 10, 100, 500, 1000

Figure 4.11 illustrates the asymptotic behaviour of mismatches. We can see that
the difference between n = 500 and n = 1000 is almost negligible and difference
between pn and p

n
decreases rapidly. There is still a single value at which the

“jump” occurs in the graph. It happens when the score of mismatched letters
exceeds the gap price, substituting gaps in the optimal alignment with possible
mismatched letters.
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Let us fix ζ∗∗ = −1.5 and for the next figure, we generated random sequences,
from uniform distribution, of length n = 1000 to illustrate the asymptotic relation
between p

n
, pn.

Figure 4.12: Graphs of δ 7→ q1000(ζ∗∗, δ), for 4 randomly generated sequences
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Let us fix δ∗∗ = −1 to plot the graph of a function ζ 7→ p1000(ζ, δ∗∗).

Figure 4.13: Graphs of ζ 7→ p1000(ζ, δ∗∗), for 4 randomly generated sequences

Figure 4.12 and Figure 4.13 display the negligible change when generating different
random sequences. This helps to confirm the theory that we developed in this
thesis.
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Chapter 5

Large Deviations

In this chapter, we prove the bound on the score of the optimal align-
ment, when changing a single letter. Given (ζ, δ) ∈ R2, we derive large
deviations inequality for one-sided partial derivatives of Bn.

Alphabet is still fixed as A = {a, b} and

S(a, b) = S(b, a) = ζ, S(a, a) = S(b, b) = 1.

5.1 Bound on the Score, When Changing a Single
Letter

First, we need to introduce the maximum change of optimal alignment score, when
changing a single letter in either sequence x or y. We denote it with ∆(ζ,δ). Such
value is defined, in order to use it when applying McDiarmid’s inequality. We shall
abbreviate the effect of changing a single letter by

∆(ζ,δ) := sup
x,y∈An

x∗
i
∈A∨y∗

i
∈A

|Bn(ζ, δ)−B∗n(ζ, δ)| ,

where the supremum is taken over all possible sequences x and y, while varying
a single letter (denoted by x∗i or y∗i ) at any single position i ∈ {1, 2, . . . n} in x
or y. Bn(ζ, δ) denotes the unchanged sequences score and B∗n(ζ, δ) the score of
sequences with one changed letter (either with letter x∗i or y

∗
i ).

Lemma 5.1. Following holds for all (ζ, δ) ∈ R2:

∆(ζ,δ) ≤ |1− ζ|. (5.1)

Proof. Let us fix sequences x, y ∈ An, parameters (ζ, δ) ∈ R2 and a position in se-
quences i ∈ {0, 1, 2, . . . , n}. Changing the letter at i-th position can either increase
or decrease the optimal alignment score. Let us consider both cases separately.
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Let us assume the optimal alignment score decreases. If one of the optimal align-
ments has an indel at i-th position, changing the letter at i-th position can always
leave the indel intact. Hence the optimal alignment score cannot decrease. If none
of the optimal alignments have an indel at i-th position, the change in score is

∆decrease
(ζ,δ) ≤ max

x,y,z
|S(x, y)− S(y, z)|

= |1− ζ|. (5.2)

Let us assume the optimal alignment score increases. In that case, we can consider
the new optimal alignment score instead. We know that the decrease of the new
optimal alignment score is

∆increase
(ζ,δ) = ∆new score decrease

(ζ,δ)

≤ max
x,y,z
|S(x, y)− S(y, z)| (5.3)

= |1− ζ|. (5.4)

Inequality (5.3) is the result of the previous case, where the optimal alignment
score decreased.

Results (5.2) and (5.4) give us (5.1).

We use McDiarmid’s inequality to derive large deviations inequality for the pro-
portions.

Theorem 5.2 (McDiarmid’s inequality). (see, e.g., [DGG], page 136).
Let Z1, Z2, . . . , Z2m be iid random variables taking values in a set A, and assume
f : A2n → R satisfies

sup
x1,x2,...,x2n∈A, x∗i∈A

|f(x1, x2, . . . , x2n)− f(x1, x2, . . . , xi−1, x
∗
i , xi+1, . . . , x2n)| ≤ K,

for 1 ≤ i ≤ 2n, then for all ε > 0

P(|f(Z1, Z2, . . . , Z2n)− Ef(Z1, Z2, . . . , Z2n)| > ε) ≤ exp

(
− ε2

nK

)
.

In our case we apply Theorem 5.2, with Lemma 5.1, as Z1 = X1, Z2 = X2, . . . , Zn =
Xn, Zn+1 = Y1, . . . , Z2n = Yn and f is in the role of Bn. Hence, for every fixed
(ζ, δ) ∈ R2, ζ 6= 1 and ε > 0

P(Bn(ζ, δ)− EBn(ζ, δ) ≤ −ε) ≤ exp

(
− nε2

|1− ζ|2

)
, (5.5)

P(Bn(ζ, δ)− EBn(ζ, δ) ≥ ε) ≤ exp

(
− nε2

|1− ζ|2

)
. (5.6)

For every (ζ, δ) ∈ R2 the function Bn at (ζ, δ) is always bounded. Therefore we
can use dominated convergence theorem (see, e.g., [Bil], Theorem 16.4), and

lim
n→∞

EBn(ζ, δ) = b(ζ, δ),

for all (ζ, δ) ∈ R2.
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5.2 Large Deviations Inequality
Theorem 5.3. 1 Let (ζ, δ) ∈ R2, ζ 6= 1. For every ε > 0 there exists n(ε) ∈ N
and c(ε, ζ, δ) ≥ 0, such that such that

P

(
∂b(ζ−, δ)

∂ζ
− ε ≤ p

n
(ζ, δ) ≤ pn(ζ, δ) ≤ ∂b(ζ+, δ)

∂ζ
+ ε

)
≥ 1− 4 exp

(
−nε

2c(ε, ζ, δ)

16

)
,

(5.7)

Proof. Given (ζ, δ) ∈ R2, ζ 6= 1 and ε > 0, the first step is to derive bounds on

P

(
∂Bn(ζ+, δ)

∂ζ
− ∂b(ζ+, δ)

∂ζ
> ε

)
.

For s1(ε) > 0, s2(ε) > 0 and any function ϕ : R2 → R, let us denote

∆ϕ+ := ϕ(ζ + s1(ε), δ)− ϕ(ζ, δ),

∆ϕ− := ϕ(ζ − s2(ε), δ)− ϕ(ζ, δ).

Since
lim
s→0+

b(ζ + s, δ)− b(ζ, δ)
s

=
∂b(ζ+, δ)

∂ζ
,

we can choose s1(ε) ∈ (0, 1) such that∣∣∣∣∆b+

s1(ε)
− ∂b(ζ+, δ)

∂ζ

∣∣∣∣ ≤ ε

4
. (5.8)

Next, we will fix N1 ∈ N (also depending on ε), such that for all n ≥ N1

|∆EBn+ −∆b+| ≤ s1(ε)
ε

4
.

Thus for those s1(ε) and n chosen, we have

∆Bn+

s1(ε)
− ∂b(ζ+, δ)

∂ζ
=

(
∆Bn+

s1(ε)
− ∆EBn+

s1(ε)

)
+

(
∆EBn+

s1(ε)
− ∆b+

s1(ε)

)
+

(
∆b+

s1(ε)
− ∂b(ζ+, δ)

∂ζ

)
≤
(

∆Bn+

s1(ε)
− ∆EBn+

s1(ε)

)
+
ε

2
. (5.9)

1This theorem is analogous to [LMT] Theorem 4.1

44



From (5.5) and (5.6) we get

P

(
∆Bn+

s1(ε)
− ∆EBn+

s1(ε)
≥ ε

2

)
= P

(
(Bn(ζ + s1(ε), δ)−Bn(ζ, δ))

− (EBn(ζ + s1(ε), δ)− EBn(ζ, δ)) ≥ s1(ε)
ε

2

)
≤ P

(
Bn(ζ, δ)− EBn(ζ, δ) ≤ −s1(ε)

ε

4

)
+ P

(
Bn(ζ + s1(ε), δ)− EBn(ζ + s1(ε), δ) ≥ s1(ε)

ε

4

)
(5.10)

≤ 2 exp

(
− ns2

1(ε)ε2

16A2
+(ζ, ε)

)
, (5.11)

where A+(ζ, ε) := max{|1− ζ|, |1− (ζ + s1(ε))|}. For explanation, value ζ + s1(ζ)
arose at (5.8) and we considered it at (5.10), when applying the McDiarmid’s
inequality. Since Bn is convex, we get

∂Bn(ζ+, δ)

∂ζ
≤ ∆Bn+

s1(ε)
,

for ε and s1(ε) chosen as in (5.9), (5.11) and

P

(
∂Bn(ζ+, δ)

∂ζ
− ∂b(ζ+, δ)

∂ζ
≥ ε

)
≤ P

(
∆Bn+

s1(ε)
− ∂b(ζ+, δ)

∂ζ
≥ ε

)
≤ P

(
∆Bn+

s1(ε)
− ∆EBn+

s1(ε)
+
ε

2
≥ ε

)
= P

(
∆Bn+

s1(ε)
− ∆EBn+

s1(ε)
≥ ε

2

)
≤ 2 exp

(
− ns2

1(ε)ε2

16A2
+(ζ, ε)

)
. (5.12)

Next step is to derive bounds on

P

(
∂Bn(ζ−, δ)

∂ζ
− ∂b(ζ−, δ)

∂ζ
< −ε

)
.

Since
lim
s→0+

b(ζ − s, δ)− b(ζ, δ)
−s

=
∂b(ζ−, δ)

∂ζ
,

we can choose s2(ε) ∈ (0, 1), such that∣∣∣∣∂b(ζ−, δ)∂ζ
− ∆b−
−s2(ε)

∣∣∣∣ ≤ ε

4
. (5.13)

We will fix N2 ∈ N (also depending on ε), such that for all n ≥ N2

|∆EBn− −∆b−| ≤ s2(ε)
ε

4
.
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Let us denote N := max{N1, N2}. Thus, for those s2(ε) and n ≥ N , we get

∆Bn−

−s2(ε)
− ∂b(ζ−, δ)

∂ζ
=

(
∆Bn−

−s2(ε)
− ∆EBn−

−s2(ε)

)
−
(

∆EBn−

s2(ε)
− ∆b−
s2(ε)

)
−
(
∂b(ζ−, δ)

∂ζ
− ∆b−
−s2(ε)

)
≥
(

∆Bn−

−s2(ε)
+

∆EBn−

−s2(ε)

)
− ε

2
. (5.14)

From (5.5) and (5.6) we get

P

(
∆Bn−

−s2(ε)
− ∆EBn−

−s2(ε)
≤ −ε

2

)
= P

(
(Bn(ζ − s2(ε), δ)−Bn(ζ, δ))

− (EBn(ζ − s2(ε), δ)− EBn(ζ, δ)) ≥ s2(ε)
ε

2

)
≤ P

(
Bn(ζ, δ)− EBn(ζ, δ) ≤ −s2(ε)

ε

4

)
+ P

(
Bn(ζ − s2(ε), δ)− EBn(ζ − s2(ε), δ) ≥ s2(ε)

ε

4

)
(5.15)

≤ 2 exp

(
− ns2

2(ε)ε2

16A2
−(ζ, ε)

)
, (5.16)

where A−(ζ, ε) := max{|1− ζ|, |1− (ζ − s2(ε))|}. For explanation, value ζ − s2(ζ)
arose at (5.13) and we considered it at (5.15), when applying the McDiarmid’s
inequality. Since Bn is convex, we get

∂Bn(ζ−, δ)

∂ζ
≥ ∆Bn−

−s2(ε)
,

for ε and s2(ε) chosen as in (5.14), (5.16) and

P

(
∂Bn(ζ−, δ)

∂ζ
− ∂b(ζ−, δ)

∂ζ
≤ −ε

)
≤ P

(
∆Bn−

−s2(ε)
− ∂b(ζ−, δ)

∂ζ
≤ −ε

)
≤ P

(
∆Bn−

−s2(ε)
− ∆EBn−

−s2(ε)
− ε

2
≤ −ε

)
= P

(
∆Bn−

−s2(ε)
− ∆EBn−

−s2(ε)
≤ −ε

2

)
≤ 2 exp

(
− ns2

2(ε)ε2

16A2
−(ζ, ε)

)
. (5.17)

From (5.12) and (5.17) we get

P

(
pn(ζ, δ) >

∂b(ζ−, δ)

∂ζ
+ ε

)
≥ 2 exp

(
− ns2

1(ε)ε2

16A2
+(ζ, ε)

)
, (5.18)
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P

(
p
n
(ζ, δ) <

∂b(ζ−, δ)

∂ζ
− ε
)
≥ 2 exp

(
− ns2

2(ε)ε2

16A2
−(ζ, ε)

)
. (5.19)

Combining (5.19), (5.18) and using the probability of a complementary event, gives
us (5.7).

Remark 5.4. More precisely,

c(ε, ζ, δ) =
(s(ε))2

A2(ζ, δ)
,

where s(ε) = min{s1(ε), s2(ε)} > 0 and A(ζ, ε) := max{A+(ζ, δ), A−(ζ, δ)} > 0.
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Chapter 6

Function (ζ, δ) 7→ Bn(ζ, δ) as
δ1(ζ, δ) 7→ Bn(ζ

′, δ1(ζ, δ))

In the following chapter we introduce the idea of considering the two-
variable function Bn as a single variable function. We fix the parameter
ζ and derive some two-variable case results from the one-variable case.

Let us denote a function

δ1(ζ, δ) :=
δ(1− ζ ′) + ζ ′ − ζ

1− ζ
. (6.1)

If ζ < 1, then for all ζ ′ < 1

Bn(ζ, δ) = max
(p,q)∈O′n

(1 + p(ζ − 1) + q(δ − 1))

= max
(p,q)∈O′n

(1− ζ ′) + p(1− ζ)(ζ ′ − 1) + q(δ − 1)(1− ζ ′)
1− ζ ′

= max
(p,q)∈O′n

(
1 + p(ζ ′ − 1) + q(δ−1)(1−ζ′)

1−ζ

)
(1− ζ) + ζ − ζ ′

1− ζ ′

= max
(p,q)∈O′n

(
1 + p(ζ ′ − 1) + q

(
δ(1−ζ′)+ζ′−ζ

1−ζ − 1
))

(1− ζ) + ζ − ζ ′

1− ζ ′

=
Bn(ζ ′, δ1(ζ, δ))(1− ζ) + ζ − ζ ′

1− ζ ′
(6.2)

Equality (6.2) allows us to reduce the two-variable function Bn to a one-variable
function and On(ζ, δ) = On(ζ ′, δ1(ζ, δ)). Hence, we can find all optimal alignments
through varying only the gap price. Let us fix ζ ′ = 0 and restrict ζ < 1 throughout
this chapter. Using (6.2), the two-variable function Bn is

Bn(ζ, δ) = Bn(0, δ1(ζ, δ))(1− ζ) + ζ, (6.3)
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for δ ∈ R and (6.1) becomes

δ1(ζ, δ) =
δ − ζ
1− ζ

.

Lemma 6.1. Function δ 7→ Bn(ζ, δ) is differentiable at δ ∈ R iff δ 7→ Bn(0, δ) is
differentiable at δ1(ζ, δ) and

∂Bn(ζ, δ)

∂δ
=
dBn(0, δ1(ζ, δ))

dδ1

= qn(0, δ1(ζ, δ)).

Proof. Let δ 7→ Bn(ζ, δ) be differentiable at δ ∈ R. Using (6.3), we get

∂Bn(ζ, δ)

∂δ
=

∂

∂δ
(Bn(0, δ1(ζ, δ))(1− ζ) + ζ)

= (1− ζ)
d

dδ1

Bn(0, δ1(ζ, δ))
∂δ1(ζ, δ)

∂δ

= (1− ζ)
d

dδ1

Bn(0, δ1(ζ, δ))
1

1− ζ
= qn(0, δ1(ζ, δ))

and δ 7→ Bn(0, δ) is differentiable at δ1(ζ, δ). Let δ 7→ Bn(0, δ) be differentiable at
δ1(ζ, δ). Differentiability of δ 7→ Bn(ζ, δ) at δ follows from (6.3).

Lemma 6.2. Function ζ 7→ Bn(ζ, δ) is differentiable at ζ < 1 iff δ 7→ Bn(0, δ) is
differentiable at δ1(ζ, δ) and

∂Bn(ζ, δ)

∂ζ
= pn(0, δ1(ζ, δ)).

Proof. Let ζ 7→ Bn(ζ, δ) be differentiable at ζ < 1. Using (6.3), we get

∂Bn(ζ, δ)

∂ζ
=

∂

∂ζ
(Bn(0, δ1(ζ, δ))(1− ζ) + ζ)

= qn(0, δ1(ζ, δ))
∂δ1(ζ, δ)

∂ζ
(1− ζ)−Bn(0, δ1(ζ, δ)) + 1

= qn(0, δ1(ζ, δ))
−(1− ζ) + (δ − ζ)

1− ζ
−Bn(0, δ1(ζ, δ)) + 1

= qn(0, δ1(ζ, δ))
δ − 1

1− ζ
+ pn(0, δ1(ζ, δ))

− qn(0, δ1(ζ, δ))

(
δ − ζ
1− ζ

− 1

)
= qn(0, δ1(ζ, δ))

δ − 1

1− ζ
+ pn(0, δ1(ζ, δ))− qn(0, δ1(ζ, δ))

δ − 1

1− ζ
= pn(0, δ1(ζ, δ)).

and δ 7→ Bn(0, δ) is differentiable at δ1(ζ, δ). Let δ 7→ Bn(0, δ) be differentiable at
δ1(ζ, δ). Differentiability of ζ 7→ Bn(ζ, δ) at ζ follows from (6.3).
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Since On(ζ, δ) = On(0, δ1(ζ, δ)), we get

qn(0, δ1(ζ, δ)) = qn(ζ, δ), (6.4)

pn(0, δ1(ζ, δ)) = pn(ζ, δ). (6.5)

If ζ < 1 and δ < 1, then

Bn(ζ, δ) = 1 + p
n
(ζ, δ)(ζ − 1) + qn(ζ, δ)(δ − 1) (6.6)

= 1 + qn(ζ, δ)(ζ − 1) + q
n
(ζ, δ)(δ − 1) (6.7)

= 1 +
∂Bn(ζ−, δ)

∂ζ
(ζ − 1) +

∂Bn(ζ, δ+)

∂δ
(δ − 1)

= 1 +
∂Bn(ζ+, δ)

∂ζ
(ζ − 1) +

∂Bn(ζ, δ−)

∂δ
(δ − 1).

Equations (6.6) and (6.7) are due to (ζ−1) < 0, (δ−1) < 0 and p(ζ−1)+q(δ−1)
being uniquely determined for all (p, q) ∈ On(ζ, δ). Hence, if Bn is differentiable
at δ1(ζ, δ), it has both partial derivatives and

(1− ζ)
∂Bn(ζ, δ)

∂ζ
+ (1− δ)∂Bn(ζ, δ)

∂δ
= 1−Bn(ζ, δ). (6.8)

The theory can be developed further by considering one-sided derivatives or the
limit function b, in the context of varying a single variable δ1(ζ, δ).
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Appendix

Needleman-Wunsh algorithm
The following algorithm is adjusted for alphabet A = {a, b}, fixed sequences X, Y
and the gap price δ, as a variable. For calculating Bn, the author has opted for
programming language Python.

Listing I: Needleman-Wunsh
#Fixed sequences
X="abaab"
Y="baabb"

#Score parameters
zeta=0
de l t a=−1

def t r a c e ( de l ta , zeta , t , r , s t r1 , s t r2 , x , y , s1=’ ’ , s2=’ ’ ) :
i f x > 0 or y > 0 :
c = t [ y ] [ x ]
u = c == ( t [ y − 1 ] [ x ] + de l t a /2)
l = c == ( t [ y ] [ x − 1 ] + de l t a /2)
v = s t r 1 [ x − 1 ] == s t r 2 [ y − 1 ]
u l = c == ( t [ y − 1 ] [ x − 1 ] + 1 i f v else
t [ y − 1 ] [ x − 1 ] + zeta )
i f ul :
t r a c e ( de l ta , zeta , t , r , s t r1 , s t r2 ,
x − 1 , y − 1 , s t r 1 [ x − 1 ] + s1 , s t r 2 [ y − 1 ] + s2 )
e l i f l :
t r a c e ( de l ta , zeta , t , r , s t r1 , s t r2 ,
x − 1 , y , s t r 1 [ x − 1 ] + s1 , ’− ’ + s2 )
e l i f u :
t r a c e ( de l ta , zeta , t , r , s t r1 , s t r2 ,
x , y − 1 , ’− ’ + s1 , s t r 2 [ y − 1 ] + s2 )
else :
r . append ( ( s1 , s2 ) )
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def B( zeta , d e l t a ) :
n = len (X)
t = [ [ 0 for _ in range (n+1)] for _ in range (n+1)]
for i in range (n+1):
t [ 0 ] [ i ] = de l t a /2 ∗ i
for i in range (n+1):
t [ i ] [ 0 ] = de l t a /2 ∗ i
for y in range (1 , n+1):
for x in range (1 , n+1):
v = X[ x − 1 ] == Y[ y − 1 ]
t [ y ] [ x ] = max(
t [ y ] [ x − 1 ] + de l t a /2 ,
t [ y − 1 ] [ x ] + de l t a /2 ,
t [ y − 1 ] [ x − 1 ] + 1 i f v else t [ y − 1 ] [ x − 1 ] + zeta )
s co r e = t [ n+1 − 1 ] [ n+1 − 1 ]
t r a c e ( de l ta , zeta , t , r e s u l t s , X, Y, x , y )
r e s u l t s = [ ]

#This i s o p t i ona l . I t p r i n t s out a l l op t imal a l ignment
#fo r i , r e s u l t in enumerate ( r e s u l t s ) :
#pr i n t (" Resu l t {0}:\n{1}\n{2}"
#. format ( i + 1 , r e s u l t [ 0 ] , r e s u l t [ 1 ] ) )

return s co r e /n

#For p r i n t i n g out B at d e l t a and ze t a
print (B( zeta , d e l t a ) )

52



Graphs
The next algorithm is used for sketching various graphs. Since Bn is piecewise
affine, we can use bisection method’s analogy to find values in which Bn is not
differentiable. If we can calculate Bn at those values, we can sketch the graph of
the function. Listing II sketches the following functions’ graphs: Bn (as a variable
of δ or ζ) and qn.

Listing II: Graph
import matp lo t l i b . pyplot as p l t
#Fixed error parameter
ep s i l o n = 10∗∗(−5)

#Ske tch ing f unc t i on s B and p in r e l a t i o n to d e l t a

def graph_B_delta (BM,BN,M,N,X,Y, e p s i l o n ) :
T = (N+M)/2
BT=B( zeta ,T)
i f abs ( (BN+BM)/2−BT) > ep s i l o n :
graph_B_delta (BM,BT,M,T,X,Y, ep s i l o n )
graph_B_delta (BT,BN,T,N,X,Y, e p s i l o n )
else :
p l t . p l o t ( [M,T,N] , [BM,BT,BN] , ’ k ’ )

def graph_q_delta (BM,BN,M,N,X,Y, ep s i l o n ) :
T = (N+M)/2
q = (BM−BN)/(M−N)
BT=B( zeta ,T)
i f abs ( (BN+BM)/2−BT) > ep s i l o n :
graph_q_delta (BM,BT,M,T,X,Y, ep s i l o n )
graph_q_delta (BT,BN,T,N,X,Y, ep s i l o n )
else :
p l t . p l o t ( [M, N] , [ q , q ] , ’ k ’ )

#Disp lay ing the graph wi th pyp l o t
M = −7
N = 2
#BM = B( zeta ,M)
#BN = B( zeta ,N)
#p l t . t e x t ( 0 . 1 , 1 . 03 , r ’ $y=q_{n}(\ z e t a ^∗ ,\ d e l t a ) $ ’

#, f o n t s i z e =14)
#p l t . y l a b e l ( ’ $y$ ’ )
#p l t . x l a b e l ( ’ $\ d e l t a $ ’ )
#p l t . p l o t ( [M,N] , [ 0 , 0 ] , ’ k−−’)
#p l t . p l o t ( [ 0 , 0 ] , [BM−1,BN] , ’ k−−’)
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#p l t . y l im ( [ −0 .2 ,1 . 2 ] )
#p l t . x l im ( [M,N] )

#Ske tch ing f unc t i on s B and p in r e l a t i o n to z e t a

def graph_B_zeta (BE,BF,E,F ,X,Y, ep s i l o n ) :
T = (E+F)/2
BT=B(T, de l t a )
i f abs ( (BE+BF)/2−BT) > ep s i l o n :
graph_B_zeta (BE,BT,E,T,X,Y, ep s i l o n )
graph_B_zeta (BT,BF,T,F ,X,Y, ep s i l o n )
else :
p l t . p l o t ( [E,T,F ] , [BE,BT,BF] , ’ k ’ )

def graph_p_zeta (BM,BN,M,N,X,Y, ep s i l o n ) :
T = (N+M)/2
q = (BM−BN)/(M−N)
BT=B(T, de l t a )
i f abs ( (BN+BM)/2−BT) > ep s i l o n :
graph_p_zeta (BM,BT,M,T,X,Y, ep s i l o n )
graph_p_zeta (BT,BN,T,N,X,Y, ep s i l o n )
else :
p l t . p l o t ( [M, N] , [ q , q ] , ’ k ’ )

#Disp lay ing the graph wi th pyp l o t
E = −1.5
F = 12
#BE = B(E, d e l t a )
#BF = B(F, d e l t a )
#p l t . t e x t (1 , 0 .83 , r ’ $y=p_{n}(\ zeta ,\ d e l t a ^∗)$ ’ ,

#f o n t s i z e =14)
#p l t . y l a b e l ( ’ $y$ ’ )
#p l t . x l a b e l ( ’ $\ ze ta$ ’ )
#p l t . p l o t ( [E,F ] , [ 0 , 0 ] , ’ k−−’)
#p l t . p l o t ( [ 0 , 0 ] , [BE−1,BF+1] , ’ k−−’)
#p l t . y l im ( [ −0 .2 ,1 . 2 ] )
#p l t . x l im ( [E,F ] )

#This i s where we choose which graph we want to s k e t ch
#graph_B_delta (BM,BN,M,N,X,Y, e p s i l o n )
#graph_q_delta (BM,BN,M,N,X,Y, e p s i l o n )
#graph_B_zeta (BE1,BE2,E1 ,E2 ,X,Y, e p s i l o n )
#graph_q_zeta (BF1,BF2,F1 ,F2 ,X,Y, e p s i l o n )
p l t . show ( )
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Simulations
In simulations we used the following listing to generate random sequences of n
uniformly distributed elements from alphabet A = {a, b}.

Listing III: Random sequences
import random
import s t r i n g
import sys

sys . s e t r e c u r s i o n l im i t (20000)

def getCode ( l ength = 10 , char = s t r i n g . a sc i i_uppercase
+s t r i n g . d i g i t s + s t r i n g . a s c i i_ l owe r ca s e ) :
return ’ ’ . j o i n ( random . cho i c e ( char ) for x in range ( l ength ) )

n=1000

X = getCode (n , "ab" )
Y = getCode (n , "ab" )
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