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ABSTRACT

Data, statistical models and the predictions made by them form the backbone of
data-driven scientific inquiries. In many fields, such as neuroscience and bioin-
formatics, data are highly complex, with many dimensions and generated by non-
linear interactions. In addition, due to their inherent complexities, modern ma-
chine learning algorithms need a lot of data and parameter tuning.

The main aim of this dissertation is to illustrate and improve the data analysis
process of electroencephalogram (EEG) signal recorded from the human brain.
Although the current work is based on the EEG signal, most of the lessons learned
and the methods developed here are applicable for problems with complex (and
expensive) data.

We begin by discussing and showing the importance of data cleaning and
pre-processing together with simple hypothesis testing in the context of classical
statistical models.

We then continue with the application of machine learning algorithms to real-
life data. As machine learning algorithms do not explicitly perform out-of-the-box
statistical inference and the choice of parameters is usually complex, the focus
shifts to data partitioning methods in order to perform these tasks more efficiently.

This leads to the main thesis of the dissertation: invention of a novel data
partitioning approach that uses data more efficiently than current approaches in
the relevant case where parameters are in need of interpretation but model weights
are not.
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INTRODUCTION

A job of a scientist is to come up with coherent stories that explain and make pre-
dictions about our world. These stories themselves are quite often mathematical
or statistical models. In order to make good models, we need good data. As we are
describing more complex phenomena, data have become more complex: there are
just more of it and there are different interactions on different time-scales which
make the task of meaningful scientific inquiry challenging. On the other hand,
modern pattern matching algorithms, which could be summed up with a term ma-
chine learning, can reach to astronomical complexities with hundreds of millions
of model weights and even higher number of computations needed to evaluate the
outcome. This creates many new challenges and opportunities.

Current dissertation is a journey from data pre-processing to the interpretation
of the results with an emphasis on the way we choose the model parameters and
test the validity of the model. Although the current work focuses on the neural
datasets, mainly the electroencephalogram (EEG) signal recorded from the scalp
of human subjects, the results apply to most of the other fields with multidimen-
sional data that are difficult or expensive to collect.

After an introduction to the required biological, technical and statistical back-
ground, three main parts of that journey are summed up in three chapters that are
based on the three publications.

In Chapter [2] which is based on the publication [, we start from the basics.
We understood that the incoming data is too noisy and the raw format of the data
is difficult to analyze. So, we needed to clean and normalize the data, as well
as to build appropriate features by decomposing the EEG time series into the
frequency domain such that some properties of the signal would become more
visible. In addition, we performed a simple hypothesis testing with a classical
statistical inference tool called analysis of variance (ANOVA).

This study gave us interesting insights to the problems posed by neuroscien-
tists but it also led us into troubled thinking. It might be the case that the analysis
might not be accurate enough as our complex real life data does not fully compile
with all the assumptions required by the data model. What is more, it is even pos-
sible that intermediate results and visualizations might have influenced our design
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of the final data analysis pipeline which in turn might have resulted in a circular or
biased analysis. For example, recent publications are claiming that high number
of studies are p-value hacked (Head et al.l 2015) or they contain some circular
analysis (Kriegeskorte et al., 2009).

In addition, the complex data analysis pipeline is rather specific and is prob-
ably not usable by other studies. These problems lead us to the next chapter and
study.

In Chapter 3| which is based on the publication |lI, we have analyzed another
relatively large EEG data set with machine learning algorithms. Although ma-
chine learning algorithms are very powerful, there are two major complexities
related to their usage. As machine learning algorithms do not tend to explicitly
work with data models (i.e. assumptions made to the data by classical statisti-
cal models), it is not possible to perform out-of-the-box statistical inference with
them. Therefore, as the model and its implicit preferences are very difficult to
understand, separate data is needed for choosing the best model and its parame-
ters. In order to overcome these complications, we build an extensive system to
scan a vast amount of parameters and also estimate the generalization error with
an approach called nested cross-validation.

The second study left us more satisfied as we performed an extensive search
over possible relationships in the data; we were (hopefully) less biased by the data
and produced a bit more general pipeline which is already used by other studies.
On the other side, the chosen method of nested cross-validation did not leave us
any possibility to interpret the model parameters nor the model weights. As the
data were scarce and signal-to-noise ratio low, the chosen pipeline was probably
correct, but it left us to wonder: could we perform an efficient data partitioning
such that we could still interpret the model parameters?

In Chapter 4] which is based on the publication we describe a novel data
partitioning approach for machine learning methods. The novel approach is termed
"Cross-validation and cross-testing" and it is more efficient than the current best
approach for data partitioning, in the case where the interpretation of model pa-
rameters in needed but the interpretation of model weights is not needed. The
possibility to interpret parameters while being more data efficient is particularly
relevant in the fields where data are scarce or costly such as bioinformatics or neu-
roscience. In the mentioned chapter, we introduce the approach in detail, compare
it to the other approaches and discuss its implications in terms of efficiency and
interpretability.

Although the emphasis of this dissertation is on methods, in the process we
have also shed light to some neuroscience problems. In the publication [, we are
showing how caffeine and TMS impulses interact resulting in specific changes in
the power spectra of EEG signals. In the publication [, we are showing with a
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very large sample size that it might not be possible to predict personality scores
from a resting state EEG, indicating that personality traits might be more read-
ily revealed by the brain dynamics to specific stimuli rather than by resting state
dynamics. Finally, the numerical experiments that compare different data parti-
tioning approaches for machine learning in the publication [III} are carried out on
different datasets from neuroscience experiments.

To give background and context to these three chapters, we introduce some
common preliminaries including the main data sources analyzed (EEG signals),
and a summary of machine learning algorithms, as well as common data parti-
tioning approaches in Chapter [T} At the end of the dissertation, in the summary
chapter, we also discuss some of the implications stemming from the results ob-
tained during this dissertation. Enjoy the journey!
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CHAPTER 1

PRELIMINARIES

1.1 Biological background and grand goals of science

All the PhD dissertations in the world are imagined, written, read and understood
by human brains. Brain is the organ that makes our conscious existence possible.
Naturally we would like to understand all the important questions about it: How
to read minds? How to control machines with just your thoughts? How to cure
brain diseases? What to tune in our brains in order to make us many times more
intelligent? How to build artificial brains? How to transcend to immortal beings?

A good way to get closer to all the important questions is science. Although
we suggest to read a book called "A History of the Brain: From Stone Age surgery
to modern neuroscience" by Andrew Wickens to get a nice historical overview
of the brain science (Wickens|, 2014), we still mention two important milestones
which are particularly important for this dissertation.

Firstly, modern brain science started with the discovery and understanding of
neurons as independent and discrete building blocks of the brain. In 1906, Camillo
Golgi (Golgi, [1885)) and Santiago Ramon y Cajal (Cajal, |1894) shared the Nobel
Price in Medicine or Physiology for their discoveries on the strucure and anatomy
of the neural tissue (Golgi, | 1906). In Fig. we can see Cajal’s original drawings
of some neurons.
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Figure 1.1: Drawing of Purkinje cells (A) and granule cells (B) from pigeon cerebellum
by Santiago Ramoén y Cajal, 1899; Instituto Cajal, Madrid, Spain

Secondly, the invention of electroencephalography (EEG), a method to record
electrical activity of the brain, accelerated the study of brain even further. The first
documented recording of a human EEG was performed by a German physiologist
and psychiatrist Hans Berger (1873—1941) who was curious about the possibility
of spontaneous telepathy 2003). The invention of EEG has been described
"as one of the most surprising, remarkable, and momentous developments in the
history of clinical neurology." 2002). In Fig.[I.2] we can see the original
EEG measurements made on a human.
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Figure 1.2: First published Electroencephalogram of a human (Berger, [1969). The
upper trace is the real EEG signal which is the main type of signals analyzed in this
dissertation. The lower trace is a sinusoidal signal drawn for comparison.

The upper trace in Fig. [I.2]is the real EEG signal. Lower trace is a periodic
signal to show that the upper trace (real EEG) contains some rather rhythmic
activity.

Interestingly for this dissertation, the neuro-inspired machine learning com-
munity and neuroscience community have produced a fruitful exchange which
recently has fueled major improvements in both algorithmics, and understanding
of information processing by the brain (Cox and Dean, |2014). As an example
from the neuroscience side, remarkable activational and structural similarities be-
tween the artificial deep neural networks and early visual areas of the brains have
been described (Khaligh-Razavi and Kriegeskortel [2014), providing a common
and rich framework to describe how vision occurs in artificial and biological sys-
tems.

Solving grand neuroscience questions with machine learning algorithms that
have deep connections to neuroscience itself is an interesting and promising en-
deavor. However, as the data in this field are usually noisy, non-stationary and
high-dimensional, in addition to being scarce and expensive, the deployment of
machine learning on this type of data becomes a true challenge.

1.2 Technological background and challenges

To successfully understand any system in nature we need some empirical obser-
vations or a posteriori knowledge as philosophers put it. There are many ways
how to collect data about the brain depending on the questions one is interested:
one can cut it open and check the anatomy and structure of the brain; one can
make psychological experiments or models of behavior; one can model the brain
at different levels from synapses to networks of neurons. In the current disserta-
tion, we are focusing on the methods which are recording the brain while its doing
its usual job by measuring the voltage, magnetic field or change in oxygen in the
blood induced by neuronal activity. Mainly we are focusing on electrical signal
measured by EEG but most of the work is relevant for any type of multivariate
data.
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1.2.1 Electroencephalogram

Neuroimaging is a relatively new field which uses different techniques to study
and measure the activity and structure of the brain. In this dissertation electroen-
cephalogram (EEG) data are analysed (Nunez and Srinivasan, [2007)).

Electroencephalography measures voltage fluctuations in the scale of pV’s
resulting from ionic current flows across neurons of the brain. EEG typically
consist of the recording of electrical activity along the scalp with a few tens of
channels being measured simultaneously.

EEG measures electricity. There are many advantages in using EEG such as a
relatively low cost of equipment, very good temporal resolution, noninvasiveness
etc. There are many problems associated with these measurements as well such
as low spatial resolution and a tiny signal-to-noise ratio with lots of artefacts,
including eye blinking, jaw movements, or sensor drifting to mention a few. For
example, in the publication [I| and [lI, we needed to remove the muscle artefacts
as it was a major component that contaminated the signal of true interest for our
purposes (those of neuronal origin). In the first case we did it manually by going
through the whole data and in the second case semi-automatically by training a
system to detect the artifacts automatically.

As the signal-to-noise ratio of EEG is very low it usually takes lots of data
to train more expressive models. However, data collection is usually expensive
in both time and money. In this case, efficient data partitioning to extract the
maximal information from the recorded data becomes an important part of the
analysis pipeline to which this dissertation aims to contribute. Also, extracting
relevant features or representing the data in an appropriate manner for the problem
at hand is another important factor of any machine learning approach.

Time-frequency representation

Transforming data into a useful form is a common task by a data scientist. An
interesting property of an EEG signal is its periodic components. Similarly to
music, using Fourier analysis the analyst can decompose any signal into mixture
of periodic sine waves with different frequencies (see Fig. [I.3). Importantly, for
EEG recordings different frequency bands have been associated to different types
of activity in the brain generated by specific mechanisms and regions.
Compromising between frequency and time resolution one can also consider
shorter time-windows to proceed with the Fourier analysis. This makes it possible
to visualize the power of periodic components at different moments. This way of
looking at the data is called time—frequency representation (see Fig.[2.1)) and it has
become a very common tool for analyzing EEG signal providing an important and
interpretable set of features to characterize the data (Roach and Mathalon, [2008)).
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Figure 1.3: (Upper) Alpha rhythm recorded from a healthy relaxed subject (age 25)
with closed eyes. The y-axes label Chan is a short form of a channel. This EEG was
recorded at the Brain Sciences Institute in Melbourne. (Lower) The corresponding am-
plitude spectra based on the full five minute record reveals dominant activity in the alpha
(8-13 Hz) band. (Nunez and Srinivasan, [2007))
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1.3 Statistical background

1.3.1 Statistical inference

Although in this dissertation the main focus is in machine learning and in data
partitioning, the whole EEG data analysis is also briefly discussed, including data
cleaning, pre-processing and classical statistical inference with analysis of vari-
ance that was the topic of the publication I}

In the process of statistical inference, the analyst aims to understand properties
about a population (Upton and Cook, [2014). For example, one might assume a
data model, take a statistical model, fit it to the observed data and perform an
hypothesis testing to reject our alternative hypothesis.

In statistical inference, data model and assumptions about the statistical model
have a crucial importance. Importantly for this dissertation, if the model does
not accurately reflect the nature in the best form, the conclusions maybe wrong
(Breiman et al., 2001]).

Next, a description of a statistical model is given. Although it is a specific
method, best suited for the publication |I} the underlying higher level ideas are
similar for most data models and statistical inference methods.

Analysis of variance (ANOVA)

Analysis of variance (ANOVA) denotes a wide collection of statistical models de-
signed to study the differences among group means (Girden, [1992)). In particular,
the simplest ANOVA method considers the ratio of the variance between groups
against the variance within groups, taking into account the degrees of freedoms
(related to the number of data points). This ratio produces a measure, called f-test
statistic, which is used to perform a statistical significance test, called f-test.

More precisely, the procedure is as follows. Each data point can be written
out as a group mean plus a deviation from it. In the equation [I.]  denotes the
data point, 4 is the group mean and e the deviation from the mean. Subscripts %
and j denote respectively the group and the data point in the group:

Tij = Wi + €5 (1.1)

The between-group variation, denoted by S5y, is calculated from the between-
group sums of squares (see equation [I.2)) where n;’s denote the group sample
sizes, n total number of groups and p the whole population mean:

n

(1 — 11:)2
SSOZZM- (1.2)

o
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The within-group variation, denoted by S5, is calculated from the within-
group sums of squares (see equation [[.3]). For each group, such variance is multi-
plied by the degrees of freedom (n; — 1):

n n; )2
SS1 =) 2ot ~ i) (ni —1). (1.3)

. iz
=1 v

F-ratio is then calculated as g—gf which is compared against an F-distribution

with associated degrees of freedom to get a significance p-value and can be com-
pared with a certain significance level « to name the difference in the group means
as significant or not.

The assumptions underlying this ANOVA test are that the data is normally
distributed, the variance is similar within different groups, and that the data points
are independent.

In our publication[[} the design of the experiment did not allow us to assume
that data points are independent as we were doing many repeated measurements
from the same subject which can produce some time dependent effects. Hence,
we used modified scheme of repeated measures analysis of variance (rANOVA),
which is a widely used tool (Gueorguieva and Krystal,, 2004).

The main idea for repeated measure ANOVA is to take out the subject variabil-
ity from the variability produced by the treatment and by the error terms. Such
a decomposition of error terms makes it possible to still use ANOVA methods
effectively even when data points are not independent.

1.3.2 Machine learning

Machine learning is a branch in the field of artificial intelligence that deals with
algorithms that learn from the data. The machine learning itself consists of dif-
ferent type of algorithms starting from simple logistic regression and ending with
deep neural network with hundreds of internal layers that learn hierarchical rep-
resentations of the data (Bengio and Courville| [2016). Fig.[I.4] gives an overview
of the different approaches in machine learning methods.
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Figure 1.4: Chart is showing different parts of Al systems. Shaded boxes indicate
components that are able to learn from data. Image taken from a book by Bengio and
Courville| (2016).

It can be said that machine learning consists of various algorithm components
such as a optimization algorithm, a cost function, a model, and a data set (Bengio
and Courville, [2016). Combining them gives a machine learning algorithm.

Another way to categories machine learning algorithms is by their output:
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classification, regression, clustering, density estimation and dimensionality reduc-
tion. In this dissertation, machine learning algorithms are used for classification
and in particular for binary classification. More formally, in the context of binary
classification, the aim of a training phase is to learn a model f such that it would
correctly classify an unseen data point x to a label y € {A, B}: y = f(x).

Importantly for this dissertation, machine learning can learn very complex
representations of the data and indeed is more and more used in natural science
fields with complex and noisy data such as neuroscience (Haynes and Rees| [2006)
and bioinformatics (Larrafaga et al., [2006). However, many complex and non-
linear machine learning algorithms need lots of data which in turn means that data
efficiency is important while designing the analysis of a study.

Support vector machine

Support vector machine (SVM) is a supervised machine learning method to clas-
sify input vector into two classes (Vapnik and Lerner, |1963; |Boser et al., [1992;
Cortes and Vapnikl [1995; (Chang and Linl [2011). If the annotation groups are

coded with +1 and —1 the prediction for a new data vector x = (x1,...,z;) is
given by
P
§ = sign(Bo + Y Bi;). (1.4)
j=1

As seen in the formula[I.4] the original SVM performs a linear separation of
the feature space. Naturally, the question is how to find the optimal hyperplane
that separates the data. Linear SVM solves this optimization problem by find-
ing the best linear separation between two groups by fitting a hyperplane which
maximizes the gap between two groups (see Fig. [L.5).
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Figure 1.5: Hyperplanes. H; does not separate the classes. Hy does, but only with a
small margin. H3 separates them with the maximum margin. The goal of simple support
vector machines is to find the hyperplane that maximizes certain margins with the two
classes of data. (Wikipedia, [2016).

There are several extensions for more than two groups of data and also non-
linear versions exist. In the publications [lI| and we use linear SVMs and also
non-linear SVM with a radial basis function kernel. The kernel transforms the
data to a new feature space and a linear separation is performed in there.

Comparison of modern machine learning to classical statistical inference

A provocative article "Statistical Modeling: The Two Cultures (with comments
and a rejoinder by the author)" by L Breiman gives an extreme view of the differ-
ences between modern machine learning and classical statistical inference (Breiman
et al.l 2001)). On the other hand, it could be said that both of the fields are using
data and algorithmics to come up with explanations about our world and the dif-
ference is mainly due to terminology. I will try to give my personal balanced
opinion of this issue.

In practice it could be said that there is a continuum of properties from clas-
sical statistical methods to machine learning algorithms. One of this properties is
the number of model weights. On the one extreme, we have a linear model without
an intercept y = ax, where « is the only model weight and in the other extreme
we have very deep neural networks with hundreds of millions of model weight
(Simonyan and Zisserman), 2014} |LeCun et al.,[2015)). It can be said that machine
learning methods usually have more model weights than classical methods.

Another continuum for any kind of analysis is the amount of pre-processing
needed. For example, before deep neural network, speech to text modeling usu-
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ally involved many small steps such as recognizing phonemes, words and then
sentences. (Reddy, (1976} Benzeghiba et al., 2007; |Anusuya and Katti, 2010).
But modern methods are trained end-to-end without any feature engineering or
intermediate steps (Graves et al.l 2013 Hannun et al., 2014)). Similar ideas were
visualized in Fig.[T.4]

In addition, usually the simplicity of models makes it possible to have a
stronger theoretical background about them which makes it possible to assume
a data model and perform statistical inference with them without the need of a
separate test set. More complex machine learning models lack this property and
they do need a separate set for testing the generalization error.

To sum up, more complex models have their clear benefits but on the other
hand they need more data and a separate test set. This is one of the main con-
tributions of this dissertation: how to build an efficient data partitioning scheme
such that we could still estimate the generalization error of the model and per-
form hypothesis testing while being able to interpret the parameters (Korjus et al.,
2016).

1.3.3 Data partitioning

The goal of supervised machine learning, in particular classification, is to find a
model that assigns data to separate classes as accurately as possible. To test the
generality of a learned model, this model is typically applied to independent test
data, and the accuracy can be reported as a measure of the quality of the classifier
(Alpaydin, 2014).

Machine learning model parameters are complex and the number of
pre-processing options vast. To test the different possibilities, it is quite common
to divide a data set into three parts: (1) a training set and (2) a validation set
and (3) a test set. Training and validation set are used many times with all the
combinations of parameters to find the best combination. The test set is used to
validate the generalization performance of the final classifier.

Data collection can be very expensive in biological and social sciences, and
over time more data-efficient data partitioning methods have emerged (Pereira
et al., 2009). The most common method is to use the training data set (1) and
validation set (2) repeatedly. This method is called cross-validation.

Cross-validation

Cross-validation is a method that makes near-optimal use of the available data by
repeatedly training and validating classifiers on different subsets of data, typically
with a large training and a small validation set in each iteration (Molinaro et al.,
2005). For example, in 10-fold cross-validation 90 percent of the data are used for
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training, 10 percent for validation, and in the next iteration another 10 percent of
data are chosen as a validation set (see Fig.[T.6). This process is repeated ten times
until all data have served as validation data once. Cross-validation is repeated with
different parameter combinations, and once the best parameters have been found,
the model is trained with the chosen parameters on all data that have previously
been used for cross-validation and applied to the separate test set (see Fig. [4.2)).

D Validation Set
- Training Set

Round 1 Round 2 Round 3 Round 10
validation 930, 90% 91% 95%
Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...

Figure 1.6: Visualization of cross-validation. At each round, a part of the data is left for
testing (yellow) and the rest for training the model (blue). For the final estimate of the
accuracy, an average of all the rounds is taken. The figure is from an article by

@014).

In addition to the above mentioned k-fold cross-validation, a leave-one-out
cross-validation is sometimes used where the k& parameter equals the number
of data points. Leave-one-out cross-validation is also called exhaustive cross-
validation as all the possible partitions are used.

In stratified cross-validation, the folds are generated such that they contain
approximately the same proportions of labels as the original dataset. In this dis-
sertation, all cross-validation variants are stratified.

One of the main assumptions of cross-validation states that there must be no
information leakage from training sets to validation sets. With non-stationary time
series such as EEG data, it can happen that data points that are close in time might
introduce this information leakage.

Although cross-validation can also be seen as a method for estimating gener-
alization error of a model [1993), in the context of the thesis of this dis-
sertation, cross-validation is used to compare different models in order to choose
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the best one. This maximum operator (choosing the best model parameters) makes
the estimate of the generalization error biased and with a large number of different
models a separate test set is needed.

In addition to the use of cross-validation with a test set, it is also used in
the form of nested cross-validation and in the novel method developed in this
dissertation termed Cross-validation and testing (see Chapter [ for full details).

1.3.4 Terminology

Terminology has been a considerable reason for confusing our discussions with
other people and each other. The term parameter has been used inconsistently in
the literature, sometimes referring to the individual weights of a given model, and
sometimes to the parameters that are used to optimize the learning algorithm.

Here, we use the term parameter to refer to a variable that is used to optimize
classification performance (which may incorporate choices not directly applied
to a particular classifier, including the choice of pre-processing or the choice of
classifier). For parameters related to the model itself, we use the term model
weights. The term hyper-parameter is used for all the choices that must be made
before applying any of the approaches to the data such as choosing the size of the
test set, for example.
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CHAPTER 2

PREPARATION OF DATA AND
STATISTICAL INFERENCE
(PUBLICATIONI)

This chapter is about data pre-processing and simple statistical inference, using
well-known statistical methods that should be relatively easy to use and data ef-
ficient. One aim of the dissertation is to contradict this knowledge and show
numerous problems with simple statistical analysis. For example, usually people
believe that most of the time in data analysis is spent on preparation of the data
(Zhang et al., [2003). It is also the case that usually data does not fully comply
with the assumptions needed by data analysis methods.

As with two next chapters, we also introduce the neuroscientific motivation
behind the study and the results. For more details, please see the publicationl]

2.1 Neuroscience question

It is a well known fact that the state of the brain considerably influences informa-
tion processing in the conscious and unconscious state (Barry et al., [2005}; |He and
Raichlel 2009; Hohwy, 2009 |Lee et al., 2009} |Lorist and Tops, 2003} [Massimini
et al., [2005). And indeed, caffeine is known to affect perception, attention and
psychomotor performance (Lorist and Tops},2003; Rees et al.L|[1999; |Ruijter et al.,
2000). The general interest in this study is to understand the effect of caffeine on
the human brain.

However, state dependent neural dynamics are difficult to study with typical
psychophysiological methods as the tasks and task-related stimuli interact with
physiological states in a manner difficult to control. One can overcome this prob-
lem by introducing the manipulation of states in a task-free manner with artificial
perturbations of neural dynamics. Experiments using transcranial magnetic stim-
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ulation (TMS) simultaneously with EEG recording and in combination with con-
trolled general brain states serve as an example of this strategy (Massimini et al.,
2005}, [Ferrarelli et al., 2010; Massimini et al.l [2010; Murd et al.l [2010; [Stamm
et al., 2011).

To sum up, we give a subject either a placebo or caffeine bill, give a magnetic
shock to the brain and record the EEG signal. Then, the EEG is represented in the
time-frequency domain (see Section[I.3.1)) and the effect of caffeine to the human
brain state is analyzed.

2.2 Data pre-processing and statistical inference

Data were filtered and segmented around the time of the TMS stimulation. After-
wards, the channels with muscle or other artifacts were disregarded and the rest
were grouped into frontal and parietal regions. In total, we had around 230 tri-
als (mean: 233, standard deviation: 6.5) from each 8 subjects in each condition,
which allows us to have the required sensitivity in the spectral analysis.

After the pre-processing, event-related spectral perturbations (ERSPs) were
computed for each subject in each condition and for each electrode. This requires
the calculation of the power spectrum over a sliding latency window and then
averaging this power spectrum across the trials.

After considerable amount of effort, the data were ready for statistical infer-
ence analysis.

Repeated measures ANOVA (see Section[I.3.T) was run with the factors con-
dition (caffeine and placebo), region of interest (frontal, parietal) and frequency
(alpha, beta, low gamma, high gamma). The statistical significance level for hy-
pothesis testing was fixed to o = 0.05.

2.3 Answer to the neuroscience question

In line with previous observations that caffeine increases alertness (Clubley et al.,
1979)), caffeine consumption increased pre-TMS baseline gamma band power
compared to placebo control in both low gamma (30-50 Hz) and high gamma
(50-80 Hz) bands. Surprisingly, TMS led to decreased relative power of the
post-stimulation low gamma band activity under caffeine as compared to TMS
in placebo condition (see Fig. [2.1)). In addition, caffeine administration was asso-
ciated with a significant reduction of TMS evoked alpha power about 400 ms after
TMS (see again Fig.[2.1).

We concluded that TMS related spectral perturbations are brain-state depen-
dent and lead to different spectral signatures under different physiological condi-
tions.
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Figure 2.1: TMS evokes stronger relative power in the placebo condition in the al-
pha and low gamma bands. TMS-related spectral perturbations from frontal electrodes
obtained in the caffeine and placebo conditions before capsule (left column) and after
capsule (central column). The effect of the condition (2nd minus 1st half of experiment)
is visualized by the right column. The vertical stripe at zero marks the onset of the TMS.
The remaining vertical and horizontal stripes mark the time-frequency windows of analy-
sis. Significant interaction between ROI and condition is marked by the green dotted line,
significant main effects of condition by the white dotted lines.

2.4 Conclusion

This study was a fine introduction to the field of EEG analysis with resulted in
some interesting neuroscientific conclusions. This study also lead us to troubled
thinking that will be explained in the beginning of the next chapter.
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CHAPTER 3

APPLICATION OF MACHINE
LEARNING TO EEG (PUBLICATION [ll)

In the previous section, after heavy work of cleaning up the data and making
everything compliant to all the assumptions of specific classical models we got a
rigid pipeline that only worked for that one neuro-biological question. The aim
was to do more, be more general and tackle the question in a data driven way such
that the code base would be applicable to more questions and data types.

In addition, it is very likely that an important proportion of psychology studies
are not reproducible (Open Science Collaboration, 2015) and it is also possible
that the reason might be accidental p-value hacking (Head et al., [2015}; |loannidis|,
2005). We realized ourselves that in the process of analysing the data, it is rather
easy to accidentally do some steps incorrectly. For example, while setting up
the whole pipeline and fixing software bugs, one usually sees some intermediate
results that might influence the final results. We think that it did not happen to us
but we cannot be sure either. This also led us to more exhaustive automatic search
of the parameter space without looking at the data and making prior assumptions.

In the present study we asked whether it is possible to decode personality traits
from resting state EEG data. EEG was recorded from a large sample of subjects
(n = 289) who had answered questionnaires measuring personality trait scores of
the 5 dimensions as well as the 10 subordinate aspects of the Big Five. According
to a dominant Five Factor model, observable personality is mostly determined
by five major traits — Neuroticism, Extraversion, Openness, Agreeableness and
Conscientiousness (McCrae and John, [1992; [McCrae and Costal, [2008)).

Machine learning algorithms were used to build a classifier to predict each
personality trait from power spectra of the resting state EEG data. Our results
indicate that the five dimensions as well as their subordinate aspects could not be
predicted from the resting state EEG data (a condition in which the subjects are
not performing any particular task).
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Importantly for current thesis, we used varied methods for data pre-processing
(such as pooling and dimensionality reduction) and we also used a nested cross-
validation which is the most common data partitioning method if the goal is to
make an inference about the presence of information, where even the slightest
discrimination performance indicates a statistical dependence between indepen-
dent and dependent variables.

3.1 Neuroscience question

Personality can be defined as a relatively stable pattern on thinking, feeling and
acting. In the current work Five Factor model personality traits are used. Their
relatively high cultural universality, temporal stability, and heritability suggest
that the Big Five traits may influence the brain activity enough for us to detect it
(Corr, 2004; De Young and Gray, [2009; |[Kennis et al.,[2013]).

If traits indeed reflect individual differences in tonic brain function, then mea-
sures of baseline brain activity may provide a direct way for personality assess-
ment. However, existing attempts to do this have generally yielded mixed results.

Most of the existing research on resting state EEG correlates of personality
traits has been conducted in a hypothesis-driven way, concentrating usually on a
single parameter at a time. An alternative approach would be to use data-driven
techniques to first of all assess the extent to which resting state EEG signal con-
tains information on personality and then search for relevant correlates in a more
comprehensive and systematic manner. The main aim of the present study is to
test such an approach. To that end we used machine learning classifiers to predict
personality traits from resting state EEG signals. The classifiers were first trained
using a set of data with known classes and then their performance was evaluated
on data not used for the training phase.

3.2 Pre-processing and machine learning

All different methods of pre-processing, pooling, choosing the machine learn-
ing model and it’s parameters are treated in this study as a parameter selection:
all these decisions must be made before starting the model fitting where model
weights will be estimated. In total, the system needed to choose between 648
combinations of parameters.

In the first part of the analysis, we trained statistical classifiers to map the fea-
tures of the resting state EEG to personality scores of individual subjects. Given
the exploratory nature of the analysis we scanned different combinations of classi-
fier parameters and features from the EEG power spectra to find the configuration
that best classified each personality trait. To avoid cherry-picking or over-fitting
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the results we always assessed the selected classifiers on a separate subset of sub-
jects.

We also validated our pipeline and approach by decoding the eyes open vs
eyes closed condition with an accuracy around 85.8% with p << 0.001. We used
a binomial test against the null hypothesis that the prediction is random.

Thus, we used a nested cross-validation approach (see Section {.1.2)), which
has inner and outer loops of cross validation (see Section [1.3.3). Inner 10-fold
cross-validation loop is used to choose the parameters of the classifier (including
different data pre-processing options, dimensionality reduction, and the choice
between linear and non-linear SVM classifier). The classifier that performed the
best for each personality trait in terms of misclassification rate, is used for the
outer loop to estimate the misclassification rate of the selected classifier. So, the
best parameters are chosen 10 times and the final misclassification rates represent
the averages over these 10 partitions.

3.3 Answer to neuroscience question

We analyzed a large data set collected from 289 participants with resting state
EEG recordings together with Big Five personality scores assessed with a self-
report questionnaire.

The results for the binary classification of the test subjects are shown on
Fig. 3.1l Although the best classification rates observed for Extraversion and
Openness initially reached significance, they did not remain significant after Bon-
ferroni or after false discovery rate correction (binomial test, corrected p > 0.05).
This indicates that none of the personality traits were correctly classified from any
of the explored combinations of resting state EEG features.
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Figure 3.1: Misclassification rates of Big Five personality traits. The personality scores
have been binarized with a median-split. None of the misclassification rates of five per-
sonality traits is statistically significant after Bonferroni or false discovery rate correction
at 0.05.

Taken together, these results might indicate that personality traits might be
more readily revealed by the reaction of the brain to stimuli rather than during
rest state when personality traits are not classifiable from any of the explored
combinations of resting state EEG features.

3.4 Conclusion

For the current study, it was relatively clear that the nested cross-validation ap-
proach is good. What is more, the whole machine learning infrastructure that was
built for convincing in a negative result in the publication II, is currently actively
used in various collaborations. For example, it is being used to predict the level
of fatigue and attention in subjects from their EEG data.

The questions remains, what if we would have wanted to interpret the pa-
rameters which was impossible at the moment as they were different for each
cross-validation fold. This study lead us to the next and main chapter of this dis-
sertation.
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CHAPTER 4

DATA PARTITIONING ALTERNATIVES
FOR MACHINE LEARNING
(PUBLICATION [lI)

As natural scientists usually want to get interpretable parameters then our anal-
ysis in the previous chapter was little worrying for us. Even with the positive
outcome we would not have been able to give much explanation to the underling
models that would have predicted Five Factor model personality traits. For exam-
ple, we would probably not have been able to say if the predictive model is linear
or non-linear. With nested cross-validation the parameters on each fold are dif-
ferent and it is very difficult to interpret them. On the other hand, the alternative
approach where parameters are fixed with cross-validation and tested on a test set
would have used data less efficiently which would have reduced the probability
of finding a statistically significant result from the data. The novel efficient data
partitioning approach emerged from trying to solve the conflicting goals of want-
ing interpretable parameters and using data more efficiently. A novel approach
introduced in this chapter is the main contribution to the scientific community by
this dissertation.

4.1 Common data partitioning approaches for machine
learning

As we usually do not know the best possible combination of parameters in ad-
vance, supervised machine learning methods require splitting data into multiple
chunks for training, validating, and finally testing classifiers (see Fig. d.I). For
finding the best parameters of a classifier, training and validation are usually car-
ried out with cross-validation. This is followed by application of the classifier with
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optimized parameters to a separate test set for estimating the classifier’s general-
ization performance. This type of data partitioning approach is the most general
one.

Full data

Figure 4.1: A common machine learning data partitioning approach.

4.1.1 Cross-validation and testing

Data collection can be very expensive, particularly in biological and social sci-
ences in which for some experiments taking more than a few tens or hundreds
of samples can be prohibitive. Therefore, over time more data-efficient methods
for data partitioning have emerged (Pereira et al.,[2009). Cross-validation, as ex-
plained in the section [I.3.3] is repeated with different parameter combinations,
and once the best parameters have been found, the model is trained with the cho-
sen parameters on all data that have previously been used for cross-validation. The
generalization error is found by applying the train model to the separate test set
(see Fig. [#.2)). When the goal of a researcher is to build a model that generalizes
well to unseen cases and that may be used in real life applications such as im-
age recognition or text classification, this approach is probably the most generally
used method for carrying out classification analyses. It makes it possible to have
interpretable model parameters and also interpretable model weights.
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Figure 4.2: In the “Cross-validation and testing” approach, the data are divided into
two separate sets (cross-validation set and test set) only once. First, different models
are trained and validated with cross-validation and the best set of parameters is chosen.
Prediction accuracy and statistical significance of the parameters are evaluated on the test
set, after training on the cross-validation set.

One difficulty of this approach is that the test set, which is used to validate
classification performance, is limited in size. While cross-validation makes good
use of training data, the estimation of the generalization performance of the clas-
sifier may still suffer by this limited size of the final test set. Increasing the size of
the test set at the same time would come at the cost of diminishing classification
performance. When data are scarce or expensive to acquire, this can become a
large problem and may lead to a sub-optimal choice of classifiers and the associ-
ated parameters.

4.1.2 Nested cross-validation

One approach that has been used to overcome this difficulty is “Nested cross-
validation” (Varma and Simon| 2006) (see Fig.[#.3). Here, the test set is not kept
completely separate, but cross-validation is extended to incorporate all available
data (outer cross-validation). In that way, all data can serve as test set once, over-
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coming the aforementioned trade-off. In order to still be able to optimize param-
eters, for a particular cross-validation iteration the training set is again divided
for nested cross-validation (inner cross-validation), and once the best parameters
for this iteration have been found, they are used to train a model on the current
training data, which is then applied to the current test set. This approach is most
useful for a researcher who does not need to build a model that generalizes well
to unseen data, but who would like to describe whether there is a meaningful sta-
tistical dependence between the class labels and the given dataset, in other words
whether the dataset contains information about the labels.

Nested cross-validation

Full data
Outer cross-validation
v
Estimate predictability with cross-validation
N (nner cross-validation 1 el NNET Cross-validation m)
v v
Choose the best parameters with cross-validation Choose the best parameters with cross-validation

Validation 1 Validation n
Ps
(
Parameters Parameters
\ v
> >

Report predictability

Validation 1 g Validation n
P
( Pa

fors

Figure 4.3: In the “Nested cross-validation” approach, first (outer) cross-validation
is performed to estimate predictability of the data. In each iteration, data are divided
into training and test sets. Before training, another (inner) cross-validation loop is used
to optimize parameters. As model weights (fitted models) and parameters are different
at every partition, it is not possible to report accuracy or statistical significance about a
particular set of parameters or model weights.

While a Nested cross-validation procedure makes more efficient use of data,
it has some drawbacks: Due to the absence of a completely separate test set it is
not possible to claim that a particular model, i.e. a particular set of weights and
classifier parameters, could in the future be used to classify unseen data (Hastie
2011). In addition, the chosen parameters and models may vary between
cross-validation iterations, making it impossible to select one set of parameters or
one model as the final choice. In other words, a separate model and a separate set
of parameters are chosen in each iteration and choosing any one of them would
mean returning to a simple cross-validation and testing approach which would
annihilate the advantage gained by nested cross-validation.
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4.2 Novel data partitioning approach

There are cases in which the interpretation of parameters is desirable, even when
the model is not used on unseen data. For example, for certain applications it
might be useful to report that the best parameters correspond to a linear model
as opposed to a non-linear one, without the need to describe the specific model
weights used by the model. In another example, when using neural network as
the class of machine learning algorithms, the number of layers selected during the
optimization, say 3, 4 or 5 layers, may be an important choice to be communicated
to other researchers and it might improve the interpretation of the results of the
study.

We have invented an efficient data partitioning method to improve classifica-
tion performance while keeping parameters interpretable.

4.2.1 Description of Cross-validation and cross-testing

“Cross-validation and cross-testing” starts by carrying out the common “Cross-
validation and testing” (see Section 4.1.1)) approach: The best parameters are
chosen with cross-validation as described previously (Section [[.3.3). Once the
parameters are fixed, the remaining data are used for testing the classifier. The
novelty of the approach is introduced by how prediction accuracy and statistical
significance are evaluated (see Fig. 4.4). Rather than keeping the test set entirely
separate, a modified training set is iteratively introduced, where in each iteration
the original training data plus part of the originally separate test data are used for
training a classifier, and the remaining test data for testing the classification perfor-
mance. We term this iterative procedure "cross-testing”, because this term more
accurately describes the process that is repeated than "cross-validation". Impor-
tantly, this approach maintains independence between training and test data, but
makes more efficient use of test data by augmenting training data for more accu-
rate predictions. In the next iteration, a different part of test data is added to the
training data, and this process is repeated until each part of the test data has once
been added to training data. The mean prediction accuracy across these different
cross-validation iterations is then averaged. We refer to this novel approach as
“Cross-validation and cross-testing”.

This proposed approach is expected to provide more accurate results than clas-
sical “Cross-validation and testing” by construction because it simply uses more
data for model fitting, while the system for choosing the best set of parameters
remains the same.

Underling assumptions of Cross-validation and cross-testing are the same as
in other data partitioning methods. In particular, some care must be taken when
constructing the cross-testing folds such that it would not introduce information
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leakage within the cross-testing set.

Cross-validation and cross-testing
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Figure 4.4: For cross-validation and cross-testing, data are divided into two separate
sets only once: a cross-validation set and a test set. Similar to typical cross-validation,
a number of iterations are carried out to choose the best parameters for the final model
on the test set. Once the best combination of parameters has been chosen, the prediction
accuracy and statistical significance can be evaluated on the test set with a modified cross-
validation such that for each fold the original cross-validation set is repeatedly added to
the training data. Due to the similarity to cross-validation, we term this approach cross-
testing. While making it impossible to pick one final model on additional unseen data, the
parameters that have been chosen remain interpretable.

4.2.2 Comparison to the other machine learning approaches

When a researcher is interested in publishing their model parameters, then typi-
cally the efficient and popular approach called “Cross-validation and testing” is
used (Fig. [4.2). In the cross-validation set, the best parameters are chosen - usu-
ally according to highest cross-validation accuracy - and the test set is used for
out-of-sample accuracy estimation.
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An even more data-efficient approach for data analysis is called “Nested cross-
validation” (Fig. #.3). The approach is similar to cross-validation and testing,
but the test set becomes part of an outer cross-validation loop, while parameters
are optimized in inner cross-validation iterations, using only the training data of
the current outer cross-validation iteration. The whole data set can be used for
estimating the final accuracy and therefore has a maximum statistical power for
significance analysis. However, this approach does not make it possible to publish
parameters which might be sometimes desirable.

Our proposed approach can be seen as a natural extension between the two
extremes described before. See Table[d.I|for a comparison of the three approaches
in terms of data efficiency and parameter and model weights interpretability.

Table 4.1: Comparison of the approaches

Possible to | Possible to
Approach Data efficiency interpret interpret
parameters | fitted model

Cross-validation and testing Low Yes Yes
Proposed: Cross-validation
and cross-testing

Nested cross-validation High No No

Intermediate Yes No

Comparison of the newly proposed “Cross-validation and cross-testing”,
classical “Cross-validation and testing” and “Nested cross-validation” with
respect to data efficiency, and parameter and model interpretability.

4.2.3 Results

As predicted, we demonstrate the superiority of "Cross-validation and cross-testing"
over "Cross-validation and testing" both in terms of accuracy and in terms of
statistical sensitivity (see Fig. 4.5). This improved performance is explained by
the much larger data set that is available during each testing iteration of "Cross-
validation and cross-testing".

We confirmed in various numerical experiments that too large test sets quickly
result in insufficient data for finding the best parameters and not enough data for
fitting the best model. On the other hand, too small test sets can imply that there
are not enough data for achieving statistically significant results. This trade-off for
the size of the test set results in the existence of an optimal range. The proposed
"Cross-validation and cross-testing” modifies the range to allow larger test set
sizes because with the novel cross-testing part it is still possible to use almost all
of the data for model fitting (see Fig. 4.6).
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Figure 4.5: Analysis of real data (left: EEG dataset; right: spiking dataset) with three
different approaches as a function of data size with test set size fixed at 50%. Re-
sults show the mean accuracy (upper graphs) and proportion of significant results (bottom
graphs) out of the 1000 runs. More data lead to higher average accuracy and increases the
proportion of significant results with the binomial test. “Nested cross-validation” outper-
forms other approaches while “Cross-validation and testing” gives the worst performance
in terms of average accuracy and proportion of significant results.
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Figure 4.6: Analysis of neuroscience data (left: EEG dataset; right: spiking dataset)
with three different approaches as a function of the relative test set size. Results show
the mean accuracy (upper graphs) and proportion of significant results (bottom graphs) out
of the 1000 runs. Data set size was fixed to 50 for EEG and to 100 for spikes train data set.
Larger test set leads to smaller average accuracy because there is less data for choosing
parameters and fitting a model. "Cross-validation and cross-testing" outperforms “cross-
validation and testing” in terms of average accuracy and proportion of significant results.

4.3 Future work

It is fair to say that every contribution creates more questions than it solves. Along
the way, we also noticed several lines of work which should or are already build-
ing on top of the results obtained in this dissertation. In this section, we will
briefly mention possible future theoretical work related to hyper-parameters and
an ongoing implementation of the main thesis of this dissertation.

4.3.1 Hyper-parameters and data

The choice of parameters for a machine learning algorithm can be somewhat
solved with clever data partitioning methods but some so-called hyper-parameters
must be fixed before the start of the analysis.

For example, the size of the test set is one such hyper-parameter that could
be studied further. Especially because of the novel approach introduced in this
dissertation and more precisely the way of splitting the problem into two sub-
problems: choosing parameters and optimizing model weights. This might make
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it easier to come up with better heuristics for choosing the size of the test set.

In addition, this test set size might be dependent on the properties of the data.
For example, in Fig. 4.5|the effect is smaller with EEG data suggesting that more
efficient usage of data in the model fitting is not that important and the choice of
parameters is actually the main influencer. This might influence the choice of the
machine learning data partitioning method and some other hyper-parameters.

4.3.2 Implementation for common use

There are numerous programming languages and libraries for organizing the work
of a data analysts such as a language R (R Core Team) 2013)) and machine learning
library scikit-learn in Python (Pedregosa et al.,[2011). In an ongoing project, we
are supervising the implementation of our novel machine learning data partition-
ing method in these common frameworks.

4.4 Conclusion

When using machine learning algorithms for making predictions, improving per-
formance of a classifier can be seen as a central goal. At the same time, inter-
pretability of models and parameters beyond the given data are in many cases
desirable. Since data are often scarce or expensive to acquire, efficient use of data
is another important objective. These three goals - generalization performance,
interpretability, and efficient use of data - often lead to a trade-off that is resolved
depending on the focus of the researcher. If the focus lies on generating a model
that will generalize well to unseen data, this requires an interpretable model and
interpretable model parameters. For that purpose, data can be used efficiently
by the common approach known as "Cross-validation and testing". If, however,
the goal is to maximize classification performance for finding a statistical depen-
dence between class labels and data, then a better performance can be achieved
by using “Nested cross-validation”, which provides a very data efficient approach
by repeatedly re-using data. However, this approach does not naturally allow the
interpretation of parameters and model weights.

Previously, researchers had to choose from these two extremes depending on
their goal. In this study, we described a novel approach that uses cross-validation
to find and fix the best combination of parameters, but importantly which then
resamples test data for augmenting training data, yielding to more accurate es-
timation of generalization performance. We termed this new approach “Cross-
validation and cross-testing” and predicted that it would outperform outperforms
“Cross-validation and testing” in terms of accuracy and statistical sensitivity with
simulated and empirical data sets. In particular, we tested the effects of different
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data sets, data set sizes and test set sizes.

While both “Cross-validation and testing” and the proposed "Cross-validation
and cross-testing" make it possible to report parameters, the latter, novel approach
uses data more efficiently in the final model fitting phase by reducing the test set
size trade-off. This change of the trade-off occurs by reducing the detrimental
effect of a larger test set size on the quality of the fitted model by augmenting the
size of the training data.

It is our hope that the proposed approach can be a useful addition to the toolkit
of machine learning approaches. We believe that it might be especially applicable
when both data efficiency and parameter interpretations are desired.
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SUMMARY

A simple conclusion of a research study, for example, that yes there is an effect
of X onY, is a result of a long and complex effort. It is amazingly difficult to
choose a research topic of interest; understand current trends and problems of
the related topic; invent clever methods to study it and finally carefully perform
tedious experiments that should shed light on the topic of interest. But the hard
work does not stop there.

Data must first be cleaned, with artefacts and outliers removed. Often a com-
mon statistical inference is enough as a next step. Choosing it correctly is difficult
as complex real life data rarely complies with all the needed assumptions and it
is easy to accidentally make statistical mistakes in the process. In Chapter 2] we
tackled these challenges while analyzing human EEG data and performed all the
step previously mentioned.

To compound the problem, very often it is not possible to use "simple" meth-
ods of statistical inference. Machine learning makes it possible to analyze more
complex data while needing less pre-processing and by making fewer assump-
tions about the data. The apparent positive side comes with an important negative
side. Machine learning methods need an approach that uses some kind of data
partitioning in order to estimate the true prediction accuracy of the result.

In Chapter [3] we developed a machine learning analysis approach that uses
nested cross-validation in order to perform extensive parameter search and also
validate the statistical dependence between class labels and the data.

The obvious problem with the nested cross-validation approach is the lack of
possibility to interpret model parameters which could lead to more insight and
more efficient scientific process. The main contribution of this dissertation, as
described in Chapter 4 was to categorize and analyze two most common data-
partitioning schemes and invent a new one that is more efficient in the case where
model parameters need interpretation but model weights do not.

The new approach is termed "Cross-validation and cross-testing". First, cross-
validation is used on part of the data to determine and lock the best set of param-
eters. Then testing of the model on a separate test set is performed in a novel way
such that on each testing cycle, part of the data is also used in a model training
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phase. This gives us an improved system for using machine learning algorithms in
the case where we need to interpret model parameters but not the model weights.
For example, it gives us a nice possibility to be able to describe that the data has
a linear relationship instead of quadratic one or that the best neural network has 5
hidden layers. The new approach is validated on different neural datasets and on
a simulated dataset.

We notice a clear trend towards using machine learning to analyze neural data.
This makes our contribution timely, especially in the light of how easy is to mis-
use statistical analysis and the need of straightforward parameter scanning with
efficient use of complex models on limited data.

It would be a positive direction if a larger proportion of scientific results would
be correct and reproducible and if scientists could be spending less time in data
pre-processing. What is more, it would be nice if we could re-use each other’s
code more easily. Some of it can be achieved with modern machine learning
algorithms. In natural science, description and interpretation of parameters would
be a useful addition to any paper.

In this dissertation, we have invented a more efficient data partitioning ap-
proach which makes it possible to still interpret the parameters. As scanning of
parameters in complex models is arguably the most time-consuming operation,
sharing of them will accelerate the process of data-driven discovery in natural
sciences. We hope that researchers will find it useful and will start using it and
therefore improve the quality of science and also pleasure gained by doing the
statistical analysis.
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APPENDIX

Chapter 3, publication [l

The code of the whole project of the publication [l can be accessed from here:
www.github.com/kristjankorjus/PredictingPersonalityFromEEG

Chapter 4, publication Il

All datasets, source files for the figures and full code together with history of
changes of the publication [Ill| can be accessed from here:
www.github.com/krist jankorjus/machine-learning—-approaches
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KOKKUVOTE
(SUMMARY IN ESTONIAN)

EEG ANDMETE ANALUUS JA
ANDMEPARTITSIOONIDE
ARENDAMINE MASINOPPE
ALGORITMIDELE

Empiirilise teadust6d selgrooks on andmed, statistilised mudelid ja nende pdh-
jal tehtud ennustused. Paljudes valdkondades - nagu neuroteaduses ja bioinfor-
maatikas - on andmed ddrmiselt keerukad, mitmemddtmelised ja tekkinud mitte-
linaarsete interaktsioonide poolt. Oma seesmise keerukuse tottu vajavad kaasaeg-
sed masindppe algoritmid suurt hulka andmeid ja paljude paremeetrite ldbikatse-
tamist.

Antud doktoritod eesmirgiks on kirjeldada ja arendada inimaju signaalidest
salvestatud elektroentsefalograafi (EEG) andmeanaliiiisi protsessi. Vaatamata selle-
le, et valdav osa to0st pohineb EEG signaalidel, on enamik saadud teadmistest ja
vilja tootatud meetodidest rakendatavad suuremale osale keerukate (ja kulukate)
andmetepohiste valdkondade probleemidele.

To6 esimeses osas on vaatluse all andmete puhastamise ja eeltodtlemise olu-
lisus koos klassikalistest statistilistest mudelitest Idhtuvate lihtsamate hiipoteeside
testimisega.

Pohifookuses on antud t66 puhul masindppe algoritmide rakendamine elulis-
tele andmetele. Kuivord masindppe algoritmid ei vdéimalda iildjuhul teha eksp-
litsiitselt lihtsaid statistilisi jareldusi, nihkub fookus efektiivsetele andmepartit-
siooni meetoditele.

Doktoritoo peamiseks tulemuseks on uudne andmepartitsiooni tegemise viis,
mis vdimaldab kasutada andmeid oluliselt efektiivsemalt kui olemasolevad ldhe-
nemised, juhul kui parameetrid vajavad tdlgendamist, kuid mudeli kaalud mitte.
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