
1
Tartu 2019

ISSN 2613-5906
ISBN 978-9949-03-015-6

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
7

M
O

H
A

N
 LIY

A
N

A
G

E	
A

 Fram
ew

ork for M
obile W

eb of Things

MOHAN LIYANAGE

A Framework for Mobile Web of Things

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

7

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

7

MOHAN LIYANAGE

A Framework for Mobile Web of Things

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in informatics on April 4, 2019 by the Council of the Institute
of Computer Science, University of Tartu.

Supervisors

Prof. Dr. Satish Narayana Srirama,
Dr. Chii Chang,

University of Tartu,
Tartu, Estonia.

Opponents

Prof. Dr. Jussi Kangasharju,
Department of Computer Science,
P.O. Box 68, FI-00014,
University of Helsinki, Finland.

The public defense will take place on June 7, 2019 at 15.00 in J.Liivi 2-405.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright c© 2019 by Mohan Liyanage

ISSN 2613-5906
ISBN 978-9949-03-015-6 (print)
ISBN 978-9949-03-016-3 (PDF)

University of Tartu Press
http://www.tyk.ee/

http://www.tyk.ee/

To my family and friends

ABSTRACT

The Internet of Things (IoT) represents an environment comprised of various
physical and logical objects—such as vehicles, home appliances, animals, man-
ufacturing machines—that have unique digital identifications which enable them
to interact with one another over the Internet. Fundamentally, conceptual IoT ar-
chitecture indicates the Internet Protocol (IP) to be the primary network commu-
nication method regardless of what upper layer application protocols are, which
leaves the interoperability issues unanswered. In order to address such issues,
World Wide Web (W3C) consortium has introduced Web of Things (WoT) that
standardises the communication interfaces among IoT entities towards achieving
a global standard communication protocol based on the Web technologies.

Meanwhile, mobile devices such as smartphones, tablets, phablets have be-
come one of the primary elements of Mobile IoT (MIoT) systems. Specifically,
emerged smartphones have various inbuilt hardware and software sensors, and
they are capable of employing as gateways to connect external sensors (e.g., body
sensors) to the central management system in the cloud. Therefore, MIoT sys-
tems have utilised mobile devices as either sensory data source or as the gateway
servers via the Mobile Web Services (MWS) hosted on the mobile devices. MWS
enhances the capability of various mobile sensing applications, such as mobile
crowdsensing, real-time mobile health monitoring and mobile social network in
proximity.

Accordingly, researchers have considered such smart mobile devices as one
type of MIoT devices that is capable of connecting and delegating the physical
moving objects such as animals, Unmanned Aerial Vehicles (UAVs), land vehicles
or even certain levels of human behaviours. Given that there exists various types of
mobile devices and application frameworks, the problem of interpretability among
MIoT is also raised. To provide seamless communication between MIoT systems,
the WoT architecture can be integrated towards adapting MIoT devices to mobile
WoT (MWoT) devices.

Although recent mobile devices are quite capable in terms of mobile data trans-
mission speed and computation power, the frequent usage of high-performance
multi-core mobile central processing units and high-speed 3G/4G cellular Inter-
net data transmission will quickly drain the battery power of the mobile devices.
Numerous existing approaches have sought to overcome the resource-intensive
issues in the mobile-embedded service provisioning domain. However, there still
exist some challenges that need to be addressed to increase mobile devices’ effi-
ciency in terms of energy conservation. To overcome the intensive energy con-
sumption issues of the MWoT, in this thesis, the author presents a lightweight
service-oriented framework for MWoT based on constraint application protocols.

Commonly, IoT systems process the data and make the decision at the central
management system in the cloud. Similarly, MWoT would follow the same ap-
proach. However, considering the latency issue derives from the mobile Internet

6

speed and the end-to-end latency between the MWoT device and the cloud, the
classic model is unable to achieve the applications that demand ultra-low latency
in terms of sensory data processing and decision making. In order to support such
a need, the author extends the lightweight MWoT framework with mist comput-
ing mechanism, which allows the system distributes certain tasks from the cloud to
MWoT host. Further, considering the MWoT host have limited hardware compo-
nents, if it receives multiple requests that involve the same hardware functions at
the same period of time, it will cause the conflicts issue and cause the MWoT host
unable to satisfy the quality of service. In order to address the issue, the author
introduces the resource-aware autonomous service configuration that can manage
the availability of the functions provided by the MWoT host, based on the dy-
namically changing hardware resource availability. Additionally, the framework
supports task distribution among a group of mist computing-enabled resources.

In addition, the author has investigated to reduce the energy consumption of
MWoT devices, mainly using mobile Internet-based data transmission that con-
sumes more energy than proximal communication methods such as Wi-Fi, Blue-
tooth Low Energy, etc. Although MWoT device can utilises proximal public Wi-
Fi Internet access points, that may raise issues of data security. If MWoT devices
can collaborate with proximal Wi-Fi Internet access point that belongs to the pre-
identified trusted organisations, they can save significant battery power and mit-
igate the security issues. Recent research in IoT has emphasised the importance
of distributing processes from the distant central server to the proximal resources
such as Fog Computing and Networking architecture (i.e., the fog), which can
cater the alternative Internet connect for MWoT. However, utilising Fog Network-
ing service (FogNets) is also raises a new research question due to many het-
erogeneous FogNets providers, that have different capabilities such as operation
schedules, workload, and queue size etc. If the MWoT device randomly selects a
FogNets provider simply based on the FogNet providers’ availability, it may con-
sume unnecessary energy for the MWoT device if the MWoT device switches the
connected FogNets provider too frequent. In order to address the challenges dis-
cussed above, the author has proposed a proactive FogNets scheduling framework
for MWoT. Specifically, the proposed framework aims to optimise the FogNets
connection schedule towards reducing the extra energy consumption derived from
the switching FogNets providers.

Finally, this thesis extensively addresses the energy conservation of the MWoT.
Moreover, we have implemented the proposed frameworks on real devices and
evaluated them based on several case studies.

7

CONTENTS

1. Introduction 14
1.1. Problem Statement . 17
1.2. Research Objectives and Contributions 19
1.3. Outline . 21

2. State of the Art 22
2.1. Lightweight Operating Systems for Sensor Networks 22

2.1.1. Contiki . 22
2.1.2. TinyOS . 22

2.2. Lightweight Communication Protocols 23
2.2.1. Micro IP (uIP) . 23
2.2.2. 6LoWPAN . 23
2.2.3. Representational State Transfer (REST) 24
2.2.4. Constrained Application Protocol (CoAP) 25
2.2.5. Message Queue Telemetry Transport (MQTT) 27
2.2.6. Extensible Messaging and Presence Protocol (XMPP) . . . 30

2.3. Web of Things Architecture . 30
2.3.1. Web of Things Building Blocks 33

2.4. Lightweight Middleware for Mobile Web of Things 35
2.4.1. Applications of Mobile Web of Things 35
2.4.2. Comparison of Existing Mobile Web Services Frameworks 35

2.5. Using Nearby Resources (Mist Computing) in Mobile Web of Things
. 42

2.6. Energy-efficient Approaches in Mobile Web of Things Service Pro-
visioning . 44
2.6.1. Energy Efficiency in Wireless Sensor Networks 44
2.6.2. Using Public Fog Networking Services for Energy-efficient

Mobile Web of Things . 46
2.6.3. Service-oriented collaboration approaches for Mobile Web

of Things . 47
2.6.4. Energy-efficient Service Description and Service Discovery

in Mobile Web Services Provisioning 48
2.6.5. Payload Compression and Encoding 51

2.7. Summary . 51

3. Lightweight Mobile Web Service Provisioning for the Internet of Things
Mediation 53

3.1. Introduction . 53
3.2. Overview of Architecture . 54

3.2.1. Sensing Service Provisioning 55
3.2.2. Basic Protocol Stack . 56

8

3.2.3. Components of the MWoT framework 57
3.3. Summary . 61

4. Adaptive Mobile Web of Things Server Framework for Mist Comput-
ing in the Internet of Things 62

4.1. Introduction . 62
4.2. Proposed Framework . 62

4.2.1. Architecture overview . 62
4.2.2. Self-configured service provisioning 65
4.2.3. Service Scheduler . 67
4.2.4. Scalable Computational Resources 67

4.3. Summary . 69

5. Energy-Efficient Mobile Web of Things using Public Fog Networking
Services 71

5.1. Introduction . 71
5.2. System Design . 72

5.2.1. Overview . 72
5.2.2. Main components of the proposed framework 74
5.2.3. FogNets provider scheduling 76

5.3. Summary . 78

6. Prototype Implementation and Evaluation 79
6.1. Introduction . 79
6.2. Evaluation of Energy-Efficient Mobile Web of Things using Public

Fog Networking Services . 79
6.2.1. Objective . 79
6.2.2. Experimental Setup and Prototype Implementation 79
6.2.3. Discussion . 87

6.3. Evaluation of Adaptive Mobile Web Server Framework for Mist
Computing in the Internet of Things 88
6.3.1. Objective . 88
6.3.2. Experimental Setup and Prototype Implementation 88
6.3.3. Discussion . 95

6.4. Evaluation of Lightweight Mobile Web Service Provisioning for the
Internet of Things Mediation . 96
6.4.1. Objective . 96
6.4.2. Experimental Setup and Prototype Implementation 96
6.4.3. Discussion . 101

6.5. Summary . 102

7. Conclusion and Future Research Direction 103
7.1. Research Contributions . 103
7.2. Future Research Directions . 105

9

Bibliography 107

Acknowledgement 122

Sisukokkuvõte (Summary in Estonian) 123

Curriculum Vitae 125

Elulookirjeldus (Curriculum Vitae in Estonian) 126

List of original publications 127

10

LIST OF FIGURES

1. 6LoWPAN encapsulation header stack 24
2. CoAP protocol stack . 26
3. CoAP Request/Response Examples 27
4. MQTT Pub/Sub communication model 28
5. QoS levels in MQTT . 30
6. XMPP core architecture . 31
7. Abstract Architecture of W3C WoT 32
8. Conceptual Architecture of the WoT Building Blocks 33
9. From Binding Templates to Protocol Bindings 34

10. Effect of message size on process time - SOAP Vs. REST [8] . . . 36
11. Comparison of energy consumption between SOAP and REST Web

Service [6] . 37
12. Average power consumption of various flow patterns [95] 38
13. The role of Mist in IoT . 43
14. MWoT service provisioning framework 55
15. Protocol stack of the mobile Web server 56
16. Main components of MWoT server 57
17. mePaaS architecture . 63
18. Fog Networking service example 73
19. Testbed for the energy measurement 80
20. Energy consumption due to switching Wi-Fi Networks 81
21. Power consumption (optimised schedule Vs. random schedule) . . 83
22. Energy utilisation of the MWoT device (doing solo sensing Vs. col-

laborative sensing) . 84
23. Power consumption for BLE scanning in three different environments 84
24. Power consumption of the MWoT device for BLE scanning(20, 40,

60 seconds) . 85
25. Energy consumption (Solo Vs. via a FogNets provider) 85
26. Comparison of energy consumption (default data size is 200 KB) . 87
27. Experiment setup. Mist vs. Fog vs. Distant Data Centre 90
28. Communication latency . 92
29. Service module bootstrapping cost and performance 93
30. Average time consumption for identifying offloading node 94
31. Process offloading testing results 95
32. Throughput of MWS . 97
33. CPU load of MWS . 98
34. Comparison of energy consumption (CoAP vs HTTP) 99
35. Comparison of energy consumption (Phone vs Raspberry Pi) . . . 100
36. Comparison of energy consumption 101

11

LIST OF TABLES

1. Comparision of related works of mobile Web service provisioning 41
2. Comparison of the related compression schemes (size of encoded

objects in Bytes) [125]. (*Strict schema-informed mode with bit
alignment) . 51

3. Scheduling cases; X denotes the availability, B© denotes the buff
time; +© denotes the selected schedule. 82

12

LIST OF ABBREVIATIONS
6LoWPANs IPv6 over Low Power Wireless Personal Area Networks
BLE Bluetooth Low Energy
CoAP Constrained Application Protocol
CoRE Constrained RESTful Environments
DNS Domain Name System
EXI Efficient XML Interchange
FogNets Fog Networking service
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IP Internet Protocol
JSON JavaScript Object Notation
LoWPANs Low-power personal area networks
MEC Multi-access Edge Computing
MIoT Mobile Internet of Things
Mist Mist Computing
MQTT Message Queue Telemetry Transport
MWoT Mobile Web of Things
MWS Mobile Web Services
P2P Peer-to-Peer
QoS Quality of Service
REST Representational State Transfer
RFID Radio-Frequency Identification
SDM Service Description Metadata
SOAP Simple Object Access Protocol
SWoT Semantic Web of Things
TCP Transmission Control Protocol
TD Thing Description
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
VM Virtual Machine
WLAN Wireless Local Area Network
WoT Web of Things
WSDL Web Service Definition Language
WSN Wireless sensor network
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

13

1. INTRODUCTION

The Internet of Things (IoT) was first introduced by Kevin Ashton in a presen-
tation at Procter & Gamble in 1999 [111]. According to Ashton’s definition, the
IoT is a technology that ’empowers computers with their own means of gathering
information, observes, identify and understand without the limitations of human-
entered data’. Later, in 2005, the International Telecommunication Union defined
the IoT as ’A global infrastructure for the information society enabling advanced
services by interconnecting (physical and virtual) things based on existing and
evolving, interoperable information and communication technologies’ [70]. Sim-
ilarly, the European Research Cluster on the Internet of Things defined the IoT as
follows: ’The Internet of Things allows people and things to be connected Any-
time, Anyplace, with Anything and Anyone, ideally using Any path/network and
Any service’ [154].

In contemporary society, the IoT represents an environment that comprises var-
ious physical and logical objects—such as computers, mobile telephones, cars, ap-
pliances, animals and virtual sensors—that have a unique digital identifier that en-
ables them to interact with each other over the Internet, without requiring human
interaction [11]. The ultimate purpose of such an environment is to strengthen
and enhance lives and increase the efficiency of various interconnected services
and applications in mainly, but not limited to, the three domains of industry, envi-
ronment and society [11].

For example, supply chain management, transportation and logistics, and avi-
ation can be considered applications in the industrial domain. Some typical cases
in this domain are the passive radio frequency identification device (RFID) tag-
enabled cards/tags in transportation [74] and supply chain management applica-
tions [76]. Agriculture and environmental monitoring can be considered applica-
tions in the environmental domain. Common applications in this domain include
deploying wireless sensors in farmlands to monitor humidity, temperature, soil
moisture, solar radiation and so forth to improve environmental and agricultural
sustainability [86], and environmental monitoring systems [87]. Finally, examples
in the social domain include applications for healthcare; smart buildings, homes
and offices; media and entertainment; and education. A widespread application
in this domain is a smart home [65], which enables its tenants to automatically
control lighting, cooling/heating systems, windows and blinds, home appliances
and so on, which are connected to the Internet.

In contrast to the traditional method of wireless sensor networks (WSNs) that
acquire information from the environment, in the IoT, it is expected that things
can also interact/react with the physical world [82]. To achieve this requirement,
the things may have a type of embedded smartness to function accordingly. For
example, smart pill bottles remind patients to take their medication via smart re-
minders, while records indicate whether the patient has taken the correct dosage

14

with automatic dose tracking1. Industry predictions reveal that, over time, the IoT
will expand sufficiently to enable thousands of homes and industrial appliances
to be connected to the Internet. It is predicted that, by 2020, around 50 billion
physical things will be connected to the Internet [20]. Accordingly, the traditional
Internet architecture needs to be upgraded to manage the issues encountered when
interconnecting billions or trillions of different objects.

Although the IoT continues connecting objects and frameworks to the Inter-
net Protocol (IP)–based Internet using the most current communication technolo-
gies—such as Bluetooth, ZigBee, Ethernet and Wi-Fi—there remain some lim-
itations when connecting each and every object. The limiting factor is the non-
appearance of a typical technique or interface to establish communication among
the different things. To conquer the absence of interoperability across platforms
in the IoT, there should be platform-independent application programming inter-
faces (APIs) that empower unique platforms to know how to communicate with
each other. The Web of Things (WoT) is a high-level application protocol de-
signed to maximise interoperability within the IoT. The WoT can be considered a
refinement of the IoT to integrate smart things into the Internet and web architec-
ture [63]. According to Tim Berners-Lee, the influence of the web did not reach its
full potential until the semantic web was developed. He claimed that the semantic
web aims to provide a framework for data and information that can be processed
automatically [16].

In the meantime, the W3C WoT [77] is proposed to empower interoperability
crosswise over IoT platforms and application areas. It generally provides pro-
cedures to formally describe IoT interfaces to allow IoT gadgets and services to
speak with each other, separate from their basic implementation, and across multi-
ple networking protocols. Accordingly, WoT systems are essentially IoT systems
with mechanisms to empower associated connected things, such as home appli-
ances, vehicles and animals, to be communicable by means of web technologies.
In addition, this is considered the familiar application layer of the IoT. Further, the
WoT will provide a uniform resource locator (URL) to every thing, and a REST-
ful API that empowers a gathering of machine-interpretable descriptions of things
that enable more physical items to interface with the Internet.

The W3C thing description (TD) [122] approach provides an entry point to
a thing that includes rich semantic metadata to describe the thing itself. More-
over, the TD provides a machine-understandable data model and features of the
WoT’s properties—such as actions, events and interaction models exposed to ap-
plications—that provide metadata for communication among the different things
over the web. The work of characterising a TD for a current device enables it to
participate in the WoT without making any alterations to itself.

In contemporary lifestyles, recently introduced mobile devices—such as smart-
phones and tablets—have become essential and indispensable tools in everyday

1https://nanthealth.com/vitality/

15

life. With their faster processing power, larger and higher-resolution display
screens, greater memory and enhanced power-saving mechanisms, they contribute
significantly towards making it easy for us to exist and perform our everyday
work. Additionally, accessing high-speed mobile Internet (e.g., 3G/4G or long-
term evolution (LTE) Internet) has led mobile device use to become a common
phenomenon, with recent reports indicating that about 56% of global web traffic
originates from mobile devices [144].

The evolution of service-oriented architecture technologies and enhanced fea-
tures of mobile telephone–embedded sensors (proximity, light, accelerometer, gy-
roscopic sensors, etc.), higher computation power and greater storage and actu-
ation capabilities have motivated the mobile sensing paradigm. This has created
a new avenue of mobile sensing services, in which smartphones are capable of
providing various environmental context information by either pushing the col-
lected sensory data to remote servers or providing the data directly via embedded
mobile web services (MWS) technology (also termed the mobile host) [26]. The
basic idea of the mobile host is sensing the environment using inbuilt sensors, and
providing the sensing services to other clients as a web server. Distinct to the
push-based approach, MWS allow remote clients to perform on-demand requests
to the mobile host without uploading all the data they have collected periodically.

In addition, contemporary smartphones provide the ability to inventors to build
various mobile sensing applications, such as mobile crowdsensing [100,155] real-
time mobile health monitoring [78, 158], real-time activity tracking [14, 108], lo-
cation based services [36], ambient assisted living [17] and mobile social net-
works in proximity applications [32, 124]. In general, smartphones play the role
of web service consumers. Changing the position of a web service client to a
web service provider is a challenging task because of the constrained nature of
the devices themselves. While various domains have integrated the IoT into their
systems, MIoT [119] emerged as the dominant theme in the IoT. In general, the
MIoT specifically addresses connected moving objects, such as humans, animals,
drones, and vehicles, which often rely on battery-powered devices. In connected
vehicle domain, applications such as Internet of Vehicles (IoVs) based traffic man-
agement solution [43], flexible vehicle-to-grid (V2G) coordination scheme to re-
duce the energy cost of charging stations [160], identify better locations of road-
side units for development of Content Delivery Networks [131], can be consid-
ered. Also, in a remote healthcare system, the patient must wear various battery-
powered body sensors, and the system uses the patient’s smartphone to collect
the sensory data from the body sensors, and then provides the data to the remote
hospital’s system [104].

Commonly, if all the MIoT system uses devices from a single vendor, it may
have no issues integrating the devices. However, this approach reduces flexibility
in choosing the device vendor. Further, if the vendor retreats from the market, the
system cannot easily find substitutions, and, eventually, the system manager must
replace all the devices. In contrast, if the system has applied the WoT, in which the

16

system uses only WoT standard-compliant devices, it will increase the sustainabil-
ity of MIoT deployment. To differentiate from the general MIoT, in this thesis, the
author terms the WoT-driven MIoT the ‘mobile Web of Things’ (MWoT). MWoT
devices also operate as mobile sensing service gateways for other clients. Un-
like mobile host devices, which acquire data from inbuilt sensors, the MWoT can
collect data from other sensors in proximity and published over the standard web
technologies.

The MWoT eases various IoT applications. For example, on the Internet of
Vehicles [75], MWoT-compliant connected vehicles can quickly perform thing-
to-thing interaction, in which they can discover one another based on multicast
domain name system (mDNS), DNS service discovery (DNS-SD) [10] and WoT
interfaces to provide autonomous driving safety enhancement. Further, in the am-
bient assisted living [98] domain, the MWoT can simplify the communication
among mobile users and the surrounding environment. For example, a person
with a disability can use the MWoT to avoid crowded areas while he or she is in
central city streets. Finally, the MWoT eases the deployment and management
of remote healthcare [92], so that the associated wearable equipment and environ-
mental devices can efficiently perform communication towards improving sensory
data collection for the patient.

1.1. Problem Statement

Although recent smartphones have sufficient processing power and are capable
of high-speed data transmission, the challenge of resource constraints still ex-
ists when providing MWoT services. The frequent usage of high-performance
multi-core mobile central processing units (CPUs) and high-speed 3G/4G mo-
bile Internet data transmission quickly drains the battery power of the MWoT
device. Therefore, during recent years, several lightweight MWS provisioning
approaches [8, 15, 71, 99] have been proposed to address the resource-intensive
issues in the MWoT. Further, numerous frameworks have been introduced to re-
duce the resource consumption of the mobile host; however, the efficiency of their
approach is still limited. In this thesis, the author investigates the following open
issues that need to be resolved to adapt the design of future MWoT frameworks.

1. The constrained nature of available resources on mobile devices
In general, there are two trends of approaches used in most previous frame-
works to address the resource-intensive issues in the MWoT:

(a) Reducing the complexity of messaging, such as using Representa-
tional State Transfer (REST)–based service provisioning, rather than
Simple Object Access Protocol (SOAP)

(b) Using external resources to enhance the overall performance, such as
offloading complex computational tasks to the static cloud [30] or mo-
bile ad-hoc cloud [7].

17

However, when considering energy efficiency, there remain issues regard-
ing these frameworks, mainly because of the underlying protocol stack. For
example, most of the past frameworks [80,96,106,140] were based on Hy-
perText Transfer Protocol (HTTP) as their application protocol, which is
on the Transmission Control Protocol (TCP). Correspondingly, TCP is a
connection-oriented protocol that generally has more overhead on the trans-
port layer, and HTTP messages often have large header size (from 200 bytes
to 2 kilobytes), which is not suitable for constrained environments.

• Which features and lightweight protocols should be involved in a new
lightweight MWS provisioning framework to address the limitations in
the existing MWoT approaches?

2. Avoiding conflicts among the sensing services components and increase the
quality of service in MWoT
When considering MWoT-based sensing provisioning systems, at times the
workload of the MWoT device may reduce the efficiency of the device and
disturb the intended use of the device—for example, if the device is a mo-
bile telephone, it may disrupt telephone calls, the reading of text messages
and so on. In addition, the communications latencies in the MWoT will
increase when numerous clients are requesting the same information at the
same time. Further, mobile devices have limited sensing components and
may be unable to operate concurrently. As a result, there may be conflicts
among the sensing components. Conversely, some services may be able to
operate at the same time, even though they are using the same sensing com-
ponents. For example, video- and image-based sensing services both use
the camera component and may operate at the same time, depending on the
specification of the devices.

• In such cases, how does the MWoT device manage the services and
provide timely service publishing?

Similarly, in the case of a real-time or periodical sensing service operation,
the executed service can affect the availability of other services.

• How does the MWoT device measure or prioritise the availability of
the services?
• How does the MWoT device borrow some computational resources

from nearby devices, if its own available resources are limited?

3. Using collaborative fog networking services to reduce mobile Internet us-
age in MWoT devices
In general, the IoT environment involves a large number of MWoT devices
deployed in high density. Although large-scale connected MWoT devices
provide various possibilities, they still raise the challenge of constrained
energy because they operate on battery power and use mobile Internet com-
munication.

18

Correspondingly, as the literature shows [98], Wi-Fi network communica-
tion consumes much less energy than cellular Internet, and sending data
below a threshold will consume very similar power. For instance, sending
100 bytes or 500 bytes consumes almost the same power via 3G mobile In-
ternet, which indicates that, when a device is brokering a small amount of
data for the other proximal wireless local area network (WLAN)-connected
devices, it will not consume much extra energy from the device itself.
In this regard, if MWoT devices can collaborate with proximal Wi-Fi Inter-
net access points, they can save significant battery power while engaging
in mobile sensing tasks. In the past, many works have discussed such an
Internet-sharing environment [9, 11, 42, 52, 69, 149], and the related com-
mercial services have already existed for many years (e.g.http://www.fon.
com). Moreover, sharing hardware resources has also been discussed in
studies [39,42,155] for different pervasive and mobile application domains.
Fortunately, recent research on the IoT has emphasised the importance of
distributing processes from the distant central server to the proximal re-
sources, such as programmable network routers, gateways, bridges or their
co-located machines. In particular, industry terms—such the paradigm of
fog computing and networking architecture (i.e., the fog)—can cater to al-
ternative Internet connections for the MWoT.
Since the industry founded the OpenFog consortium, it has been collabo-
rating with the Institute of Electrical and Electronics Engineers (IEEE) to
develop the fog standard [69]. It is foreseeable that, in the near future, local
small businesses and individuals will be providing public fog to the general
public, which is similar to the indie fog business model [28] and The Things
Network2 . Although using the fog networking service is a promising ap-
proach to improve the energy efficiency of the MWoT, it also raises new
research questions:

• How can one select the best FogNets provider in an environment that
comprises many heterogeneous FogNets providers that have different
workloads, queues and operation schedules?
• How can one reduce the unnecessary energy consumed by the MWoT

device from switching the connected FogNets provider too frequently
because of the availability of the FogNet provider?

1.2. Research Objectives and Contributions

A conventional approach of the MWoT is working as a mobile gateway device that
provides some sensing services to other devices over the standard web technolo-
gies. However, because of the dynamic nature of the WSN, uncertain mobility
patterns and the energy constraints of mobile devices lead to many challenges in

2https://www.thethingsnetwork.org/

19

h

developing a sustainable MWoT framework. The research presented in this thesis
focuses on developing a generic MWoT framework to overcome the challenges
mentioned above—particularly energy conservation and avoiding the conflicts of
sensing services of the MWoT device. To summarise, the contributions of this
work are as follows:
• A lightweight mobile WoT framework

The framework is based on integrating a number of lightweight protocols,
including Constrained Application Protocol (CoAP) [128], Bluetooth Low
Energy (BLE) [130] and Efficient XML Interchange (EXI) [73]. The proto-
type of the proposed framework has been implemented and tested on a num-
ber of mobile devices, including Google/LG Nexus 51, Google/HTC Nexus
92 and Raspberry Pi3. The experimental results focus on performance com-
parison between the traditional MWS and the proposed lightweight MWoT
framework, and indicate the efficiency of the proposed lightweight MWS
framework concerning resource consumption and service provisioning per-
formance.
• A mePaaS

As the technology evolved, today’s ARM CPU-powered mobile devices can
outperform entry-level virtual machines [27] and are capable of supporting
such types of platforms. mePaaS nodes can execute customised computa-
tional processes defined by their requesters. mePaaS nodes loan their hard-
ware resources to others based on specific service level agreements. More-
over, the framework consists of a module that addresses the hardware usage
relative to the temporal space, especially when handling complex types of
services. The framework aims to address the two issues described before:

– a flexible program execution environment in the mobile device
– self-adaptive resource management; a prototype has been developed

based on mePaaS and has been thoroughly tested as a proof-of-concept.

• A proactive FogNets scheduling framework for the MWoT
In general, in the fog networking [19] environment, devices interconnect
with already existing proximal FogNets and use their resources. How-
ever, FogNets providers are not always actively connectable as a result of
some technical factors, such as maintenance and energy preservation. The
proposed framework is mainly designed for such environments. Establish-
ing a collaborative network in such an environment requires an appropriate
scheduling scheme. Specifically, the proposed framework aims to optimise
the FogNets connection schedule towards reducing the extra energy con-
sumption derived from switching the FogNets providers. The author imple-
mented and validated the proposed framework using physical devices, and
the experimental results indicate that the proposed architecture can reduce
the energy consumption for MWoT devices.

20

1.3. Outline

The chapters in this thesis are organised as follows.
Chapter 2 summarises the state-of-the-art and related work in the MWoT. In

particular, the first section describes related lightweight operating systems for
sensor networks, such as Contiki and TinyOS. The following sections describe
some of the related technologies in lightweight communication, WoT architecture
and lightweight middleware for the MWoT. The author then introduces related
works that enhance the service provisioning of MWoT frameworks—such as us-
ing nearby resources in the MWoT to preserve energy, improving energy-efficient
approaches in WSNs and using public fog networking services. In the latter part
of Chapter 2, the author introduces further mechanisms to preserve the energy of
the MWoT by exploring energy-efficient service description and service discovery
approaches.

Chapter 3 introduces a lightweight MWS provisioning framework that uses
lightweight communication protocols and a scheduling algorithm to enhance the
energy efficiency of the MWoT devices. The proposed framework in this chapter
was partially published in a previous article (’Lightweight Mobile Web Service
Provisioning for the Internet of Things Mediation’ [88]).

Chapter 4 describes a service-oriented mePaaS—a framework that enables
edge MWoT devices to support resource-aware autonomous service configura-
tion, which can manage the availability of a platform that allows requesters to
deploy and execute their own program models. Partial contents of this chapter
have been previously published in [90, 91].

Chapter 5 discusses energy-efficient mobile data acquisition using public Fog
networking services. The framework introduces a proactive FogNets scheduling
scheme in the opportunistic Internet-sharing environment. MWoT devices can
continually retrieve information of already existing proximal FogNets and sched-
ule the connection among the available FogNets providers accordingly. The pro-
posed architecture in this chapter has been partially published in [89].

To evaluate the proposed frameworks, Chapter 6 presents the details of proto-
types that the author has implemented on real devices, and the evaluation results
of the use cases.

Chapter 7 concludes the thesis by summarising the contributions and evalua-
tion results, and by outlining the further work that should be undertaken to en-
hance the MWoT service provisioning.

21

2. STATE OF THE ART

Providing MWS in which the mobile terminals are used as both web service
clients and providers is not a new concept, and has been a popular research area
in recent years. This chapter explores the state-of-the-art options available in the
MWoT, particularly in relation to system architectures, protocols and communi-
cation mechanisms.

2.1. Lightweight Operating Systems for Sensor Networks

In general, WSNs consist of a large number of resource-constrained tiny sensor
nodes that collectively form a network to acquire and transport sensor data. For
a large number of node deployments, it is not practically feasible to frequently
move to every node and change/update their configuration when necessary. To
address these types of issues, researchers have proposed using lightweight, tiny
operating systems for sensor nodes. The following subsections describe two of
these commonly used operating systems.

2.1.1. Contiki

Contiki [49] is a lightweight operating system developed for typically constrained
sensor nodes, with the feature of loading and unloading individual programs and
services dynamically. The operating system is implemented in the C language
with event-driven kernel architecture, and can be ported to conventional sen-
sor devices with 8-bit microcontrollers, less than 20 kilobytes of random-access
memory (RAM) and a few hundred kilobytes of read-only memory (ROM). For
instance, Contiki was simply ported to the ScatterWeb [121] embedded sensor
board with the configuration of the Texas Instruments MSP430 series, an ultra-
low-power microcontroller, 2 kilobytes of RAM and 60 kilobytes of ROM run-
ning at 1 MHz. Moreover, instead of downloading a complete binary image of the
entire system, Contiki is built with the ability to load and unload distinct applica-
tions or services at runtime over the network. Such a feature is essential to reduce
the number of bytes delivered over the network, which consumes less node energy
and requires less transfer time.

2.1.2. TinyOS

TinyOS [67] is a tiny micro-threading operating system that provides lightweight
thread architecture and efficient network interfaces. The main design goals of
the TinyOS are offering a flexible, application-specific operating system that pro-
vides efficient hardware and application modularity and maintains simultaneous
different data flows. Moreover, it tackles the challenges of the limited memory
and power resources of sensor networks, while providing a flexible, fine-grain ex-
ecution model that supports concurrent operations with insufficient memory and

22

power constraints.

2.2. Lightweight Communication Protocols

Energy efficiency in the WSNs—specifically in the MWoT—is an active research
domain, and lightweight communication protocols are playing a significant role in
the energy preservation of the whole system. The following subsections discuss a
few communication protocols involved in the MWoT.

2.2.1. Micro IP (uIP)

The uIP [48] is a small, generic and portable TCP/IP implementation, with the
absolute minimal set of features required for full TCP/IP stack. The application
is written in the C programming language, and supported only for a single net-
work interface. Moreover, uIP implementation supports devices running on var-
ious 8/16-bit platforms, with the features for handling generic TCP/IP protocols
stacked on devices with limited resources. Further, it is possible to run the uIP on
devices with as little as 200 bytes of RAM, with limited performance. However,
the initial implementation of the uIP focuses on IPs, Internet Control Message
Protocols and TCPs, and does not support User Datagram Protocols (UDPs).

2.2.2. 6LoWPAN

For applications that require low-cost communications and their nodes to work
autonomously for years on small batteries, the IEEE 802.15.4 introduced a wire-
less link for low-power personal area networks (LoWPANs). Further, the IEEE
802.15.4 designed the link explicitly for low-cost, long-lived application domains,
and includes features such as low transmit power, small frame sizes, low band-
width, limited memory and limited computing power [68]. Specifically, the LoW-
PAN’s frame length is limited to 128 bytes, 16-bit link addresses and low through-
put (250 kbps in the 2.4 GHz band and 20 or 40 kbps in other bands), which en-
sures reasonably low header overhead and memory requirements. The microcon-
trollers that associated with the LoWPANs implementations and enough to have
about 8 KBytes of data RAM and 64 KBytes program ROM. However, integrat-
ing IPv6 over LoWPAN networks raises several challenges, mainly because of the
bulky nature of the protocol headers and because some characteristics of the IPV6
do not fit in the low-power network. To overcome this issue, one can principally
reduce the header size when transmitting IPv6 datagrams over the 802.15.4 links.
As shown in Figure 2.1, the Internet Engineering Task Force (IETF) introduced
the 6LoWPAN [83], which consists of an adaptation layer between the link and
network layer of the LoWPAN protocol stack. The 6LoWPAN achieves low over-
head by providing mechanisms for the header compression and fragmentation of
the IPv6 packets into multiple link-level frames.

23

Preamble SFD Length Link layer frame payload

4 bytes 1 byte 0-127 bytes1 byteIEEE 802.15.4

PHY

MAC

IPv6 payload
Fragment

header
IPv6 header

compression

Fragment
header IPv6 payload

Mesh addr
header

IPv6 header
compression

6LoWPAN
encapsulation
header stack

Frame
control

2 bytes

Seq#

1 byte

Addressing field

0-20 bytes

Security
header

0-21 bytes

Data payload FCS

2 bytes

IPv6 header
compression IPv6 payload

Figure 1: 6LoWPAN encapsulation header stack

2.2.3. Representational State Transfer (REST)

REST [54] is a communication protocol architectural style for distributed hyper-
media systems that handles client–server communication over the web. A web
service designed based on REST is termed a ‘RESTful’ service. RESTful ser-
vices are mainly concerned with the system’s resources transferred over the web.
Uniform Resource Identifiers (URIs) are used to access the resources on the web
server, and provide a simple mechanism for communication between applications
over the Internet. For example, a sensor node with a sensor to measure the ambi-
ent temperature and a light-emitting diode (LED) to trigger an alarm can have the
following URIs:

/office-room-1/sensor-node1/sensors/temp (represents the temperature sen-
sor)
/office-room-1/sensor-node1/actuators/led1 (represents the alarm LED)

In contrast to the more complex mechanisms—such as the Common Object
Request Broker Architecture (CORBA) [50], Web Services Description Language
(WSDL) and SOAP—the RESTful application uses the following basic HTTP
methods to access web resources:
• POST - to create a new resource
• PUT - to update the existing value/state of the resource
• GET - to access the current value/state of the resource
• DELETE - to remove the resource
With the HTTP methods and URIs mentioned above, developers can design

systems that can easily interact with resources over the web. For instance, a web-
based smart office system that can measure room temperature at regular intervals

24

and trigger an alarm if the temperature exceeds the threshold (e.g.,350C) can op-
erate on the following URIs with the relevant HTTP methods:
A GET on the URI
http://abc.com:8585/office-room-1/sensor-node1/sensors/temp

reads the current value of the temperature sensor.
A PUT on the URI
http://abc.com:8585/office-room-1/sensor-node1/actuators/LED1 with the value
of {status=1} can turn on the alarm LED.

Moreover, the experimental results in [8, 140, 151], indicated that REST is
more suitable for resource-constrained MWoT environments. For instance, in the
work [8], the authors have compared SOAP-based and RESTful-based mobile
Web service provisioning frameworks and confirmed that RESTful-based mo-
bile Web service framework is more suitable for providing mobile Web Services.
Moreover, the evaluation results have shown that RESTful Web services consume
lower processing time, a higher threshold value for concurrent client requests and
less amount of consumed memory compared to SOAP-based Web services. In ad-
dition, SOAP requests require heavyweight parsers that consume more processing
power while RESTful-based Mobile Web servers required lightweight processing
power which allows it to provide continuous mobile Web service provisioning in
a reliable manner.

2.2.4. Constrained Application Protocol (CoAP)

CoAP is a RESTful web transfer protocol that is designed for constrained envi-
ronments. CoAP provides a more compact message format mechanism, which
introduces a low overhead binary encoded header and reduces the message pars-
ing complexity. Figure 2 illustrates the underlying protocol stack of CoAP. The
significant features of CoAP are:
• a request/response (client/server) communication model
• unicast and multicast support
• a four-byte header
• support of the asynchronous transaction model
• inbuilt service discovery
• four REST request methods—GET, POST, PUT and DELETE
• a subset of Multipurpose Internet Mail Extensions (MIME) types and HTTP

response codes
• four different message types—confirmable, non-confirmable, acknowledg-

ment and reset
• URI-based resource representations for easy resource discovery
• built on top of a UDP that has a significantly lower overhead with multicast

support in contrast to the TCP; recently, a work-in-progress CoAP-over-
TCP solution has been introduced [115].

25

Web Resources

CoAP

UDP

Constrained Link

CoAP
Request/Response

CoAP Messages

Figure 2: CoAP protocol stack

CoAP is organised in two layers:
1. The transaction layer, which handles message exchange between endpoints.

Message exchange on the transaction layer has four types:

a) confirmable (must be confirmed with an acknowledgment [ACK] or
reset [RST] message)

b) non-confirmable (unreliable exchange, does not need to be acknowl-
edged)

c) acknowledgment (used to acknowledge a confirmable message)
d) reset (a confirmable message when the recipient of a message encoun-

ters an error).

2. The request/response layer, which is responsible for the transmission of re-
quests and responses. This layer is mainly based on the REST architecture.

With this dual-layered approach, CoAP provides high reliability, even without
using TCP as the transport layer protocol. Further, CoAP uses a stop-and-wait
approach to deal with packet losses. For example, a CoAP endpoint repeats a
request if it does not receive an ACK (or RST) message when time-out expires and
the transmission counter is less than four. Figure 3 indicates a reliable message
transmission between the client and the server.

In general, CoAP also uses URIs and REST methods to publish/discover the
resources hosted by the servers. For example, a GET on the URI
coap://myserver.com:5683/office-room-1/sensor-node1/sensors/temp

can be used to retrieve the current data on the resource (temperature sensor). Fur-
ther, CoAP endpoints use the Constrained RESTful Environments (CoRE) [126]
link format for service discovery, as will be discussed in a later section.

26

Message
ID

Token

ServerClient

+

CON [0xbc91]
GET / temperature

(Token 0x72)

ACK [0xbc91]
4.04 Not Found

(Token 0x72)
"Not Found"

+

ServerClient

+

CON [0xbc90]
GET / temperature

(Token 0x71)

ACK [0xbc90]
2.05 Content
(Token 0x71)

"22.5 C"
+

Figure 3: CoAP Request/Response Examples

2.2.5. Message Queue Telemetry Transport (MQTT)

MQTT [13] is also a lightweight message/data-streaming protocol designed for
resource-constrained devices, such as sensors and actuators, to send data over
low-bandwidth networks. MQTT does not specify a particular data format for
the information exchange procedure. It has a typical mechanism of the message-
oriented paradigm that uses a topic-based publish/subscribe model, which means
that multiple clients can establish connections with a broker node, publish mes-
sages to topics, and subscribe to specific topics of interest. Moreover, the exciting
feature of MQTT is that the same MQTT client can play a dual role as a publisher
and subscriber. The main features of MQTT are as follows:
• lightweight message-queuing protocol with two-byte header
• operates in connection-oriented transport approach (TCP)
• has an asynchronous communication model
• has a publish/subscribe model that decouples the data producer from the

data consumer.
When considering the publish/subscribe model of MQTT, sensors mainly pub-

lish data on specific topics to a broker, and the clients who subscribe to the particu-
lar topic receive the sensor data from the broker. One of the significant advantages
of this architecture is the decoupling of the clients needing data and the sensors
sending data, which indicates that the sensor nodes do not need to know the clients
that are interested in their data, and, conversely, clients need not know the identi-
ties of the sensor nodes that are generating the sensor data. For instance, multiple
applications may need to retrieve data from a particular sensor for different pur-
poses. All the sensor needs to do is publish its data to the broker on the appropriate
topic. The broker will then redistribute the published data from the sensor to the
applications that have subscribed to the same topic. Figure 4 describes the general

27

publish/subscribe model of the MQTT protocol.

Topic_1

Topic_2

Topic_3

MQTT
BrokerPublisher_1

Publisher_n

Publisher_2

Publisher_3

Subscriber_2

Subscriber_1

Subscriber_3

Subscriber_n

Figure 4: MQTT Pub/Sub communication model

Another advantage is that applications are kept isolated from the changes /fail-
ures that occur at the publisher’s end. Specifically, in WSNs, this feature is essen-
tial because it is prevalent to see device failure and replacement with new nodes.
From the application developer’s viewpoint, this publish/subscribe model hides
the complexity of the underlying network architecture, and the developer only
needs to know the topic that the device uses to publish its data. Usually, MQTT
does not care about routing or networking strategies, and assumes that the un-
derlying network provides the facilities to exchange messages. MQTT topics are
arranged hierarchically, and the publisher publishes the topic to the broker, and
the interested subscribers contact the broker to attain the relevant subscription.
For example, in a smart building system, a temperature sensor publishes ambient
temperature on the topic:

building101/floor1/room102/temperature

and the clients who are interested in the temperature in Room 102 can connect to
the message broker and subscribe to the same topic.

Correspondingly, according to the syntax, MQTT topics must have at least one
character to be valid and must be case sensitive. Further, the topic uses forward
slashes (/) to separate the topic hierarchy. A few example topics include

myhome/floor1/SithmiBedroom/light

myoffice/floor3/room311/temperature

Estonia/Tartu/Ulikooli/ITA/mclab/door1

When clients subscribe to the topics, it can be the exact topic where the in-
teresting message was published, or the client can subscribe to more interesting
topics at once. For that purpose, MQTT provides two different types of wildcard:
single level (+) and multi-level (#). With the single-level wildcard (+), a client can
subscribe to a topic and substitute for one topic level only. For example, a client
can subscribe to the topic:

myhome/floor1/+/temperature

and receive information about the temperature in different locations with just
a single subscription. Some example topics that can subscribe to the above syntax

28

are as follows:
myhome/floor1/livingroom/temperature

myhome/floor1/bedroom1/temperature

myhome/floor1/bedroom2/temperature

However, the single-level wildcard does not allow the client to receive data
published on topics such as:

myhome/floor1/bedroom1/humidity or
myhome/floor1/livingroom/heater1/temperature

Accordingly, when a subscriber needs to subscribe to more than one topic level
at once, it can use a multi-level wildcard, which covers an arbitrary number of
topic levels. For example, when a subscriber is subscribed to a certain topic,
such as myhome/floor1/#, with wildcard #, it will receive all the information
published on the topicmyhome/floor1/ down to all the levels. As a result, the
subscriber will receive the content from the following topics:

myhome/floor1/bedroom2/temperature

myhome/floor1/livingroom/humidity

myhome/floor1/bedroom1/temperature

However, the subscriber will be unable to receive messages published on the
following topics:

myhome/floor2/bedroom1/temperature

office/floor1/room311/humidity

Additionally, it is recommended to use more specific names for topics, instead
of general topic names. Although the MQTT uses TCP and IP as the underlying
protocols, compared with HTTP, the header size of the MQTT message is minimal
(i.e., two bytes).

Although TCP provides the reliable transport of messages, MQTT also defines
three quality of service (QoS) levels (Figure 5) to ensure message delivery:

QoS Level 0—messages are delivered at-most-once (best effort), based on the
guarantee provided by the underlying network (TCP/IP). Frequently used within
non-critical applications, which are tolerated for the loss of a few data items.

QoS Level 1—provides at-least-once delivery. Messages are guaranteed to be
delivered, but possibly with duplicate messages.

QoS Level 2—messages are delivered exactly-once. This level includes more
overhead than the other two types because of control messages and the need to
store messages locally.

Further, MQTT has a retained messages facility, in which the broker keeps
messages even after they are sent to the subscribers. If a new subscription for
the same topic occurs, retained messages can be automatically sent to the new
subscriber.

29

QoS Level 0

QoS Level 0

QoS Level 0
Increasing Level

of
QoS

At most once delivery
(best-effort delivery)

At least once (one time
to the receiver)

Exactly once (received
only once)

Figure 5: QoS levels in MQTT

2.2.6. Extensible Messaging and Presence Protocol (XMPP)

XMPP is an XML-based streaming protocol that was developed by the Jabber
open-source community [117]. It provides facilities for users to communicate
with others in real time and attain their status information, such as available,
away or offline. XMPP uses the fundamental architecture of the client–server
model, whereby a client with a unique name connects to another client with a
unique name across a server that provides the routing facility to exchange mes-
sages. There may also be servers that can connect to other servers to enable inter-
domain communications. For example, when a client in domain abc.com needs
to establish communication with a client in domain xyz.com, the XMPP server
of domain abc.com routes the message to the XMPP server in xyz.com. Further,
XMPP provides translate facilities for different messaging domains and protocols
through the XMPP gateways. For example, Figure 6 displays an XMPP network
with gateways that translate between a short message service (SMS) domain and
a simple mail transfer protocol (SMTP) domain.

According to the XMPP addressing scheme, participants on the XMPP net-
work have a unique XMPP ID called a Jabber ID (JID). The structure of the
JID is similar to an email address, with a username and domain name (i.e., user-
name@abc.com). There is a possibility that a single user may log in to multiple
locations within the same domain. To identify various log-in locations for the in-
dividual user, Jabber specifies a resource for a particular address that denotes a
location.

2.3. Web of Things Architecture

The primary focus of the WoT is to overcome the interoperability issues across
IoT platforms and applications by providing a web-enabled platform-independent
standards framework for IoT devices and services. As a step in this direction,
some recent research activities [18,60,62,63,97] discussed platform-independent
APIs for application developers that enable different IoT platforms to discover
and inter-operate with each other, independent of their underlying protocols.

30

SMS Client

SMS Server

XMPP
Gateway

SMS

SMTP
Server

SMTP
Client

XMPP
Gateway

SMTP

SMTP
Server

XMPP
SMTP
Client

SMTP
Client

SMTP
Client

SMTP
Server

Internet

Figure 6: XMPP core architecture

For example, [63] described a WoT framework based on the RESTful archi-
tecture, which is already succeeding in web applications. Moreover, the authors
proposed embedding a tiny web server on smart things, including the REST prin-
ciples, where the smart things and their functionality acquire transportable URIs.
As a result, the smart things can discover, link together, interact with each other
and provide services entirely over the web browser across multiple networking
protocols.

To integrate the smart things with existing services on the web, [60] proposed a
four-layered WoT architecture based on the device accessibility layer, findability
layer, sharing layer and composition layer. Essentially, the layered architecture
delivers more flexibility and customisation possibilities for application develop-
ers to address interoperability issues. The device accessibility layer explicitly
provides a consistent way to access all types of connected objects. The author ex-
plored a method of using RESTful architecture to connect incompatible devices
to the Internet and push data from smart things to clients.

The primary goal of the findability layer is to tackle issues in searching for rel-

31

evant services among smart things, and integrate this into applications. However,
it becomes unfeasible to make them searchable and available their services to be
discoverable when considering large-scale networks, where billions of smart de-
vices are connected. Consequently, the smart things metadata model [61] enables
smart things to describe their services on the web so they can be discovered auto-
matically, and both humans and machines can recognise the services they provide.
While the device accessibility layer of the WoT architecture provides the perfect
integration of smart things, and the findability layer enables them to be discover-
able by the world, there remain concerns about public sharing. Allowing access
to these services and devices from the web in an open manner has highlighted
critical privacy and security breaches.

Finally, the top layer—the composition layer—proposes adopting a Web 2.0
Mashup Editor to the WoT application, and further defines the notion of physical
mashups. This layer provides a unified view of the WoT, and expands the bound-
aries closer to the developers and to end-users for easy integration of applications
on top of smart things. Recently, the W3Cs WoT working group presented the first
standardised specifications of WoT, which included the WoT TD, WoT binding
templates and WoT scripting API [77]. The draft denotes the general architecture
and terminology of the W3C WoT building blocks, which can be applied at three
levels, as the device level, gateway level (or ‘edge’) and cloud level.

Figure 7: Abstract Architecture of W3C WoT

32

2.3.1. Web of Things Building Blocks

The WoT building blocks1 describe the abstract architecture for the WoT. Figure
7 illustrates the three levels of WoT as:
• the device level
• the gateway level (or ‘edge’)
• the cloud level.
At these levels, the WoT building blocks can be applied with a high-level func-

tionality for each of them at each level. In addition, Figure 2.8 displays the way
the WoT building blocks are used in the WoT architecture.

Thing

Application

WoT Scripting API

Interaction Model

WoT Binding Template

Web OCF oneM2M

.

WoT
Thing Description

Communications
Metadata

General
Metadata

Web
Client oneM2M ThingOCF

Device

Figure 8: Conceptual Architecture of the WoT Building Blocks

Thing
A thing is the abstraction of a physical or virtual entity, such as a device, a

component of hardware or a location embedded in IoT applications. A thing must
have a TD and may provide a network-facing API (WoT interface) for the inter-
action.
Web of Things ‘Thing’ Description

A TD offers domain-specific metadata of a thing, which further describes the
thing’s interactions, data model, communication, security mechanisms and so
forth. TDs enable developers to use a common, uniform format that provides all
the necessary details to access and use IoT devices’ data, and empower machine-
to-machine communication in the WoT. The WoT TD is developed on the formal
interaction model, which consists of the default interaction patterns, such as prop-
erty, action and event. The properties include the data points of a thing that can
read or write, actions represent the executable processes, and events involve the

1http://www.w3.org/TR/wot-architecture/#sec-building-blocks

33

h

interactions of remote endpoints when pushing data asynchronously. TDs are
aligned with the CoRE Resource Directory [127] lookups by using thing directo-
ries that provide a web interface for developers to smooth interactions with things.
Currently, by default, TDs serialise to JavaScript Object Notation for Linked Data
(JSON-LD) [38], which offers machine-understandable semantics for things.
Web of Things Binding Templates

The WoT binding templates provide a means to interact between different IoT
platforms by including a rich set of communication metadata in the TD. When
defining a TD for a particular device, the corresponding binding template of the
IoT platform can be used, and, for each IoT platform, it is sufficient to create a
WoT binding template only once and reuse it with all the devices’ TDs. Figure 9
displays the way that binding templates are connected with the TDs and then deal
with different protocols.

Web
with JSON
over HTTP

using "nosec"

OCF with
CBOR over
CoAP using

DTLS

oneM2M
with JSON
over MQTT
using TLS

LWM2M
with SenML
over CoAP
using DTSL

Web
with CBOR
over CoAP

using
COSE+CWT

......

Thing Descriptions

Protocol Bindings

Web OCF HTTP CoAP JSON CBOR OAuth (D)TLS

"IoT Platform" x "Transfer Protocol" x "Media Type" x "Security"

Binding
Templates

Binding
Instances

Binding
Impleme-
ntations

Figure 9: From Binding Templates to Protocol Bindings

Web of Things Scripting Application Programming Interface
The WoT scripting API is a runtime system, like a web browser, built on top of the
thing abstraction and the TD interaction model. It enables developers to reduce
integration costs and increase productivity. There are three sub-APIs:
• WoT—object work as an entry point of the API that allows discovery, con-

sumption and exposure of things
• ConsumedThing—the client API works as an interface to consume things

over the network or locally (e.g., physically attached hardware)
• ExposedThing—works as server API that provides an interface to configure

and expose things over the network.
Mainly, the WoT TD describes the network-facing interface of a thing (WoT

interface) and works as the primary building block of the WoT implementations.
These templates provide multiple possible protocol bindings in which the things

34

can interact with heterogeneous IoT platforms and simplify IoT application de-
velopment.

2.4. Lightweight Middleware for Mobile Web of Things

Mobile devices, such as smartphones and tablet computers, have now become
essential to many people’s everyday lives. Over the years, smartphones with mul-
tiple features have evolved to become more versatile companion devices. In the
same manner, the rise of it in all industries, smartphones continue to play an im-
portant role when there is a need to collect data from sensors around humans and
interact with them. Mobile devices will eventually become the primary user inter-
face for applications, as they provide real-time data, facilitate an efficient method
of communication, process data on the site and so on. For example, smartphones
play the role of the ‘brain’ in the body area network [152] concerning their en-
hanced storage and communication facilities. However, there are numerous chal-
lenges to enhancing smartphones’ role because of the constrained nature of the
available resources on mobile devices. It is expected that web services hosted
on mobile devices must have acceptable performance and have no influence on
the primary use of mobile devices, such as making a telephone call, sending text
messages and accessing applications. This section mainly discusses the literature
regarding MWoT service provisioning frameworks.

2.4.1. Applications of Mobile Web of Things

The MWoT has been used in different application domains in recent years. Berger
et al. [15] were successful in provisioning a SOAP-based retail web application,
whereby a mobile device presented wallet services to an electronic checkout at
the kiosk. The kiosk station used a mobile wallet service hosted by the customer
mobile device, which delivered a complete payment transaction within the mobile
device, retail store system and bank system. Two other fascinating applications
were: (a) a mobile picture album with location information service and (b) coop-
erative journalism, where the mobile host engaged the coordination of journalists
and their associations. These applications were presented in work by Srirama et al.
in [138] and [137], respectively. MobiCrop [94] is an application that allows crop
farmers to use their mobile devices to gain information about using pesticides.
Another interesting mobile health application provided in [96], called SOPHRA,
supports healthcare professionals to access patients’ medical information that is
hosted on their mobile devices.

2.4.2. Comparison of Existing Mobile Web Services Frameworks

Most of the earlier approaches were based on providing a SOAP-based MWS
architecture. The work in Srirama et al. [134, 138, 139] presented a lightweight
mobile host with Personal Java implementation. In that work, the authors used

35

HTTP and TCP for the application and transport layer protocols, respectively, and
employed a SOAP message format with the WSDL as service description. Gehlen
and Pham [56] presented a peer-to-peer (P2P) web service on Java-enabled mo-
biles. In this architecture, each mobile node operated in both a client/server role,
which provided service in the distributed environment. The authors developed a
mobile SOAP server capable of providing XML web services. In another work,
Srirama [135] and Srirama et al. [140] described a framework based on JXTA
technology for service provisioning in the P2P network environment. The light
version of JXTA for mobile devices, called JXME, was applied to establish a vir-
tual P2P network. However, JXTA uses either TCP or HTTP protocols to traverse
network barriers, and the work also used WSDL for service discovery and SOAP
message format. Moreover, Ou et al. [106] designed a layered P2P architecture
to provide web services in converged cellular and ad-hoc network environments,
with a vertical tunnelling model to speed up the service discovery. The framework
consisted of eight modules, including a WSDL module for service publishing and
a SOAP module for generating and parsing SOAP messages between the client
and service provider.

To reduce the workload at the mobile host, Kim and Lee [80] proposed sharing
a task between devices. The authors suggested that migration and replication of
web services are necessary to provide a reliable service. The migration or repli-
cation of a service is initiated by the service provider, when a request is received
and there is a change in its context information. For instance, variations of context
information include a shortage of battery level or change in the device location,
which stops the device from providing the service on its own. However, although
migration of the services reduces the workload at the mobile, the communication
is still based on the same traditional protocols, such as HTTP, TCP, WSDL and
SOAP, which are heavyweight.

SOAP-based MWSF RESTful-based MWSF

Figure 10: Effect of message size on process time - SOAP Vs. REST [8]

The RESTful web service approach has been used in later mobile host frame-
works, and is more appropriate for constrained conditions because of its lightweight
features. For instance, AlShahwan and Moessner [8] compared SOAP-based and

36

RESTful-based mobile Web service provisioning and confirmed that RESTful-
based mobile Web service framework is more suitable for the mobile environment
(Figure 10). Also, Chang [23] proposed a context-aware cache pre-fetching strat-
egy for MP2P web service provisioning. Instead of XML-formatted documents,
such as SOAP, this framework used a RESTful architecture, which is more suit-
able in the infrastructure-less decentralised MP2P environment. Ali et al. [6] pre-
sented a distinctive approach that will reduce the usage of mobile resources and
minimize the computation and transmission overhead when offloading services.
In addition, the authors have presented that REST-based services are more suit-
able than SOAP Web Services in terms of execution time and energy consumption
(Figure 11).

Figure 11: Comparison of energy consumption between SOAP and REST Web
Service [6]

In addition, Srirama and Paniagua [142] proposed a mobile host for Android
devices based on the Open Services Gateway initiative (OSGi) framework, which
is capable of providing services in a RESTful manner using HTTP and XMPP.

Mohamed and Wijesekera [99] proposed a lightweight framework for provid-
ing web services on mobile devices, based on the REST architecture, with JSON
data representation. Moreover, the framework consisted of main elements such
as ‘HTTP Request/Response Listener’, ‘Deployment Agent’ and ‘Request Pro-
cessor’ to integrate the web services, and ‘Security Agent’ to provide security
services for the web services. In addition, Charl van der [151] presented another
framework that enabled context-aware services by using a hybrid model of mo-
bile P2P and JmDNS for service discovery. Accordingly, the JSON-formatted
messages reduced the communication overhead between devices, and the multi-
cast interchanges messages increased the reliability of the proposed framework.

Lomotey and Deters [95] have studied different flow patterns of sensor data
and their implications for energy consumption. There are three main flow patterns

37

were defined as 1) Sequential (the smartphone communicates with the sensors
within the edge architecture one-device-at-a-time), 2) Parallelism (request is sent
to all devices within the edge but responses are retrieved based on the minimal
value of the request-response travel time + processing time), and 3) Choice (con-
necting to a sensor based on the least request-response travel time and ignoring
the processing time component). The preliminary result has shown that the flow
pattern with the highest processing demand consumes more power (Figure 12).

Figure 12: Average power consumption of various flow patterns [95]

Although 6LoWPAN protocols (i.e., IPv6 over Low-power Wireless Personal
Area Networks) provide WSNs to use IPs to communicate with other networks,
the application protocols need to be developed or modified to enable full device
communication across the WSN settings. With this intention, Moritz et al. [102]
introduced the use of the Devices Profile for Web Services (DPWS) as an applica-
tion layer protocol in WSNs. The authors presented a SOAP binding on top of the
IETF CoAP, coupled with EXI format, to reduce overhead and increase the effi-
cient delivery of SOAP messages. However, the main shortcoming of using SOAP
is that it needs heavyweight parsers, which degrades the overall performance of
the mobile web server.

Doukas et al. [47] presented a generic mobile software development kit (SDK)
that allows developers to easily integrate IoT protocols (i.e., WebSockets and
MQTT) into their applications to communicate with the cloud-based IoT envi-
ronment. The authors described the way that a mobile device could communi-
cate with an IoT application with the generic mobile SDK called COMPOSE.
The SDK enables developers to implement communication with devices and IoT
services by leveraging various IoT protocols, such as MQTT, RESTful communi-
cation and WebSockets.

Previous researchers [21] introduced Pogo—a mobile telephone sensing mid-

38

dleware infrastructure that provides easy access to sensor data. The middleware-
installed telephone is added to a shared pool of devices, and developers can re-
motely deploy their own executable code onto them. The authors also described
the implementation of middleware and demonstrated its feasibility in a real-world
Wi-Fi localisation experiment.

Perera et al. [110] presented a plugin-based IoT middleware for mobile de-
vices: Mobile Sensor Data Processing Engine (MOSDEN). The middleware al-
lows users to collect and process sensor data without writing any code, and sup-
ports different communication models, such as push/pull data streaming and cen-
tralised/decentralised communication.

Table 1 summarizes a comparative overview of past MWS frameworks. It
shows that earlier approaches were based on providing SOAP-based MWS ar-
chitectures. However, later approaches have switched their focus on the REST-
ful services, which is more suitable for the constrained environments because of
their lightweight features [8]. Although the service architecture has been switched
from the SOAP to REST, HTTP was still being used for the application protocol.
Since the HTTP uses TCP as the transport layer protocol, the overhead of the
protocol combination is also relatively high. To reduce the protocol overhead,
a lightweight application protocol such as CoAP is needed. However, existing
MWS frameworks have not addressed such features.

39

Ye
ar

A
ut

ho
r

D
es

cr
ip

tio
n

Pr
ot

oc
ol

s

A
pp

.
L

ay
er

Tr
an

s.
L

ay
er

L
oc

al
D

is
co

ve
ry

G
lo

ba
l

D
is

-
co

ve
ry

Se
rv

ic
e

D
e-

sc
ri

pt
io

n
M

es
sa

ge
Fo

rm
at

20
03

B
er

ge
r,

S.
et

al
.

[1
5]

C
us

to
m

W
eb

se
rv

ic
e

fo
r

lo
ca

l
ne

tw
or

k
H

T
T

P
T

C
P

D
H

C
P,

ce
nt

ra
lis

ed
lo

ca
l

U
D

D
I

re
g-

is
tr

y

N
o

W
SI

L
SO

A
P

20
04

Sr
ir

am
a

et
al

.[
13

9]
,[

13
8]

,
[1

34
]

L
ig

ht
w

ei
gh

t
M

H
w

ith
Pe

r-
so

na
lJ

av
a

H
T

T
P

T
C

P
G

lo
ba

l
U

D
D

I
re

gi
st

ry
W

SD
L

SO
A

P

20
05

G
eh

le
n

an
d

Ph
am

[5
6]

P2
P

W
eb

se
rv

ic
es

on
Ja

va
en

-
ab

le
m

ob
ile

s
H

T
T

P
T

C
P

L
oc

al
Se

rv
ic

e
R

eg
-

is
tr

y
(S

er
vi

ce
B

ro
-

ke
r)

W
SD

L
SO

A
P

20
06

Sr
ir

am
a

[1
35

],
Sr

ir
am

a
et

al
.

[1
40

]

M
H

in
P2

P
ne

tw
or

k
on

JX
TA

te
ch

no
lo

gy
H

T
T

P
T

C
P

JX
M

A
(J

X
TA

)
m

od
ul

es
JX

M
A

(J
X

TA
)

m
od

ul
es

JX
TA

ad
ve

rt
is

e-
m

en
ts

SO
A

P

20
08

O
u

et
al

.[
10

6]
L

ay
er

ed
P2

P
ar

ch
ite

ct
ur

e
fo

r
C

on
ve

rg
ed

C
el

lu
la

r
an

d
A

d
H

oc
N

et
w

or
ks

H
T

T
P

T
C

P
L

oc
al

se
rv

ic
e

re
po

si
to

ry
V

er
tic

al
tu

n-
ne

lin
g

m
od

el
W

SD
L

SO
A

P

20
09

K
im

an
d

L
ee

[8
0]

M
ig

ra
tio

n
of

se
rv

ic
es

be
tw

ee
n

de
vi

ce
s

an
d

m
an

ag
em

en
t

of
co

nt
ex

ta
nd

se
rv

ic
e

di
re

ct
or

y

H
T

T
P

T
C

P
L

oc
al

di
re

ct
or

y
m

an
ag

er
fo

r
pu

b-
lis

h
an

d
di

sc
ov

er
y

W
SD

L
SO

A
P

20
10

A
lS

ha
hw

an
an

d
M

oe
ss

ne
r[

8]
To

co
nfi

rm
th

e
fe

as
ib

ili
ty

of
pr

ov
id

in
g

R
E

ST
fu

l-
ba

se
d

W
eb

Se
rv

ic
es

fr
om

co
n-

st
ra

in
ed

m
ob

ile
de

vi
ce

s

H
T

T
P

T
C

P
SO

A
P

/R
E

ST

20
11

C
ha

ng
[2

3]
C

on
te

xt
-a

w
ar

e
ca

ch
e

pr
e-

fe
tc

hi
ng

st
ra

te
gy

H
T

T
P

T
C

P
Z

er
oc

on
f

W
SD

L
R

E
ST

40

20
12

Pa
ni

ag
ua

an
d

Sr
ir

am
a

[1
07

]
[1

42
]

M
H

w
ith

R
E

ST
an

d
O

SG
i

fr
am

ew
or

ks
.

H
T

T
P

T
C

P
JX

TA
fo

r
P2

P
di

sc
ov

er
y.

Z
er

o-
C

on
f

/M
ul

tic
as

t
D

N
S

fo
r

A
dh

oc
-

N
et

w
or

k

W
id

e-
A

re
a

D
N

S-
SD

O
W

L
-

S/
W

SD
L

R
E

ST

M
oh

am
ed

an
d

W
ije

se
ke

ra
[9

9]
A

lig
ht

w
ei

gh
t

fr
am

ew
or

k
fu

lly
co

nf
or

m
s

to
th

e
R

E
ST

H
T

T
P

T
C

P
M

an
ua

lI
P

ad
dr

es
s

of
th

e
M

H
M

an
ua

l
IP

ad
dr

es
s

of
th

e
M

H

JS
O

N
R

E
ST

20
13

C
ha

rl
va

n
de

r
[1

51
]

C
on

te
xt

-a
w

ar
e

se
rv

ic
es

,a
hy

-
br

id
m

od
el

of
bo

th
M

ob
ile

P2
P

an
d

Jm
D

N
S.

H
T

T
P

T
C

P
M

ob
ile

P2
P/

Jm
D

N
S

M
ob

ile
P2

P/
Jm

D
N

S
JS

O
N

R
E

ST

V
er

m
a

an
d

Sr
i-

va
st

av
a

[1
53

]
M

ai
nt

ai
n

a
se

rv
ic

e
di

re
ct

or
y

us
in

g
th

e
X

M
PP

H
T

T
P

T
C

P
X

M
PP

X
M

PP
In

fo
/Q

ue
ry

st
an

za
of

X
M

PP

R
E

ST

M
or

itz
et

al
.[

10
2]

D
ev

ic
es

Pr
ofi

le
fo

r
W

eb
Se

r-
vi

ce
s

(D
PW

S)
us

ed
as

an
ap

pl
ic

at
io

n
la

ye
r

pr
ot

oc
ol

in
W

SN
s

C
oA

P
U

D
P

D
PW

S
–

U
D

P-
IP

m
ul

tic
as

tin
g

SO
A

P
/E

X
I

20
15

L
iy

an
ag

e
et

al
.

[8
8]

A
lig

ht
w

ei
gh

t
m

ob
ile

W
eb

se
rv

ic
e-

pr
ov

is
io

ni
ng

fr
am

e-
w

or
k

fo
rm

ob
ile

se
ns

in
g

C
oA

P
U

D
P

B
L

E
D

N
S/

C
oR

E
W

SD
L

R
E

ST

D
ou

ka
s

et
al

.
[4

7]
D

ev
el

op
m

en
t

of
a

ge
ne

ri
c

M
ob

ile
SD

K
to

in
te

gr
at

e
Io

T
pr

ot
oc

ol
s

ea
si

ly

H
T

T
P

T
C

P

20
18

A
li

et
al

.[
6]

A
co

m
pa

ri
so

n
of

SO
A

P
an

d
R

E
ST

in
m

ob
ile

cl
ou

d
co

m
-

pu
tin

g

H
T

T
P

T
C

P
W

SD
L

SO
A

P
/R

E
ST

Ta
bl

e
1:

C
om

pa
ri

si
on

of
re

la
te

d
w

or
ks

of
m

ob
ile

W
eb

se
rv

ic
e

pr
ov

is
io

ni
ng

41

2.5. Using Nearby Resources (Mist Computing) in Mobile Web
of Things

The classical design of IoT systems relies on remote central processing servers,
and faces the issue of latency [29]. Specifically, in many real-time ubiquitous
applications (e.g., augmented reality, environmental analytics and ambient as-
sisted living), users demand rapid responses. To address this issue, researchers
have introduced numerous edge computing methods. For example, the European
Telecommunications Standards Institute introduced a multi-access edge comput-
ing (MEC) model [109] that enables integration between the mobile application
service and the cellular network co-located virtual machine (VM) servers. Fur-
ther, the fog computing architecture [19] introduces the embedded virtualisation
technology in the gateways (e.g., router, switch and set-top box) of front-end IoT
devices to support the data pre-processing at the edge networks. Indie fog ar-
chitecture applies a consumer-as-provider model, in which small businesses and
individuals offer edge computing platforms from their equipment [28].

Although edge computing methods are promising, the increasing number of
IoT devices (e.g., wireless sensors, actuators, smartphones and vehicles) will over-
load the capability of the edge computing servers. Hence, the edge computing
servers will face bottleneck issues, and latency will still arise [112]. Thus, to re-
duce the burden of edge computing servers, researchers have introduced the mist
computing model (mist) [112, 113]. In mist, the computing moves to the extreme
edge of the IoT environment, where there are a vast number of heterogeneous
mobile devices and IoT devices that are capable of providing certain forms of
services to assist the improvement of the computational processes needed in IoT
applications [112].

As Figure 13 shows, mist servers are hosted on various objects, such as single
board computers, mobile devices and embedded servers of vehicles. Essentially,
mist servers (or mist nodes) are different to the regular embedded web servers
(EMS) [87, 116, 72] that provide static software services to their clients. For
example, an EMS can easily afford its current location as a web service via the
mobile Internet with common request–response interactions. In contrast, mist
nodes provide a more flexible environment in which they can execute customised
program methods sent from their requesters.

Stantchev et al. [143] proposed a smart healthcare framework that uses a three-
tier architecture, including a fog layer, which provides low latency. The pro-
posed healthcare and elderly care applications are modelled using Business Pro-
cess Modelling Notation, and the fog layer enhances the framework by providing
low latency and location awareness. The mobile edge computing (MEC)–based
Elastic Android Applications for Computation Offloading (CloudAware) [105]
is a framework that offloads tasks to edge devices. Moreover, the proposed ap-
proach provides duplication and administration of the application business logic,
even in untrusted and unpredictable dynamic environments. The MEC application

42

2017-5-30 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Cloud

Core Network
(Regional)

Access/Edge Network
(Neighbourhood)

Gateway
(Building/Street)

End points

Physical connection Virtual connection

Public
Fog

Public
Fog

Public
Fog

Mist

W E
S

N
Inbuilt or Connected
Sensing & Actuating

Provision

Mist

Private
Fog

Mist Mist

Figure 13: The role of Mist in IoT

is broken into components that simplify the offloading decision and facilitate the
development of elastic and scalable applications for ad-hoc mobile clouds.

Taleb et al. [148] presented an approach called ‘Follow Me Edge’ that is also
based on the concept of MEC to enhance the QoS. The framework ensures the
high quality of the services by reducing the core network traffic, in which the ap-
plications/services also move with the users. Moreover, the authors demonstrated
the way that high QoS can be maintained in an augmented reality use case. In this
use case, a high-definition video is cached at the edge of an attractive location,
and streamed to the people visiting that location on demand.

Cloudlet [120] is a framework that can be used to realise MEC and fog com-
puting. The principal concept is to host virtual machines on the computers of local
business, and provide the VM as a service to proximity-based users. Hyrax [79]
is a framework that aims to apply MapReduce to the grid-computing environment
formed by a group of mobile devices. However, the results for Hyrax indicate that
the approach is too heavyweight.

To overcome the deployments encounters and limitations of the Cloudlets sys-
tem, previous research [72] has proposed a hierarchical model of MEC-Cloudlet
integrated architecture that uses the MEC system and Cloudlets infrastructure.
The framework is designed for large-scale cooperative Cloudlets deployments that
provide optimisation for the power consumption and delay.

43

The Honeybee [53] is a framework that approaches the same purpose as Hyrax.
However, instead of using the heavyweight MapReduce, Honeybee applies the ac-
tive work-stealing scheme, in which participants in a mobile grid-computing envi-
ronment actively take the work from other nodes that have more tasks to complete.
Similar works can be found in the comparison of [42].

To minimise the transfer delay between the fog and the cloud and to max-
imise the resource use of fog nodes, Skarlat et al. [132] presented a conceptual
framework for fog resource provisioning. The authors introduced the concept of
fog colonies, which are microdata centres comprising an arbitrary number of fog
cells. Within a fog colony, task requests and data can be distributed and shared
between the single cells, which facilitate decentralised processing at the edge of
the network.

2.6. Energy-efficient Approaches in Mobile Web of Things
Service Provisioning

2.6.1. Energy Efficiency in Wireless Sensor Networks

WSN is one of the main elements of IoT for sensing environments. A number
of reviews of IoT [9, 11, 39, 52] have described the challenges of WSN concern-
ing energy efficiency. Moreover, numerous energy-efficient approaches for IoT
scenarios were proposed in [12, 155] to improve the lifetime of the sensor data-
collection processes. The current author summarised the existing approaches into
a few groups based on their common features, as follows.
Clustering-based Approaches

To increase the lifetime of the sensor nodes, many cluster head selection schemes
have been developed during the last decade. Many of these were based on extend-
ing the low-energy adaptive clustering hierarchy (LEACH) [66] algorithm, which
forms a cluster of wireless sensors and selecting cluster head based on signal
straight. In the framework proposed in [79], the base station first collects all sensor
nodes’ energy and location information, and then elects the cluster heads using the
fuzzy rule according to the collected fuzzy variables. In addition, an energy-aware
multi-objective fuzzy-clustering algorithm for WSNs [123] provides a solution to
prevent the early death of cluster heads close to the sink. The proposed fuzzy-
clustering algorithm uses the three parameters of remaining energy, distance to
the sink and density of the nodes to assign appropriate ranges to tentative cluster
heads. The final cluster heads are then selected from them via an energy-based
competition.
Scheduling Approaches

Scheduling schemes ensure that sensor nodes only function when necessary,
and remain in sleep mode at all other times to reduce energy consumption. One
of the conventional approaches involves dynamically scheduling the duty cycles
of sensors by using sleep scheduling algorithms. The connected k neighbourhood

44

(CKN) [103] algorithm turns off the redundant nodes if a node has more than k-
neighbours in the network. The groups of active nodes are selected periodically,
and when the network does not satisfy the k-neighbours, other nodes should be in
active mode until the particular node has more than k-neighbours. Correspond-
ingly, the algorithm discussed in [162] is an extension of CKN that also considers
nodes’ residual energy to decide whether a node should be active or asleep. This
approach enables the nodes with more power to participate actively and the nodes
with less energy to participate infrequently during the sensing period.

In mobile cloud computing, a mobile client can preserve its energy by offload-
ing its computation task to the cloud if the cost of local computation is higher
than the uploading. In [157], the authors designed an adaptive energy optimal
scheduling policy based on the size-controlled collaborative execution model to
reduce the energy consumption on the mobile client. Moreover, the authors pro-
posed a low-complexity threshold adaptation scheme that exploits the degenerated
Monte Carlo method to estimate the threshold of locally executed data. Similarly,
a collaborative execution scheduling policy presented in [164] adopted the La-
grangian relaxation-based aggregated cost algorithm. The proposed model pre-
pares an energy-efficient task-scheduling policy to preserve the energy on the mo-
bile device.

To overcome issues deriving from the energy limitations of the nodes and the
distributed nature of WSNs, an energy-aware scheduling strategy to allocate com-
putational tasks on small devices in WSN was presented in [37]. The proposed
framework is established on the two-phase heuristic-based algorithm that initially
assigns a task locally to the cluster, and, if the task cannot be completed locally,
it is migrated to the most suitable node. Moreover, the focus of the scheduling
strategy exploits the network lifetime by increasing the number of alive nodes
with balanced energy load. In addition, efficient resource allocation for multi-hop
IoT infrastructure presented in [2] introduced an energy-efficient context-aware
traffic-scheduling (EE-CATS) algorithm that reduces nodes’ total awake time by
applying an adaptive duty cycling approach.

Correspondingly, generally in WSNs, each sensor node has a limited buffer
space to hold the sensed data, and data may have overflows if not forwarded to
the data collectors on time. However, the sensor nodes in different areas have
different sampling rates that cause complications in designing a unique schedule
to upload data from nodes to collectors. With help from mobile data collectors,
a mobile element scheduling algorithm [133] enables the mobile element to visit
nodes promptly to gather data to avoid data loss at the sensor nodes.

Similarly, properly scheduling the time-division multiple access (TDMA) slots
in WSNs will improve the nodes’ lifetime and network efficiency. The authors
who presented a distributed TDMA scheduling algorithm for the IoT [84] stated
that the energy and topology information of network nodes is essential for extend-
ing the network lifetime. With this in mind, they proposed an energy–topology
(E-T) factor that uses the residual energy and topology information to formu-

45

late the scheduling algorithm. Further, the algorithm prioritises time slots that
minimise the execution time and energy consumption of the whole network. Ad-
ditionally, research on TDMA scheduling algorithms for WSNs [51] proposed
two centralised scheduling algorithms—node-based scheduling and level-based
scheduling—established on the colouring of the linear network.

Accordingly, another approach to enhance the energy efficiency in WSNs in-
volves selecting a set of representative nodes that periodically provide sensor data,
which will minimise the number of active nodes and messages in the network.
Based on this strategy, [34] introduced an energy-efficient node-scheduling algo-
rithm using Markov random field. In addition, [145] presented an asynchronous
wake-up scheme for energy conservation in underwater acoustic sensor networks.
The authors offered a combinatorial design asynchronous wake-up scheme to min-
imise the active duty cycle of sensor nodes.

Moreover, the research in [33] proposed a Service-oriented Node Scheduling
Scheme, Energy-aware Centralised Heuristic Scheme (ECHS) and Energy-aware
Distributed Heuristic Scheme (EDHS). An energy-aware benefit function used in
the ECHS determines the active sensor nodes and rotate sensor nodes by peri-
odically reconstructing the scheduling scheme. In addition, the feature improves
the network performance by considering the nodes’ capability of providing ser-
vices and residual energy. Moreover, the EDHS provides a distributed solution
by assigning one header to each service. In addition, the scheduling scheme is
performed in a distributed way that, for the active node selection process, only
requires local information.

2.6.2. Using Public Fog Networking Services for Energy-efficient
Mobile Web of Things

Fog Computing architecture enables the IoT devices to carry out a substantial
amount of storage, communication, and management, including network mea-
surement, control, and configuration within the close vicinity of IoT devices [35],
[19]. Some interesting IoT scenarios where the Fog architecture can be applied
has been described in [19]. In the Connected Vehicle deployments, the Fog will
be the main platform to enhance connectivity and interactions from cars to cars,
cars to access points and access points to access points. Further, in the Wireless
Sensor and Actuator Networks, and in the Smart Grid scenarios the Fog nodes
can filter the data which is to be consumed locally, while sending the rest to the
higher tiers (cloud). Fog networking is a promising approach to support energy
conservation for increasing the lifetime of data acquisition from the MWoT.

To address the uncertainty of the available resources in fog networking, a
Markov decision process based autonomic deep Q-learning approach has been
presented in [4]. The presented approach minimizes the latency and enhances the
performance of the computation offloading decisions. Also, the use of a deep-
learning-based response-time-prediction to make a decision whether to offload to

46

the nearby fog/edge node or to the cloud node has been discussed in [5]. More-
over, the authors presented a restricted Boltzmann machine learning approach to
handle the uncertainty of the available resources in fog. An energy efficient Fog-
assisted IoT remote health monitoring system for diabetes patients with cardio-
vascular diseases has been described in the work [57]. The system consists with
fog-assisted smart gateways that will enhance the quality of healthcare services
in which extract important information in real-time for critical decision making,
push notifications for the caretakers, categorization of activities and fall detection
fall detection.

A Smart Gateway with Fog Computing that can be used to pre-process or filter
the IoT data has been discussed in [1]. The authors presented two types of com-
munications with the smart gateway: single hop communication and the multi-hop
communication. Both types are mainly about how the IoTs communicate with the
smart gateway. In the single hop communication, the IoT nodes communicate
with the smart gateway directly and in the multi-hop communication, the IoTs
communicates over multiple sink-nodes to reach the smart gateway. Since the
smart gateway is directly connected with the Fog network, it is possible to take
advantage of using the Fog computing resources such as storage and processing
power to pre-process and restructure the data before sending them to the cloud
servers. In work [58] the authors presented a Fog computing based smart gate-
way for an efficient health monitoring system. The proposed system uses Fog-
computing services, particularly low-latency and real-time rapid notifications in
emergencies (which are the most critical facts in health monitoring systems), min-
imizing the transmitted data to the cloud, etc. The implemented prototype of the
smart gateway with features of a lightweight template for ECG feature extraction,
interoperability, real-time notification mechanism, etc. has already confirmed the
usefulness of the system with health-monitoring applications. In summary, with
the Fog networking architecture, MWoT devices can interconnect with the exist-
ing proximal FogNets providers deployed by different organizations, and use their
resources for computing or networking tasks towards saving energy.

2.6.3. Service-oriented collaboration approaches for Mobile Web of
Things

The Semantic Gateway as Service (SGS) [46] provides a multi-protocol proxy ar-
chitecture that can perform the translation between messaging protocols, such as
XMPP, CoAP and MQTT. SGS consists of three main components: multi-protocol
proxy, semantic annotation service and gateway service interface. These compo-
nents enable discovery of physical sensors’ data and provide semantic interoper-
ability of messages between things. A container virtualisation technology–based
Gateway as Service framework [101] is designed to achieve high-energy effi-
ciency, isolation, interoperability, fast allocation and flexibility in managing dif-
ferent services. Moreover, the on-demand activation containers over the socket

47

allow dynamic allocation of various services that increase the energy efficiency.
An IoT-based mobile gateway solution [118] for mobile health (m-Health) au-
tonomously collects vital information about the user/patient—such as location,
heart rate and possible fall detection—and forwards it to a caretaker. The mo-
bile gateway architecture consists of four modules of body sensor network, mo-
bile gateway, cloud and caretaker, which appropriately provide real-time manage-
ment of actions and alarms. To provide semantic collaboration between seman-
tic WoT applications, the Gateway-based Semantic Collaboration Service Frame-
work [159] presented a useful protocol proxy technology that was designed to
collect data from sensors that use various types of protocols. In addition, the
framework uses rule-based reasoning to filter out invalid sensor data, and seman-
tic reasoning technology to gain high-level knowledge from the data.

Recently, establishing front-end device-to-device collaboration in pervasive
and mobile computing has become a popular research domain [40, 93, 156]. For
example, Gateway as a Service—a cloud computing framework for the WoT
presented in [156]—provides a collaborative workflow among different devices,
applications. The authors proposed a three-layered cloud computing stack that
improves the integration of device-level resources and information technology
(IT)–enabled business processes for provisioning of intelligent IoT services.

2.6.4. Energy-efficient Service Description and Service Discovery in
Mobile Web Services Provisioning

Service discovery and service description metadata (SDM) play an important role
in dynamic service composition systems, where software clients can automatically
identify the operations provided by the service. The following sections discuss the
main service description approaches and service discovery mechanisms that are
suitable for MWS provisioning.
Local Service Discovery

Local service discovery in a P2P manner is one of the major features of MWS
provisioning in many scenarios [30, 140]. Different to global service discov-
ery—which can be achieved by using a central service repository/registry—local
P2P-based MWS discovery requires P2P communication protocols that are com-
monly available in existing mobile devices. In a classic design, the MWoT might
use Wi-Fi or Bluetooth to support the P2P-based service discovery mechanism.
However, traditional Wi-Fi and Bluetooth protocols are still considered heavy-
weight, and the BLE protocol that was designed for applications requires low
power consumption and low radio duty cycle.

BLE was designed for applications that require low power consumption and
low radio duty cycle. It operates in the 2.4 GHz industrial, scientific and medical
(ISM) band and uses adaptive frequency hopping to avoid interferences. In BLE
communication, it divides the frequency spectrum into 40 channels with centre
frequencies of 2,402 MHz to 2,480 MHz, with a 2 MHz guard band for each

48

channel. There are 37 data channels, three advertising channels that consist of
40 communication channels. With the data rate of 1 Mbps, BLE uses Gaussian
frequency shift keying as the modulation scheme [45, 59].

BLE uses a lightweight attribute protocol and attribute profiles, where the max-
imum payload is limited to 27 octets, which is more than enough to represent sen-
sor data, such as temperature, heart rate and humidity. To achieve the low-energy
feature, the five methods supported by BLE clients and servers are PUSH, PULL,
SET, BROADCAST and GET. Clients use the PULL method to retrieve attributes
from the server when needed, while servers use PUSH to send data to clients.
The BROADCAST methods can be used to send data to every listing client in the
vicinity to minimise the bandwidth and power consumption.
Global Service Discovery
In general, traditional web discovery technology discovers resources across the
Internet using a powerful search engine with the mechanism of web crawlers that
browse the web periodically. However, the nature of intermittent connectivity
to the web of IoT devices will create a problem when applying the traditional
web discovery technologies. In addition, because of security concerns regarding
IoT systems, IoT devices are generally located in domains with limited public re-
trieval. Therefore, we cannot apply the traditional ‘pull’ model of the web services
discovery, and must apply a ‘push’ mechanism to publish the services.

To overcome the limitations in the constrained environment mentioned above,
CoAP endpoints use the CoRE link format for service discovery. Two approaches
can be applied to the service discovery process:

1. CoAP resource discovery
This basic distributed approach allows a client device to send a direct query
to another device to discover the hosted services. A server that is hosted
services is published a list links of hosted resources using a well-known
URI "/.well-known/core" , which is defined as a default entry point
for the clients. Later, the client refers to the associated URIs to access the
available resources on the server.

2. CoAP Resource Directory (RD)
An RD [129] is similar to a conventional directory-based discovery mecha-
nism, in which the RD stores descriptions of resources hosted on the CoAP
servers, and allows clients to perform queries on those resources. To use
the RD, clients and servers should know how to reach the RD. Therefore,
the RD should be a well-known device, such as a gateway or DNS server.

Service Description
SDM play a vital role in MWoT service provisioning systems. The follow-

ing sections discuss the main service description approaches that are suitable for
MWoT service provisioning.

49

Original WSDL2 was designed to describe SOAP-based web services. How-
ever, WSDL 2.0 is capable of describing RESTful services. Following is a portion
of sample WSDL 2.0 documents that can be used to describe a RESTful operation
provided by the MWoT:
<operation ref="" whttp:method="GET"/>

<service name="LocationService"

interface="http://example.org/services"/>

<endpoint address = "coap://serv.org:5683/LocationService"/>

An alternative web service description, besides WSDL, is Web Application
Description Language (WADL)3, which was introduced specifically to describe
RESTful services. Although WADL was not accepted as a W3C standard, it has
been broadly used in practice. For example, Jetty4 web service container supports
WADL as the SDM.
Sensor Model Language (SensorML)

SensorML5 is a metadata-based resource description language. It provides
XML encodings for illustrating sensors, actuators and processes. The schema and
namespace information is defined under the header of the SensorML document.
All elements defined in the document mainly depend on the services and resources
associated with the sensors. However, there are some required elements, such as:
• gml:identifier—contains a unique ID (universally unique identifier, uni-

form resource name, URL, etc.), which can be used to identify any service
or the sensor
• sml:outputs—defines what is measured (such as room temperature)
• sml:position—defines the location of the sensor device

(e.g.,<gml:coordinates>47.8 88.56</gml:coordinates>).

SensorML is suitable for describing MWS when the mobile host is mainly pro-
visioning sensory data. Additionally, SensorML supports semantic description,
which is not provided by WSDL 2.0 by default.
JavaScript Object Notation for Linked Data (JSON-LD)

JSON-LD [38] is a format that aims to represent the SDM in a JSON repre-
sentation. It provides an application to a standards-based machine-interpretable
approach that begins in one location and follows embedded links to access other
pieces of linked data across the web. Moreover, JSON-LD is designed to build
interoperable web services with a lightweight syntax. For instance, a location
sensor data can be presented in JSON-LD format [146] as follows:
{

"@context":

2 http://www.w3.org/TR/wsdl20/
3http://www.w3.org/Submission/wadl/
4http://eclipse.org/jetty/
5http://www.ogcnetwork.net/SensorML Intro

50

Web Service Description Language

h

{

"i": "http://iot.fi/o#",

"ownerID": "i:ownerID",

"longitude": "i:longitude", "latitude": "i:latitude"

},

"@id": "i:locaSensor767",

"@type": "i:LocationSensor",

"ownerID": "Alice",

"longitude": "25.468", "latitude": "65.058"

}

2.6.5. Payload Compression and Encoding

Reducing the size of payload in the data transmission phase is one of the main
strategies to improve the performance and energy efficiency in MWS provision-
ing. Most of the embedded web services utilize XML to encode the payload that
is adding heavyweight and may not a good option for mobile devices.

Binary XML (to encode dense numeric data) and JSON are common options
in past works [136]. However, the recent W3C standard—Efficient XML Inter-
change (EXI) is capable of outperforming Binary XML and JSON in reducing the
data size. In the EXI compression, the XML document is encoded into a binary
format that improves encoding/decoding performance and significantly reduces
bandwidth requirements [22]. Table 2 [125] shows the compression efficiency of
XML, EXI, BXML, and Fast Infoset (https://www.noemax.com/fastinfoset/)encoding
techniques. There are three typical sensor markup schemes, namely 1) Resource
Description Format (RDF), 2) ZigBee Smart Energy and 3) Open Geospatial Con-
sortium (OGC) SensorML have been used to compare the compression efficiency.
Overall EXI has a high compression efficiency when compared to other compres-
sion schemes [125].

Encoding Complexity RDF Smart Energy SensorML
XML Medium 206 409 300
EXI* Low 6 (3%) 13 (3%) 57 (19%)
BXML Medium 177 (86%) 210 (51%) 177 (59%)
Fast Infoset Medium 143 (69%) 200 (49%) 185 (62%)

Table 2: Comparison of the related compression schemes (size of encoded objects
in Bytes) [125]. (*Strict schema-informed mode with bit alignment)

2.7. Summary

This chapter has presented a literature review of the state-of-the-art developments
in the MWoT domain, specifically related to system architectures, protocols, com-
munication mechanisms and so forth. At the beginning of the review, the author

51

discussed some lightweight operating systems, which are mainly designed for the
energy preservation of sensor networks. When considering the MWoT, the en-
ergy conservation of the mobile device plays a key role, and the discussion also
included the features of some energy-efficient communication protocols. The au-
thor then discussed the recent developments of the WoT architecture and the W3C
standardisation of the WoT.

This chapter then presented a review of the lightweight middleware for the
MWoT, including the available applications, a comparison of the existing frame-
works, the use of nearby resources in the MWoT based on the mist comput-
ing approach, and a discussion of some existing approaches. The chapter also
summarised numerous energy-efficient approaches for WSN scenarios into a few
groups based on their common features. Finally, the chapter discussed the use
of public fog networking services for energy-efficient MWoT, including the dif-
ferent studies performed and a review of energy-efficient service description and
discovery in the MWoT.

In summary, this chapter has explored the theoretical and technological aspects
of the MWoT that provided the necessary fundamental background of this thesis.

52

3. LIGHTWEIGHT MOBILE WEB SERVICE
PROVISIONING FOR THE INTERNET OF THINGS

MEDIATION

3.1. Introduction

The capabilities of recent mobile devices such as smart phones and tablets have
been steadily enhanced with faster processing power, larger and higher resolution
display screens, greater memory, and enhanced power saving mechanisms. Addi-
tionally, accessing high speed mobile Internet (e.g., 3G/4G or LTE1) with mobile
devices has become a common phenomenon in most urban areas of the world.
Cisco Visual Networking Index Forecast Project predicts that, by 2018, the popu-
lation of mobile device users will reach around 5 billion together with more than
10 billion mobile devices connecting to the Internet2.

Confluence of these mobile developments with the evolution of service-oriented
architecture technologies have led to the mobile Web services, where the mo-
bile terminals are being used as both Web service clients and providers (which is
termed-Mobile Hosts [139]). Mobile Web service provisioning has been utilised
in numerous fields such as Location Based Services (LBS) [163], Mobile Health
Services [78], Mobile Social Networking applications [161], etc.

Although recent smartphones are quite capable in terms of data transmission
speed and computation power, when they are utilised for providing MWS, the
challenge of resource constraints still exists. The high frequent usage of the high
performance multi-core mobile CPU and the high speed 3G/4G mobile Inter-
net data transmission will quickly drain the battery power of the mobile device.
Therefore, in past years, several lightweight mobile Web service provisioning ap-
proaches such as lightweight HTTP based RESTful Web service frame work for
mobile devices [99], optimal Data Serialization Formats for energy efficiency on
mobile devices [147] have been proposed to address the resource intensive issues
in MWS.

In general, there are two trends of approaches:
1. Reducing the complexity of the messaging. e.g., utilising REST based ser-

vice provisioning instead of SOAP;
2. Utilising external resources to enhance the overall performance. e.g., of-

floading the complex computational tasks to static Cloud [30] or to the Mo-
bile Ad Hoc Cloud [31] and also using optimistic collaboration and schedul-
ing to reduce the consumed bandwidth in order to serve energy [26], [25].

However, when considering MWS based sensing provisioning systems, they
still have some other challenges that need to be addressed in order to increase their

1http://www.3gpp.org/technologies/keywords-acronyms/98-lte
2http://newsroom.cisco.com/release/1340551

53

efficiency. For example, when considering the mobile sensing scenarios, instead
of providing the information regularly based on the requests, sometimes it may
be ideal to store the information on the cloud and provide access to the data, for
the further requests. This way, the communications latencies can be significantly
reduced, if there are server bunch of clients requesting the same information.

In addition, there should be a proper way to handle the conflicts and compati-
bility of services. Mobile devices have limited sensing components and they may
not be able to operate concurrently. Conversely, some services may be able to
operate at the same time, even though they are using the same sensing compo-
nents. For example, video-based sensing and image-based sensing services both
use camera component and may operate at the same time depending on the speci-
fication of the devices.

In such cases, how does the Mobile Web server manage the services and pro-
vide timely service publishing?

Similarly, in the case of real-time or a periodical sensing service operation, the
executed service can affect the availability of other services.

How does the Mobile Web server measure or prioritise the availability of the
services?

To address these issues, we extend the work [88] towards presenting a lightweight
mobile Web service provisioning framework based on integrating a number of
lightweight protocols including Constrained Application Protocol, Bluetooth Low
Energy and Efficient XML Interchange. We also have added a service scheduling
feature to address the discussed challenges and to provide uninterrupted service
provisioning while maintaining the basic functionality of the mobile device.

3.2. Overview of Architecture

Figure 14 illustrates the architecture of the proposed Mobile Web service pro-
visioning. In this environment, Mobile Web server represents the Web service
provider that is capable of providing various data to its clients. For example, the
Mobile Web server can collect sensory data from its surrounding sensor devices
- SN1 and SN2 - and interpret the data to the useful information, then provide
the interpreted data via its Web service mechanism. The proposed Mobile Web
server has adopted some Web of Things recommendations that enable it to interact
with any entity on the Web of Things. For instance, utilizing the EXI encoding
scheme to compress message payload, CoAP as an application protocol and sup-
port RESTful methods such as GET, POST, PUT and DELETE to interact with
the resources can be mentioned. Since we have embedded the WoT requirements
to the Mobile Web server and as discussed in Introduction Chapter, we term this
Mobile Web server as a Mobile WoT server.

The MWoT server supports two types of service discovery: global service
discovery and local service discovery. The global service discovery is realised
by publishing its SDM (e.g., WSDL, WADL or SensorML) to a global service

54

Figure 14: MWoT service provisioning framework

registry (e.g., DNS-SD). A remote client that knows the location of the service
registry can discover the MWoT server by requesting the service registry. After-
wards, the remote client can perform the regular service request to the MWoT
server by sending the CoAP service requests. The local service discovery is based
on BLE. As Figure 14 shows, a client can discover the MWoT server in proximal
range via BLE. The MWoT server will provide certain information via BLE to
help the client to identify the communication requirement. If the client moves out
of the BLE range with the MWoT server, it can still communicate with the MWoT
server via a mobile Internet connection. The MWoT server has been assigned a
public static IP address from the mobile Internet service provider (e.g. Estonian
TELE2 and EMT both provide this service). Alternatively, if the public IP ad-
dress allocation is not available, the MWoT server can utilise proxy services [71],
or hole-punching/relaying [141].

3.2.1. Sensing Service Provisioning

The MWoT server can provide services based on time or resource allowance. For
example, the user of the MWoT server can set 5 hours as the service provisioning
period and 50% as the maximum battery allowance. Hence, whether the 5 hours
period has past or the battery has consumed 50%, the service provisioning will
be terminated, and the corresponding service publishing will be withdrawn from
the discovery server. MWoT service framework supports three types of sensing
services such as:
• One-time Sensing represents a generic Web service request/response oper-

55

ation that triggers corresponding sensing components to retrieve data and
delivering the data to either the requester or specific end-points.
• Real-time Sensing represents the streaming-based sensing service. The

MWoT server performs the sensing activity continuously and provide the
data to the client concurrently.
• Periodical Sensing represents the activity that is triggered for each times-

tamp based on the request. For example, the request message may describe
that for every 30 minutes; the MWoT server will perform the sensing activ-
ity once, and provide the data to a specific endpoint based on the address
described in the request message.

3.2.2. Basic Protocol Stack

Figure 15: Protocol stack of the mobile Web server

Figure 15 illustrates the conceptual design of the protocol stack used in the
proposed MWoT server framework. The proposed framework is mainly based on
lightweight protocols to make the process simple. In the lower layer of the pro-
tocol stack, the mobile MWoT service framework can utilise numerous common
protocols such as the 3G/4G mobile Internet (for global service interaction), Wi-
Fi/Wi-Fi Direct, Bluetooth (BT)/BLE, IEEE 802.15.4 (e.g., ZigBee), or LTE-A
(LTE Direct) for the local service interaction.

Unlike traditional web servers based on HTTP, our application layer utilises
CoAP that provides a solution with a compact header size, simple, lightweight,
RESTful message exchange in between the MWoT server and clients over con-
strained network.

As mentioned in the earlier, the proposed MWoT server framework also utilises
EXI to compress the size of the message payload. Since the design of the frame-
work is for provisioning sensory data in IoT scenarios, service description is very
important because it facilitates to communicate smart object over the network.
We proposed to use SensorML based resource description which provides XML

56

encoding and the semantic description of sensory data.

3.2.3. Components of the MWoT framework

Figure 16: Main components of MWoT server

Figure 16 illustrates the component architecture of the proposed MWoT server
framework. It consists of following main components.
Request/Response Listener
It is the first contact point for the clients to the the MWoT server. Once the server
is started, it listens on port 5683 which is reserved for the CoAP services. Clients
will get the contact details of the server with the service description from the
local/global service discovery components that will be discussed later.
Service Engine
This is the core module of the the MWoT server that coordinates all the parts of the
parts of the framework. Main tasks include analysing requests from the clients,
processing and executing relevant methods to get data from a particular resource,
and then sends data back to the clients with the response messages. In order to
handle services, the service engine has two main sub components:
• URI Mapper—Once the client request is received from the Request/Response

Listener, URI Mapper analyses the URI to fetch the service information
which is requested by the client. The requested service indicates what kind
of data or service it requires and the URI Mapper locates the corresponding
resource within the engine to fetch the data.
• Resource Pool—Service engine maintains a collection of resources that has

context data about particular Web services. Resource Pool has an instance

57

for each CoAP resource which will execute upon the client request. The
Resource Pool also communicates with the Data Collector to fetch data
from the data providers for particular resources.

Data Collector
Data collector is responsible for collecting data from available resource providers.

Such providers can be the inbuilt sensor components of the MWoT server device,
external environmental sensory service providers or spatial data from mobile so-
cial network in proximity. The Service Engine selects the type of Data Collector
that can retrieve data from the sensors.
Message Processer

To reduce the size of the CoAP message the Message Processor processes the
payload of the messages used in the communications. The proposed MWoT server
framework utilises EXI-formatted binary scheme. EXI Parser gets data from the
Service Engine, compresses it, and forwards to the service engine which will wrap
it to the CoAP message.
Sensor Manager (SM)

It is responsible to communicate with the inbuilt sensors. One of the main
fact which consume more energy is applications that are reading data from inbuilt
sensors of a mobile device. When the client request is related to inbuilt sensory
data, the Sensor Manager collaborates with the operating system to activate the
sensor components, fetch the data and deactivate the sensor. Sensor manager only
activates the sensor components when it is necessary and helps to minimise the
energy consumption of the MWoT device.
Local Service Discovery Component

When the client device locates itself in close proximity to the server, it can re-
ceive the BLE advertisement broadcasted by the the MWoT server which is more
energy efficient than other types of discovery mechanisms. After the BLE con-
nection is established, the client can explore the basic services that are provided
by the server.
Global Service Discovery Component

To enable the mobile Web services provisioning across other networks, the
MWoT server registers its service description with the global DNS server. In
RESTfull architecture, all Web services publish with associated URIs that can be
discovered by the clients.
Global Service Schedule Manager

The MWoT server can provide services based on available time and resources.
The main task of the service scheduler manager is providing a schedule for the
service provisioning which is defined as below:
Definition 3.1. (Global Sensing Service Schedule - GS)

GS is defined as a tuple (T , λ) where:

58

• T is a set of timestamps for service provisioning period. Each timestamp
is scheduled as 1 minute. i.e. for a 1 hour service provisioning, |T |= 60.
• λ : T → S maps timestamps with the scheduled sensing service execu-

tions.
MWoT server supports three main types of sensing services as described earlier

in this section. The sensing service request can be performed in two forms as
simple or complex. To enhance the sensing service provisioning, a model of the
sensing service schedule is defined and described in the following section.
Sensing Service Scheduler Model

In order to optimise the service provisioning, use of the sensing service pool
in service schedule and defined as below:
Definition 3.2. (Sensing Services Pool- SSP)

Sensing service pool describes the information of sensing services provided by
the MWoT server. It is defined as a tuple (S ,ς ,κ,ε) where:
• S is a set of sensing services.
• ς : S → R maps sensing services to sensing components (e.g.,GPS sen-

sor,accelerometer camera, audio recorder, network signal browser etc.).
• κ : S →S maps sensing services to conflict services.
• ε : S → E maps sensing services to the system resource usage sets (e.g.

CPU, RAM, network transmission bandwidth usage etc.).
Example 3.1. (Conflict Service)

Let s1 and s2 be two services. Let T ′ ⊆ T . Assume s1 has been requested
by a real-time sensing request, which has its timestamp period within T ′, and
s2 is not requested by any client. Suppose s2 ∈ κ(s1), then s2 will be marked as
unavailable during T ′.
Sensing Service Request Processing

If the request is a simple service request that involves only a one-time service
invocation that has only one activity. Otherwise, the request will be handled as
the description provided in the request itself. It is defined as below:
Definition 3.3. (Request Processing - RP)

RP is defined as a tuple (N ,F ,τ,P) where:
• N is a set of nodes.
• F ⊆N ×N is a set of flow relation rule.
• τ : N → Y maps nodes to node types. A node type can be an activity, a

gateway, an event, a sub-process etc. An activity node that involves sensor
service is marked as sType.
• P = {p1, ..., pn},n ∈ N, is a set of work schedule plan that identifies when

and how long the process needs to be performed. Each p ∈ P is defined as
a tuple (st,et), which correspond to start time (st) and end time (et).

Example 3.2. (Work Schedule Plan Handling)

59

Suppose a XR contains P = {p1, p2}. Let (st1,et1) be the start time and end
time of p1. st1 = 14 : 00 and et1 = 14 : 10, which denotes a 10 minutes sens-
ing task. Schedule Manager will model p1 as a set of timestamp that consists of
{14 : 00,14 : 01,14 : 02,14 : 03, ...,14 : 10} when it is processing the request.

Schedule Manager analyses the request type based on the elements in P . It is
based on the following rules:
• One-time request: |P|= 0.
• Real-time request: |P|= 1, the end time—et of p1 ∈P is not null.
• Periodical request: |P| ≥ 1, ∀p ∈P : etp 6= null∧ stp 6= null.

For any request that exceed the scope defined above, is considered as an invalid
(i.e. insufficient parameter) request, which will trigger an error.
One-time Request Processing

A one-time request involves 1...N sensing service invocation (services of sType
nodes), which is denoted by S XR, S XR = {sXR

i |1 ≤ i ≤ N}. Let tx ∈ T , and
Sx = λ (tx) a set of executed services at tx, and sx ∼= now, in which now denotes
the current system time. Let S ′ = S XR

⋂
Sx, if |S ′|> 0 then ∀s ∈S ′, sensing

service—s will be assigned for executing the activity. Let S ′′ =
S XR

Sx
, For each

s ∈ S ′′, the corresponding task will be replaced from the original sensing ser-
vice invocation task that will forward to the new service which retrieves sensing
data which has already been gathered during the previous real-time or periodical
requests.
Real-time and Periodical Request Processing

There are two main differences in between periodical sensing and real-time
sensing. First, in periodical request, the request processing can be executed in a
number of periods but, the request executes only once in the real-time sensing.
Second, in periodical request, the request can set a specific start time, while, the
real-time sensing just executes.
Service Availability Measurement and Schedule Publishing

Schedule Manager updates the service availability information when it pro-
gresses a new request. The service availability is influenced by two factors: ser-
vice conflicts and system resource allowance (i.e. CPU, RAM, network bandwidth
etc.).

Let S tx be a set of scheduled service executions at timestamp tx ∈ T , S tx =
{stx

m|1 ≤ m ≤ N}. κ(stx
m) denotes a set of conflict services of stx

m. Hence, a set of
conflict services at timestamp—tx (denoted by K tx) will be:

K tx =
⋃

m∈|S tx |
κ(stx

m), (3.1)

60

and the available services at timestamp tx (denoted by S tx) will be:

S tx =
S

K tx
(3.2)

The above process has only filtered the services based on conflicts. Following
is the process that considers the system resource availability.

Let Esys = {esys
o |1 ≤ o ≤ N}, be a set of the available system resources (Note

that available system resources are different to the hardware specification of the
mobile device. User can set the availability in percentage to avoid the service
provisioning affecting to the normal use of the mobile device).

Let S tx be a set of sensing services assigned at tx ∈ T . For each service—
sz ∈S tx , its system resource consumption is found in ε(sz). Let Esz = ε(sz) in
which Esz = {esz

o |1≤ o≤N} in which the system resource denoted by esz
o and esys

o
are the same, and let vesz

o be the usage value of esz
o and vesys

o be the remaining value
of esys

o . For each tx, the vesys
o after assigning S tx (denoted by vetx

o) will be:

vetx
o = vesys

o − ∑
sz∈S tx

vesz
o (3.3)

Let Etx = {vetx
o }. Referring to previous result, S tx is a set of services that has

been identified as available at tx. For a service—sy ∈S tx , let Esy be the system
resource usage required by the service. If ∃esy

o ∈ Esy , such that vesy
o > vetx

o , which
indicates that the service–sy requires higher usage value than the actual available
resource value. Hence, the sy is considered as unavailable at the timestamp—tx.

3.3. Summary

In this chapter, the author has presented a lightweight mobile Web service pro-
visioning framework for the resource-constrained environment. The author dis-
cussed the requirements of integrating a number of lightweight protocols, includ-
ing CoAP, BLE, and EXI in energy efficient mobile sensing frameworks. More-
over, it described the features of service scheduling and management of conflict
services that enables mobile users to participate in different mobile phone sens-
ing systems without affecting much of their hardware resources. Details of the
prototype implementations and the evaluation results of the proposed lightweight
MWoT framework will be discussed in Chapter 6.2

61

4. ADAPTIVE MOBILE WEB OF THINGS SERVER
FRAMEWORK FOR MIST COMPUTING IN THE

INTERNET OF THINGS

4.1. Introduction

The classic design of IoT systems which relies on remote central processing
servers, face the latency issue [29] especially in many real-time ubiquitous ap-
plications such as augmented reality, traffic analytic and ambient assisted living.

Recently, Fog Computing models have been introduced to overcome the la-
tency issue by utilising the proximity-based computational resources such as the
computers co-located with the cellular base station, grid router devices or com-
puters in local business. However, the increasing users of Fog Computing servers
will cause bottleneck issues, and consequently the latency issue to arise again.

To address the bottleneck issues in the Fog computing model, researchers have
introduced Mist computing model where the computing moves to the extreme
edge of the IoT environment.

This chapter extends the MWoT server framework introduced in the last chap-
ter and applies it in the mist-computing environment towards reducing the burden
of fog servers. The author proposes a service-oriented mobile-embedded Plat-
form as a Service (mePaaS) framework enables the edge IoT devices to provide a
platform that allows requesters to deploy and execute their own program models.
However, in order to successfully achieve the goal, the MWoT server needs an
adaptive service scheduling scheme that considers runtime context factors such as
CPU load, RAM availability, etc. Accordingly, the framework supports resource-
aware autonomous service configuration that can manage the availability of the
functions provided by the Mist node based on the dynamically changing hardware
resource availability. Additionally, the framework also supports task distribution
among a group of Mist nodes. The prototype has been tested and performance
evaluated on the real world devices.

4.2. Proposed Framework

4.2.1. Architecture overview

The proposed mePaaS framework enables MWoT devices to provide a flexible
way of sharing their computational and networking mechanisms as services. The
core of mePaaS framework is based on Enterprise Service Bus (ESB) [116] ar-
chitecture. ESB is a software infrastructure that can easily connect resources by
combining and assembling services to achieve a loosely-coupled Service-Oriented
Architecture (SOA). mePaaS utilises a plugin module-based approach to mediate
native computational and networking components to services that can be invoked
by the process execution engine. Requester of mePaaS can send a request pack-

62

age, which consists of input parameters and the flow of processes described in the
standard workflow model (e.g.BPMN http://www.bpmn.org) with customised
algorithm defined in the supported script language of the process execution en-
gine. mePaaS can execute the workflow that facilitates the available service mod-
ules to complete the tasks from the requester. Figure 17 illustrates the main ele-
ments of mePaaS framework and the elements are described below.

Figure 17: mePaaS architecture

Controller
Controller is the core element of mePaaS framework. Its main tasks include

mediating and managing the computational and networking modules in order to
coordinate with the service provisioning component. Moreover, the controller
analyses the requests from the clients, and updates the service description accord-
ing to the availability of resources. It includes the following important compo-
nents:
• Service Availability Controller The Service Availability Controller updates

the service availability information when it progresses a new request. Since
each service module execution consumes a certain amount of hardware and
other resources of the device, the service availability controller notifies the
Controller about the conflicts of services and the overhead usage of the
system resource (i.e., CPU, RAM, network bandwidth, etc.). For example,
let Req1 and Req2 are two requests that use the camera for a sensing task.
Assume Req1 has been requested for 20 second video capturing. If Req2
also wanted a picture from the camera at the same time, the Req2 will be
marked as a conflicting service and is available only after 20 seconds. Under

63

http://www.bpmn.org

this situation, the Controller will notify the Service Provisioning component
to disable the corresponding service (e.g. image-based sensing) from the
service description until the corresponding resources are released.
• Resource state monitoring – This component is responsible for monitor-

ing the resource usages continuously. For example, monitoring the device
hardware status, CPU load percentage, RAM usage, incoming and outgoing
network transmission status, etc. Based on the information arrived from this
component, the controller can autonomously make a decision about which
service modules are available based on the required usage of resources. The
decision-making scheme is described in the next section.
• Service Schedule Manager – This is the component which can predict

the availability of resources in the temporal domain. More details of this
component are discussed in the later section.

Service Provisioning (SP)
SP is the component that handles which service modules can be included in the

SDM. mePaaS can publish or advertise its SDM in different networks, depending
on the application use case. In general, the SDM follows the W3C’s recommen-
dation for RESTful services in the WoT, in which SDM is described based on
JSON-LD format. SP associates with different Service Provisioning Adaptors
(SPA) such as Mist, Fog, MEC, the Web, to publish or advertise mePaaS’s SDM.
Also, the SPAs are responsible for handling the incoming request packages from
their field. For example, Mist SPAs are responsible for advertising SDM on the
D2D network (e.g. Wi-Fi Direct, Physical Web https://google.github.io/

physical-web) and handling the requests from D2D network. Note that, distin-
guished from mobile ad-hoc network, the D2D utilises existing infrastructure for
the communication within a 1-hop range [85].
Local Service Module Manager (LSMM)
LSMM is responsible to launch, terminate and manage the local service modules
of mePaaS. Local service modules can be seen as independent software compo-
nents that can be installed as plugins of mePaaS. Initially, mePaaS should have at
least one process execution module and a number of corresponding modules that
can utilise the inbuilt functions of the device (e.g. access GPS data). mePaaS pro-
vides a flexible way for developers or users to add more modules for supporting
different needs. For example, a user can install additional modules for performing
semantic sensory data reasoning. LSMM will inform the Controller about newly
installed module, along with the corresponding descriptions. The controller will
pass the information to SP to include the module as a new service in SDM.
Process Execution
This module consists of the following main elements:
• Execution Engine – is software to execute the workflow which is included

in the request package. The Execution Engine needs to associate with

64

https://google.github.io/physical-web
https://google.github.io/physical-web

LSMM in order to invoke the corresponding service modules involved in
the workflow tasks.
• Process Patterns – manage a number of predefined workflow patterns.

The pre-defined patterns can be used to replace the inexcusable tasks in the
workflow as substitutions. When it receives a request that contains the goal
of the process, a corresponding abstract workflow model will be executed.
A flow relation pattern defines the structure of a set of workflow nodes. The
definition of abstract workflow model and approach will be described in a
later section.

Networking Modules
These modules represent the service modules that can invoke the functions of
networking requests (e.g. Sending HTTP or CoAP requests, sending Bluetooth
GET request, retrieving Bluetooth Beacon’s data or reading RFID or data from
ISO/IEC 20248 devices etc.). These modules can also be used to fetch the SDM
of the other service providers in proximity.
Internal Modules
Represents the service modules that only involve the functions from inbuilt hard-
ware resources and sensors such as GPS, accelerometer, compass, brightness etc.
Privacy, Trust, Security, etc.
are the modules that involve the management of privacy and service level agree-
ment, the trustworthiness and quality of service provisioning, cryptography and
other security involved mechanisms. the author has studied them earlier in other
contexts such as service discovery [24], and they will be integrated later.

4.2.2. Self-configured service provisioning

Mist node publishes the available services in SDM that the clients will receive in
the JSON-LD format. Due to the dynamic nature of the resource usage of service
modules, the availability of the service provisioning is also unpredictable. For ex-
ample, if the Mist node is currently serving a continuous data streaming task, then
it is unlikely to serve a new request that also requires a heavy bandwidth usage.
Hence the corresponding service may need to be disabled from SDM since the
Mist node cannot handle any more such kind of requests. In order to dynamically
update the SDM, the author proposes the service scheduling scheme. First, the
author explains the terminologies used in the scheme. As described earlier, the
Mist node-handled process is modelled as a workflow. Here, the author refers
to the terms described in [150] where a task that is to be accomplished is called
awork item. A work item in mePaaS is executed by a service module.
Definition 4.1. (Installed Service Module Collection) —is defined as a tuple <
S,β > where:

– S= {sl : 1≤ l≤N} is a set of service modules. Each sl ∈ S is defined as a tu-
ple < ID, type,status > corresponding to identification, type of the service

65

module (e.g. CPU intensive, bandwidth intensive etc.) and the availability
status.

– β : S→U is a function that maps the service modules to the required hard-
ware usages.

Definition 4.2. (Scheduled Work Items) — is defined as a tuple <W , F, ζ , γ , δ >
where:

– W is a finite set of work items. W = {ω1,ω2, ...,ωn}, n ∈ N.
– F ⊆W ×W is a set of flow relation rules.
– ζ : W → Z is a function that maps work items to status.
– γ : W → Γ is a function that maps work items to start times.
– δ : W →D is a function that maps work items to estimated execution dura-

tion.
Let •ω = {ω|(ω,υ) ∈ F} be the pre-set of ω , ω•= {ω|(υ ,ω) ∈ F} be the post-
set of ω.

Definition 4.3 ((Device Hardware Usages (HGlo))).
HGlo = {hGlo

1 ,hGlo
2 , ...,hGlo

n },n ∈ N. Each hGlo ∈ HGlo is defined as a tuple
< IDGlo, cuGlo, xuGlo > where:

– IDGlo denotes the identification of the hardware.
– cuGlo denote the current assigned usage of the hardware based on the scheulded

work items.
– xuGlo denotes the maximum availability of the hardware.
Initially, we can apply Algorithm 4.1 in which the Service Provisioning (SP)

component can decide whether to keep or remove the services from SDM based
on the availability of hardware resources.

Algorithm 4.1 Pseudocode for our algorithm

1: for s ∈ S do
2: hardwareUsageSet← β (s)
3: for hus ∈ hardwareUsageSet do
4: for hGlo ∈ HGlo do
5: if IDhus ≡ IDhGlo ∧ (valuehus + cuGlo

h)> xuGlo
h) then

6: add s to removeList
7: end if
8: end for
9: end for

10: end for

However, Algorithm 4.1 does not consider that the hardware usage relative
to the temporal space. For example, there may be a process that will terminate
and release the resources in very near future. To overcome this limitation, as a
future development of our previous work [90], especially for the complex type
of services, the author combined a Service Schedule Manager into the Controller

66

to enhance the decision making process and to ensure the unnecessary removing
of services. For example, there may be a service request that takes some images
from the surrounding and uploads them to a server periodically. Assume that the
request has started at 10.00 am and continues in every 10 minutes as at 10.10,
10.20,..., until 11.00 am. In that situation, availability of the camera resource is
almost free except only at some occasions. Moreover, the system already knows
the availability of resources in advance and the framework can make optimal de-
cisions accordingly. The following section describes the service schedule that
optimises the service provisioning.

4.2.3. Service Scheduler

The following section describes a detailed overview of the service scheduling that
enhances the service provisioning. The service scheduler combines the available
resources with the domain in advance to minimise the service conflicts.
Definition 4.4. (Local Services Pool- LSP) — LSP describes the information
about local services provided by the mist node. It is defined as a (S ,ς ,κ,ε)
where:
• S is a set of service modules.
• ς : S →R maps services to hardware components (e.g. GPS sensor, ac-

celerometer, camera, audio recorder, network signal browser etc.).
• κ : S →S maps services to conflict services.
• ε : S → E maps services to the system resource usage sets (e.g. CPU,

RAM, network transmission bandwidth usage etc.).
Example 4.1. (Conflict Service)

Let s1 and s2 be two services. Let T ′ ⊆ T . Assume s1 has been requested
by a real-time sensing request (e.g noise level sensing), which has its timestamp
period within T ′, and s2 is not requested by any client. Suppose s2 ∈ κ(s1), then
s2 will be marked as unavailable during T ′.

4.2.4. Scalable Computational Resources

In Mist, it is expected that the SDM of a Mist node also describes the computa-
tional and networking capabilities (CPU, RAM, bandwidth etc.) it can provide.
Since such information is available, a Mist node can form a grid computing group
centred by itself with other Mist nodes that are within 1- hop range from it. Hence,
when the Mist node cannot perform a task by itself or it cannot achieve the per-
formance requirement for the task execution, it is possible to distribute the work
(by executing a predefined substitute workflow pattern) to the other Mist nodes as
long as it will generate a more efficient result. However, it raises a question about
how does mePaaS makes the decision on which Mist node and when it should
distribute the work to?

67

Here, the author proposes a work distribution scheme, which is used when
a computational offloading node needs to be defined for the work substitution
purpose at runtime.
Step 1. The resources required for executing the Work Item depend on the usage
of the corresponding hardware components.
Let RES be the resource for the work item. RES consumes a set of hardware (CPU,
memory, bandwidth, etc.; based on the historical record and input parameters).
Let H be the hardware usage by RES, H = {hk : 1 ≤ k ≤ N}, where each h ∈ H
is defined as a tuple (< id,value >) corresponding to the identification of the
hardware usage and the hardware usage value consumed for executing the RES.

Step 2. The weight of hardware usage required for the work item influences the
performance ranking.

Based on the resource for the work item, the weight of hardware usage is
different. It can categorise them into following types based on the hardware usage
considered in [114] and [81]:

1. CPU intensive task (e.g. customised complex algorithm scripts).
2. CPU+RAM intensive task (e.g. I/O data processing; large data volume

loading involved tasks)
3. Bandwidth intensive task (e.g. data forwarding process; e.g. send/receive

tasks)
4. Hybrid, where multiple resources have higher weight.

Example 4.2.
If (b) is the classification of the Work Item, then for example, hardware param-

eters being considered are CPU, RAM, Bandwidth, then mark CPU = 2, RAM =
2, Bandwidth = 1, corresponding to CPU and RAM both plus one. Hence, the
weight of CPU will be 2/5, RAM will be 2/5, Bandwidth will be 1/5.
Step 3. Identify availability of the system resources –Schedule Manager updates
the service availability information when it progresses a new request. The
service availability is influenced by two factors: service conflicts and system
resource availability(i.e. CPU, RAM, network bandwidth, etc.).

Let S tx be a set of scheduled service executions at timestamp tx ∈ T , S tx =
{stx

m|1 ≤ m ≤ N}. κ(stx
m) denotes a set of conflict services of stx

m. Hence, a set of
conflict services at timestamp—tx (denoted by K tx) will be:

K tx =
⋃

m∈|S tx |
κ(stx

m) (4.1)

and the available services at timestamp tx (denoted by S tx) will be:

S tx =
S

K tx
(4.2)

68

The above process has only filtered the services based on conflicts. Following
is the process that considers the system resource availability. Let Esys = {esys

o |1≤
o ≤ N}, be a set of the available system resources (Note that available system
resources are different to the hardware specification of the mobile device. User
can set the availability in percentage to avoid the service provisioning affecting to
the normal use of the mobile device).

Let S tx be a set of services assigned at tx ∈ T . For each service—sz ∈S tx ,
its system resource consumption is found in ε(sz). Let Esz = ε(sz) in which Esz =
{esz

o |1≤ o≤N} in which the system resource denoted by esz
o and esys

o are the same,
and let vesz

o be the usage value of esz
o and vesys

o be the remaining value of esys
o . For

each tx, the vesys
o after assigning S tx (denoted by vetx

o) will be:

vetx
o = vesys

o − ∑
sz∈S tx

vesz
o (4.3)

Let Etx = {vetx
o }. Referring to previous result, S tx is a set of services that has

been identified as available at tx. For a service—sy ∈S tx , let Esy be the system
resource usage required by the service. If ∃esy

o ∈ Esy , such that vesy
o > vetx

o , which
indicates that the service–sy requires higher usage value than the actual available
resource value. Hence, the sy is considered as unavailable at the timestamp—tx.
Step 4. The ranking of candidate – is based on the weight of resource and the
resource availability.

Let M be a set of candidate Mist nodes where M = {µi : 1≤ i≤N}. Each µ ∈
M has a set of available hardware usage A = {α j : 1≤ j≤N}. Each α j is defined
as a tuple < id,value >, and valuei

j denotes the value of available hardware usage
α j of Mist node µi. The score of a candidate Mist node—µx ∈M is computed by
(4.4).

scorex = ∑
j∈|A |

(
valuex

j

∑i∈|M | valuei
j
×w′xj) (4.4)

where w′xj denotes the normalised weight of the hardware usage α j at µx, which
is derived from (4.5).

w′xj =
wx

j

∑k∈|Hx|wk
(4.5)

where wx
j is the initial assigned weight value (see Example 1) and wk is the weight

of a hk ∈ Hx.Hx is the HGlo of µx ∈M .

4.3. Summary

In this chapter, the author has presented a mobile-embedded Platform as a Service
(mePaaS) framework. The framework follows the service-oriented ESB archi-

69

tecture, which adapts the mechanism supported by the device (e.g., Wi-Fi com-
munication, Bluetooth communication, GPS, etc.) into service. The author has
extended the original work by adding service scheduling and the management of
conflicts in order to improve the quality of service provisioning. With the com-
bination of the service scheduling and script language supported BPMN work-
flow engine as the program execution engine, mePaaS allows the MWoT devices
to provide a flexible platform for proximal users to offload their computational
or networking program to mePaaS-based Mist Computing node. Details of the
implemented prototype of mePaaS together with performance evaluation will be
discussed in Chapter 6.3

70

5. ENERGY-EFFICIENT MOBILE WEB OF THINGS
USING PUBLIC FOG NETWORKING SERVICES

5.1. Introduction

The fragmented interoperability issue of IoT [3] has motivated the incubation of
the WoT [77], which applies Web technologies to IoT in order to enhance the
integration among the IoT entities towards accelerating the development and the
deployment of IoT ecosystem. Essentially, WoT systems are the IoT systems with
additional mechanisms that enable the connected things such as home appliances,
vehicles, animals and so forth, to be communicable via World Wide Web (i.e..
the Web) technologies, which belong to the application layer of OSI model. Im-
plicitly, by utilising WoT, IoT developers can greatly reduce the fragmentation
derived from the common practical implementation of IoT in which vendors are
using their custom heterogeneous protocols.

While various domains have integrated IoT to their systems, MIoT emerged
as the major theme in IoT that representing Internet connected moving objects
such as human, animals, drones, vehicles and so forth, which often, are relying on
battery-powered devices. Commonly, if all the MIoT system uses the devices from
one single vendor, it may not have any issue in integrating the devices. However,
as discussed earlier, such a statement reduces the flexibility of choosing the device
vendor. Instead, if the system has applied WoT, in which the system will use
only the WoT standard-compliant devices, it will increase the sustainability of the
MIoT deployment and we term the WoT-driven MIoT as Mobile WoT.

Although MWoT is promising, it also raises numerous challenges in terms
of processing power, storage space and the constraint energy because MWoT is
commonly deployed on the battery-powered devices and the mobile Internet com-
munication consume significant battery power. Accordingly [42], Wi-Fi network
communication consumes much less energy than the cellular Internet. Ideally, If
MWoT devices can collaborate with proximal Wi-Fi Internet access point, they
can save significant battery power. Fortunately, recent research in IoT has empha-
sised the importance of distributing processes from the distant central server to
the proximal resources such as programmable network routers, gateways, bridges
or their co-located machines. Specifically, industry terms such a paradigm as Fog
Computing and Networking architecture (i.e. the fog), which can cater the alter-
native Internet connect for MWoT.

It is foreseeable that in near future, the local small businesses and individuals
will be providing public fog to the general public, which is similar to the Indie
Fog business model and The Things Network. Further, the requester can utilise
proximal fog servers on the move for the Internet communication instead of fully
relying on the cellular mobile Internet.

Although utilising FogNets is a promising approach to improve the energy-
efficiency of MWoT, it also raises a new research question: in an environment that

71

consists of many heterogeneous FogNets providers that have different workload,
queue and operation schedules, if the MWoT device randomly selects a FogNets
provider simply based on the FogNet providers’ availability, it may consume un-
necessary energy for the MWoT device if the MWoT device switches the con-
nected FogNets provider too frequent. On the other hand, if the MWoT device
only switch FogNets provider after it loses connection or encounter issues with
the FogNets provider, it will cause extra offline time period, which is further re-
duce the Quality of Service (QoS) of the MWoT and also can cause critical issues
especially when the system utilises MWoT for remote healthcare.

In order to address the question, we propose a proactive FogNets scheduling
framework for MWoT. Specifically, the proposed framework aims to optimise the
FogNets connection schedule towards reducing the extra energy consumption de-
rived from the switching FogNets providers.

5.2. System Design

A typical strategy to reduce energy consumption in this environment is to reduce
the need of data transmission over the mobile Internet, because the mobile Inter-
net consumes the most energy in the process. A common approach is to select
one of the gateway devices in the proximity which is able to work as a broker for
uploading the data to the corresponding organisations’ Web server. As mentioned
previously, if the environment has a pre-configured infrastructure, such a collabo-
rative network has no issue. However, in IoT scenarios, the environment consists
of numerous WSN groups that are operated by different organisations and it is not
an easy task to enable the inter-organisational collaboration between those groups.

5.2.1. Overview

Figure 18 illustrates a federated environment where different organisations can
perform collaboration in IoT data acquisition. The collaboration is based on util-
ising the Message Bus service managed by a trustworthy Coordinator server in
the Cloud. The Message Bus routes the messages and data among participants. A
participant can publish its services to the Message Bus and let the other partici-
pants subscribe to the services. Further, it enables the negotiation process between
different participants towards assisting their collaboration.

In this environment, we made the following assumptions:
a) The movement of the MWoT device (D.1) is not very fast, roaming in a

particular area and utilises standard proximal communication protocols for
discovering its surrounding devices. Because of the lightweight proximal
protocols (eg.BLE) , the energy consumption for discovering surrounding
devices is very low compared to uploading data [41].

b) The MWoT devices periodically upload sensed data to their servers (Eg. in
every 5 minutes).

72

Figure 18: Fog Networking service example

c) The organisations those are willing work as FogNets providers for the other
organisations, will use meaningful identification for their Fog nodes. Fur-
ther, they publish the information (e.g. based on WSDL, WADL, CoAP
etc.) of their Fog nodes in the Message Bus service together with the meth-
ods that help the other participants to establish the collaboration.

d) The Fog node is not always in active mode due to the energy conservation
reason. They are discoverable via direct mobile P2P communication range
while they are awake.

e) Inter-organizational collaboration involves privacy and service level agree-
ment (SLA) concerns. For example, when organization A is willing to share
its bandwidth with organization B, both organizations should come up with
an agreement that consider the main facts about data transfer. For instance,
data security, the quota of the shared bandwidth, how data will be treated at
different nodes, how long it will take to deliver data to the destination, the
maximum size of the data bundle, etc. will be considered as the main facts
of SLAs. It is assumed that entering into SLAs is the responsibility of the
management of the respective organizations. In addition, once organization
B uploads data to organization A’s Fog node, the data will be forwarded to
organization B’s servers that are under the control of organization A. Hence,
this work, cannot consider how the data will be routed to a particular desti-

73

nation within the respective organization’s network. The required SLAs are
already being established.

In this example scenario the MWoT device is running a background opera-
tion which utilizes the low-powered proximity based service discovery procedures
(e.g., browsing Bluetooth Advertisement, Wi-Fi Direct, WFi Aware, etc.) to lo-
cate devices that can possibly be the FogNets providers (mark 1). Then MWoT
device sends the collection of the identification information of potential FogNets
providers together with its current geographical location information to the Boot-
strap Server (mark 2). (It is also worth to mention that at the very beginning
the MWoT device utilises the mobile Internet connection to upload its proximity
data, but subsequently it can use one of the selected FogNets provider to up-
load the proximity information.) Then Bootstrap Server (BS) can identify what
are the suitable FogNets providers in D.1’s current vicinity via the information
retrieved from the Coordinator server. Afterwards, BS will request for collabora-
tion from the management servers of the selected Fog Node (mark 3). Once the
request is confirmed, BS will inform MWoT device about the confirmation with
the information of the Fog Node (mark 4). Meanwhile, the management server of
the selected FogNets provider (denoted by D.2) will configure D.2 to enable the
communication from D.1 (mark 5). Afterwards, D.1 can use D.2 as its FogNets
provider to upload data. The communication between the two devices can be in
any short-range, low power wireless communication protocols depending on their
configurations (mark 6). To preserve the energy of D.1, It can also upload other
configuration data (eg. identification information of potential FogNets providers)
over the same connection instead of utilizing mobile Internet that will consume
more energy. As the figure shows, initially the D.2 is work as a gateway of the
other FogNets clients to send data packages to the Message Bus. Since D.2 may
send all the data it collects (for different parties) in one package to the Message
Bus (mark 7), the Message Bus will decompose the data collection and forward to
the corresponding channels. The participants who subscribed to the correspond-
ing channels will automatically receive the data. In this scenario, the Coordinator
would have approved the Distant Data Acquisition Server (DDAS) of D.1 for sub-
scribing the data derived from D.1. Hence, the DDAS of D.1 can properly receive
the data collected by D.1 (mark 8).

5.2.2. Main components of the proposed framework

The environment may consist of four main elements.
Other FogNets’ clients
Other FogNets clients’ devices are classic sensor devices that are deployed in the
environment to collect specific data (e.g. temperature, noise level, humidity, etc.).
Those are often low powered devices with limited application logic and some of
them may be working as a sink node for the certain amount of sensor nodes.

74

Mobile WoT device is a battery-powered device that has more processing and en-
ergy capabilities for sensing the environment on the move. It can be carried or at-
tached to any moving objects (human actors, animals, robots etc.). The device can
have inbuilt sensors and also capable of collecting data from proximity sensors.
Initially, MWoT device uploads its collected sensory data directly to its Distant
Data Acquisition Server (DDAS) via the mobile Internet connection. However,
the frequent data upload via mobile Internet will drain the battery quickly. Hence,
utilising the proximal Internet-connected devices to forward data to its DDAS will
help MWoT device to preserve energy for longer life.
FogNets provider device D.2
We consider that FogNets provider devices are work as potential gateways for the
MWoT devices. Normally they may have a better energy source and more com-
putational/ storage resources than the MWoT Devices. D.2 will collect data from
the own FogNets client devices, and upload the collected sensor data to their or-
ganization’s DDAS. Based on the organization’s preferences, FogNets provider
devices are discoverable by using common standard proximal communication
such as Bluetooth, Wi-Fi direct, etc. In this environment, we assume that a
discoverable FogNets provider devices will advertise a URL of its management
server for further information (eg. communication protocols, availability, secu-
rity credentials, etc.) for collaborative IoT data acquisition. Also, please note
that FogNets provider devices may not be available for continuous data acqui-
sition due to some limitations such as technical failures, organization policies,
energy/bandwidth limitations, etc.
Distant Data Acquisition Server
Each organization may have a separate server to acquire data coming from its own
sensor nodes. Yet, the way of delivering data from sensor nodes to the DDAS
may be in different ways. For example, in the beginning, the collected data from
the sensor nodes could be directly forwarded to the respective DDAS by MWoT
device and later the data may be received by the DDAS through a different orga-
nization’s network.
Bootstrap Server
BS directly communicates with the MWoT device to collect information about
potential FogNets providers in proximity. Thereafter, BS will request for col-
laboration from the management servers of the selected FogNets and prepare the
optimal schedule for the corresponding sensing period that minimizes the number
of re-connections.
Inter Organizational Coordinator

This entity works as a top-level coordinator for all organizations. All organi-
zations willing to collaborate will exchange messages and data over the Message
Bus service which provides a communication path across all entities. The coordi-
nating server processes the requests for collaboration from different organizations
shared with other organizations over the Message Bus.

75

Mobile Web of Things (MWoT) device

Backend Management Server of Organisation (MS)
MS is the controller of an organisations Fog nodes and it can control one or many
Fog nodes and MWoT devices too. The MS has the following main responsibili-
ties:

a) Providing SDM of a Fog node. As mentioned previously, a Fog node can
reply with the URL of the MS controlling it. If a requester retrieves a URL
from the Fog node, it then performs a HTTP GET request on the MS, and
the MS will reply with a SDM that describes what types of operations are
available from the MS. For example, the SDM can describe what data the
corresponding Fog node has collected and the URI to retrieve the data from
corresponding DAAS. Also, the SDM describes how the collaborative net-
work can be established. The details of the SDM will be described in a later
section.

b) Configuring the processes of Fog nodes. Each time the MS receives data
from the Fog node by the classic request/response method, the MS will
check if the configuration of Fog node needs to be updated. If so, the
MS will wrap the updated configuration setting metadata with the response
message and send it to the Fog node. The Fog node will then check the
response message. If re-configuration is required, it will perform the re-
configuration. For example, the reconfiguration may include a request to
Fog node to collect data from new sensor nodes that have been deployed in
the environment by the organisation.

c) Establishing and negotiating the collaboration with other organisations. Fun-
damentally, each organisation manages its own WSN, and their Fog nodes/
MWoT devices which are uploading data individually. For example, in Fig-
ure 18, initially, the MWoT device is uploading data to DDAS directly over
the mobile Internet that consumes more energy. However, a common ap-
proach is to select one of the FogNets provider in the proximity which can
work as a broker to upload the data.

5.2.3. FogNets provider scheduling

As mentioned earlier, we consider that FogNets providers may have different
availability due to some circumstances. Switch between many FogNets providers
consumes more energy than connected to the same provider during the data up-
loading cycle of the MWoT device. Hence, it is necessary to provide the schedul-
ing scheme to improve the energy efficiency of the MWoT device when selecting
a FogNets provider and establish collaboration. Accordingly, the BS prepares the
best schedule for the corresponding MWoT device that minimise the number of
switching between the FogNets providers.

We formalise the scheduling scheme as below:
Let T = {τi : 1≤ i≤N} be a set of discontinuous task periods assigned from

the BS to the MWoT device by following the time flow order. e.g. τ1 denotes

76

3:00∼3:05, τ2 denotes 3:15∼3:20, and the time represented by τ2 must not be
prior than τ1.

Let C = {Ci : 1 ≤ i ≤ N} be a set of candidate FogNets providers for the task
periods. Where Ci denotes a set of candidate FogNets providers for task period—
τi ∈T .

Let H = {h j : 1 ≤ j ≤ N}, be a set of all the FogNets providers in proximity.
To match the available time of h j to each Ci ∈ C, we use Algorithm 5.1.

Algorithm 5.1 Matching with the schedules of FogNets

1: for τi ∈T do
2: STi← the start time of τi

3: ETi← the end time of τi

4: Ci← new set
5: for h j ∈ H do
6: Tj← set of scheduled online time of h j

7: for tk ∈ Tj do
8: STk← the start time of tk
9: ETk← the end time of tk

10: if (STk < (STi +buffSTi))∧ (ETk > (ETi +buffETi)) then
11: add ID of h j to Ci

12: end if
13: end for
14: end for
15: end for

After applying Algorithm 5.1, we obtained a set of candidates for each Ci ∈
C. The buff times mentioned in the algorithm are the buff time for start time
(buffSTi), which is the discovery and connection time, and the buff time for the
end time (buffETi), which is the time required to complete the last data transmis-
sion before disconnection.

Here, we consider that re-connection will consume extra power. If the energy
consumption of re-connection is higher than maintaining the same connection,
then maintaining the same connection between two scheduled periods is more
preferable. In order to find out if there is any possibility to use the same FogNets
provider for two sequential ordered periods, we first need to identify the sequential
ordered candidates in C.

Let a j and b j be the representation of h j assigned in two sequential schedule
time groups. The h j will be added to the sequential schedule list—P when P =

{(a j,b j) : ∃a j ∈ Cb j
i−1}, where Cb j

i−1 denotes the previous time group of the b j’s
time group.

After P is generated, we can use the information provided by P to rank each
element—c ∈Ci. i.e. cx denotes the ID of hx. Suppose cx is one of the element in

77

Ci, to compute the ranking of cx, we use 5.1.

rank(cx) =



1+
η

∑
m=0
|{∃c ∈Ccx

i+m : c = cx}|

if has already connected.
η

∑
m=0
|{∃c ∈Ccx

i+m : c = cx}|

otherwise.

(5.1)

where η denotes the set index number where the node represented by cx is no
longer found. Ccx

i denotes the schedule time group of cx. Ccx
i+m is the next schedule

time group of Ccx
i .

The already connected FogNets device will be considered as priority. Hence,
the ranking value is added by 1.

Afterwards, in a Ci, if two or more candidate FogNets providers have same
ranking value, the connection will be retained. Otherwise, the highest ranked
node will be selected. If currently there is no connection and there are multiple
same ranked nodes, the MWoT device will randomly select one of them.

Originally, when two or more options have same ranking value, then further
ranking is made based on other context attributes. However, here we do not in-
clude the other attributes that influence the ranking of the node. The correspond-
ing scheme has been discussed in the previous work [25]. We plan to compose
them in our future work.

5.3. Summary

In this chapter, the author proposed a framework for energy-efficient mobile data
acquisition using opportunistic FogNets devices. In this environment, the inter-
organisational FogNets devices can act as gateway service providers in order
to collaboratively conserving energy usage from the mobile Internet-based data
transmission. Further, the author considers the dynamic nature of FogNets devices
in terms of their scheduled availability. Hence, the author introduced a proactive
gateway service scheduling scheme to facilitate the establishment of the collab-
oration. The scheduling scheme aims to reduce the re-connection between the
collaborative devices in order to minimise the unnecessary energy consumption
derived from re-connection processes. The proof-of-concept prototype evaluation
will be discussed in Chapter 6.4

78

6. PROTOTYPE IMPLEMENTATION AND
EVALUATION

6.1. Introduction

In the previous chapters, the author has described the proposed frameworks to
enable energy efficient MWoT service provisioning. Particularly, in Chapter 3, the
author has presented the architecture of the energy efficient, lightweight MWoT
service provisioning framework. Next, in Chapter 4, the author has described a
service-scheduling feature that addresses the challenges when processing a large
number of concurrent client requests in the constrained environment. In addition,
in Chapter 5 introduced a proactive gateway service scheduling scheme in the
opportunistic Internet sharing environment that optimises the energy consumption
of the MWoT devices.

In order to validate the approaches discussed in the previous chapters and for
proof-of-concept, the author has developed and evaluated a number of prototypes
and use cases. This Chapter presented the evaluation methods and results of our
prototypes.

6.2. Evaluation of Energy-Efficient Mobile Web of Things using
Public Fog Networking Services

6.2.1. Objective

As was discussed in Chapter 5, MWoT devices can reduce mobile Internet usage
by using network services from proximal FogNets providers. A scenario where
the MWoT device works as a data collector for an organization and utilizes other
organizations has been presented. Fog gateways in proximity upload the collected
data without using services of the mobile Internet. Further, an optimal schedule to
reduce switching between Fog gateways when there are many FogNets devices in
proximity, has also been presented. To evaluate the performance of the proposed
framework, a prototype has been implemented to conduct several test cases, which
have already been done. The following section provides details of test scenarios
and the results of performance evaluation.

6.2.2. Experimental Setup and Prototype Implementation

The evaluation has been performed using LG Sprit and G4 mobile phones run-
ning Android version 5.0.1. The FogNets provider device has embedded with
NanoHTTPd server (https://github.com/NanoHttpd). The mobile Internet
used by the devices is TELE2 4G mobile Internet connection. To measure the
energy consumption, our test bed consists of PeakTech Digital Multimeter which
provides the visualized real-time energy consumption logging of the mobile de-
vices (Figure 19). The Multimeter is coupled to the battery of the MWoT device

79

and measures the current flow and the voltage level during the experiment.

Figure 19: Testbed for the energy measurement

Case Scenario 6.2.1. Power Consumption due to Switching Wi-Fi Networks
First, we designed a test scenario to demonstrate the power consumption pat-

tern of a mobile device when it switches from one Wi-Fi network to another. Here,
the mobile device is connected to a Wi-Fi network and we obtained the power
consumption trace for 200 seconds duration. As shown in Figure 20, always con-
nected to the same Wi-Fi gateway for 200 seconds consumes about 136.45 Joules.
Next, we switched the Wi-Fi connection frequently during the same time period
and obtained the power traces accordingly. It is clearly shown that switching be-
tween Wi-Fi gateways consumes a considerable amount of energy than maintain-
ing the same connection. For example, it consumes additional 39 Joules (175.6-
136.45) when switching between five gateways instead of maintaining the same
gateway.

Case Scenario 6.2.2. Optimised FogNets provider Scheduling
This test scenario presents the experimental results of the proposed scheduling

algorithm. In the setting of this scenario, the MWoT device has been scheduled
5 periodical tasks which of each require 3 minutes sensory data uploading to the
DDAS through a FogNets provider. The scheduled start time has five time stamps
as at 4:00, 4:05, 4:10, 4:15, 4:20 and 2 minutes buffer time also allocated for both
start time and end time. In the experimental situation we have 7 FogNets providers

80

136.45

146.28

156.97

160.78

168.05

175.60

120

125

130

135

140

145

150

155

160

165

170

175

180

Always Connected Connection

Switched 1 time

Connection

Switched 2 times

Connection

Switched 3 times

Connection

Switched 4 times

Connection

Switched 5 times

Jo
u
le

s

Energy consumption (Wi-Fi)

Figure 20: Energy consumption due to switching Wi-Fi Networks

as A, B, C, D, E, F and G and the available connection period as follows: A 3.50-
4.10 and 4.30-4.50, B 4.05-4.25 and 4.45-5.05, C 3.40-4.10 and 4.15-4.45, D 3.15-
3.40 and 4.10-4.30, E 3.45-4.15, F 3.35-3.50 and 4.05-4.30, G 3.55-4.10 and 4.20-
4.40. In the first scenario the MWoT device selects the FogNets providers for each
time period randomly (without considering the scheduling algorithm) as shown in
Table 3a. In this test case we assume that the QoS of all the candidate FogNets
providers’ is similar. Next time, the MWoT device selected the best FogNets
provider based on the optimised schedule (Table 3b) that intends to minimize the
need of switching FogNets providers during the data uploading phase. During the
experiment we measured the power consumption of the MWoT device according
to the random schedule and the optimised schedule.

At the beginning, the MWoT device that uses the random schedule, does not
connect to any FogNets provider, but it keeps scanning for available providers.
Based on the random schedule shown in Table 3a, at the time stamp T1 it estab-
lished a connection with the FogNets provider-B and at the time stamp T2 the
MWoT device disconnected from the FogNets provider-B and connected to the
FogNets provider-E. Since the schedule is random, the MWoT device disconnects
and connects to available FogNets providers for three times (C –> E –> B –> C).
As shown in Figure 21, the re-connection processes cause the device to consume
more power than with maintaining a stable connection.

On the other hand, in optimised scheduling approach, the MWoT device ini-
tially connected to the FogNets provider-E at the first time stamp and maintains
the same connection until the time stamp T3. At the time stamp T3 it switches to

81

Table 3: Scheduling cases; X denotes the availability, B© denotes the buff time;
+© denotes the selected schedule.

(a) Random schedule. Switch FogNets provider three times

Time Slot A B C D E F G
T1 - 4:00-4:05 X +© X X
T2 - 4:05-4:10 B© B© B© +© B© B©
T3 - 4:10-4:15 +© B© B© X
T4 - 4:15-4:20 +© B© X X
T5 - 4:20-4:25 B© +© X X B©

(b) Optimised schedule. Switch FogNets provider one time

Time Slot A B C D E F G
T1 - 4:00-4:05 X X +© X
T2 - 4:05-4:10 B© B© B© +© B© B©
T3 - 4:10-4:15 X B© B© +©
T4 - 4:15-4:20 X B© X +©
T5 - 4:20-4:25 B© X X +© B©

the FogNets provider-F and maintain the same connection for the whole scheduled
period. Based on the optimised schedule which is shown in Table 3b the MWoT
device switched its gateway only one time. Hence, it consumes less power than
the random selection approach.

Case Scenario 6.2.3. Energy consumption of the Mobile WoT device
In this test case we monitored the average energy consumption of the mobile

devices when it is uploading data to its Distant Data Acquisition Server (DDAS)
in different ways.
Self-upload
Here, we measured the energy consumption at the MWoT device when upload-
ing data to its own DDAS over 4G mobile Internet. The dataset consists of the
items that are of size 200KB, 400KB, 600KB, 800KB and 1000KB respectively.
Measured average energy consumption to upload each item is varied (as shown in
Figure 25) from 267.9 Joules (for 200KB) to 296.7 Joules (for 1000KB).
Via a FogNets provider

In this scenario, the MWoT device uploads data to the DDAS through another
mobile device that works as a FogNets provider. To measure the energy consump-
tion of the MWoT device, we designed a test case that follows the steps mentioned
in Figure 15.

The first step is measuring the energy consumption for proximity scanning
and uploads the retrieved data to the BS over the mobile Internet. Hence, we

82

100

200

300

400

500

600

700

0 T1 T2 T3 T4 T5

m
A

Time slots

Power consumption (Scheduling cases)

Random schedule Optimised schedule

Figure 21: Power consumption (optimised schedule Vs. random schedule)

configure five FogNets provider devices (mobile phones) that advertise their man-
agement servers’ URLs as BLE advertisements. Also, we configured a BS server
on the Heroku cloud Platform and an Amazon EC2 instance as a management
server. Next, the MWoT device does the BLE scanning for 15 seconds, upload
the collected information to the BS over the mobile Internet. At the BS server, it
requested the relevant configuration information of the FogNets provider from the
management server and send the optimized schedule to the MWoT device (in this
experiment, it is just the name of the access point that associated with the FogNets
provider device and the time slot). The energy consumption of the MWoT device
for this task is varying from 29.59 Joules to 36.27 Joules due to the communica-
tion/processing delays at the servers. The second task is uploading the data to the
selected FogNets provider device over the Wi-Fi. The MWoT device search for
available Wi-Fi access points, established a session with the preferred access point
(FogNets provider), and uploads 200KB of sensor data. Total energy consump-
tion for this task is about 223.75 Joules. Figure 22 presented the energy utilisation
of the MWoT device that follows the proposed framework in different sensing
schedules in contrast to doing the solo sensing. The result has shown that when
the numbers of sensing tasks are increasing the energy efficiency of the proposed
framework also increasing.

Also, we have tested energy consumption of BLE scanning in different situa-
tions. For instance, Figure 23 shows that BLE scanning power trace of the MWoT
device that is in the environment of minimum 5, 10, and 15 devices which are ad-
vertising their URLs. The average power consumption for these three situations

83

223.7

995.3

1,929.1

2,893.7

3,858.2

223.7

1,168.5

2,311.0

3,453.5

4,596.0

267.9

1,339.4

2,678.7

4,018.1

5,357.5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Upload one time Upload 5 times Upload 10 times Upload 15 times Upload 20 times

J
o
u

le
s

Energy consumption at MWoT device

Upload data to the Fog node(optimised schedule) Upload data to the Fog node(random schedule)

Solo data upload

Figure 22: Energy utilisation of the MWoT device (doing solo sensing Vs. col-
laborative sensing)

is 219.96mA, 219.07mA, and 220.27mA respectively.

210

215

220

225

230

235

240

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

m
A

Samples

Power consumption of BLE scanning

Min 5 Devices Min 10 Devices Min 15 Devices

Figure 23: Power consumption for BLE scanning in three different environments

Apart from that, we also studied the average power consumption of the BLE
scanning in the environment that has more than 15 BLE devices and for the period
of 20, 40, and 60 seconds. As shown in Figure 24 there is a big power demand

84

at the beginning of the scanning (about 400mA) and maintain the low power con-
sumption (225mA) during the rest of time.

200

225

250

275

300

325

350

375

400

425

0 10 20 30 40 50 60

m
A

Seconds

Power consumption of BLE scanning

Scan_1 Scan_2 Scan_3

Figure 24: Power consumption of the MWoT device for BLE scanning(20, 40, 60
seconds)

213.3 215.4 220.6 225.0 228.6223.7 226.5 230.3 232.6 237.8

267.9 271.2
280.4

291.0
296.7

0

50

100

150

200

250

300

200 400 600 800 1000

J
o

u
le

s

Data (kB)

Energy consumption

Bluetooth Wi-FI Self-upload(mobile Internet)

Figure 25: Energy consumption (Solo Vs. via a FogNets provider)

Moreover, we also conducted a test with two different proximity communica-

85

tion types and analysed the average energy consumption at the MWoT device as
follows.

a) Upload the data over the Bluetooth channel
In this case, MWoT device uploads its data to the FogNets provider device
over the Bluetooth channel which is established between them. The size of
uploaded data is the same as the previous setting (200KB-1000KB) and the
results are shown in Figure 25.

b) Upload the data over the Wi-Fi channel
Here, the FogNets provider device also works as a Wi-Fi hotspot and the
MWoT device connected to the FogNets provider over the Wi-Fi link and
upload the data to the Fog node (200KB-1000KB). The FogNets provider
then forwards data to the corresponding DDAS at a later time. The average
energy consumption of each instance is also presented in Figure 25.

Case Scenario 6.2.4. Being a FogNets provider Vs. not being a FogNets
provider

In this experiment we discovered the energy expenditure at the FogNets provider
device when:

a) Uploads its own data collected from the sensors to the own DDAS
b) Also, working as a FogNets provider to upload other MWoT devices’ data

while uploading the own data
Moreover, the test was conducted with the same Sensor data set that consists of

item’s size as 200, 400, 600, 800, 1000KB. In the first instance, we assumed that
the initial data size is 200KB and the FogNets provider uploads this data to the
cloud server at regular intervals. The measured average energy expenditure for
this transaction is about 269.1 Joules. In the second instance, the MWoT device
sends the different size of data items (from 200KB to 1000KB) to the FogNets
provider device and it uploads received data together with its own data (200KB) as
one package. Figure 26 shows that the average energy consumption to upload only
the own data(not being a FogNets provider) and to receive+upload the brokering
data with own data (being a FogNets provider).

86

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

269.1 269.1 269.1 269.1 269.1 269.1 269.1

496.3 506.1 514.9 526.8 536.8 545.5
J
o

u
le

s

Data size of brokering (kB)

not being a FogNets provider being a FogNets provider

Figure 26: Comparison of energy consumption (default data size is 200 KB)

6.2.3. Discussion

We observed that direct uploading data over the mobile Internet connection is con-
suming more energy than using a FogNets provider. However, according to Figure
25, to upload 1000KB directly to the DDAS cost 296.7 Joules while uploading the
same data to the FogNets provider through the proximity communication methods
like Bluetooth and Wi-Fi, it cost only 228.6 Joules and 237.8 Joules respectively.

When a device works as a FogNets provider for other devices, we can see that
there is no big difference in energy consumption when uploading the data within
a certain limit. For instance, when the FogNets provider device is not brokering,
it consumes 269.1 Joules to upload 200KB and while being as a FogNets provider
for another 200KB from the MWoT device, it consumes only additional 227.2
Joules (496.3-269.1)(Figure 26). In summary, when comparing the energy con-
sumption of being a FogNets provider vs. not being a FogNets provider, it is clear
to see that being a FogNets provider consumes a little bit of more energy than
the solo mode because being a FogNets provider involves more processing tasks
(such as maintaining sessions, running a server, running hotspot, etc.) compared
to the case of not being a FogNets provider. Apart from that working as a FogNets
provider for the proximity devices is not a huge burden for the device.

87

6.3. Evaluation of Adaptive Mobile Web Server Framework for
Mist Computing in the Internet of Things

6.3.1. Objective

The proposed mobile-embedded Platform, as a Service (mePaaS) framework (Chap-
ter 4), enables mobile devices to provide a flexible way of sharing their computa-
tional and networking mechanisms as services. In the Mist Computing environ-
ment, the mePass framework provides a flexible program execution environment
and self-adaptive resource management in mobile devices. Further, if a mePass
node cannot perform a task by itself or if it cannot achieve the performance re-
quirement for the task execution, it is possible to distribute the work to another
mePass node as long as it generates a more efficient result.The performance of
the proposed mePass framework has been thoroughly evaluated using several test
cases. The objective of these test scenarios is to show the self-adaptive resource
management and task distribution features of the mePass node that enhance the
QoS of service provisioning in the Mist computing environment.

6.3.2. Experimental Setup and Prototype Implementation

The proof-of-concept mePaaS prototype has been implemented on an Android OS
mobile device (LG G4C). Following is the summary of the main components that
have been implemented for the prototype:

Controller, Local Service Module Manager (LSMM), Service Provisioning
and Schedule Manager:. These components are the core elements of mePaaS.
They have been implemented as one local service on Android OS.

Service modules were implemented as independent local applications. They
are managed by LSMM component in which LSMM dynamically launches them
as plugin based services for fulfilling the requests and they are automatically ter-
minated when they are no longer needed. Since the service modules are a plugin-
like software components, it is easy to extend the framework by installing more
modules (Android application package). The current version of the prototype
has seven service modules: Video, Image, GPS, Temperature, HTTP, MQTT, and
CoAP.

Program Execution Engine is an extension of the Android-ported Activity
BPM engine (http://activiti.org) derived from [44]. It can execute the program
that has been modelled as BPMN with script language support. The details and
performance testing of the process engine can be found in [44]. Although the
ported Activity BPM may not be the best option for other kind of IoT devices (e.g.
Raspberry Pi), at this stage, it is sufficient for the proof-of-concept of mePaaS.

Case Scenario 6.3.1. Self-configured service description of SDM
This test scenario evaluates the feature of dynamic changes in the SDM ac-

cording to available resources of the mePass node. First, the author has developed

88

(

several service modules and installed with the mePaaS. Initially, in the idle state,
the MWoT device is not processing any request and Local Service Module Man-
ager has published the SDM as below:
{

"@context": "http://schema.org/geo","@id": "i:locaSensor1",

"@type": "i:LocationSensor",

"name": "Current Location of the Server",

"url": "http://172.19.28.237:8765/location",

"@context": "http://schema.org/temp",

"@id":"i:tempSensor1","@type":"i:TemperatureSensor",

"name":"Current Ambient Temperature",

"url":"http://172.19.28.237:8765/temp",

"@context": "http://schema.org/image","@id": "i:camera1",

"@type": "i:ImageSensor","name": " Image Sensing Service ",

"url":"http://172.19.28.237:8765/image",

"@context": "http://schema.org/video","@id": "i:camera1",

"@type": "i:ImageSensor","name": " Video Sensing Service ",

"url":"http://172.19.28.237:8765/video",

"@context": "http://schema.org/upload","@id": "i:upload",

"@type": "i:DataUpload1","name": "Data Uploading Service",

"url":"http://172.19.28.237:8765/dataForwader"

}

Since there are no resource intensive services are currently running, mePaaS
published all service modules are available to clients. To confirm the dynamic na-
ture of the service provisioning, then send a client request to the mePaaS node, that
require a periodic video sensing task which captures a 30 second video clip in ev-
ery minute for 10 minutes duration and then uploads to a distant server. This task
requires using the camera as a hardware component and considerable amount of
mobile Internet bandwidth. Moreover, the controller coordinates with the LSMM,
Schedule Manager, and SP in order to update the SDM. In our previous prototype,
the controller just removes the other services from the SDM those also require the
camera to provide the services. However, with the information from the schedule
manager, this new prototype can reconfigure the SDM more effectively. Because
the controller provides exact time frames when the camera hardware is available
in advance, hence the LSMM can inform to the SP to reconfigure the SDM ac-
cordingly. Moreover, in our framework, the SP component temporally removed
two services from the SDM that utilised the camera hardware as shown below, to
avoid receiving another service request that also needs to access the camera at the
same time slot.
{

"@context": "http://schema.org/geo","@id": "i:locaSensor1",

"@type": "i:LocationSensor",

"name": "Current Location of the Server",

"url": "http://172.19.28.237:8765/location",

"@context": "http://schema.org/temp","@id":"i:tempSensor1",

"@type":"i:TemperatureSensor",

"name":"Current Ambient Temperature",

"url":"http://172.19.28.237:8765/temp",

89

"@context": "http://schema.org/upload","@id": "i:upload",

"@type": "i:DataUpload1","name": "Data Uploading Service",

"url":"http://172.19.28.237:8765/dataForwader"

}

However, this is only for 30 seconds and thereafter the SP component recon-
figures SDM that will make available video and image sensing until the next time
slot.

Case Scenario 6.3.2. Communication delay - Mist vs. Fog vs. Distant Data
Centre

Cloud

Data process

Internet gateway
(GW)

mePaaS host

Client

BS

BLE
Zeroconf

Sensor

Zeroconf

BLE

IP hub

Fog node

Path of Cloud Path of Fog Path of Mist
Figure 27: Experiment setup. Mist vs. Fog vs. Distant Data Centre

In this test case, the author compared the communication delay between three
paths as cloud, fog, and mist. As shown in Figure 27, the author deployed a
temperature sensor which connected to the Arduino board. The sensor advertises
ambient temperature with the current time stamp in every second via the BLE
communication protocol. In the first test case, mePaaS host collects temperature
data in the proximity, (just from the sensor via BLE) and provide to other clients
as a service. Moreover, the client requests the current temperature information
from the mePaaS host and it just forwards the temperature information, including

90

the timestamp which was recorded at the sensor node. At the client side, calculate
the average time difference between the original and received timestamp for one
thousand transactions. Secondly, the author measure the communication delay
along the fog path. In this case, since the temperature sensor uses BLE as a
local communication protocol, we need a proxy device that connects BLE to IP
network. Here, we developed a simple Bluetooth application and installed it on
a mobile phone that receives data over BLE and forwards to the IP network over
the Wi-Fi link. Thereafter, the fog node received the temperature from the proxy
device and makes it available to the clients within the local Wi-Fi network. Here,
the fog node is a laptop (HP EliteBook G3) which connected to a TP-Link (TL-
WR940N) Wi-Fi router which set up a local network. In this test case, the client
connected to the local Wi-Fi network and received the ambient temperature over
the established fog path. The author measured the average delay as same as that
mentioned earlier. Finally, in the cloud path, the temperature sensor sends data
to the proxy device, and then it moves to the cloud server over the local Wi-Fi
network. Moreover, a Heroku web app has been developed as the cloud server,
which receives temperature data from the local sensor and published as a service
to other clients. In this situation, the client connected to the cloud server via a
mobile Internet connection (TELE2 LTE connection-Estonia) with the average of
50 Mbps and 33.87 Mbps for download and upload speed respectively. As of
other test cases, the author measured the average time delay for the cloud path
also. Since the amount of data is very small please note that we neglected the
processing time at the respective node in all test cases.

According to Figure 28, the mist path provides the least delay time (97.75 ms)
for client requests while the cloud path has highest communication delay (1287.28
ms). Moreover, the fog path has the 719.08 ms delay because the sensor data travel
through the proxy device and the fog server too.

Case Scenario 6.3.3. Performance of dynamic service module execution
As mentioned earlier, since the mePaaS node launches service modules on

demand, it has performed the bootstrapping test for each implemented service
module. Moreover, the author concerned that the bootstrapping process of service
modules can influence the overall performance and also add extra cost (e.g. en-
ergy, which is important if the Mist node is running in uncharged mode). Hence,
in this test case, the author measured the latency and the energy consumption that
are caused by bootstrapping the mePaaS service modules (Figure 29).

First, the author performed performed a test to get the average boot-up time
for each module. According to Figure 29(a), MQTT and CoAP service modules
have explicit latency due to establishing the underlying protocol stack. Also, here
the HTTP server is based on AndroidAsync
(https://github.com/koush/AndroidAsync) that provide lightweight web server run-
ning on Android. However, we can see a little bit higher delay in the Temperature

91

(

97.75

719.08

1,287.28

0

200

400

600

800

1000

1200

1400

T
im

e
(m

s)

Mist Fog Cloud

Figure 28: Communication latency

sensing module. The reason is that there is no inbuilt temperature sensor; the
module should fetch the data from the proximity sensor. First, the module should
establish a BLE connection with the proximity sensor device that caused a few
milliseconds delay.

Second, the author performed a test to get the average power consumption of
modules during the bootstrapping. According to the test results (Figure 29(b)) that
measured by PeakTeck 3430 Digital Multimeter, the MQTT module consumes the
highest power (212.2mA) while CoAP and the Temperature sensing modules also
consume a reasonable amount of power during the bootstrapping.

The test results indicate the need for improving the bootstrapping process in
mePaaS, especially for reducing the bootstrapping time. As an alternative, the
author discovered that the Node.JS based framework can reduce the burden of
the bootstrapping process up to a certain level. However, most of the Android
compatible modules are still in the early stage and could not just integrate into the
current mePaaS framework.

Case Scenario 6.3.4. Performance of the process substitution
As described in the section 4.2.4 mePaaS node can use nearby nodes for pro-

cess substitution by selecting the best node for offloading the process. In this
selecting process, there are two factors that would be affected by the performance
of the offloading process.

92

106.65 108.99
96.41

131.82

76.35

223.46
212.16

0

50

100

150

200

250

T
im
e
(m
s
)

(a) Time consumption for bootstrapping

201.95 202.73

191.12

208.19

196.77

212.20

204.86

180

185

190

195

200

205

210

215

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

m
A
)

(b) Average power consumption for boot-
strapping

Figure 29: Service module bootstrapping cost and performance

First, the decision-making algorithm, which is based on comparing the per-
formance and service availability of each candidate node. When the numbers of
potential candidates are increasing, the algorithm should evaluate SDM from all
candidates that will take the longer latency in the decision making.

Second, since the decision making requires the SDM of each candidate, the
performance is also influenced by the SDM retrieval. However, this may be purely
related to the fundamental wireless network protocol speed. Since the upcoming
IEEE 802.11ax reaches 10 Gbps speed, this concern may be solved by the under-
lying hardware.

Hence, the time for the overall process can be measured based on:

T = max{T getSDM
m }+ ∑

m∈|D |
T readSDM

m +T runAlg
m (6.1)

where:
– m denotes one candidate for offloading. The environment has a set of m,

which may be denoted by M.
– T getSDM

m is the time consumed for retrieving candidate—m’s SDM asyn-
chronously.

– D is a set of retrieved SDM in local memory.
– T readSDM

m is the time consumed for reading m’s SDM in local memory.
– T runAlg

m is the time consumed for applying m in the candidate selection
algorithm.

93

Figure 30: Average time consumption for identifying offloading node

Figure 30 shows the average time consumption for identifying the best offload-
ing node from many potential candidates, which include both reading SDM and
applying the parameters from SDM to the matchmaking algorithm. It is clearly
indicating that when the numbers of candidates are increasing the latency is also
highly increasing due to reading all SDMs. However, the processing time does
not explicitly cause much latency, which indicates that today’s smartphones are
quite capable of performing computational tasks.

Case Scenario 6.3.5. Cost and performance of the process distribution
This test case evaluated the performance of the process distribution using three

cases as:
• Case 1:The Mist node owner is not using the device while the device is

performing the program from the requester that involves a video sensing
task. According to the request, the mePaaS node should record a video for
30 seconds and split it into two video files and upload to a distant server.
This case is mentioned as ’Normal’ in Figure 31.
• Case 2:In this case, the Mist node owner is using the device (e.g playing a

game) while the device is executing the program from the requester. Here,
the author performed own CPU intensive task (average CPU usage about
41%) and at the same time do the video sensing task that was requested by
the client. This case is denoted by ’In use, not offload’ in Figure 31.
• Case 3: The Mist node owner is performing the same task and due to the

lower resources (high CPU usage), the mePaaS has distributed the process

94

to another Mist node (use LG G4C smartphone). This case is mentioned as
’In use, do offload’ in Figure 31.

157.89

280.24

207.12

0

50

100

150

200

250

300

T
im

e
 (

s
)

(a) Average time consumption comparison

18.69

72.33

51.35

0

10

20

30

40

50

60

70

80

C
P
U

 u
s
a
g
e
 (

%
)

(b) Average CPU usage comparison

Figure 31: Process offloading testing results

Figure 31(a) shows the time comparison of the three cases. As the figure
shows, video sensing and uploading task consumes 157.89 seconds, which in-
cludes the time for recording, splitting a video into two files, and uploading. Here
we observed that still the Android system takes more time for video process-
ing than other alternatives such as Open-CV. Moreover, still offloading consumed
considerable amount of time as the Android Wi-Fi connection between the two
devices was not quite fast. Figure 31(b) shows the CPU consumption compari-
son among the three cases. Initially, it consumes about 18% of the CPU for the
given video sensing task. Next time, without offloading the CPU usage can go
over 72% for the both processes. Also, we observed that sometimes the Android
system kills the sensing task due to the high CPU use. However, once the mePaaS
node made a decision to offload the process to the proximity mist node, the figure
shows that the CPU usage has reduced to 51% that includes the video recording
and offloading the task to another node.

6.3.3. Discussion

The execution of a resource intensive application on the device while the mePaaS
framework operates in the background has helped evaluate the self-configured ser-
vice provisioning scheme Since the resource intensive application has made the
hardware resource required for certain service modules insufficient, Service Pro-
visioning has reconfigured the Service Description Metadata automatically. Con-
sidering the process substitution performance, the result has shown that when the
number of candidates increased, more SDMs need to be processed and hence the
latency increases. mePass nodes are capable of distributing a process to another
Mist node when it cannot perform a task by itself. As Figure 28 shows, offloading

95

a process to another node when required enhances the performance of the service
provisioning instead of performing all tasks on the device itself.For instance, of-
floading a task to another node reduces the CPU load from 72% to 51% and the
time to complete the process also gets reduced from 280 seconds to 207 seconds.

6.4. Evaluation of Lightweight Mobile Web Service
Provisioning for the Internet of Things Mediation

6.4.1. Objective

Chapter 3 presents an energy efficient, lightweight Mobile Web Service provi-
sioning framework that utilizes technologies designed to constraint the Internet of
Things environment. The framework attempts to overcome resource-intensive is-
sues in the mobile embedded service provisioning domain; such as limited mem-
ory, processing power, a quick drain of the battery, etc. The following section
provides details of the prototype implementation and testing scenarios. In addi-
tion, during the implementation and testing, RESTful architecture and lightweight
protocols were used to ensure less complexity while assuring energy efficiency of
the framework. The evaluation results have shown that the proposed lightweight
MWS framework can provide a more cost-efficient MWS provisioning solution
as against past traditional MWS frameworks.

6.4.2. Experimental Setup and Prototype Implementation

MWoT server
The MWoT server was implemented on Google/LG Nexus 5 running Android

version 5.0.1. The implementation is basically adapted from the JCoAP1 that
provides a Java API for the CoAP. In addition, MWoT server has also been tested
on Raspberry Pi B+ and Nexus 9 tablets.

For the external sensory data collection, the author implemented Arduino based
temperature sensor module which senses the ambient temperature and sends the
data to the MWoT server over the BLE connection. The Arduino setup includes
the MEGA ADK board (microcontroller board based on the ATmega2560), LM35
temperature sensor and the RedBear BLE Shield (based on the Nordic nRF8001
Bluetooth Low Energy IC). The author implemented the Bluetooth communica-
tion at the Raspberry Pi with the LogiLink CSR Bluetooth v4.0 dongle, BlueZ
5.29 and Node.js.

To start an instance of the Web server, The MWoT server needs to instantiate a
new CoAP local endpoint to start providing services. In the implementation, the
author defined four types of resources:

• TmpResource - provides the current room temperature,

1 https://github.com/dapaulid/JCoAP

96

h

• LocationResource - provides current location details (GPS) details of the
MWoT server,
• AltitudeResource - provides current altitude information, and
• LightResource - provides the ambient light of the environment
At the present implementation, these resources are only designed to perform

the GET method which is called by the clients to get services from the MWoT
server.
EXI data process
The author used ExiProcessor2 the open source Java-based library that encodes
text-XML files into binary EXI and decodes EXI files back to XML. The current
prototype uses pre-compressed EXI files because the current Android OS SDK
does not support a number of required API libraries for ExiProcessor. For the
testing, the author managed to implement ExiProcessor on the Raspberry Pi with
the 3G dongle for the mobile Internet connectivity.
Local and global service discovery
Clients within the proximity can discover the MWoT server from the IP described
by the BLE advertisement without establishing Bluetooth pairing connection with
the MWoT server. For the global discovery, the DNS server was simulated in a
regular laptop computer.

Case Scenario 6.4.1. Throughput comparison

Figure 32: Throughput of MWS

Figure 32 illustrates the throughput comparison between the conventional HTTP-
based MWS framework and the proposed lightweight MWS framework. The pro-
posed framework can maintain the 100% success rate up to 140 coinciding re-

2 http://sourceforge.net/p/exiprocessor/home/Home/

97

h

quests per second and at least maintains 95% success rate up to 160 coinciding
requests per second in the Wi-Fi network. Furthermore, the author observed that
improved performance in the 4G network because of the inconsistent packet delay
than the Wi-Fi network. On the other hand, the conventional mobile Web server
showed that it could only handle up to 70 simultaneous requests per second in the
Wi-Fi network and 130 simultaneous requests per second in the 4G network with
the throughput of 95%. Moreover, we can see the throughput of the conventional
MWS dropped drastically after reaching its maximum capability.

Case Scenario 6.4.2. CPU usage comparison

Figure 33: CPU load of MWS

In order to record the CPU usage while the MWoT server is providing services,
the author utilised the Android Device Monitor that displays the CPU Load for the
top applications running on the mobile device. As Figure 33 shows, the average
CPU load is below 5% in the CoAP based server implementation. Conversely,
in HTTP-based MWoT server implementation, it is around 11.75% for 100 si-
multaneous client requests per second. When the numbers of client requests are
increasing (around 110/Sec), the HTTP-based MWoT server application crashed
because it is CPU intensive. On the other hand, CoAP-based MWoT server can ac-
commodate even a higher load from clients. Another interesting factor the author
observed is that the kernel CPU loads of both applications. In the HTTP-based
MWoT server, kernel CPU load is at a very high level while comparing with the
CoAP-based MWoT server, which is as little as about 1%.

Case Scenario 6.4.3. Energy consumption comparison

98

(a) 20 client requests (b) 40 client requests

(c) 60 client requests (d) 80 client requests

Figure 34: Comparison of energy consumption (CoAP vs HTTP)

To measure the energy consumption, the author monitored total energy con-
sumption of the device when the MWoT server is running under the different
loads. During the test, the Web server serves 20, 40, 60 and 80 clients per second
with the size of the payload from 100 bytes to 1000 bytes. Our test bed consists
of PeakTech R© Digital Multimeter which provides the visualised real-time energy
consumption logging of the mobile devices. The Multimeter coupled to the bat-
tery of the phone and measures the current flow and the voltage level during the
experiment. As shown in Figure 34, the CoAP server consumes less energy than
the HTTP server. With 20 concurrent client requests, the average energy con-
sumption is increased according to the size of the payload for both protocols as
expected (Figure 34 Chart (a)). However, the author noticed that decrement of
power consumption of the HTTP server at higher payloads (800 bytes & upwards).
For instance, as shown in Figure 34. Chart (c), with 60 concurrent client requests,
HTTP and CoAP consume 65.78 J and 52.61 J for 800 bytes respectively. Con-
sequently, when the payload increases, the energy consumption increases accord-
ingly in the CoAP server, but slightly decreases in the HTTP server. Furthermore,
we can see that HTTP consumes less energy than CoAP when the payload is 1000
bytes. The reason that the author observed is many sessions have been dropped

99

at this point due to the limitations of the HTTP server which caused the drop in
energy consumption.

Case Scenario 6.4.4. Using a Raspberry Pi over the mobile phone
After observing the high performance of the proposed CoAP based MWoT

server, the author designed a test case to investigate the performance of a mobile
phone and a Raspberry Pi model B+. The author wanted to explore the feasibility
of using a Raspberry Pi over the mobile phone in the MWoT service provision.

First, the author installed the CoAP Web server on the Raspberry Pi model B+
and used a 4G dongle to connect to the Internet. The author measured the energy
consumption of the device in the idle state and when the server is running under
a different number of client requests and payloads. The same setup is applied for
the mobile phone and record the measurements as explained in the previous case
study with help from the PeakTech Digital Multimeter.

According to the result (shown in Figure 35), the mobile phone consumes less
energy than the Raspberry Pi (RPi). With 20 concurrent client request (Figure 35.
Chart (a)), energy consumption of the phone varies in a large range according to
the size of the payload (from 12 J to 45.5 J). However, RPi behaves differently
because it consumes from 50 J to 60.9 J for the same amounts of payloads. There
is a limitation the author observed that it could not increase the size of the payload
along with the number of client requests due to the large number of packets lost
at the RPi. For instance, when using the RPi server, there were a large number of
packet losses on the client device when the payload beyond the 500 bytes and the
energy consumption also decreased accordingly. Moreover, the author only able to
measure the energy consumption at the RPi up to the payload of 500 bytes during
the rest of the experiment. The overall result shows that at the RPi, the size of
the payload is not that much affected to the average energy consumption because
there is no big variance in consumed energy against the size of the payload (Figure
35. Chart (a) & (b)).

(a) 20 client requests (b) 60 client requests

Figure 35: Comparison of energy consumption (Phone vs Raspberry Pi)

100

Case Scenario 6.4.5. Performance of Global Sensing Service Scheduler

Figure 36: Comparison of energy consumption

In this experiment, the author added Global Sensing Service Scheduler into
MWoT server. Then measured the energy consumption for a different number of
coinciding client requests that are asking the list of temperatures in five buildings
for the last six hours. The size of the payload of the reply message is around
800kb. With the Sensing Service Scheduler, MWoT server does not have to send
a reply with the same data for all the clients, instead of after sending the response
for the first request, it copies the data to a cloud instance and replies with the URL
of the server which has the data to the subsequent requests. According to the result
shown in Figure 36, the Sensing Service Scheduler keeps minimising the energy
consumption by handling multiple service requests for the same resource. More
details of experiments conducted with the Global Sensing Service Scheduler can
be found in the work at [26].

6.4.3. Discussion

Several test cases to investigate the performance of the proposed lightweight Web
service provisioning framework were designed. The first test case compares the
throughput of the framework against the traditional HTTP based mobile Web
server. The results shown in figure 29, reveal that the proposed framework can
maintain 100% success rate up to 140 coinciding requests per second while the

101

traditional framework can only handle about 70 concurrent requests per second.
In addition, other performance evaluation results (Server CPU, Energy consump-
tion, etc.) have shown that the proposed lightweight MWS framework can provide
a more cost-efficient MWS provisioning solution as against past traditional MWS
frameworks.

6.5. Summary

In this chapter, the author has presented details of the implemented prototypes and
the evaluation results of the proposed frameworks.

In the first section, the author has shown that the optimised scheduling strat-
egy can save energy for the collaborative IoT devices. The framework has been
deployed on LG Sprit mobile phones running Android version 5.0.1., and the
FogNets provider device has embedded with NanoHTTPd server. Then the author
has designed a test case to evaluate the performance of the proposed scheduling
algorithm. The results have shown that the optimised scheduling approach could
increase the energy efficiency of the MWoT device. Moreover, it also has been
demonstrated that that participating in the collaboration will not drain much extra
energy from IoT devices that have been used as FogNets provider.

The second section presented the details of the prototype that the author has
designed and implemented for the mePaaS framework on an Android OS mobile
device (LG G4C). The author also described how the main components work to-
gether and how the Self-configured Service Description feature could change the
SDM. After that, it has shown that an experiment to compare the communication
delay between three paths as cloud, fog, and mist and confirms that the Mist nodes
has the lowest communication delay. Moreover, the performance of the process
distribution has shown that offloading a task to a nearby mePass node provide
better performance than not offloading when processing a burdensome task.

The last section describes the implementation details of the proposed lightweight
MWoT service provisioning framework on the mobile device. Then the author has
presented the performance evaluation test cases that designed to compare the con-
sumption of energy and the computational resources of the proposed framework
over the traditional frameworks. The evaluation results have shown that the pro-
posed lightweight MWoT framework can provide a more cost efficient MWoT
service provisioning solution than the past conventional frameworks.

102

7. CONCLUSION AND FUTURE RESEARCH
DIRECTION

7.1. Research Contributions

Contemporary smartphones are rapidly becoming ubiquitous because of the in-
tegrated embedded hardware and software sensor components and mobile net-
work technologies. In addition, smartphones can perform as mobile sensing ser-
vice gateways that exploit established communication techniques to interact with
sensors and actuators in proximity, and provide real-time spatial information to
remote servers or directly to clients via embedded mobile device-hosted web ser-
vices. Given the capabilities of contemporary mobile devices, the author proposed
using mobile devices as MIoT devices and, to overcome the interoperability is-
sues across the heterogeneous platforms and applications, to use the W3C WoT
standard. This standard enables seamless communication over standard web tech-
nologies and increases the sustainability of MIoT deployment. To differentiate
from the general MIoT, in this thesis, the author termed the WoT-driven MIoT
devices as MWoT devices.

To realise the MWoT architecture, this thesis proposed an energy-efficient,
lightweight MWoT service provisioning framework in Chapter 3. The proposed
framework addresses the underlying challenges of the constrained nature of avail-
able resources on MWoT devices. In this chapter, the author investigated how
lightweight protocols can be integrated into MWoT devices. Using lightweight
protocols, MWoT devices can provide the highest quality services, while over-
coming the fundamental issues caused by constrained resources. For example, the
author proposed using BLE as local service discovery, and collecting data from
the sensors in close proximity. Moreover, instead of traditional HTTP, the au-
thor introduced CoAP as the application layer protocol, and reduced the message
payload by using the EXI format.

However, when processing a large number of concurrent client requests, con-
flicts will occur between the services because the devices have limited sensing
components and may be unable to operate concurrently. Moreover, some clients
may seek periodical data and some may request real-time data. To overcome those
limitations and provide the services in a timely manner, the author also introduced
a service scheduling feature that addresses the discussed challenges to provide un-
interrupted service. Moreover, the service scheduler manager provides a schedule
for the MWoT devices that can provide services based on available time and re-
sources.

Although the service scheduler manager provides a suitable approach to han-
dle the conflict between services, it is insufficient when the MWoT device is
served with a large amount of data. For instance, if one client requests a resource-
extensive service task—such as a video-sensing service that consumes significant
processing power and bandwidth—while another client simultaneously requests

103

an image-processing service that is also a resource-extensive task, the whole sys-
tem may become unstable and most services will be unavailable. In this situation,
the system will face a lack of resources, and even the service scheduler manager
cannot handle this issue.

To address this type of resource constraint issue, in Chapter 4, the author pro-
posed a framework, called mePaaS, that can execute customised computational
processes defined by their requesters, and use resources from the available nearby
devices. The proposed framework uses a plugin module-based approach that op-
timises the usage of native computational and networking components when han-
dling the complex type of services. The feature introduced here is defined as a
self-configured service description that dynamically updates the SDM based on
the availability of resources. Initially, if there are no resource-intensive services
running, the mePaaS node publishes all available services with the SDM. Follow-
ing this, the controller communicates with the service availability controller that
is continuously communicating with the resource state monitoring component to
attain the latest state of the resource usage of the service components. There-
after, the service provisioning component publishes the latest available services
in the SDM, based on the availability of resources. In addition, a mist node can
form a grid-computing group centred by itself with other mist nodes because the
SDM also describes the resource availability of a mist node. With this feature,
when there is a situation such as a mePaaS node being unable to perform a re-
quested task because of lack of its own resources, it can distribute the task among
other mist nodes in proximity. Moreover, the author introduced a work distribu-
tion scheme that will enable one mePaaS node to offload a task to other mePaaS
nodes.

In the context in which the MWoT device works as a service gateway for other
IoT devices, the type of communication channels also seriously affects the en-
ergy conservation of the device. For example, it is more energy intensive to use
mobile Internet-based data transmission to upload the collected data than using
a Wi-Fi connection. Moreover, when the number of times in which the com-
munication sessions are increased, the amount of the consumed energy increases
accordingly. To address energy-related issues when the MWoT device is operating
as a service gateway, the author introduced a proactive gateway service schedul-
ing scheme that shares the Internet opportunistically. The proposed framework
enables the MWoT device to discover the proximity using low-powered service
discovery, such as BLE, while collecting data from the sensors in proximity. In
the meantime, the MWoT device can discover the potential FogNets providers.
After the initial setup, the MWoT device can use the low-powered communica-
tion channel to upload data via the selected FogNets. Due to various reasons, the
selected FogNets providers may not be available continuously, and MWoT device
may require changing the gateway accordingly. The proposed framework aims to
optimise the FogNets connection schedule by using the same FogNets provider
for subsequent data uploading periods that reduces the extra energy consumption

104

derived from the switching FogNets providers. Moreover, this research indicated
that a FogNets provider device does not consume much more power when upload-
ing data within a certain limit.

7.2. Future Research Directions

• Service provisioning/discovery
In Chapter 3, the MWoT system utilises standard web service publishing
mechanisms such as publishing its service description metadata to a global
service registry and a remote client can discover the MWoT server by re-
questing the service registry and, using a BLE advertisement for the local
service discovery. However, the proposed protocols have some limitations
such as relying on a centralised system, delays in the service discovery, lot
more data in the service description, etc. One of the possible solutions will
be a distributed approach to service publishing, including a mesh network-
ing solution that can improve service discovery and visibility.
• Server-less architecture for energy efficiency

Recently, the Function as a Service [55] defined a very lightweight sys-
tem, combined with server-less architecture. Instead of running a complete
server on a mobile device, it might be possible to merge the MWoT ser-
vice provisioning framework with the server-less architecture that is mainly
focused on individual functions. Future designers can use this approach
to minimise the energy consumption of the MWoT service provisioning
framework.
• Quality of Experience (QoE)

In the proactive FogNets scheduling scheme proposed in Chapter 5, it as-
sumes that the QoS of the available FogNets providers is the same. How-
ever, in reality, the QoE attributes of those FogNets providers maybe not
the same. For example, when considering a FogNets provider with more
connected client nodes with limited bandwidth may be not performing well
compared to another FogNets provider that has a high bandwidth and less
number of connected client nodes. Consequently, another potential future
work is to apply the QoE attributes such as the bandwidth, the number of
connected nodes, queue length, etc. to the process of the scheduling algo-
rithm to enhance the selection procedure.
• Security and Privacy

Currently, we did not consider security and privacy issues in mobile Web
service provisioning. However, it will be of great interest to add confiden-
tiality and security levels to the current framework. In particular, the privacy
of data, such as healthcare data, the ability to detect malicious packets or
activities and ignore them, can be considered to enhance the security of
service provisioning.

105

• Formal methods/mathematical proofs for the framework
In this thesis, only the experimental proofs have been applied to evaluate
the proposed frameworks. However, for future developers, it will be in-
teresting to apply a mathematical model to confirm the energy efficiency
of the MWoT service provisioning framework. There are numerous ap-
proaches such as eDiscovery [64], an energy efficient adaptive device dis-
covery protocol, deep Q-learning model [4], which enhance the efficiency
in computation offloading, a deep-learning-based response-time-prediction
framework [5] etc. These works can be a starting point for formal proofs
that can be applied for the future design of MWoT framework.

106

BIBLIOGRAPHY

[1] Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway
based communication for cloud of things. In Future Internet of Things and
Cloud (FiCloud), 2014 International Conference on, pages 464–470. IEEE,
2014.

[2] Bilal Afzal, Sheeraz A Alvi, Ghalib A Shah, and Waqar Mahmood. En-
ergy efficient context aware traffic scheduling for iot applications. Ad Hoc
Networks, 62:101–115, 2017.

[3] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aled-
hari, and Moussa Ayyash. Internet of things: A survey on enabling tech-
nologies, protocols, and applications. Communications Surveys & Tutori-
als, IEEE, 17(4):2347–2376, 2015.

[4] Md Golam Rabiul Alam, Mohammad Mehedi Hassan, Md ZIa Uddin, Ah-
mad Almogren, and Giancarlo Fortino. Autonomic computation offloading
in mobile edge for iot applications. Future Generation Computer Systems,
90:149–157, 2019.

[5] Abdulhameed Alelaiwi. An efficient method of computation offloading in
an edge cloud platform. Journal of Parallel and Distributed Computing,
2019.

[6] Mushtaq Ali, Mohamad Fadli Zolkipli, Jasni Mohamad Zain, and Shahid
Anwar. Mobile cloud computing with soap and rest web services. In Jour-
nal of Physics: Conference Series, volume 1018, page 012005. IOP Pub-
lishing, 2018.

[7] Feda AlShahwan and Maha Faisal. Mobile cloud computing for providing
complex mobile web services. In Mobile Cloud Computing, Services, and
Engineering (MobileCloud), 2014 2nd IEEE International Conference on,
pages 77–84. IEEE, 2014.

[8] Feda AlShahwan and Klaus Moessner. Providing soap web services and
restful web services from mobile hosts. In Internet and Web Applications
and Services (ICIW), 2010 Fifth International Conference on, pages 174–
179. IEEE, 2010.

[9] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Pas-
sarella. Energy conservation in wireless sensor networks: A survey. Ad
Hoc Networks, 7(3):537–568, 2009.

[10] Soumya Kanti Datta Arne Broring. Web of things - technology landscape.
https://w3c.github.io/wot/landscape.html, 03 2018. (Accessed
on 05/25/2018).

[11] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:
A survey. Computer networks, 54(15):2787–2805, 2010.

107

https://w3c.github.io/wot/landscape.html

[12] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkatara-
mani. Energy Consumption in Mobile Phones: A Measurement Study and
Implications for Network Applications. In the 9th ACM SIGCOMM Con-
ference on Internet Measurement Conference, pages 280–293. ACM, 2009.

[13] Andrew Banks and Rahul Gupta. Mqtt version 3.1.1. http://docs.

oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html,
2014. (Accessed on 06/28/2018).

[14] Akram Bayat, Marc Pomplun, and Duc A Tran. A study on human ac-
tivity recognition using accelerometer data from smartphones. Procedia
Computer Science, 34:450–457, 2014.

[15] Stefan Berger, Scott McFaddin, Chandrasekhar Narayanaswami, and Man-
dayam Raghunath. Web services on mobile devices-implementation and
experience. In Mobile Computing Systems and Applications, 2003. Pro-
ceedings. Fifth IEEE Workshop on, pages 100–109. IEEE, 2003.

[16] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific american, 284(5):34–43, 2001.

[17] Igor Bisio, Fabio Lavagetto, Mario Marchese, and Andrea Sciarrone.
Smartphone-centric ambient assisted living platform for patients suffer-
ing from co-morbidities monitoring. IEEE Communications Magazine,
53(1):34–41, 2015.

[18] Michael Blackstock and Rodger Lea. Toward interoperability in a web
of things. In Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing adjunct publication, pages 1565–1574. ACM, 2013.

[19] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pages 13–16.
ACM, 2012.

[20] Joseph Bradley, Joel Barbier, and Doug Handler. Embracing the Internet
of everything to capture your share of $14.4 trillion. White Paper, Cisco,
2013.

[21] Niels Brouwers and Koen Langendoen. Pogo, a middleware for mobile
phone sensing. In Proceedings of the 13th International Middleware Con-
ference, pages 21–40. Springer-Verlag New York, Inc., 2012.

[22] Angelo P Castellani, Mattia Gheda, Nicola Bui, Michele Rossi, and
Michele Zorzi. Web Services for the Internet of Things through CoAP
and EXI. In Communications Workshops (ICC), 2011 IEEE International
Conference on, pages 1–6. IEEE, 2011.

[23] Chii Chang, Sea Ling, and Shonali Krishnaswamy. Promws: Proactive mo-
bile web service provision using context-awareness. In Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), 2011 IEEE
International Conference on, pages 69–74. IEEE, 2011.

108

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[24] Chii Chang, Sea Ling, and Satish Srirama. Trustworthy service discovery
for mobile social network in proximity. In PerCom ’14 Workshops, pages
478–483. IEEE, 2014.

[25] Chii Chang, S.W. Loke, Hai Dong, F. Salim, S.N. Srirama, M. Liyanage,
and Sea Ling. An energy-efficient inter-organizational wireless sensor data
collection framework. In Proceedings of the 2015 IEEE International Con-
ference on Web Services (ICWS), pages 639–646, June 2015.

[26] Chii Chang, S. N. Srirama, and Mohan Liyanage. A Service-Oriented Mo-
bile Cloud Middleware Framework for Provisioning Mobile Sensing as a
Service. In Parallel and Distributed Systems (ICPADS 2015) , 21st IEEE
International Conference on. IEEE, 2015.

[27] Chii Chang, S N Srirama, and J Mass. A Middleware for Discovering
Proximity-Based Service-Oriented Industrial Internet of Things. In Pro-
ceedings of the 2015 IEEE International Conference on Services Comput-
ing (SCC), pages 130–137, jun 2015.

[28] Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya. Indie fog: An
efficient fog-computing infrastructure for the internet of things. Computer,
50(9):92–98, 2017.

[29] Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya. Mobile cloud
business process management system for the internet of things: a survey.
ACM Computing Surveys (CSUR), 49(4):70, 2017.

[30] Chii Chang, Satish Narayana Srirama, and Sea Ling. An adaptive medi-
ation framework for mobile p2p social content sharing. In International
Conference on Service-Oriented Computing, pages 374–388. Springer,
2012.

[31] Chii Chang, Satish Narayana Srirama, and Sea Ling. SPiCa: a social pri-
vate cloud computing application framework. In Proceedings of the 13th
International Conference on Mobile and Ubiquitous Multimedia, pages 30–
39. ACM, 2014.

[32] Chii Chang, Satish Narayana Srirama, and Sea Ling. Mobile social net-
work in proximity: taxonomy, approaches and open challenges. Interna-
tional Journal of Pervasive Computing and Communications, 11(1):77–
101, 2015.

[33] Hongju Cheng, Ronglie Guo, Zhihuang Su, Naixue Xiong, and Wenzhong
Guo. Service-oriented node scheduling schemes with energy efficiency
in wireless sensor networks. International Journal of Distributed Sensor
Networks, 2014.

[34] Hongju Cheng, Zhihuang Su, Naixue Xiong, and Yang Xiao. Energy-
efficient node scheduling algorithms for wireless sensor networks using
markov random field model. Information Sciences, 329:461–477, 2016.

109

[35] Mung Chiang. Fog networking: An overview on research opportunities.
arXiv preprint arXiv:1601.00835, 2016.

[36] John Chon and Hojung Cha. Lifemap: A smartphone-based con-
text provider for location-based services. IEEE Pervasive Computing,
10(2):58–67, 2011.

[37] Carmela Comito, Deborah Falcone, Domenico Talia, and Paolo Trunfio.
Energy-aware task allocation for small devices in wireless networks. Con-
currency and Computation: Practice and Experience, 29(1), 2017.

[38] World Wide Web Consortium et al. Json-ld 1.0: a json-based serialization
for linked data. W3C Recommendation, 2014.

[39] Marco Conti, Chiara Boldrini, Salil S. Kanhere, Enzo Mingozzi, Elena Pa-
gani, Pedro M. Ruiz, and Mohamed Younis. From MANET to people-
centric networking: Milestones and open research challenges. Computer
Communications, 71:1–21, 2015.

[40] Marco Conti, Sajal K Das, Chatschik Bisdikian, Mohan Kumar, Lionel M
Ni, Andrea Passarella, George Roussos, Gerhard Tröster, Gene Tsudik, and
Franco Zambonelli. Looking ahead in pervasive computing: Challenges
and opportunities in the era of cyber–physical convergence. Pervasive and
Mobile Computing, 8(1):2–21, 2012.

[41] Luis Corral, Anton B Georgiev, Alberto Sillitti, and Giancarlo Succi. A
method for characterizing energy consumption in android smartphones. In
Proceedings of the 2nd International Workshop on Green and Sustainable
Software, pages 38–45. IEEE Press, 2013.

[42] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Ste-
fan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making smart-
phones last longer with code offload. In Proceedings of the 8th interna-
tional conference on Mobile systems, applications, and services, pages 49–
62. ACM, 2010.

[43] Tej Tharang Dandala, Vallidevi Krishnamurthy, and Rajan Alwan. Internet
of vehicles (iov) for traffic management. In 2017 International Conference
on Computer, Communication and Signal Processing (ICCCSP), pages 1–
4. IEEE, 2017.

[44] Kashif Dar, Amir Taherkordi, Harun Baraki, Frank Eliassen, and Kurt
Geihs. A resource oriented integration architecture for the Internet of
Things: A business process perspective. Pervasive and Mobile Comput-
ing, 20:145–159, 2015.

[45] Joseph DeCuir. Introducing bluetooth smart: Part 1: A look at both classic
and new technologies. IEEE Consumer Electronics Magazine, 3(1):12–18,
2014.

[46] Pratikkumar Desai, Amit Sheth, and Pramod Anantharam. Semantic gate-
way as a service architecture for iot interoperability. In Mobile Services

110

(MS), 2015 IEEE International Conference on, pages 313–319. IEEE,
IEEE Press, 2015.

[47] Charalampos Doukas, Luca Capra, Fabio Antonelli, Erinda Jaupaj, An-
drei Tamilin, and Iacopo Carreras. Providing generic support for iot and
m2m for mobile devices. In Computing & Communication Technologies-
Research, Innovation, and Vision for the Future (RIVF), 2015 IEEE RIVF
International Conference on, pages 192–197. IEEE, 2015.

[48] Adam Dunkels. Full tcp/ip for 8-bit architectures. In Proceedings of the
1st international conference on Mobile systems, applications and services,
pages 85–98. ACM, 2003.

[49] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight
and flexible operating system for tiny networked sensors. In Local Com-
puter Networks, 2004. 29th Annual IEEE International Conference on,
pages 455–462. IEEE, 2004.

[50] Robert Elfwing, Ulf Paulsson, and Lars Lundberg. Performance of SOAP
in Web Service environment compared to CORBA. In Software Engineer-
ing Conference, 2002. Ninth Asia-Pacific, pages 84–93. IEEE, 2002.

[51] Sinem Coleri Ergen and Pravin Varaiya. Tdma scheduling algorithms for
wireless sensor networks. Wireless Networks, 16(4):985–997, 2010.

[52] Dave Evans. The internet of things: How the next evolution of the internet
is changing everything. CISCO white paper, 1:14, 2011.

[53] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Honeybee: A
programming framework for mobile crowd computing. In International
Conference on Mobile and Ubiquitous Systems: Computing, Networking,
and Services, pages 224–236. Springer, 2012.

[54] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, Irvine, 2000.

[55] Geoffrey C Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Status of serverless computing and function-as-a-service (faas)
in industry and research. arXiv preprint arXiv:1708.08028, 2017.

[56] Guido Gehlen and Linh Pham. Mobile web services for peer-to-peer appli-
cations. In Consumer Communications and Networking Conference, 2005.
CCNC. 2005 Second IEEE, pages 427–433. IEEE, 2005.

[57] Tuan Nguyen Gia, Imed Ben Dhaou, Mai Ali, Amir M Rahmani, Tomi
Westerlund, Pasi Liljeberg, and Hannu Tenhunen. Energy efficient fog-
assisted iot system for monitoring diabetic patients with cardiovascular dis-
ease. Future Generation Computer Systems, 93:198–211, 2019.

[58] Tuan Nguyen Gia, Mingzhe Jiang, Amir-Mohammad Rahmani, Tomi
Westerlund, Pasi Liljeberg, and Hannu Tenhunen. Fog computing in health-
care internet of things: A case study on ecg feature extraction. In Com-
puter and Information Technology; Ubiquitous Computing and Communi-

111

cations; Dependable, Autonomic and Secure Computing; Pervasive Intel-
ligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE Interna-
tional Conference on, pages 356–363. IEEE, 2015.

[59] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evalua-
tion of bluetooth low energy: An emerging low-power wireless technology.
Sensors, 12(9):11734–11753, 2012.

[60] Dominique Guinard. A web of things application architecture: Integrating
the real-world into the web. PhD thesis, ETH Zurich, 2011.

[61] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and
Domnic Savio. Interacting with the soa-based internet of things: Discov-
ery, query, selection, and on-demand provisioning of web services. IEEE
transactions on Services Computing, 3:223–235, 2010.

[62] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde.
From the internet of things to the web of things: Resource-oriented ar-
chitecture and best practices. In Architecting the Internet of things, pages
97–129. Springer, 2011.

[63] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented ar-
chitecture for the web of things. In Internet of Things (IOT), 2010, pages
1–8. IEEE, 2010.

[64] Bo Han, Jian Li, and Aravind Srinivasan. On the energy efficiency of device
discovery in mobile opportunistic networks: A systematic approach. IEEE
Transactions on Mobile Computing, 14(4):786–799, 2015.

[65] Dae-Man Han and Jae-Hyun Lim. Design and implementation of smart
home energy management systems based on zigbee. IEEE Transactions on
Consumer Electronics, 56(3), 2010.

[66] W R Heinzelman, A Chandrakasan, and H Balakrishnan. Energy-efficient
communication protocol for wireless microsensor networks. In System Sci-
ences, 2000. Proceedings of the 33rd Annual Hawaii International Confer-
ence on, pages 10 pp. vol.2–. IEEE Press, 2000.

[67] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors.
ACM SIGOPS operating systems review, 34(5):93–104, 2000.

[68] Jonathan W Hui and David E Culler. Extending ip to low-power, wireless
personal area networks. IEEE Internet Computing, 12(4), 2008.

[69] IEEE. Ieee sa - fog - fog computing and networking architecture frame-
work. https://standards.ieee.org/develop/wg/FOG.html, 2008.
(Accessed on 05/25/2018).

[70] ITU-T. Y.2069. terms and definitions for the internet of things. http://

www.itu.int/rec/T-REC-Y.2069-201207-I/en, July 2012. (Accessed
on 05/23/2018).

112

https://standards.ieee.org/develop/wg/FOG.html
http://www.itu.int/rec/T-REC-Y.2069-201207-I/en
http://www.itu.int/rec/T-REC-Y.2069-201207-I/en

[71] Marc Jansen, O Hordt, and Jelena Milatovic. About the development of
scenarios for mobile Web Service provisioning. In Computer and Infor-
mation Technology (WCCIT), 2013 World Congress on, pages 1–6. IEEE,
2013.

[72] Yaser Jararweh, Ahmad Doulat, Omar AlQudah, Ejaz Ahmed, Mahmoud
Al-Ayyoub, and Elhadj Benkhelifa. The future of mobile cloud computing:
integrating cloudlets and mobile edge computing. In Telecommunications
(ICT), 2016 23rd International Conference on, pages 1–5. IEEE, 2016.

[73] Schneider John, Kamiya Takuki, Peintner Daniel, and Kyusakov Rumen.
Efficient xml interchange (exi) format 1.0 (second edition). https://www.
w3.org/TR/2014/REC-exi-20140211/, February 2014. (Accessed on
07/04/2018).

[74] Antero Juntunen, Sakari Luukkainen, and Virpi Kristiina Tuunainen. De-
ploying nfc technology for mobile ticketing services–identification of crit-
ical business model issues. In Mobile Business and 2010 Ninth Global
Mobility Roundtable (ICMB-GMR), 2010 Ninth International Conference
on, pages 82–90. IEEE, 2010.

[75] Omprakash Kaiwartya, Abdul Hanan Abdullah, Yue Cao, Ayman Al-
tameem, Mukesh Prasad, Chin-Teng Lin, and Xiulei Liu. Internet of ve-
hicles: Motivation, layered architecture, network model, challenges, and
future aspects. IEEE Access, 4:5356–5373, 2016.

[76] Stephan Karpischek, Florian Michahelles, Florian Resatsch, and Elgar
Fleisch. Mobile sales assistant-an nfc-based product information system
for retailers. In Near Field Communication, 2009. NFC’09. First Interna-
tional Workshop on, pages 20–23. IEEE, 2009.

[77] Johannes Hund Kazuo Kajimoto, Ryuichi Matsukura. Web of things
(wot) architecture. https://w3c.github.io/wotwg/architecture/

wot-architecture.html, February 2018. (Accessed on 05/25/2018).
[78] Il Kon Kim and Joon Hyun Song. Mobile Health reference architectures. In

Information Society (i-Society), 2013 International Conference on, pages
158–164. IEEE, 2013.

[79] Jong-Myoung Kim, Seon-Ho Park, Young-Ju Han, and Tai-Myoung
Chung. CHEF: cluster head election mechanism using fuzzy logic in
wireless sensor networks. In Advanced communication technology, 2008.
ICACT 2008. 10th international conference on, volume 1, pages 654–659.
IEEE, IEEE Press, 2008.

[80] Yeon-Seok Kim and Kyong-Ho Lee. A lightweight framework for mobile
web services. Computer Science-Research and Development, 24(4):199–
209, 2009.

[81] Derrick Kondo, Bahman Javadi, Paul Malecot, Franck Cappello, and
David P Anderson. Cost-benefit analysis of cloud computing versus desk-

113

https://www.w3.org/TR/2014/REC-exi-20140211/
https://www.w3.org/TR/2014/REC-exi-20140211/
https://w3c.github.io/wotwg/architecture/wot-architecture.html
https://w3c.github.io/wotwg/architecture/wot-architecture.html

top grids. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–12. IEEE, 2009.

[82] Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel Fitton.
Smart objects as building blocks for the internet of things. IEEE Internet
Computing, 14(1):44–51, 2010.

[83] Nandakishore Kushalnagar, Gabriel Montenegro, and Christian Schu-
macher. Ipv6 over low-power wireless personal area networks (6lowpans):
overview, assumptions, problem statement, and goals. Technical report,
RFC 4919, 2007.

[84] Yiping Li, Xiaotong Zhang, Jun Zeng, Yadong Wan, and Fuqiang Ma. A
distributed tdma scheduling algorithm based on energy-topology factor in
internet of things. IEEE Access, 5:10757–10768, 2017.

[85] Xingqin Lin, Jeffrey Andrews, Amitabha Ghosh, and Rapeepat Ratasuk.
An overview of 3gpp device-to-device proximity services. Communica-
tions Magazine, IEEE, 52(4):40–48, 2014.

[86] Zhao Liqiang, Yin Shouyi, Liu Leibo, Zhang Zhen, and Wei Shaojun. A
crop monitoring system based on wireless sensor network. Procedia Envi-
ronmental Sciences, 11:558–565, 2011.

[87] Jen-Hao Liu, Yu-Fan Chen, Tzu-Shiang Lin, Da-Wei Lai, Tzai-Hung Wen,
Chih-Hong Sun, Jehn-Yih Juang, and Joe-Air Jiang. Developed urban air
quality monitoring system based on wireless sensor networks. In Sensing
technology (icst), 2011 fifth international conference on, pages 549–554.
IEEE, 2011.

[88] M Liyanage, Chii Chang, and S N Srirama. Lightweight Mobile Web Ser-
vice Provisioning for Sensor Mediation. In Mobile Services (MS), 2015
IEEE International Conference on, pages 57–64, jun 2015.

[89] Mohan Liyanage, Chii Chang, and Satish Narayana Srirama. Energy-
efficient mobile data acquisition using opportunistic internet of things gate-
way services. In Internet of Things (iThings) , 2016 IEEE International
Conference on, pages 217–222. IEEE, 2016.

[90] Mohan Liyanage, Chii Chang, and Satish Narayana Srirama. mepaas:
Mobile-embedded platform as a service for distributing fog computing to
edge nodes. In Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT), 2016 17th International Conference on, pages 73–80.
IEEE, 2016.

[91] Mohan Liyanage, Chii Chang, and Satish Narayana Srirama. Adaptive
mobile web server framework for mist computing in the internet of things.
International Journal of Pervasive Computing and Communications. ISSN:
1742-7371,, 14(3/4):247–267, 2018.

[92] Alexander G Logan, Warren J McIsaac, Andras Tisler, M Jane Irvine, Al-
lison Saunders, Andrea Dunai, Carlos A Rizo, Denice S Feig, Melinda

114

Hamill, Mathieu Trudel, et al. Mobile phone–based remote patient moni-
toring system for management of hypertension in diabetic patients. Ameri-
can journal of hypertension, 20(9):942–948, 2007.

[93] Seng W Loke, Keegan Napier, Abdulaziz Alali, Niroshinie Fernando, and
Wenny Rahayu. Mobile Computations with Surrounding Devices: Proxim-
ity Sensing and MultiLayered Work Stealing. ACM Trans. Embed. Comput.
Syst., 14(2):22:1—-22:25, feb 2015.

[94] Richard K Lomotey, Yiding Chai, Kazi A Ahmed, and Ralph Deters. Web
Services Mobile Application for Geographically Dispersed Crop Farmers.
In Computational Science and Engineering (CSE), 2013 IEEE 16th Inter-
national Conference on, pages 151–158. IEEE, 2013.

[95] Richard K Lomotey and Ralph Deters. Sensor data propagation in mobile
hosting networks. In 2015 IEEE Symposium on Service-Oriented System
Engineering, pages 98–106. IEEE, 2015.

[96] Richard K Lomotey, Shomoyita Jamal, and Ralph Deters. SOPHRA: a
mobile web services hosting infrastructure in mHealth. In Mobile Services
(MS), 2012 IEEE First International Conference on, pages 88–95. IEEE,
2012.

[97] Sujith Samuel Mathew, Yacine Atif, Quan Z Sheng, and Zakaria Maamar.
Web of things: Description, discovery and integration. In 2011 IEEE Inter-
national Conferences on Internet of Things, and Cyber, Physical and Social
Computing, pages 9–15. IEEE, 2011.

[98] Mukhtiar Memon, Stefan Rahr Wagner, Christian Fischer Pedersen, Fem-
ina Hassan Aysha Beevi, and Finn Overgaard Hansen. Ambient assisted
living healthcare frameworks, platforms, standards, and quality attributes.
Sensors, 14(3):4312–4341, 2014.

[99] KamalEldin Mohamed and Duminda Wijesekera. A lightweight framework
for web services implementations on mobile devices. In Mobile Services
(MS), 2012 IEEE First International Conference on, pages 64–71. IEEE,
2012.

[100] Prashanth Mohan, Venkata N Padmanabhan, and Ramachandran Ramjee.
Nericell: rich monitoring of road and traffic conditions using mobile smart-
phones. In Proceedings of the 6th ACM conference on Embedded network
sensor systems, pages 323–336. ACM, 2008.

[101] R. Morabito, R. Petrolo, V. Loscri, and N. Mitton. Enabling a lightweight
edge gateway-as-a-service for the internet of things. In 2016 7th Interna-
tional Conference on the Network of the Future, NOF 2016, pages 1–5.
IEEE Press, 2017.

[102] Guido Moritz, Frank Golatowski, Christian Lerche, and Dirk Timmer-
mann. Beyond 6LoWPAN: Web services in wireless sensor networks. In-
dustrial Informatics, IEEE Transactions on, 9(4):1795–1805, 2013.

115

[103] Suman Nath and Phillip B Gibbons. Communicating via fireflies: geo-
graphic routing on duty-cycled sensors. In Information Processing in Sen-
sor Networks, 2007. IPSN 2007. 6th International Symposium on, pages
440–449. IEEE, 2007.

[104] Joseph J Oresko, Zhanpeng Jin, Jun Cheng, Shimeng Huang, Yuwen Sun,
Heather Duschl, and Allen C Cheng. A wearable smartphone-based plat-
form for real-time cardiovascular disease detection via electrocardiogram
processing. IEEE Transactions on Information Technology in Biomedicine,
14(3):734–740, 2010.

[105] Gabriel Orsini, Dirk Bade, and Winfried Lamersdorf. Computing at the
mobile edge: Designing elastic android applications for computation of-
floading. In IFIP Wireless and Mobile Networking Conference (WMNC),
2015 8th, pages 112–119. IEEE, 2015.

[106] Zhonghong Ou, Meina Song, Hui Chen, and Junde Song. Layered peer-to-
peer architecture for mobile web services via converged cellular and ad hoc
networks. In Grid and Pervasive Computing Workshops, 2008. GPC Work-
shops’ 08. The 3rd International Conference on, pages 195–200. IEEE,
2008.

[107] Carlos Paniagua. Discovery and push notification mechanisms for mobile
cloud services. PhD thesis, Master’s thesis, University of Tartu, 2012.

[108] Kwanghyo Park, Hyojeong Shin, and Hojung Cha. Smartphone-based
pedestrian tracking in indoor corridor environments. Personal and Ubiqui-
tous Computing, 17(2):359–370, 2013.

[109] Milan Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, et al.
Mobile-edge computing introductory technical white paper. White Paper,
Mobile-edge Computing (MEC) industry initiative, 2014.

[110] Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Dimitrios
Georgakopoulos, and Peter Christen. Mosden: An internet of things
middleware for resource constrained mobile devices. In System Sciences
(HICSS), 2014 47th Hawaii International Conference on, pages 1053–
1062. IEEE, 2014.

[111] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Context aware computing for the internet of things: A survey.
Communications Surveys & Tutorials, IEEE, 16(1):414–454, 2014.

[112] Jürgo S Preden, Kalle Tammemäe, Axel Jantsch, Mairo Leier, Andri Riid,
and Emine Calis. The benefits of self-awareness and attention in fog and
mist computing. Computer, 48(7):37–45, 2015.

[113] Petri Pulli, Olli Martikainen, Ye Zhang, Valeriy Naumov, Zeeshan Asghar,
and Antti Pitkänen. Augmented processes: A case study in healthcare. In
Proceedings of the 4th International Symposium on Applied Sciences in
Biomedical and Communication Technologies, page 137. ACM, 2011.

116

[114] Xiao Qin, Hong Jiang, Yifeng Zhu, and David R Swanson. Dynamic load
balancing for i/o-intensive tasks on heterogeneous clusters. In High Per-
formance Computing-HiPC 2003, pages 300–309. Springer, 2003.

[115] Brian Raymor, Bill Silverajan, Carsten Bormann, Klaus Hartke, Hannes
Tschofenig, and Simon Lemay. Rfc 8323 - coap (constrained application
protocol) over tcp, tls, and websockets. https://datatracker.ietf.

org/doc/rfc8323/, 2018. (Accessed on 06/28/2018).
[116] R. Robinson. Understand enterprise service bus scenarios and solutions

in service-oriented architecture, part 1: The role of the enterprise service
bus. http://www.ibm.com/developerworks/webservices/library/
ws-esbscen/, 2004.

[117] Peter Saint-Andre. Streaming xml with jabber/xmpp. IEEE internet com-
puting, 9(5):82–89, 2005.

[118] João Santos, Joel J P C Rodrigues, Bruno M C Silva, João Casal, Kashif
Saleem, and Victor Denisov. An IoT-based mobile gateway for intelligent
personal assistants on mobile health environments. Journal of Network and
Computer Applications, 71:194–204, 2016.

[119] Peramanathan Sathyamoorthy, Edith C-H Ngai, Xiping Hu, and Victor Le-
ung. Profiling energy efficiency and data communications for mobile in-
ternet of things. Wireless Communications and Mobile Computing, 2017,
2017.

[120] Mahadev Satyanarayanan, Victor Bahl, Ramón Caceres, and Nigel Davies.
The case for vm-based cloudlets in mobile computing. IEEE pervasive
Computing, 2009.

[121] Jochen Schiller, Achim Liers, and Hartmut Ritter. Scatterweb: A wireless
sensornet platform for research and teaching. Computer Communications,
28(13):1545–1551, 2005.

[122] Takuki Kamiya Sebastian Kaebisch. Web of things (wot) thing description.
https://www.w3.org/TR/wot-thing-description/, 4 2018. (Ac-
cessed on 06/07/2018).

[123] Seyyit Alper Sert, Hakan Bagci, and Adnan Yazici. Mofca: Multi-objective
fuzzy clustering algorithm for wireless sensor networks. Applied Soft Com-
puting, 30:151–165, 2015.

[124] Eyal M Sharon, Jed Stremel, Olumakinde A Adeagbo, Wayne Chang,
Joseph Hewitt, and Matthew Cahill. Sharing of location-based content item
in social networking service, August 25 2015. US Patent 9,119,027.

[125] Zach Shelby. Embedded web services. IEEE Wireless Communications,
17(6):52, 2010.

[126] Zach Shelby. Rfc 6690 - constrained restful environments (core) link for-
mat. https://tools.ietf.org/html/rfc6690.html, 2012. (Accessed
on 06/28/2018).

117

https://datatracker.ietf.org/doc/rfc8323/
https://datatracker.ietf.org/doc/rfc8323/
http://www.ibm.com/developerworks/webservices/library/ws-esbscen/
http://www.ibm.com/developerworks/webservices/library/ws-esbscen/
https://www.w3.org/TR/wot-thing-description/
https://tools.ietf.org/html/rfc6690.html

[127] Zach Shelby, Carsten Bormann, and Srdjan Krco. Core resource directory.
IETF, 2013. (Accessed on 07/02/2018).

[128] Zach Shelby, Brian Frank, and Don Sturek. Constrained Application
Protocol (CoAP) draft-shelby-core-coap-00. Online at http://tools. ietf.
org/html/draft-shelby-core-coap-01, 2010.

[129] Zach Shelby, Michael Koster, Carsten Bormann, Peter Van der Stok, and
Christian Amsuess. CoRE Resource Directory. Internet-Draft draft-ietf-
core-resource-directory-15, Internet Engineering Task Force, oct 2018.
(Accessed on 10/18/2018).

[130] Bluetooth SIG. Bluetooth specification version 4.0. Bluetooth SIG, 2010.
[131] Cristiano M Silva, Fabricio A Silva, João FM Sarubbi, Thiago R Oliveira,

Wagner Meira Jr, and Jose Marcos S Nogueira. Designing mobile content
delivery networks for the internet of vehicles. Vehicular communications,
8:45–55, 2017.

[132] Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner.
Resource provisioning for iot services in the fog. In 2016 IEEE 9th Con-
ference on Service-Oriented Computing and Applications (SOCA), pages
32–39. IEEE, 2016.

[133] Arun A Somasundara, Aditya Ramamoorthy, and Mani B Srivastava. Mo-
bile element scheduling for efficient data collection in wireless sensor net-
works with dynamic deadlines. In Real-Time Systems Symposium, 2004.
Proceedings. 25th IEEE International, pages 296–305. IEEE, 2004.

[134] Satish Srirama and Wolfgang Prinz. Concept, implementation and perfor-
mance testing of a mobile Web Service provider for smart phones. Master
thesis, RWTH Aachen, Germany., 2004.

[135] Satish Narayana Srirama. Publishing and Discovery of Mobile Web Ser-
vices in Peer to Peer Networks. In First International Workshop on Mo-
bile Services and Personalized Environments (MSPE’06), pages 15–28,
November 16-17, 2006.

[136] Satish Narayana Srirama. MWSMF: A mediation framework for mobile
hosts and enterprise on cloud. International Journal of Pervasive Comput-
ing and Communications, 7(4):316–338, 2011.

[137] Satish Narayana Srirama and Matthias Jarke. Mobile hosts in enterprise
service integration. International Journal of Web Engineering and Tech-
nology, 5(2):187–213, 2009.

[138] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile
Host: A Feasibility Analysis of Mobile Web Service Provisioning. In
UMICS, 2006.

[139] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile
web service provisioning. In Telecommunications, 2006. AICT-ICIW’06.

118

International Conference on Internet and Web Applications and Ser-
vices/Advanced International Conference on, page 120. IEEE, 2006.

[140] Satish Narayana Srirama, Matthias Jarke, Hongyan Zhu, and Wolfgang
Prinz. Scalable mobile web service discovery in peer to peer networks.
In Internet and Web Applications and Services, 2008. ICIW’08. Third In-
ternational Conference on, pages 668–674. IEEE, 2008.

[141] Satish Narayana Srirama and Mohan Liyanage. Tcp hole punching ap-
proach to address devices in mobile networks. In 2014 2nd International
Conference on Future Internet of Things and Cloud (FiCloud), pages 90–
97. IEEE, 2014.

[142] Satish Narayana Srirama and Carlos Paniagua. Mobile web service provi-
sioning and discovery in android days. In Proceedings of the 2013 IEEE
Second International Conference on Mobile Services, pages 15–22. IEEE
Computer Society, 2013.

[143] Vladimir Stantchev, Ahmed Barnawi, Sarfaraz Ghulam, Johannes Schu-
bert, and Gerrit Tamm. Smart items, fog and cloud computing as enablers
of servitization in healthcare. Sensors & Transducers, 185(2):121, 2015.

[144] Greg Sterling. Mobile devices now driving 56 percent of traffic
to top sites - report - marketing land. https://marketingland.

com/mobile-top-sites-165725, February 23 2016. (Accessed on
06/14/2018).

[145] Ruoyu Su, Ramachandran Venkatesan, and Cheng Li. An energy-efficient
asynchronous wake-up scheme for underwater acoustic sensor networks.
Wireless Communications and Mobile Computing, 2015.

[146] Xiang Su, Jukka Riekki, Jukka K Nurminen, Johanna Nieminen, and
Markus Koskimies. Adding semantics to internet of things. Concurrency
and Computation: Practice and Experience, 27(8):1844–1860, 2015.

[147] Audie Sumaray and S Kami Makki. A comparison of data serialization
formats for optimal efficiency on a mobile platform. In Proceedings of the
6th international conference on ubiquitous information management and
communication, page 48. ACM, 2012.

[148] Tarik Taleb, Sunny Dutta, Adlen Ksentini, Muddesar Iqbal, and Hannu
Flinck. Mobile edge computing potential in making cities smarter. IEEE
Communications Magazine, 55(3):38–43, 2017.

[149] Nguyen B Truong, Gyu Myoung Lee, and Yacine Ghamri-Doudane. Soft-
ware defined networking-based vehicular adhoc network with fog comput-
ing. In Integrated Network Management (IM), 2015 IFIP/IEEE Interna-
tional Symposium on, pages 1202–1207. IEEE, 2015.

[150] Wil MP Van der Aalst. The application of petri nets to workflow manage-
ment. Journal of circuits, systems, and computers, 8(01):21–66, 1998.

119

https://marketingland.com/mobile-top-sites-165725
https://marketingland.com/mobile-top-sites-165725

[151] Charl van der Westhuizen and Marijke Coetzee. A framework for provi-
sioning restful services on mobile devices. In Adaptive Science and Tech-
nology (ICAST), 2013 International Conference on, pages 1–7. IEEE, 2013.

[152] Aart Van Halteren, Richard Bults, Katarzyna Wac, Dimitri Konstantas, Ing
Widya, Nicolay Dokovsky, George Koprinkov, Val Jones, and Rainer Her-
zog. Mobile patient monitoring: The mobihealth system. Journal on Infor-
mation Technology in Healthcare, 2(5):365–373, 2004.

[153] Rohit Verma and Abhishek Srivastava. A Novel Web Service Directory
Framework for Mobile Environments. In Web Services (ICWS), 2014 IEEE
International Conference on, pages 614–621. IEEE, 2014.

[154] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli,
Harald Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha
Mazura, Mark Harrison, M Eisenhauer, and Others. Internet of things
strategic research roadmap. Internet of Things: Global Technological and
Societal Trends, 1:9–52, 2011.

[155] Leye Wang, Daqing Zhang, and Haoyi Xiong. effSense: energy-efficient
and cost-effective data uploading in mobile crowdsensing. In Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous computing ad-
junct publication, pages 1075–1086. ACM, 2013.

[156] Zhenyu Wu, T Itala, Tingan Tang, Chunhong Zhang, Yang Ji,
M Hamalainen, and Yunjie Liu. Gateway as a service: A cloud computing
framework for web of things. In the 19th Int. Conf. on Telecommunications,
pages 1–6. IEEE Press, 2012.

[157] Jiquan Xie, Lilin Dan, Lu Yin, Zhaojie Sun, and Yue Xiao. An energy-
optimal scheduling for collaborative execution in mobile cloud computing.
In Computing and Communication (IEMCON), 2015 International Confer-
ence and Workshop on, pages 1–6. IEEE, 2015.

[158] Boyi Xu, Lida Xu, Hongming Cai, Lihong Jiang, Yang Luo, and Yizhi Gu.
The design of an m-health monitoring system based on a cloud computing
platform. Enterprise Information Systems, 11(1):17–36, 2017.

[159] Wang Yong-An, Zhu Bin, and Li Guan-Yu. Gateway-Based Semantic Col-
laboration Method in SWoT. In Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2016 International Conference on, pages
136–141. IEEE, IEEE Press, 2016.

[160] Seungwook Yoon, Kanggu Park, and Euiseok Hwang. Connected electric
vehicles for flexible vehicle-to-grid (v2g) services. In 2017 International
Conference on Information Networking (ICOIN), pages 411–413. IEEE,
2017.

[161] Zhiyong Yu, Daqing Zhang, Zhiwen Yu, and Dingqi Yang. Participant
selection for offline event marketing leveraging location-based social net-
works. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
45(6):853–864, 2015.

120

[162] Zhuxiu Yuan, Lei Wang, Lei Shu, Takahiro Hara, and Zhenquan Qin. A
balanced energy consumption sleep scheduling algorithm in wireless sen-
sor networks. In Wireless Communications and Mobile Computing Confer-
ence (IWCMC), 2011 7th International, pages 831–835. IEEE, 2011.

[163] Zhang Yun, Gao Ren, and Bian Fuling. A Conceptual Architecture for
Advanced Location Based Services in 4G Networks. In Wireless Commu-
nications, Networking and Mobile Computing, 2007. WiCom 2007. Inter-
national Conference on, pages 6525–6528. IEEE, 2007.

[164] Weiwen Zhang, Yonggang Wen, and Dapeng Oliver Wu. Energy-efficient
scheduling policy for collaborative execution in mobile cloud computing.
In INFOCOM, 2013 Proceedings IEEE, pages 190–194. IEEE, 2013.

121

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisors Prof. Satish Srirama and
Dr. Chii Chang for their valuable advice and support throughout all these years.

I am very thankful to Prof. Marlon Dumas, who approached me on the very
first day at this University and gave me much motivational advice and also, Ms.
Natali Belinska and staff of International students’ service for helping me to come
to Estonia. In addition to that, I want to thank all the professors that taught me and
guided me during my studies at the University of Tartu and the Tallinn University
of Technology.

I am very thankful to my reviewers/opponents Prof. Richard Lomotey, Prof.
Jussi Kangasharju, Prof. Raimundas Matulevičius and Dr. Feda AlShahwan for
their insightful suggestions and valuable comments.

I would also like to express my gratitude to my friends from Mobile & Cloud
Lab, Prof. Eero Vainikko and members of the Distributed Systems group, for all
the interesting discussions and support during my studies. And also I want to
thank Vitali and Julia Pastsuk for their valuable assistance during my stay here in
Estonia.

I also want to thank for the financial support from the European Regional
Development Fund through the EXCS, the Estonian Science Foundation grant
PUT360 and the Estonian Research Council grant IUT20-55.

Finally, I am grateful for the support from my family: mom, brother, sister,
wife, and kids who always with me and giving their utmost support to finish this
thesis.

122

SISUKOKKUVÕTE

Raamistik mobiilsete asjade veebile

Asjade Internet (ingl Internet of Things, lüh IoT) tähistab mõistet, kus füüsilised ja
virtuaalsed objektid, nagu näiteks autod, kodumasinad, loomad, tööstusmasinad,
moodustavad keskkonna, kus need objektid on digitaalselt üheselt identifitseerita-
vad, võimaldades neil omavahel üle Interneti suhelda. Kontseptuaalses IoT arhi-
tektuuris on peamiseks võrgusuhtluse tehnoloogiaks internetiprotokoll (IP) sõltu-
mata sellest, mis protokollid on kasutusel ülemises rakenduskihis, mistõttu jäävad
ühilduvusega seotud küsimused vastuseta. Sellest lähtuvalt on World Wide Web
(lüh W3C) konsortsium loonud asjade veebi (ingl Web of Things, lüh WoT), mis
standardiseerib kommunikatsiooniliideseid IoT esemete vahel, eesmärgiga saavu-
tada globaalne, veebitehnoloogiatel põhinev suhtlusprotokolli standard.

Teisalt on mobiilseadmetest nagu nutitelefonid ja tahvelarvutid saanud pea-
mised komponendid mobiilsetes IoT süsteemides. Täpsemalt kätkevad nutitele-
fonid endas erinevaid riistvara- ja tarkvarapõhiseid andureid ning neil on võime-
kus vahendada väliste andurite (nt kehaandur) andmeid pilvepõhisesse kesksesse
haldussüsteemi. Selleks, et kasutada mobiilseid seadmeid IoT süsteemis andu-
riandmete allikana või vahendajana saab süsteem majutada mobiilseadmes mo-
biilseid veebiteenuseid (ingl Mobile Web Services, lüh MWS). MWS pakub lisa-
võimekust mitmete anduripõhiste mobiilsete rakenduste puhul, sealhulgas mobile
crowdsensing, reaalaja-personaalmeditsiin ja läheduspõhised mobiilsed sotsiaal-
võrgustikud.

Sellised targad mobiilsed seadmed paigutuvad mobiilse IoT kategooriasse (lüh
MIoT), mis hõlmab füüsiliste, liikuvate objektide (näiteks loomad, droonid, sõi-
dukid või ka inimesed) ühendamist. Arvestades, et olemasolevate mobiilseadmete
ja tarkvararaamistike hulk on suur, tõstatub MIoT-s ühilduvuse probleem. Tõhu-
sa MIoT-süsteemide vahelise suhtluse saavutamiseks on võimalik WoT arhitek-
tuuriga kohandada MIoT seadmed mobiilseteks WoT (MWoT) seadmeteks.

Kuigi uusimate mobiilseadmete andmeedastuskiirused ning arvutuslik võim-
sus on üpris võimekad, ei ole võimalik aku toitel pikaajaliselt jooksutada raken-
dusi, mis mitmetuumaliste protessorite ja 3G/4G ühenduste võimalusi intensiiv-
selt ära kasutavad. Hulk varasemaid teadustöid on uurinud, kuidas ületada res-
sursinõudlikkusega seotud probleeme mobiilil majutatavate teenuste vallas. Siiski
leidub kitsaskohti, mis vajavad tähelepanu, pidades silmas seadme energiasääst-
likkust. Käesolevas doktoritöös esitleb autor kergekaalulist teenusekesket MWoT
raamistikku, mis kasutab energiasäästlikke rakenduskihi protokolle.

Tüüpilises IoT süsteemis toimub andmetöötlus ja juhtimine keskses, pilvepõ-
hises haldussüsteemis. Ka MWoT võiks lähtuda sellisest ülesehitusest, kuid ar-
vestades latentsuse probleemi mobiilseadme ja pilve vahelise ühenduse korral, ei
suuda klassikaline lähenemine toetada rakendusi, mis nõuavad ülimadalaid reakt-
siooniaegu andmete põhjal otsuste tegemiseks. Selliste vajaduste rahuldamiseks

123

on autor laiendanud kergekaalulist MWoT raamistikku lähisuduarvutuse (ingl mist
computing) mehhanismiga, mis võimaldab süsteemil osa arvutusülesandeid pil-
vest MWoT hostile jaotada. Võttes arvesse MWoT hosti riistvara piiratust võr-
reldes pilvega, ei suuda MWoT host rahuldada teenuskvaliteedi (ingl Quality of
Service, lüh QoS) nõudeid olukordades, kus samu riistvarafunktsioone hõlmavate
üheaegsete päringute hulk on suur. Selleks tutvustab autor autonoomset ressursi-
teadlikku teenuste konfigureerimist, mis haldab MWoT hostil majutatavate tee-
nuste kättesaadavust dünaamiliselt muutuva riistvararessursi kättesaadavuse põh-
jal. Lisaks toetab raamistik ülesannete jaotamist hulga lähisuduarvutust toetavate
ressurside vahel.

Autor on uurinud ka MWoT seadmete energiatarbimise vähendamise küsi-
must, pidades silmas mobiilse internetiühenduse võrdlemist väiksema levialaga
tehnoloogitega, nagu Wi-Fi, Bluetooth Low Energy (lüh BLE) jt. Ehkki MWoT
seadmed võivad ära kasutada avalikke Wi-Fi pääsupunkte, tõstatab see turvalisu-
sega seonduvaid küsimusi. Kui MWoT seadmed aga kasutaksid eelnevalt identifi-
seeritud ja usaldatud osapoolte pääsupunkte, hoiaks see kokku akuressurssi ja väl-
diks turvaprobleeme. Hiljutised uurimused IoT valdkonnas asetavad rõhku geog-
raafiliselt kaugetest keskserveritest protsesside jaotamisele IoT seadmete lähedal
asuvatele ressurssidele. Sellist lähenemist nimetatakse uduarvutuse ja -võrgu ar-
hitektuuriks ning see pakub MWoT-le alternatiivset võimalust Internetiga ühen-
dumiseks. Kuid udu-võrguteenuste (ingl Fog Networking service, lüh FogNets)
kasutamine püstitab uusi uurimisküsimusi seoses FogNets võrguteenuste pakku-
jate paljususe ja heterogeensusega. Viimane seisneb varieeruvates töögraafikutes,
töörkoomustes, ootejärjekordades jne. Juhul, kui MWoT seade ei võta selliseid
parameetreid arvesse, võib juhtuda, et MWoT seade on sunnitud pidevalt tee-
nuspakkujaid vahetama ning seeläbi energiat raiskama, kuna selgub, et valitud
pakkuja töögraafik ei ühildu seadme nõuetega. Taolisi olukordi aitab vältida auto-
ri väljapakutud ennetav FogNets MWoT ajaplaneerimisraamistik. Antud raamis-
tik optimeerib FogNets ühenduste loomise graafikut, seades eesmärgiks FogNets
teenuspakkujate vahel ümberlülituste vältimise ja sellest tuleneva energia kokku-
hoiu.

Lõpetuseks, doktoritöö käsitleb põhjalikult energia kokkuhoidu MWoT jaoks,
töö käigus loodud raamistikud on arendatud päris seadmetele ja evalveeritud mit-
metes juhtumiuuringutes.

124

CURRICULUM VITAE

Personal data

Name: Mohan Liyanage.
Date and Place of Birth: 09.Dec.1971, Sri Lanka.
Citizenship: Sri Lankan.

Education

2014–2018 Institute of Computer Science, Faculty of Science and
Technology, University of Tartu, Doctoral Studies, Spe-
cialty: Computer Science.

2013–2014 University of Tartu and Tallinn University of Technology,
Master Studies, Specialty: Software Engineering.

2000–2001 Institute of Computer Technology, University of Colombo,
Sri Lanka. Postgraduate Diploma in Computer Technol-
ogy.

1993–1997 Faculty of Science, University of Ruhuna, Sri Lanka.
Bachelor of Science.

Employment

2010–2013 Lecturer, Sri Lanka Institute of Information Technology.
2008–2010 ICT Specialist (Cisco Systems), UNDP, Sri Lanka.
2004–2008 Cisco Certified Network Academy Instructor, Sri Lanka In-

stitute of Information Technology.

Scientific work

Main fields of interest:
• Mobile Web service provisioning; Internet of Things; Fog Computing

125

ELULOOKIRJELDUS

Isikuandmed

Nimi: Mohan Liyanage.
Sünniaeg ja -koht: 9. detsember, 1971, Sri Lanka.
Kodakondsus: Sri Lanka.

Haridus

2014–2018 Arvutiteaduse instituut, Tartu Ülikool, doktoriõpe, eriala:
informaatika.

2013–2014 Tartu Ülikool ja Tallinna Tehnikaülikool, magistriõpe, eri-
ala: tarkvaratehnika.

2000–2001 Arvutehnika instituut, Colombo Ülikool, Sri Lanka. Kraa-
diõppe diplom arvutitehnikas.

1993–1997 Ruhuna Ülikool, Sri Lanka, bakalaureuseõpe.

Teenistuskäik

2010–2013 Lektor, Sri Lanka Infotehnoloogia instituut.
2008–2010 IKT Spetsialist (Cisco Systems), UNDP, Sri Lanka.
2004–2008 Cisco Certified Network Academy Instructor, Sri Lanka In-

fotehnoloogia instituut.

Teadustegevus

Peamised uurimisvaldkonnad:
• mobiilsed veebiteenused; asjade Internet; uduarvutus

126

LIST OF ORIGINAL PUBLICATIONS

1. M. Liyanage, C. Chang, S. N. Srirama: Adaptive mobile Web server
framework for Mist computing in the Internet of Things, International
Journal of Pervasive Computing and Communications, ISSN: 1742-7371,
14(3/4):247–267, 2018. DOI: https://doi.org/10.1108/IJPCC-D-18-00023

2. M. Liyanage, C. Chang, S. N. Srirama: Lightweight Mobile Web Service
Provisioning for the Internet of Things Mediation, International Jour-
nal of UbiComp (IJU), ISSN: 0360-0300, 8(1):17-34, 2017. AIRCC. DOI:
10.5121/iju.2017.8102

3. M. Liyanage, C. Chang, S. N. Srirama: Energy-Efficient Mobile Data Ac-
quisition using Opportunistic Internet of Things Gateway Services, The
9th IEEE International Conference on Internet of Things (iThings2016),
Chengdu, Sichuan, China, December 16-19, 2016, pp. 217-222. IEEE.

4. M. Liyanage, C. Chang, S. N. Srirama: mePaaS: Mobile-Embedded Plat-
form as a Service for Distributing Fog Computing to Edge Nodes, The
17th International Conference on Parallel and Distributed Computing, Ap-
plications and Technologies (PDCAT-16), Guangzhou, China, December
16-18, 2016, pp. 73-80. IEEE. (Won Best Student Paper Award)

5. M. Liyanage, C. Chang, S. N. Srirama: Lightweight Mobile Web Ser-
vice Provisioning for Sensor Mediation, 4th International Conference on
Mobile Services (MS 2015), New York, USA, June 27 - July 2, 2015, pp.
57-64. IEEE. (Won Best Paper Award)

127

128

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

129

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

130

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

	Introduction
	Problem Statement
	Research Objectives and Contributions
	Outline

	State of the Art
	Lightweight Operating Systems for Sensor Networks
	Contiki
	TinyOS

	Lightweight Communication Protocols
	Micro IP (uIP)
	6LoWPAN
	Representational State Transfer (REST)
	Constrained Application Protocol (CoAP)
	Message Queue Telemetry Transport (MQTT)
	Extensible Messaging and Presence Protocol (XMPP)

	Web of Things Architecture
	Web of Things Building Blocks

	Lightweight Middleware for Mobile Web of Things
	Applications of Mobile Web of Things
	Comparison of Existing Mobile Web Services Frameworks

	Using Nearby Resources (Mist Computing) in Mobile Web of Things
	Energy-efficient Approaches in Mobile Web of Things Service Provisioning
	Energy Efficiency in Wireless Sensor Networks
	Using Public Fog Networking Services for Energy-efficient Mobile Web of Things
	Service-oriented collaboration approaches for Mobile Web of Things
	Energy-efficient Service Description and Service Discovery in Mobile Web Services Provisioning
	Payload Compression and Encoding

	Summary

	Lightweight Mobile Web Service Provisioning for the Internet of Things Mediation
	Introduction
	Overview of Architecture
	Sensing Service Provisioning
	Basic Protocol Stack
	Components of the MWoT framework

	Summary

	Adaptive Mobile Web of Things Server Framework for Mist Computing in the Internet of Things
	Introduction
	Proposed Framework
	Architecture overview
	Self-configured service provisioning
	Service Scheduler
	Scalable Computational Resources

	Summary

	Energy-Efficient Mobile Web of Things using Public Fog Networking Services
	Introduction
	System Design
	Overview
	Main components of the proposed framework
	FogNets provider scheduling

	Summary

	Prototype Implementation and Evaluation
	Introduction
	Evaluation of Energy-Efficient Mobile Web of Things using Public Fog Networking Services
	Objective
	Experimental Setup and Prototype Implementation
	Discussion

	Evaluation of Adaptive Mobile Web Server Framework for Mist Computing in the Internet of Things
	Objective
	Experimental Setup and Prototype Implementation
	Discussion

	Evaluation of Lightweight Mobile Web Service Provisioning for the Internet of Things Mediation
	Objective
	Experimental Setup and Prototype Implementation
	Discussion

	Summary

	Conclusion and Future Research Direction
	Research Contributions
	Future Research Directions

	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

