
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Jesús Antonio Soto Velázquez

Securing openHAB Smart Home through
User Authentication and Authorization

Master’s Thesis (30 ECTS)

Supervisor: Satish Narayana Srirama, PhD

Supervisor: Danilo Gligoroski, PhD

Tartu 2018

Securing openHAB Smart Home through User Authentication and
Authorization

Abstract:
The Internet of Things (IoT) is a dynamic and heterogenous environment where Things
gather data from the real world to perform various tasks. Applications in IoT, such as the
smart home, typically use private data derived from its users for its operations. Security
becomes a concern when these applications are exposed to insecure networks. OpenHAB
is an OSGi-based automation software that integrates the data from devices at home.
OpenHAB does not enforce any access control mechanism for its users, and depends
solely on the security of the wireless network. In this work, we studied and implemented
a JSON Web Token-based authenticator for Eclipse SmartHome, the core of openHAB,
as a base for access control mechanisms. Furthermore, we propose a fine-grained, yet
usable authorization model to manage access permissions to things among legitimate
users. The results obtained show that it is feasible to enforce access control mechanisms
for servlet and REST resources in the architecture of openHAB.

Keywords:
Internet of Things, IoT, smart home, openHAB, Eclipse SmartHome, JSON Web Token,
JWT, authentication, authorization, access control, misuse cases, OSGi

CERCS: P170 - Computer science, numerical analysis, systems, control

OpenHAB-põhise targa kodu turvamine kasutajate autentimise ning
autoriseerimise abil
Lühikokkuvõte:
Asjade Internet ehk värkvõrk on dünaamiline ja heterogeenne keskkond, kus Asjad
koguvad erinevate ülesannete täitmiseks keskkonnast andmeid. Värkvõrgu rakendusvald-
kondades nagu näiteks tark kodu kasutatakse harilikult operatsioonide täitmisel kasutaja
privaatandmeid. Kui sellised rakendused on turvamata võrkudele avatud, muutub tur-
valisus oluliseks probleemiks. OpenHAB on OSGi-põhine automatiseerimistarkvara,
mis koondab kodukeskkonna seadmete andmeid. OpenHAB ei tee kasutajatele ligipääsu
reguleerimismehhanismide kasutamist kohustuslikuks ning sõltub seega täielikult juht-
mevaba võrgu turvalisusest. Käesolevas lõputöös uurisime ning arendasime JSON Web
Token’i-põhist tõendi autenturit Eclipse SmartHome platvormile, millel põhineb ka open-
HAB. Tõendi autentur on baasiks ligipääsu reguleerimismehhanismile. Lisaks esitleme
kasutatavat volitusmudelit, mis võimaldab hallata kasutajate ligipääsuõigusi Asjadele.
Saavutatud tulemused osutavad, et ligipääsu reguleerimismehhanismide rakendamine
servlet-ide ja REST ressursside jaoks openHABi arhitektuuris on teostatav.

Võtmesõnad:
Asjade Internet, IoT, targa kodu, openHAB, Eclipse SmartHome, JSON Web Token,

2

JWT, autentimise, autoriseerimise, sutajatele ligipääsu, väärkasutuse juhtumid, OSGi

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-
misteooria)

3

Contents
1 Introduction 7

1.1 Problem Statement . 8
1.2 Motivation . 8
1.3 Hypothesis . 9
1.4 Contributions . 9
1.5 Structure . 9

2 Background 10
2.1 Information Security . 10

2.1.1 Confidentiality and Privacy . 10
2.1.2 Access Control . 10
2.1.3 Authentication . 11
2.1.4 Authentication in the Web . 12
2.1.5 Authorization Models . 13

2.2 OSGi Architecture . 14
2.2.1 Bundles . 14
2.2.2 Servlet Registration . 15
2.2.3 REST and JAX-RS Connector 15

2.3 Internet of Things . 16
2.3.1 Layers and Applications . 17
2.3.2 Communication Scenarios . 19
2.3.3 Security Challenges . 19
2.3.4 Security Threats and Attacks 21
2.3.5 Authentication Models . 22

2.4 Eclipse SmartHome and OpenHAB 23
2.4.1 OpenHAB . 23
2.4.2 Eclipse SmartHome . 24

3 Related Work 27
3.1 Nest . 27
3.2 HomeKit . 27
3.3 OpenRemote . 28
3.4 ThingsBoard . 28
3.5 The Thing System . 29
3.6 Home Assistant . 29
3.7 Discussion . 29

4

4 Security Challenges in OpenHAB 31
4.1 Security of OpenHAB . 31
4.2 openHAB: Intranet of Things . 34
4.3 Community Discussion on Role-Based Access Control 35
4.4 Misuse Cases . 37

5 Proposed Security Mechanisms 39
5.1 Token-Based Authentication Procedure 39
5.2 Architectural Implications of Authentication 41
5.3 Implementation of Authenticators . 43
5.4 Proposed Authorization Model . 47
5.5 Evaluation . 49

6 Conclusion and Future Research Directions 52
6.1 Contributions . 52
6.2 Future Research Directions . 53

References 60

Appendix 61
I. Licence . 61

5

List of Figures
1 The openHAB architecture based as described in [38]. 25
2 The Eclipse SmartHome architecture based on the diagram by Porter [45]. 26
3 Misuse Cases for Access Control in ESH. 38
4 Architecture breakdown into servlets. 43
5 Addition of authenticators into the architecture. 44
6 Authentication sequence diagram. 45

List of Tables
1 Threats in each IoT as suggested by Alaba et al. [1] 21
2 Sample relation of user and capability sets 49
3 Sample listings of operations involved for each capability set 49

List of Code Snippets
1 HTTP connection for iCloud binding. 33
2 Role-Based method restriction in ESH. 36
3 Core implementation of CustomHttpContext. 44
4 Generation and signing of the JWT. 46

6

1 Introduction
We thrive in an age where our lifestyle is slowly being invaded by objects that are capable
of becoming aware of their physical context. These are not simple physical objects
anymore, but rather context-aware sensing devices, whose capababilities may greatly
improve our lives in a variety of situations. Smartphones, smart watches, automatic doors
with facial recognition, self-driving cars, are some of the objects that have been slowly
transitioning into context-aware devices. As we are in constant contact with some of
these devices, our environment becomes smart. However, with a tremendous amount
of data about ourselves flowing between these devices and the cloud, what guarantee is
there that our privacy is being protected?

Living in a context-aware home is no longer a futuristic vision. Automatic security
systems with face recognition, scheduled meals prepared by e.g. a smart rice cooker,
coffee maker; smart refrigerators that notice when ingredients have expired, among
others, are just some examples of typical appliances that might be used in a smart home.
Going back to the idea of privacy protection: would a regular resident of a smart home be
happy that their, for instance, food choices are being disclosed to e.g., their neighbors?
Usually, we expect that people are able to maintain their privacy in their own homes.
Thus, openly managing such amounts of information becomes a problem, rather than
an advantage. In fact, a study disclosed by Orange about the future of digital trust has
shown that 78% of consumers think that it is hard to trust companies when it comes to
use their personal data [43]. This hints that data privacy and security in general might be
an important aspect of the systems that employ these context-aware devices.

Among all the different scenarios and applications that could be made a reality with
these context-aware devices, the smart home is of particular interest. OpenHAB is an
automation software that brings together and manages things for the purpose of building
a smart home environment [38]. The smart home, an application of the Internet of Things
paradigm, is gaining popularity not only as a toy, but as a realistic intelligent environment
that can be put in use today. A so-called thing i.e., a sensing device, is the basic unit in a
smart home environment. Things capture data from their environment and transmit it to
another point, typically to another node inside the same network, or perhaps through the
Internet to a remote destination. However, is there any security in this transmission of
data?

Security is defined as having “protection against adversaries”, i.e., those would,
intentionally or not, cause harm [59]. In this context, security refers to information
security, which is conceived as a layer of security that aims to protect the confidentiality,
integrity, authenticity, and availability of information resources that may be in storage,
processing or transmission. An adversary could attempt to violate these security prop-
erties through the use of passive (eavesdropping) and active (e.g. message tampering,
Man-in-the-Middle) attacks.

This work introduces the notion of reviewing, evaluating, and possibly improving the

7

(information) security present in the openHAB automation software for the smart home
environment.

1.1 Problem Statement
The security of the openHAB software, in terms of data protection and privacy preserva-
tion, is currently undefined, as there are no direct sources that address these topics. It
is desirable to have an overview on what kind of security mechanisms are present and
enforced in openHAB, as well as which vulnerabilities might have an impact on its use
and future adoption. Moreover, as an open-source project, there is no clear indication
that the security is being actively worked on for this project, or if it is feasible to do
so. Furthermore, there is evidence that the openHAB smart home automation project
does not define an access control policy, nor does it implement an authorization model to
prevent information from being leaked to unauthorized parties.
The problem statement and purpose of this work can be summarized as follows:

• To review the existing security mechanisms of the openHAB smart home automa-
tion software.

• To study and implement a JSON Web Token-based authenticator for Eclipse
SmartHome, the core of openHAB, as a base for access control mechanisms.

• To propose a usable authorization model to manage access permissions to things
and resources in openHAB.

1.2 Motivation
It is known that security breaches may have a significant economic impact on a firm, as
described by Goel and Shawky [18]. Data loss or theft, tampering, and unauthorized
operations are just some of the possible ocurrences led by the lack of proper security
mechanisms in place. In the case of openHAB, a smart home application, it is not quite
quantifiable how expensive it results to have a security breach occur at any level. The
consequences may go from mere user discomfort to identity theft, or worse.

Applications for the Internet of Things are still very recent, and not much is known
about the possibilities they will bring. This has led to ongoing efforts, such as openHAB,
to focus mostly on the system functionalities, rather than the user experience, security,
and many other non-functional requirements. Ideally, there should be a framework that
can be used to evaluate the security of IoT applications. At this time, a framework for
this purpose has not been established due to the vast differences in the architectures and
implementations. Some attempts to identify security threats in IoT do exist, however,
such as the OWASP Top 10 for IoT [10]. As the environment grows in complexity, so do
the attack surface areas and possible vulnerabilities.

8

Not knowing the extent of how secure openHAB or any other application of IoT is
deters its adoption and raises concerns about existing instances. Security by obscurity
has never been a reasonable attempt to protect information assets from adversaries. And
indeed, as an open-source project, any party can freely view the code to try to find
hidden vulnerabilities. For this reason, some effort could be spared for reviewing the
security of existing models for Internet of Things, including concrete applications, such
as openHAB.

1.3 Hypothesis
By analyzing the architecture and communication processes in the openHAB automation
software it is possible to create an overview of the current security mechanisms adopted
into the system. Additionally, the implementation of an authentication mechanism is
feasible despite the limitations of the openHAB software architecture.

1.4 Contributions
This work presents three main contributions. First, a literature overview on the security
challenges and threats in the Internet of Things is presented in Chapter 2.3. Second, the
implementation of a JSON Web Token-based authenticator for the core framework of
openHAB, Eclipse SmartHome, that is detailed in Chapter 5.3. Finally, a fine-grained,
yet usable authorization model for access control of the resources in openHAB is detailed
in Chapter 5.4.

1.5 Structure
This work is divided in several chapters:
Chapter 2 introduces some key concepts in terms of security and the OSGi architecture,
and later delves into an overview of the security challenges present in the IoT.
Chapter 3 briefly introduces some works loosely related to the contributions made in this
work, and superficially describes their security mechanisms.
Chapter 4 describes in great detail the methodology to implement a JSON Web Token-
based authenticator, and later makes a proposal for an authorization model suitable for
Eclipse SmartHome, and therefore, for the openHAB smart home application.
Chapter 5 evaluates and discusses the authenticator implementation and authorization
model proposal.
Chapter 6 presents the general conclusions obtained from this work, and briefly describes
the future research directions to build upon the contributions presented.

9

2 Background
The purpose of this chapter is to briefly give some technical background on the concepts
that will be recurrently used in this work, and to describe the existing security concerns
presented in the literature for the Internet of Things. The technical concepts introduced as
part of the background are derived from various independent areas, namely: information
security, network architecture, cloud computing, and the OSGi architecture for Java EE.
The OSGi architecture is a fundamental part of the Eclipse SmartHome framework and
openHAB automation software, and thus it is included as part of this chapter.

2.1 Information Security
Information security is the quality or ability to protect the confidentiality, integrity,
authenticity, and availability of data and resources of an information system at any stage:
in storage, processing, or transmission [59].

Adversaries, malicious entities that attempt against the security of the information
assets, are considered to be present at all times when modeling security. Flaws in
design, architectural, and implementation of an information system may lead to the
existence of security vulnerabilities, and the actions of an adversary that make use of
these vulnerabilities represent security threats. The changing nature of technology makes
it difficult to identify security threats, causing diverse and complex challenges to protect
the information and the systems that process, transport, and store it [58].

2.1.1 Confidentiality and Privacy

A piece of information has confidentiality when it is never disclosed to unauthorized
parties. When confidentiality is guaranteed, the information is exposed only when the
party that requested it has been granted the rights to access it [59].

Information privacy, although very similar to the concept of confidentiality, focuses
on the use and governance of personal data, while confidentiality sets the mechanisms
to ensure that only those allowed will have access to the information [20]. Confiden-
tiality can be viewed as a component of privacy, and an overall weaker assumption
on information security. In short, information is confidential if it is not disclosed to
unauthorized parties, and private if the identity of the individuals with some connection
to the information is not revealed.

2.1.2 Access Control

Information security involves the protection against unauthorized disclosure, improper
modifications, and at the same time, ensuring access to the authorized parties. The
process of enforcing protection so that access to a system data and resources is controlled

10

according to a security policy is known as access control [47]. In other words, access
control is the execution of the definition of who has access to what, when, and in which
conditions.

An access control system is divided into three main parts: security policy, security
model, and security mechanism [47]. These components are described as follows:

Security policy High-level rules that define which resources and data should be regu-
lated and to what degree.

Authorization model Abstract representation of the security policy in terms of the rules
and resources present in a computer system.

Authorization mechanism Software and hardware implementation of the functions that
enforce the security policy through the abstraction provided by the authorization
model.

The security policy can be seen as the foundation for an access control system, and
not much technical knowledge is required at this stage. The access to resources and
data for a particular security policy is specified through the establishment of an access
control model. However, the model itself does not execute the policy, and for that,
enforcement is needed. Enforcement takes the form of the implementation of technical
security mechanisms, such as credentials, digital signatures, encryption, access control
lists, firewalls, etc. [44].

An access control mechanism, i.e., the implementation of an authorization model,
should be tamper-proof (impossible to alter), non-bypassable, kept in a single part of the
system, and small enough to permit the use of rigorous verification methods [47].

2.1.3 Authentication

Before any authorization mechanism can be enforced, the identity of the user requesting
a resource or piece of data should be confirmed. Only after the identity has been verified
can the authorization mechanism decide if the individual should be granted access or not,
according to the predefined policy. A user can be identified by three different means:
by something they know, by what they are, or by what they have [53]. These different
approaches to authentication are briefly introduced as follows:

Password authentication The user provides an ID along with a password, which the
system uses to verify if a matching user exists. Typically, only the digest of a
password is stored on the system.

Biometric authentication Based on an individual’s unique physical characteristics,
such as fingerprints, hand geometry, facial characteristics, retinal and iris patterns,
voiceprint, etc.

11

Token authentication A physical object that the user posseses for authentication. For
example, memory cards, electronic identity cards, and smart cards.

Token authentication later mentioned in this work does not refer to this type of
physical token, but rather to password authentication enclosed in a structure, also called
a token. The pieces of identifying data are known as credentials, and usually part, or all
of it, should not be made public to avoid illegitimate users from impersonating legitimate
users.

2.1.4 Authentication in the Web

Password authentication is typically used in web-based systems due to the ease of use,
but it inherently carries several risks. One well-known example is the dictionary attack
where an adversary uses a dictionary of popular passwords, e.g. arbitrary words spelled
correctly, birthdays, city names, popular artist names; and tries to determine the password.

In the Internet, the Hypertext Transfer Protocol (HTTP) is used to exchange data
between a client and a server. The definition of HTTP consists of four particular steps:
connection, request, response, and disconnection [17]. In particular, an HTTP request
includes headers, which are relevant values for the entity serving the request. Among
these headers, e.g., From, Accept, Accept-Encoding, there is one of significant interest
in this work: the Authorization header. This header contains authorization, or rather,
authentication information. The value enclosed within the authorization header represents
the credentials for a particular client. There are various formats allowed for this header,
and the basic and bearer are two of them. In particular, the JSON Web Token (JWT)
follows the bearer schema for token-based authentication.

Basic Authentication. The most simple format to enclose credentials into the HTTP
request. The format inside the header is simply username:password, with a colon
between the username and the private password. If the server requests authorization of
type basic, the web browser is typically capable of automatically requesting this to the
user through a prompt form [46]. Basic authentication carries several security risks due
to its nature. First of all, the password which is not encrypted, is sent over every HTTP
request. And most importantly, the password is stored by the web browser, and thus may
be accessed at a later point by a cross-site request forgery (CSRF) attack [14].

Bearer Token. Any party in possession of this security token, i.e., a bearer, can use
the token in any way that other parties in possession of it can [23].

JSON Web Token (JWT). Compact and self-contained mechanism for securely trans-
mitting information as a token with a JSON structure. A JSON Web Token is composed

12

of three parts: header, payload, and signature. The payload includes one or more claims
about the user and their identity. To preserve the authenticity and integrity of the payload,
a digital signature from the token issuer is attached. The header simply includes details
about the nature of the token and the algorithm used for the signature [24]. Among the
distinct types of tokens, the JWT follows the schema for a typical bearer token.

2.1.5 Authorization Models

As part of an access control system, an authorization model is the abstraction that
interprets a security policy from the real world into well-defined and unambiguous rules
that are enforceable by a computer system [44]. By doing this abstraction, the complexity
is reduced, leading to a better understanding for the implementation of the security policy.

Depending on the security policy requirements, a different authorization model may
be applied. These requirements range from confidentiality and integrity to reliability and
usability. Some of the most popular authorization models are briefly described below:

Discretionary Access Control (DAC) This authorization model is commonly instati-
ated using an Access Control Matrix, where each column describes a list of
resources or objects that may be accessed, and rows represents the users. The value
in the intersection defines if the user has access to the resource.

Mandatory Access Control (MAC) Regulations on resources are mandated by a cen-
tral authority, and one such form is the multilevel security policy. In contrast to
DAC, this model distinguishes between processes and users to control indirect
accesses.

Role-based Access Control (RBAC) The security policy matches naturally to the struc-
ture of the organization that the users are part of. In this model, the identity of the
user is not as relevant as the role of the user within the organization.

Attribute-based Access Control (ABAC) Access to a resource in ABAC is given de-
pending on the attributes presented by the subject. If the attributes given by the
subject fulfill the access control requirements of the resource, then access is granted.
Inherently, access control is more granular in ABAC than in RBAC.

Usage Control (UCON) Designed for heterogenous environment such as Internet of
Things, the UCON authorization model provides continuous authorization at
different stages: before, during, and after access to a resource. If the permissions
to a subject change at any of these stages, then access is revoked.

Capability-based Access Control (CapBAC) Based on the concept that an entity may
hold some token, ticket or key as a capability, which may be used to grant access
to a resource.

13

2.2 OSGi Architecture
Usually called an architecture, the OSGi framework provides a general-purpose, secure,
and managed Java framework that supports the deployment of bundles [2]. A bundle is
the extensible application unit in the OSGi framework. In short, OSGi-based applications
are made up of bundles, and each of these may expose their internal business logic so
that other bundles make use of it. A runtime implementation is capable of dynamically
downloading, adding and removing bundles as necessary. Each bundle has an identifier
which includes its version, so it becomes possible to have different versions of the same
bundle running at the same time.

There are several implementations of the OSGi specification, such as Eclipse Equinox,
Apache Felix, Eclipse Concierge, and Knopflerfish. Equinox is the reference imple-
mentation of OSGi and it is used in many big projects, including Eclipse SmartHome
and openHAB. Note that for Eclipse SmartHome, the runtime is bounded by the OSGi
Release 4.2.

2.2.1 Bundles

In typical Java applications, the modular unit of a system is considered to be the class.
In the OSGi framework, the unit of modularization is the bundle, which may be com-
prised of many classes and other resources, such as configuration files or simply static
files. The bundle itself is typically deployed as a JAR file with additional files, like a
Manifest file. Through the use of headers in this file, a bundle can define which Java
packages can be shared to other bundles, and which packages will be imported from
other bundles. Particularly, the Export-Package header is used to share packages, while
the Import-Package header is used to reuse functionality from external bundles.

One of the most relevant headers in the Manifest file is the Bundle-ActivationPolicy.
This header informs the OSGi runtime when this bundle should be activated. To save
memory, for instance, it might be decided to activate a bundle only when it is required by
some other bundle. Otherwise, it might be preferred to always start the bundle right after
the OSGi runtime is initialized.

From the downloading of a bundle until it is executed and possibly stopped there are
some intermediate states. First, a downloaded bundle that is added to the runtime is in
the Installed state. Automatically, it attempts to change its status to Resolved if no
problems occur. If there is a problem with the bundle, it will stay in that state. Otherwise,
it will change to Starting, and from it to the Active state. At this point, the logic from
the bundle activator starts executing, which can be something as simple as printing text
in the console, or as complex as registering a service to the OSGi runtime. Finally, if the
bundle is stopped or removed, it changes to Stopping before going back to Resolved.

14

2.2.2 Servlet Registration

A servlet is a special Java class used to extend a web server by providing dynamic web
content [41]. It can be used to serve static HTML pages or files, or may also serve
dynamic content depending on the state of the system and user input.

Traditional web applications in Java require a container, such as Tomcat or Jetty,
where the servlet is published, so that it can be accessed through HTTP. Java servlets
make use of an application deployment descriptor, more widely known as the web.xml
file. This configuration file specifies which URL the servlet is mapped to. Thus, when a
GET request arrives at a matching URL, it is redirected to the correct method.

In the OSGi framework this deployment descriptor, i.e. the web.xml file, does not
exist. However, just as a bundle has to be registered to the runtime, the servlet, and its
respective HTTP response methods also have to be registered to it. Two mechanisms to
perform this registration are the Http Service and Http Whiteboard, and as part of
these, the Http Context.

Http Service. As an interface of the org.osgi.service.http package, it is used to
allow other bundles in the OSGi runtime to dynamically register resources, servlets, and
filters into the URI namespace of the Http Service. As the Http Service is not always
available, a ServiceTracker object is used to check its availability for registration [4].

Http Whiteboard. The OSGi Http Whiteboard, introduced as part of OSGi Revision 6,
simplifies the registration of servlets, filters, resources, listeners, and servlet contexts into
the OSGi runtime [16]. Popularly, the Http Whiteboard pattern is described as “don’t call
us, we’ll call you”, due to not needing a tracker to check for availability at all times [22].

Http Context. For both approaches, registration of servlets and resources may only be
done through the use of an HttpContext object. This object defines the methods that
the Http Service can call to get information about a registration of a servlet or resource.
Particularly, a class may extend the HttpContext class to override its handleSecurity
method. This method may be used to flexibly implement authentication and authorization
mechanisms [3].

2.2.3 REST and JAX-RS Connector

A popular, yet constrained architectural style for web applications is the Representation
State Transfer (REST). The REST architecture has a set of well-defined operations for
a web service to retrieve, create, update and delete data [19]. These operations directly
translate to the HTTP methods: get, post, put, and delete. This architectural model is
particularly handy for creating web services which serve data in data formats like JSON
or XML.

15

In Java, the specification that supports this architecture is known as JAX-RS: Java
API for RESTful Web Services [42]. This is only the specification, thus the actual
implementations are various: Jersey, Apache CXF, JBoss, among others.

For the OSGi architecture, a native implementation of the JAX-RS specification
does not exist. However, a connector that makes the Jersey JAX-RS implementation
compatible with the OSGi runtime exists, though it is no longer maintained [54].

2.3 Internet of Things
The Internet of Things, commonly referred as IoT, is a dynamic and heterogenous
environment where sensing devices may interact with each other for some particular
purpose. These devices, also known as things, heavily vary in terms of capabilities and
resources. Their capabilities may range from radio identification devices (RFID), infrared
sensors, global positioning systems; to smart watches, smartphones, smart televisions,
etc. [1]. The most important aspects for these devices is that they can gather some kind of
data from the real world, and their capability of transmitting it to another point. Usually,
the devices may interact without human intervention, also known as Machine-to-Machine
(M2M) communication. Due to the wide diversity of capabilities among sensing devices,
interoperability within a common framework is a challenge, especially due to vendor
lock-in and obscure interfaces. Still, it is desirable that the devices can transparently
communicate among themselves in a local scope, e.g. inside a wireless sensor network
(WSN), and in some cases, even to an external scope, e.g. through the Internet [60].

The local scope in which these devices operate is called a sensor network. A wireless
sensor network (WSN) is the common environment for the sensing devices, and is usually
managed by one or more gateways. Whenever a thing needs to relay information to
another device, it would go through the respective gateway. In the past, it was sufficient
to structure some kind of client-server architecture, where clients (e.g. things) directly
communicate to the server, and subsequently the server decides how to handle the rest.
However, this model is not very scalable. As there is a very large number of things in
IoT, it is much more manageable to have a distributed solution that employs gateways
as relay points. Additionally, the gateway not only serves as a communication medium,
but it is also responsible for making the necessary translations between protocols if the
devices need to send or receive data through the Internet.

The actual devices employed and the nature of the data gathered depend on the
specific application for the IoT. These applications may be categorized into smart home,
smart grid, smart city, smart transportation, and so on. Regardless of the application, data
has to be gathered from the real world and transmitted to another point. Considering the
diversity of devices and applications, it is no trivial task to unify or to support interop-
erability between devices, especially if they use different protocols for communication.
Indeed, interoperability, device naming in a network, finding other devices, are just some
examples of the challenges that need to be addressed when designing an IoT application.

16

To take on these issues, a variety of architectures and solutions have been proposed by
Alaba et al. [1].

Given this amount of issues present in the architecture and development of IoT
applications, it is no surprise that much of the focus given both in research and industry
has been directed to the functional requirements. Non-functional requirements such as
performance, user experience, security, among others, have been left as an afterthought.
Nevertheless, due to the nature of constant exchange of information in IoT, security
becomes an inevitable concern [60].

In consequence to recent developments on laws pertaining data privacy [7], more
emphasis has given to the security of information systems that use data from users. Thus,
incorporating security into a software product is no longer a courtesy, but a legal and
ethical duty toward the users. Data encryption, authentication, authorization mechanisms,
non-repudiation, are just some of the possible measures that should be taken into account
when designing a secure system, and the IoT is no exception to this. For IoT in particular,
a central part of the security concerns is related to the data collected by the sensing
devices, and how and where it is transmitted. Depending on the nature of this data, the
privacy might be essential to safeguard, especially during transit to other devices and
outside a private network.

2.3.1 Layers and Applications

As described by Alaba et al. [1], the IoT can be classified in three layers: application,
perception, and network. This abstraction makes it simpler to study security requirements
for IoT, as each layer may encounter different security threats.

Application layer This is the uppermost layer, and the one that is visible to the end
user. Although there is no universal standard to build an application layer within the
IoT, the structure itself is dependent on the service it offers. Applications such as smart
healthcare, smart grid, smart city, and intelligent transportation make up this layer.
A communication protocol for the application layer is used to exchange information
between two endpoints within the same application. In terms of architecture, the applica-
tion layer is usually comprised of middleware, a machine-to-machine communication
protocol, a service support platform, and cloud computing. To further elaborate, we
describe some common applications of the Internet of Things:

Smart grid System of electrical distribution with different operational and energy mea-
sures, such as meters, smart appliances, and energy-efficient resources. A smart
grid is reliable, improves savings, reduces operational costs, and enhances energy
independence.

Smart healthcare Provides an individual-focused environment, with attention on con-
trolling and monitoring the state of each patient. It depends on very small sensing

17

devices which are placed inside or outside the human body. The information
captured by these devices is handled by the smart healthcare system.

Smart city Constituted as a smart environment where city services are provided by
multiple parties to support a high quantity of users in a distributed manner. The
goal is to improve or create services offered to the population.

Intelligent transportation New technologies include radio frequency identification
(RFID) tags, sensors, and actuators. Incorporating these new devices to trans-
portation systems brings new functions, particularly for real-time location and
movement tracking, and monitoring temperature. Some specialized devices may
be able to accomplish vehicle-to-vehicle communication, opening up the possi-
bilities for automatic driving, for instance. Additionally, the deployed networks
can then observe aspects like travel time, routing decisions, queue lengths, air
pollutants, traffic congestion, etc., which may serve as basis for improvement of
transportation.

Perception layer The perception layer is divided in two parts: perception node and
perception network. Data is captured and controlled in the perception node through
sensors and controllers. Meanwhile, the instructions for handling and sending the data is
managed through the perception network. The technologies involved in the perception
layer range from ZigBee, RFID, sensor nodes, and sensor gateways, which are described
as follows:

• RFID (radio frequency identification). A technology that allows the identification
of devices present by the use of tags.

• Sensor node. Any device that captures and processes sensory information from
the environment, and subsequently transmits it to other nodes.

• Sensor gateway. Central point of establishment of a Wireless Sensor Network
(WSN) to which many sensors nodes are connected to. Its task is to translate
protocols for communication between two nodes that may not be in the same
WSN.

Network layer The network layer is in charge of storage awareness and data transmis-
sion to the perception layer. Additionally, it may provide information security through
firewalls, for instance. The main components of this layer include mobile devices, the
Internet, and cloud computing.

18

2.3.2 Communication Scenarios

Depending on the intended activities performed by the objects in an IoT application,
there are three scenarios for communication: basic, extended, and cloud computing.
These communication scenarios are described as follows:

Basic In this domestic communication scenario, two things communicate within a single
wireless sensor network. Usually, a gateway in the same WSN is used to transmit
data between a pair of things.

Extended In this scenario, the end point is isolated from the WSN where the object
resides. Thus, a larger public network, such as the Internet, may be used to reach
this end point. The gateway is responsible for doing the translations between
protocols.

Cloud computing In the cloud computing scenario, data is simply pushed to storage in
the cloud. Thus, the role of the gateways is to continously gather data from the
things under its control, and push it to a database in a remote server in the cloud.

2.3.3 Security Challenges

Due to the pervasive nature of the IoT devices, it is expected that some concerns arise
regarding the security of the data being handled. Depending on the specific application,
different security requirements may be demanded. In the case of smart health, for
example, captured data from the patients should be kept private and confidential, and it
should be ensured that this data is transmitted only to those with the clearance to do so.

Among the different communication scenarios inside IoT applications, many ques-
tions arise regarding the security concerns of transmitting data from one point to another.
In the basic scenario, for instance, what happens if an alien or malicious object tries to
join the WSN to communicate with the objects in the network? There is also the case that
an eavesdropper may listen to the communication between every object and the gateway.
The latter is not very big issue, as the communication technology (Bluetooth, ZigBee)
between an object and the gateway often includes encryption, rendering a passive attack
useless. However, it is still important to consider how the registration of an object
with a gateway is done, as to prevent counterfeits from malicious entities. Very similar
concerns are present in the other two communication scenarios, with the difference that
the communication now goes through a large public network, e.g., the Internet, and the
same assumptions used in the basic scenario do not hold anymore. For this reason, on top
of the security services employed within the WSN, there is a need for resistance against
passive and active attacks over the public network. Mainly, confidentiality and access
control are the desired properties to have within this insecure network.

Among the existing security services, the ones proposed by Hellaoui et al. [21] and
Alaba et al. [1] are appropriate for their use in IoT. They are described as follows:

19

Authentication Ensuring that the thing in question can be verified to be authentic, i.e.,
that it is what it claims to be. In case of peer authentication, a peer shows that it is
legitimately who it claims to be. In the case of message authentication, it refers
to a message which has not been tampered with, or that it indeed comes from a
certain party. This is typically achieved by using asymmetric encryption.

Access control Different devices and data may require granularity in terms of who can
access what resource. Access control provides the systematic means of granting
and revoking access as required, typically after engaging in authentication.

Confidentiality Ensures that the contents of a message transmitted among peers in
the IoT cannot be meaningfully read by an unauthorized eavesdropper. This is
typically achieved by using symmetric encryption.

Key establishment Provides the means of exchanging a small piece of secret informa-
tion, a key, over an insecure channel. This key is used later on to provide other
services like confidentiality.

Trust establishment Refers to the mechanisms of establishing trust between physical
devices and events. In the event that an application server is compromised, the risk
of having an adversary forge user credentials will be present. A trust mechanism
would verify the network applications, regardless of the location of the physical
devices.

Security in information systems and networks is a topic that has been studied for a
long time now, and many solutions exist to address the requirements that the applications
demand. Even though the IoT paradigm shares many similarities with a conventional
wireless network, there are still differences that impede the direct reuse of existing
solutions for security and privacy [1]. For instance, IoT applications are deployed on
low power and lossy networks (LLN), whereas the Internet is more robust. Furthermore,
there are stricter constraints present in the IoT networks. Constraints in nodes such
as storage, energy, processing, and memory, present a challenge to adopt the exact
same solutions that have been used in other kinds of networks. Moreover, the security
requirements in both contexts may be drastically different. For instance, the sensing
nodes present in the perception layer may not have the computational resources to
employ typical public key cryptography for key exchange and authentication, and instead
they turn to other lightweight alternatives. The application layer, where data sharing
is the most common occurrence, may suffer from lack of privacy and access control.
Finally, the communication protocols in both networks are certainly different: while
a single communication protocol is decided per application on the Internet, different
communication protocols may be used for different layers in the same IoT application.
For example, the Hypertext Transport Protocol (HTTP) is used in the application layer of

20

conventional network, but in IoT, the Constrained Application Protocol (CoAP) is used
for communication.

Among other challenges present in IoT, naming and identification are also of im-
portance. Considering the massive scale of physical devices that may be present in an
IoT application, naming and identification of these objects becomes a complex task [60].
Although very similar to the naming problem in the Internet, naming in IoT is subject
to the heterogenous environment. For this reason, the same naming solution used in
the Internet cannot be directly applied. However, it is suggested that the DNS naming
scheme can be used as a basis to create an appropriate naming scheme for the IoT [60].

As the objects in IoT are constantly communicating among themselves in a Machine-
To-Machine fashion, naming and identification of these objects is essential, not only in
the functional sense, but also in the event of authentication and access control. Indeed, it
would be undesirable to have an identification conflict that inadvertedly authenticates
the wrong entity, and so that it is granted unwanted access to certain parts of the IoT
application.

2.3.4 Security Threats and Attacks

According to Alaba et al. [1], different threats are present in each IoT layer, and thus their
analysis should be abstracted from other details. Table 1 shows some of the identified
threats present in each layer. These threats are related to the hardware components and
network architecture. Due to the large number of different architectures for IoT, there is
not a single solution that mitigates all of these threats.

Table 1. Threats in each IoT as suggested by Alaba et al. [1]

Layer Threats

Physical
Micro-probing, tampering of hard
components, jamming

Link
Collision, unfairness, exhaustion, replay,
meta-data attacks

Network
Neglect, greed, homing, misdirection, traffic
analysis, black holes, meta-data attacks

Additionally, the works by Dhillon and Kalra [12], Zhang et al. [60], and Alaba et al.
[1] briefly mention threats corresponding to specific IoT applications. These threats are:

1. Eavesdropping

2. Man-in-the-Middle-Attack

3. Denial of Service (DoS) attack

21

4. Impersonation/counterfeiting

5. Stolen smart device

6. Parallel session

7. Gateway node bypassing

Unfortunately, cryptographic mechanisms alone are not sufficient to solve all of these
issues, and thus other mechanisms should be considered.

2.3.5 Authentication Models

One of the main security challenges of IoT is achieving peer authentication. Authentica-
tion is a security service that allows one party to verify that the incoming messages come
from the legitimate third party. In IoT, this would mean that a sensor node is receiving
queries from an authorized endpoint, and not from a counterfeit.

Authentication protects against Man-in-the-Middle attacks, and active attacks in
general. In the Internet, this is done through protocols like TLS, which rely on public
key infrastructure (PKI). In IoT, the structure of the network is vastly different to the
structure of the Internet, and thus a different approach is needed. There are four main
approaches to achieve peer authentication in IoT, namely: authentication by gateway,
authentication by security token, authentication by Trust Chain, and authentication by
Global Trust Tree. All these occur in the extended communication scenario, and are
briefly described by Zhang et al. [60] as follows:

Authentication by gateway Gateway takes care of running the authentication mecha-
nisms on behalf of each of the sensor nodes in its WSN. The gateway becomes the
central point of operation for authentication. As such, traffic congestion should
also be considered.

Authentication by security token When two remote nodes want to communicate with
each other, the gateway prepares a security token (e.g. a cookie) with certain
security properties. The end points can then authenticate each other by using this
token, which may have an expiration time.

Authentication by Trust Chain Follows the approach used in public key infrastructure,
meaning that public certificates (X.509) are used along with public-key algorithms
to achieve authentication. This method may be expensive, both computationally
and economically.

Authentication by Global Trust Tree A single central authority oversees authentica-
tion between nodes in any IoT that it has access to. This approach is purely
theoretical, and there are no candidates for it yet.

22

2.4 Eclipse SmartHome and OpenHAB
The smart home is one of the many applications for the IoT. A refrigerator that sends an
message to your phone when it no longer has any milk. An air conditioner that turns on
whenever it becomes aware that the outside temperature is rising above thirty Celsius
degrees. A speaker that plays music whenever you start cooking. These are just some of
the possible scenarios that may occur inside a home with sensing devices that are capable
of interacting with each other. This is no longer a vision for the future or a secluded
experiment. There are already several existing solutions that attempt to bring together all
these devices for more ambitious purposes. One such existing solution is the openHAB
automation software, which the Eclipse SmartHome framework is part of. This chapter
will look at both systems, explain their differences, and how they fit into this work.

2.4.1 OpenHAB

OpenHAB (OH) is a product that focuses on interoperability among all kinds of devices
from different vendors. It accomplishes inter-device interaction through logical modules
called bindings. For example, a smart television from Samsung may not be able to
interact with other devices out of box, but it may be able to do so if the appropriate
binding is developed for the openHAB ecosystem. OpenHAB, as it name implies, is
an open-source software that serves as a hub that brings together a diverse range of
devices through the use of bindings. A binding makes a link to a thing that may be of
either physical or logical nature. For instance, a light switch is undoubtedly a physical
thing, and its state of being turned on or off is part of the data it exposes. Consider
however, a weather service from the Internet that provides weather information such as
temperature, humidity, and precipitation probability. This provider of data is undoubtedly
not of physical nature, but still fits in the model of a smart home. Thus, a binding may
incorporate such a weather service as a thing in the logical sense.

Ironically, openHAB has been often been labeled as Intranet of Things because of
its ability to operate without a connection to the Internet [26]. In Intranet of Things,
all the devices are contained within a Local Area Network (LAN), possibly behind a
firewall, and thus locally controlled. Things connect to openHAB, whenever possible,
instead of connecting to a remote server in the cloud. This is a particular characteristic of
openHAB that attempts to solve vendor interoperability and minimize the risk of losing
privacy. However, it limits the use scenarios that could be implemented, such as having
two independent instances of openHAB communicating with each other to complement
their functions with the data gathered separately.

Two vastly different versions of openHAB currently exist. While the first version,
openHAB1, still receives support, it is mainly the second version, openHAB2 (OH2),
which is currently under active development. openHAB2 was recently released in June
2017, and for this reason, many existing deployments are based on the first version [27].

23

Originally, the whole software stack of openHAB was a single product, i.e., openHAB1.
It included functionality that is not even present yet in the second version, particularly
partial access control and ample configuration options through text files. Eventually, the
core functionality of the project was made part of the Eclipse Foundation as a framework
to develop smart homes: Eclipse SmartHome. Simultaneously, openHAB2 became
the final, end-user solution that made use of several smaller projects and frameworks,
including Eclipse SmartHome. For the rest of this work, openHAB refers to the second
version of the product, i.e., openHAB2.

Figure 1 shows the overall architecture of the openHAB automation software. It is
developed in Java and its core is the Eclipse SmartHome framework. By using Apache
Karaf and Eclipse Equinox it instantiates an OSGi runtime environment [38]. Jetty is
deployed as the HTTP server where resources are exposed through the HTTP protocol.
OpenHAB is highly extensible through the use of Add-ons. Add-ons and extensions may
be used to extend the existing user interface, or to provide the communication bridge with
physical devices (bindings). Add-ons from the previous version may be used through a
special module that performs the necessary adjustments.

2.4.2 Eclipse SmartHome

As the core for the openHAB software stack, Eclipse SmartHome (ESH) provides a
flexible and modularized framework for smart home and ambient assisted living solutions
with a focus on heterogenous environments [50]. The goal of ESH is to offer a solution
for the fragmented market in smart home solutions by offering a medium where vendor-
incompatible devices can be operated transparently.

As in the first version of openHAB, the idea of a binding is reused in ESH. Bindings
implement a thing-specific protocol e.g. ZigBee, and by loading the appropriate binding,
the connection between the devices or services e.g., a TV set or weather service, and
the framework, can be established. Furthermore, the bindings are connected to an event
bus, and this allows to do inter-component communication. Through the event bus, it
is possible to send commands to the device or service, or else to receive status updates
from them.

The architecture of ESH is detailed in Figure 2. In the figure, at least four things are
connected to the ESH framework through its respective bindings. There are two ways in
which activity prompts changes in the things connected: through a user interface (UI)
and automation logic. The UI in ESH is made up of adaptable sitemaps comprised of
dynamic web pages, and this medium allows for interaction with the things through a
web browser. The automation logic is established in terms of rules, which are specified
through configuration files. Additionally, there is also a REST API which is exposed
through certain URIs, not shown in this figure. For all cases, commands may be directed
to the event bus, which are then forwarded to its respective binding. Likewise, status
updates may be shown in the UI, or served to the automation logic to perform more

24

Figure 1. The openHAB architecture based as described in [38].

operations on top of these results. Finally, it is possible to make use of a custom logging
module and console, mostly for development purposes.

Summary. This chapter had two objectives: to introduce relevant concepts about
information security and the OSGi architecture used throughout the rest of this work,
and to give an overview on the security challenges and threats for applications in IoT,
particularly, the smart home application. Finally, it introduces two keystones for this
work: Eclipse SmartHome and openHAB. Eclipse SmartHome, as the core framework
of openHAB, is the focus of the contributions made in this work. An overview of the
architecture of both software stacks is given in this chapter to facilitate the understanding
of the architectural decisions taken later in Chapter 4.

25

Figure 2. The Eclipse SmartHome architecture based on the diagram by Porter [45].

26

3 Related Work
As more sensing devices capable of communication with the cloud become available to
the public, more scenarios take form for the smart home. In consequence, the market
share of smart home solutions is growing accordingly. OpenHAB is but one of the
existing smart home solutions. As an open-source project with a very active community,
openHAB distinguishes itself from other solutions. As part of the focus of this work is
to review the security of openHAB, this section will look at other smart home solutions
from a security and privacy perspective.

3.1 Nest
Nest offers integration of Nest proprietary devices for the smart home, such as ther-
mostats, cameras, doorbells, alarm systems, locks, smoke alarms, among others. Each
of these devices is capable of connecting to a web service in the cloud. Some superfi-
cial details about the protocols and cryptographic primitives used for the device-cloud
communication are disclosed, but the specifics are not published [33].

The Nest apps (mobile and web), thermostats, and cameras connect to the Nest cloud
service using the Transport Layer Security (TLS) protocol, and encrypt the transported
data with AES-128. Particularly, the cameras use a 2048-bit RSA key when establishing
the TLS session. The CO and smoke alarm devices use a proprietary protocol similar to
TLS to establish the secure connection with the cloud service.

The data collected from the Nest devices is stored in Amazon Web Services and
Google Cloud Platform. The privacy and security policies are enforced according to
these particular third-party services [33].

To control and view data from a thermostat, for example, first it has to be paired with
the cloud backend. Then, by touching it (proof-of-posession) it produces a one-time
password which can be entered in the mobile application. If successfully done, the client
is authenticated, and only the user of this mobile application can access and control the
thermostat. Additionally, this can be controlled remotely through the internet, i.e., the
application connects to the cloud backend which forwards commands to the device at
home.

3.2 HomeKit
HomeKit is a smart home solution by Apple which aims to integrate all devices of the
Apple ecosystem. HomeKit uses a secure pairing mechanism to authenticate with an
iDevice, e.g., iPhone, iPad, etc. It employs a propietary HomeKit Accessory Protocol
(HAP) to enable third-party accessories to communicate with home or Apple devices. The
HomeKit Accessory Protocol supports both IP and Bluetooth LE as transport protocols.
The pairing process depends on the transport protocol: for IP, devices have to be in the

27

same network; for bluetooth LE, pairing is peer-to-peer. Moreover, all sessions between
HomeKit accessories and Apple products are mutually authenticated and encrypted [5].

There is also hardware security in place. HomeKit introduced an authentication co-
processor that only members enrolled in their MFi program can put into their accessories.
A commercial HomeKit accessory must include an authentication coprocessor, and addi-
tionally include a Wi-Fi Alliance certificate or Bluetooth SIG certification, depending on
the type of transport for that particular device [5].

In early December 2017, a vulnerability in the Apple ecosystem, including HomeKit,
allowed anyone with a valid MAC address to login as a root in the system [15], without
having to provide valid credentials. It was promptly patched in a security update, followed
by an apology by Apple.

3.3 OpenRemote
OpenRemote is a flexible and open-ended solution for creating home automation envi-
ronments. It is comprised of three components: an online designer software, a controller
(hardware), and an app/panel front end [37]. In OpenRemote, no authentication is en-
forced by default, but it can be enabled through Apache Tomcat’s configuration files.
Furthermore, OpenRemote exposes a REST API which does not require authentication
at all, and thus, no access control is enforced.

There was an effort to allow authentication through Public-Key Infrastructure (PKI)
and transport encryption through the TLS protocol. In the proposed solution, the con-
troller creates public-key certificates for the authorized users and acts as a certificate
authority (CA). However, this solution never got integrated into the main branch of
development [32].

3.4 ThingsBoard
ThingsBoard is a more general open-source solution for the IoT. It may be used to design
solutions for smart farming, grid, telemetry, home automation, etc. [56].

With respect to security, the technical documentation covers two aspects: transport
encryption and device authentication. For the former, the system administrator of
a ThingsBoard instance can configure it to support HTTPS connections and MQTT
transports. However, DTLS for CoAP is not supported yet. For device authentication,
ThingsBoard can support various types of device credentials. Current release provides
support for token-based credentials for all protocols, and additionally supports X.509
certificates for the MQTT protocol [57].

28

3.5 The Thing System
The Thing System is an open-source set of highly-extensible software components
developed in node.js and network protocols to connect things, independent of their
vendor, into a heterogenous environment [35].

The Thing System enforces by default access control mechanisms, and recognizes
that a single user may have more than one client (e.g. smart phone, laptop, tablet, etc.).
If there are no users configured, the first access to the system instance may create the
first user. Every time a user is created, a time-based one-time password is sent by the
system. Since the process is compliant with the RFC 6238 [36], Google Authenticators
and other programs may be used for web access.

Any created client may have one role out of: master, resident, guest, device, cloud.
The first three roles are intended for regular users with a varying degree of privilege
inside the core functionalities of The Thing System. The cloud role is assigned to services
accessed through the Internet, and the device role, as its name implies, is assigned to
devices to be made part of the environment [35].

For the future, it is planned to implement a special sort of firewall to filter incoming
traffic to the IoT environment. For this mechanism to work, the devices would need to
reside on a separate network, however.

3.6 Home Assistant
As an open-source home automation platform created with Python 3, it aims to automate
control of all devices at home in an heterogenous environment.

In terms of security, Home Assistant follows an approach of Intranet of Things for
two reasons: to maintain functionality even when an Internet connection is not available,
and to keep private data from leaving the local instance [6].

As part of the documentation, several guidelines are given to protect the security of a
Home Assistant instance, even if it is enclosed within a private local area network [9].
These recommendations are valid for any typical web application hosted in a private
network that is open to the Internet. In particular, some advice is given on how to integrate
Home Assistant into the Onion network through Tor for the sake of preserving privacy
on top of confidentiality. Other than this, the command line tool for Home Assistant,
HASS, supports authentication for a single user. The credentials are hard-coded into
the configuration files, and once a user has authenticated, it is capable of enabling IP
filtering [8].

3.7 Discussion
As the works presented in this chapter are complete solutions for home automation, they
do not strictly relate to the contributions made for openHAB and Eclipse SmartHome.

29

However, they were included in this work from a security point of view, i.e.: by giving
an overview on what kind of security mechanisms and access control policies are defined
and enforced for each of them.

In particular, Home Assistant is the one that mostly resembles openHAB in terms of
functionality and security philosophy. For the sake of preserving privacy, both systems
can fully operate without having an active Internet connection, thus ensuring that no data
from the devices is stored in third-party servers. Since it is assumed that no unauthorized
party has access to the private network, and therefore the system UI and REST API,
no serious access control mechanisms are implemented. However, this is not sufficient
for either because users may not be of equal standing, and some operations could be
restricted for a particular user.

The access control mechanisms in The Thing System is, in part, what openHAB
should strive to incorporate. With a role-based access control model, it is possible to
differentiate users according to their privileges. Furthermore, by keeping profiles of
devices and cloud services, it reduces the risk of spoofing. However, the authorization
model implemented in The Thing System is not suitable for a escalable environment,
since the quantity of things and their capabilities will only increase with time.

The current state of OpenRemote and ThingsBoard greatly resemble that of open-
HAB. All three support the use of encrypted connections through HTTPS, although
configuration varies depending on the web server for each solution. OpenRemote could
have in place a reasonable access control mechanism for its REST API if the external
contribution had been adopted.

Due to their proprietary nature, HomeKit and Nest are the most distant from openHAB
in terms of interoperability and design. HomeKit and Nest mandatorily require an active
Internet connection at all times, and thus all data is stored in the cloud. Meanwhile,
openHAB can operate out of the box without depending on access to the Internet. In terms
of security, HomeKit introduces a novel hardware approach which would prevent device
spoofing. In contrast, Nest provides a proof-of-posession authentication mechanism to
authenticate with the web services. Due to the specific nature of the hardware, neither
solution could be implemented in openHAB.

Summary. This chapter introduced six smart home applications which cover overlap-
ping use cases, but follow distinct approaches in terms of security. Nest and HomeKit,
particularly, take advantage of their hardware to enforce an additional layer of authenti-
cation and integrity protection, respectively. OpenRemote had an initiative to support
public key infrastructure among peers inside the smart home ecosystem. ThingsBoard,
although a more general solution for IoT, offered support for token-based credentials for
its compatible protocols. The Thing System adopted the means to enforce access control
after the first user gets registered with a time-based one-time password. Finally, Home
Assistant has the capability to expose itself to Tor, as an effort of privacy protection.

30

4 Security Challenges in OpenHAB
As a first step towards analyzing the security of IoT models, architectures, and ap-
plications, a brief study on the state of the art was conducted. From the reviewed
literature, security challenges and threats in IoT were identified, along with possible
countermeasures that provide data confidentiality, peer authentication, non-repudiation,
etc. However, the studied proposals tended to oversimplify and deviate from the issues
present in real-world, customer-ready solutions. This observation made it clear that
there was a disconnect from academic publications and commercial software. Most
products, however, do not make public their internal components, and tend to make
their own architectural decisions instead of following standards for, e.g. encoding data
transmitted between things. Among the existing solutions for a smart environment, the
openHAB smart home software was chosen as a case study in terms of security. The
decision was made for various reasons: first, it is open-source, and thus it is possible to
conduct white-box testing, secondly, it is vendor-agnostic, and finally, because of the
active participation of the community in this project.

4.1 Security of OpenHAB
A binding is the logical piece of the system that links a thing to openHAB. Through
the User Interface (UI) or REST API calls, a user is able to view, and possibly modify
the channels, i.e. state values, of the things connected to the system. Temperature and
humidity numbers, on/off state of light switches, information about currently playing
media, etc., are some examples of these channels. In the case of the least complex
adversary, it may be assumed that they can eavesdrop all incoming and outgoing data
packets through the network. Thus, the first effort was to see how the data is moving
around the system. Through the use of Wireshark and tcpdump, it was observed that
the transit of data occurred in two possible ways: through the cloud, or through the
openHAB instance. Some devices, such as light switches, do not require to communicate
with a server in the Internet to set or unset the state of the switch. As this may be done
internally, the binding provides the means to operate the thing directly through the User
Interface of openHAB. The other case involves devices which need to communicate to a
remote server through the Internet to store its data in a third-party service. The binding,
in this case, connects to the remote server through an external REST API, and gets the
data required from it. This is more evident in a logical thing, e.g., a weather service. The
binding for the weather service connects to the remote server through an API to query
data about temperature, humidity, etc., of a particular location.

In short, there are three communication scenarios in openHAB: internal (thing-
openHAB), external with logical thing (openHAB-remote web service), and external with
physical thing (openHAB-remote web service-thing). For each, the security implications
differ.

31

Internal communication between things and the openHAB instance is typically done
under a wireless network that is encrypted with AES, for example. Because of this, an
eavesdropper is only able to get the transmitted data if they can break AES, which is
computationally infeasible for a sensible amount of time for even a 128-bit key. Thus,
data confidentiality in this scenario depends entirely on the security of the wireless
network where the openHAB instance and the thing reside. Evidently, if the attacker
gains access to this private network, all intercepted communication will be openly visible.

The second communication scenario, where the openHAB instance communicates
with a remote server in the cloud, has an additional point of vulnerability, namely
eavesdropping and tampering within the Internet. An eavesdropper that does not have
access to the private network may still find a way to obtain the data during transit after
it has left the router and is moving through the Internet. Returning to the example of
the weather service, a binding may be programmed to get the current temperature and
humidity every 10 minutes. This e.g., HTTP request leaves the openHAB instance and
goes into the router, and then it travels through distinct points along the Internet. The
remote server accepts the request if valid, and returns a response with the appropriate
values in a format like JSON or XML. If this request is not encrypted (e.g., by using
TLS), then the eavesdropper may easily learn the data sent back in the HTTP response.

For the third scenario, communication of a thing with a remote server through
openHAB was the first obstacle in the security analysis. Because of simplifications in the
literature about the IoT architectures, it is typically assumed thatthere is no connection to
the Internet to accomplish a task that may be performed within the local ecosystem [1].
However, due to different vendors and devices, the actual solution tends to depend on a
remote connection. For this reason, the security requirements in the literature, such in the
work by Tae Kim [55], do not quite fit. These differences do not make the communication
in openHAB inherently less secure, but in that case, the security analysis should be more
flexible and consider these design variations.

This last scenario hints at the implication of guaranteeing secure communication
between things, the openHAB instance, and the remote servers. Indeed, if the request
performed by a binding is pointed at a location through HTTPS, then the request will
perform the TLS protocol, encrypting the communication. The main question in this case
is then, is it guaranteed that the request will point to an HTTPS location? The answer
to this could only be found by looking at the source code of the bindings present in
openHAB. Recall that through a binding, openHAB is able to send commands to things,
and in this particular scenario, through a remote server.

When analyzing the source code, it becomes evident that the URL chosen to direct
the request is decided at the time the binding was written. This implies that the security
of each binding is independent from each other. If a binding points to a plain HTTP
URL, then it is only that binding that is subject to effective eavesdropping, and it would
not affect other bindings added to the system.

32

1 p u b l i c c l a s s C o n n e c t i o n {
2 p r i v a t e f i n a l S t r i n g iCloudApiURL = " h t t p s : / / fmipmobi l e . i c l o u d .

com / f m i p s e r v i c e / d e v i c e / " ;
3 p r i v a t e f i n a l S t r i n g iCloudAPIRequestDataCommand = " / i n i t C l i e n t " ;
4 p r i v a t e f i n a l Gson gson = new GsonBu i lde r () . c r e a t e () ;
5 p r i v a t e f i n a l S t r i n g d a t a R e q u e s t = gson . t o J s o n (I C l o u d D a t a R e q u e s t .

d e f a u l t I n s t a n c e ()) ;
6

7 p r i v a t e f i n a l b y t e [] a u t h o r i z a t i o n ;
8 p r i v a t e URL iCloudDataRequestURL ;
9

10 p u b l i c C o n n e c t i o n (S t r i n g a p p l e I d , S t r i n g password) th row s
MalformedURLException {

11 iCloudDataRequestURL = new URL(iCloudApiURL + a p p l e I d +
iCloudAPIRequestDataCommand) ;

12 }
13

14 p u b l i c S t r i n g r e q u e s t D e v i c e S t a t u s J S O N () th row s IOExcep t ion {
15 HttpsURLConnect ion c o n n e c t i o n = c o n n e c t (iCloudDataRequestURL) ;
16 S t r i n g r e s p o n s e = p o s t R e q u e s t (c o n n e c t i o n , d a t a R e q u e s t) ;
17 c o n n e c t i o n . d i s c o n n e c t () ;
18 r e t u r n r e s p o n s e ;
19 }
20 }

Code Snippet 1. HTTP connection for iCloud binding.

Code Snippet 1 is an example of a binding, in this case for the iCloud service.
This binding is meant to establish a connection to the iCloud services, for example,
to learn the status of a device. The method requestDeviceStatusJSON is responsible
for establishing the connection and returning the result as a JSON structure stored in
a String. In the context of security, the important thing to note is that the connection
is established through the use of the HttpsURLConnection class, which supports https-
specific features, such as the encrypted communication through the TLS protocol [40].
Under this assumption, it is expected that the communication will be encrypted, so that
an eavesdropper will not be able to read the plain data.

To verify these findings, Wireshark was used to observe the packets sent from and to
the openHAB instance listening on port 8090. Naturally, there were many TLS sessions
packets captured in Wireshark, some of these originating from unrelated services installed
in the host. One of the established sessions was for a maps web service, used in the
Netatmo binding installed in this local openHAB instance. Thus, the use of Wireshark
confirmed that the HTTP requests are being encrypted with TLS as defined in the
corresponding bindings. To protect the privacy of the author, the captured data packets
will not be disclosed.

As hinted, the use of HTTPS in bindings is of great importance due to the underlying

33

Transport Layer Security protocol, also known plainly as TLS. According to the specifi-
cation by the IETF, TLS provides communications security over the internet, and it is
designed to prevent eavesdropping, tampering, or message forgery [13]. The specifics
of the protocol are of no relevance in this work, thus it suffices to stress the fact that
relying on it will offer confidentiality and integrity to the data sent between the openHAB
instance and remote servers.

4.2 openHAB: Intranet of Things
An openHAB instance is typically installed on a small server, which may even be a
Raspberry Pi, deployed on some port, 8080 by default. Due to the configuration of
openHAB, this port may only be accessed by end devices in the same wireless network.
It has been asked by the community if it is possible to access the openHAB instance from
outside of the private network, i.e., through the Internet [48]. Exposing an application
to the outside may be trivial from a functional standpoint, but it carries its own set of
security risks. Denial-of-Service attacks, unrestricted URL access, injection, session
hijacking, etc., are only some of the possibilities that could affect an application open to
the Internet. These risks are well documented by projects such as the OWASP Top Ten
in IoT [10]. In the case of openHAB particularly, an adversary does not need to explore
too much before finding out an apparent vulnerability: the lack of authentication, and
therefore, absence of access control.

As mentioned in Chapter 2.4.1, to preserve privacy it is recommended to keep
the openHAB instance from being exposed to the Internet. This may satisfy a weak
security requirement, but it limits the use cases for the smart home. For any smart home
application it is desirable to have the possibility of secure remote access, e.g., from the
office, and openHAB is no exception. For this reason, openHAB offers three options
for secure remote access: VPN connection, myopenHAB Cloud Service, and running
openHAB behind a reverse proxy [39]. The common strategy is to make the transmission
channel as safe as possible to prevent any unauthorized party from entering the private
network. Although these options make secure remote access viable, any adversary that
gains access to the private network ends up gaining full control over openHAB. Thus,
the security against adversaries is as strong as the security of the channel.

Relying purely on the communication channel makes it very difficult to make the
openHAB instance securely exposed to the Internet, even if openHAB, and not the things,
is the only point of external access [26]. The main reason for this is that there is no
authorization mechanism in place for alllowing or forbidding access to users. Thus, any
individual that can access the openHAB instance is capable of altering the system state
and retrieving any piece of data, as there is no lock in place. This threat is minimized
by making the instance accessible only from inside the private network, taking the
appearance of “Intranet of Things”. Therefore, the security of openHAB is as strong as
the security of the private network. An intruder gaining access to the network implies

34

allowing them access to all of the openHAB capabilities, thus breaching the privacy and
confidentiality of the data in use.

At a first glance, one would think that authentication and access control should be
implemented and managed by the final product, i.e. openHAB. It turns out, however,
that as a core feature that involves restricting access to the REST end points and servlet
extensions, it is more appropriate to fit the authentication and authorization logic inside
the Eclipse SmartHome framework. Recall that Eclipse SmartHome is a subset of
the openHAB distribution that holds the core functionalities for automation of sensing
devices. Thus, access control, and inherently, authentication, became of interest to the
Eclipse SmartHome community.

4.3 Community Discussion on Role-Based Access Control
Starting from the situation that there is no access control mechanism in place, the
community has long discussed the implications of implementing authentication, of any
kind, and role-based access control. As the project long advanced without any foresight
on access control, it has become increasingly difficult to implement any simple solution
directly, as it was not considered in the original design. In fact, not much documentation
and examples can be found for authentication and access control for OSGi-based projects,
in contrast with more traditional frameworks.

One such OSGi-based project that implements authentication and access control
is Apache Karaf, a container for the OSGi runtime, which provides security based on
JAAS (Java Authentication and Authorization Service) [25]. This embedded security
system can internally control access to OSGi services, console commands, etc. This is
an interesting scenario as it relies on the basic authentication framework offered by Java,
instead of relying on more heavy frameworks like Apache Shiro or Spring Security.

The community in openHAB was inspired by JAAS-based attempts at security and
proposed a solution that made use of annotations and basic authentication. The changes
of several OSGi bundles were made into a pull request that eventually merged into the
master branch of the project [28]. First of all, the changes themselves were designed as a
sort of authentication API, rather than a unique, concrete implementation. Meaning that
a good portion of the code was made up of interfaces and abstract classes that defined
methods to create and manage credentials and authentication providers. A concrete
implementation offered with these changes was based on the JAAS realm with basic
authentication. Basic authentication, in this case, means that the credentials are enclosed
inside an HTTP request as a pair of the form username:password. These credentials are
enclosed as part of the HTTP request header, and the concrete implementation is meant to
extract these details from the HTTP request header to instantiate a Credentials object.
Moreover, by relying on the JAAS realm, it was possible to use Java annotations in
the code. These annotations serve to regulate access depending on the roles that the
authenticated user has. If the authenticated user has the required role, then access is

35

granted to the method or resource. Code Snippet 2 shows that to add a new thing to the
openHAB environment, the role of admin is needed. If the user is not authenticated, or
has a different role, then access to the method is forbidden.

1 @POST
2 @RolesAllowed ({ Role .ADMIN })
3 @Consumes (MediaType . APPLICATION_JSON)
4 p u b l i c Response c r e a t e (S t r i n g language , ThingDTO t h i n g B e a n) {
5 / / Thing i s added h e r e
6 }

Code Snippet 2. Role-Based method restriction in ESH.

There are several problems with this approach, however. First, access control is not
managed through a database or any other dynamic means, but is instead static. It is
defined inside the source code, and there is no way to change permissions at runtime.
This means that the project would need to be built and deployed again in order to take
in any changes to the authorization policy. Secondly, it offers no clear view on how the
resources would have their access controlled in a fine-grained manner. For example, let
the status of a light bulb be of public access, but only authorized users may flip its switch
from the user interface; others may only view the state of the light bulb. Moreover, a
different thing could have the opposite behavior: to hide its status, but make it public to
control it. As openHAB is vendor and thing-agnostic, relying on annotations makes it
impossible to deal with such fine-grained details in the authorization mechanism.

Following the design patterns in Apache Shiro, the authentication API for Eclipse
SmartHome was designed to have the means to plug in any authentication providers as
desired. These providers may provide the authentication service either locally or remotely
(e.g. through OAuth). The goal was to have a flexible solution that may accept different
kinds of authentication mechanisms to satisfy the many different use-case scenarios. The
concrete implementations would be done by the products relying on Eclipse SmartHome,
such as openHAB. Different products may have different scenarios and constraints for
authentication, and so it makes sense to have some flexibility in this aspect. For example,
a new user may prefer to login through their Google credentials instead of setting up a
new account for the particular SmartHome instance.

A common problem with the attempted authentication API was that there was no
way to turn it off, and thus it automatically rejected all incoming requests without an
authorization header [29]. Normally, this is not a problem for most web applications, as
there typically is a redirect method that leads to a login page, where the user can input their
credentials. The authentication API, however, offered no login form, as it only supported
basic authentication out of the box. Indeed, without a way to inject the credentials into
every HTTP request, the changes were mostly unusable. This was a problem especially
for new users, who would have no idea on what to do whenever a “Forbidden access”
page would come up. Originally, it was thought that if no authentication provider was

36

available, then access control would not be enforced, making it an optional feature.
However, it turned out that not detecting any authentication provider made no change
whatsoever, leading to all requests to the REST end points being rejected. In the end,
it was decided to disable the authentication API bundle from the default runtime, so it
would not impede the normal functioning of openHAB.

From this experience, it was decided it would be desirable to have a way to turn
off access control completely, in the case that the user does not have the means to
authenticate and manage permissions. At first glance, this is a very counter-intuitive
feature to have, as any adversary could push toward disabling security, instead of having
to break it through more advanced methods.

As a product of the discussion at the time, the Eclipse Smarthome community
created a document to define the requirements and use cases to cover the access control
needs [31]. An important distinction in this document was the emphasis made on the
variety of resources, and their respective implementation constraints. Resources do not
only encompass things connected to the system, but also automation rules, third-party
add-ons, UI sitemaps, system settings, etc. The document delved into the management
of the resources present in the system, rather than the actual security mechanisms that
had to be employed.

4.4 Misuse Cases
In an attempt to identify which were the aspects that more resembled requirements with
respect to security, rather than management of resources, misuse cases were written
according to the state of the Eclipse Smarthome framework at the time. Thus, the
provided requirements document included the use cases that served as a basis to identify
the misuse cases.

A misuse case, as the name suggests, is meant to cause the opposite consequence of a
typical use case. That is, instead of designing the system to cover a certain functionality,
the intention to pinpoint which functionalities or actions should not be permitted in the
ideal system [49]. A misuse case diagram shows mis-actors, i.e. adversaries, initiating
misuse cases to cause some anomaly by taking advantage of legitimate use cases.

Often, it is not obvious to identify misuse cases, as there are many angles and attack
vectors that may go unnoticed to everyone but the adversary. Thus, it becomes more of a
“brainstorming” exercise to attempt to detect possible threats, and an initial response to
mitigate them. In this case, misuse cases were written to find out which threats could be
posed by adversaries, and how these could be mitigated.

Figure 3 depicts on the left use cases extracted from the requirements document.
Next to these, some misuse cases are shown to be initiated by mis-actors. Finally, for
each of these misuse cases, a mitigation strategy is presented accordingly. It is important
to stress that the purpose is not to show how these threats can be instantiated into a
vulnerability, or to delve into the details of the mitigation strategy. The idea of misuse

37

cases is to have some kind of initial understanding of threats to lead the discussion on
security and further analyze it. Unfortunately, the Eclipse Smarthome community was
not very interested in following up the discussion in this perspective, but preferred to
focus on the more technical, hands-on, implementation of access control mechanisms to
secure resources from the automation environment.

Figure 3. Misuse Cases for Access Control in ESH.

Summary. This chapter showed the security challenges present in openHAB. First,
the security of openHAB was analyzed at a communication level between things, the
openHAB instance, and remote REST APIs. Then, openHAB design decisions about
“Intranet of Things” were discussed. Next, the long-time held community discussion
about authentication and access control was introduced, and its points were summarized.
Finally, misuse cases were written to illustrate possible security threats and adversaries.
Mitigation strategies were given accordingly.

38

5 Proposed Security Mechanisms
Security in openHAB may be improved through the implementation of access control
mechanisms. Access control requires, as a prerequisite, a reliable client authentication
mechanism. This chapter proposes a suitable implementation of a JSON Web Token
authenticator for Eclipse SmartHome, the core framework of openHAB. As one of the
components of an access control system, an authorization model has to be defined before
a security policy can be enforced. Thus, an authorization model suitable for the smart
home ecosystem is proposed as part of the contributions for openHAB.

5.1 Token-Based Authentication Procedure
On 15th February, 2018, a videocall meeting was held by the interested parties in the
community with the purpose of clarifying the requirements gathered in the document
mentioned in chapter 4.3, and set priorities accordingly. Part of the discussion also
meant to address how previously attempted solutions might be of use for the future
implemention of authentication and access control. Among the most relevant agreed
points was the use of JSON Web Tokens (JWT) for stateless authentication. Stateless
authentication inherently reduces the effort needed to manage user sesions in the backend,
thus the idea was supported. It was also decided that the specifics of the access control
mechanisms could be decided at a later point in time, since the most important priority
was adding authentication to the Eclipse SmartHome framework. Therefore, further
effort in this work was directed toward the implementation of a JWT-based authentication
mechanism compatible with the Eclipse SmartHome architecture, and thus, possibly
compatible also with the openHAB software stack.

Typically, all kinds of token-based authentication mechanisms follow these steps [34]:

1. The client sends its credentials (e.g. username, password, fingerprint) to the server.

2. The server attempts to authenticate: if valid, it generates a token that includes
expiration time.

3. The server stores a copy of the token and associates it with the user.

4. The server sends the token to the client.

5. In every subsequent request, the client sends the token to the server.

6. For each request, the server extracts the token from the request, and looks up the
user associated to it to perform authorization.

7. If the token is expired, the server generates a new token and sends it to the client.

39

The JSON Web Token (JWT) holds some peculiarities to other tokens. The primary
difference is that this token includes a digital signature by the party that created it, e.g.,
the server. Thus, some adaptations would have to be applied to this procedure. Consider,
for example, the limitations in the user interface in Eclipse SmartHome to provide web
forms for inputting the credentials. For this reason, credentials are sent first through basic
authentication, since the web browser takes care of asking for the credentials. Therefore,
the proposed authentication mechanism is as follows:

1. The client sends credentials through the basic authentication natively supported by
the web browser.

2. The server extracts credentials and, if these match an existing user, it generates a
JSON Web Token (JWT), appending to it the username and any additional fields,
including expiration time and the server’s digital signature of the JWT digest.
Server sends the JWT to the client.

3. The client attaches the JWT on any subsequent request.

4. For every request, the server extracts the JWT and verifies the digital signature. If
valid, it takes the username and other claims, and performs authorization on the
requested resource.

5. If the JWT is expired, the server requests credentials through basic authentication,
and if these are valid, it generates and serves a valid JWT.

What may immediately stand out in this proposal, in contrast with the typical pro-
cedure, is the inclusion of the username as part of the fields in the JWT. Typically, a
username is not considered to be confidential and, although it normally is not made
public, it gives the adversary no significant advantage on stealing a user’s data. In
fact, if only resource access control is the goal, then the username does not need to be
included. It would be sufficient to include the claims regarding the permissions on access
to the resources. Since the validity of the token is relying on the digital signature, it
is guaranteed that the claims are valid. Moreover, for the sake of maintaining forward
securtiy, a JWT is only renewed if the valid credentials are presented again. An adversary
may, in some manner, retrieve an expired legitimate token. If this expired token would
be presented to the server, then the server could present the adversary with a fresh token.
Finally, as hinted, the most important distinction is the use of digital signatures within
the token. Indeed, if an adversary tried to impersonate a legitimate user through guessing
usernames, it would not work, as the signature would not verify on the server’s end.
The security of the signature is as strong as the security of the signature, which may be
RSA-2048, for instance.

The aforementioned procedure was designed with the assumption that, at all times,
an HTTPS connection is present and thus, communication is protected through the

40

TLS protocol. Otherwise, credentials and JWTs could be intercepted at any time by an
adversary. A digital signature does not offer data confidentiality, after all.

5.2 Architectural Implications of Authentication
As a multi-layered automation software solution, it is not trivial to implement authentica-
tion, no matter the type, so that all parts of the system are covered by it. Recall that in
chapter 4.3 it was stated that resources in the smart home ecosystem do not only involve
things, but also many different aspects of the system. Moreover, Eclipse Smarthome is
designed according to the OSGi architecture, and thus all modules are maintained as
bundles. These bundles contain, among other things, typical Java servlets and REST
endpoints. If the methods present inside these Java classes have to go through some kind
of check before being executed, then access control may be implemented. This chapter
gives details on the architecture and current development affairs, but this is introduced
only as a base to delve into the proposed solution for authentication with JWT.

The idea, in general, is that any incoming HTTP request would have to be caught
before running whatever Java method it attempted to access. For typical OSGi applica-
tions, the use of filters is most commonly encouraged. A filter is a mechanism that may
be applied before or after a Java method is accessed. Thus, it becomes a natural choice
to employ filters for the purpose of access control.

It turns out, however, that regular filters do not work for the methods involving REST
endpoints, such as a GET operation to return a list of all connected devices. These
methods are actually based on the JAX-RS specification for a REST API in Java. In short,
they require a different type of filters, which use a set of classes different from the regular
OSGi filters. Aditionally, to make use of the Jersey implementation of JAX-RS in OSGi
applications, it is needed to use a third-party connector. Previous work on authentication
for Eclipse SmartHome made use of this connector and the special filters. There were
problems with using these special filters, however: first of all, the role permissions could
only be set within the code, thus it was not a good mechanism for managing permissions
at a more granular scale; secondly, due to classloading problems, it is a problem in some
scenarios to make use of the JAX-RS third-party connector; and finally, this special filter
is not compatible with traditional servlets (i.e., those that do not involve the JAX-RS
REST API).

As part of the OSGi release 6 specification, filters may be registered to any resource
through a special mechanism called the “whiteboard pattern”. Current implementation
of the Eclipse SmartHome runtime is bounded by the OSGi 4.2 specification, and due
to constraints in the rest of the software stack, it is not immediately feasible to update
the runtime to a newer specification. Part of the work by the community was to create a
bridge between the OSGi 4.2 runtime and the newer whiteboard pattern functionality. For
some time, this work attempted to implement JWT authentication for a ficticious, patched
runtime that supported the use of the filters registered by the whiteboard. However, it was

41

later decided that this bridge was not trivial, and the community halted its development.
As this particular development of the Eclipse Smarthome framework halted, a new

direction involving traditional servlet security was considered for this work. As part
of servlet registration to the OSGi runtime, an entity called HttpContext has to be
provided. This entity provides the means to intercept HTTP requests before they reach
the servlet, and thus it becomes the point where authentication and authorization may
be implemented. Originally, this approach was discarded because the REST endpoints
did not support the use of a HttpContext shared with the other servlets. The key in
this case is that both groups of servlets, the traditional and the REST servlet, run under
different application contexts. What this means is that, even if a traditional servlet handles
authentication properly, this information would not be propagated to the REST endpoints,
and thus authorization mechanisms would not be enforced. In the months of March and
April, however, part of the community started an effort to combine, or rather, to bridge
the provided HttpContext among servlets and REST endpoints, virtually creating a
single application context for all servlets.

Figure 4 shows at a very high level the underlying architecture of the Eclipse
SmartHome runtime. At the lowest level, the Jetty HTTP server and servlet engine
is running. On top of it, there are several servlets running separately. Part of these
servlets may be associated as being traditional, while a particular servlet, the REST
servlet, runs under different conditions. The REST servlet is used to serve resources,
typically in the form of JSON structures, that contain data about things, items, channels,
etc. The Chart and Icon servlets are more traditional servlets and thus, run under the
same shared application context. Meanwhile, the REST servlet is shown to run under an
isolated application context. Thus, the solution worked on by the community is to bridge
both application contexts and therefore have a commonly shared HttpContext [30].
Yellow boxes represent the entities or resources that should have its access restricted
according to a specified policy. Green boxes represent the possible solution to the prob-
lem, whereas the red boxes are the attempted solutions in previous years. Particularly,
“JAX-RS Custom ContainerContext” was an attempted solution by the community, which
had many problems when ported into the final openHAB software stack. An alternative
solution to it, the “JAX-RS Custom Filter” was originally planned to be implemented for
this work, but the notion was discarded after understanding the limitations of this kind
of filter, since it would not enforce authorization for the rest of the servlets (e.g. Icon
servlet).

Initial results by the community [30] showed that it was indeed possible to make
the HttpContext shared by the components that needed access control. Taking these
results into account, work in the direction of a custom HttpContext started. For this,
the merged HttpContext requires the existence of an authenticator, i.e. a module that
performs the authentication logic, and thereafter the module that performs authorization.
Figure 5 shows how the authenticator is merely a black box performs the logic of a

42

Figure 4. Architecture breakdown into servlets.

certain type of authentication, such as the basic or token-based. The decision is based
on the received HTTP request: depending on whether it has a session identifier (e.g.
cookie), an authorization header, or neither. And if it does have one of these, to which
authenticator the credentials would be directed to. Implementation details for the basic
and JWT authenticators are introduced in Chapter 5.3. Form authentication is left as
future work.

After the process of authentication, what follows is authorization. The authorization
itself depends on the access control policies decided for each particular resource and the
privilege level of the user requesting access. This work focuses on authentication, and
thus does not include the implementation of a particular access control policy. However,
a proposal for access control is made in Chapter 5.4.

5.3 Implementation of Authenticators
To model the sequence of events ocurring during the intended authentication procedure,
a sequence diagram was written and is shown in Figure 6. This diagram shows the most
compelling scenario: where the client interacts the first time with a servlet to get access
to a resource. Clearly, as no credentials are provided at this time, the servlet demands
basic authentication, and from the received valid credentials it generates a JSON Web
Token (JWT). This token is reused in all subsequent requests by the client. Note that the

43

Figure 5. Addition of authenticators into the architecture.

authorization policy is not included into this sequence of events. Thus, authorization
becomes a binary aspect: if credentials are valid, then access is granted to the resource,
regardless of its nature. Due to simplification, this diagram is only considering the use of
valid credentials. In the actual implementation, invalid credentials result in a “Forbidden
Access” response.

The implementation of the authenticators was made into the auth bundle of the
Eclipse SmartHome framework. Due to the hierarchical nature of this project, many
details will be omitted. The core of the authenticator is located as part of the custom
HttpContext code located in this bundle.

As an interface class of the Http Service OSGi feature, HttpContext includes
a method handleSecurity which, as the name implies, handles the security for the
specified request to the servlet. As long as the servlet is registered with the cus-
tom HttpContext, every request into the servlet will go through the handleSecurity
method.

1 c l a s s Cus tomHt tpCon tex t imp lemen t s H t t p C o n t e x t {
2 b o o l e a n h a n d l e S e c u r i t y (r e q u e s t , r e s p o n s e) {
3 i f (r e q u e s t . g e t H e a d e r (" A u t h o r i z a t i o n ") == n u l l \
4 && r e q u e s t . g e t H e a d e r (" Cookie ") == n u l l) {
5 r e s p o n s e . addHeader ("WWW- A u t h e n t i c a t e " , \
6 " B a s i c rea lm = \ " T e s t Realm \ " ") ;
7 r e s p o n s e . s e n d E r r o r (H t t p S e r v l e t R e s p o n s e . SC_UNAUTHORIZED;
8 r e t u r n f a l s e ;
9 }

10 i f (j w t A u t h e n t i c a t e d (r e q u e s t)) {
11 r e t u r n t r u e ;

44

Figure 6. Authentication sequence diagram.

12 } e l s e i f (b a s i c A u t h e n t i c a t e d (r e q u e s t)) {
13 username = getUsername (r e q u e s t) ;
14 f r e s h T o k e n = g e n e r a t e J w t (username) ;
15 r e s p o n s e . addHeader (" S e t -Cookie " , f r e s h T o k e n) ;
16 r e t u r n t r u e ;
17 } e l s e {
18 r e s p o n s e . s e n d E r r o r (H t t p S e r v l e t R e s p o n s e . SC_UNAUTHORIZED) ;
19 r e t u r n f a l s e ;
20 }
21 }
22 }

Code Snippet 3. Core implementation of CustomHttpContext.

The simplified code snippet shows the core part of the HttpContext that intercepts
requests and performs authentication from the provided HTTP header. As shown in the

45

code snippet, after the JWT has been generated, it is given to the client as a cookie. This
way, no logic has to be implemented to manage token storage in the client side (e.g.
through local storage using HTML5). In subsequent requests, the cookie is presented to
the server, and from it, the token is extracted and verified.

To handle the creation and verification of a JWT, a third-party library, Nimbus, was
used [11]. This library also provides more complex features such as encryption of the
JWT via symmetric key encryption. These features are not currently considered for this
work. As part of the basic structure of the JWT, a signature from the host is included at the
end of the claims (e.g., username, permissions). For the proof of concept, an RSA-1024
key is generated as a singleton during runtime. Using the singleton pattern ensures that
multiple private keys do not exist simultaneously, which would cause conflicts during
signature verification. The freshly created RSA key is then used to both generate and
sign the JWT, as shown in the simplified Code Snippet 4.

1

2 p r o t e c t e d S t r i n g g e n e r a t e J w t (S t r i n g username , S t r i n g c l a i m) {
3 RSAPublicKey pub l i cKey = (RSAPublicKey) g e t K e y P a i r () . g e t P u b l i c () ;
4 RSAPrivateKey pr ivKey = (RSAPrivateKey) g e t K e y P a i r () . g e t P r i v a t e () ;
5 JWSObject j w s O b j e c t = new JWSObject (
6 new JWSHeader . B u i l d e r (JWSAlgorithm . RS256) . keyID (" 123 ") . b u i l d () ,
7 new Pay load (username)) ;
8 j w s O b j e c t . s i g n (new RSASSASigner (p r ivKey)) ;
9 r e t u r n j w s O b j e c t . s e r i a l i z e () ;

10 }

Code Snippet 4. Generation and signing of the JWT.

Code for the verification of the JWT is omitted as it follows a very similar logic to
JWT generation and signing, but in reverse order. This implies de-serializing the JWT,
loading the RSA public key into some object, verifying JWT using said object, and
finally extracting username and any other claims. In the implementation, the username
need not be extracted, as it is guaranteed that the claims are valid, given that the signature
is valid.

As mentioned, the RSA key is generated once at runtime. Originally, this was merely
be a placeholder for a pre-existing RSA key that is already present in the distribution
of openHAB. This RSA key is used by openHAB for SSH access. This pre-existing
RSA key is stored in a file keys.properties under the etc/ directory of the installation
path of openHAB. However, it turned out that some problems emerged from this idea.
First, the pre-existing RSA key was disabled, i.e. commented, as a security precaution.
Secondly, the key is only enabled after running the Karaf console inside the openHAB
distribution. As Karaf is not included within the Eclipse SmartHome distribution, there
is no pre-existing key. For the first problem, it would be enough to have the openHAB
administrator generate a fresh key pair and store the public and private keys. However,
this is not exactly user-friendly, and thus becomes a problem in terms of security usability.

46

A solution to the overall problem is to leave key generation to the auth bundle and store
it in some file in the local filesystem. When the bundle is activated it will first look
for the file before attempting to generate a new RSA key. As the discussion within the
community has not gotten to this point, the implementation has maintained the idea of
storing the RSA key in memory during runtime. It should not cause problems and, in
case that the bundle is restarted, then due to invalid JWTs, credentials will be requested
again.

The rest of the implementation follows the logic for the basic and token-based authen-
tication mechanisms. The code is currently maintained as two independent repositories:
one that uses the whiteboard pattern [52], and one as a fork of the Eclipse SmartHome
project [51]. The latter does not include the JWT authenticator logic due to class-loading
problems described in Chapter 5.5.

5.4 Proposed Authorization Model
An access control system is typically split up in several phases: defining a security
policy, selecting an authorization model, implementing the model, and enforcing the
policy [44]. As a smart home automation software, it is not trivial to define a security
policy that covers all scenarios, due to the dynamic and multi-purpose devices present.
The implementation of any authorization model emcompasses engineering work tightly
related to the architecture of the system (in this case, the OSGi framework), and thus,
is left out of the scope of this work. However, by acknowledging which resources need
to be restricted through access control, e.g. things, items, channels, system settings;
an authorization model can be proposed independently of the authorization policy and
implementation. Then, when a specific policy is decided by the Eclipse SmartHome
community, the model will not change drastically, and thus, implementation can follow.

For a smart home application, the focus of an authorization model should lean
towards privacy-preservation and usability [44]. Considering that most end users of
the openHAB are not tech-savvy, some options for an authorization model are instantly
discarded. Some models are considered to be too complex to manage and set up, such
as the Attribute-Based Acess Control (ABAC), Usage Control (UCON), and the Access
Control Matrix and List (ACM, ACL).

According to the requirements document written by the Eclipse Smart Home com-
munity, fine-grained access control is desirable [31]. This is, a user with high-level
privileges should be allowed to manage things-related permissions for each registered
user, along with any permissions for sitemaps (User Interface templates), system settings,
and other resources. A fine-grained authorization model that is capable of satisfying
these requirements is the Attribute-Based Access Control (ABAC) model. This model,
however leaves a lot to be desired in terms of usability due to the management of every
single permission as attributes for every user. This kind of management might end up in
user pains, opting users to disable access control for the sake of comfort.

47

Initially, it was considered to make direct use of the Role-Based Access Control
(RBAC) authorization model. However, this kind of model works best when there are
role differences between the users of the system. In the case of openHAB, all users are
typically members of the same household or temporal guests. In that sense, it does not
make much sense to have a role separation between users. However, it is reasonable to
assume that some members of the household may not have the same rights as others to
certain devices. For example, a guest could be allowed to turn on/off the light switch, but
may not be allowed to freely open the front door anytime. Likewise, permissions might
not be equally split even among the permanent residents.

It was observed that the difference between users depended not on roles, but rather on
the capabilities owned by each subject. The Capability-Based Access Control (CapBAC)
overlaps with the idea of dynamically managing capabilities by granting some kind of
token that describes these capabilities [44]. At first, it seems that this idea better fits as an
authorization model for openHAB due to the flexibility to define permissions according
to the capabilities of an entity. This notion is disolved when the implications of CapBAC
are further analyzed, however. First of all, the acceptance of capabilities is managed on a
device-per-device basis, thus capability propagation is difficult. And most importantly,
there is no clear way on how to enforce revocation of capabilities.

A fine-grained, yet usable authorization model that makes use of the concept of
roles as in the RBAC model and that focuses on capabilities, is described as follows.
Consider a set of activities or tasks that may be performed on the Eclipse SmartHome,
and consequently, the openHAB distribution. These tasks may vary from viewing or
changing the status of a device connected to the system, to accessing certain parts of
the sitemaps that serve as the user interface templates. These tasks may be grouped
together as capability sets. For instance, the capability set “speakers-playback” may
include actions such as modifying the speakers volume and even stopping or changing
the track currently playing. Meanwhile, the capability set “speakers-quiet” may allow
access to viewing the track currently playing and decreasing the speakers volume, for
example. Consider a collection of different capability sets designed in advance for every
type of thing, usually encompassed by a binding in the Eclipse SmartHome. Finally,
every user may be assigned a different collection of capability sets, thus preserving the
idea that users may not have equal rights in the smart ecosystem. In that sense, a set of
capabilities is akin to the concept of role in the RBAC model, and every user is assigned
one or more roles, according to the actions permitted to them.

Table 2 shows a sample assignment of capability sets to some users. Every user is
expected to have at least one capability set, which may inherently encompass a number
of permissions for the system. Table 3 offers an example that details the operations that
access would be permitted for a particular capability set. For instance, a user with the
things-all capability set would have access to the REST resource that returns a JSON of
all added things, as well as access to the method that allows registering a new thing to

48

the ecosystem. Thus, the proposed authorization model inspired by both the RBAC and
CapBAC is a sound solution for the access management needs required of the Eclipse
SmartHome and openHAB automation ecosystem.

Table 2. Sample relation of user and capability sets

User Capability Sets
Marian (speakers-quiet, lights-on, doors-close, sitemaps-paper)
Erika (speakers-playback, lights-all, doors-all, sitemaps-all)

Table 3. Sample listings of operations involved for each capability set

Capability Set Involved Operations

speakers-playback
yamahareceiver.internal.state.
NavigationControlState.getCurrentItemName()
ZoneControlState.volume

things-all
rest.core.internal.thing.ThingResource.getAll()
rest.core.internal.thing.ThingResource.create()

The proposed authorization model fulfills the purpose noted at the beginning of this
chapter: satisfying security usability and fine-grained access control. Through the assig-
nation of capability sets, users are capable of setting the permissions without troubling
themselves with complex configuration options. Moreover, through the definition of the
operations involved in a capability set, the developer of a particular binding or component
for Eclipse SmartHome or openHAB is able to translate the access control policy into
capability sets.

5.5 Evaluation
As one of the main contributions for this work, the basic and JSON Web Token-based
authenticators were implemented as a bundle for the OSGi runtime used in Eclipse
SmartHome (ESH). This chapter looks at the resulting authentication bundle and how
it is used alongside the other bundles for the ESH distribution. Recall that the ESH
framework is a core component for the openHAB automation software. Thus, if the
solution does not work in ESH, it will not work on openHAB.

The first successful attempt at implementing the authenticators was made outside the
ESH ecosystem [52]. Instead of relying on the Equinox OSGi runtime 4.2 that ESH is
based on, the deployment was made for Apache Karaf 4.2, which supports up to the spec-
ification of OSGi 6. This implementation included an activator of the bundle, a servlet,

49

and a custom HttpContext to intercept the HTTP request. The goal was to have a servlet
published as an HTTP service in the OSGi runtime. However, any request to this servlet
is intercepted by the handleSecurity method of the custom HttpContext, which de-
cides if the request goes through or not. In this case, it contained the logic for basic and
JWT authentication. This implementation was first built with Maven using $ mvn clean
install, and then deployed to Apache Karaf as a stand-alone bundle with $ install -s
mvn:org.dreamland./org.dreamland.whitefilter/1.0.0-SNAPSHOT. Inside Karaf,
executing http:list showed that the installed bundle exposed an HTTP service pub-
lished in the /whitefiltered path, which represented the resource servlet to be secured.

Accessing the servlet resource through e.g. curl, without any credentials, gets a re-
sponse: “HTTP ERROR 401. Problem accessing /whitefiltered. Reason: Unauthorized”.
Passing the hard-coded, valid credentials by adding the -u parameter to curl gets a 200
OK response from the web server. If the servlet was accessed from a web browser, then
the server returns a cookie alongside the response. This cookie, a very long string, is
where the JSON Web Token is stored. In subsequent HTTP requests, the cookie is sent to
the server to perform JWT authentication. The response by the servlet does not change,
however, so by observing the Karaf log in /system/console/log it can be confirmed
that the JWT authentication worked flawlessly. JWT revokation due to expiration is not
implemented, and therefore the same token may be reused as long as the same RSA key
is being used by the server to verify the signature of the JWT.

The next step in the evaluation of the implementation was to relocate the authen-
tication logic into the core bundles of the Eclipse SmartHome. A similar procedure
was followed as in the first step, except that the bundle was built from the package
org.eclipse.smarthome.auth.jwt. First, the logic for basic authentication was put
into a custom HttpContext as before. A test resource servlet was also included in this
bundle. The activator, however, used the HttpService and ServiceTracker to register
the servlet and custom context as an HTTP service in the OSGi runtime. For the previous
deployment, the registration was made under the whiteboard pattern supported by OSGi
6 implementations.

Up to the experimentation of the basic authentication, everything was replicated
exactly under the ESH environment. However, when attempting to include the third-
party library, Nimbus, problems started to arise. Particularly, a persistent class-loading
problem for this library could not be solved, not even with the support of a very ac-
tive developer of the Eclipse SmartHome and openHAB. The exact error is as follows:
Missing constraint: Import-Package: com.nimbusds.jose, which suggests
that the JAR file is not recognized by the runtime. The usual approach for includ-
ing third-party libraries into a bundle for ESH is to create a lib directory in the root
of the bundle, and put the respective JAR there. Then, the build.properties and
MANIFEST.MF files have to be changed to load the classes from the JAR. This same
approach has been followed in other bundles in the ESH distribution, such as the

50

org.eclipse.smarthome.model.persistence bundle. However, not even replicat-
ing the same structure as this other bundle made it possible to recognize the Nimbus
JAR.

Essentially, the implementation of the basic and JWT authenticators was successfully
deployed into the OSGi runtime in Karaf. The testing of the deployment showed no flaws
when initiating HTTP requests via curl or the web browser. The deployment of the basic
authenticator for the OSGi runtime in ESH was succesfully replicated. It effectively
prevent unauthorized access to a servlet resource. However, the deployment of the JWT
authenticator for ESH ran into class-loading problems, and thus its effective functioning
could not be verified.

Summary. This chapter showed in detail the heart of the contributions made in this
work for Eclipse SmartHome and consequently, openHAB. As an important contribution
to securing openHAB, a JWT authenticator was implemented in Java according to the
OSGi architecture. Finally, a fine-grained, yet usable authorization model that uses the
concept of capability sets was proposed for the smart home ecosystem. Afterward, the
proposed implementation of basic and JWT authenticators for the ESH ecosystem was
evaluated in two steps. A stand-alone, OSGi-based ecosystem running in Karaf was
used as the first step of evaluation. As this was an independent deployment, there were
no class-loading issues with the third-party library used for JWT verification, Nimbus.
The JWT and basic authenticators worked as proposed in this deployment. The second
stage of evaluation was made within the ESH ecosystem. In this deployment, class-
loading issues were found within ESH that impeded the use of Nimbus. Thus, only the
basic authenticator for securing servlet resources could be successfully tested in this
environment.

51

6 Conclusion and Future Research Directions
This work gave an overview of the security challenges present in applications for Internet
of Things, particularly in the domain of smart homes. It analyzed the security mechanisms
employed in openHAB and Eclipse SmartHome, especially in terms of access control
and privacy. Upon observing the lack of authentication and authorization mechanisms, a
JSON Web Token-based authenticator was implemented according to the principles of the
OSGi framework. An additional basic authenticator was also implemented as a fallback
mechanism in case the client cannot store a JSON Web Token as a cookie. Finally,
a fine-grained, yet usable authorization model was proposed for Eclipse SmartHome
and openHAB. This authorization model distinguishes between users who may have
overlapping permissions, but should not have equal control among all resources of the
smart home ecosystem.

6.1 Contributions
As one of the main contributions, a custom HttpContext was successfully implemented
to intercept all incoming requests toward the registered resource servlet. Depending
on the value returned by the handleSecurity method, access to a resource was either
allowed or forbidden. Based on this behavior, the authentication logic via a JSON Web
Token was implemented within the aforementioned method. In the evaluation of this first
step, JWT authentication was successfully enforced for all client requests to the servlet:
clients with an invalid token, or with no token at all were denied access to the servlet
resource. As the second step of the implementation, a secondary basic authenticator was
implemented which demanded credentials from the client’s web browser as a prompt.
The evaluation was performed in two stages. The first stage was made outside the ESH
runtime, in an isolated OSGi environment, under Karaf as container. Both the basic
and JWT authenticators were effectively able to authenticate incoming HTTP requests
to the servlet. First time clients were always asked for credentials to authenticate, and
then further requests transitioned into the JWT authentication. Thus, only when the
client provided either valid basic credentials or JWT, access to the servlet resource was
allowed. The second stage of the evaluation made use of the same authentication logic,
but deployed under the ESH OSGi runtime. Due to class-loading problems, the JWT
authenticator was not able to be tested. However, the basic authenticator, which did not
depend on external libraries, effectively restricted access to the servlet resource if the
credentials were not provided in the header of the HTTP request.

The second contribution for Eclipse SmartHome and openHAB was the proposal of
a fine-grained, yet usable authorization model. This model was inspired by the RBAC
and CapAC models, and adjusted accordingly to fit within the smart home paradigm.
Most importantly, the concept of capability sets is used to encompass resources and
functionalities of the smart home ecosystem. Users get assigned capability sets to reflect

52

an access control policy that maps the authority of a user to specific capabilities of the
smart home ecosystem. A capability set could be defined as part of the definition of a
binding, for example.

6.2 Future Research Directions
There are several endeavors in terms of implementation that may be considered for
future work. The most apparent one is related to the class-loading problems in Eclipse
SmartHome that impede the use of a third-party library for JWT generation and verifica-
tion. Otherwise, it could also be considered to implement a JWT generator and verifier
using the tools provided by the native Java API.

Furthermore, for the sake of usability, it could be considered to implement a form-
based authentication mechanism compatible with the implemented authenticators. After
all, due to the architecture of Eclipse SmartHome, it is not trivial to plug-in a redirect
from every resource to a web form for authentication.

In terms of JWT management and forward-security, it would be desirable to have an
expiration date for the generated JSON Web Tokens. For this, a renewal procedure should
be implemented. If the token has already expired, then credentials would be requested
once again through an encrypted transport (e.g., HTTPS). Additionally, it could also
be considered to encrypt the JWT according to the specification, for the sake of adding
another layer of confidentiality protection.

Furthermore, it could be considered how an RSA key can be obtained before the
authenticators are called for JWT generation and verification. An option could be to
generate the key pair during deployment of ESH or openHAB.

Regarding the overall architecture of ESH, it is still not clear how to make use of
the authenticator for the REST API. At the time of writing, the bridge of HttpContext
between the two kinds of servlets (traditional and REST) has not been made in the
development branch of Eclipse SmartHome, and thus experimentation is not yet possible.

As the authenticators were implemented as black boxes, a proper user management
database or filesystem is not yet in place. It is of interest how existing solutions for
storage of user profiles e.g., LDAP, relational databases, could be adapted into the OSGi
architecture for ESH.

A long existing problem for the ESH community regarding turning off access control
should also be considered in solutions intended for production. Creating a backdoor in to
bypass security is never a good idea, after all. Instead, it could be considered that access
control is enabled for the first time after a user has been created. Thus, there would be
always at least one user that satifies the security policy.

Furthermore, a concrete definition and implementation of authorization mechanisms
based on the proposed model could be explored. Thereafter, a re-evaluation of the access
control mechanisms may be carried out.

53

Finally, this work looked at the scenario of authentication within the ecosystem, but
as Internet of Things, there are other authentication scenarios. By employing OAuth,
for example, a user may choose to login through e.g., Google, Facebook, Twitter, etc,
expanding the use cases and options for users.

Summary. This chapter finalizes this work by giving some final remarks on the contri-
butions proposed for securing openHAB and Eclipse SmartHome through user authenti-
cation and authorization. In terms of authentication, basic and JWT authenticators were
implemented according to the OSGi framework. For authorization, a model inspired
by RBAC and CapBAC was proposed with fine-grained access control and usability in
mind. Following up from this work, several future research directions may be considered.
Future work may encompass further implementation efforts on the authenticators, both
local and remote; design and implementation of local management of users (e.g., through
LDAP), and setting up access control after registration of the first user. Moreover, a
concrete authorization implementation based on the proposed model could be explored.

54

Bibliography
[1] Fadele Ayotunde Alaba, Mazliza Othman, Ibrahim Abaker Targio Hashem, and

Faiz Alotaibi. Internet of things security: A survey. Journal of Network and
Computer Applications, 88(Supplement C):10–28, 2017. ISSN 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2017.04.002. URL http://www.sciencedirect.
com/science/article/pii/S1084804517301455.

[2] OSGi Alliance. OSGi Service Platform Release 4 Version 4.2 Core Specification.
https://www.osgi.org/release-4-version-4-2-download/, June 2009.

[3] OSGi Alliance. Interface HttpContext, OSGi Service Platform Ver-
sion 4.2. https://osgi.org/javadoc/r4v42/org/osgi/service/http/
HttpContext.html, 2010.

[4] OSGi Alliance. Interface HttpService, OSGi Service Platform Ver-
sion 4.2. https://osgi.org/javadoc/r4v42/org/osgi/service/http/
HttpService.html, 2010.

[5] Apple Inc. Using the HomeKit Accessory Protocol Specification. https:
//developer.apple.com/support/homekit-accessory-protocol/. Date ac-
cessed: 2018-02-12.

[6] Eric Brown. Secure home automation, without
clouds or dedicated hubs. http://linuxgizmos.com/
secure-home-automation-without-clouds-or-dedicated-hubs/, June
2016.

[7] European Comission. 2018 reform of EU data protection rules. https://ec.
europa.eu/commission/priorities/justice-and-fundamental-rights/
data-protection/2018-reform-eu-data-protection-rules_en. Date
accessed: 2018-05-15.

[8] Home Assistant community. Home Assistant // HASS Configurator. https://www.
home-assistant.io/docs/ecosystem/hass-configurator/#feature-list, .
Date accessed: 2018-05-13.

[9] Home Assistant community. Home Assistant // Securing. https://www.
home-assistant.io/docs/configuration/securing/, . Date accessed: 2018-
05-13.

[10] OWASP community. OWASP Internet of Things Project. https://www.owasp.
org/index.php/OWASP_Internet_of_Things_Project, . Date accessed: 2018-
02-15.

55

http://www.sciencedirect.com/science/article/pii/S1084804517301455
http://www.sciencedirect.com/science/article/pii/S1084804517301455
https://www.osgi.org/release-4-version-4-2-download/
https://osgi.org/javadoc/r4v42/org/osgi/service/http/HttpContext.html
https://osgi.org/javadoc/r4v42/org/osgi/service/http/HttpContext.html
https://osgi.org/javadoc/r4v42/org/osgi/service/http/HttpService.html
https://osgi.org/javadoc/r4v42/org/osgi/service/http/HttpService.html
https://developer.apple.com/support/homekit-accessory-protocol/
https://developer.apple.com/support/homekit-accessory-protocol/
http://linuxgizmos.com/secure-home-automation-without-clouds-or-dedicated-hubs/
http://linuxgizmos.com/secure-home-automation-without-clouds-or-dedicated-hubs/
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://www.home-assistant.io/docs/ecosystem/hass-configurator/#feature-list
https://www.home-assistant.io/docs/ecosystem/hass-configurator/#feature-list
https://www.home-assistant.io/docs/configuration/securing/
https://www.home-assistant.io/docs/configuration/securing/
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project

[11] Connect2id. Nimbus JOSE + JWT. https://connect2id.com/products/
nimbus-jose-jwt. Date accessed: 2018-04-01.

[12] Parwinder Kaur Dhillon and Sheetal Kalra. Secure multi-factor remote user authen-
tication scheme for Internet of Things environments. International Journal of Com-
munication Systems, 30(16):e3323, 2017. ISSN 1099-1131. doi: 10.1002/dac.3323.
URL http://dx.doi.org/10.1002/dac.3323. e3323 IJCS-16-0515.R1.

[13] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, RFC Editor, August 2008. URL http://www.rfc-editor.org/
rfc/rfc5246.txt. http://www.rfc-editor.org/rfc/rfc5246.txt.

[14] Avi Douglen. Is BASIC-Auth secure if done over HTTPS?
https://security.stackexchange.com/questions/988/
is-basic-auth-secure-if-done-over-https. Date accessed: 2018-05-
15.

[15] Jonny Evans. Apple apologizes, issues MAC login security patch.
https://blogs.computerworld.com/article/3239027/apple-mac/
apple-apologizes-issues-mac-login-security-patch.html. Date ac-
cessed: 2018-02-12.

[16] Apache Felix. Apache Felix HTTP Service. https://felix.apache.org/
documentation/subprojects/apache-felix-http-service.html, November
2017.

[17] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616, RFC Editor, June 1999. URL http://www.rfc-editor.
org/rfc/rfc2616.txt. http://www.rfc-editor.org/rfc/rfc2616.txt.

[18] Sanjay Goel and Hany A. Shawky. Estimating the market impact of security
breach announcements on firm values. Information & Management, 46(7):404–410,
2009. ISSN 0378-7206. doi: https://doi.org/10.1016/j.im.2009.06.005. URL http:
//www.sciencedirect.com/science/article/pii/S0378720609000895.

[19] W3C Working Group. Web Services Architecture. https://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/#relwwwrest, 2004.

[20] Mark R. Heckman. The Difference between Data Security and Pri-
vacy. https://www.uscybersecurity.net/cybersecuritychannel/
the-difference-between-data-security-and-privacy/. Date accessed:
2018-05-10.

56

https://connect2id.com/products/nimbus-jose-jwt
https://connect2id.com/products/nimbus-jose-jwt
http://dx.doi.org/10.1002/dac.3323
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://security.stackexchange.com/questions/988/is-basic-auth-secure-if-done-over-https
https://security.stackexchange.com/questions/988/is-basic-auth-secure-if-done-over-https
https://blogs.computerworld.com/article/3239027/apple-mac/apple-apologizes-issues-mac-login-security-patch.html
https://blogs.computerworld.com/article/3239027/apple-mac/apple-apologizes-issues-mac-login-security-patch.html
https://felix.apache.org/documentation/subprojects/apache-felix-http-service.html
https://felix.apache.org/documentation/subprojects/apache-felix-http-service.html
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.sciencedirect.com/science/article/pii/S0378720609000895
http://www.sciencedirect.com/science/article/pii/S0378720609000895
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
https://www.uscybersecurity.net/cybersecuritychannel/the-difference-between-data-security-and-privacy/
https://www.uscybersecurity.net/cybersecuritychannel/the-difference-between-data-security-and-privacy/

[21] Hamed Hellaoui, Mouloud Koudil, and Abdelmadjid Bouabdallah. Energy-efficient
mechanisms in security of the internet of things: A survey. Computer Networks,
127(Supplement C):173–189, 2017. ISSN 1389-1286. doi: https://doi.org/10.
1016/j.comnet.2017.08.006. URL http://www.sciencedirect.com/science/
article/pii/S1389128617303146.

[22] Jan Willem Janssen and Marcel Offermans. Felix HTTP. Paving the road
to the future. https://events.static.linuxfound.org/sites/events/
files/slides/Felix%20HTTP%20-%20Paving%20the%20road%20to%20the%
20future_0.pdf. Accessed: 2018-05-12.

[23] M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token
Usage. RFC 6750, RFC Editor, October 2012. URL http://www.rfc-editor.
org/rfc/rfc6750.txt. http://www.rfc-editor.org/rfc/rfc6750.txt.

[24] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519,
RFC Editor, May 2015. URL http://www.rfc-editor.org/rfc/rfc7519.txt.
http://www.rfc-editor.org/rfc/rfc7519.txt.

[25] Apache Karaf. Apache Karaf Manual: Security. https://karaf.apache.org/
manual/latest/security. Accessed date: 2018-03-05.

[26] Kai Kreuzer. Privacy in the Smart Home - Why we need an
Intranet of Things. https://kaikreuzer.blogspot.com.ee/2014/02/
privacy-in-smart-home-why-we-need.html, February 2014.

[27] Kai Kreuzer. openhab2 has arrived! http://www.openhabfoundation.org/
2017/openhab2, January 2017.

[28] Kai Kreuzer and Lukazs Dywicki. Authentication API for ESH. https://github.
com/eclipse/smarthome/pull/2587. Date accessed: 2018-02-15.

[29] Kai Kreuzer and Markus Rathgeb. Authentication API: Add documentation. https:
//github.com/eclipse/smarthome/issues/2620. Date accessed: 2018-02-15.

[30] Kai Kreuzer, Lukazs Dywicki, Mehmet Arziman, and Markus Rathgeb. Add
support for conditional access based on user role. https://github.com/eclipse/
smarthome/issues/579, . Date accessed: 2018-05-14.

[31] Kai Kreuzer, Lukazs Dywicki, Mehmet Arziman, and Markus Rathgeb.
Eclipse SmartHome Security Concept. https://docs.google.com/document/
d/1Vja574ycr2f_1nDdhLheEPdqkRlsvHf2lc_byY2ahzc/edit#, . Date accessed:
2018-02-12.

57

http://www.sciencedirect.com/science/article/pii/S1389128617303146
http://www.sciencedirect.com/science/article/pii/S1389128617303146
https://events.static.linuxfound.org/sites/events/files/slides/Felix%20HTTP%20-%20Paving%20the%20road%20to%20the%20future_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Felix%20HTTP%20-%20Paving%20the%20road%20to%20the%20future_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Felix%20HTTP%20-%20Paving%20the%20road%20to%20the%20future_0.pdf
http://www.rfc-editor.org/rfc/rfc6750.txt
http://www.rfc-editor.org/rfc/rfc6750.txt
http://www.rfc-editor.org/rfc/rfc6750.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
https://karaf.apache.org/manual/latest/security
https://karaf.apache.org/manual/latest/security
https://kaikreuzer.blogspot.com.ee/2014/02/privacy-in-smart-home-why-we-need.html
https://kaikreuzer.blogspot.com.ee/2014/02/privacy-in-smart-home-why-we-need.html
http://www.openhabfoundation.org/2017/openhab2
http://www.openhabfoundation.org/2017/openhab2
 https://github.com/eclipse/smarthome/pull/2587
 https://github.com/eclipse/smarthome/pull/2587
https://github.com/eclipse/smarthome/issues/2620
https://github.com/eclipse/smarthome/issues/2620
https://github.com/eclipse/smarthome/issues/579
https://github.com/eclipse/smarthome/issues/579
https://docs.google.com/document/d/1Vja574ycr2f_1nDdhLheEPdqkRlsvHf2lc_byY2ahzc/edit#
https://docs.google.com/document/d/1Vja574ycr2f_1nDdhLheEPdqkRlsvHf2lc_byY2ahzc/edit#

[32] Vincent Kriek. Security in OpenRemote. https://openremote.github.io/
archive-dotorg/forums/Security%20in%20OpenRemote.html. Accessed on
2018-02-12.

[33] Nest labs. Keeping data safe at nest. https://nest.com/privacy/data/. Date
accessed: 2018-02-12.

[34] Cassio Mazzochi Molin. How token-based authentication works. https://
stackoverflow.com/a/26778123. Date accessed: 2018-04-01.

[35] Blixa Morgan and Brendan T. Hill. The Thing System: The Trouble with Things.
http://thethingsystem.com/things/index.html. Date accessed: 2018-05-
13.

[36] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-Based One-
Time Password Algorithm. RFC 6238, RFC Editor, May 2011. URL http://
www.rfc-editor.org/rfc/rfc6238.txt. http://www.rfc-editor.org/rfc/
rfc6238.txt.

[37] Open Remote Inc. Home Automation. http://www.openremote.com/
home-automation-2/. Accessed on 2018-02-12.

[38] The openHAB Community and the openHAB Foundation e.V. About openHAB.
https://docs.openhab.org/introduction.html, . Access date: 2018-05-13.

[39] The openHAB Community and the openHAB Foundation e.V. Securing access
to openHAB. https://docs.openhab.org/installation/security.html, .
Date accessed: 2018-05-16.

[40] Oracle. Class HttpsURLConnection. https://docs.oracle.com/javase/8/
docs/api/javax/net/ssl/HttpsURLConnection.html, . Date accessed: 2018-
02-20.

[41] Oracle. Lesson 5: Writing Servlets. http://www.oracle.com/technetwork/
java/servlet-142430.html, . Date accessed: 2018-04-15.

[42] Oracle. The Java EE 6 Tutorial. Chapter 20, Building RESTful Web Services with
JAX-RS. https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html,
2013.

[43] Orange. the future of digital trust. https://www.orange.com/en/content/
download/21358/412063/version/5/file/Orange+Future+of+Digital+
Trust+Report.pdf. Date accessed: 2018-05-05.

58

https://openremote.github.io/archive-dotorg/forums/Security%20in%20OpenRemote.html
https://openremote.github.io/archive-dotorg/forums/Security%20in%20OpenRemote.html
https://nest.com/privacy/data/
https://stackoverflow.com/a/26778123
https://stackoverflow.com/a/26778123
http://thethingsystem.com/things/index.html
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.openremote.com/home-automation-2/
http://www.openremote.com/home-automation-2/
https://docs.openhab.org/introduction.html
https://docs.openhab.org/installation/security.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
http://www.oracle.com/technetwork/java/servlet-142430.html
http://www.oracle.com/technetwork/java/servlet-142430.html
https://docs.oracle.com/javaee/6/tutorial/doc/giepu.html
https://www.orange.com/en/content/download/21358/412063/version/5/file/Orange+Future+of+Digital+Trust+Report.pdf
https://www.orange.com/en/content/download/21358/412063/version/5/file/Orange+Future+of+Digital+Trust+Report.pdf
https://www.orange.com/en/content/download/21358/412063/version/5/file/Orange+Future+of+Digital+Trust+Report.pdf

[44] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman.
Access control in the internet of things: Big challenges and new opportunities.
Computer Networks, 112:237–262, 2017. ISSN 1389-1286. doi: https://doi.org/10.
1016/j.comnet.2016.11.007. URL http://www.sciencedirect.com/science/
article/pii/S1389128616303735.

[45] Matt Porter. Building IoT systems with openHAB. https://events.
static.linuxfound.org/sites/events/files/slides/Building%20IoT%
20systems%20with%20openHAB_0.pdf. Date accessed: 2018-05-13.

[46] J. Reschke. The ’Basic’ HTTP Authentication Scheme. RFC 7617, RFC Editor,
September 2015.

[47] Pierangela Samarati and Sabrina Capitani de Vimercati. Access control: Policies,
models, and mechanisms. In Riccardo Focardi and Roberto Gorrieri, editors,
Foundations of Security Analysis and Design, pages 137–196, Berlin, Heidelberg,
2001. Springer. ISBN 978-3-540-45608-7.

[48] scurrier03 and Markus Storm. Exposing OpenHAB 2 to the internet. https://
community.openhab.org/t/exposing-openhab-2-to-the-internet/19513.
Date accessed: 2018-02-15.

[49] Guttorm Sindre and Andreas Opdahl. Capturing security requirements through
misuse cases. May 2018.

[50] Lukas Smirek, Gottfried Zimmermann, and Michael Beigl. Just a smart home
or your smart home – a framework for personalized user interfaces based on
eclipse smart home and universal remote console. Procedia Computer Sci-
ence, 98:107–116, 2016. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.
2016.09.018. URL http://www.sciencedirect.com/science/article/pii/
S1877050916321391. The 7th International Conference on Emerging Ubiquitous
Systems and Pervasive Networks (EUSPN 2016)/The 6th International Conference
on Current and Future Trends of Information and Communication Technologies in
Healthcare (ICTH-2016)/Affiliated Workshops.

[51] Jesus Antonio Soto. ESH Fork with JWT Authentication. https:
//github.com/antoniosv/smarthome/tree/customhttpcontext/bundles/
auth/org.eclipse.smarthome.auth.jwt, April 2018.

[52] Jesus Antonio Soto. Implementation of JWT and Basic Authenticators for
OSGi 6. https://github.com/antoniosv/iot-sec-thesis/tree/master/
org.dreamland.whitefilter, April 2018.

59

http://www.sciencedirect.com/science/article/pii/S1389128616303735
http://www.sciencedirect.com/science/article/pii/S1389128616303735
https://events.static.linuxfound.org/sites/events/files/slides/Building%20IoT%20systems%20with%20openHAB_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Building%20IoT%20systems%20with%20openHAB_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Building%20IoT%20systems%20with%20openHAB_0.pdf
https://community.openhab.org/t/exposing-openhab-2-to-the-internet/19513
https://community.openhab.org/t/exposing-openhab-2-to-the-internet/19513
http://www.sciencedirect.com/science/article/pii/S1877050916321391
http://www.sciencedirect.com/science/article/pii/S1877050916321391
https://github.com/antoniosv/smarthome/tree/customhttpcontext/bundles/auth/org.eclipse.smarthome.auth.jwt
https://github.com/antoniosv/smarthome/tree/customhttpcontext/bundles/auth/org.eclipse.smarthome.auth.jwt
https://github.com/antoniosv/smarthome/tree/customhttpcontext/bundles/auth/org.eclipse.smarthome.auth.jwt
https://github.com/antoniosv/iot-sec-thesis/tree/master/org.dreamland.whitefilter
https://github.com/antoniosv/iot-sec-thesis/tree/master/org.dreamland.whitefilter

[53] William Stallings and Lawrie Brown. Computer Security: Principles and Practice.
Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2014. ISBN
0133773922, 9780133773927.

[54] Holger Staudacher. OSGi - JAX-RS Connector 5.3.1. https://github.com/
hstaudacher/osgi-jax-rs-connector. Date accessed: 2018-05-12.

[55] Jung Tae Kim. Requirement of Security for IoT Application based on Gateway
System. 9:201–208, 10 2015.

[56] ThingsBoard. ThingsBoard IoT Platform. https://thingsboard.io/, . Date
accessed: 2018-02-12.

[57] ThingsBoard. ThingsBoard Architecture. https://thingsboard.io/docs/
reference/architecture/#security, . Date accessed: 2018-02-12.

[58] Michael E. Whitman. Enemy at the gate: Threats to information security. Commun.
ACM, 46(8):91–95, August 2003. ISSN 0001-0782. doi: 10.1145/859670.859675.
URL http://doi.acm.org/10.1145/859670.859675.

[59] Michael E. Whitman and Herbert J. Mattord. Principles of Information Security.
Course Technology Press, Boston, MA, United States, 4th edition, 2011. ISBN
9781111138219.

[60] Zhi-Kai Zhang, Michael Cheng Yi Cho, and Shiuhpyng Shieh. Emerging Security
Threats and Countermeasures in IoT. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’15, pages
1–6, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3245-3. doi: 10.1145/
2714576.2737091. URL http://doi.acm.org/10.1145/2714576.2737091.

60

https://github.com/hstaudacher/osgi-jax-rs-connector
https://github.com/hstaudacher/osgi-jax-rs-connector
https://thingsboard.io/
https://thingsboard.io/docs/reference/architecture/#security
https://thingsboard.io/docs/reference/architecture/#security
http://doi.acm.org/10.1145/859670.859675
http://doi.acm.org/10.1145/2714576.2737091

Appendix

I. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Jesús Antonio Soto Velázquez,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis Securing openHAB Smart Home through User Authentication
and Authorization
supervised by Satish Narayana Srirama and Danilo Gligoroski

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

61

	Introduction
	Problem Statement
	Motivation
	Hypothesis
	Contributions
	Structure

	Background
	Information Security
	Confidentiality and Privacy
	Access Control
	Authentication
	Authentication in the Web
	Authorization Models

	OSGi Architecture
	Bundles
	Servlet Registration
	REST and JAX-RS Connector

	Internet of Things
	Layers and Applications
	Communication Scenarios
	Security Challenges
	Security Threats and Attacks
	Authentication Models

	Eclipse SmartHome and OpenHAB
	OpenHAB
	Eclipse SmartHome

	Related Work
	Nest
	HomeKit
	OpenRemote
	ThingsBoard
	The Thing System
	Home Assistant
	Discussion

	Security Challenges in OpenHAB
	Security of OpenHAB
	openHAB: Intranet of Things
	Community Discussion on Role-Based Access Control
	Misuse Cases

	Proposed Security Mechanisms
	Token-Based Authentication Procedure
	Architectural Implications of Authentication
	Implementation of Authenticators
	Proposed Authorization Model
	Evaluation

	Conclusion and Future Research Directions
	Contributions
	Future Research Directions

	References
	Appendix
	I. Licence

