
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Lembit Valgma

Usable and Sound Static Analysis
through its Integration into Automated

and Interactive Workflows

Master’s Thesis (30 ECTS)

Supervisor: Vesal Vojdani, PhD

Tartu 2018



Usable and Sound Static Analysis through its Integration into Auto-
mated and Interactive Workflows

Abstract:
Static analysis allows software developers to detect and fix many types of errors in code
before it is submitted to a production environment. Despite the availability of sophis-
ticated analysis techniques, many preventable bugs still cause security vulnerabilities
that allow hackers to steal private information. Studies have shown that even though
developers recognize the benefits of static analysis there are many practical usability
problems preventing higher adoption rates.

The challenge is even greater with sound analyzers that could potentially verify the
total absence of specific types of bugs, but at the cost of rejecting some correct programs.
This thesis investigates the current situation of adopting static analyzers in the industry
and proposes an approach of integrating an analysis into the IDE and build system. The
seamless integration of both interactive and automated analysis may enable developers
to adopt sound analysis tools.

A prototype implementation of that static analysis workflow for tainting analysis
in IntelliJ and Gradle is presented. The integration proposed works well for tainting
analysis used in the prototype, but many challenges remain to generalize this to more
complex analyses. The prototype has enabled the exploration of different approaches
to usability and is a useful first step in a larger project aimed at building a user-friendly
sound static analysis framework.

Keywords: static analysis, taint analysis, usability, IntelliJ

CERCS: P175 Informatics, systems theory

2



Automatiseeritud ning interaktiivne tööprotsess korrektse staatilise
analüüsi kasutajasõbralikkuse parandamiseks
Lühikokkuvõte:

Staatiline analüüs võimaldab tarkvara arendajal tuvastada koodis leiduvaid vigu
ning neid parandada enne, kui see jõuab reaalsesse kasutusse. Hoolimata sellest, et
tänaseks päevaks on teada mitmeid häid analüüsimeetodeid, põhjustavad ennetatavad
tarkvara vead siiski katkestusi kriitiliste rakenduste töös ning võimaldavad kolmandatel
isikutel ligipääsu privaatsetele andmetele. Kuigi arendajad on teadlikud staatilise analüüsi
kasutamise eelistest, takistavad mitmed asjaolud siiski selliste vahendite laialdasemat
kasutuselevõttu. Üheks peamiseks probleemiks on anaüüsi vahendite keerukas ning tüütu
kasutatavus.

Veelgi suuremat vastuseisu kohtavad korrektse (sound) staatilise anaüüsi vahendid,
mis lubaksid potentsiaalselt kontrollida teatud tüüpi vigade puudumist programmis.
Nende suureks miinuseks on võimalus vigade (valesti) tuvastamiseks ka osades tegelikult
korrektsetes programmides.

Käesolevas magistritöös uuritakse, mis viisil kasutatakse staatilise analüüsi vahendeid
ettevõtetes ning pakutakse välja, kuidas oleks mõistlik integreerida analüüsi tarkvara
arenduskeskkonda (IDE) ning tarkvara ehitust automatiseerivasse töövahendisse (build
tool). Interaktiivse analüüsi ja automatiseeritud analüüsi tugev integreeritus võib olla
oluline komponent, mis paneks arendajad neid töövahendeid kasutama.

Töö tulemusena valmis ka näidislahendus, mis integreerib lekke analüüsi (taint
analysis) IntelliJ ja Gradle töövahenditesse. Välja pakutud lahendus on sobilik lekke
analüüsi jaoks, aga selle üldistamine keerulisemate analüüsimeetodite jaoks jääb lahtiseks
probleemiks. Näidislahenduse arendus andis võimaluse uurida erinevaid lähenemisi
kasutatavusele ning on kasulikuks esimeseks sammuks suurema lõppeesmärgi poole,
milleks on kasutajasõbraliku korrektse staatilise analüüsivahendi loomine.

Võtmesõnad:
staatiline analüüs, lekke analüüs, kasutatavus, IntelliJ

CERCS: P175 Informaatika, süsteemiteooria

3



Contents
1 Introduction 6

1.1 Thesis outline and contribution . . . . . . . . . . . . . . . . . . . . . . 7

2 Usability of current static analysis tools 8
2.1 Why developers don’t use static analysis tools . . . . . . . . . . . . . . 8
2.2 What developers want and need from static analysis . . . . . . . . . . . 9
2.3 Current approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Google . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Attempts to preserve soundness . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Angelic verification . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Verification modulo versions . . . . . . . . . . . . . . . . . . . 13

2.5 Requirements for prototype . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Tainting analysis 15
3.1 SQL injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Using tainting analysis for detection . . . . . . . . . . . . . . . 16

3.2 The Checker Framework . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Comparison to other tools . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Tainting Checker . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Plugin development 19
4.1 Problem scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Solution choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Tool selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Solution workflow description . . . . . . . . . . . . . . . . . . . . . . 20
4.4 IntelliJ plugin development . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.1 Components and actions . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.3 Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.4 Previous Checker Framework plugin . . . . . . . . . . . . . . . 24
4.4.5 Integrating static analyzer . . . . . . . . . . . . . . . . . . . . 25

4.5 Developed plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5.1 FindTaintingWarnings action . . . . . . . . . . . . . . . . . 26
4.5.2 ObserveMessageWindow service . . . . . . . . . . . . . . . . . 26
4.5.3 TaintingAnnotator . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.4 TaintingExpressionFixIntention . . . . . . . . . . . . . . 26

4



4.5.5 StatementToPreparedStatementFix . . . . . . . . . . . . . . . . 27
4.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8 Future development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusion 29

References 32

Appendix 33
I. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5



1 Introduction
Static program analysis is a technique for reasoning about the behavior of computer
programs without having to run them. First introduced in the seventies, it has been
an active academic research area ever since. The main application of static analysis is
optimizing code that compilers generate, but it can also be used for code verification
and error finding. Sound static analysis makes the exciting promise of verifying that the
program contains no errors of the kind that the analyzer can find (e.g., null reference,
buffer overflow, and sensitive information leakage).

Since all non-trivial questions about computer programs are undecidable, actual
analysis methods must make some approximations about the code. To achieve soundness
these approximations are done conservatively, thus ensuring that when the tool claims to
have found no errors in the program, the program, in fact, does not contain any. It also
means that some of the errors that are reported by the analyzer can actually be due to the
imprecision of the analysis. Such cases are known as false positives, and they are one of
the key obstacles to using static analysis tools.

While many great and advanced static analysis techniques have been invented, the
adoption of analysis tools by software developers has not been as great. In addition to
false positives, static analysis tools also face the problems with the understandability
of error messages, the speed of the analysis, integration into the development process
and lack of collaboration support. Poor adoption rates mean that many preventable bugs
still make it to deployed code and cause crashes or security vulnerabilities. This results
in much more financial damages than preventing them would have cost. Therefore,
usability is an important consideration when developing a static analysis tool that has
been somewhat neglected.

This thesis contributes to a larger project whose ultimate goal is to create a sound
static analysis tool integrated into IntelliJ IDEA. The final tool should provide advanced
analysis techniques with simple to use interface that would allow developers who are
not static analysis specialists to discover and fix bugs in their code. It should address the
issues raised by usability studies and be well integrated into the development process.
The envisioned ideal workflow is as follows.

1. The analyzer flags the problematic locations, either on-the-fly or at compile time,
in the user’s development interface.

2. The user interacts with the tool that guides him to understand and fix the problem.
The fix can also be in the form of annotations that will help the tool verify the
program and encode environmental assumptions under which the program is
correct.

3. These annotations serve as a correctness witness. The witness is generated when the
user has dealt with all warnings. It is a verification artifact that can be committed

6



to the software repository together with the code.

4. The witness is then checked by a certified witness checker, which can verify the
code offline without any user interaction. This verification is done each time code
is submitted to the repository.

The direct aim of this thesis is to integrate a sound analysis tool into an IDE and emulate
the above workflow. This should lay the groundwork for understanding the IntelliJ plugin
development process and allow us to identify the kind of features that are important for
the analysis tool to include; in particular, the implementation should demonstrate how to
avoid the most common usability pitfalls faced by static analysis tools.

1.1 Thesis outline and contribution
The thesis analyzes the most important features for useful and usable static analysis
tool, proposes how to integrate static analyzer into IDE and build system and presents a
prototype implementation of the static analysis workflow for tainting analysis in IntelliJ
IDEA and Gradle. The key contribution of this thesis is the conclusion that a usable sound
analysis framework needs to integrate both into the build system as well as the user’s
development environment. The integrated design of an automated component together
with a user-friendly frontend will allow fixes and user annotations to be conveniently
added to the codebase. The high false positive rate of sound analyzers may be more
tolerable if the verification effort is recorded in a meaningful way, such as adding source
code annotations, allowing the automated component to confirm the verification.

The remainder of the thesis is organized as follows.
Section 2 gives a literature review for static analyzer usability and adoption. It

concludes with the extraction of important features for prototype development.
Section 3 describes the sample analysis chosen for the prototype, tainting analysis.

It introduces SQL injection vulnerability that can be prevented using tainting analysis.
The section concludes with the overview of actual analysis framework (The Checker
Framework) used in the prototype.

Section 4 discusses how to integrate static analysis into IntelliJ IDEA and describes
the prototype application.

Section 5 summarizes the thesis and discusses future work.

7



2 Usability of current static analysis tools
Although many static analysis tools are available and developers mostly recognize
the benefits static analysis can provide, the consistent usage of these tools is not very
frequent [13]. In this section, we review some of studies that address the questions of why
developers don’t use static analysis and what could be done to improve these tools. Based
on reports from Google and Facebook about the adoption of static analysis into their
development process, we note that the trend within industry is to abandon soundness. We
therefore turn to research that attempts to improve usability without making that sacrifice.
Finally, we synthesize important properties for the development of the prototype.

2.1 Why developers don’t use static analysis tools
Johnson et al. [19] conducted interviews with professional software developers to investi-
gate issues facing usage of static analyzers. The interview consisted of three parts. The
first part, Questions and Short Response, included questions related to general usage,
understanding and opinion of static analysis tools. The second part, Interactive Interview,
included observations of a developer actually using popular static analysis tools, such as
FindBugs [2] within Eclipse IDE [1]. In the final part of the interview, the developer was
asked how the tools should be improved.

The most common complaint, which almost everybody raised, was result under-
standability. Users found that tools do not give enough information to assess what the
problem is, why it is a problem and what should be done differently. They felt that error
messages should be more descriptive and possibly include some examples of correct
solutions. Most preferred to have automatic quick fixes, reasoning that if the analyzer
can detect the mistake, it should also be able to fix it.

Almost three-quarters of respondents described having problems with reviewing the
tool output. Mainly the possibly large number of warnings, which could contain a high
percentage of false positives. Participants felt that the organization of the output and its
presentation play a big role in the usability as well.

Even more participants said that customization of the tool is important. Configuring
the tool to only perform a certain type of analysis or analyze only part of the project
would reduce the number of warnings that the developer has to review at one time.
Participants also wanted the option to temporarily suppress certain types of warnings,
making the output easier to comprehend.

About half of the participants raised concern about lack of team collaborative
features in the tools. This issue depends heavily on the type of company developer is
working in and can be extremely important to large corporations adopting static analysis
tools.

The final issue that was considered important by almost all participants was workflow
integration. Three quarters thought that the way current tools integrate static analysis

8



was lacking. This can be a complex problem to solve since development tools may
vary. People using IDEs preferred to have analysis integrated within the IDE. Not all
developers use IDE, though, and everybody marked that opening another tool for analysis
was distracting and “painful”.

2.2 What developers want and need from static analysis
Christakis and Bird [16] performed a similar study among Microsoft developers. Instead
of an interview, they sent out a survey questionnaire. This allowed them to collect many
more answers, they got 375 responses.

Results were quite similar to the Johnson et al. [19] survey. Most frequently marked
issues preventing analysis adoption were wrong default rules, bad warning messages,
and too many false positives. Complete results of problems are listed in Figure 1.

who have at least a basic understanding of program analysis
may have di↵erent views about the topic than those who are
not familiar with it. For the context of this paper, we label
these developers experts. 74% of respondents were at least
familiar with program analysis. In addition, security issues
are especially important to software companies, and security
is often given high priority by development teams. In the
research community, security is a significant subarea in pro-
gram analysis that receives a large amount of attention. We
refer to developers who indicate that security is a top concern
to them as security developers. 40% of respondents indicated
that they are security developers. For many questions, we
examine the answers provided by developers who are familiar
with program analysis and also by those who indicate that
security is a top concern for them. We report cases where
there is a statistically significant di↵erence between these
groups and the answers of the rest of the sample. In cases
where there are only two alternatives (e.g., using program
analysis versus not using it), we use a Fisher’s exact test [30].
When there are more than two choices, such as the frequency
of running program analysis, we use a �2 test to assess the
di↵erence in distributions between these groups.

Some of the questions on our survey asked developers to
select and rank items from a list. For example, we asked
developers to rank the pain points they encountered using
program analysis as well as the code issues that they would
like program analyzers to detect. To analyze the answers,
for each option o, we compute the sum of the reciprocals
of the rank given to that option for each developer d that
responded (d 2 D):

Weight(o) =
X

d2D

1

Rankd(o)

Ranks start at one (the option with the greatest importance)
and go up from there. If an option is not added to the ranked
list by a developer, the option is given a weight of zero for
that developer.

In Section 5, we also give an overview of the program
analyzers that the survey respondents use the most.

2.2.1 What makes program analyzers difficult to use?
In our beta survey, we asked developers what pain points,

obstacles, and challenges they encountered when using pro-
gram analyzers. We then examined their responses to create
a closed response list of options. In the final survey, we asked
developers to select and rank up to five of the options from
the list. Figure 1 shows their responses and gives insight
into what developers care about most when using program
analyzers. Many of our findings, such as the fact that false
positives and poor warning messages are large factors, are
similar to those of Johnson et al. [39]; their work investigates
why software engineers do not use static analysis tools to
find bugs through a series of 20 interviews (see Section 6).

The largest pain point is that the default rules or checks
that are enabled in a program analyzer do not match what
the developer wants. Developers mentioned that some default
program analysis rules, such as enforcing a specific convention
(for instance, Hungarian Notation) to name variables or
detecting spelling mistakes in the code or comments, are not
useful, and on the contrary, they are actually quite annoying.
Mitigations to this problem may include identifying a small
key set of rules that should be enabled (rather than having

Not cross platform
Misses too many issues

No support for custom rules
Can't handle all language features

Complex user interface
Can't selectively turn off analysis

No ranking of warnings
No suppression of warnings

Bad visualization of warnings
Difficult to fit into workflow

No suggested fixes
Too slow

Too many false positives
Bad warning messages

Wrong checks are on by default

0 20 40 60 80

Pain Points Using Program Analyzers

Figure 1: Pain points reported by developers when
using program analyzers.

all rules enabled, which is often the case), or making the
process of selecting the rules and checks that are enabled easy
for developers. Just as helpful is knowing the pain points at
the bottom of the list. Developers care much more about
too many false positives than about too many false negatives
(“Misses too many issues”). One developer wrote of their
team’s program analyzer “so many people ignore it because
it can have a lot of false positives”. Also, the ability to write
custom rules does not appear important to many, unlike in
the investigation by Johnson et al. [39].

We also asked developers if they had used program analysis
but stopped at some point. Only 9% of respondents indicated
that they fell into this category. When asked why they
stopped, there were three main reasons. 24% indicated that
the reason was because the team policy regarding program
analysis changed so that it was no longer required. Similarly,
18% indicated that they moved from a company or team
that used program analysis to one that did not. Another
21% reported that they could not find a program analyzer
that fit their needs; about half said this was due to the
programming language they were using. This highlights
one aspect of adoption of program analyzers that we also
observed in discussions with developers: often, their use of
analyzers (or lack thereof) is related to decisions and policies
of the team they are on.

Program analysis should not have all rules on by default.

High false positive rates lead to disuse.

Team policy is often the driving factor behind use of
program analyzers.

2.2.2 What functionality should analyzers have?
One of the primary reasons why a program analyzer may

or may not be used by a developer is whether the analyzer
supports the programming language (or languages) that the
developer uses. We therefore asked developers what lan-
guages they use in their work. Because the list was quite long,
we aggregated responses into programming language cate-

Figure 1. Pain points reported by developers when using program analyzers [16].

The most important code issues that developers would like detected by analysis tools
were security and best practices. The lowest priority issues were power consumption
and portability. Surprisingly, reliability was relatively low in the list, although reliability-
related incidents were the most common actually occurring incidents in the company. The

9



survey authors speculate that this implies developers don’t actually trust code analyzers
to detect more intricate reliability-related issues.

Analysis scope configuration was also marked as an important feature. Participants
wanted to have the option to analyze only specific part of the project and also be able to
analyze only the changed part of the code (when submitting new code to a repository).

Participants pointed out that a large number of false positives rapidly decreases trust
in the analyzer (more than 15-20% was not acceptable) and that they accept some false
negatives if it means reducing false positives.1 Developers were, however, ready to
add annotations and assumptions to their code if that would reduce the false positives
number. Most were also willing to have analysis take more time if it leads to higher
quality results. Additionally, they proposed a two-stage approach, with one stage running
in real time/compile time, providing quick results in the development environment, and
another stage running overnight, finding more intricate issues.

The preferred location for analysis reports was in the IDE. Developers want the tool
to be seamlessly integrated into their workflow.

2.3 Current approaches
In this section we consider some of the examples from the industry where adoption of
static analysis into their processes have been reasonably successful.

2.3.1 Google

Sadowski et al. [25] give an overview of Google’s static analysis efforts. Google holds
almost all of its codebase in one monolithic repository consisting of over two billion
lines of code. Ownership of that code is divided between internal teams, and although
everybody can propose changes to any part of the code, the owner has to approve all
changes to his code. Before approving, all code goes through a testing and code review
process. Code review is done through a centralized platform called Tricorder [26].

Google has had a relatively long history of attempting to adopt static analysis into its
processes. The main tool they tried to integrate was FindBugs [2], but they eventually
disbanded the effort due to a large number of false positives and difficulties integrating it
into their development workflows. They found that developers tended to ignore all the
warnings, mostly due to the presence of false positives.

Currently, Google has adopted a two-stage analysis process. They have integrated
some of the more robust analyses into the compiler, emitting errors that prevent a
successful build. That way the developer is forced to deal with issues before submitting
code for review. To reduce developer complaints, before including an analysis into

1Just to be clear: this means that undetected security vulnerabilities are fine as long as one does not
have to scroll through so many false alarms.

10



the compiler, the static analysis team first analyses the whole codebase itself and fixes
all found errors. The analysis included in the compiler must also satisfy strict criteria:
easily understandable and fixable, produce no effective false positives and concern only
correctness of code (as opposed to best practices and style issues). This means that only
relatively simple analyses can be included at this stage.

Code review is the second stage where Google includes static analysis. There more
advanced analysis techniques can be applied, and the criteria for including an analysis
are somewhat relaxed. Most importantly, it may produce up to 10% false positives. The
analyses can also be customized for each project so that developers can include only
relevant analysis types.

Google provides a framework to developers to add new analysis, which is based on
the analysis of the abstract syntax tree of the Java source code. These analyses can and
often do include quick fixes. Other developers can include the new analysis and provide
feedback on the rate of false positives. Analyses producing more than 10% false positives
are temporarily disabled until the submitter can fix it. Google has found that this kind of
crowd-based analysis creation process produces good results.

Most of the analyses deployed in Google are of a relatively simple type. They have
not used more sophisticated analysis techniques mainly due to the challenges of imple-
menting them on a two-billion-line codebase. The financial cost of such implementation
has been considered too high.

The most important insight from Google is that careful developer workflow integra-
tion is key for static analysis tool adoption. Building trust by not reporting false positives
is also very important. More complicated analyses can be done during code review.

2.3.2 Facebook

Calcagno et al. [15] describe the static analysis process in Facebook. Compared to
Google it has a smaller codebase, its main products being the Facebook website and
its mobile application. There is still millions of lines of code to analyze. Facebook’s
development process is somewhat similar to Google. The programmer makes a change
on the codebase, a diff, and then submits it to code review. During that phase, other
developers can comment and suggest fixes. After being approved, the diff is applied
internally and then used in production. Static analysis is performed in the code review
process. The analyzer inserts comments on the lines of code where it detects a possible
bug.

Facebook uses the static analyzer INFER [14] which supports compositional analysis.
The analysis does not have to run on the whole project at once but can analyze each
functional unit in isolation and compose the result. This makes it very suitable for
analyzing the diffs, which can be done relatively quickly since the unchanged parts of
the code need not be reanalyzed. Facebook aims for 10 minute feedback time. The
compositional analysis also means that Facebook can utilize more complicated analysis

11



compared to Google. They run the full codebase analysis each night and then new diffs
can be analyzed quickly.

The authors mention the difficulty of getting developers to react to analyzer results
and, similar to Google, suggest starting small with analyses that produce almost no false
positives. That way developer trust is built and they will be ready to accept additional
analysis. They specify four features that are extremely important for a static analyzer to
have: full automation and integration, scalability, precision, and fast reporting.

2.4 Attempts to preserve soundness
While the industry seems to have taken a pragmatic (unsound) approach by accepting
false negatives in order to reduce false positives, there are attempts to make sound
analysis and verification more usable. Here we mention two that might be possible
future directions for our analysis: angelic verification [17] and verification modulo
versions [21].

2.4.1 Angelic verification

Software systems are rarely separate self-contained units. Their behavior usually depends
on the environment that they interact with. This is particularly the case for open programs,
such as libraries, plugins, and device drivers. These are expected to be used by a host
system, but the host system can be configured in many different ways, so the ideal is to
analyze only the module of interest based on how the environment may legitimately use
it.

A precise static analysis, then, needs to model the environment. This can be done
manually, but requires much effort and is prone to error. In order to preserve soundness,
analysis techniques often make conservative assumptions about the environment. It
means they analyze the worst case scenario (demonic verification) and provide guarantees
under any conceivable use (and abuse) of the module. This typically leads to many false
positives because valid environmental assumptions are ignored.

The angelic verifications approach instead provides the user a way to specify which
environmental assumptions that may or may not hold, and only reports an error when no
acceptable specification exists. For example, it would be reasonable to assume that calls
to two different library methods will not return aliased pointers (pointers to the same
memory location). In the demonic approach, the analyzer assumes that all unknown
pointers may alias, so it will fail to prove many valid safety properties about the program
if that assumption is valid. The angelic verifier, in contrast, would try to find the set of
least restrictive assumptions under which verification succeeds, so rather than producing
a conservative warning, it would suggest that the program is correct if the aliasing
assumption is true.

12



2.4.2 Verification modulo versions

Static analyzers usually try to analyze the entire piece of code it is directed to (e.g.,
the project). In a standard software development process, the code is added regularly
(diffs) to an existing repository, and the developer is more interested in whether any new
problems were added than the correctness of the entire codebase. There might be valid
reasons the old code includes some parts that analyzer thinks are errors, and the warnings
from those issues are simply noise and distraction for the developer who added the new
piece of code. Thus the goal is to allow the suppression of the previous warnings and
only display new ones. Some existing analyzers allow that by relatively simple syntactic
matching (e.g. if there was an error on line 176 in the original code, then the error found
in the modified code on line 176 is not shown). This approach is not sound because the
meaning of a statement at a given code location may depend on changes elsewhere in the
code.

Logozzo et al. [21] propose a sound approach. First, they try to extract environmental
assumptions under which the original program is correct (analyzer would report no
errors). These assumptions can be either sufficient (every program execution ends in a
good state) or necessary (it holds whenever the program reaches a good state). Next,
they insert the extracted assumptions into the modified code and attempt to verify the
modified code under the assumptions made by the original.

The conclusion one may draw from such differential verification depends on whether
one infers sufficient or necessary conditions. If the initial assumptions are sufficient for
the correctness of the original, and an error is found in the modified code, a regression
was introduced into the program by the new code. That is, the modified code requires
stricter assumptions for its correctness than the original code. If the assumptions are
necessary for the correctness of the original code, and these assumptions allow us to
prove the absence of errors in the modified code, then the modified code is proven correct
relative to the original. That is, the modified code is correct under assumptions the
original code already required for its correctness.

Their proposed framework is relatively general and thus allows the use of many
existing analyzers. However, the theoretical solution requires mapping of old and new
program points which is in practice unfeasible. Thus, they suggest using matching of
call conditions (method names are assumed to be the same in modified code). They
also implemented their approach using necessary assumptions for the static analyzer
cccheck [18] and analyzed a couple of projects. In general, they found approximately
50% fewer warnings with their approach. In some of the cases, almost all warnings were
removed (meaning all were false positives).

13



2.5 Requirements for prototype
We conclude from the literature that the most important features for a static analyzer
to be adopted by developers are trust in its usefulness and integration into standard
development workflows. As this thesis aims to address usability issues for sound static
analysis, the conclusion of the industry surveys about false positives eroding user trust is
sobering. There is, at least, a potential willingness to annotate programs. Developers may
be less reluctant to deal with false positives if doing so was not perceived as a complete
waste of time. It is therefore critical that the verification effort generates some form of
proof artifacts, such as meaningful code annotations, which can be used in subsequent
verification efforts of other developers.

For workflow integration, the most desired feedback location for running the analysis
was the IDE, which aligns well with the workflow envisioned in the introduction. Having
the analyzer in the IDE ensures that bugs are discovered early in the process when they
are easier to fix. Displaying analysis results conveniently also allows us to best address
error message understandability, so the user clearly understands what is wrong. An
important feature that Google found to be helpful for adopting analyzers is quick fixes.
Having a tool to suggest or apply automatic fix made developers to use analysis tools
more. This also helps the user understand the problem in the first place.

It is also important to integrate analysis with the build systems. Almost any bigger
project uses some kind of build system (Gradle, Maven etc.) to manage dependencies.
This means our application should also support execution via the chosen build system.
This would allow the analysis to be run automatically on continuous integration servers
with each commit to the repository.

14



3 Tainting analysis
Managing information flow is a core part of programming. Tainting analysis is a concept
that divides variables into trusted (untainted) and not trusted (tainted) categories. No
tainted variable should be used where untainted is required. It can be viewed as a
simplistic approximation of non-interference in the more general concept of secure
information flow [24], which requires high security (input) values do not affect low
security (output) values. Tainting analysis can be performed in several ways. Data flow
analysis builds a constraint system for variables based on the program’s control flow
graph (CFG) and checks if all constraints are satisfied. Type checking assigns each
variable as tainted or untainted and checks for type correctness.

Tainting analysis can help detect SQL injection and secure information leakage
vulnerabilities among others. For SQL injection analysis, the tainted user input must
not reach untainted SQL query executions. For information leakage analysis the tainted
secure information must not reach untainted system output, such as a non-authenticated
user or webpage.

3.1 SQL injection
SQL injection [7] is a security vulnerability in database-driven applications where the
user is able to modify the query that the database runs. A simple example of it would
be a form that asks for the user’s name, queries the database with that name and replies
with data about that name [20]. The relevant backend code in Java might look like the
code shown in Figure 2. The user is asked for their name and then the result is simply
concatenated to the SQL query (line 5).

1 ...
2 conn = DriverManager.getConnection(url + dbName , user , passwd);
3 String user = request.getParameter("user"); // tainted source
4 Statement st = conn.createStatement ();
5 String query = "SELECT * FROM User where userId='" + user + "'";
6 ResultSet res = st.executeQuery(query); // problematic execution
7 ...

Figure 2. Code example that is vulnerable to SQL injection [20].

Clearly, the developer’s intention was to only display information about a single
person. Since user input is not validated, however, the user could provide malicious input
like "xx’ or ’1’=’1", which when concatenated to the original query, would make the
query condition always true and return all the rows from the database. Wikipedia [12]
lists tens of high profile SQL injection cases until very recently and OWASP [8] lists
injection as the topmost security vulnerability.

15



3.1.1 Prevention

Preventing this type of attack can be done through input validation. The user-provided
input should not include quotes that are not escaped nor SQL keywords. Doing the
validation manually can be error-prone and thus the recommended solution is to use the
parameterized query API [7]. The proper way to fix the vulnerability in our example is
shown in Figure 3. The user-provided parameters are marked in the prepared query by
"?" and added afterward using safe methods.

1 ...
2 conn = DriverManager.getConnection(url + dbName , user , passwd);
3 String user = request.getParameter("user"); // tainted source
4 String query = "SELECT * FROM User WHERE userId =?";
5 PreparedStatement ps = conn.prepareStatement(query);
6 ps.setString(1, user); // perform validation
7 ResultSet res = ps.executeQuery (); // safe execution
8 ...

Figure 3. Code example where SQL injection vulnerability has been removed [20].

If the user provide now the same problematic input "xx’ or ’1’=’1", the setString
method on line 6 would transform it to "xx\’ or \’1\’=\’1", which would probably
result in query returning no rows.

3.1.2 Using tainting analysis for detection

Detecting SQL injection vulnerability is a relatively straightforward application of
tainting analysis. All the user-provided data should be treated as tainted sources. All
database query executions should be marked as untainted sinks. The validation methods
should change tainted data to untainted (for the prototype implementation, the correctness
of the validation functions remain the responsibility of the developer). In such a setup,
tainting analysis finds all direct user input flows to query execution that has not been
validated. In the example in Figure 2 tainting analysis gives a warning on row 6 (if
Statement.executeQuery() has been marked as an untainted sink).

3.2 The Checker Framework
The Checker Framework [23, 10] enhances Java’s type system by adding a pluggable
type system in a backward-compatible way. This allows developers to detect and prevent
errors in their Java programs. The framework includes new Java syntax for expressing
type qualifiers in the form of annotations, which was adopted into Java 8 [6], provides a
mechanism for writing type-checking rules and supports flow-sensitive local type qualifier

16



inference. It includes several implemented type checkers (e.g., nullness, interning,
tainting and many more).

Type qualifiers extend a type with a particular optional attribute. For example
@Untainted is a type qualifier which denotes that the value is untainted (trusted). This
can be added to the type String resulting in the type @Untainted String. The type
checker now notifies us if we try to assign some @Tainted value to an untainted variable.

Using the Checker Framework is relatively simple [11]. The annotations library
should be included and source code annotated using relevant type qualifiers. When
compiling, the corresponding checker should be included in the Java compiler call using
the -processor argument (e.g., -processor TaintingChecker). Then the specified
type checker verifies the compiled code. If the developer does not use the -processor
argument, the code is compiled as regular Java code by ignoring the annotations. The
user can suppress warnings either by adding annotations to a specific location in the
source code or by specifying compile parameters. In addition to using predefined types
and checkers, the developer can define their own and leverage the existing type checking
framework.

3.2.1 Comparison to other tools

Since the Checker Framework is type-checking tool, it differs from many of the bug
detectors mentioned (like FindBugs). The main differences are:

• Type checking is sound, meaning it finds all errors of a specific type, so it can
verify the absence of errors. A bug detector tries to find as many errors it can, but
cannot usually guarantee that there aren’t any left.

• Type checkers requires annotations for type qualifiers. Some bug detectors are
fully automatic and require no user input.

• Type checkers may use more sophisticated and complete analysis. A bug detector
typically does a more lightweight analysis, coupled with heuristics to suppress
false positives

Studies have shown [23] that type checking can find more bugs than many other bug
finding tools.

3.2.2 Tainting Checker

The tainting checker has been predefined in the framework. It allows one to use the
following annotations:

• @Untainted indicates a type that includes only untainted values.

17



• @Tainted indicates a type that may include tainted or untainted values. It is the
default qualifier.

• @PolyTainted is a qualifier that is polymorphic over tainting. This enables context-
sensitive analysis; i.e., a method that is polymorphic can return a tainted or un-
tainted value depending on its input parameter.

Static tainting analysis needs to make sure that information from tainted sources
does not reach untainted sinks. Thus, the checker does not ascribe specific semantics
to the tainting types. Since it is allowed to assign untainted values to a tainted variable,
@Untainted is subclass of Tainted. Then, tainted values flowing to untainted variables
will violate the subtyping rules.

The Checker Framework performs flow-sensitive intraprocedural qualifier inference.
For example, this allows the method in Figure 4, which should return an untainted value,
to be successfully type checked because the value assigned to the variable result will
be inferred to be untainted, even though the variable itself could also store tainted values.

1 @Untainted
2 public String inference(@Untainted String bar) {
3 @Tainted String result = bar;
4 return result;
5 }

Figure 4. Example of type qualifier inference.

Inference allows developers to only annotate the important parts of the code, like
untainted sinks and validation methods. Local variables mostly do not need special
annotations and can be viewed by default as potentially tainted. Inference may need
additional annotations when working with aggregated data structures, such as a map
from strings to arrays of untainted integer values.

When analyzing code for injection vulnerabilities, the user input should be marked as
tainted (untrusted) and input parameters for code execution methods (like Statement.execute)
should be marked as untainted. Input validation functions have to use tainting warning
suppression annotations (@SuppressWarnings("tainting")).

18



4 Plugin development
This section presents the prototype that implements the suggested static analysis workflow.
We first consider the scope of the problem and requirements on the prototype. Then,
we turn to application usage, code design, and also a short description of the plugin
development process in IntelliJ IDEA.

4.1 Problem scope
The aim of the prototype was to implement an example a static analysis tool in IntelliJ
IDEA while addressing the most important problems facing the adoption of such tools.
We chose to implement tainting analysis with the focus on SQL injection, described more
thoroughly in the previous section. It was chosen because it is a relatively simple and
easily understandable analysis type that allows checking of some of the most widespread
and important security vulnerabilities. The prototype is limited to the Java programming
language and uses the Checker Framework as backend analysis framework.

Although the focus is on SQL injection, we also support general tainting analysis to
detect any flow from a tainted source to an untainted sink.

4.2 Solution choices
The inspiration for the prototype was the ASIDE analyzer [28] that implemented interac-
tive tainting analysis in Eclipse [1]. It analyzed code for both input validation and access
control and prompted the user to specifically annotate lines that perform those tasks.
Based on those assumptions, the tool could verify the rest. The analyzer has not become
very popular and the project seems inactive. One of the problems with IDE integration
is that the tool is constrained inside Eclipse IDE. The annotations were separate from
the code and had no meaning outside the IDE, so the analysis could only be performed
inside IDE. We aim to address that problem by including annotations in the code and
supporting verification via build tools.

4.2.1 Requirements

Based on the analysis in the previous chapter the following requirements for the prototype
were set:

1. Perform sound analysis of SQL injection vulnerability in Java source code.

2. Provide user with clear and understandable information about the detected vulner-
abilities.

3. Provide automated help to create fixes for the detected problems.

19



4. Be interactive, integrated into IntelliJ IDEA.

5. Analysis should result in very few false positives.

6. Good compatibility with various build tools and option to turn analysis off.

4.2.2 Tool selection

It was decided to integrate the prototype in the IDE in the form of a plugin for IntelliJ
IDEA [4], a choice based mostly on author and supervisor personal preference, but also
on the fact that it has been gaining a lot of popularity in recent years. Some studies show
it to be already most popular Java IDE [27].

The Checker Framework [10] was chosen as the analysis tool because it allows
enhancing the Java type system with additional types by using annotations. Type checking
is done during the compile process by using the Checker Framework checker as an
annotation processor for the javac compiler. This allows for relatively large usage
configuration flexibility, the annotated code can be compiled without checking for
enhanced types by simply not providing annotation processor. The javac compiler plugin
solution also means that the Checker Framework can be easily integrated into various
build scripts and other external tools [11], which is an important feature when considering
tool usability.

4.3 Solution workflow description
Setup. The user should first download the Checker Framework and set up the environ-
mental variables for his system. Then, add the framework support to his build process
according to the manual [11]. The process was developed and tested using Gradle, but
both Ant and Maven should behave similarly. It is important to note that only the tainting
checker should be declared as an annotator processor. We also provide a modified Gradle
script in our repository.

After this, the project should be imported to IntelliJ and Gradle takes care of the
library dependencies. If no build tool is used, checker.jar library should be added to
the relevant modules (to allow using annotations).

Annotating source code. The main logic in the analysis is that unvalidated user input
should not reach database query execution methods. This means marking input as tainted
and query execution parameters as untainted. By default, all variables and methods are
treated as tainted, except for java.sql.Statement methods, whose input parameters
are already annotated as untainted. The user should also annotate any other methods
that he considers as untainted sinks. This can be done either directly in the source code
or within the main.astubs file in the project directory. In the latter case, only method
signatures need to be annotated.

20



Running the analysis. The analysis can be started by selecting Run Tainting Analysis
from the toolbar menu. It compiles the project adding the tainting checker as an annota-
tion processor to the Java compiler. This also means that any other settings set up for the
build process are respected. The user sees the found problems in the Message window,
but more importantly, issues are highlighted in the editor as shown in Figure 5.

Figure 5. Found errors are highlighted in the editor.

Fixing the errors. The plugin provides assistance to the user for fixing found errors.
A specific fix is targeted for SQL injection vulnerability, which is shown in Figures 2
and 3. By invoking intention actions on the highlighted expression, the user is prompted
to select a quick fix, as can be seen in Figure 6.

Figure 6. Quick fix intention selection

The automatic fix tries to find the concatenated query and transform it into a
PreparedStatement. The result of this transformation is shown in Figure 7.

The general use case. The automatic fix offered for the general use case is always
similar: the tainted input should be validated. The problematic expression should be
wrapped inside a validation function that takes in the tainted value, outputs an untainted
value and suppresses warnings. The correctness of the validation function is the user’s
responsibility, as it can be highly application specific. The IDE supports this process by

21



Figure 7. Unsafe string concatenation automatically converted to PreparedStatement.

automatically creating a new method with the required annotated type signature, but the
user needs to implement it. The empty annotated template is shown in Figure 8.

Figure 8. Annotated validation function template.

Once the user has fixed all highlighted errors, he should run the analysis again.

4.4 IntelliJ plugin development
IntelliJ IDEA Community Edition [3] is the free and open source version of IntelliJ
Ultimate IDE, which can be used to develop plugins. It provides the developer access to
many powerful tools used in the IDE and a relatively simple process to integrate new
functionality into IntelliJ. There is an effort by the company to provide documentation [5]
and it does have the necessary information to get started; however, many of the topics are
missing or not fully covered. In order to find how to do something not specified in the
guide, one usually need to read the source code, which is at least well commented itself.
Finding the correct class to achieve the desired task can be a considerable challenge, and
much of the author’s time was consumed by searching the code. Below we introduce
some of the tools and concepts that are important for plugin development.

4.4.1 Components and actions

Plugin components are the main concepts of plugin integration. A component is basically
a class that gets loaded when the user starts the plugin and can include a separate interface.
The developer can define application-, project- or module-level components—the level

22



defines for which scope a new component is created. There is also a concept of a service;
it is a component that is loaded on demand. The developer can create completely new
components or extend the functionality of existing ones (through extensions). Extensions
allow for a simple and integrated way to leverage IntelliJ’s own functionality (e.g.,
annotator, inspection and intention action).

Another important plugin concept is an action. This allows one to define what
happens when a menu item or a toolbar button is selected. The developer can define new
actions or extend existing ones.

All of the component, action and plugin information needs to be declared in the
plugin.xml file. The interface and implementation class names are also in that file. The
developer is allowed to use either Java or Kotlin to implement the classes.

4.4.2 PSI

The Program Structure Interface, commonly referred to as just PSI, is the layer in
the IntelliJ Platform that is responsible for parsing files and creating the syntactic and
semantic code model that powers so many of the platform’s features. For each code file,
IntelliJ builds a PSI element tree with PSI file being the root. The PSI tree is similar to
the abstract syntax tree (AST); however, it contains more information related to context,
location, and references of the element. Navigating and manipulating the PSI are the
main ways to perform code analysis and transformations. The PSI tree can be navigated
as a regular tree, but there are many helper functions that provide shorter solutions. A
great tool to explore and discover PSI trees is the PsiViewer plugin [9], which is shown
in Figure 9.

4.4.3 Threading

IntelliJ is an advanced IDE with many analyses and processes supporting the user. To
accomplish that without freezing the UI, it uses background processes—many running
in different threads. Due to that, modifying the PSI must always be done within the UI
thread, using a write action (which locks the modifiable part). Reading the PSI from
non-UI threads also requires using a separate read action. The developer should also
be careful not to allow a background process to read action to take too long or it might
affect the user experience.

Another effect of highly threaded processes is that sometimes it might be difficult
to ensure the order of actions, especially when new threads are spawned by the called
methods. IntelliJ sometimes offers callbacks to remedy such situations. A good example
of this in the current plugin is the quick fix intention action, where we have to be sure
that the project building process has been completed before we can collect the output
warnings.

23



Figure 9. PsiViewer example.

4.4.4 Previous Checker Framework plugin

There have been previous efforts to integrate the Checker Framework into IntelliJ. In
2014, Daniil Ovchinnikov wrote a plugin that adds the Checker Framework support to
IntelliJ [22]. It reported the errors found by the Checker Framework as inspection results
and did not offer any quick fixes. It did support all the different checkers at that time.

The plugin worked only for IntelliJ 13.X and the author has not added support to new
IntelliJ versions (nor has he any plans to do so). He also has no documentation about
the plugin. His goal was to analyze code on-the-fly, but that turned out to be too slow
due to the complexity of the Checker Framework. Eventually, he abandoned the project
but stated that the most reasonable solution would be to run the Checker Framework on
the project and collect the output it provided. Since our goal was not on-the-fly analysis,
and compile time has been seen as the most reasonable place to run a static analysis, we
decided to follow his advice and did not try to enhance the old plugin but write a new
one. Initially, we only need to support one checker, which also makes the additional
complexity unnecessary. Simply collecting the Checker Framework output also makes it
compatible with various build tools and platforms, which was an important design choice
for us.

24



4.4.5 Integrating static analyzer

IntelliJ offers two good ways to integrate new (static) analyses into the IDE: annotator
and inspection. The annotator analyses the currently opened file in the editor and can
highlight desired sections. It also enables the adding of error messages and quick fixes.
Annotator is run automatically when a file is opened and upon file changes. Inspections
partially duplicate the annotator functionality, but they also support batch analysis of
code, the possibility to turn inspection off and the configuring of inspection options.
Running an inspection also can open a separate window where the result is shown.
Additionally, some of the analysis tool integrations (e.g., FindBugs) have opted to create
their own tool windows inside IntelliJ to configure options and display results. This is
the most flexible option but also requires the most effort to develop.

The choice between annotator, inspection and separate tool window should be done
based on the required features, while also considering that the annotator offers the best
integration into the IDE and the tool window the least. Since the prototype has very few
configurable options and the goals is to achieve maximal integration (as using separate
perspective for analysis was marked as big negative in surveys), we opted to use an
annotator.

4.5 Developed plugin
The developed plugin 2 includes an action for starting the analysis, a service that collects
and parses the Checker Framework output, an annotator that highlights the problems and
intention actions that apply the quick fix. The general process flow is shown in Figure 10.

Figure 10. Prototype general process flow design.

2https://bitbucket.org/valgma/taintingplugin/src/master/

25

https://bitbucket.org/valgma/taintingplugin/src/master/


4.5.1 FindTaintingWarnings action

The update method is called every few seconds in the IDE. Its main function should
be to define when an action is available and should not contain code that requires many
resources. We have defined an action to be available when the project is opened.

The actionPerformed method defines what happens when an action is executed.
For our action we need to add the Checker Framework annotator processor to the build
configuration, then compile the project and afterward call our defined service that collects
the Checker Framework warnings and errors. Afterward, we need to remove the annotator
processor again to allow normal build process without the Checker Framework.

4.5.2 ObserveMessageWindow service

Since the analysis is started by an action, the component can be started on demand and is
thus declared as a service. It is very straightforward to change it to a regular component
in the future if there should be a need.

The service provides updateWarnings method to collect the Checker Framework
warnings from the output and a getter to access the current warning list. Since there can
be more warnings beside tainting, each warning is validated before being included in the
list. The benefit of using IntelliJ output messages is that they give the exact location of
the error, which allows the plugin to pinpoint the problematic expression.

4.5.3 TaintingAnnotator

The annotator extension point allows the highlighting of areas in the open editor window.
The annotate method is run for each PSI element and can be used to create new
annotations and quick fixes. Our annotator needs to check if the current element is listed
as problematic by the service. If it is, a new error annotation is created with a possible
quick fix.

4.5.4 TaintingExpressionFixIntention

Intention actions are invoked in the editor with Ctrl + Enter. Since our intention
is registered in the annotator, it is only available after the annotator has marked the
expression as problematic.

A new validation method stub is created and the expression is wrapped inside. The
stub accepts tainted input parameters provides untainted output value (same type as input)
and also suppresses tainting warnings. It should be noted that any PSI modification should
be triggered from inside write action, but since we are using BaseIntentionAction the
invoke method is automatically wrapped inside a write action.

26



4.5.5 StatementToPreparedStatementFix

This class realizes the fix described in Figure 3.
The task for this intention is to detect if problematic expression is inside

Statement.executeQuery() call and the query string is created by concatenation (e.g.
"SELECT * FROM User where userId=’" + user + "’"). Other ways of building
the query, like StringBuilder, are not supported.

If the above conditions are met, the query extracts the Connection parameter and the
concatenated variables inside the query string. Then a new PreparedStatement is built
where variables are replaced by "?" (e.g. "SELECT * FROM User where userId=?")
and then variables are added with setString method. Finally, the original statement is
replaced.

4.6 Testing
Due to the nature of the plugin testing was mostly done empirically during development.
The plugin was tested with IntelliJ 2018 on Ubuntu 16.04, OSX 10.13 and Windows 10.
Windows has some output formatting problems with the Checker Framework, but it does
not affect the plugin. One of the problems during development and testing was the fact
that when starting the plugin via the Gradle task, opening new projects often seemed
to require specifying the project JDK as IntelliJ couldn’t properly detect the existing
one. It is probably due to Gradle not managing to solve the dependency properly. That
behavior was also inconsistent for Ubuntu and Windows, where Windows seemed to
require specification each time but Ubuntu only sometimes.

IntelliJ offers automatic plugin testing system where the user needs to provide input
and expected output files. The testing system then executes the plugin and checks if the
provided output is equal to the expected. This system can be useful in the future but is
too heavy-handed for the present needs of the plugin.

4.7 Reflection
Although IntelliJ advertises plugin development, the documentation is very inconsistent
and thus the development process can be challenging. Their examples usually provide
solutions focused on a single function and including some other IDE functionality into
the process can be complicated and difficult to figure out. There is, however, plenty of
predefined functionality, so implementing some rather sophisticated feature (like parsing
error messages or applying quick fixes) can be quite straightforward. For program
analysis, PSI is an extremely valuable tool.

One of the trickiest parts about such tool development is coming up with the quick
fixes since error patterns can be very varied. Currently, we provide a specific quick fix for

27



unsafe statement execution. But there can be many other libraries or frameworks where
such errors can raise. Writing separate quick fixes for each could be very labor intensive.

The speed of the analysis and annotations did not present a problem for the prototype;
however, the examples used were very limited.

4.8 Future development
The current plugin was a prototype to lay the groundwork for a larger comprehensive
static analysis tool development and also to understand the IntelliJ IDEA plugin devel-
opment process. That is also the reason why current plugin will not be published as a
separate plugin in IntelliJ repositories. We plan to add more sophisticated control flow
analysis (e.g. access control, differential privacy), concurrency analysis and possibly
some other sound techniques. The Checker Framework can probably be leveraged more,
but adding other existing analyzers or writing our own will be considered.

Error reporting might also change. Once there will be different kinds of errors, it
might be easier to comprehend if errors are reported under inspections. It allows for
easier overview and grouping. The current solution uses the annotator approach because
it is more integrated and simpler to use (if errors are of one type).

User customization of the analysis properties will probably be an important topic
to consider. Ideally, we would want all programs to be correct and verified by a sound
analysis; however, soundness is based on assumptions and is seldom absolute. Thus,
users should be allowed to specify what they require from the analysis. But it should
not be too easy to turn off or ignore the errors, which makes it a complicated question.
Company-wide policies could be one solution, industry-wide standards for specific fields
even more ambitious.

28



5 Conclusion
The current thesis was the first step towards a fully integrated interactive sound static
analysis tool. We reviewed the current situation in the industry and looked at some
of the approaches that try to improve the usability of sound analysis and verification.
We extracted some of the important features such a tool should have and developed a
prototype for tainting analysis. The prototype was implemented as an IntelliJ IDEA
plugin using the Checker Framework as analysis backend.

The prototype gives well-integrated feedback about tainting analysis results and
provides an interactive problem-fixing process. It offers a non-trivial quick fix for SQL
injection problems. During the development, several problems were identified, including
the lack of documentation for IntelliJ and difficulties in coming up with general quick
fixes. This means that time and effort required for the final tool should be carefully
planned; however, no fundamental weaknesses were discovered that would not allow the
integration of a comprehensive static analysis tool into IntelliJ.

The main conclusion of the thesis is that a usable sound analysis framework needs to
integrate both into the build system as well as the user’s development environment.

The prototype was not evaluated on any real-world codebase, thus it is unclear how
the solution would be able to find more sophisticated tainting violations. The next step
would be analyzing some known vulnerable codebase. Further development should add
more types of analyses from the Checker Framework and also write our own. Also
integrating angelic verification and verification modulo versions approaches into the tool.

29



References
[1] Eclipse Foundation. https://www.eclipse.org/. Accessed 2018-08-01.

[2] FindBugs - Find Bugs in Java Programs. http://findbugs.sourceforge.net/.
Accessed 2018-08-01.

[3] Github - IntelliJ IDEA Community Edition. https://github.com/JetBrains/
intellij-community. Accessed 2018-08-01.

[4] IntelliJ IDEA. https://www.jetbrains.com/idea/. Accessed 2018-08-01.

[5] IntelliJ Platform SDK DevGuide. http://www.jetbrains.org/intellij/sdk/
docs/basics.html. Accessed 2018-08-01.

[6] Java - Type Annotations and Pluggable Type Systems. https://docs.oracle.
com/javase/tutorial/java/annotations/type_annotations.html. Ac-
cessed 2018-08-01.

[7] OWASP Top 10-2017 A1-Injection. https://www.owasp.org/index.php/Top_
10-2017_A1-Injection. Accessed 2018-08-01.

[8] OWASP Top 10 Application Security Risks - 2017. https://www.owasp.org/
index.php/Top_10-2017_Top_10. Accessed 2018-08-01.

[9] PSI Viewer for IntelliJ IDEA plugin development. https://github.com/cmf/
psiviewer/. Accessed 2018-08-01.

[10] The Checker Framework. https://checkerframework.org/. Accessed 2018-08-
01.

[11] The Checker Framework Manual. https://checkerframework.org/manual. Ac-
cessed 2018-08-01.

[12] Wikipedia - SQL injection. https://en.wikipedia.org/wiki/SQL_injection.
Accessed 2018-08-01.

[13] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and
William Pugh. Using static analysis to find bugs. IEEE software, 25(5), 2008.

[14] Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier
for memory safety of c programs. In NASA Formal Methods Symposium, pages
459–465. Springer, 2011.

30

https://www.eclipse.org/
http://findbugs.sourceforge.net/
https://github.com/JetBrains/intellij-community
https://github.com/JetBrains/intellij-community
https://www.jetbrains.com/idea/
http://www.jetbrains.org/intellij/sdk/docs/basics.html
http://www.jetbrains.org/intellij/sdk/docs/basics.html
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
https://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://github.com/cmf/psiviewer/
https://github.com/cmf/psiviewer/
https://checkerframework.org/
https://checkerframework.org/manual
https://en.wikipedia.org/wiki/SQL_injection


[15] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick,
and Dulma Rodriguez. Moving fast with software verification. In NASA Formal
Methods Symposium, pages 3–11. Springer, 2015.

[16] Maria Christakis and Christian Bird. What developers want and need from program
analysis: an empirical study. In Automated Software Engineering (ASE), 2016 31st
IEEE/ACM International Conference on, pages 332–343. IEEE, 2016.

[17] Ankush Das, Shuvendu K Lahiri, Akash Lal, and Yi Li. Angelic verification:
Precise verification modulo unknowns. In International Conference on Computer
Aided Verification, pages 324–342. Springer, 2015.

[18] Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract in-
terpretation. In International Conference on Formal Verification of Object-Oriented
Software, pages 10–30. Springer, 2010.

[19] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In Proceedings of
the 2013 International Conference on Software Engineering, pages 672–681. IEEE
Press, 2013.

[20] Rama Krishnan. SQL Injection in Java Application. https://www.
javacodegeeks.com/2012/11/sql-injection-in-java-application.html.
Accessed 2018-08-01.

[21] Francesco Logozzo, Shuvendu K Lahiri, Manuel Fähndrich, and Sam Blackshear.
Verification modulo versions: Towards usable verification. In ACM SIGPLAN
Notices, volume 49, pages 294–304. ACM, 2014.

[22] Daniil Ovchinnikov. Checker Framework integration for Intellij Platform. https:
//github.com/dovchinnikov/intellij-checker-framework. Accessed 2018-
08-01.

[23] Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and
Michael D Ernst. Practical pluggable types for java. In Proceedings of the 2008
international symposium on Software testing and analysis, pages 201–212. ACM,
2008.

[24] Andrei Sabelfeld. Language-based information security. In Foundations of Com-
puter Security, page 99, 2003.

[25] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. Lessons from building static analysis tools at google. Commun. ACM,
61(4):58–66, March 2018.

31

https://www.javacodegeeks.com/2012/11/sql-injection-in-java-application.html
https://www.javacodegeeks.com/2012/11/sql-injection-in-java-application.html
https://github.com/dovchinnikov/intellij-checker-framework
https://github.com/dovchinnikov/intellij-checker-framework


[26] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. Tricorder: Building a program analysis ecosystem. In Proceedings of the
37th International Conference on Software Engineering-Volume 1, pages 598–608.
IEEE Press, 2015.

[27] Oleg Shelajev. RebelLabs Developer Productivity Report 2017: Why do
you use the Java tools you use? https://zeroturnaround.com/rebellabs/
developer-productivity-report-2017-why-do-you-use-java-tools-you-use/.
Accessed 2018-08-01.

[28] Jun Zhu, Jing Xie, Heather Richter Lipford, and Bill Chu. Supporting secure
programming in web applications through interactive static analysis. Journal of
advanced research, 5(4):449–462, 2014.

32

https://zeroturnaround.com/rebellabs/developer-productivity-report-2017-why-do-you-use-java-tools-you-use/
https://zeroturnaround.com/rebellabs/developer-productivity-report-2017-why-do-you-use-java-tools-you-use/


Appendix

I. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Lembit Valgma,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Usable and Sound Static Analysis through its Integration into Automated
and Interactive Workflows
supervised by Vesal Vojdani

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 09.08.2018

33


	Introduction
	Thesis outline and contribution

	Usability of current static analysis tools
	Why developers don't use static analysis tools
	What developers want and need from static analysis
	Current approaches
	Google
	Facebook

	Attempts to preserve soundness
	Angelic verification
	Verification modulo versions

	Requirements for prototype

	Tainting analysis
	SQL injection
	Prevention
	Using tainting analysis for detection

	The Checker Framework
	Comparison to other tools
	Tainting Checker


	Plugin development
	Problem scope
	Solution choices
	Requirements
	Tool selection

	Solution workflow description
	IntelliJ plugin development
	Components and actions
	PSI
	Threading
	Previous Checker Framework plugin
	Integrating static analyzer

	Developed plugin
	FindTaintingWarnings action
	ObserveMessageWindow service
	TaintingAnnotator
	TaintingExpressionFixIntention
	StatementToPreparedStatementFix

	Testing
	Reflection
	Future development

	Conclusion
	References
	Appendix
	I. Licence


