
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Janno Jõgeva

Software Infrastructure and
Course Design of a Robotics Course

Master’s thesis (30 ECTS)

Supervisor: Eno Tõnisson, PhD

Tartu 2019

Software Infrastructure and Course Design of a Robotics Course

Abstract: This thesis covers the design and development process of a robotics course. The

course in question serves as an entry point into the field of robotics in the University of

Tartu. The design of the thesis draws on the ideas of educational action research and the

infrastructure of the course on the software development and information technology

operations practices (DevOps). Cycles of improvements, which are core to both of these

practices, are in tune with the rapid evolution required of a modern robotics course.

Infrastructure as code, version control systems, and incentive towards continuous

integration are all used in the development process. The two runs of the course covered by

the thesis have advanced the knowledge of more than a hundred students in some of the

modern tools and technologies used in robotics. Altogether, the development of the course

has helped to reinforce the line-up of students and instructors available for projects and

more advanced courses in the Institute of Technology and the university as a whole. The

author, being the lecturer in charge leading the development the course and also pushing for

the use of new technology and maintaining chosen solutions. The thesis serves as an

organised documentation on the evolution process and reasoning for the choices made.

Keywords: Course Design; Course Scalability; Robotics; Action Research.

CERCS (Common European Research Classification Scheme):

1. T125 - Automation, robotics, control engineering

2. P175 - Informatics, systems theory

3. S281 - Computer-assisted education.

Õppeaine „Robootika“ tarkvaraline taristu ja kursuse disain

Lühikokkuvõte: Käesolev töö käsitleb robootika kursuse disaini ja arenduse protsessi.

Käsitletav kursus on Tartu Ülikoolis üheks võimalikuks lähtepunktiks robootika valdkonda

sisenemiseks. Disaini protsessis on kasutatud elemente tegevusuuringu ülesehitusest ning

DevOps nime kandvast süsteemiarenduse kultuurist. Mõlemale praktikale omane tsükliline

paranduste tegemine harmoniseerub hästi tänapäevase robootika kursuse jaoks vajaliku

kiire arenguga. Taristu kui kood (infrastructure as code), versioonihaldussüsteemid ja püüd

rakendada pideva integratsiooni (continuous integration) põhimõtteid — on kõik osa kursuse

arengust. Robootika kursus on teemaks oleva kahe toimumiskorra jooksul aidanud arendada

enam kui saja tudengi teadmisi mõningatest tänapäevases robootikas kasutatavatest

töövahenditest ja tehnoloogiatest. Töös kajastatud kursuse arendusprotsess on toetanud

robootikaalaste teadmistega tudengite ning nende juhendajate järelkasvu, mis loob aluse

keerukamate kursuste arendamiseks ja kasvatab tehnoloogiainstituudi — ning ülikooli

üldisemalt — võimekust olla koostööpartner robootika valdkonnas. Autor kandis vastutava

õppejõu rolli, juhtides kursuse arendust, uute tehnoloogiate kasutamist ning juurutamist.

Töö eesmärk on olla läbitud arengu, tehtud valikute, ning nende põhjenduste

süstematiseeritud dokumentatsioon.

Võtmesõnad: Kursuse koostamine; Kursuse skaleeruvus; Robootika; Tegevusuuring.

CERCS (Common European Research Classification Scheme):

1. T125 - Automatiseerimine, robootika, control engineering

2. P175 - Informaatika, süsteemiteooria

3. S281 - Arvuti õpiprogrammide kasutamise metoodika ja pedagoogika.

Table of Contents
1. Introduction . 1

2. Abbreviations and Acronyms . 3

3. Course Overview . 5

3.1. Bird’s Eye View . 5

3.2. Linked Courses. 8

3.3. Links to Computer Engineering Curriculum . 9

3.4. Target Audience . 10

4. Course Design . 15

4.1. Methodology. 15

4.2. Grading System and Results . 17

4.3. Lab Manual Release Schedule . 25

4.4. Instructors Workload . 30

5. Student-Facing Solutions . 34

5.1. Moodle Dashboard . 34

5.2. Software Stack . 36

5.3. OpenCV Adaptations . 41

5.4. Version Control . 45

6. Internal-Facing Solutions. 53

6.1. Instructors' Repository . 53

6.2. Lab Manual Template . 54

6.3. Google Docs . 55

6.4. Configuration Management . 57

6.5. Resource Management System . 59

7. Summary . 65

Acknowledgement . 66

References . 67

Licence . 70

1. Introduction
This thesis covers the design and development process of a robotics course. The course in

question serves as an entry point into the field of robotics in the University of Tartu (UT) as

envisioned by the Institute of Technology (TUIT). The field in question—Robotics is a

research field centred around robots making use of cross- and interdisciplinary

methodologies. For the purposes of the course, a robot is a programmable machine that

performs autonomous decisions and actions in solving a task or parts of it. Robotics is

leading much of what is considered possible in the modern world. Rapid advances of the

past decades in the field of robotics have also raised some concerns, mainly the socio-

economic risk created in many sectors [1]. Some of the risks are counterweighed by enabling

the population on the local, European, and global level to solve problems at scale or

environment otherwise unreachable or impractical. The amount of possible applications for

robotics creates a high demand in the job market for specialists with robotics background.

The course aims to help the supply of some of these specialists.

The course’s design draws on the ideas of educational action research and the infrastructure

of the course on the software development and information technology operations (DevOps).

DevOps practices used are: infrastructure as code (IaC), version control systems (VCS) and

incentive towards continuous integration (CI). The concept of IaC is applied via Ansible [2]

configuration management system’s Playbooks, describing desired system states and

policies, which can be applied to the target hosts [3]. The incentive towards CI is supported

by using the AsciiDoc language [4] and the Asciidoctor toolchain [5] for document

development coupled with VCS to enable rapid updates of the course content. Altogether

action research is a widely researched educational methodology and DevOps a widely used

collection of best practices for systems development with inherent benefits of scalability and

sustainability. Both of those schools of thought are based on the idea of rapid development

cycles and the drive to improve the processes within via review and reflection. These

concepts are in tune with the ever-changing field of robotics and automation.

This thesis covers the continuous period starting from planning for the 2017/2018S (S -

spring; A - autumn) semester and ending with some bits of the ongoing planning for

2019/2020A semester. This translates to two runs of the course and a part of the planning

stage for the third run. The author does have previous experience with conducting this

course, which is outside of the scope of this work. In the 2017/2018S and 2018/2019A

semesters combined the course has had 14 instructors led by the author for laboratory

practicals and support from various employees of the TUIT, Information Technology Office

1

(ITO), and the University of Tartu in general. The main contributions of the author are

leading the design and development of the course, managing the VCS and various templates,

delivering lectures, pushing for the use of new technology and maintaining chosen solutions.

Although the thesis is focused on the author’s work, it would not be possible to give a clear

and concise overview without mentioning some contributions from other people. The author

will indicate where such overlap occurs. The contributions considered for this paper are

mostly related to the infrastructure and high-level design of the course. Conducting all of the

lectures was also part of the author’s responsibilities in the course but not all of the topics

covered are part of this thesis. Thus, the description’s focus is on a template for a lab manual,

not on the individual labs. The following section will expand on the topics covered by the

thesis.

Chapter 2 lists all of the field-specific abbreviations and acronyms used in the thesis. Chapter

3 gives a general overview of the robotics course, its placement in the curriculum and the

target audience. The chapter on general overview is followed by Chapter 4 explaining how

the lab manuals are released to the students, how the overall grading system works,

instructor workload throughout the semester and the methodology used for compiling this

paper. The following two sections continue to describe the diverse set of tools used for the

course. First of the two, Chapter 5 is centred around tools that the students would be in

direct contact with while enrolled — Moodle dashboard, software on classroom computers,

Open Source Computer Vision (OpenCV) modifications and the version control system.

Second of the two, Chapter 6 explains the technology used behind the scenes, to run the

course. The chapter starts off with VCS and after which it continues to the lab manual

template that is maintained within. Subsequent sections cover: Google Docs based solutions,

configuration and resource management, and the server which was set up by the author for

the purposes of the course. Finally, Chapter 7 concludes the paper.

2

2. Abbreviations and Acronyms
Abbreviation/Acronym Full Term

API Application Programming Interface

AR Action Research

AR-cycles Action Research cycles

armhf ARM Hard Float

CE Computer Engineering

CERCS Common European Research Classification Scheme

CI Continuous Integration

DevOps Development and Information Technology Operations

DTD Digital Timing Diagram

DVCS Distributed Version Control Systems

ECTS European Credit Transfer and Accumulation System

EOL End-of-Life

FPU Floating-Point Unit

IaC Infrastructure as Code

IO Input-Output

ITO Information Technology Office

JSON JavaScript Object Notation

Lab00 Laboratory Practical number 00

Lin Linux

LMS Learning Management System

LTS Long Term Support

np not present

OpenCV Open Source Computer Vision

OS Operating Systems

PID Proportional–Integral–Derivative

PKI Public Key Infrastructure

3

Abbreviation/Acronym Full Term

PoC Proof of Concept

PR Pull Request

RDP Remote Desktop Protocol

RPi Raspberry Pi

ROS Robot Operating System

SaaS Software-as-a-Service

S&T Science and Technology

SIS Study Information System

SSH Secure Shell

VNC Virtual Network Computing

TUIT Tartu University, Institute of Technology

UI User Interface

UPS Uninterruptible Power Supply

UT University of Tartu

UX User eXperience

VCS Version Control Systems

Win Microsoft Windows

4

3. Course Overview
This chapter explains why and how this course fits into the broader area of studies in

Computer Engineering (CE) in the University of Tartu. Starting with the target audience and

how it has evolved over the years. Continuing to how the course fits into the curricula of CE

and Science and Technology (S&T) designed by the Institute of Technology. Finally, there is a

brief characterisation of the students who have enrolled and passed the course in the

applicable period. The majority of sections will be divided into subsections based on AR-

cycles to better display the development process. There are a couple of exceptions on topics

that have stayed fairly static over the covered period. Example, the title of a subsection "Plan

(2017/2018A)" refers to the planning stage for the 2017/2018A semester happening before

that semester started. Section 4.1 gives a detailed overview of the methodology used in this

thesis.

3.1. Bird’s Eye View

The course yields 6 European Credit Transfer and Accumulation System (ECTS) points on

successful completion and is a part of regular studies in UT. That and other characterising

features for the course are presented in Table 1 for improved readability. The table is based

on the official course info available in Study Information System (SIS) [6].

Table 1. Bird’s Eye View of the Course

Area Description

Course type Regular course

Grading Differentiated (A, B, C, D, E, F, not present) - more in Section 4.2.2

Forms and volume of

study in hours

6 ECTS points - 6×26h = 156h of work

• Practical classes (Labs) - 64h

• Lectures - 32h

• Independent work (incl. e-learning) - 60h

5

Area Description

Levels of study • Bachelor’s studies

• Master’s studies

• Doctoral studies

• Bachelor’s and master’s integrated studies

Goal The goal of this course is to give basic theoretical and practical

knowledge in robotics.

Brief description of

content

Introduction into robotics systems using Raspberry Pi and Arduino

in combination with GoPiGo platform.

Assessment (see

Section 4.2 for more

details)

• Labs

• Presentation

• Project

• Many specialisation categories

• Oral exam

Languages of

instruction

The whole course can be completed in English. Estonian is available

in all verbal communication and at the final exam.

These characteristics have been rather stable over the period covered by the thesis. In

addition to the compulsory activities visits have been organised by the author to companies

giving students first hand experience with practical applications of robotics. These optional

activities have been popular amongst students and there are already some plans for the next

semester. One ECTS converts to 26 academic hours of work for the student in UT and a full-

time student in regular studies is expected to gather 30 ECTS points per semester [7]. The

lectures, lasting 1.5h and running every week, are conducted by the author. The labs last 4h

and are taught by two instructors per group. Students are expected but not limited to attend

one lab group per week. Two additional optional lab consultation times were added in the

2018/2019A semester.

The course follows the common semester system in use at UT. The course runs for the whole

16-week semester: either September→December or February→May with exams taking place

in the corresponding examination session in January or June.

6

The thesis mentions some modules of curricula. These are defined as follows for bachelor’s

studies curriculum in the study regulation of UT [7]:

1. two base modules, 24 ECTS each;

2. two field modules, 24 ECTS each, one of which may be replaced by a speciality module;

3. two speciality modules, 24 ECTS each, one of which may be replaced by a field module;

4. at least one elective module, 12 ECTS;

5. optional courses, 0–18 ECTS; and

6. bachelor’s exam or graduation thesis, 6–12 ECTS.

7

3.2. Linked Courses

This course is considered as the entry point to the area of robotics in University of Tartu. The

course focuses on coding for hardware and introducing various areas of robotics. After

completing this course the students can enrol in courses specialising in sub-areas of robotics.

Figure 1 shows the dependencies between the courses and includes the unique identifiers

used in the university. The course in question is "LOTI.05.010", the first letters "LOTI" before

full stop specify the structural unit within UT responsible for the course and the two sets of

numbers organise the course within the structural unit. The course makes heavy use of the

knowledge students gain in the introductory Computer Programming course.

Legend

LOTI.05.010
Robotics

LOTI.05.023
Practical Work in Robotics

LOTI.05.062
Control Systems Engineering

LTTI.00.020
BSc Thesis Seminar in

Bioengineering and Robotics

LTTI.00.019
Introduction to

Digital Image Processing

LOTI.05.060
Smart Solutions

LTAT.06.003
System Administration

LOFY.03.013
Embedded Systems

LOTI.05.032
Robotics Engineering Project

K-12 STEM &
English

MTAT.03.236
Introduction to Programming

LTAT.03.001
Computer Programming

CE

S&T

Both

Figure 1. Courses supporting, and supported by the robotics course, to develop students knowledge

in robotics

These courses have mostly stayed the same over the action research cycles (AR-cycles)

considered and thus, are covered as a single item. First tests of cooperation with the

programming course were made in the 2018/2019A semester and there are plans for

collaboration with the introductory mathematics course.

8

3.3. Links to Computer Engineering Curriculum

As with Section 3.2 the course has stayed in the same module over all of the AR-cycles and

the division to cycle steps is not applied here. The course is part of the "Specialisation Module

in Computer Engineering" optional module which is part of the Computer Engineering

curriculum. This module while optional is what the majority of students opt for. The general

objective of this module is "To give student specialised knowledge in two distinct fields of

Computer Engineering." [8]. This information is publicly accessible via the universities SIS.

The module contains 5 courses:

1. LOTI.05.062 | Control Systems Engineering 3 ECTS;

2. LOFY.03.013 | Embedded Systems 3 ECTS;

3. LOTI.05.023 | Practical Work in Robotics 6 ECTS;

4. LOTI.05.010 | Robotics 6 ECTS;

5. LTAT.06.003 | System Administration 6 ECTS.

Each curricula has a public description of its objectives. Targets listed in the description of

SIS [8] have also been taken into account when designing this course. Table 2 lists each of

these objectives with an explanation if and how the course contributes towards these targets.

Table 2. Course Contribution Towards "Computer Engineering" Curriculum Objectives

Curriculum objectives (copy from SIS) Course contribution

After completion, the student

Has a systematic understanding of the

fundamental concepts, theoretical principles,

and methodology inherent to CE.

Has written code for an electromechanical

system, including fine tuning and debugging

the solution to make it work in a controlled

environment.

Can independently gather and critically

analyse information in the field of CE and

communicate observations and conclusions

in an appropriate form (e.g. oral or written

presentation) in Estonian as well as in

English.

Has presented a recent news article to all of

the other students via a presentation in the

lecture or a 2 minute news clip (video) that

get’s shown in the lecture. This work is done

in English. Most of the summative feedback

in labs is provided in Estonian.

9

Curriculum objectives (copy from SIS) Course contribution

Is able to write computer code using

assembler and at least two higher-level

programming languages.

Has used Python and Arduino C++. Use of

assembler is not covered in this course.

Understands the roles of individual computer

components, is able to select an appropriate

configuration (considering both price and

performance) as well as assemble this

computer.

Has gathered experience in sensors,

actuators, other input-output (IO) devices

and communication. Has participated in a

project finding suitable system configuration

and balance between using software and

hardware for the final solution.

Understands the organisation and

architecture of computers and other

electronic devices on a level that allows the

conception, design, and troubleshooting of

electronic devices.

The course focuses on the ability to assemble

pre-fabricated development boards and

sensors. Students get a very basic

introduction to breadboarding. Electronics

design is not covered in this course.

Has the ability to work independently or as a

part of a larger team on a Computer

Engineering project or task.

Has solved several hands-on multistep tasks

that should help to develop independent

work skills. In addition participated in a

group project with assigned partners to help

the students work on a larger project with

colleagues of the same field.

3.4. Target Audience

The target audience of the course has changed over time. Initially it was a course aimed at

students further in their Bologna Process conformant 3-year bachelor’s studies in UT. Later it

was moved earlier in study plan for Computer Engineering students. It was also assigned

part of the Science and Technology curriculum, which is a similar 3-year bachelors

programme. It is a very new curriculum as the first students enrolled in 2016/2017A [9],

meaning they had yet to reach their third year by the 2017/2018S semester. The course is

compulsory for students specialising in "Bioengineering and Robotics". The following

sections also cover the enrolment statistics as it is dual in nature to the target audience.

10

3.4.1. Plan (2017/2018A)

When first invited to run this course the author had a meeting with the programme manager

who identified that the majority of students would be from the second and third year of the

Computer Engineering curriculum and previous experience showed that there would be

some students from other curricula as well. This was used to set initial expectations on the

background of the students i.e. most of them would have taken more than one programming

course before enrolling in this course. Three lab groups with twelve student capacity each

were opened to cater for the estimated 35 students.

3.4.2. Act and Observe (2017/2018S)

The final number of students takes some time to stabilise every semester. This paper

considers students who got their final grade in the course as these students influence the

course most considerably. They are listed in Table 3.

Table 3. Students with Final Grade (2017/2018S) - Division by Curricula

Curriculum Level 2017/2018S

Computer Engineering 1st bachelor’s 3 (~10%)

2nd bachelor’s 14 (~47%)

3rd bachelor’s 6 (~20%)

Science and Technology bachelor’s 0 (0%)

Erasmus bachelor’s 1 (~3%)

Physics doctorate 1 (~3%)

Computer Science bachelor’s 2 (~7%)

Conversion Master in IT master’s 0 (0%)

Physics, Chemistry and Material Science bachelor’s 1 (~3%)

Software Engineering master’s 1 (~3%)

Estonian Aviation Academy bachelor’s 1 (~3%)

Total All 30 (100%)

The table has some rows with zero students — this is to make the comparison with future

semesters more convenient. Computer Engineering students are listed per year as they form

the majority of the students and all years are represented. The author acknowledges that

11

there might be useful information in students who only enrol for a short period of time, but

this topic is out of scope for this thesis.

3.4.3. Reflect and Plan (Summer 2018)

By the end of the course 30 students received a final grade. The staff of the course were

informed mid-semester that the course would be moved to the first semester of Computer

Engineering. It was previously known that the first third year students of Science and

Technology curriculum specialisation module would also take this course in the autumn. All

this added up to a prognosis of approximately 100 students enrolled in the beginning of the

semester with a dissimilar background to the spring students. This meant that more teaching

staff would be needed and some of the tasks in the labs needed to be fitted to the students

experience. These changes are discussed further in Section 4.4.3.

3.4.4. Act and Observe (2018/2019A)

From Table 4 we can see that around half of the students completing this course in the

autumn were Computer Engineering first year students.

Table 4. Students with Final Grade (2018/2019A) - Division by Curricula

Curriculum Level 2018/2019A

Computer Engineering 1st-year bachelor’s 40 (~49%)

2nd-year bachelor’s 18 (~22%)

3rd-year bachelor’s 3 (~4%)

Science and Technology bachelor’s 11 (~14%)

Erasmus bachelor’s 4 (~5%)

Physics doctorate 2 (~2%)

Computer Science bachelor’s 1 (~1%)

Conversion Master in IT master’s 1 (~1%)

Physics, Chemistry and Material Science bachelor’s 1 (~1%)

Software Engineering master’s 0 (0%)

Estonian Aviation Academy bachelor’s 0 (0%)

Total All 81 (100%)

12

First year Computer Engineering students were taking an introductory 6 ECTS programming

course in parallel. Students from Science and Technology curriculum had passed a 3 ECTS

programming course in their first year and then a couple of courses that made use of

MATLAB. Other students with a few exceptions had more programming experience.

3.4.5. Reflect and Plan (2018/2019S)

The students of Science and Technology had less background in programming than initially

expected. Most of the misjudgement can be attributed to the fact that this was the first ever

class of third year Science and Technology students in UT the rest is on the author not having

a deeper look into the programming courses they had taken. First year Computer

Engineering students did benefit from the changes made in the course. Some additional

support on applying the divide→conquer→combine methodology is needed.

Table 5 is a result from discussions with programme managers, students already registered

to the course, and the expectation that the number of students from less represented

curricula will -on average- stay the same. All in all the table shows comparable expected

enrolment to that of 2018/2019A semester with the exception of Computer Science students

who have already shown increased interest. Science and Technology bachelors enrolment

increased in 2018/2019A from 25 to 35 students [9]. Some of these extra students will reach

this robotics course in 2020/2021A semester.

Table 5. Students prognosis (2019/2020A) - Division by Curricula

Curriculum Level 2019/2020A
(prognosis)

Computer Engineering 1st bachelor’s 40-50

2nd bachelor’s 5-10

3rd bachelor’s 1-3

Science and Technology bachelor’s 12-15

Erasmus bachelor’s 2-5

Physics doctorate 0-1

Computer Science bachelor’s 10-15

Conversion Master in IT master’s 0-1

Physics, Chemistry and Material Science bachelor’s 1-4

Software Engineering master’s 0-1

13

Curriculum Level 2019/2020A
(prognosis)

Estonian Aviation Academy bachelor’s 0-1

Total All 73-106(100%)

Students from other curricula are planned to be given more attention to make sure the

course would cater to their needs as long as it doesn’t strongly affect the core of the students.

More support in programming is planned for the students of Science and Technology

curriculum.

14

4. Course Design
Iterations of the course included in this thesis are based on the broader view from the

Chapter 3 and feedback from programme manager and other institute members gathered in

discussions. This information is maintained in the instructors repository that will be

introduced in Section 6.1. The following sections first introduce the methodology used in the

design process and continue to explain how it was applied in the development of selected

areas of the course.

4.1. Methodology

The design of the thesis follows some of the core ideas of action research (AR). Action

research cycles help to trace and explain the improvements implemented in the course. The

basic AR-cycle consists of four key steps as described by [10, 11, 12] and shown in Figure 2.

Plan

Act

Observe

Reflect

Figure 2. Basic Action Research Cycle

This thesis covers two complete AR-cycles and at times uncovers some of the planning

activities for the third cycle. The AR concept is applied on two levels. There are semester-long

cycles and many sub-cycles within each semester usually aligned with the weekly rhythm of

the course. Semester officially starts with an opening meeting for the staff and closes with a

staff reflection meeting at the end of the semester. There are also weekly meetings and

multiple chat groups to help solve more immediate questions. All of these cycles are

visualised in Figure 3.

15

Semester 17/18S

Each week

Week #n-1 Week #nWeek #1

Semester 18/19A

Each week

Week #n-1 Week #nWeek #1

Semester 19/20A

Future
steps

Past semesters

Plan

Act

Observe

plan planplan

Reflect

Plan

act &
observe

reflect

plan

act &
observe

reflect

plan

act &
observe

reflect

Act

Observe

plan

Reflect

Plan

act &
observe

reflect

act &
observe

reflect

act &
observe

reflect

Act

Observe

Reflect

Figure 3. Actual feedback cycles in the course

16

Starting with 2018/2019A semester official minutes of meetings are available to all

instructors. Some more static sections that do not follow this structure are also present in the

thesis. The minutes were initially taken by one instructor to develop the general style of the

notes, but this task was rotated in the second half of the semester. In the previous semester,

notes were taken individually and reminders on the decisions taken were sent out via e-mail

as needed. This would not scale well with the increase in the number of instructors and

there was no good way for an instructor who was missing to get the gist of the meeting.

The majority of the thesis is structured first by the topic and second by the AR-cycle steps. In

the description "Act and Observe" and "Reflect and Plan" steps are coupled together as they

withhold a lot of linked content. The common subsection structure is:

• Plan (2017/2018A);

• Act and Observe (2017/2018S);

• Reflect and Plan (Summer 2018);

• Act and Observe (2018/2019A);

• Reflect and Plan (2018/2019S).

The time specification inside () shows the time of the work happening. Plan (2017/2018A)

denotes preparations for the 2017/2018S semester happening in 2017/2018A semester. The

course has seen and will see a lot of adjustments including to the tasks proposed, hardware

used, and theory covered through the employed AR-cycles. This will help to maintain an up-

to-date course in a fast growing and rapidly evolving area of robotics.

4.2. Grading System and Results

The course uses a grading system based on multiple criteria. One of the core ideas of grading

is that for an introductory course we need to cover various talents with our grading scheme

as students have a wide variety of backgrounds. Ranging from students who have little to no

programming experience to students who have several years of programming experience

and have taken part in robotics competitions. Comparable levels of diversity in backgrounds

have also been observed in electronics, mechanics, and mathematics all of which support the

comprehension of the topics covered in the course. Most of the assessment is summative but

some formative assessment is done in labs, lectures, and for the course project.

17

4.2.1. Plan (2017/2018A)

As explained in Section 3.4.1 it was expected that there would be ~35 students participating

in the course in the spring of 2018. This is one of the factors considered in the grading and

feedback design as they both need time from the staff. During the course design, it was

decided that the staff would distribute the activities needing feedback or a grade over the

semester? This was done to: firstly, motivate the students to invest at least some time in to

the course each week, secondly extending the useful period of formative feedback—helping

the student to improve every week, and finally, to make sure students get all of the

summative feedback with a shorter delay. The importance of distributing the grading and

feedback over the whole course is also supported by researchers Jones, and Gorra, who

found: "To conclude, the data suggest that offering all students the detailed feedback on

summative work is not resource efficient for academic staff and institutions based on the

low number of students requesting and actually accessing detailed individual feedback." [

13].

All of the points awarded in the course are divided into two categories as shown in Figure 4.

Each of these categories contains tasks, some of which are covered by the further sections of

the thesis. The first category "Base skills" are the items that are expected from all of the

students, including:

• Laboratory Practicals - 10 compulsory labs (Lab01..Lab10),

• Course Project - participating in a 50h/student project conducted in pairs,

• Week in the News - a 5 minute presentation given by each student at a lecture about a

recent news item in robotics,

• Exam - an individual oral examination carried out at the end of the course and based on

students own solution code for the labs.

Second one "Specialisation" covers excellence giving students with above average academic

abilities an opportunity to express their talents. These include:

• Advanced tasks - extra challenges in labs usually extending one of the compulsory

tasks,

• Early Bird Presenter Reward - extra points for students who take the lead and give

their presentations early in the semester,

• Bug Bounty - credit system for students who report bugs in the course materials,

anything from typos to bugs in example code,

18

• Perfect Attendance - extra points for students who are able to attend all of the

lectures — university regulations apply for exemptions, such as health issues.

Course Grade (120p max)

Base skills (30p max)

Laboratory PracticalsCourse ProjectWeek in the NewsExam

Specialisation

Advanced
Tasks

Bug
Bounty

Early Bird
Presenter Reward

Perfect
Attendance

20p35p10p25p

10p10p 5p5p

Figure 4. Score categories used for the semester (2017/2018S)

Each of these categories contains tasks, some of which are covered by the further sections of

the thesis.

The score system, amongst other things, aims to motivate students to submit their work as

soon as possible, even if they have missed a deadline. This is achieved via initiating some of

the point categories, especially for the course project, with a half-life and an exponential

decay process.

Let’s consider the following example. The students have a deadline for presenting the proof

of concept (PoC) for the course project on May 3rd 2018 23:59. The maximum number of

points a PoC can be awarded is 5 points denoted by P(0). There is a missed deadline penalty

of 1.5 points denoted by MDP. The points remaining after missing the deadline are P(0) - MDP

= 3.5 points and will be denoted N0. These points are listed to have half-life of 168h which is 7

days denoted by half-life. There is a lower bound of 0 points for each task. The number of

hours past deadline is rounded up and denoted by t. The points remaining after t hours have

passed are denoted by P(t) and calculated as follows:

19

Let’s suppose a student misses the deadline by 50 hours—the points remaining for this task

are:

Points gained from laboratory practicals do not hold the exponential decay property. They

just have two deadlines which Section 4.3 discusses in more detail. Missing the first results in

losing half of the points and missing the midterm results in 0 points. Figure 5 shows that as

time passes, less and less points are on offer for the students. This means that the course will

get gradually harder to pass if no action is taken by the student. At the same time it is still

theoretically possible to get the grade A if the student starts work in April. It is just

considerably harder than when they would have started in the beginning of the semester.

Exam
Early Bird Presenter Reward
Perfect Attendance
Advanced Tasks
Bug Bounty
Complete Lab10
Teaching Assistant Reward
Course Project
Laboratory Practicals
Week in the News

series

2018-02-182018-02-252018-03-042018-03-112018-03-182018-03-252018-04-012018-04-082018-04-152018-04-222018-04-292018-05-062018-05-132018-05-202018-05-27

Date student starts collecting points

0

10

20

30

40

50

60

70

80

90

100

110

120

M
ax

im
u

m
 p

o
in

ts
 a

va
ila

b
le

Figure 5. Points decay over the semester assuming that the student has not taken action until that

point in time (2017/2018S)

4.2.2. Act and Observe (2017/2018S)

Grading system was introduced in the opening lecture and parts of it covering the course

project, midterm, and exam were explained multiple times over the course of the semester.

Students are presented a simplified Python function visible in the Code Example 1 to show

how the points are converted at the end of the course. The students were also explained that

20

this conversion would only be done if the student has met all of the minimum requirements

to pass the course. This format was initially chosen to remind students of Python syntax and

to help communicate the amount of programming waiting for them in the course.

Code Example 1

 1 def grade(points): ①
 2 if not isinstance(points, int): ②
 3 return 'Contact instructor'
 4 elif points >= 91:
 5 return 'A'
 6 elif points >= 81:
 7 return 'B'
 8 elif points >= 71:
 9 return 'C'
10 elif points >= 61:
11 return 'D'
12 elif points >= 51:
13 return 'E'
14 else: ③
15 return 'F'

① Input is the total number of points the student has at the end of the course

② To explain that input to a function is not always what one would expect it to be

③ Define grade F in an else statement to cover the whole range

An individual oral exam was conducted with all students who passed the 35 point bare

minimum before the exam. The exam was based around students randomly choosing two

tasks from the labs and explaining their solution code to a panel of three: two instructors,

and the author. Tasks were categorised before the exam to lessen the effects of chance. All of

the tasks in the labs were divided into three categories for the exam: tasks that were short

and easy (Group A), tasks that were tricky and/or long (Group B), and tasks that were not

suitable. The division of tasks was based on a majority vote with each instructor having one

vote. All instructors graded all tasks and the lecturer broke ties where necessary. Each

student would draw one task from Group A and one from Group B as part of the exam.

4.2.3. Reflect and Plan (Summer 2018)

The initial wording of the score categories were confusing to a couple of students according

to overall course feedback in the SIS. The problem seemed to revolve around the use of word

"bonus" in some, but not all of the specialisation level activities. These names were updated

21

for the next semester to avoid possible confusion amongst future students. The final grade

distribution, based on the criteria described in Section 4.2.1, is presented in Figure 6. It

shows that half of the students got the grade A or B and that one in five students did not

manage to pass the course achieving an F or "not present" (np). The figure contains one

grade per student, for students who participated in the resit the grade is from the resit.

Semester

0

1

2

3

4

5

6

7

N
u

m
b

er
 o

f
st

u
d

en
ts

2017/2018S
A B C D E F np

Final grade

0
1
2
3
4
5

Final Grade numeric value

Figure 6. Students' final grade division (2017/2018S)

Figure 7 lists the categories planned and used for the 2018/2019A semester.

Course Grade (133p max)

Base skills (43p max)

Laboratory PracticalsCourse ProjectWeek in the NewsExam

Specialisation

Advanced
Tasks

Bug
Bounty

Early Bird
Presenter Reward

Teaching Assistant
Reward

Complete
Lab10

Perfect
Attendance

25p35p5p25p

10p10p3p10p5p5p

Figure 7. Score categories used for the semester (2018/2019A)

The course needed an update to the grading as the level at which students entered the course

was expected to drop. This expectation was based on the course moving to the first semester

from the regular fourth semester for Computer Engineering (CE) students. An introductory

22

Laboratory Practical number 00 (Lab00) was added, it included hands-on experience with

breadboarding, usage of Ubuntu Linux operating system [14], use of Git distributed version

control system (DVCS) [15], and an introductory programming task. Lab10 was moved to the

specialisation tier, as it required implementing algorithms more advanced than other labs

and this kept the number of compulsory labs at a total of ten.

Teaching assistant reward was added to the course to engage more experienced students in

learning by helping others in their lab. This process was supervised by the corresponding

instructors in the lab. This was an invite only opportunity for students who excelled in their

labs to join another lab group and assist the instructors in answering students questions,

they would have no role in the assessment process which was managed by the regular

instructors. For assisting one 4h lab the students would get 2p. It was hoped to reduce the

classroom pressure on the teaching staff with entry level questions from first year students.

The Early Bird Presenter Reward points were reduced from five points to three points. Five

points were transferred from the Week in the News presentation to the Laboratory Practicals

to better reflect the expected input for each activity.

The overall idea of rewarding timely, or as soon after the deadline as possible, seemed to

work well based on the feedback from the instructors. Some modifications were made to

introduce the idea into new areas of grading, such as the midterm described in Section 4.3.

Figure 8 shows that the decay in points available is greater than in the previous semester—

being a direct result from the changes made.

23

Exam
Early Bird Presenter Reward
Perfect Attendance
Advanced Tasks
Bug Bounty
Complete Lab10
Teaching Assistant Reward
Course Project
Laboratory Practicals
Week in the News

series

2018-09-092018-09-162018-09-232018-09-302018-10-072018-10-142018-10-212018-10-282018-11-042018-11-112018-11-182018-11-252018-12-022018-12-092018-12-16

Date student starts collecting points

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

M
ax

im
u

m
 p

o
in

ts
 a

va
ila

b
le

Figure 8. Points decay over the semester assuming that the student has not taken action until that

point in time (2018/2019A)

It is also worth noting that the maximum number of points increased from 120 to 133. The

points added were all part of the specialisation tier. All this combined means that a student

would still be able to get the A grade when starting in second week of December.

4.2.4. Act and Observe (2018/2019A)

The instructors reported at a weekly meeting that Lab00 was of suitable complexity for first

year’s students, and was considered easy by more experienced students. A total of eleven

students were offered the opportunity to gain additional points via the Teaching Assistant

Reward. Eight students accepted the offer and a total of 24 labs were assisted. Two students

achieved the maximum result of 10p in the category by assisting on five occasions And two

of the students decided to help out on one occasion. Other four students assisted on two to

four occasions.

4.2.5. Reflect and Plan (2018/2019S)

Course grades seem to indicate the expected decrease in grades as we transitioned to having

many first year students. The division of grades is shown in Figure 9.

24

Semester

0

5

10

15

20

25

30

35

N
u

m
b

er
 o

f
st

u
d

en
ts

2018/2019A

A B C D E F np

Final grade

0
1
2
3
4
5

Final Grade numeric value

Figure 9. Students' grades division.

Only one of the students who passed the 35 point minimum requirement for taking the exam

failed to pass the exam after the resit had taken place by not showing up at the resit. Some

students sought additional help on learning how to read their own code between the two

exams. This might suggest that an additional activity in the labs were students would need to

explain their code might be beneficial. This would also help to push the students to write

more of their own code.

4.3. Lab Manual Release Schedule

This section covers the process of releasing lab manuals as one of the main sources for

weekly tasks for the learner. There have been several modifications to the releases mostly

guided by student progress. Digital Timing Diagram (DTD), a common visualisation method

for representing timing relations in digital logic, is now used to convey the information to

the students within the semester. These diagrams are produced by a tool named WaveDrom

from WaveJSON compact exchange format based on JavaScript Object Notation (JSON)

language syntax which has become the de facto tool for building DTDs [16].

4.3.1. Reading Digital Timing Diagrams

A representation for the time-step is needed. This is very straightforward — a clock signal is

used for this as represented in Figure 10. The numbers on top of the rising-edge of the clock

represent the start of the corresponding academic week. Period of the signal is chosen to be

one week to make sure that all of the weeks look the same instead of using two week periods

that might communicate that there is a difference between high and low clock signal weeks.

The use of clock signal also conserves the appearance of traditional DTDs which helps the

25

students to make a habit out of referencing all readings they take to the clock.

1 2 3 4 5 6 7

Academic week

Figure 10. Release schedule - 6 academic weeks

A representation of the points available for a particular lab is also needed. Another signal is

used for this purpose as shown in Figure 11. High state of the signal representing maximum

points for the lab, low state: zero points, and middle state: reduced points.

Lab01 full points reduced points zero pointsa b c

Figure 11. Release schedule - points available

Figure 12 displays a signal showing that at first Lab01 is released then there is a week long

pause after which two more labs are released. This information can also be derived from

Figure 11 but not as conveniently on more complex diagrams. The slightly curved tip at the

end of Lab01, and Lab03 as opposed to the blunt tip at the end of Lab02 does not hold any

special meaning for our application.

Lab manual release Lab01 Lab02 Lab03

Figure 12. Release schedule - labs released

DTDs have been used since 2018/2019A to represent information about the labs in this

course. DTD for the previous semester has been retroactively created for the benefit of

making comparison between semesters more convenient.

4.3.2. Plan (2017/2018A)

When the planning process started there was some feedback available from the students

who had participated in the course on the previous year. One of the things that stood out was

that most of the manuals were just there. The students were asked to complete them in a

particular order but there was not much other structure around them. None of the staff of

six involved in the planning processes had been involved in teaching this course on the

previous semester, but three had recently participated as students. It was decided that the

upcoming semester would use step-by-step release schedule for the lab manuals. There were

multiple reasons for this approach. From the students perspective the main one was to

spread out the workload to the whole semester giving the students a guideline on how the

course progresses. From the instructors perspective it helped to spread the workload of

26

improving and redesigning the lab manuals. It also helped to adjust the level of difficulty

based on the students progress in the earlier labs. This also meant that the development

cycles could be easily repeated where the need arose as there was always at least one

instructor who had recently worked on improving the manual in question. It was agreed that

each instructor would be responsible for two lab manuals as we had five instructors and ten

lab manuals to cover. The author would work with each one of them to fit the lectures to the

labs, on the manual template covered in Section 6.2, and to act as an extra pair of eyes to

read through each manual before release.

4.3.3. Act and Observe (2017/2018S)

During the semester the lab manuals followed the release schedule shown in Figure 13. This

diagrams has two additional lines marked with fast lane and full points. Fast lane is for

students with more background in the area wanting to challenge themselves by submitting

solutions to tasks on the week at which they were released. Full points is a reference for

students who are aiming to gain all points from the labs.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Academic week

Lab manual release Lab01 Lab02 Lab03 Lab04 Lab05 Lab06 Lab07 Lab08 Lab09 Lab10

Lab01

Lab02

Lab03

Catch-up 1

Lab04

Lab05

Lab06

Lab07

Catch-up 2

Lab08

Projects PoC

Lab09

Lab10

fast

lane

fast

lane

full

points

full

points

u v

G
ro

up
 1

G
ro

up
 2

G
ro

up
 3

C
om

pu
ls

or
y

Figure 13. Lab manuals' release schedule and points availability as played out in the 2018/2019S

semester (retroactively added visualisation).

The staff needed to be flexible in adding supporting text in the manuals as problematic areas

became apparent as one or two instructors testing the manual was not sufficient to find all of

the problems. Some alterations were made in the release dates as the course progressed and

the comfortable pace for the students became more apparent. This was also the first

27

semester for considerable amount of the subtasks and even for some complete labs. Student

progress review conducted at the weekly instructor meetings played a key role in the process

of setting a suitable pace.

4.3.4. Reflect and Plan (Summer 2018)

In the end of semester meeting the staff collectively agreed that the students seemed to lose

interest in completing a lab if they had already missed the soft deadline and half of the

points were deducted from the maximum available for the lab with the reminder being

available until the end of the semester. This issue was analysed and a mid-term deadline was

proposed to motivate students in going through the labs in a timely manner. Feedback from

the instructors meeting indicated that the catch-up week worked well the first time. It was

proposed that the reason for this was that the extension was unexpected to the students. The

instructors also felt that the second catch-up did not have such a clear impact on the students

course progress as many opted to miss the lab on the catch-up week. It was decided that a

compact representation of release dates and deadlines might benefit the course. The author

started work with DTDs to present this information.

Another point made at the instructors meeting was that as the manuals became more

advanced they also got more dependencies outside the basic Asciidoctor install for compiling

the documents. This together with the increase in the number of instructors described in

Section 4.4.3 meant that there would be more overhead in making small fixes to the

manuals. It was decided that a CI server building manuals on each push would help the

reduce this overhead. Setting up a CI server would need a server and a change in the

branching model used for the instructors repository. These changes were added the roadmap

but it was unlikely that all this could be done for the upcoming semester.

4.3.5. Act and Observe (2018/2019A)

Figure 14 was created and introduced in the opening lecture and reiterated and improved

throughout the semester. There was some initial confusion with reading the diagram as

many students had no prior experience with this type of diagrams and they are not

commonly used for this sort of information. It was still beneficial for the students to practice

reading these as they would need to use sensors that had documentation on usage

represented by DTDs e.g. the ultrasonic sensor [17].

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Academic week

Lab manual release Lab00 Lab01 Lab02 Lab03 Lab04 Lab05 Lab06 Lab07 Lab08 Lab09 Lab10

Lab00

Lab01

Lab02

Lab03

Lab04

Lab05

Lab06

Lab07

Lab08

Lab09

Lab10

fast

lane

fast

lane

full

points

full

points

a b

u v

M
id

te
rm

C
om

pu
ls

or
y

E
xt

ra

Figure 14. Lab manuals' release schedule and points availability as played out in the 2018/2019A

semester.

Catch-up weeks were not explicitly used. Instead the deadlines for the labs after the midterm

were extended by a week or two. The midterm was confirmed to be a success by the

instructors as the majority of the students (72 out of 81) pushed to get the first five labs

completed.

4.3.6. Reflect and Plan (2018/2019S)

In this feedback session it was agreed that considerable amount of effort has been put into

structuring the student side of the release schedule and it has shown positive results. Lead by

this it was agreed that the team will aim to improve the instructors side of the release

schedule as well. The approach of pairing up instructors for the review process is going to be

tested. The midterm ended up being a make-or-break type barrier for some students. Four of

the nine students missing the deadline did not present any work after this deadline. There

were also two students who decided to leave the university before the semester ended—

meaning they did not receive a final grade and are not part of the grades in Figure 9. Nine

students out of eighty-one failing the midterm was within expected margin according to the

programme manager.

29

4.4. Instructors Workload

4.4.1. Plan (2017/2018A)

The main aim for this semester was to hit the ground running as all of the teaching staff was

replaced. Continuity still prevailed as some of the instructors had recently participated in the

course as students two of them in the previous semester. The author also had previous

teaching experience with the course. A list of all of the tasks that needed to be done in order

for the course to succeed was created at one of the pre-semester meetings—it was

acknowledged that we will not be able to catch them all but an attempt was made.

An example of larger tasks that needed to be solved as soon as possible were listed (smaller

tasks not listed for brevity):

1. initiate staff Git repository;

2. lab manual;

3. lab manual release schedule;

4. hardware inventory;

5. instructor division to lab groups;

6. laptops for the classroom;

7. deciding on the operating system used for the labs;

8. exam outline.

4.4.2. Act and Observe (2017/2018S)

The list of things that needed to be done was reviewed at weekly meetings and was not

exhausted by the end of the semester. One of the list items after a couple of weeks was to

create a separate list for improvements that were collectively agreed to be worth to consider

but too time consuming to implement within the semester.

30

4.4.3. Reflect and Plan (Summer 2018)

Looking back the staff concluded that a lot had been learned and that we needed to

implement a better system to spread out the work over the semester to smooth out some of

the peak demand at deadlines. It was also apparent that the number of students will grow in

the next semester giving another reason to space out the work.

It was agreed that the upcoming semester will mainly focus on scaling the course and

implementing as many of the improvements listed on the previous semester as possible. The

course moved from having 5 instructors to 12 instructors and from 30 students to nearly a

100 students registered by the end of August. Out of the five instructors teaching in the

spring semester two were unavailable for the autumn semester, this further complicated the

situation and meant we had to recruit and train nine new instructors over the summer. It

was decided within the institute that eight groups would be opened for the students. The

course is designed to give a lot of direct experience to each and every student via Laboratory

Practicals, Course Project, Week in the News presentation and use of a large number of new

tools and technologies. This in turn means that the students also need a considerable amount

of one-on-one support adding to the importance of spreading out the work over the whole

semester to avoid overloading the teaching staff.

4.4.4. Act and Observe (2018/2019A)

The author created a spreadsheet to divide all of the tasks that needed to be done between

the instructors. This helped to better divide the work between 12 instructors who each had

their specific needs and contracts. New tasks were assigned to the instructors that had less

responsibilities and an appropriate background for the tasks at hand. Some instructors got

special tasks that ran through the whole semester e.g. looking after the mechanics of the

robots or keeping track of various spreadsheets that needed weekly updates.

31

2018-09-01 2018-10-01 2018-11-01 2018-12-01 2019-01-01

Lab00

Lab00

Welcome

Emergency robots electronics repair

Project PoC

Weekly (progress review, manual review, planning, etc.)

Create Lab00

Develop Lab00

Improve Lab01

Improve Lab02

Improve Lab03

Improve Lab04

Support students in completing Lab00-04 for midterm

Improve Lab05

Improve Lab06

Redesign Lab07

Improve Lab08

Redesign Lab09

Redesign Lab10

Weekly (Lab instruction, formative feedback, student consultations)

Project topics prepared and reviewed

Student pairing and grouping

Review and grading of first commits

Review and grading of Project plan

Review and grading of Proof of Concept

First meeting for poster session venue

Second meeting for poster session venue

Review and grading of Project Poster

Poster session with live demo

Weekly (project consultations)

Review of Exam organisation

Exam day 1

Exam day 2

Exam day 3

Exam day 4

Exam day 5

Exam day 6

Resit

Meetings

Labs

Project

Exam

2018/2019A semester

Figure 15. Instructors' workload distribution in the 2018/2019A semester.

32

4.4.5. Reflect and Plan (2018/2019S)

From Figure 15 one can observe that there are activities happening all the time but there are

still some very busy times — such as the midterm or the end of November when the projects

are taking shape. Another problem was the unplanned failure of robots electronics which

peaked in the second half of November. Although anticipated that we will reach the expected

lifetime of some components under the heavy usage, it was still hard to plan for the failures.

It was agreed that unplanned maintenance and repair will be considered as a task for one or

two of the instructors from the beginning to make sure that we have someone to quickly

respond to the issues. These and many others suggestions for improvements will be

organised into a priority queue and assigned a responsible instructor at the next staff

meeting in June 2019.

33

5. Student-Facing Solutions
The term "student-facing" is derived from business software development where terms

customer-facing and internally-facing are used to differentiate between internal an non-

internal applications. The following sections cover various technology that students made

use of in this course. Firstly the course used Moodle as the central dashboard for all of the

information for the students. Secondly the students mostly used laptops provided by the staff

to solve labs and tasks within. The course introduced students to a considerably large set of

tools which are required for completing the course. These ranged from languages and

libraries to development tools and operating systems (OS). Thirdly one of the tools (OpenCV)

is covered that needed effort from the author to enable the students to use more recent

versions than provided by the OS repositories. Finally, the use of version control systems is

explained and justified.

5.1. Moodle Dashboard

The course uses multiple platforms and technologies. Learning Management System (LMS)--

Moodle [18] is one of these technologies. It is used as a central hub for all of the course

related information and resources for the students. Moodle is the de facto LMS in UT. This

section will not follow the regular structure of having separate subsection per AR-cycle. Most

of the content and structure was added early in the planning stage and improvements

followed the weekly cycles described in Section 4.1 rather than the semester long ones. Most

of the updates where time critical and needed less than one hour of work from the lecturer.

The only updates that followed the long cycles were updates to grading system described in

Section 4.2

The content in Moodle is organised into six sections. In general the idea is that sections that

are more often needed will come before the others e.g. section "Laboratory Practicals" is

before the section "Lecture Slides" as they regularly need to access lab manuals. The

exception being the very first section which we want the students to notice rather than hope

that they know to look for—sign-up sheets. Students also get their points and feedback

through Moodle although other systems are used internally to track and assess students. This

is discussed in Section 6.3 on Google Docs.

34

Table 6. The Six Sections of Moodle

Name Section content

1 The Main

Panel

• Forums

• Registration forms for presentations, open seats in labs, etc.

• Syllabus info

2 Laboratory

Practicals

• Lab manuals

• Timing diagram for points availability

• Manual release DTD Figure 14

3 Lecture

Slides

• PDF version of the slides

• Meta information on the slides (last edit date, size, format)

4 Week in the

News

• Information on rules and deadlines

• Presentation Datadrop

• Previous presentations

• Example sources for presentations

5 Course

Project

• Link to topics, rules, schedule and points

• Course project registration form

• Poster template

6 External

Sources

• Pages that are useful but not managed by the staff

• Documentation

• Proportional–Integral–Derivative (PID) controller loop simulator

• Linux terminal usage

Although Moodle contains many tools it is still only used as a central dashboard for

information as in many cases there are more convenient tools for the task. Grade

management is one example. Marking completion of many large tasks is not time efficient

35

with the user interface (UI) provided by Moodle. There is a proposal from the instructors

from the 2017/2018S semester to develop a tool using Google Spreadsheet application

programming interface (API) and Moodle API to enable semi-automated transfer of awarded

points to Moodle. This has yet to be implemented.

5.2. Software Stack

It was clear from the beginning that the course would make use of a set of software for the

students to solve the task with and base their solutions on. Operating Systems, development

tools and libraries would be at the core. Part of the software was OpenCV which took a lot of

separate work and is mostly covered in Section 5.3

5.2.1. Plan (2017/2018A)

The course started off with using almost four operating systems, some very closely related.

First two used on the Raspberry Pi (RPi) controlling the robot being Raspbian and Raspbian

for Robots which is a Raspbian with a customisation and integration layer developed by

Dexter Industries [19]. Raspbian is an operating system highly optimised for ARM chips

found in the RPi [20]. The other two being Ubuntu 16.04 Long Term Support (LTS) and

Microsoft Windows 10 Enterprise available as a dual-boot on the laptops in the classroom.

The connecting link between all but one of these OS’s is Debian Linux [21]. Both Ubuntu and

Raspbian belong to the Debian family of Linuxes and follow some version and developments

while adding value to their distributions. Ubuntu has releases every six months, with LTS

releases published every two years [22]. Debian documentation explains the following: it

uses an approach with having three different release branches. Every Debian release follows

the stages: → unstable → testing → stable. The release in unstable branch is always code-

named Sid, when the release is mature enough and sufficient time has passed from previous

release, it moves to the testing branch and gets a dedicated code name. After all release

critical issues found in the testing process have been fixed in about 7 months the release

reaches stable branch. Current stable release is Stretch and the next one in testing is Buster

[23]. Raspbian is directly bound to the Debian version with many optimisations to ARM.

36

5.2.2. Act and Observe (2017/2018S)

Windows 10 was offered as the well known alternative to Ubuntu on the classroom laptops.

The students were free to choose one operating system for the laptops and one for their

individual Micro-SD card. Many of the students opted to use Windows on the laptops and it

was about half and half on using pure Raspbian with the GoPiGo2 library or the Raspbian for

Robots. Figure 16 visualises the software used on the laptops, including the operating system,

development tools and libraries. Python 2.7 is considered a thing of the past and legacy

systems in software development and has been given an End Of Life (EOL) by 2020 a long

time ago [24]. Some hardware libraries still depended on Python 2.7 so students were

advised to use this branch.

37

Legend

Operating SystemLin

Supporting
Tool

Programming
Language

Development
Tool

SSH

Python 2.7

Arduino IDE

RDP

VNC RealVNC

OpenCV

Arduino C++

Many dependencies

VCS

pip

Camera controls

Adafruit
CharLCD

Geany

OpenSSH
client

Remmina

Vim

Nano

Git

Guvcview

Win32 Disk Imager

Putty

Notepad++

SDCardFormatter

Remote Desktop
Connection

Git for Windows

Logitech
Camera Settings

Win

Both

Figure 16. Software stack on laptops (2017/2018S)

38

5.2.3. Reflect and Plan (Summer 2018)

Both virtual network computing (VNC) and remote desktop protocol (RDP) were used in the

labs as a later manual needed VNC. Students did have some VNC connectivity issues with the

initial server used on RPi so this was changed in the middle of the semester. The freedom to

choose between Windows and Linux ended up being highly skewed towards Windows.

Students had lower than expected level of experience in using the Windows platform for

more advanced tasks which did put extra stress on the teaching staff. There were also

situations were the solutions did not end up being OS-agnostic meaning that two separate

solutions were needed. It was decided after a lot of discussion that the course would official

drop support for Windows platform to give students a more homogeneous experience. This

change was in line with the objective to make the course easier to follow considering the

target audience change discussed in Section 3.4.

The need to use Python 2.7 created a bit of confusion especially because students had other

Python versions installed for other courses. The lecturer helped two groups who had a

problem where they had installed libraries using various methods. In one case the student

had 3 different Python installations collectively containing various tools necessary for their

project—although an extreme example it exemplifies the problem of using multiple Python

versions. Using RDP and two different VNC servers was too much overhead — it was decided

that all of the labs would migrate to a single VNC server.

39

5.2.4. Act and Observe (2018/2019A)

Figure 17 visualises the software used for this semester.

Legend

Operating SystemLin

Supporting
Tool

Programming
Language

Development
Tool

SSH

Python 2.7

Python 3.5

Arduino IDE

VNC

RealVNC

OpenCV

Arduino C++

Many dependencies

VCS

Pip3

Camera controls

Adafruit
CharLCD

Geany

OpenSSH
client

Remmina

Vim

Nano

Git

Guvcview

Arp-scan

Etcher

Thonny

Python3-apt

Python3-pyqtgraph

Python3-pyqt5

Python3-serial

Python3-numpy

Python3-tk

Win

Both

Figure 17. Software stack on laptops (2018/2019A)

Windows is not used for this semester and the transition from Python 2.7 is in progress with

only one library remaining for Python 2.7.

40

5.2.5. Reflect and Plan (2018/2019S)

The software stack has evolved considerably over the two semesters of teaching. Dropping

official support for the Windows platform gave the students a more uniform experience in

class and one less variable to consider when debugging. Ubuntu UI was introduced in Lab00

to make the transition process easier for the mostly Windows centred students.

The last Python 2.7 dependent library Adafruit Python CharLCD has been deprecated as of

November 2018 and replaced by a driver for CircuitPython library [25]. CircuitPython is

minimal Python version for microcontrollers [26]. The usability will be evaluated before the

next semester and with high probability put to use. This, if successful, will complete the

transition from Python 2.7.

5.3. OpenCV Adaptations

Open Source Computer Vision (OpenCV) is the go-to image processing library developed on

C/C++. The library has interfaces to Python, Java, MATLAB supporting Linux, MacOS,

Windows, iOS, and Android platforms [27]. It is also the main image processing package used

by the Robot Operating System (ROS) that students will use further in their studies in courses

such as LOTI.05.023 Practical Work in Robotics or LOTI.05.057 Robotics Technology. It is the

most sophisticated library that students work with in the robotics course. It has taken a

considerable amount of effort for the author to organise installation and base usage

principles, and the staff takes extra time to help students get acquainted with its base

functionality. The following sections focus on the installation and customisation efforts by

the author.

5.3.1. Plan (2017/2018A)

OpenCV had already been introduced into the course at its inception and although the way it

was used had fluctuated a bit it was still going to be the tool used for image processing. To

simplify the software management process and installation on personal laptops it was

decided that we would use the OpenCV 2.4 branch that is still supported and is the version

available in Ubuntu 16.04, and Raspbian Stretch repositories. There were slight differences

between the Windows and Ubuntu version used (2.4.13 and 2.4.9 respectively) but most of

the functionality need worked near identically. Laptops in the classroom were preloaded

with corresponding versions for both Ubuntu and Windows. Each student would install

OpenCV to their RPi version 2B or 3B.

41

5.3.2. Act and Observe (2017/2018S)

Some students opted to install a version from the 3.4 branch to their laptops which yielded

different results than the version used on their robot which demanded some additional

debug time. Students were given links to the OpenCV documentation and the freedom to use

the functions they preferred to use for solving the object detection tasks in relevant labs.

Students had some problems with the RPi overheating when running OpenCV.

5.3.3. Reflect and Plan (Summer 2018)

OpenCV 2.4 branch would continue to get supported at least by the end of the Ubuntu 16.04

LTS maintenance updates period—April 2021 [22]. OpenCV 2.4.9 version supported was

released in April 2014 [28] which in terms of image processing was a long time ago, even

considering that the students would not use the most advanced features of the library. Real

world application of same detector functions gave better performance for fellow students

and instructors alike. A direct benefit of deciding to use only one operating system on the

laptops, discussed in Section 5.2 was that we could focus on having better support for the

two remaining operating systems. It was proposed at a meeting by the author that the course

would move to OpenCV version 3. The same version would be used, both on the laptop and

the RPi to ensure uniformity between the two environments. This would take one variable

out of the development and testing cycle applied by the learners. This lead the author to two

separate tasks.

The author had several newer versions and a couple of strategies to choose from to make

this work. These options are organised into Table 7. The option to upgrade the whole

operating system as the laptops were also used by other courses needing Ubuntu 16.04 and

more importantly Raspbian Stretch was already the most up-to-date release.

42

Table 7. Upgrade Paths Considered for the OpenCV Library

Option  (Positive)  (Negative) Conclusion

Third party

repository that

would contain

compatible

packages with a

newer OpenCV

version.

Someone has already

taken the time to

create the packages.

Students would be

able to install the

packages in the labs

and at home alike

with minimal effort.

The package

maintainers quality of

work is going to

determine much of

the problems that one

might encounter.

The official Debian

packages list and the far

wider Packages Search site

were consulted. There

were no good options in

August 2018.

Incorporate

compiling

OpenCV from

source into the

lab manuals.

Being able to choose

what libraries get

included and the code

is optimised for our

specific chip.

The downside is that

compiling OpenCV

with all of its

dependencies will

take over 3 hours on a

RPi. Taken that the

user knows exactly

what to do.

This could have been very

educational but taking

into account that many of

the students had not had a

course covering or

explicitly using compilers

or toolchains, the author

decided that this would

not be a very engaging lab.

Backport newer

OpenCV package

from a repository

for a newer

release of the

operating system.

The package

compatibility with the

operating system

quirks is likely to be

less of a problem.

Fairly easy to

distribute.

Being limited by the

number of OpenCV

versions to choose

from.

This might be a viable

option if the need arises—

which it did.

Compile and

package OpenCV

from scratch.

A lot of freedom on

choosing the exact

configuration and

release to base the

packages on.

All of the

responsibility in

getting the

configuration and

packaging exactly

right.

This might be a viable

solution in the long run

but it seemed

disproportionate to invest

this amount of time to

solving this one task at

that time.

Debian packages [29] and Packages Search [30] are very common sites for packages search.

43

5.3.4. Act and Observe (2018/2019A)

A solution for RPi was needed. After going through the options for the upgrade Table 7 the

author decided to pursue the backport option. The author checked if the official backports

repository contained the required packages—it didn’t. This semester the course mainly

concentrated on RPi model 3B+ with the occasional 3B serving as backup units. The model

3B+ uses a chip made by Broadcom (BCM2837B0) that runs at a maximum of 1.4GHz and a

metal heat spreader [31]. Debian Buster was still in development with no sight of a release

happening any time soon. But they were already building packages for the ARM Hard Float

(armhf) architecture. Which is the version to use for RPi 3B+ as it uses the built in floating-

point unit (FPU) of the Broadcom chip. Buster development included OpenCV version 3.2.0.

The experimental branch of Debian had newer OpenCV packages available but this a

bleeding edge branch and not suitable for production use. The author decided to backport

these Buster packages to Stretch and use the version 3.2.0 for the 2018/2019A semester. In the

backporting process the author recompiled and packaged OpenCV on a RPi 3B+ and

distributed the packages to be used in the labs.

The second platform to support where the classroom laptops. This was needed to enable

testing on laptops and completion of some project work and Lab10. The OpenCV version

used on the RPi now dictated the version we needed on the laptops. The obvious solution

would have been to backport the packages from next Long Term Support (LTS) Ubuntu

release "18.04" which had the same version (3.2.0) as Debian Buster. This was unsuccessful

due to an unresolved bug in the official Makefile for the OpenCV package. Instead of finding

the fix for the bug the author was forced due to time constraints to leverage the

configuration management already set-up via Ansible as described in Section 6.4. Although

this was initially discarded from the viable options list it had the benefit of straightforward

process and it would lay some base for creating fully customised packages for the course.

The compilation process was also considerably faster on the laptops when compared to the

RPi platform. It did have the downside of complicating the removal process.

5.3.5. Reflect and Plan (2018/2019S)

Improved thermal management of the RPi 3B+ allowed the students to use more

computational power with some mitigation of overheating the whole system when running

image processing or other high load tasks. The use of OpenCV 3.2 enabled students to benefit

from new functionality for their projects. The manually compiled and installed OpenCV on

the laptops did prove to be a bit of work to get rid of after the semester ended to make room

for the next course using ROS and avoid OpenCV version conflicts between ROS and the host

44

system. OpenCV 4.0 was released in November 2018 and has already been followed by a 4.1

release. The author is in the process of integrating OpenCV 4.0 into the course but the

majority of this will be carried out in the summer.

5.4. Version Control

Distributed version-control system Git is one of the core technologies supporting the course.

Using such a versioning tool has many benefits some of which are listed in the first

subsection. Each student worked on two separate repositories in the course, one for the labs

and one for the course project. Both of which have dedicated sections. Bitbucket was chosen

to host all of the courses repositories as it has a suitable Academic plan for the courses

purposes. The reasoning behind not using universities internal Git hosting service is to give

students experience with one very common hosting platform.

5.4.1. System benefits

The following list shows some of the benefits from students perspective.

1. Backup in case of failure

a. Device failure on physical or filesystem level

b. Loss of the device

c. Accidental deletion of file

d. Accidental format by fellow student

2. Reverting changes after fixing code has not worked out as planned (fallback)

3. Keeping track of their own progress

4. Finding out who (and in some cases why) introduced a bug

5. Finding out what has changed in a specified amount of time

6. Improved collaboration

In addition to these benefits there are others that are clearer when viewed from the teachers

perspective. There are some mutually beneficial areas with the students, but alternative

reasoning applies. These are in the following list.

1. Students learn good software development practises earlier — for the majority of

students this is the first course to use code versioning systems. Having experience with

45

VCS is a highly requested skill by the employees.

2. Students are very unlikely to accidentally lose large portions of their work

3. Code base to use for the exams

a. Identical revisions and history of changes — simplifies the grading process

4. Simplifies plagiarism detection — more versions of code exist for inspection

5.4.2. Students' Personal Repository

A personal Git repository is created to each student at the beginning of the course. There is a

template repository and then each student’s repository is a fork for this repository. This fits

into the workflow of publishing new base code to students on a weekly basis. See the

workflow listed below. Bitbucket API is used to automate large portions of this process.

Atlassian is going through a transition phase from APIv1 [32] to APIv2 [33] with Bitbucket at

the moment. APIv1 is already deprecated and APIv2 does not yet have the support for all of

the fields, so some manual configuration steps are required.

Repository update workflow

1. A lab manual is reviewed and tested by the instructor in charge.

2. At least one other instructor or the lecturer reviews the changes.

3. Fixes are implemented in the manual and base code for students.

4. Base code is pushed to the master branch in student template repository.

5. Each student’s repository gets changes from upstream merged to the master branch of

their repository by a semi-automated process using Kantu for Chrome Automation Plug-

in [34].

6. Student follows the process of pulling and merging new code into their development

branch.

7. Student solves tasks in the lab.

8. Student creates a pull request (PR) after each laboratory practical.

5.4.2.1. Plan (2017/2018A)

It was decided at one of the very first meetings that this course would make use of Git VCS.

The author had positive previous experience with introducing a VCS in courses and

elsewhere. Caution was expressed by some members of the staff on Git being too

46

complicated of a tool to teach as an extra in a course without dedicating considerable

amount of time in the process, this was noted but did not reverse the introduction of Git. It

was decided by the author that each student would have their personal repository instead of

having one central repository for all students. This helps to somewhat isolate the amount of

damage the students can do to each-others repositories and helps to some extent avoid

unintentional sharing of solutions with other students. There was also a need for releasing

new base code with almost every lab. It was decided that this would also be done via the

students' repositories.

5.4.2.2. Act and Observe (2017/2018S)

Version-control systems were introduced in the second lecture and after that in small

portions over several consecutive lectures to help divide the amount of new concepts the

students had to learn each week. With a couple of exceptions the students did not indicate

any or much previous experience when prompted in the lecture. This was confirmed at the

weekly meetings by the instructors. The Atlassian Bitbucket platform was chosen to be used

for hosting the repositories for two main reasons. Firstly the author, who was responsible for

the setup had previous experience with this Software-as-a-Service (SaaS) stack. Secondly

Atlassian offered free academic accounts for students who signed up with a ´@ut.ee´

address. The repositories for each student would be created by the author to make sure that

they get named and set-up uniformly across all students. This would help to take some of the

complications away from getting started with Git in this course. Students were asked to

complete the registration process on Bitbucket and send their real and user name via e-mail

to the instructor.

A student template repository was created.

1. Read and write access was granted to all of the instructors.

2. A fork of this repository was created for each student.

3. Master branch write access was taken away from everyone but the teaching staff.

a. This was done to make sure that the branch would hold the same structure as the

template repository, helping to avoid conflicts when merging weekly updates.

4. Access was granted to the student and to their two corresponding instructors.

All of the steps up to the point where access was granted to the student and instructors was

done manually. Options as listed in Table 8 were explored to introduce automation to the

process of managing 30+ repositories. In the end the third option was chosen as the API was

in an unfavourable state of transition from version 1 [33] to version 2 [32] and there was

47

time pressure in kick-starting the semester. One step that was semi-automated by the author

was the generation of a bookmark list for all of the students repositories. This list was

organised into a folder on the Chromium web browser and this gave a open all repository

dashboards at the correct location with a single click solution which took the weekly update

time from around 20 minutes to 6 or 7 minutes.

Table 8. Options Considered for Repository Management

Option  (Positive)  (Negative) Decision

Use a script

(shell, make, etc.)

for managing

repositories

locally

Another copy of all of

the repositories; can

work with them

locally

Limited by Git

functionality, unable

to manage Bitbucket

cloud options; Creates

more traffic on

updates; Needs disk

space for each

repository;

Being limited by no

control over cloud options

means that this option

could only be a part of the

solution

Use Bitbucket API Support for editing

Bitbucket Cloud

settings.

Atlassian was in the

process of

transitioning from

APIv1 to APIv2. APIv1

was already

deprecated and APIv2

was missing a lot of

functionality.

If V1 would have been

used then it would have

needed to be replaced by a

new implementation on

the following semester.

Quite a few manual

configuration steps would

have been required when

going with V2

Manually go

through all of the

steps for each

repository

Easy to implement Does not scale well;

Prone to errors;

This solution does not

have considerable benefits

if considered for more

than one semester

5.4.2.3. Reflect and Plan (Summer 2018)

The compromise of not automating a lot in the repository management process seemed

reasonable even after the semester ended. More time was spent, but it was spent evenly over

the semester helping to reduce the workload in the beginning of the semester. That said

there was a need for automation as the prognosis was that the 2018/2019A semester would

triple the number of students in the course. Bitbucket API had evolved considerably over the

48

half a year and had some useful functionality from the course perspective. The author

decided to start the process of moving over to using the API where possible. Another tool (a

Chromium extension) Kantu Browser Automation [34] was also introduced to automate a

couple of clicks not exposed by the API.

5.4.2.4. Act and Observe (2018/2019A)

The API was used via curl command line utility. The following reduced example in Code

Example 2 creates a fork from the template repository for all of the students in the list.

Code Example 2

 1 student_id=(b1 b2 b3) ①

 2 arraylength_id=${#StudentId[@]}

 3 for ((i=0; i<${arraylength_id}; i++)); ②

 4 do

 5 echo

 6 echo "Working with: " ${student_id[$i]}

 7 curl -X POST --netrc-file ~/passwordfile

https://api.bitbucket.org/2.0/repositories/account_name/robotics-loti.05.010-18-19a-student-template/forks -H

'Content-Type: application/json' -d '{ "name": "robotics-loti.05.010-18-19a-student-'${student_id[$i]}'" }' ③

 8 echo

 9 sleep 2 ④

10 done

① List of student ID’s to create the fork for.

② For each student.

③ Actually construct the query and call the REST API. It is a POST query to the forks

endpoint that has the request included as an HTTP header. The --netrc-file parameter is

used to avoid exposing Bitbucket password. An even better solution would be to

authenticate via public key infrastructure (PKI).

④ Be nice to other users and wait for 2 seconds before creating the next fork.

In addition to the /forks endpoint the /branch-restrictions endpoint was also used to set the

access rights for the master branch. Groups for the instructors were created using the web

interface as this was not possible using the APIv2 at that time.

Kantu Browser Automation tool accepts command description as JSON — this helps to avoid

having to use the GUI to set the nearly 300 operations needed for this application. The JSON

was generated using a small script and the list of student ID’s. Every repository needed three

operations every time a new manual was released and some needed two rounds as a couple

of bugs were identified in the code. The following snippet of Code Example 3 contains the

49

description for these three commands.

Code Example 3

 1 {

 2 "CreationDate": "2018-9-12", ①

 3 "Commands": [

 4 {

 5 "Command": "open", ②

 6 "Target": "https://bitbucket.org/account_name/robotics-loti.05.010-18-19a-student-xxxxxx",

 7 "Value": ""

 8 },

 9 {

10 "Command": "click", ③

11 "Target": "link=Sync now.",

12 "Value": ""

13 },

14 {

15 "Command": "click", ④

16 "Target": "//*[@id=\"bb-undefined-dialog\"]/div/div[2]/button",

17 "Value": ""

18 },

19]

20 }

① Date is used for revisions in the Kantu extension.

② First command to open the dashboard of a particular students repository.

③ Second command, parse the dashboard for a link named "Sync now." and click on it.

④ Third command, in the dialogue window that opens find the correct <div> with a button

in it and click on it.

5.4.2.5. Reflect and Plan (2018/2019S)

The automation done for the repositories paid for itself in less than one semester. When

considering only the Kantu upstream merge over 3000 clicks were avoided. Further

automation is planned to reach a milestone where after getting and cleansing account

information from the students and assigning instructors to groups one could generate all of

the student repositories with the corresponding access rights and settings. Some time is also

planned to comply with API changes as the GDPR-related change announced in October 2018

and in effect by the end of April 2019

50

5.4.3. Course Projects' Repository

It was agreed that each course project would have it’s own repository. The exact details were

not agreed in the planning phase as the course project starts about mid semester.

5.4.3.1. Plan (2017/2018A)

Students would get their first introduction or reminder of Git from using their personal

repositories. It was collectively decided that the course project would start after students

have had their first exposure to image processing in general and OpenCV in particular.

Image processing was considered to be one of the more evolved topics in the course and

most of the projects would likely try to make use of these methods. As for the course projects

it was decided that the students would get the opportunity to create and manage their own

repository. One could argue that this is conceptually later than the natural learning process

of first creating a repository and then working with it but better reflects the junior position

many of the students would have after graduation or later in their studies. At the same time

we also needed to maintain some sort of control over who can access the projects and make

sure that the instructors would not have to look at students work on multiple platforms

complicating the grading workflow and leaving less time for feedback.

The balance between students learning new concepts and the staff maintaining some sort of

control over all of the repositories wad achieved by using Bitbucket teams.

5.4.3.2. Act and Observe (2017/2018S)

A team was created for each project. Read/write access was granted to the students in that

group and corresponding pair of instructors. This meant that students could freely add

repositories under the team account.

5.4.3.3. Reflect and Plan (Summer 2018)

Students did use Git to manage some parts of the projects but with only two students in the

group some were still tempted to use other more known communication platforms to share

code. It was decided that the need to present their work via Git would be made compulsory

for all stages of the project to encourage the students to learn more about code versioning.

The increase in the number of students also meant more students per group increasing the

benefits of using a VCS. Some students did not go through the suggested Git tutorial in the

beginning of the semester as suggested in the lectures and labs. This in turn resulted in an

extended learning period and missing out on the benefits of using VCS. One of the reasons

51

communicated by the instructors was that the activity wasn’t graded. Working through a Git

tutorial was added as an official step in the new Lab00 manual.

5.4.3.4. Act and Observe (2018/2019A)

Git was again explained in the lectures and the tutorial was completed by all students in

their first weeks. A Google Forms questionnaire was created by the instructors responsible

for the Lab00 to help with collecting user accounts that needed access to the repositories.

Groups of mainly four students worked on the course projects.

5.4.3.5. Reflect and Plan (2018/2019S)

The learning curve of using Git for the purposes of the course seemed to be better judging by

the feedback than on the previous semester. One of the supporting factors for this could have

been the fact that now some of the instructors had more experience with using Git in the

educational process and the instructions available were better worded but it is also plausible

that going through the tutorial on the first weeks helped in this process. The course projects

showed an increase in unsuccessful merge conflict resolutions with some of the conflict

information getting pushed to the repository on Bitbucket servers.

52

6. Internal-Facing Solutions
In addition to the software infrastructure elements that were mostly student-facing there

were also several other solutions developed for the staff and supporting members from the

University. VCS plays a central role in making sure that students would not lose their work

and in instructors being able to monitor their progress. It was also used for tracking large

portions of the work done by the staff. In addition Google Docs is used to support use cases

where rapid and lightweight versioning is key. Managing all of this software also introduced

inherent need for standardisation to make sure that all of the environments were

homogeneous and easily reproducible. In addition to all of the software the hardware also

needed to be kept track of — solutions for this are covered in the final section of this

paragraph.

6.1. Instructors' Repository

6.1.1. Plan (2017/2018A)

Following the path of the students, the instructors also started using Git. The author set-up a

central repository for much of the course related information that the instructors needed.

Each instructor had at the very least their personal branch in the repository. Use of more

branches was encouraged but not compulsory. This repository was also hosted on Bitbucket.

6.1.2. Act and Observe (2017/2018S)

As with the students the instructors also had occasional struggle with using Git but no

persisting issues emerged. Most common issues were related to confusion with the active

branch and with resolving merge conflicts. The repository contained a README.md that

outlined the lab review deadlines for the instructors and information on the structure of

repository and how to compile the lab manuals with prerequisites to do so. It later also

included the assignment table which listed SD-cards assigned to students.

6.1.3. Reflect and Plan (Summer 2018)

Access rights needed a review and updates as some of the instructors were unavailable for

the Autumn semester and 9 new instructors were introduced to the course. A small

introduction to the repository and how to commit new content was conducted by the author.

The course repository did not contain any grades for the previous semester which was

53

beneficial as three of the instructors were students on the previous semester. Care was also

taken in other areas not to expose results from the previous year.

6.1.4. Act and Observe (2018/2019A)

Introducing many new instructors to the course added new ideas and helped to pinpoint

several grammar and wording inconsistencies in the course materials. It also helped to

locate areas where there was an agreement between the older instructors but no

information about the decision in writing. These included coding conventions,

documentation explaining the manual release procedure, and the overall style guide used

for writing the manuals.

6.1.5. Reflect and Plan (2018/2019S)

There is a general direction of migrating more of the information relevant for the instructors

over to Git—such as various grading rubrics. One of the more influential changes in works

for the instructors repository is the instructor’s manual. As the course has grown to having

12 instructors it is increasingly hard to communicate all of the information to all of the

instructors. In addition it was communicated by the new instructors that it was hard to catch

up with all of the details and pedagogical reasoning behind the tasks in the manuals.

All lab manuals, example solutions, grading rubrics are kept in that repository. By

convention changes should be first added to a personal branch and then a PR is created to be

approved by the author or a fellow instructor.

6.2. Lab Manual Template

The course makes use of several templates to simplify the development and release process

while helping to ensure a more uniform experience for everyone involved. Some templates

are covered in other sections such as the student repository template under Section 5.4.2.

The author has established and developed a template for lab manuals that is maintained in a

Git repository. There have been many suggestions for improvement by the instructors. The

main idea of this template is to ensure consistency between lab manuals, introduce possibly

useful AsciiDoc functionality for new instructors, and simplify the process of updating

repetitive information (e.g. how to get updated code before starting with the lab). Template

gets most of its major updates between the end of previous course and start of new one. This

is to ensure that the instructor responsible for reviewing the lab manual can make

appropriate structure updates to the lab manual. Figure 18 shows the complete process

54

description.

loop

template lab manual review publish

Template ready

Manual ready

Check if ready
for the semester

Fix issues and
implement requests

Create new manual
or update existing

Submit for review

Feedback from
colleagues

Minor fixes

Time consuming
improvements

Semester starts

Semester ends

Figure 18. Lab manual review process

6.3. Google Docs

The course staff used a collection of documents based on the Google Docs service. The most

heavily used document is the one for Student progress. This is the entry level solution if the

document doesn’t fit well under Git or needs some rapid collaborative development

iterations before becoming stable and being transferred to Git. That said for some of them

this is the current best option. These include the Google Forms based questionnaires. Table 9

is used to give a more structured overview of all of the files and their use cases. Some files

are exclusively for staff use and some (denoted Both) are fillable, visible or even editable for

the students.  is used to denote a Google spreadsheet was used to contain the information

and  to denote the use of Google Forms. Some of the files have overlapping topics or

duplicate information (automatically imported). This is to make the usage more convenient

and at times allows to achieve results that are otherwise not possible with the official access

model of Google Docs. Like the "Open seats in labs" document.

55

Table 9. Files Managed in Google Docs

Document Usage and Reasoning

Student progress


2017/2018S - ..

Staff only

This is the main file containing information about students progress

in the course. This takes more than 20 sheets all in all. Each lab

group has a sheet with all of their students and their progress in

individual task level. Project progress and hardware lists are also

maintained here for all of the groups including all of the points

gained and lost. Bug bounty points for students, extensions, teaching

assistants and a lot of exam related information. It also contains a

sheet where instructors assign students to "Open seats in labs"

spreadsheet (interfaced documents).

Topic registration

and Availability for

visits


2017/2018S - ..

Both

Document where students can indicate their general availability for

visits by two hour slots. This helps in planning company visits and

other activities. Second sheet in the document is for students to

register their "Week in the News" presentation topics.

Open seats in labs


2018/2019A - ..

Both

A spreadsheet for students to see open seats in labs. Registration

works via a request to someone in the staff — either directly or via e-

mail. This process serves two purposes. Firstly it creates a small

registration barrier helping to increase the likelihood that the

student will actually show up otherwise students just sign-up and

forget. Secondly it helps to mitigate the risk of resource starvation

commonly known from concurrent programming. In our case this

translates to a student being unable to register for extra lab time due

to mismatch in slot release times and student checking the

spreadsheet for an available seat.

Grades for the

Poster Session


2017/2018S - ..

Staff only

In addition to the grades this file contains individual points given by

instructors with additional comments. The reason for this file to be

separate is that the final presentations are graded by many

instructors and it is therefore different from the overall lab progress.

56

Document Usage and Reasoning

Instructor

Preferences


2018/2019A - ..

Staff only

This file is used by the author to divide instructors to lab groups and

to assign lab manuals for review. It serves a very important role in

making sure that on one hand instructors get the lab groups and

manuals that suit them as well as possible. On the other hand every

lab group gets at least one instructor that has previous professional

experience.

Bitbucket accounts


2018/2019A - ..

Staff only

It’s a form used for collecting information on Bitbucket user

accounts belonging to the students to enable semi-automated

repository creation and permission granting. The students are

introduced to this form in Lab00. The results are only visible to the

instructors.

Project topic

preferences


2018/2019A - ..

Both

A Form for student pairs to express their preferences and ideas on

the course project. Later this information is used to combine the

pairs into project groups. On the previous semester e-mails detailing

this information were sent to the lecturer but this did not scale

reasonably.

6.4. Configuration Management

6.4.1. Plan (2017/2018A)

The classroom consisted of laptops that had a dual-boot set-up of Ubuntu 16.04 and Windows

10. The list of software to be installed was going to be discussed on the weekly meetings and

the installation would happen after the meeting. It was checked that correct versions of

Python and Git were installed before the semester started. Students could opt to use their

own laptop but they would in most cases need to manage the software installation. The

Raspbian Stretch that was going to be installed on the students SD-cards and would be

managed by the students and guided by the lab manuals and instructors where necessary.

57

6.4.2. Act and Observe (2017/2018S)

Many of the students opted to use Windows or their own laptops. This meant that they had to

switch between operating systems and manage installations on two different platforms. On a

couple of occasions it happened that one or two of the laptops had not been configured for

the corresponding week or had been configured differently. Instructors tried to support

students questions about installing software on their own laptops when there were no other

questions.

6.4.3. Reflect and Plan (Summer 2018)

Configuring 14 laptops for the labs needed considerable amount of time and was somewhat

error prone. If something was planned incorrectly then it had to be done again in all 14

laptops. Documentation on what was the exact configuration stayed with the instructors

involved at that time. This suggested that a more systematised approach on configuration

management might be beneficial. The laptops used for this lab get a clean installation by the

ITO every summer. The amount of software needed on the laptops is considerably large as

there are several courses using these laptops. The fresh installation is based on a cloning

approach where one laptop per hardware configuration is set-up manually considering all

requests for software an configuration. After which the whole image is cloned to all of the

other computers. The author decided to set-up some of the software stack right away under

ITO supervision which included OpenSSH Server and an authorised key for later remote

access. This meant that no other manual steps should be needed in the service life of this

operating system.

6.4.4. Act and Observe (2018/2019A)

The author created and developed an Ansible Playbook to ensure a homogeneous

configuration in the classroom. This was used to install new software and to configure

software already installed on the system. In the first couple of weeks of the semester it also

became apparent that the computer would get littered by students repositories and other

files as personal user accounts were not available for this semester. A group of clean-up

tasks was added to the Playbook and executed on a weekly basis.

6.4.5. Reflect and Plan (2018/2019S)

The ease of installing new software and making tweaks on request was well received by the

instructors based on feedback from the meetings. Clean-up script helped to reduce the

58

problems from missing central accounts. This also encouraged the students to actually push

all of their changes after they were done for the day as their local copy of the repository was

likely to disappear before their next lab. That said there were still a couple of occasions

where students got lost in some other students repository. There is a plan to configure the

laptops to use central accounts for the students for the next semester.

6.5. Resource Management System

6.5.1. Plan (2017/2018A)

It was decided that as the course would use considerable amount of hardware the staff

would need to organise it in a way which would make it easy to distribute and collect the

items in each lab. Transparent plastic storage boxes would be used to organise most of the

hardware. List of items included would be taped to the lid of the boxes for reference.

6.5.2. Act and Observe (2017/2018S)

The boxes were a good idea in general as one of the lab groups had to use a different

classroom further away from the storage and the instructors needed to transport all of the

equipment each week. It also helped the students to keep a tidier workspace as they had a

box to rest unused items in. The boxes were used for the full course of the semester. A need

for a lending system became clear in the second half of the semester as students started

work on their projects and some needed to catch-up with the others. This shortcoming raised

at a weekly meeting initiated a over-the-weekend implementation of a very simple

spreadsheet to log borrow and return events.

6.5.3. Reflect and Plan (Summer 2018)

The lists of items in the box became somewhat outdated as the course progressed and new

labs became available. It was decided during a planning meeting that these lists would not

be used in the next semester. The box-system proved to be very beneficial and would

continue to be used in the following semester. The spreadsheet proved to be enforced too

lightly as when reviewing the list the author identified multiple items that had consecutive

borrow events but no return events although a quick check showed that the item was

present. This issue when raised at the end of the semester meeting was identified to relate to

some instructors ignoring the use of the spreadsheet after it became too long for them to go

trough and identify the corresponding borrow event. This combined with the approach of

many more students next semester ended in a decision that the staff would try to find and

59

deploy an existing borrowing/asset management system that would be more convenient to

use. The selection of the software was pushed to the beginning of the semester as it would

not be needed right away.

6.5.4. Act and Observe (2018/2019A)

The short-listing of possible resource management systems for the course was conducted by

instructor Kristo Allaje. Leihs [35] and Snipe-IT [36] were proposed. The author considered

both systems for the task. They both have links to live demonstrations on their front

page — enabling easy testing. Both are far more sophisticated when compared to the

spreadsheet approach taken on the previous semester. From sustainability perspective both

were scheduled to have a major release in the next 6 months which coincidentally was to

version #5.0. Both systems were identified to be open source and free as in "free beer" with

Leihs also being free as in "freedom of speech". The staff did not have any experience using

either of these platforms. Most of the practical considerations did not give strong distinction

between the platforms. This left the author with empirical methods, such as knowledge

acquired from previous work to choose one of the platforms that seemed better documented

and which gave slightly better initial user experience (UX).

An overall need for a course server that could host some services was identified. Section 4.3.4

explains another use case for a course server. It could be either a virtual machine on some

internal or external hosting service or our own server. Options were discussed within the

Institute of Technology and a collective decision was made that the fastest way to get a server

is to use one of the machines that had reached its' end of useful life for the previous

application. Two servers originally configured by Ordi was set-up by the author. The author

decided to combine RAM modules from two machines for improved performance. The server

was also cleaned from dust and given a fresh BIOS battery, the later was needed before the

computer would start. The final hardware configuration is presented in Table 10 and

compiled using physical inspection, OS level tools, and manufacturer or distributor websites

[37, 38, 39, 40]. The hardware was evaluated to strongly exceed the minimum needs of the

selected software stack Figure 19 on the expected user load (5 concurrent users at most). The

evaluation was based on authors previous work experience.

60

Table 10. Server hardware configuration

Item Model Parameters (single item)

CPU 1. Dual Core AMD

Opteron(tm)

Processor 265

2. Dual Core AMD

Opteron(tm)

Processor 265

• Data width: 64 bit

• L1 cache: 2 x 128 KB

• L2 cache: 2 x 1 MB

• Number of Cores: 2

• Thermal Design Power: 95 Watt

• Frequency: 1800 MHz

RAM 1. Apacer

2. Apacer

3. Apacer

4. Apacer

• PC 3200

• 4 GB DRAM

• ECC

Storage 1. WDC WD2500JS-

22NCB1

2. WDC WD2500JS-

22NCB1

• Interface: Serial ATA-300

• Capacity: 250 GB

• Cache: 8 MB

• Software RAID: level 1

Network 1. Broadcom NetXtreme

BCM5704 Gigabit

Ethernet

2. Intel EtherExpress

82557 PRO/100 S

Server Adapter

• Broadcom 1 Gbit/s socket

• Broadcom 1 Gbit/s socket

• Intel 100 Mbit/s socket

Motherboard 1. Tyan Thunder

K8S/K8SD Pro

• Dual CPU socket

• North bridge: AMD-8111

• South bridge: AMD-8131

61

CentOS Linux [41] was selected as it has a 10-year security patches support for major

versions and a long running support for older hardware [42]. Version 7.6 was the latest

available at the time of installation. The BIOS in the server was unable to boot from a USB-

device. Another reason supporting the decision was that the author already managed other

servers based on the same OS. The author carried out the following sequence of operations

after all of the previous steps:

1. created Live DVD for CentOS;

2. installed the OS;

3. moved the server to a rack;

4. connected the server to the network;

5. applied for a static IP from ITO

6. connected the server to an uninterruptible power supply (UPS) with sufficient capacity.

Configuration of the server was done and is managed using Ansible. The structure of the

configuration file is presented on Figure 19.

62

Legend

site.yml

[task] Ensure all packages are up-do-date

1
[task] Ensure base tools are installed

2
[task] Ensure the MariaDB repository PGP key is installed

3
[task] Ensure that MariaDB repository PGP key has valid signature

4
[task] Ensure latest MariaDB repo config is available on server

5
[task] Ensure latest nginx repo config is available on server

6
[task] Ensure base packages for Snipe-IT are installed

9
[task] Ensure latest PHP-FPM config is available on server

10
[task] Ensure Nginx service is enabled and started

11
[task] Clone Snipe-IT repository and check-out master branch12

[task] Add a system user for Snipe-It and disable shell
13

[task] Make sure the Snipe-It folder is owned by Snipe-It user

14

[task] Make sure the Snipe-It storage folder is owned by Snipe-It user

15

[task] Make sure the Snipe-It uploads folder is owned by Snipe-It user

16

[task] Make sure the Snipe-It cache folder is owned by Snipe-It user

17

[task] Composer install modules for Snipe-It

18

[task] Ensure MySQL service is enabled and started

19

[task] Ensure MySQL test db for Jenkins testing environment

20

[task] Ensure MySQL test user for Jenkins testing environment

21

[task] Ensure latest Snipe-IT environment config

22

[task] Ensure latest Nginx conf for Snipe-IT

23

Install

Configure

Both

Figure 19. Server Ansible configuration structure

Snipe-It together with its prerequisites were installed and configured on the course server.

On the Snipe-It application side the author:

1. created accounts and granted permissions to all of the staff members,

2. created accounts and withdrew access rights to all of the students to enable automatic

notifications via e-mail,

3. created the initial structure and added example items for course hardware.

63

After all of the steps were completed the system was introduced at a staff meeting and put to

use.

6.5.5. Reflect and Plan (2018/2019S)

Snipe-It was considerably easier to use than the spreadsheet but a bottleneck was identified

by the instructors—the system was missing the ability to check-out multiple items at the

same time to the same student. The corresponding check-in feature was very convenient to

use. Solving this problem is still a work in progress and is on the roadmap to be resolved

before the next semester starts. It is also likely that v5.0 will be released before the next

semester as there is a beta-2 release available since March 2019 [36].

64

7. Summary
In the thesis it was described in the form of educational action research cycles how an

introductory robotics course was designed, developed, and conducted. Two full cycles,

including two runs of the course were considered. The description focused on the author’s

work as the lecturer in charge leading 14 instructors over the two semesters. The work

included introducing new tools, technology, and teaching methodology to the course and

following through in their implementation and continued use in the educational process.

The use of VCS and weekly staff meetings amongst others supported the rapid development

process needed for the transition period from previous team. The nature of the field and the

strain put on the robots and their components will continue to push the course towards new

models and versions. Both semesters saw additional routine tasks automated, which helped

scale the course from 30 to 80 students in one semester. The work done by others was

acknowledged and appreciated.

In the two semesters more than a hundred students had the opportunity to advance their

knowledge in the fields of robotics and programming. Two students who had successfully

completed the course took advantage of the opportunity to join the staff for the 2017/2018S

semester, bringing useful insight from the previous course organisation. Four students who

successfully completed the 2017/2018S semester were granted the opportunity to gain

additional knowledge whilst instructing the course in the 2018/2019A semester. First

students from the fresh Science and Technology curriculum were introduced to robotics,

their progress gave feedback to the programme manager on how to improve the curriculum.

The change introduced to the Computer Engineering curriculum - moving the course from

the fourth to the first semester - was successfully accommodated.

Many of the sections in chapters contained plans and possible improvements for the

2019/2020A semester. These included the plan to stop using Python 2.7, start using 4.0+

version of OpenCV library, further introduction of the newer GoPiGo3 robotic platform, and

further implementation of the resource management system besides many other

improvements. The course has been opened for registration for the 2019/2020A semester and

the next staff meeting will take place in June 2019.

65

Acknowledgement
The journey of completing my master’s has been very educational. I would firstly like to

thank Sven for being my initial supervisor who helped me in choosing some additional

courses for my studies. He also taught me a thing or two about time management, which has

proven invaluable both in and outside of academia. Secondly, I would like to thank my wife

for constant support and encouragement, for teaching me the value of doing things the right

way, and for making me much of what I am today. Finally, I would like to thank my friends

and family for offering various invigorating perspectives and interpretations on education

and teaching.

In terms of the thesis I would like to thank all of my colleagues for getting on board with

somewhat time consuming and controversial ideas. I would also like to thank Pille, Uku,

Sandra, Madis, Eva and my dad for the constructive criticism provided on my thesis—it was

very helpful. And last but certainly not least, I would like to thank Eno Tõnisson for getting

on board in the very end, helping to ensure that the work meets the academic standard.

66

References
1. O. Gomes, S. Pereira. On the economic consequences of automation and robotics.

Journal of Economic and Administrative Sciences. Epub ahead of print 2018. DOI:

10.1108/JEAS-04-2018-0049.

2. M. DeHaan, Ansible Community. Ansible configuration management system,

https://www.ansible.com (accessed May 5, 2019).

3. M. DeHaan, Ansible Community. Ansible documentation - Playbooks,

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html (accessed May 5, 2019).

4. S. Rackham, et al. AsciiDoc markup languge for document description,

http://asciidoc.org (accessed May 5, 2019).

5. D. Allen, S. White. Asciidoctor toolchain for AsciiDoc processing, https://asciidoctor.org

(accessed May 5, 2019).

6. TUIT. LOTI.05.010 Robotics course description, https://ois2.ut.ee/#/courses/LOTI.05.010/

details (accessed May 7, 2019).

7. UT. Study Regulations of the University of Tartu, https://www.ut.ee/studreg (accessed

May 7, 2019).

8. TUIT. Computer Engineering Curriculum (83866), https://ois2.ut.ee/#/curricula/83866/

details (accessed March 6, 2019).

9. TUIT. Science and Technology Curriculum (144918), https://ois2.ut.ee/#/curricula/144918/

details (accessed May 6, 2019).

10. J. Prior. Integrating extra credit exercises into a university English-language course:

how action research provided a framework to identify a practical problem. Educational

Action Research 2018; 26: 770–786.

11. S. Kemmis, R. McTaggart. The Action Research Planner. Deakin University,

https://books.google.ee/books?id=EkhLQAAACAAJ (1988).

12. E. Löfström. Tegevusuuringu käsiraamat [Estonian]. Eduko, https://www.digar.ee/arhiiv/

et/download/107855 (2011).

13. O. Jones, A. Gorra. Assessment feedback only on demand: Supporting the few not

supplying the many. Active Learning in Higher Education 2013; 14: 149–161.

14. Canonical Ltd. Ubuntu Linux operating system, https://www.ubuntu.com (accessed May

5, 2019).

67

https://www.ansible.com
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
http://asciidoc.org
https://asciidoctor.org
https://ois2.ut.ee/#/courses/LOTI.05.010/details
https://ois2.ut.ee/#/courses/LOTI.05.010/details
https://www.ut.ee/studreg
https://ois2.ut.ee/#/curricula/83866/details
https://ois2.ut.ee/#/curricula/83866/details
https://ois2.ut.ee/#/curricula/144918/details
https://ois2.ut.ee/#/curricula/144918/details
https://books.google.ee/books?id=EkhLQAAACAAJ
https://www.digar.ee/arhiiv/et/download/107855
https://www.digar.ee/arhiiv/et/download/107855
https://www.ubuntu.com

15. L. Torvalds, et al. Git, distributed version control system, https://git-scm.com (accessed

May 5, 2019).

16. A. Chapyzhenka, J. Probell. WaveDrom: Rendering Beautiful Waveforms from Plain

Text, https://wavedrom.com/images/SNUG2016_WaveDrom.pdf (accessed May 7, 2019).

17. ELEC Freaks. Ultrasinic Ranging Module HC-SR04, https://cdn.sparkfun.com/datasheets/

Sensors/Proximity/HCSR04.pdf (accessed April 30, 2019).

18. Public Domain. Moodle learning management system, https://moodle.org (accessed May

9, 2019).

19. Dexter Industries. Raspbian for Robots operating system customisation,

https://github.com/DexterInd/Raspbian_For_Robots (accessed May 9, 2019).

20. M. Thompson, P. Green, Raspberry Pi Foundation. Raspbian operating system,

https://www.raspberrypi.org/downloads/raspbian/ (accessed May 9, 2019).

21. I. Murdock, Software in the Public Interest. Debian Linux, https://www.debian.org

(accessed May 9, 2019).

22. Canonical Ltd. Ubuntu Linux release cycles, https://www.ubuntu.com/about/release-

cycle (accessed May 5, 2019).

23. I. Murdock, Software in the Public Interest. Debian Linux releases,

https://wiki.debian.org/DebianReleases (accessed May 9, 2019).

24. Public Domain. PEP373 - Python 2.7 Release Schedule, https://www.python.org/dev/

peps/pep-0373/ (accessed May 9, 2019).

25. T. DiCola, Adafruit Industries. Adafruit Python CharLCD, https://github.com/adafruit/

Adafruit_Python_CharLCD (accessed May 9, 2019).

26. Public Domain. CircuitPython, https://github.com/adafruit/circuitpython (accessed May

9, 2019).

27. OpenCV team. OpenCV (Open Source Computer Vision Library), https://opencv.org/

about/ (accessed May 5, 2019).

28. OpenCV team. OpenCV Releases, https://opencv.org/releases/ (accessed May 5, 2019).

29. Software in the Public Interest Inc. Debian packages list, https://www.debian.org/

distrib/packages (accessed March 5, 2019).

30. M. Ulianytskyi. Linux packages list, https://pkgs.org (accessed March 5, 2019).

31. Raspberry Pi Foundation. Raspberry Pi hardware configuration documentation,

68

https://git-scm.com
https://wavedrom.com/images/SNUG2016_WaveDrom.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://moodle.org
https://github.com/DexterInd/Raspbian_For_Robots
https://www.raspberrypi.org/downloads/raspbian/
https://www.debian.org
https://www.ubuntu.com/about/release-cycle
https://www.ubuntu.com/about/release-cycle
https://wiki.debian.org/DebianReleases
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/dev/peps/pep-0373/
https://github.com/adafruit/Adafruit_Python_CharLCD
https://github.com/adafruit/Adafruit_Python_CharLCD
https://github.com/adafruit/circuitpython
https://opencv.org/about/
https://opencv.org/about/
https://opencv.org/releases/
https://www.debian.org/distrib/packages
https://www.debian.org/distrib/packages
https://pkgs.org

https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md

(accessed March 5, 2019).

32. Atlassian Corporation Plc. Bitbucket APIv1, https://confluence.atlassian.com/bitbucket/

version-1-423626337.html (accessed March 10, 2019).

33. Atlassian Corporation Plc. Bitbucket APIv2, https://developer.atlassian.com/bitbucket/

api/2/reference/ (accessed March 10, 2019).

34. a9t9 software GmbH. Kantu for Chrome, https://a9t9.com/kantu (accessed March 6,

2019).

35. Zürich University of the Arts (ZHdK). Leihs, https://github.com/leihs/leihs/wiki

(accessed March 25, 2019).

36. Grokability, Inc. Snipe-IT Asset Management ystem, https://snipeitapp.com (accessed

March 25, 2019).

37. AMD. Opteron™ Processor Power and Thermal Data Sheet, https://www.amd.com/

system/files/TechDocs/30417.pdf (accessed April 30, 2019).

38. C|net. Western Digital Blue WD2500JS - Hard Drive, https://www.cnet.com/products/wd-

blue-wd2500js-hard-drive-250-gb-sata-300-series/ (accessed April 30, 2019).

39. Intel. 8255x 10/100 Mbps Ethernet Controller Family - Open Source Software Developer

Manual, https://www.intel.com/content/dam/doc/manual/8255x-10-100-mbps-ethernet-

controller-software-dev-manual.pdf (accessed April 30, 2019).

40. Supermicro. Specifications: Broadcom NetXtreme® 57XX User Guide,

ftp://ftp.supermicro.com/ISO_Extracted/CDR-INTC_1.31_for_Intel_platform/Broadcom/

Build8.1.3/Manuals/English/specs.htm (accessed April 30, 2019).

41. The CentOS Project. CentOS Linux, https://www.centos.org/about/ (accessed May 9,

2019).

42. The CentOS Project. CentOS Linux releases, https://wiki.centos.org/FrontPage (accessed

May 9, 2019).

69

https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
https://confluence.atlassian.com/bitbucket/version-1-423626337.html
https://confluence.atlassian.com/bitbucket/version-1-423626337.html
https://developer.atlassian.com/bitbucket/api/2/reference/
https://developer.atlassian.com/bitbucket/api/2/reference/
https://a9t9.com/kantu
https://github.com/leihs/leihs/wiki
https://snipeitapp.com
https://www.amd.com/system/files/TechDocs/30417.pdf
https://www.amd.com/system/files/TechDocs/30417.pdf
https://www.cnet.com/products/wd-blue-wd2500js-hard-drive-250-gb-sata-300-series/
https://www.cnet.com/products/wd-blue-wd2500js-hard-drive-250-gb-sata-300-series/
https://www.intel.com/content/dam/doc/manual/8255x-10-100-mbps-ethernet-controller-software-dev-manual.pdf
https://www.intel.com/content/dam/doc/manual/8255x-10-100-mbps-ethernet-controller-software-dev-manual.pdf
ftp://ftp.supermicro.com/ISO_Extracted/CDR-INTC_1.31_for_Intel_platform/Broadcom/Build8.1.3/Manuals/English/specs.htm
ftp://ftp.supermicro.com/ISO_Extracted/CDR-INTC_1.31_for_Intel_platform/Broadcom/Build8.1.3/Manuals/English/specs.htm
https://www.centos.org/about/
https://wiki.centos.org/FrontPage

Licence
Non-exclusive licence to reproduce thesis and make thesis public

I, Janno Jõgeva

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright,

Software Infrastructure and Course Design of a Robotics Course,

supervised by Eno Tõnisson.

2. I grant the University of Tartu a permit to make the work specified in p.1 available to the

public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by

giving appropriate credit to the author, to reproduce, distribute the work and

communicate it to the public, and prohibits the creation of derivative works and any

commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p.1 and p.2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Janno Jõgeva

16/05/2019

70

	Software Infrastructure and Course Design of a Robotics Course
	Software Infrastructure and Course Design of a Robotics Course
	Table of Contents
	1. Introduction
	2. Abbreviations and Acronyms
	3. Course Overview
	3.1. Bird’s Eye View
	3.2. Linked Courses
	3.3. Links to Computer Engineering Curriculum
	3.4. Target Audience

	4. Course Design
	4.1. Methodology
	4.2. Grading System and Results
	4.3. Lab Manual Release Schedule
	4.4. Instructors Workload

	5. Student-Facing Solutions
	5.1. Moodle Dashboard
	5.2. Software Stack
	5.3. OpenCV Adaptations
	5.4. Version Control

	6. Internal-Facing Solutions
	6.1. Instructors' Repository
	6.2. Lab Manual Template
	6.3. Google Docs
	6.4. Configuration Management
	6.5. Resource Management System

	7. Summary
	Acknowledgement
	References
	Licence

