KARIM BAGHERY

Reducing Trust and Improving Security in

zk-SNARKs and Commitments

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS

16




DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
16



DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
16

KARIM BAGHERY

Reducing Trust and Improving Security in
zk-SNARKs and Commitments

b

[II UNIVERSITY or TARTU
o Press



Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in Computer Science on 16th of June, 2020 by the Council of
the Institute of Computer Science, University of Tartu.

Supervisor
Prof. Helger Lipmaa
Simula UiB, Bergen
Norway
Opponents

Assoc. Prof.  Markulf Kohlweiss
School of Informatics
University of Edinburgh, Edinburgh
United Kingdom

Assoc. Prof.  Georg Fuchsbauer
Security & Privacy Group, TU Wien
Favoritenstr. 9, 1040 Wien
Austria

The public online defense will take place on August 13, 2020 at 14.15 on Zoom.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Panoramijx PRIVO ':* R % Eesti Tead t
}, LEDGE Mm Eifo‘m§§ Research Council

European Soci und Investing in your future

Copyright (©) 2020 by Karim Baghery

ISSN 2613-5906
ISBN 978-9949-03-373-7 (print)
ISBN 978-9949-03-374-4 (PDF)

University of Tartu Press
http://www.tyk.ee/


http://www.tyk.ee/

Sevgili anama va atama.
To my lovely mother and father.
Minu kallile emale ja isale.
) gy guf g gl 1) @iy



ABSTRACT

Zero-knowledge proofs are one of the essential tools in modern cryptography
that allow a party to prove the validity of a statement without revealing secret
information related to himself/herself. Due to their impressive advantages, Non-
Interactive Zero-Knowledge (NIZK) proof systems ubiquitously have appeared in
various novel applications. Verifiable computation systems like Pinocchio, the
privacy-preserving coin Zcash, smart contract systems Hawk and Gyges, and the
private proof-of-stake system Ouroboros Crypsinous are some of practical appli-
cations that use an efficient family of zero-knowledge proofs, called zk-SNARKG,
to prove various statements in NP-complete languages. Zero-knowledge Succinct
Non-interactive ARguments of Knowledge (zk-SNARKSs) are an efficient fam-
ily of NIZK proof systems that are constructed in the Common Reference String
(CRS) model and due to their succinct proofs and (consequently) very efficient
verification, they are widely adopted in large-scale practical applications.

In the CRS model, the construction of zk-SNARKSs relies on a setup phase and
the users should trust the output of the setup phase that is supposed to be done by a
trusted third party or distributed authority. Additionally, in different applications,
it is shown that the default security of zk-SNARKSs is not sufficient to deploy them
directly in larger protocols that aim to achieve a stronger notion of security, say
non-malleability of proofs, or even stronger Universal Composability (UC). UC-
secure protocols guarantee a very strong security property, as they remain secure
even if arbitrarily composed with other protocols.

In this thesis, we study zk-SNARKSs from two perspectives, namely reduc-
ing trust and improving security in them. In the first direction, we investigate how
much one can mitigate trust in pairing-based zk-SNARKSs without sacrificing their
efficiency. In such constructions, the parties of the protocol will obtain a certain
level of security even if the setup phase was done maliciously or the secret infor-
mation of the setup phase was revealed. As a result of this direction, we present
some efficient constructions that can resist against subverting of the setup phase of
zk-SNARKSs and achieve a certain level of security which is stronger than before.
We also show that similar techniques will allow us to mitigate the trust in trapdoor
commitment schemes that are another prominent family of cryptographic primi-
tives that require a trusted setup phase. In the second direction, we present some
efficient constructions that achieve more security with minimal overhead. Some
of the presented constructions allow to simplify the construction of current UC-
secure protocols and improve their efficiency. New constructions can be directly
deployed in any novel protocols that aim to use zk-SNARKSs.

Some of the proposed zk-SNARKSs are implemented in Libsnark, the state-of-
the-art library for zk-SNARKS, and empirical experiences confirm that the com-
putational cost to mitigate the trust or to achieve more security is practical.
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1. INTRODUCTION

It is undeniable that these days technological advances are changing our lifestyles
quickly. Interactions and communications over the internet are part of our daily
habits. Either interacting with a computer, e.g., when doing online shopping or
communicating with a person or a group of people, e.g., in private meetings. Such
kind of remote activities require cryptographic protocols to protect the exchanged
messages, to guarantee the integrity of delivered messages, and to authenticate
the parties while ensuring their privacy. Cryptography deals with constructing
such cryptographic protocols that allow us to transmit information to a computer
or person while guaranteeing its originality and safeguarding it from intruders.
For instance, encryption schemes are cryptographic protocols that are constructed
to protect messages from unintended receivers, and digital signatures are cryp-
tographic protocols that allow one to digitally sign a transmitted message and
guarantee the originality of the delivered message.

1.1. Zero-knowledge Proofs and Verifiable Computations

In many cases, users are interested to only transfer a particular piece of informa-
tion or knowledge to the receiver, without leaking extra information about them-
selves or other information that might be secret in that case. For example, in
some businesses, companies are interested to enter a bid with a proposal, but it
is necessary that the proposals are secret (at least till some particular time) and
do not reveal extra information about the companies (e.g., the proposals do not
reveal information about the account balance of the bidders) and that bid values
are non-malleable. From the bid manager’s view, it is required that a company
without sufficient balance (smaller than a threshold value) should not be able to
participate in the bidding. In another example, while using digital coins to pay
for a service [27], payers are interested to guarantee their privacy but prove to the
service providers that they have paid the service fee.

Zero-Knowledge (ZK) proofs [71,72] are one of the elegant tools in cryptog-
raphy that is proposed and constructed for such practical scenarios. They enable
to prove the validity of a statement (e.g., x € . where .Z is an NP language) such
that the verifiers learn nothing more than the truth of the statement (e.g., x € .%)
from the proof. As a prominent instance, a ZK proof system allows proving that
for a public value x, x = H(w) without leaking any information about the secret
input w, where H can be a standard and secure Hash function (e.g., SHA256). In
practice, ZK proofs achieve security against computationally unbounded provers,
while ZK arguments guarantee security only against a bounded prover. In the pre-
vious example of secure bidding, using a ZK proof system, each bidder can hide
their bid and prove that the bidded value is larger than a threshold value, and the
bid manager will be convinced that all bidders have the threshold value needed to
enter the bidding without learning extra information about the bidders. Similarly,

15



a ZK proof system allows a spender of the digital coin to spend his coin without
revealing personal secret information. In practice, it is shown that generating a ZK
proof for x = H(w) without leaking any information about w, but giving the possi-
bility to verify the correctness of computations, has great potential for deployment
in various practical applications [27,90,93]. This concept is known as verifiable
computation and it is shown that a particular type of ZK proof systems allows
generating very efficient proofs for proving the correctness of computations that
can be encoded as an arithmetic or Boolean circuit.

1.2. Non-Interactive Proof Systems and zk-SNARKs

Zero-knowledge proof systems are constructed either in interactive or non-interactive
manners. While in the interactive cases there are several message exchange rounds
between the prover and a verifier, in the non-interactive cases the prover publishes
a proof in one shot by sending it to the verifier or by posting it on some public
bulletin boards. Due to the impressive advantages of NIZK proof systems, they
ubiquitously have appeared in numerous practical applications. Verifiable compu-
tation systems like Pinocchio [105], privacy-preserving cryptocurrencies such as
Zcash [27], privacy-preserving smart contract systems Hawk and Gyges [90, 93],
private proof-of-stake system Ouroboros Crypsinous [92], and cyptocurrencies
with succinct ledgers [102] are a few of known practical applications that use an
efficient family of NIZK proof system, called zk-SNARK, to prove various state-
ments for satisfiability of various circuits that encode NP languages.

Among various NIZK arguments, Zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zk-SNARKSs) [31,52,78,79, 82,96, 105] are the most
efficient and widely used ones that are constructed either in the Common Refer-
ence String (CRS) model or in the Random Oracle (RO) model. In the RO model,
it is assumed that all parties of the protocol have access to a random oracle that
given an input returns a random output. While in the CRS model there exists a
trusted setup phase that generates a string from a particular distribution and shares
it among all parties of the protocol. All of our studied constructions are built in
the CRS model.

A zk-SNARK is a three-party non-interactive protocol that besides the prover
P and verifier V there additionally exists a trusted third party KGenyzk that exe-
cutes the setup phase of the protocol and generates some public parameters, called
Common Reference String (CRS). After a trusted setup phase, the CRS is shared
among possible provers and verifiers for proof generation and proof verification.
Given the CRS, a statement and a witness, the prover P generates a non-interactive
proof 7 and sends it to the verifier V. Then, given the CRS, the statement and
the proof 7, the verifier V returns either Accepted or Rejected. To guarantee
the end-users’ security and privacy and have practical efficiency, the common re-
quirements from a zk-SNARK are that they guarantee completeness, knowledge-
soundness, zero-knowledge, and succinctness that informally can be expressed as

16



below (their formal definitions can be found in Section 2.4.2).

Completeness: This property ensures that if both prover P and verifier V behave
as described in the protocol, the prover will generate a proof that the verifier
will always accept.

Knowledge Soundness: This property guarantees that a malicious prover P" will
not be able to generate an acceptable proof for the statement, unless he/she
knows a witness for the statement.

Zero-knowledge: This property gives the guarantee to the prover that the verifier
does not learn anything beyond the truth of statement from an honestly
generated proof (based on the proof generation procedure described in the
protocol).

Succinctness: This is an efficiency feature that guarantees the proof is short and
its size is constant (e.g., less than 1KB for different sizes of statement and
witness for 128-bit security).

In some applications, particularly verifiable computation systems like Pinoc-
chio [105] the setup phase also can be done by the verifier. This is because it does
not claim zero-knowledge. But in general, it is expected that the CRS elements
are generated honestly by a trusted third party.

Besides the above notions for zk-SNARKS, recently there have been some con-
structions that can guarantee simulation knowledge-soundness (a.k.a. simulation
extractability) that is a stronger version of knowledge-soundness and guarantees
non-malleability of proofs. Informally, the notion can be defined as follows,

Simulation Knowledge Soundness (a.k.a. simulation extractability): This prop-
erty guarantees that a malicious prover P’ will not be able to generate an
acceptable proof for the statement, even if he/she has already seen arbitrary
number of simulated proofs, unless he/she knows a witness for the state-
ment.

Similar to the definition of knowledge-soundness, the concept of knowing is
formalized by showing that there exists an efficient extraction algorithm Ext (ei-
ther non-black-box [82] or black-box [94]) that can extract the witness. In non-
black-box extraction, the extractor needs to get access to the source code of the
adversary, while in black-box extraction a universal extractor works for all adver-
saries. In practice, it is shown that to be able to deploy zk-SNARKSs (more gen-
erally NIZKs) in the protocols that aim to achieve stronger security guarantees
such as universal composability [44], the zk-SNARK should guarantee simula-
tion knowledge-soundness (a.k.a. simulation extractability) and the constructed
extraction algorithm Ext should work in a black-box manner [45,76, 85].

1.3. Non-Interactive Equivocal Commitment Schemes

Similar to the zk-SNARKSs in the CRS model, equivocal commitment schemes
are fundamental and widely used primitives in cryptography that require a trusted
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setup phase [47]. Equivocal commitment schemes (a.k.a. trapdoor commitments)
are deployed in a wide range of cryptographic protocols [27,48,53,56-58, 68,69,
81,86,93,98,110].

Similar to zk-SNARKSs, in the CRS model, an equivocal commitment scheme
is a three-party non-interactive protocol where besides committer Com and veri-
fier Ver there exists a trusted third party KGenconm, that executes the setup phase of
the commitment scheme and generates some public commitment key ck. Given
the commitment key ck and a message m, the commuting algorithm Com returns
a commitment ¢ and an opening op (a.k.a. decommitment string). Later, given
the commitment key ck, the message m and the opening op the verification algo-
rithm Ver verifies the validity of commitment ¢ with the corresponding opening
and returns Accepted or Rejected.

Similar to other cryptographic protocols, under a trusted setup phase, there
are some security requirements that each secure equivocal commitment scheme
should guarantee. For common equivocal commitment schemes, the expected
security requirements are hiding, binding and equivocality that informally can be
defined as follows (their formal definitions can be found in Section 2.3.4).

Hiding: This property ensures that a malicious verifier cannot distinguish be-
tween two commitments that commit to mg and m, even if the verifier
picks the messages.

Equivocality: This property guarantees that a verifier cannot learn anything from
the commitment ¢ about the message m and its opening op. Technically
speaking, it says that there is an alternative way to open commitment and it
is indistinguishable form the original opening. One may notice that hiding
implied by equivocality.

Binding: This property guarantees that given an honestly generated commitment
key ck, a malicious committer cannot open a commitment ¢ to two different
messages mg 7% m; (double opening).

1.4. Thesis Scope and Contributions

As we discussed above, in the CRS model, the construction of zk-SNARKS and
equivocal commitment schemes rely on a trusted setup phase. In various cases,
it is shown that along with developing those cryptographic primitives in some
sensitive applications, there have been various attacks or flaw reports on the setup
phase of cryptographic systems that were supposed to be done honestly. Indeed,
finding a universally trusted party and minimizing the trust is one of the challenges
that one needs to deal with when using zk-SNARKSs in practice.

Another key challenge about using zk-SNARKSs in practice is that in many
cases their default security is not sufficient to directly deploy in larger crypto-
graphic protocols. In some cases, simply because their proofs are malleable [27],
while in some other cases [90,92,93], even with non-malleable proofs, their secu-

18



rity is weak to use in the protocols that aim to guarantee Universal Composability
(UC) [44], mainly because they do not achieve black-box extraction.

The main result of this thesis is constructing zk-SNARKSs and commitment
schemes in the CRS model that require less trust and also achieve stronger secu-
rity notions. Indeed, the above two challenges are the main scopes of this thesis.
Particularly, in one scope we consider how much one can mitigate the trust in
the setup phase of zk-SNARKSs and equivocal commitment schemes that are con-
structed in the CRS model. While, in another scope, we consider how we can
efficiently improve the security of zk-SNARKSs such that they can be used in ei-
ther non-UC-secure or UC-secure protocols. In both directions, we propose some
efficient constructions by defining or revisiting the security notions of existing
schemes. Some of the proposed constructions require less trust and some others
achieve a stronger security notion that is sufficient to preserve universal compos-
ability.

In the rest, we describe the contribution of the thesis along with the author’s
main contribution towards the co-authored papers.

1.4.1. Subversion-Resistant Knowledge Sound SNARKs

Until 2016, all known zk-SNARKSs were constructed such that under the assump-
tion that both prover and verifier trust the setup phase, the constructions can
achieve ZK and knowledge-soundness [31, 52, 78,79, 96, 105]. For instance, to
achieve ZK and guarantee the prover’s privacy, the prover needed to trust the CRS
generators.

In Chapter 3, we first present a necessary definitions for subversion-resistant
zk-SNARKSs and then present an efficient construction to can achieve our defined
definitions. Roughly speaking, we show that one can construct a zk-SNARK that
its prover does not need to trust the CRS generators to achieve ZK, while the
verifier can achieve knowledge-soundness as before. The chapter refers to the
following paper included in the thesis [3],

o Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa and Michal Zajac.
A Subversion-Resistant SNARK. In Thomas Peyrin and Tsuyoshi Takagi,
editors, ASTACRYPT 2017 , volume 10626 of Lecture Notes in Computer
Science, pages 3-33, Hong Kong, China, December 3—7, 2017. Springer,
Heidelberg.
The paper first presents a variation of previous definitions for subversion-resistant
zk-SNARKSs and then propose a modified version of the state-of-the-art zZk-SNARK
proposed by Groth [79] and show that new scheme can guarantee ZK without
trusting to the third party. The main change in our definition is that it has an ex-
tra algorithm called CRS Verification (CV) that a prover needs to execute instead
of trusting the CRS generators. We also evaluate the construction with a sam-
ple implementation and show that in practice the computational cost that a prover
needs to pay is comparable with the cost of proof generation, and in many cases
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even less. The author’s contribution is in constructing a new proposed CV algo-
rithm, implementing the proposed construction along with some comparison with
another different approach that chases the same goal.

1.4.2. Subversion-Resistant Simulation-Extractable SNARKSs

The first contribution led into subversion-resistant zk-SNARKSs that can guarantee
ZK without trusting the CRS generators, and knowledge-soundness by trusting
the setup phase. But, in practice, it is necessary to guarantee the non-malleability
of proofs generated by a zk-SNARK, which is not guaranteed with knowledge-
soundness. In the first part of Chapter 4, we present a variation of Groth’s [79]
zk-SNARK that can achieve ZK along with simulation knowledge-soundness, that
can guarantee non-malleability of the proofs. The first part of the chapter refers
to the following paper included in the thesis [6],

e Shahla Atapoor and Karim Baghery. Simulation Extractability in Groth’s
zk-SNARK. In Cristina Perez-Sola, Guillermo Navarro-Arribas, Alex Biryu
kov, and Joaquin Garcia-Alfaro, editors, Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology - ESORICS 2019 International
Workshops, DPM 2019 and CBT 2019, Luxembourg, September 26-27,
2019, Proceedings, volume 11737 of Lecture Notes in Computer Science,
pages 336-354. Springer, 2019.

The paper also contains an implementation of a the proposed construction
which shows that in practical scenarios the proposed variation has close efficiency
to the original one. As the main author of the paper, the author’s contribution is
giving the main idea, constructing the proposed protocol, finalizing the security
proofs and doing proof-of-concept implementation.

In the second part of Chapter 4, we show that with a similar construction used
in the first part but with different technique, one can construct subversion-resistant
NIZK arguments that can guarantee ZK without trusting the third party along with
simulation knowledge-soundness. The second part of the chapter refers to the
following paper included in the thesis [12],

e Karim Baghery. Subversion-Resistant Simulation (Knowledge) Sound NIZKs.

In Martin Albrecht, editors, 17th IMA Conference on Cryptography and
Coding Theory - IMACC 2019, volume 11929 of Lecture Notes in Com-
puter Science, pages 42—63, Oxford, December 16-18, 2019; Springer, Hei-
delberg.

The presented construction shows that we can lift knowledge-soundness of
the presented construction in Section 3 to simulation knowledge-soundness while
keeping it subversion ZK (ZK without trusting the third party). From a different
perspective, the paper shows that we can amplify the best positive result about
constructing subversion-resistant NIZK arguments, studied by Bellare, Fuchs-
bauer, and Scafuro [20]. The author is the only author of this paper and as such,
both the constructions and security proofs are completed by the author himself.
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1.4.3. Subversion-Resistant Commitment Schemes

In Chapters 3 and 4, we study constructing subversion-resistant zk-SNARKSs with
less trust on a third party and more stronger security properties. As mentioned
before, equivocal commitment schemes in the CRS model are another prominent
primitive in cryptography that similar to NIZK arguments need a trusted setup
phase. As the next contribution of the thesis, in Chapter 5, we study the se-
curity of equivocal commitment schemes in the face of subverted commitment
keys. Similar to the results for NIZK arguments [20], we present some negative
and positive results along with some subversion-resistant equivocal commitment
schemes. The chapter refers to the following paper included in the thesis [11],

e Karim Baghery. Subversion-Resistant Commitment Schemes: Definitions
and Constructions. Cryptology ePrint Archive, Report 2019/1065, 2019.
Available on https://eprint.iacr.org/2019/1065.

The paper first presents a new variation of notions i.e. binding, hiding, and
equivocality for subversion-resistant equivocal commitment schemes. Then, sim-
ilar to the case in NIZKs [20], it shows that some definitions are not compati-
ble (a negative result) while presenting subversion-resistant commitment schemes
that in the best case can achieve equivocality without trusting the key generators,
while achieving (standard) binding. This is a single-authored paper and as such,
all security proofs for negative or positive results along with constructions are
completed by the author himself.

1.4.4. Efficient zk-SNARKSs for UC-secure Protocols

As discussed before, a key challenge about using zk-SNARK in practice is that
they are not secure enough to be deployed in cryptographic protocols that aim to
achieve UC-security [44]. In 2015, Kosba et al. [94] proposed a framework called
COCO, which allows lifting a sound NIZK argument to a new construction that
would guarantee simulation knowledge-soundness with universal extraction and
can be deployed in UC-secure protocols directly. By considering recent progress
in zk-SNARKS, in Chapter 6, we propose a construction along with two efficient
instantiations for zk-SNARKSs that has simpler constructions and can be directly
used in applications that aim to guarantee UC-security. The chapter refers to the
following paper included in the thesis [9],

e Karim Baghery. On the Efficiency of Privacy-Preserving Smart Contract
Systems. In Johannes Buchmann, Abderrahmane Nitaj and Tajjeeddine
Rachidi, editors, AFRICACRYPT 2019 , volume 11627 of Lecture Notes
in Computer Science, pages 118-136, Rabat, Morocco, July 9-11, 2019.
Springer, Heidelberg.

The paper first presents a new construction for building NIZK arguments that

will guarantee simulation knowledge-soundness with black-box extraction, which
is shown to be sufficient for a NIZK to be deployed in UC-secure protocols.
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Then, the proposed construction is instantiated with two efficient zk-SNARKSs
which resulted in two efficient zk-SNARKSs that can be used for any UC-secure
application. Then, it is shown that the proposed construction allows one to sim-
plify the construction of privacy-preserving smart contract systems like Hawk and
Gyges [90,93] and also improve their efficiency in some cases. New constructions
can be of independent interest and can be used in different UC-secure protocols;
e.g., private proof-of-stake systems [92]. This is a single-authored paper and both
the constructions and security proofs are completed by the author himself.

1.4.5. Other Contributions

In addition to the contributions outlined above and developed in the thesis, the
author has worked during the thesis on other problems related to zk-SNARKSs and
NIZKs [1,2,15,16], and Radio Frequency IDentification (RFID) systems [13,14].

In Chapter 6, we constructed zk-SNARKSs that can be deployed in UC-secure
protocols. In those constructions, both prover and verifier need to trust the CRS
generators. To generate the public parameters of such constructions with minimal
trust, in [2] we construct a UC-secure MPC protocol. The proposed protocol
allows us to safely compose the CRS-generation protocol with the main (UC-
secure) zk-SNARK in a black-box manner.

In order to construct such a UC-secure CRS generation protocol, we needed
a UC-secure commitment scheme with particular functionalities. In [1], we con-
struct a new type of UC-secure commitment scheme that fulfills our requirements
in the proposed UC-secure CRS generation protocol [2]. Briefly speaking, the
proposed UC-secure commitment scheme allows a committer to commit a mes-
sage m and open the commitment to a group element g"*; however, the simulator
can extract its discrete logarithm m. The new commitment scheme can be used
in situations where the secrecy of the committed message m is important, as the
knowledge of m enables to break privacy while the simulator needs to know m to
simulate the corrupted committer.

The constructions that achieve non-black-box (nBB) simulation extractabil-
ity, including the ones that we proposed in [6, 12], allows one to build succinct
(subversion-resistant) Signature-of-Knowledge (SoK) schemes [33,46, 82]. But,
the succinct SoK schemes are constructed under non-falsifiable assumptions and
cannot be used directly in UC-secure protocols. In [15], we constructed an un-
bounded simulation sound quasi adaptive NIZK arguments for Boolean circuit
satisfiability under standard assumptions with proof size O(n + d) bilinear group
elements, where d is the depth and # is the input size of the circuit. Our pro-
posed scheme allows building the most efficient Signature-of-Knowledge based
on standard assumptions that can also achieve UC-security.

In Chapter 6, we construct zk-SNARKSs that can achieve black-box simulation
extractability which is shown to be sufficient to deploy a NIZK argument in UC-
secure protocols [76]. In those constructions, both prover and verifier need to
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trust the CRS generators. In [2], we construct a UC-secure MPC protocol that
can be used to sample the public parameters of such constructions. However,
in such MPC protocol still, both prover and verifier need to trust at least 1 out-
of n parties that are participated in the MPC protocol. In CRYPTO’18, Groth
et al. [80] introduced the updatable CRS model that allows to circumvent the
trust on setup phase of NIZK arguments. In [16], we present TIRAMISU ! as
a construction to build NIZK arguments (zk-SNARKSs) that can achieve black-
box simulation extractability but in the updatable CRS model. We show that
TIRAMISU is suitable for modular use in larger cryptographic systems and allows
to build NIZK arguments for UC-protocols, but with updatable parameters. From
a different point of view, constructing TIRAMISU shows that one can bypass the
impossibility of achieving subversion ZK and BB extractability, discussed in [20],
in the updatable CRS model. In new constructions, in the cost of updating, all
parties can eliminate the trust on a third-party and the protocol satisfies ZK and
black-box simulation extractability. Using TIRAMISU, we present efficient black-
box simulation extractable zk-SNARKSs with updatable parameters that can be
used in protocols like Hawk [93], Gyges [90], and Ouroboros Crypsinous [92],
while allowing the users to update the parameters and eliminate the needed trust.

1.5. Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 presents some basic preliminaries related to the studied topics. Chap-
ter 3 presents definitions for subversion-resistant zk-SNARKSs along with an ef-
ficient construction that guarantees Sub-ZK and knowledge-soundness. In Chap-
ter 4, we first discuss a general way to achieve simulation knowledge-soundness
in pairing-based zk-SNARKSs, and then prove that the same technique can be
used to construct subversion-resistant zk-SNARKSs (more generally NIZKs) which
will satisfy Sub-ZK (ZK without trusting to the CRS generators) and simulation
knowledge-soundness at the same time. Next, in Chapter 5, we study achievable
security in (equivocal) commitment schemes in the face of parameter subversion
and present both negative and positive results on constructing subversion-resistant
commitment schemes, by showing that some of the definitions are not compati-
ble while presenting some constructions that require less trust in comparison with
current ones. Chapter 6 is more about improving the security of zk-SNARKSs such
that they can be used in applications that aim to achieve UC-security. Indeed, the
chapter presents a simpler approach (in comparison with COCQ framework [94])
to construct zk-SNARKSs that can guarantee black-box simulation knowledge-
soundness which is a necessary requirement to adopt zk-SNARKSs in applications
that aim to achieve UC-security. Finally, Chapter 7 concludes the thesis and out-
lines several open questions that can extend the studied topics.

'In Italian, TIRAMISU literally means "pull me up, lift me up".
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2. PRELIMINARIES

In this chapter, we describe notations and some cryptographic concepts and defini-
tions that are relevant to the rest of the thesis. We start by describing the notations
and bilinear groups that frequently are used throughout the thesis. Next, we dis-
cuss assumptions behind the proposed zk-SNARKs and commitment schemes.
Then we summarize the definitions of various cryptographic primitives including
one-way functions, encryption schemes, digital signatures, commitment schemes
that are used in Chapters 4, 5 and 6. Finally, we review the standard definitions
and known security properties of zk-SNARKSs as the main background for the
thesis and more importantly as the starting point for the definition of subversion-
resistant zk-SNARKSs discussed in Chapters 3 and 4.

2.1. Notations, Bilinear Groups, Interpolation

Basics Notations. We denote the set of integers with Z, the set of real numbers
with R, and the set of non-negative integers with N. |S| denotes the size of a set
S. {0,1}" denotes all binary strings, while {0,1}" denotes the bit strings with
length n € N. For a tuple of integers I' = (71,...,%,) with % < Y1, let (a;)ier =
(ay,...,ay,). We sometimes denote (;);c|, as d@. We say thatI'= (y1,...,7%) €Z
is an (n,A)-nice tuple, if 0 <y < --- < ¥ <7y, = poly (1). For distributions A
and B, A ~. B means that they are computationally indistinguishable. In formal
definitions, Pr[Exp : y| shows the probability that y happens for experiment Exp.
Let A € N be the information-theoretic security parameter, say A = 128.

Algorithms. A probabilistic polynomial time (PPT) algorithm is an efficient prob-
abilistic algorithm that runs in polynomial time. Consequently, NUPPT denotes
non-uniform PPT. For an algorithm 7, let im(.<7) be the image of <7, i.e. the
set of valid outputs of o7, let RND(<7) denote the random tape of <7, and let
r < RND(.2) denote sampling of a randomness r of sufficient length for .o7’s
needs. By y «+ &7 (x;r) we denote the fact that <7, given an input x and a ran-
domness r, outputs y. In case <7 is a deterministic algorithm we write y = o7 (x).
For algorithms .« and Ext,,, we write (y || y/) < (7 || Ext.)(x;r) as a short-
hand for "y < &7 (x;r), y < Ext(x;r)". A function f: N — Z is negligible,
denoted by negl (1), if it grows slower than 1/P(A) for any polynomial P; for-
mally, f is negl (1) if for any P there exists a constant ny € N s.t. for all 1 > ny,
|f(A)] <1/P(A). A function f : N — Z is overwhelming, if 1 — f is negl (1).

Bilinear Groups: Let G1,G; and G be three finite Abelian groups, wherein all
of them the discrete logarithm is conjectured to be hard. In a single group, Ggen
denotes the generator of a group that given security parameter A returns (p,G),
where G is a cyclic group of order p. In bilinear groups, we use additive notation
together with the bracket notation, i.e., in group Gy, [a], = a[l],, where [1],
is a fixed generator of G, for p € {1,2,T}, e.g. a[l]; = |al;. A bilinear group
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Algorithm 1: Computing (¢;(x))";

1+ ("= 1)/n 0 +1;

2 if y = o then (1 (x) < 1;else {1(x) < {/(x — 0');
3fori=2tondo

4 (0l 0 + oo';

5 L if x = o then /;(x) « 1;else 4;(x) + ¢/ (x — o);

generator BGgen(1*) returns (p,G1,G,,Gr,8,[1],,[1],), where p (a large prime)
is the order of three finite Abelian groups G, G2, G7 and [1],,[1], are generators
of G| and G,. Finally, é: G| x Gy — Gr is an efficient non-degenerate bilinear
pairing, s.t. é([a], , [b],) = [ab];, which satisfies the following properties:

(i) Forall [1], € Gy, [1], € Gy and a,b € Z): é([a],, [b],) = [ab];,
(ii) The paring é is efficiently computable,
(iii) The paring é is non-degenerative; é([a, ,[b],) # [0]; if a,b # 0.
We sometimes denote parings as é([a|, ,[b],) = [a], ® [b],.

Lagrange Interpolation: Assume 7 is a power of two, and let @ be the n-th
primitive root of unity modulo p. Such ® exists, given that n | (p — 1). Then,

n
o ((X):=]]Xx - ') = X" — 1 is the unique degree n monic polynomial
i=1
such that /(@' ') = 0 for all i € [1..n].
e For i € [1..n], let £;(X) be the i-th Lagrange basis polynomial, i.e., the
unique degree n— 1 polynomial s.t. £;(@' ') =1 and £;(w’~') = 0 for i # j.
Clearly,

G(X) = fX) _(x-he T @.1)

V(0N (X -0 nX -l
dfz’(;) at point x = x;. Thus, ti(@'™") = 1 while £;(x) =
("= De" ! /(n(x— o) for y £ o',

Given any x € Z,, Alg. 1 (see [28] for more details) computes ¢;(x ) fori € [1..n].
It can be implemented by using 4n — 2 multiplications and divisions in Z,.

where ¢/ (x;) =

n
Clearly, Lz(X) := Za,-ﬁ,-(X ) is the interpolating polynomial of @ at points
i=1

o', with Lz(0""") = g;, and its coefficients can thus be computed by executing

an inverse Fast Fourier Transform in time @(nlogn). Moreover, (£;(0''))L, =

¢; (the j-th unit vector) and (¢(® ")) = 0,.

2.2. Provable Security and Hardness Assumptions

In modern cryptography, usually after constructing a cryptographic protocol (or
primitive), the security of the protocol is defined and proven based on some inter-
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actions between an adversary and an honest party that is called a security game
(a.k.a. experiment). In some security games, while an adversary interacts with
the honest party, it might have black-box access, a.k.a. oracle access, to some
additional functions that return output for a particular input chosen by the adver-
sary. Some of the known security games can be found in defining the security of
cryptographic primitives such as public-key cryptosystems, digital signatures, and
pseudo-random number generators [37,70,73,74,107].

While proving the security of a cryptographic protocol, using consecutive se-
curity games or experiments, more often the security of the target protocol is re-
duced to some known long-standing mathematical problems that are conjectured
to be computationally hard to solve. By being computationally hard, we mean
the problem cannot be solved efficiently, where efficiently usually means in poly-
nomial time. Unlike in complexity theory case where the hardness of problems
usually are measured in worst case, in cryptography the problems are supposed to
be hard in the average case I

Reduction in Security Proof of Cryptographic Protocols: The procedure of
reducing the security of a cryptographic protocol to a computationally hard prob-
lem is called reduction which is the main topic of research in the subfield prov-
able security. Essentially, in a reduction one shows that if someone with either
bounded/unbounded computational power, e.g., a polynomial-time adversary <7,
can break security of the target cryptographic protocol with non-negligible prob-
ability, then the same adversary can be used to break a particular known problem
that was supposed to be computationally hard. If a reduction exists for a crypto-
graphic protocol we say that the cryptographic protocol is secure as long as the
underlying computational problem is hard. In cryptography, computational hard
problems are also knows as computational assumptions.

Security Parameter in Cryptographic Protocols: As mentioned before, the ma-
jority of cryptographic protocols are proven to be secure against a computationally
bounded adversary, e.g., a polynomial-time adversary. In computationally secure
constructions, the number of computations that a computationally bounded ad-
versary needs to perform to break a particular protocol is expressed by a system
parameter, called security parameter, denoted with A. Roughly speaking, we
say a cryptographic protocol provides A bits of security if breaking its security
(equivalently, breaking the hard problem behind the protocol) enforces a com-
putationally bounded adversary to perform 2* mathematical operations. While
designing a cryptographic protocol that needs to be computationally secure, the
system parameters (e.g., length of keys or randomnesses) are chosen in a way that
the protocol is estimated to guarantee A bits of security. These days A = 128
is a widely accepted security parameter in different cryptographic protocols that

UIf the hardness of a problem is measured in average-case, it means the problem is hard on most
instances from some explicit distribution. While when the hardness of a problem is measured in the
worst case, it states that the problem is hard on some instances.
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achieve computational security, which means by current computers performing
2128 steps, it will require considerable resources which are infeasible at the mo-
ment.

Computational Models Behind Security Proofs: While constructing a cryp-
tographic protocol based on a computationally hard problem, namely a compu-
tational assumption, the security of the protocol can be proven under some re-
stricted computational models [101]. The standard model, Random Oracle (RO)
model [26], CRS model [50, 59], Generic Group Model (GGM) [109], and Al-
gebric Group Model (AGM) [62] are some of the known computational models
considered in proving security of various cryptographic protocols.

In the standard model, the security of cryptographic schemes is proven under
some computational assumptions and only computational power and running time
of adversary are restricted. Unfortunately not so many cryptographic protocols are
constructed that their security proofs are done in the standard model, and due to
this fact, in many cases, the protocols are constructed under other computational
models that are more restricted models in comparison with the standard model.

In the RO model, it is assumed that all parties of the target cryptographic pro-
tocol have access to a random oracle that given an input returns a unique truly
random output. In real life, random oracles do not exist, but in practice they are
instantiated with some secure hash functions under some heuristic assumptions.

The GGM [101] is another known computational model where the adversary
is restricted to have access to a randomly chosen encoding of a group. Basically
it only allows the adversary to execute the group operations. In pairing-based
groups, a paring operation is defined as an extra oracle which can be accessed
by the adversary, and usually, this model is called the Generic Bilinear Group
Model (GBGM) [39, 109]. The generic group model also is used in analyzing
computational assumptions. Roughly speaking, in this case, one analyzes the
fastest generic adversary 2, against a particular computational assumption.

Another known computational model is called the CRS model, where almost
all of our studied and constructed constructions are in this model. In the CRS
model, there exists a trusted setup that generates a string, known as crs, from a
particular distribution and then shares it among all parties of the protocol. Later,
parties involved in the protocol use the common reference string crs to run their
target algorithms, e.g., proof generation and proof verification in NIZKs by a
prover and verifier. Security proofs of cryptographic protocols done in the CRS
model rely on the fact that the string crs is generated correctly by a trusted party or
a distributed authority. If the crs is sampled from a uniformly random distribution,
the model is called the common random string model.

Next, we recall the definitions of some cryptographic assumptions that are used
in the protocols that we present in this thesis.

2An adversary who only does generic operations.
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2.2.1. Computational Assumptions

One of the most known and primary computational assumptions in cryptography
is called Discrete Logarithm (DL) which is defined as follows,

Assumption 1 (Discrete Logarithm (DL) Assumption). Let Ggen be a group gen-
erator which outputs a group description gk := (g,G) and G is a cyclic group
of order p € N, with a generator g. For any NUPPT algorithm <, the Discrete
Logarithm Assumption holds relative to the group generator Ggen if:

gk:=(g,G) «+ Ggen(lk),x — L,

Adv® (1) = Pr
@A) X=g" X+ o(gkX): X' =x

=negl (1) .

Here we recall the setting where p is a large prime and Z, is a field with p
elements, and the multiplicative group Z; is a cyclic group of order p — 1 where
the DL problem is assumed to be hard. We note that the DL assumption and all

assumptions based on the DL assumption do not hold against a polynomial-time
quantum adversary due to Shor’s algorithm [108].

Assumption 2 (Computational Diffie-Hellman (CDH) Assumption [55]). Let Ggen
be a group generator which outputs a group description gk := (g,G) and G is a
cyclic group of order p € N, with a generator g. For any NUPPT algorithm <,
the Computational Diffie-Hellman (CDH) Assumption holds relative to a group
generator Ggen if:

) gk := (g,G) « Ggen(1*), (x,y) ZIZ,,

Advedh(A) =P ’ |
(X,Y)=(g"8").Z + o (gk,X,Y): Z=g"

=negl(4) .
One may observe that the DL assumption implies the CDH assumption.
In the rest, we recall the definition of Power Symmetric Discrete Logarithm
(PSDL) assumption which is based on the DL assumption and holds in the bilinear

groups. The assumption is deployed in constructing some cryptographic protocols
in the CRS model [96].

Assumption 3 (I'-Power (Symmetric) Discrete Logarithm Assumption [96]). Let
" be an (n,A) tuple for some n = poly (A ). We say a bilinear group generator
BGgen is (n,A)-PDL secure in group G, fort € {1,2}, if for any NUPPT </,

gk = (vahGZ?GTaév [1]1 ’ [1]2) < BGgen(ll)a

Pr / J4 /
X Zp, X H,Qf(gk;([x} Jeer) 1 X =x
t

=negl (1) .

Similarly, we say a bilinear group generator BGgen is I'-PSDL secure, if for any
NUPPT adversary <7,

gk = (vahGZ?GTuév [1]1 7[1]2) — BGgen(ll)u

o x4 Zp, X'+ o (gk, ( [xq . [xq 2)g€r) X =x

=negl(1) .
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In [96], Lipmaa proved that the ['-PSDL assumption holds in the generic group
model for any (n,A)-nice tuple I" given n = poly(1).

2.2.2. Knowledge Assumptions

Cryptographic assumptions can be categorized into two classes called falsifiable
and non-falsifiable assumptions. Roughly speaking, a computational assumption
is falsifiable if it can be written as a security game between an adversary and a
challenger, which at the end, the challenger can efficiently determine whether the
adversary won the game [103]. Standard assumptions such as DL, CDH, etc. are
falsifiable assumptions. The assumptions that cannot be formalized as a security
game are called non-falsifiable assumptions. Knowledge assumptions (a.k.a. ex-
tractability assumptions) are the most known and well-established non-falsifiable
assumptions that appear in various cryptographic protocols such as NIZKs, digital
signatures, and commitments. In such assumptions, if a PPT adversary ./ man-
aged to output some well-formed values, then one assumes that .27 knows some
secret values to generate those values. The concept of knowing is formalized by
assuming that there exists an efficient algorithm Ext,, that given security param-
eter A, public coins and random bits of . can extract the secret values.

In the rest, we recall definitions of some knowledge assumptions used in this
thesis. The first assumption that we review is the Bilinear Diffie-Hellman Knowl-
edge of Exponents (BDH-KE) Assumption (a.k.a. Bilinear Knowledge of Expo-
nent Assumption (B-KEA)) which states that for an asymmetric bilinear group
(p,G1,Go,Gr,8é,[1],,[1],), given group elements [1], and [1],, it is infeasible to
generate [a], and [a], such that [a], e [1], = [1], ® [a], without knowing a. The
assumption is formalized bellow.

Let Z be a relation generator, such that % (1’1) returns a polynomial-time de-
cidable binary relation R = {(x,w)} along with auxiliary information auxg, where
x is the statement and w is the corresponding witness. We assume one can deduce
A from the description of R.

Assumption 4 (Bilinear Diffie-Hellman Knowledge of Exponents (BDH-KE) As-
sumption). A bilinear group generator BGgen is BDH-KE secure for the relation
generator Z if for any A, (R,auxg) € im(%Z(1")), and PPT adversary </ there
exists a PPT extractor Ext ., such that

gk:= (p,G1,G2,Gr,&,[1]; ) + BGgen(1*),
bdh—k
AdVEGgen, o Ext, (A) =P | ([au];, [0n], || @) - (o || Extr)(R, auxg, gk) :
[ou]y o [1], =[1], @ [0n], Na# oy
is negl (1).
The BDH-KE assumption is an asymmetric-pairing version of the knowledge
of exponent assumption (KEA) introduced by Damgard [49] and the special case

of ¢ = 0 of the g-Power Knowledge of Exponent (¢g-PKE) assumption in asym-
metric bilinear groups introduced by Groth [78].
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In [19], Bellare et al. presented a variation of KEA assumption which states
that given 1], [a], , [s], , [as], it is infeasible to generate [co + c15]; , [coa+ cias],
without knowing cg and c;. For a different purpose, recently Bellare, Fuchsbauer,
and Scafuro [20] proposed a new variation of the KEA assumption called Diffie-
Hellman Knowledge of Exponent Assumption (DH-KEA) which states that given
[1], if an adversary comes up with [1],,[a],,[s];,[as],, the adversary has to ei-
ther know a or s. Later, in Chapter 3, we will discuss applications of the latter
assumption in more detail.

2.3. Cryptographic Primitives

This section summarizes some necessary cryptographic primitives, namely one-
way functions, pseudo-random functions, public-key encryption schemes, digital
signatures and commitments schemes.

2.3.1. One-Way and Pseudo-Random Functions

In the rest, we define one-way and pseudo-random functions that are used in Chap-
ter 6 while constructing zk-SNARKSs that can be adopted in UC-protocols.
One-Way Functions. One-Way Functions (OWFs) are a fundamental family of
functions in cryptography so that their computation is efficient but they cannot
be inverted efficiently. By inverting, we mean finding any valid pre-image for a
random image of a one-way function. More formally, for security parameter A, a
one-way function can be defined as below.
Definition 1 (One-way Function (OWF)). A function f: {0,1}" — {0,1}" is
OWF if the following conditions holds about it,

o The description of f is public and one does need secret trapdoors to execute

it.
e Given the input x, one can efficiently compute f(x).
e For all PPT adversaries <7,

Prlx <, {0, 1}",y = f(x),x = & (f,y) : f(x') =] = negl (1)

The existence of OWFs is an open problem, but this is a necessary assumption
in proving the security of many cryptographic primitives.

Pseudo-Random Functions: A Pseudo-Random Function (PRF) family is a set

of functions that can be computed efficiently and emulate a random oracle. In

other words, no efficient algorithm can distinguish between the output of a func-

tion chosen randomly from the PRF family and an output of a truly random func-

tion. This is formally defined as follows.

Definition 2 (Pseudo-Random Functions (PRF)). A function f:{0,1}" x {0,1}* —
{0,1}™ is PRF if the following conditions holds about it,
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e Givenakey K € {0,1}* and an input X € {0,1}" there is an efficient algo-
rithm to compute fx(X) = f(X,K).
e For any PPT oracle algorithm </, we have

|Pr[K <, {0,1}°,b' < /% . b/ = 1] = Pr[f <. F,b < o7 : b/ =1]| =negl (1),

where F = {f : {0,1}" — {0,1}"} and </ makes at most q gueries to the
oracle.

2.3.2. Public-Key Encryption Schemes

Encryption schemes (a.k.a. cryptosystems) are one of fundamental cryptographic
primitives that allow one to encrypt a message (or data) using an encryption key
such that only a desired receiver, who has access to the decryption key, can decrypt
the encrypted message (a.k.a. ciphertext) and see the plain message. This allows
two or several parties to communicate securely on a public channel once they have
access to the encryption and decryption keys. Based on the type of encryption and
decryption keys, there are two types of cryptosystems known as symmetric cryp-
tosystems (a.k.a. secret key cryptosystems) or public key cryptosystems. In the
former, both encryption and decryption keys are the same and it should securely
be shared between only the encryptor and decryptor. But in the latter, the encryp-
tion key is public, called public key, but the decryption key, called secret key, is
secret and only the intended recipient has access to the secret key.

In practice, it is shown that secret key cryptosystems are faster but public-key
cryptosystems have easier key distribution. A public-key cryptosystem consists of
a set of three algorithms ITg,. = (KGengpc, Enc, Dec) that are defined as follows,

e Key Generation, (pkg,c,skg,.) ¢ KGengnc(1*): Given the security pa-
rameter A returns a public key pkg,., a secret key skg,. associated with it.
It also determines the message space .#, the ciphertext space ¢ and the
randomness space Z.

e Encryption, ¢ < Enc(pkg,.,m): Given a public key pkg,. and a message
m € ., algorithm Enc encrypts m and outputs a ciphertext ¢ € €.

e Decryption, m < Dec(skg,,c): Given a secret key skg,,. and a ciphertext
¢ € %, algorithm Dec decrypts ciphertext ¢ an outputs the message m (or L
if decryption fails).

Various cryptosystems are constructed to guarantee different security notions
but the primary security requirement common in all cryptosystems called indis-
tinguishability under chosen-plaintext attacks (IND-CPA) which is defined as fol-
lows,

Definition 3 (IND-CPA). A public-key cryptosystem g, = (KGengpc, Enc, Dec)
guarantees indistinguishability under chosen-plaintext attacks (IND-CPA) if for

31



any PPT adversary <7, it holds that

) (pkEnc7SkEnca ppEnc) — KGenEnC(ll)v 1
Adv™ P QY := [Pr | (mg,my) < o (pk), b <, {0, 1}, — 5| =neel () .
b’ < o (pk,Enc(pkgne,mp)) : b’ = b

2.3.3. Digital Signatures

Digital signatures are one of the fundamental cryptographic primitives that are
constructed based on public-key cryptography and have a key pair called signing
key and verification key. A digital signature allows a signer to digitally sign a
message using the signing key in a way that any person in possession of the ver-
ification key can check the validity of the signature. The secret key in public-key
cryptography is the signing key and the public key is the verification key in dig-
ital signatures. In real life, digital signatures are used in different cryptographic
protocols to authenticate the original sender of a message on a public channel.
The most basic and critical security requirement for a digital signature is that the
signature in unforgeable, such that only a valid signer (the one who knows the
signing key) can generate a valid signature.

Technically speaking, a digital signature consists of a set of three algorithms
Ilsi; = (KGensjg,Sig, Vf) that are defined as follows,

o Key Generation, (skg;,,Vkg;y) < KGenSig(ll): Given the security param-
eter A returns a signing key sksig and a verification key vkg;g.

e Signing, 0 < Sig(sks;y,m): Given a signing key skg;, and a message m,
the algorithm Sig signs m and outputs a signature ©.

e Verification, 0/1 < Vf(vkg;g,m, 0): Given a verification key vkg;,, a mes-
sage m, and a signature o, algorithm Vf verifies if o is a valid signature for
message m and outputs 1 if so, and 0 otherwise.

The main security requirement for a digital signature is called Unforgeability
Against Chosen-Message Attacks (UF-CMA) that is defined as follows.

Definition 4 (SUF-CMA). A digital signature scheme Ils;g = (KGensg;g, Enc, Dec)
guarantees strong unforgeability against chosen-message attacks (SUF-CMA) if
for any PPT adversary </ which makes q = poly (A ) signing queries, the follow-
ing advantage is negl (1):
(sksig: Vksig) < KGengig (1),
Advg‘l;fcma(;t) =Pr | (m*,0") « o7 S8(sksig,) (VkSig) : =negl(4) ,
Vf(vksig,m",0%) = L A ((m*,07) ¢ M)

where M shows the set of queried messages to the signing oracle Sig(skSig, ).
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In constructions studied in Chapter 4, we use a one-time Strong Unforgeable
Against Chosen-Message Attacks (SUF-1CMA) signature scheme to guarantee
non-malleability of proofs. SUF-1CMA security is an especial case of SUF-CMA
where an adversary can only make one query to the signing oracle Sig(skSig, ).

2.3.4. Equivocal Commitment Schemes

Commitment schemes are one of the fundamental and widely used concepts in
cryptography [34]. A commitment scheme allows a committer to create a com-
mitment to a secret value, and later may open and reveal the secret value in a ver-
ifiable manner [87, 106]. The procedure of generating the commitment is called
the committing phase, and revealing a committed message and some secret infor-
mation used in the committing phase (e.g., randomness) called the opening phase.

Let Setup be an algorithm that takes as input the security parameter A and out-
puts some setup information gk < Setu p(l’l). In the basic form, a commitment
scheme consists of a tuple of polynomial-time algorithms (KGencom, Com, Ver).

e Algorithm KGencon, is a probabilistic algorithm that given the setup infor-
mation gk generates a commitment key ck and a trapdoor tk and returns ck.
The setup information can, for instance, describe a finite group over which
we are working, or simply the security parameter written in unary repre-
sentation [77]. We assume all parties have access to gk. The commitment
key ck specifies a message space .#, a randomizer space % and a commit-
ment space % . It is usually assumed that it is easy to verify membership of
the message space, randomizer space, and the commitment space and it is
possible to sample randomizers uniformly at random from 2 >.

e The algorithm Com takes as input the commitment key ck, a message m, a
randomizer r and outputs a commitment ¢ and an opening information op.

e Given ck, ¢, m and op, the algorithm Ver returns either 1 or 0.

In this thesis, we consider equivocal commitment schemes (a.k.a. trapdoor
commitments) in the CRS model that additionally achieve equivocality. In such
cases, a non-interactive commitment scheme Ilc,,, consists of a tuple of algo-
rithms (KGencom, Com, Ver, KGeng,,,,, Com™ Equiv). In an equivocal commit-
ment scheme, given the trapdoor tk associated with key ck, a commitment can be
opened to any message, with appropriate opening information. This property is
considered by PPT algorithms Com* and Equiv, where Com™ takes tk (generated
by KGeng,,,) as input and outputs an equivocal commitment ¢ and an equivoca-
tion key ek. Then, Equiv on inputs ek, ¢ and a message m creates an opening
op := r of the commitment, so that (c,op) = Com(ck,m;r).

Technically speaking, an equivocal commitment scheme consists of a set of
seven algorithms Ilcom = (KGencom, Com, Ver, KGeng,,,,, Com™, Equiv) that are

3Note that in some commitment schemes the description of key generation requires direct sam-
pling of ck, but there is no guarantee that a malicious key generator can sample the ck such that he
can keep a trapdoor tk for it.
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defined as follows,

Key Generation, ck <— KGencom(gk): Generates a commitment key ck and
associated trapdoor tk. It returns ck and keeps secret or removes tk. It also
specifies a message space .#, a randomness space %, and a commitment
space % . The algorithm should be executed by a trusted authority.
Committing, (c,op) <— Com(ck,m;r): Outputs a commitment ¢ and open-
ing information op. This algorithm specifies a function Com : .#Z x Z — €.
Given a message m € ./, the committer picks a randomness r € % and
computes the commitment (c¢,op) = Com(ck,m;r).

Opening Verification, 0/1 < Ver(ck,c,m,op): Outputs 1 if m € .# is the
committed message in the commitment ¢ with opening value op, and returns
0 if (¢,m,op) does not correspond to a valid tuple of commitment, message
and opening.

Simulation of Key Generation, (ck,tk) <— KGen¢,,(gk): Generates a
commitment key ck and associated trapdoor tk. It also specifies a message
space . , a randomness space %, and a commitment space € .

Trapdoor Committing, (c,ek) <— Com*(ck,tk): Given commitment key
ck and tk, outputs an equivocal commitment ¢ and an equivocation key ek.
Trapdoor Opening, op < Equiv(ek,c,m): On inputs ek, ¢ and a message m
creates an opening op := r of the commitment, s.t. (c,op) = Com(ck,m;r)
and returns op.

The basic requirement from a commitment scheme is completeness which
implies for ck <— KGencom(gk) and any honestly generated commitment ¢ € ¢
and opening opZ of m € .#, they should successfully pass the verification by
Ver(ck,c,m,op). Additionally, an equivocal commitment scheme Ilcon, is ex-
pected to satisfy security notions known as binding, hiding, and equivocality as
follows.

Definition 5 (Binding). A commitment scheme lcom = (KGencom, Com, Ver) is
computationally binding if for any PPT adversary <7,

gk « Setup(1), ck < KGencom(gk),

Pr | (¢, (mg,0py), (mi,0p;)) < < (ck) : (mo # my;)A =negl (1) .

(Ver(ck,c,mg,0pg) = 1) A (Ver(ck,c,my,0op;) = 1)

The commitment is perfectly binding if the above probability is equal to O.

Definition 6 (Hiding). A commitment scheme Tcom = (KGencom, Com, Ver) is
computationally hiding if for any PPT adversary <,

gk « Setup(1*), ck < KGencom(gk),

2Pr (I’I’l(),m1)%M(Ck),b%ﬁs{o,l},rb —sX, -1 :negl(k) .

(cp,0pp) < Com(ck,my;ry),b' + o (ck,cp) :b' =b
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The commitment is perfectly hiding if the above probability is equal to 0.

Definition 7 (Equivocality). A commitment scheme Ilcom = (KGencom, Com, Ver,
KGengym, Com™ Equiv) is equivocal if there exist PPT algorithms Com™ and
Equiv that given the trapdoor of the commitment key, can come up with a fake
commitment and a valid opening s.t. they would be indistinguishable from the
real ones. More formally, for gk < Setu p(l’l), for any PPT adversary <,

[(ck,tk) + KGeng,, (gk), |
m < o7 (ck),

—Pr | (c,ek) < Com™(ck, tk), < negl(1)
op < Equiv(ek,c,m) :
| o7 (ck,c,op) =1

ck < KGencom (gk),

m < o (ck),r s,
(c,op) + Com(ck,m;r) :
< (ck,c,op) =1

where o/ outputs m € M .

One may notice that equivocality implies hiding, as a commitment is indistin-
guishable from an equivocal commitment that can be opened to any message [77].

Pedersen Commitments: Pedersen commitment scheme [106] is one of the most
known schemes that satisfy hiding, equivocality, and binding under the discrete
logarithm assumption (defined in Assumption 1). In Pedersen commitment scheme,
the algorithms are defined as follows,

e Key Generation, ck < KGencom(gk): Given the description of a group G
of prime order p as gk := (G, p), it samples two generators (g,h) < G".
We let ck := (g, h);

e Committing, (c,op) <— Com(ck,m;r): Given (ck,m) where m € Z,, it
samples a randomness r <—sZ, and computes the commitment (c,op) :=
(g"h",r).

e Opening Verification, 0/1 < Ver(ck,c,m,op): Outputs 1 if g"h°P = ¢,
otherwise outputs 0O;

¢ Simulation of Key Generation, (ck,tk) <— KGeng,,,(gk): Generates two
generators g < G and h = g%, where sk <—s Z, is the secret trapdoor of the
commitment key ck. Then set (ck,tk) := ((g,h),sk);

e Trapdoor Committing, (c,ek) <— Com*(ck,tk): Given commitment key
ck and tk, outputs an equivocal commitment ¢ = g* where s <—sZ, and an
equivocation key ek = s.

e Trapdoor Opening, op < Equiv(ek, c,m): On input equivocation key ek =
§ € Zyp, ¢ € € and message m creates an opening r <— (s —m) -sk™!, such
that (¢,op) = Com(ck,m;r), and returns op = r.
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2.4. NIZK Arguments and zk-SNARKs

Recall that in complexity theory, NP is the class of languages . that have a
polynomial time decision algorithm V(x,w) € {0,1}, and we say x € £ < 3w :
(x,w) = 1, where x is known as statement and w is called witness.

Zero-knowledge [71] proof systems are essential cryptographic tool that allows
one (namely a prover P) to prove the validity of a statement x € .Z without leaking
extra information. The term zero-knowledge refers to the fact that a verifier V does
not learn anything from the proof more than the truth of the statement x. Non-
Interactive Zero-Knowledge (NIZK) [36] is a popular type of zero-knowledge
proofs that achieves the same goal but without the need for interaction between
the prover P and verifier V. In the rest of this section, we summarize definitions of
NIZKSs and an efficient family of them, called zk-SNARKSs, that are widely used
in the rest of thesis.

2.4.1. NIZK Arguments in the CRS model

Non-interactive zero-knowledge arguments are usually constructed in either the
Random Oracle (RO) [67] or Common Reference String (CRS) model [36]. In
the RO model, it is assumed that both P and V have access to a random oracle
(function) that returns a uniformly random value for each unique query. But in
the CRS model, a NIZK argument requires a one-time setup phase which is sup-
posed to be done by a trusted third party or distributed authority. A graphical
representation of NIZKs in the CRS model is shown in Fig. 1

In the CRS model, once the setup phase was done by a trusted third party, the
generated CRS crs is publicly shared between the prover P and verifier V which
would allow them to generate and verify a proof without interaction with each
other. Under a trusted setup phase, a standard NIZK argument is expected to
guarantee three notions known as completeness, zero-knowledge and soundness.
Completeness ensures an honest P will always convince an honest V. Soundness
guarantees that a malicious P cannot convince an honest V except with negligible
probability. As briefly mentioned before, zero-knowledge ensure that the honestly
generated proof does leak extra information besides the validity of the statement.

Let Z be a relation generator, such that # (1’1) returns a polynomial-time de-
cidable binary relation R . For an NP language .2 := {x | 3w : (x,w) € R}, a

/ Trusted \
Third Party
@ CRS i KGenNIZK(lA' RL) @

(x.m)

m < P(CRS, x,w) = 0/1 < V(CRS, x,y

Figure 1. A NIZK argument in the CRS model.
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NIZK argument consists of four algorithms Iy ;zx = (KGenyzk, P,V,Sim) that
are defined as follows,

e CRS generator, crs < KGenN|ZK(1l,R #): Given the security parameter
A and a description of relation R & samples some secret trapdoors tc and
use them to generate a common reference string crs; finally returns crs.

e Prover, w < P(crs,x,w): Given the CRS crs, the statement x, and w if
(x,w) € R g, it returns a proof 7. Otherwise, it outputs L.

e Verifier, 0/1 < V(crs,x,m): Given the common reference string crs, the
statement x, and a proof 7 returns either O (reject) or 1 (accept).

e Simulator, 7 <— Sim(crs, x, tc): Given the common reference string crs, the
statement x, and the CRS trapdoor tc it returns a simulated proof 7.

As mentioned above, the desired security requirement of a NIZK argument are
completeness, soundness and zero-knowledge that formally are defined as below.
Definition 8 (Perfect Completeness). A non-interactive zero-knowledge argument
Inizk = (KGenyzk, P, V,Sim) is perfectly complete for relation generator %, if
for all A, for all Ry € im(Z(1")), and for all (x,w) € R,

Pr[crs < KGennizk (14, R 2), P(crs,x,w) : V(ers,x,m) =1 | =1 .

Definition 9 (Computational Soundness). A non-interactive zero-knowledge ar-
gument Iyizk = (KGenyzk, P, V,Sim) is (adaptively) computationally sound for
relation generator %, if for all A, for all Ry € im(Z (1)), and for every PPT <,

Ccrs < KGenN|ZK(ll,Rg), (x,7) < o (crs) :

' V(ers,x,m) = 1A (x € L) ]:negl(l) :

Definition 10 (Perfect Zero-Knowledge). A non-interactive zero-knowledge ar-
gument Iyizk = (KGennizk, P, V,Sim) guarantees perfect zero-knowledge, if for
all (x,w) € Ry, there exists a PPT algorithm Sim, such that for all non-uniform
polynomial time adversary <7,

(crs, tc) « KGennizk (1%, R )
r
P (Ry,crs) = 1

(crs, tc) < KGennizk (1%, R ) :
=Pr .
JZ%S'm(CrS’tC")(Rg,CI’S) -1

where both P(crs,-,-) and Sim(crs, tc, ) returns L if (x,w) & Ry, and otherwise
they return P(R,crs,x,w) and Sim(R,crs,x, tc), respectively.

Intuitively, the existence of simulator Sim shows that a valid proof could have
been generated by Sim that knows CRS trapdoors tc, but not the witness w. As a
result, the proof does not reveal any information about the witness to a malicious
verifier .o/
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2.4.2. Zk-SNARKs

Among various type of NIZKs, zero-knowledge Succinct Non-interactive ARgu-
ments of Knowledge (zk-SNARK(Ss) [31,65,78,79,82,96,105] are the most practi-
cally interesting ones that guarantee succinctness, completeness, zero-knowledge,
and knowledge-soundness. Succinctness implies very short proofs and conse-
quently very fast verification; knowledge-soundness guarantees that a successful
prover who manages to come up with an acceptable proof, must know the witness.
The concept of knowing is formalized by constructing an extraction algorithm Ext
that can extract the witness from a successful adversary. The formal definitions
of completeness and zero-knowledge are presented in definitions 8 and 10, so in
the rest, we summarize the definition of succinctness [82] and (non-black-box)
knowledge-soundness [79] that is achieved in zk-SNARKSs.

Definition 11 (Succinctness [82]). A non-interactive zero-knowledge argument
Iyizk = (KGenyzk, P, V,Sim) guarantees succinctness if the proof size is poly-
nominal in A and the verifier’s computation time is polynominal in security pa-
rameter A and size of the statement x.

Definition 12 (Computational Non-black-box Knowledge Soundness [79]). A
non-interactive zero-knowledge argument of knowledge Iy zx = (KGenyizk, P, V,
Sim) guarantees computational non-black-box knowledge-soundness for the re-
lation generator %, for all Ry € im(Z(1")), if for every PPT 4, there exists a
PPT extractor Exty s.t. for all A,

crs « KGenynizk (1%, R o), (%, ) || w) = (7 || Ext,y)(crs) :

r =n A) .
; V(crs,x,m) = 1A ((x,w) € Ry) egl(4)

Recently, it was shown that some new constructions of zZk-SNARKSs (e.g., [82])

can achieve simulation knowledge-soundness (a.k.a. simulation extractability)
which is a stronger version of knowledge-soundness, as it also can guarantee
non-malleability of proofs. In the rest, we recall the definition of nBB simula-
tion knowledge-soundness (a.k.a. nBB simulation extractability) that we aim to
achieve in new constructions in Chapters 4 and 6.
Definition 13 (Computational Non-black-box Simulation Knowledge Soundness).
A non-interactive zero-knowledge argument Ilyzx = (KGenyzk, P, V,Sim) guar-
antees non-black-box simulation knowledge-soundness for the relation generator
R, if for all Ry € im(Z(1*)), for any PPT <, there exists a PPT extractor Ext
s.t. for all A,

(CI’S,tC) — KGenN|ZK(1’1,Rg),
Pr | ((x,7),w) < (@75m(rste) Ext )(crs) : =negl(4) ,
((x,m) € Q)N ((x,w) € Rg) AV(crs,x,m) =1

where Q is the set of (x,T)-pairs generated by the adversary’s queries to the
simulation oracle Sim(crs, tc, ).
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One may notice that nBB simulation knowledge-soundness implies nBB knowledge-
soundness (given in Def. 9), as the former additionally allows the adversary to
send a query to the proof simulator Sim(crs,tc,-). It is worth to mention that in
both definitions nBB knowledge-soundness (given in Def. 9) and nBB simulation
knowledge-soundness (given in Def. 13) the extractor Ext,, is non-black-box and
to be able to extract the witness w it requires to have full access to the source code
and random coins of adversary ..

Definition 14 (Computational Black-Box Simulation Knowledge Soundness). A
non-interactive zero-knowledge argument Iy ;zx = (KGenyzk, P, V,Sim, Ext) guar-
antees black-box simulation knowledge-soundness for the relation generator %,

if for all Ry € im(Z(1*)), there exists a PPT extractor Ext s.t., for all PPT <,
and for all A,

(crs, ts, tx) < KGennizk (1%, R ), (x, 1) <— @7 >M(erst5:) (crs),
Pr |w < Ext(crs,x,m,tx) : ((x,7) € Q) A ((x,w) € Rg) =negl(1) ,
AV (crs,x,m) =1

where Q is the set of (x,T)-pairs generated by the adversary’s queries to the
simulator Sim(crs,tc,-). Above tx and ts denote the extraction and simulation
trapdoors, respectively.

2.4.3. NP Characterizations QAPs and SAPs

In order to construct a zk-SNARK for an NP language .Z, one first needs to
encode the language .Z to one of the characterizations that have an efficient
reduction from either arithmetic or Boolean Circuit-SAT [52, 65,79, 82, 97].
Among various characterizations, encoding from arithmetic circuits is easier to
QAP (Quadratic Arithmetic Programs) and SAP (Square Arithmetic Programs),
but while working with Boolean circuits encoding to SSP (Square Span Programs)
and QSP (Quadratic Span Programs) are more convenient.

As the CRS length and prover computational complexity of pairing-based zk-
SNARKSs severely depends on the number of multiplication/Boolean gates in the
circuit that encodes the language, therefore QAP-based zk-SNARKSs are more
efficient and practical. This is raised from the fact that a particular computa-
tion described as an arithmetic circuit more often requires a smaller number of
multiplication gates in comparison with the equivalent Boolean circuit. As an in-
stance, currently verifying y = SHA256(x) requires an arithmetic circuit which
has around 25.550 multiplication gates #, while doing the same with Boolean cir-
cuits requires around 120.000 Boolean gates .

In the rest, we summarize the characterizations QAPs and SAPs that both de-
fine NP-complete languages specified by a quadratic equation over polynomials

4 Available on: https://github.com/akosba/xjsnark
3 Available on: http://stevengoldfeder.com/projects/circuits/sha2circuit.html
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and used in zk-SNARKSs that we have studied in this thesis.

Quadratic Arithmetic Programs. QAP [65] is a language where for an input
x and witness w, validity of (x,w) € Rg can be checked via a parallel quadratic
check. By considering the fact that there is an efficient reduction from CIRCUIT-
SAT to QAPs, any QAP-based zk-SNARK is a zk-SNARK for CIRCUIT-SAT.
The key idea behind such reduction is that one assigns variable to the input and
output wires of each gate and then rewrite each gate as an equation. Then, instead
of giving proof for the circuit, a prover gives a proof for a set of equations.
Technically speaking, a QAP instance 2, is defined as (Z,,mo, €, {u;,v;,w;}i o),

where my is the length of the statement (e.g., public inputs and outputs in an arith-
metic circuit), £ is a target polynomial (specified via the number of constraints,
namely the number of multiplication gates in an arithmetic circuit), and u;,v;,w;
are three sets of polynomials degree n — 1 that encode the input and output wires
in the target arithmetic circuit that has » multiplication gates [65]. For a QAP
instance 2, the following relation is defined, where we assume Ag = 1:

R (W) X = (A1, Amg) AW = (Apg 15, Am) A
N (Z'}LOAJMJ(X))( T:oA/Vj(X))E m o Awi(X)  (mod (X)) [

Alternatively, (x,w) € R if there exists a (degree < n — 2) polynomial A(X), s.t.

<i)Aij(X)> (i)AjVj(X)> - i)Ajwj(X) =h(X){(X),

n
where /(X) = H(X — ') is a polynomial related to Lagrange interpolation,
and in practicela; usually is set to be n-th primitive root of unity modulo p (by
assuming that n is a power of two).
In a QAP-based NIZKs (or zk-SNARKS [65]), the goal of the prover is to prove
that for public (Ay,...,A,,) and Ag = 1, she knows (Ayy+1,.-.,An) and a degree
< n—2 polynomial 4(X), such that the above equation holds.

Square Arithmetic Programs. While encoding an arithmetic circuit to a QAP in-
stance, the circuit should have only addition and multiplication gates. It is shown
that any quadratic arithmetic circuit with fan-in 2 over a finite field Z,, can be
converted to a SAP instance over the same finite field [82]. Specifically for mul-
tiplication gates one can use the fact that ab = ((a +b)*> — (a —b)?) /4. A SAP
instance is defined as ., = (Zp,mo, {u;,w;}), which can be considered as a
particular case of a QAP instance where {u;}7_y = {v;}/_o. A SAP defines the
following relation:

(XaW): X= (Ala' . 7Am())T AW = (Am0+la' . 7Am)T/\

R_(/ p—
7T (BoAm ) = EpoAps(x)  (mod (X))
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n
where ((X) := H(X — @) a degree n polynomial which in the case that n
i=1
is set to be a power of two, and @ is the n-th root of unity modulo p, it equal to
£(X):=X"—1, such that /(@' ') =0 forall i € [1..n]. Alternatively, (x,w) € R »
if there exists a (degree < n— 2) polynomial 4(X), s.t.

2
(ZOAJMJ(X)> —ZOAJWJ'(X):h(X)f(X) :

Similar to QAP-based NIZKs (or zk-SNARKSs [65]), in a SAP-based NIZK (or
zk-SNARK [82]) the goal of the prover is to prove that for public (Ay,...,A,,)
and Ag = 1, she knows (A,;,+1,...,A,) and a degree < n— 2 polynomial A(X),
such that above equation holds. As discussed by Groth [79], usually a SAP-based
argument leads to a more succinct proof [79, 104], but it increases the prover’s
computational complexity, as each multiplication gate require two squaring gates.

2.4.4. Zk-SNARKS in Practical Applications

In recent years, due to the practical efficiency of zk-SNARKSs in proving the cor-
rectness of any computational task without leaking any information about the se-
cret inputs, they have appeared in various applications. Initiated by Pinocchio, a
system for verifiable computations [105], they are deployed in various blockchain
protocols including privacy-preserving cryptocurrencies [27], privacy-preserving
smart contract systems [90, 93], private proof-of-stake protocols [92], ledger ver-
ification protocols [102] and so on.

Using zk-SNARKSs in Practical Applications: In all of the mentioned applica-
tions, the zk-SNARK is used essentially to prove the correctness of a particular
computation that is written as an arithmetic or Boolean circuit. Fig. 2 shows
a graphical representation of the steps that one needs to take when using zk-
SNARKS to prove the correctness of a particular computation. For instance, in
the privacy-preserving cryptocurrency Zcash [27] the procedure of spending a
coin is written as an arithmetic circuit, which is called the Pour circuit. Whenever
a network node aims to spend a coin, they need to execute the Pour circuit with
their secret inputs (related to the coin that will be spent) and output a new coin
for the receiver, but attached with a zk-SNARK proof to prove the correctness of
computations without leaking information about the spender’s secret inputs. It
is worth to mention that due to the knowledge-soundness of zk-SNARKSs a ma-
licious spender cannot spend a coin without knowing the secret information of
the spent coin. Similarly, due to the zero-knowledge property of zk-SNARKS, a
malicious verifier does not learn anything about secret information of the spender.
The same procedure is repeated in all other (privacy-preserving) applications that
use zk-SNARKSs [90,92,93,102], but each one with a different arithmetic circuit.
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Write computations as an arithmetic/boolean circuit
Any of NP Characterizations:

Public Inputs 1 1 l l l 1 Secret Inputs QAP, SAP, SSP, QSP
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Figure 2. Using zk-SNARKSs to prove the correctness of a particular computation that
can be written as an arithmetic or Boolean circuit without leaking information about the
secret inputs.

2.4.5. Zk-SNARKSs in Universally Composable Protocols

Recall that Universal Composability (UC) [44] is a very strong security notion in
cryptography which is an imperative and necessary requirement in constructing
larger practical cryptographic systems. Briefly speaking, UC-security guarantees
that a cryptographic primitive or protocol remains secure even if it is arbitrarily
composed with other instances of the same or other primitives/protocols.

During the last few years, by developing zk-SNARKS, several practical cryp-
tographic protocols are constructed that aimed to guarantee UC-security and de-
ploy zk-SNARKS in their systems [90,92,93]. But as the default security of zk-
SNARKS, namely non-black-box knowledge-soundness, was very weak to be di-
rectly used in UC-secure protocols, one needed to lift their security before using
them in UC-secure protocols. A technical reason that zk-SNARKSs cannot directly
be used in UC-secure protocols is that the extraction algorithm constructed in se-
curity proofs of zk-SNARKSs is non-black-box and depends on the source code of
a particular adversary and it cannot work universally for all adversaries. But in
the UC framework, the UC-simulator should be able to simulate all honest and
corrupted parties, and to do so it should be able to extract witnesses from cor-
rupted parties without requiring access to their source code. On the other hand, it
is already observed and proven [45, 76, 85] that to be able to achieve UC-security
in NIZKs, the NIZK argument should satisfy black-box simulation knowledge-
soundness, defined in Def. 14. In other words, it is shown that black-box sim-
ulation knowledge-soundness is a sufficient requirement for a NIZK argument
to realize the ideal functionality of NIZK arguments in the UC framework [76].
In such arguments, the extraction is done in a black-box manner (i.e. without a
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knowledge assumption) and the proofs are non-malleable. By considering this re-
sult, in 2015, Kosba et al. [94] proposed a framework called COC®, which consists
of several constructions in which the strongest one gets a sound NIZK and lifts it
to a NIZK that can achieve black-box simulation knowledge-soundness, sufficient
to achieve UC-security.

In the rest, we review the most efficient and strong construction of the COCO
framework used by various systems to construct black-box simulation knowledge-
sound zk-SNARKSs that are used in UC-secure protocols. Note that in the output
constructions, the proof size is not witness succinct anymore.

The Strongest Construction in the COC0 Framework. In summary, given a
sound NIZK, the framework initially defines a new language .#" based on the
language . in the input NIZK, along with some cryptographic primitives. Let
gnc = (KGengy, Enc, Dec) be a set of algorithms for a semantically secure en-
cryption scheme, Ilsj; = (KGens;g, Sig, Vf) be a one-time signature scheme and
Mecom = (KGencom, Com, Ver) be a perfectly binding commitment scheme. Given
alanguage . with the corresponding NP relation R ¢, define a new language .
such that ((x, ¢, i, Vksig, Pkgnc, P), (770, W, 50)) € R iff:

(¢ = Enc(pkgne, W;7))A
((x,w) € RgV
(,LL = fs (VkSig> NP = Com(so;ro))),

where {f; : {0,1}* — {0,1}* }seqo,1y2 is a pseudo-random function family. The
intuition behind the definition of language .#" is that the prover has to send the
encryption of witness with the public key given in the CRS along with a one-
time secure signature of the proof. Attaching the encryption of witnesses allows
the extractor to extract the witnesses from a valid proof with decryption, and the
signature ensures the non-malleability of the proof. Now, a sound NIZK argument
system Iyjzk for Z constructed from PPT algorithms (KGenyzk, P, V,Sim) can
be lifted to a BB simulation knowledge sound NIZK Iy, with PPT algorithms
(KGeny,zx, P, V', Sim’ Ext’) described in Fig. 3.

In Chapter 6, we compare our proposed constructions with the zk-SNARKSs
that are lifted with the COC® framework [90, 93].
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e CRS generator, crs’ <+ KGenjy,z«(1*,R»): Given the security parame-
ter A and description of relation R &,

— sample (crs || ts) < KGennizi (1*,Rign);
- (pkEnoSkEnc) A KGe”Enc(ll);
— 50,70 <s{0,1}*; p := Com(so;70); and
output (crs’ || ts' || t') := ((crs, pkene; P) || (50,70) || Skgnc)- Note that
here tc’ := (ts' || tX') can be considered as the CRS trapdoor.
e Prover, 7' + P'(Ry,crs,x,w): Parse crs’ := (crs,pkg,c,p); Abort if
(x,w) € Rg:
- (kaig,skSig) — KGenSig(ll);
sample z0,21,22,71 {0, 1}*; compute ¢ = Enc(pkg,c,w;r1);
generate 7 < P(R g, crs, (x,¢,20,Vksig, PKgnc, P), (71,21, W,22));
sign 0 < Sig(skg;g, (X, ¢,20,7));

and output 7' := (c, 20,7, Vkgjg, O).
e Verifier, 0/1 < V'(Rg,crs',x, @'): Parse crs’ := (crs, pkgpe, p) and 7' :=
(6, 11,7, ki O):
— Abort if Vf(vkg;g, (x,c, 11, ), 0) = 0;
— call V(R g, crs, (x, ¢, i, Vkg;g, PKEne, P ), ) and abort if it outputs 0.
e Simulator, 7’ < Sim’(R&,crs’,ts',x): Parse crs’ := (crs, pkg,c, ) and
ts' := (s0,70);
- (kaig,skSig) — KGenSig(lx);
set i = fy,(vksig):
sample z3,r1 <s{0,1}*; compute ¢ = Enc(pkgne,23:71);
generate 7T < P(R gn,crs, (x, ¢, b, Vkg;g, Pkgne, P), (71,70,23,50) )3
sign ¢ < Sig(vksig, (X, ¢, 1, T));

and output a simulated proof 7’ := (c, i, 7, VKsig, O).
e Extractor, w < Ext'(Rg,crs’,tx',x,n'): Parse ' := (c, i, 7, vksig, 0),
skpne := tX; decrypt w < Dec(skg,,¢); output w.

Figure 3. COCO: a framework for constructing black-box simulation knowledge-sound
(a.k.a. simulation extractable) NIZK arguments [94].
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3. SUBVERSION-RESISTANT KNOWLEDGE SOUND
SNARKS

3.1. Motivation

Due to very practical efficiency of zk-SNARKSs, recently they are deployed in a
large number of practical applications with different functionalities [27,90,92,93,
102, 105]. Notably, Pinocchio [105] was the first nearly practical system for ver-
ifiable computations. Pinocchio has various compilers and encoders that allow a
user to compile any computation (e.g., computations required in spending a digital
coin, or computations inside a smart contract, or computations needed in verifying
transactions on a ledger or encrypting a message with RSA cryptosystem) written
in C/C++ language to an arithmetic/Boolean circuit and then encodes the circuit to
one of the NP characterizations QAP/SAP/QSP/SSP and finally uses zk-SNARKSs
to prove the correctness of the computation. In a practical application that uses
zk-SNARKS, beside succinct proofs (e.g., less than 288 bytes) and very efficient
verification (e.g., in less than 10 milliseconds), knowledge-soundness (defined in
Def. 12) and zero-knowledge (defined in Def.10) properties of the underlying zk-
SNARK convinces a verifier that the prover has done the computations correctly
and knows the values used in the computation while guaranteeing that a malicious
verifier does not learn more than correctness of the computations from the proof.

As mentioned in Chapter 2, zk-SNARKS require a setup phase to generate a
CRS crs, a.k.a. public parameters, that are used by prover and verifier for proof
generation and proof verification [35]. This setup phase is supposed to be done
by a trusted third party or by a distributed authority. Following this fact, any
application and system that uses zk-SNARKSs as a sub-protocol is required to have
a (widely accepted) trusted setup phase which is a publicly trustable system. In
other words, in any practical application where zk-SNARKSs are deployed, for
instance Zcash [27] or Hawk [93], all users of the application (e.g., nodes of Zcash
network) either in the role of a prover or a verifier need to trust the party who runs
the setup phase of zk-SNARKSs.

Recently by increasing global surveillance disclosures, e.g., the Snowden rev-
elations, users’ sensitivity to cryptographic protocols and their public parameters
has grown enormously. Following this fact, there have been various researches
that reduce required trust in various cryptographic protocols or primitives and new
variations that provide a level of security against active subversion [7, 8, 20, 25].
Roughly speaking, subversion mainly refers to manipulations on the public pa-
rameters or setup phase of the protocol.

From a different perspective, Multi-Party Computation (MPC) protocols are a
standard and common approach widely used in various cryptographic systems to
distribute and mitigate the level of needed trust. In the context of zk-SNARKS, in
2015, Ben Sasson et al. [29] proposed an efficient MPC protocol that can be used
to sample the CRS for a majority of pairing-based zk-SNARKSs. Later, applica-
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tions such as the privacy-preserving cryptocurrency Zcash used Ben Sasson et al.’s
MPC protocol to sample public parameters of their underlying zk-SNARK [42]
which led to mitigating the required trust on setup phase for both prover and veri-
fier from a single party to I out of n parties, where n denotes the number of parties
participating in the MPC protocol.

3.2. Problem Statement

To achieve zero-knowledge and knowledge-soundness in zk-SNARKS, by using
Ben Sasson et al.’s [29] MPC protocol for CRS generation both prover and verifier
need to trust at least 1 out of n players of the MPC protocol. Considering this
required trust in the setup phase of zk-SNARKSs by both prover and verifier, can
we reduce the trust on the setup phase of zk-SNARK even more, so that users of
zk-SNARKSs will use them more confidentially in their practical applications? For
instance, the nodes of the Zcash or the Hawk smart contract system will get the
same security guarantees but with less trust in the generator of public parameters.

3.3. Previous Results

In 2016, Bellare, Fuchsbauer and Scafuro [20] studied achievable security prop-
erties in NIZK arguments in the case that the setup phase is subverted. They
first defined three notions called subversion witness indistinguishability (Sub-WI),
subversion zero-knowledge (Sub-ZK) and subversion soundness (Sub-SND) as a
subversion-resistant variation of the standard notions witness indistinguishability
(WI), zero-knowledge (ZK) and soundness in NIZK arguments. The key change
in their new definitions is that unlike for the standard cases, in the new definitions
it is assumed that the parameters are generated by an adversary. For instance, the
notion Sub-ZK guarantees that even if an adversary generates the CRS elements,
the NIZK argument still guarantees ZK.

Based on these new definitions, they proved a negative and several positive
results about constructing subversion-resistant NIZKs. First, they showed that
the definitions of Sub-SND and (even standard) ZK are not compatible and we
cannot have a NIZK argument that will achieve Sub-SND and standard ZK at the
same time. Intuitively, one may notice that achieving ZK in a NIZK argument
confirms the existence of a simulator Sim that given trapdoors of the setup phase
can generate a fake proof which will be indistinguishable from the real ones. On
the other hand, Sub-SND requires that an adversary cannot forge the proof, even
if he generates the CRS. But, by the definition of ZK one can notice that this
is a contradiction: given the CRS trapdoors and the simulator Sim constructed in
proving ZK, one can generate fake proofs indistinguishable from real ones without
knowing the witness which will break Sub-SND.

On the positive side, in the best case, they showed that under an additional
knowledge assumption on the setup phase, one can construct a NIZK argument
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that can guarantee Sub-ZK and (knowledge) soundness. To achieve Sub-ZK, in-
stead of giving the simulation trapdoors directly to the simulator Sim, their key
idea was to use a knowledge assumption to extract the trapdoors from a mali-
ciously generated CRS and then use them to simulate the argument. Constructing
such NIZK arguments showed that we can completely eliminate the prover’s re-
quired trust in the CRS generators. In other words, in a NIZK argument that
guarantees Sub-ZK, a prover does not need to trust the CRS generators and it can
achieve ZK without trusting anyone, but instead doing some initial checks. In
another positive result, they showed that non-interactive arguments proposed by
Groth, Ostrovsky, and Sahai [84] can achieve Sub-WI and Sub-SND, as they do
not require a particular setup phase.

3.4. Subversion-Resistant SNARKs

By considering the discussed positive results about NIZKs with subverted pa-
rameters [20], we started to consider if we can construct subversion-resistant zk-
SNARKSs which achieve their best positive result, namely Sub-ZK along with
soundness. Briefly speaking, we present a variation of the-state-of-the-art zk-
SNARK, proposed by Groth [79], that can achieve Sub-ZK and knowledge-soundness.

A full detailed description of the result can be found in the paper [3] which
is joint work with Abdolmaleki, Lipmaa, and Zajac. In the rest of the section,
we first summarize the definition of a subversion-resistant SNARK and then ex-
plain our proposed variation of Groth’s zk-SNARK that can achieve Sub-ZK and
knowledge-soundness. Finally, we evaluate the practical performance of the pro-
posed subversion-resistant zk-SNARK.

3.4.1. Definitions

A standard definition of zk-SNARKSs is given in Section 2.4. In the rest, we
present our definitions for subversion-resistant zk-SNARKSs and their security re-
quirements. To achieve Sub-ZK, we augment a zk-SNARK by requiring the ex-
istence of an efficient CRS verification algorithm, called CV. Our definition of
Sub-ZK for SNARKSs is motivated by the definitions presented in [20, 76].

As before, let Z be a relation generator, such that 2 ( ll) returns a polynomial-
time decidable binary relation R, with auxiliary information auxg. The security
parameter A can be determined from the description of R. The relation generator
also outputs auxiliary information auxg that will be given to all algorithms includ-
ing the adversary. In the rest, for simplicity we ignore writing auxg in the inputs
of algorithms. Let %g = {x: 3w, (x,w) € R} be an NP-language. A subversion-
resistant NIZK argument system Iy zk for Z consists of a tuple of PPT algorithms
(KGenyzk, CV, P, V,Sim), that are defined as below,

e CRS generator, crs := (crsp,crsy,crscy)  KGenyizk (R): Given R €
im(2(1%)), samples the CRS trapdoor tc, then computes and returns crs
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and stores trapdoors of crs as tc. We distinguish crsp (needed by the prover),
crsy (needed by the verifier) and crscy (necessary for CRS verifier).

e CRS Verifier, {0,1} + CV(R,crs): Given R € im(#(1*)) and crs it veri-
fies weather crs is well-formed and returns either O (the CRS is incorrectly
formed) or 1 (the CRS is correctly formed).

e Prover, 7w < P(R,crs,x,w): Given (R,crs,x,w) for CV(R,crs) = 1 and
(x,w) € R, outputs an argument 7. Otherwise, it outputs L.

e Verifier, {0,1} < V(R,crsy,x,m): Given (R,crsy,x, ), returns either 0
(reject proof) or 1 (accept proof).

e Simulator, 7w < Sim(R,crs,x,ts): Given (R,crs,x), and simulation trap-
doors ts the algorithm outputs a simulated argument 7. Note that simulation
trapdoors can be a subset or equal to CRS trapdoors tc.

As discussed in Section 2.4, a (non subversion-resistant) NIZK argument is
defined as a tuple ITy;zx = (KGenyjzk, P, V,Sim). One may notice that in above
algorithms there are some differences in comparison with the established syntax of
NIZK arguments. An essential difference in the new syntax is the existence of an
efficient CV algorithm which is crucial for achieving Sub-ZK. The checks inside
the CV algorithm verify the consistency of the elements of crs along with the
well-formedness of some particular elements. From a high-level view, executing
CV is the cost that a prover needs to pay to achieve Sub-ZK instead of ZK. In
applications that a prover (e.g., a node in Zcash network) frequently uses a fixed
CRS, the user only needs to run the CV algorithm once. Another difference is
the separation of crs into three parts (crsp, crsy, crscy ), which is done to highlight
that to be able to construct an efficient CV algorithm, one may need to add some
new elements to the CRS of the original zk-SNARK. Essentially, a verifier only
needs crsy which in practice usually has a considerably smaller size than crsp, and
crscy contains elements that are required to verify the well-formedness of CRS.

The desired security requirement of a zk-SNARK is completeness, knowledge-
soundness and zero-knowledge that were formally defined in Section 2.4.2. In
the rest, we present the definition of subversion completeness (an honest P con-
vinces an honest V, and an honestly generated CRS gets accepted by the CV
algorithm) and Sub-ZK (a malicious verifier does not learn more than the truth
of the statement, even if it generates the CRS) that are two essential notions in
subversion-security which we aim to achieve in our proposed subversion-resistant
zk-SNARKG.

Definition 15 (Perfect Subversion-Completeness). A subversion-resistant non-
interactive zero-knowledge argument Ilyizx = (KGenyizk, P, CV,V,Sim) is per-
fectly subversion complete for %, if for all A, all R € im(Z(1*)), and (x,w) € R,

crs < KGenpzk (R), T < P(R, crs,x,w) :

Pr =1.
CV(R,crs) = I AV(R,crs,x,m) = 1
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Definition 16 (Statistically Sub-ZK). A subversion-resistant non-interactive zero-
knowledge argument Iyjzx = (KGenyjzk, P,CV,V,Sim) is statistically Sub-ZK
for %, if for any PPT subverter Sub there exists a PPT extractor Exts,y, such that
forall A, all R € im(%(ll)), and for all PPT </, &) =, €, where

r < RND(Sub), (crs,auxsyp || ts) <= (Sub || Extsyp)(R;7) :
r
CV(R,crs) = 1/\%ob("')(R,crs,ts,auxsub) =1

&g =">P

Here, r <, RND(%) denote sampling of a randomizer r of sufficient length for
A’s needs, auxsyy, is auxiliary information generated by the subverter Sub, and
the oracle Og(x,w) returns L (reject) if (x,w) & R, and otherwise it returns
P(R,crsp,x,w). Similarly, O(x,w) returns L (reject) if (x,w) & R, and other-
wise it returns Sim(R, crs, ts, x). Iyzk is perfectly Sub-ZK for Z if one requires
that €y = €.

Note that in Def. 16 the subverter Sub and adversary .7 can be a single party,
consequently tc are provided to the adversary <.

3.4.2. An Efficient Construction

Next, we present a minimally modified version of the state-of-the-art QAP-based
zk-SNARK proposed by Groth [79] so that it achieves Sub-ZK (defined in Def. 16)
and subversion completeness (defined in Def. 15). Note that currently Groth’s zk-
SNARK is the most efficient, which was the main reason that we focus on it!.

Main Strategy to Achieve Sub-ZK in SNARKSs: Before going through the pre-
sented construction, it is worth to mention that in a NIZK argument achieving Sub-
ZK is a bit more challenging than achieving standard ZK. The reason is that in the
definition of standard ZK, the CRS generator is trusted and the CRS trapdoors tc
(consequently simulation trapdoors ts) are honestly provided to the simulator Sim.
But in order to achieve Sub-ZK, since the prover does not trust the CRS generator
anymore, consequently the simulator Sim cannot trust the provided trapdoors. To
address this issue, the proposed solution [20] is that the prover checks the well-
formedness of CRS elements before using them, and in simulating arguments the
simulator uses a non-black-box extraction algorithm Extg,, to extract the simula-
tion trapdoors directly from the (possibly malicious) CRS generator Sub and then
uses them for the simulation [20]. A known approach for constructing non-black-
box extraction algorithm Extg, is to use a knowledge assumption [20,49]. In
our construction, we use the Bilinear Diffie-Hellman Knowledge of Exponents
(BDH-KE) assumption [49] (defined in Assumption 4), while one may use a
different knowledge assumption, as was later observed in a concurrent work by

'While less efficient zk-SNARKSs like Pinocchio [105] are used more widely, this situation might
change and one should precisely analyze for its construction.
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Fuchsbauer [60] 2. But, intuitively in all cases, one relies on the fact that if a
(malicious) CRS generator manages to come out with some well-formed CRS el-
ements, they must know the secret information used in CRS generation. Namely,
there exists a non-black-box extractor Exts,, that given access to the source code
and random coins of the (malicious) CRS generator Sub, can extract the simula-
tion trapdoors ts. Once the simulation trapdoors are extracted, the simulator Sim
can simulate the proofs. It is worth to mention that the well-formedness of CRS
elements are checked by a public efficient CRS verification algorithm known as
CV. While making the CRS of the underlying NIZK well-formed, one may need
to modify CRS elements of the construction which will require redoing the sound-
ness proof. Note that, using different knowledge assumptions to achieve Sub-ZK
in a particular NIZK argument, will result in different CV algorithms.

Construction of New Sub-ZK Secure SNARK: Next, we describe the construc-
tion of a subversion-resistant SNARK for % that satisfies Sub-ZK and is closely
based on Groth’s construction [79]. Fig. 4 and Fig. 5 describe the algorithms
of the new construction IIyzx = (KGenyjzk,CV,P,V,Sim). Importantly, the
prover and the verifier of the new zk-SNARK are unchanged compared to Groth’s
SNARK [79]. We assume implicitly that each algorithm checks that their inputs
belong to correct groups and that R € im(Z(1*)).

The proposed Sub-ZK SNARK is closely based on Groth’s zk-SNARK. In fact,
the differences between the construction of the two SNARKSs can be summarized
very briefly:

e We proposed an efficient CRS verification algorithm CV which is con-

structed based on the BDH-KE assumption (see Fig. 4 ).

o We extend the CRS of the original scheme with 2n + 3 new elements (see

the variable crscy in Fig. 4) that are needed to make the original CRS well-
formedness verifiable.

He uses a different knowledge assumption called Square Knowledge of Exponent (SKE) which
states for an asymmetric bilinear group, given [1], if an adversary manages to come out with [a];

and [az} ; he must know a.

Algorithm 2: Checking that [(;( )())3’:1] , is correctly computed (based
on equation 2.1)
InplIt: ([%n—l ) (ZJ(X));I:I] 1 [LX]Z ) [I]T)
//j=1
{8l (1], o lxly = [Wg) /ms [@0], = (1],
2 Check that [(y ()] ® ([x], — [@'],) = [{]:
3forj=2tondo
4 L Elr < 0[Ely: [0], « o]a],;
5 | Check that [(;(x)]; o ([x], — [@],) = [{]7:
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CRS generator, crs := (crsp,crsy, crscy ) < KGenyizg(R): Given a QAP
R € im(Z(1%)), first sample CRS trapdoors tc = (x,a,B,7,8)
Zf, X (Z;)2 and then set simulation trapdoors ts = (x,a,f3,0). Next,
compute Lagrange basis (¢;(x))i; and set uj(x) < L Uiili(x) ,
Vi) X Vili(), wix) — Xy Wisti(x) for all 7 € {0,....m}.
Note that Uij, Vi; and W;; are the entries of QAP matrices when the
circuit is encoded as three sets of matrices U,V,W with dimensions

n x m. Finally, compute crs = (crsp, crsy, crscy ), where

{a 5.5, ( )B+v,(6)a+wj~(x))’" ]17

crsp +— J=mot1 ,

(0G0 /3713 i (071 (Vo] B8, (i)
crsy <+ <[(”/‘(l)ﬁwj(f)“Jer(X))'Tlo } ’[%5]2’[aﬁ]T>

Jj=0 1

erscv ([ G G [z 2R

2

Return crs < (crscy,crsp,crsy ).
CRS Verifier, {0,1} + CV(R,crs):

1. For1 € {y,8}: check that [1], # [0],

2. Fort€{a,p,y,0}: check that [1], e [1], = [1], ®[t],,

3. Fori=1ton—I: check that [x'] e [1], = [x""'], ® [x],.

4. Check that ([¢;(x)],)iz, is correctly computed by using Alg. 2, that
is designed based on equation 2.1.)

5. For j=0tom:

(a) Check that [u;(x)], = Xiu, Uij [ti(x)];
(b) Check that [v;(x)], = Vz; [€:(x)]55
(c) Set [w;(x)]; X 1W [ i
(d) Check that [v;(x)], ®[1], = [1]; @ [v;(X)],,
6. For j =mg+ 1 to m: check that [(u;(x )BJer( Joo+w;(x))/0], e
Bl 10l Ol )
7. Check that [y"~'], o [1], = 1], ¢ [x""'],.

8. Fori=0ton—2: check that [x'e(x )/5} o8], = [xi+l]l.

o= e (1)
9. Check that [a], ® [B], = [af3].

Figure 4. The CRS generation and verification of the Sub-ZK SNARK for #Z

Choosing which elements to add to the CRS is not straightforward since the
zk-SNARK must remain knowledge-sound even given enlarged CRS, on the other
hand the CRS must become publicly verifiable. Adding too many or just wrong

51



Prover, m < P(R,crs,x = (A1,...,Amy),W = (Amy+1,---,Am)): After execut-
ing CV successfully & assuming Ag = 1, the prover does:

1. Leta®(X) = TioAju;(X), b (X) = ETgAv;(X),

Lt (X) & £ oA wy(X),

. Set h(X) = ¥iZ5 hiX' < (a"(X)b"(X) — ¢ (X)) /£(X),

- Set [h(x){( )/5] =X 02h [%’f(x)/‘s]l
(%)

: +
. Setry <, Zp,SetbeZJ: [vj(x)}zﬂﬁ]ﬁrb [0],5
- Set ¢ < rpa+rq (L1 A; [v;(0)], +[B]y) +

Yitm 1147 (0B +vi(%)

8. Return 7 < (a,b,c).

Verifier, {0,1} < V(R,crsy,x = (A1,...,An,), T = (a,b,c)): assuming Ag =
1, check that

aeb=cel[5],+ ():;@OAJ [uj(x)ﬁ+vj(72¢)a+wj-(x)} 1) o[V, +[aB];

RS- MRV RN
%
[¢]
Q
N
)
NG
.S
%
(€]
Q
2
M
&‘
O
:(>
?
~.
x

Simulator, 7 < Sim(R,crs,x = (Ay,...,Ap,),ts= (., a,B,0)): Call the ex-
traction algorithm Exts,p which is constructed based on BDH-KE as-
sumption and extract simulation trapdoors ts = (¥, o,f3,6) of Ilyizk;
Next, pick a’, b’ < Z;, and compute and return 7 = (a,b,c), such that

[ — B — X0 A (u;(X)B+v,(x )a+w;<x)>].

ae[a’]],be[b’]z,ce 5

Figure 5. The prover, the verifier and the simulator of the Sub-ZK SNARK for &%

elements to the CRS can break the knowledge-soundness. In the paper [3], we
proved the following theorem and show that the construction proposed in Fig-
ures 4 and 5 satisfies completeness, Sub-ZK and knowledge-soundness.

Theorem 1 (Completeness, Subversion ZK, Knowledge Soundness). The zk-SNARK
constructed in Figures 4 and 5 satisfies completeness, subversion zero-knowledge
and computational knowledge soundness.

Proof. The proof is given in [3] that is included in the thesis. O

It is worth to highlight that to achieve Sub-ZK, we added some elements to the
CRS of the original scheme that all are in the span of other elements of the CRS.
Considering this fact, we showed that the knowledge-soundness of the new vari-
ation follows closely the proof of original construction. One could also use the
fact that knowledge-soundness of original scheme holds even in symmetric groups
and since the elements that we added to the CRS are elements that had been given
in the other group in the original scheme, so the new variation is would satisfy
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Table 1. The length of CRS in the proposed subversion-resistant zk-SNARK

CRS Elements in (@ G Gr Total
crsp 3m4+n—my+4 m+3 0 4dm+n—mo+7
crsy my+1 2 1 my+4
crscy 2n 3 0 2n+3
Total 3m+3n+5 m—+7 1 4dm+3n+ 13

knowledge-soundness. The proof of subversion completeness is quite straightfor-
ward. But to prove Sub-ZK, as briefly mentioned at the beginning of Section 3.4.2,
we needed to make the well-formedness of the CRS of the original scheme veri-
fiable, such that we can extract the simulation trapdoor required by the simulator
Sim constructed in the proof of standard ZK. To do so, we show that after adding
our proposed elements to the CRS of the original scheme, we can construct an
efficient extractor under a knowledge assumption that can extract the simulation
trapdoors required by Sim and allows us to prove the Sub-ZK. We analyze the
efficiency of the proposed SNARK in the next subsection.

3.4.3. Efficiency Evaluation

This section evaluates the performance of the proposed subversion-resistant zk-
SNARK from different perspectives. To this end, we summarize the efficiency of
each algorithm.

CRS Size: Tab. 1 summarizes the number of CRS elements in the three different
groups. One element (namely, [6],) belongs both to crsp and crsy and thus the
numbers in the "total" row are not equal to the sum of the numbers in previous
rows. In Groth’s zk-SNARK [79] the CRS consists of m + 2n elements of G; and
n elements of G,. On top of it, we added 2n + 3 group elements (highlighted with
gray background in Fig. 4) to make the CRS verification possible and also some
elements to speed up the prover’s computation and the verifier’s computation; the
latter elements can alternatively be computed from the rest of the CRS.

CRS Generation and Computational Complexity: Assume that (bilinear) groups
have already been computed. One can compute crs by first computing all CRS
elements within brackets, and then compute their bracketed versions. One can
evaluate u;()), vj(x), and w;(x) for each j € [0..m] in time ®O(n) by using pre-
computed values ¢;() for i € [1..n] and the fact that the matrices U,V,W contain
®(n) non-zero elements. The rest of the CRS can be computed efficiently by using
straightforward algorithms.

By using Alg. 1, the whole CRS generation algorithm is dominated by 3m +
3n+ 5 exponentiations in G, m + 7 exponentiations in G;, and 1 exponentiation
in G7 (one per CRS element) and ®(n) multiplications/divisions in Z,.

CRS Verification Computational Complexity: As in [20], we assume that it is
difficult to subvert the bilinear group description; this makes sense assuming that
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the SNARK uses well-known bilinear groups (say, the Barreto-Naehrig curves).
Consider the CRS verification algorithm in Fig. 4. It is clear that all other steps but
Step 4 are efficient (computable in ®(n) cryptographic operations); this follows
from the fact that U, V, and W are sparse. Computation in those steps is dominated
by 6m+5n—4mg+ 8 pairings. On top of it, one has to execute s(U) +s(V) +s(W)
exponentiations in G, where s(M) is the number of “large” (i.e., large enough so
that exponentiating with them is expensive) entries in the matrix M. Often, s(M)
is very small.

By using Alg. 2, one can check that [¢;()], has been correctly computed for
all i € [1..n] in n+ 1 pairings, n — 1 exponentiations in G, and n exponentiations
in Gr. Note that, similar to [28] and 1ibsnark library [32], to have an efficient
implementation via suitable FFTs, we require p — 1 should be divisible by a "large
enough" power of 2. So, one needs to use a pairing-friendly elliptic curve that
addresses such requirement. More discussions about finding a suitable curve can
be found in section 3 of [28]. To sum up, the whole CRS verification algorithm is
dominated by 6m + 6n —4mg + 9 pairings, s(U) +s(V) +s(W) exponentiations in
Gy, n— 1 exponentiations in ;, and n exponentiations in Gr.

In addition, one can speed up CV by using batching [22]. Namely, clearly if
Y ti([ai], ®[bi],) = X5, ti [c]; for uniformly random 7;, then w.h.p., [a;], ® [bi], =
[c]; for each individual i € [1..s]. In practice exponentiation is faster than pairing
which leads to speed up in running time of CV algorithm. Moreover, one can
further slightly optimize this by assuming #;, = 1. Full batched version of CV
is described in the rest of the section, while reporting empirical analysis. As
we show there, a batched CV will be dominated by 5(m+ n) — 4mo + s(U) +
s(V) (mostly, short-exponent) exponentiations in G and m+ s(W) (mostly, short-
exponent) exponentiations in G,. Since exponentiation with a short exponent is
significantly less costly than a pairing, this will decrease the execution time of CV
significantly. More details will be shown in the second part of the section.

We note that after taking batching into account, CV will become a probabilistic
algorithm, and will accept incorrect CRSs with negligible probability.

Prover, Proof Size, and Verifier: As in Groth’s zk-SNARK [79], the prover’s
computational complexity is dominated by the need to compute 2(X) (3 interpo-
lations, 1 polynomial multiplication, and 1 polynomial division; in total ®(nlogn)
non-cryptographic operations in Z), followed by (n—1)+(s(A)+1)+ 1+ (s(A)+
1)+s(A1,...,Am) <n+3s(A)+2 exponentiations in G; and s(A) + 1 exponenti-
ations in G,, where s(A) is the number of large elements in A (i.e., large enough so
that exponentiating with them would be expensive). This means that the prover’s
computation is dominated by ®(nlogn) non-cryptographic operations and ®(n)
cryptographic operations.

The verifier executes a single pairing equation that is dominated by 3 pairings
and mg exponentiations in G ;. The exponentiations can be done offline since they
do not depend on the argument 7 but only on the common input (Ajy,...,Apy,)-
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Hence, the verifier’s computation is dominated by ®(mg) cryptographic opera-
tions but her online computation is only dominated by 3 pairings.

As the original version, the argument (proof) consists of 2 elements from G
and 1 element from G,.

Comparison with MPC CRS Generation and a Concurrent Work: As already
mentioned in Section 3.1, Ben-Sasson et al. [30] proposed an efficient MPC ap-
proach to generate CRS of zk-SNARKS, where both prover and verifier need to
trust at least one CRS creator. We emphasize that [21] and the current paper study
the scenario where you can trust no one. In such a case, the approach of [30] still
works but it is not efficient. For example, the computational cost of CV in the new
SNARK is very small compared to the cost of the joint CRS creation and verifi-
cation protocol in [30]. Nevertheless, while the starting point of their approach is
different, it actually resulted in a somewhat similar solution. A longer comparison
will be provided in the next section with some concrete numbers.

Independently, Fuchsbauer [60] also constructed subversion-resistant SNARKSs.
His general approach is similar, but he modifies subtly the simulator of Groth’s
SNARK so that it does not require the knowledge of o and 3, and then shows
that Groth’s original SNARK (without adding an extra element to the CRS) is
knowledge-sound and Sub ZK.

The importance of subversion-resistant SNARKSs was also recognized in [41,
43] and [43] gave a construction which they claimed achieves Sub-ZK. However,
in [61], Fuchsbauer showed that their approach was flawed.

3.5. Batching CV Algorithm and an Implementation
3.5.1. Batching

We use batching techniques from [22] to make the CV algorithm more efficient,
see Fig. 6 for implementation details. Especially, we use a corollary of the Schwartz-
Zippel lemma stating that if Zf.;ll t;X; + X; = 0 is a polynomial with coefficients
Xi,.., Xy, t; 1 {1,...,25} for i <'s, then X; = 0 for each i, with probability
-1/ 2%, We also employ the following lemma (proven in [57]) to show that
randomness generated in batching can be used multiple times.

Lemma 1. Assume 1 <t < q. Assume is a vector chosen uniformly random from
[1..6)"" x {1}, ¥ is a vector of integers in Z,, and f; are some polynomials of

k
degree poly (x). 1f Y fi(2)s- (1) » [1]5) = [0 then with probability > 1~ 7.
i=1

S o[1],) = (0] for each i € [1..A].

In the batched CV algorithm we execute Alg. 3 instead of Alg. 2. This algo-
rithm needs 3 pairings, 2n exponentiations in G, and 1 exponentiation in Gr,
and on top of it, 16 pairings, Sm + 5n —4mg + s(U) + s(V) — 12 (mostly, short-
exponent) exponentiations in Gy, and m + s(W) + 2 (mostly, short-exponent) ex-
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ponentiations in G;. This makes, in total, 19 pairings, Sm+ 7n —4my +s(U) +
s(V) — 12 (mostly, short-exponent) exponentiations in G, m+ s(W) + 2 (mostly,
short-exponent) exponentiations in G,, and 1 exponentiation in G7.

3.5.2. Implementation Results

We compare the efficiency of the new subversion-resistant zZk-SNARK with Groth’s
(non-subversion) zk-SNARK from both the theoretical (as reported in [79]) and
the empirical (as implemented in the 1ibsnark [32] library) point of view. Sim-
ilarly to the pre-existing implementation of Groth’s zk-SNARK in libsnark, we
implemented the new SNARK in the C++ language by using low-level subrou-
tines of libsnark. All the following results were measured on a 64-bit Linux
Ubuntu 16.10 virtual machine with 8 GB RAM and a single core. The virtual
machine was installed on a standard laptop (HP EliteBook 840), with the Intel
Core 15-5200u 2.2 GHz CPU and 16 GB RAM. We built the 1ibsnark library by
using the option CURVE=BN128 that provides an instantiation based on a Barreto-
Naehrig curve at 128 (or 100 bits according to [17]) bits of security.

Table 2 compares the implementation of Groth’s zk-SNARK in libsnark
with our implementation of the new subversion-resistant zk-SNARK for several
choices of mg and n. We report several measures including the running time of
KGenpizk, CV, P, and V. All times are expressed in seconds. Fig. 7 compares the
running time of (batched) CV with the running time of the prover.

In the case of the new Sub-ZK SNARK, we evaluated the performance of the
CV algorithm by using both the non-batched (Fig. 4) and batched (Fig. 6) versions.
In the execution of the batched CV, we first sample a vector 7 of random numbers
from [1..2%9]. This vector has length m, since no verification equation needs more
than m random values. As stated in Section 3.5.1, we reuse randomness, i.e., in
every verification equation we use random values from the same 7. We computed
the running times as averages over 10 iterations. We emphasize that while the non-
batched CV is very slow (this is why we are not giving its timings for n > 30000),
the batched CV is faster than P.

As mentioned, the randomness vector 7 takes inputs from [1..28°] which as-
sures that the batching causes a security gap not bigger than 278 This is a con-

Algorithm 3: Checking that [(¢ j(x))?zl]l is correctly computed:
batched version
Input: ([%nilv (KJ(X))SL:I] 1 7[1;)(]2 ) [I]T)
1wy« 1/;
2 [a]; < [0]y; [b]; = [0]y: ¢ < 0
3 for j=1tondo
4 L ti < {1,....2%} 0; + 0w;_1;
5 [a]l — [a]l +t [KJ(X)]I, [b]l — [bh +tjw; [6,(%)]1, c<c+tjwj;

6 Check that [a], @ [x], — [b], ®[1], =c/n" ([Xn_l} Lo Xl —7)s
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CV(R,crs): /I batched CV

1. For1 € {7,6}: check that 1], # [0],
2. To check {a,B,7,6}:

(a) Generate t; <, {1,...,25} fori=1...3, then set 14 + 1.

(b) Check that [fHa+nB+ny+6], o [1], = [l1], e
Ha+np+ry+46],,

3. To check the terms [x’] (fori=Tton—1:
(a) Generatet; <, {1,...,2"} fori=1ton—2, thensett, | <+ 1.
(b) Check that (2711, [27] ) o [1], = (- 1 [ 1] ) o 2,

4. Check that [(¢;(x))%_,], is correctly computed by using Alg. 3,

5. Fori=0tom:

® Check ha ), =53, Uy 1,00

(b) Cheek that ()], = X't Vi [£,0)]

(©) Set [wi(x)]; < Xj=1 Wij [¢; (%)]1,

6. To check [vi(x)],, fori =0 to m:
(a) Generate t < {1,...,25} for k =0to m— 1, then set ,,, < 1.
(b) Check that (£t [ (0)],) o (1, = [1], & (5ot [ (),
7. To check [(u;(x)B +vi(x)a+wi(x))/6],, for i =my+ 1 to m:

(a) Generate ; <, {1,...,2%} for i = mp+ 1 to m — 1, then set
tm— 1.

(b) Check that (X2, 1% [(ui(2)B +vi(x )0€+Wi(7())/5]1)
(6], = (Xmpsrtilui(X)]y) © [Bl, + (X1 tivi(x)]1)
[a]y + (X1 2 wi()],) @ [1]s.

8. Check that [x" '] e [1], = [1],;® [x" '],

9. To check [%iﬁ(x)/ﬂ pfori=0ton—2:
(a) Generatet; <, {1,.. 2"} fori=0ton—3, thensett, o < 1.
(b) Check that (Y- Ot,[ oy )/5} )e 8], = (X Ot,[ ’“]l)o

'], = (g (X)) o (1,
(c) Check that [a], @ [B], = [af];.

Figure 6. A batched version of CV algorithm

servative approach. If the coordinates of 7 were chosen from [1 .. 240] then the CV
algorithm would take 0.70, 1.25 and 2.44 seconds for (n,my) equal to (7500, 100),
(15000, 100), (30000, 100), respectively. These times are about 40% shorter than
in the case 7 <, [1..2%].

Tab. 3 summarizes the number of CRS elements in Groth’s zk-SNARK and our
new subversion zk-SNARK based on values given in [79] and 1ibsnark imple-
mentation. (Note the slight difference between CRS in the original Groth paper
and the implemented version).
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Table 2. Performance of the implementations of Groth’s non-subversion zk-SNARK and
the new Sub-ZK SNARK in libsnark for different values of n and mgy. All running
times are reported in seconds. Similarly to the pre-existing implementation of Groth’s zk-
SNARK in libsnark, we implemented the new SNARK in the C++ language by using
low-level subroutines of 1ibsnark. All the results were measured on a 64-bit Linux
Ubuntu 16.10 virtual machine with 8 GB RAM and a single core. The virtual machine
was installed on a standard laptop (HP EliteBook 840), with the Intel Core i5-5200u
2.2 GHz CPU and 16 GB RAM.

Protocol n, mg KGennizk Ccv P V

Groth’s zk-SNARK [79] 7500, 100 1.31 — 1.29  0.005
Sub-ZK SNARK 7500, 100 1.74 156.2 1.29 0.005
Sub-ZK SNARK batched 7500, 100 1.74 1.14 1.29 0.005
Groth’s zk-SNARK [79] 15000, 100 2.42 — 2.42  0.005
Sub-ZK SNARK 15000, 100 3.06 310.2 242 0.005
Sub-ZK SNARK batched 15000, 100 3.06 2.18 242 0.005
Groth’s zk-SNARK [79] 30000, 100 4.45 — 4.60 0.005
Sub-ZK SNARK 30000, 100 5.72 623.4 4.60 0.005
Sub-ZK SNARK batched 30000, 100 5.72 3.890  4.60 0.005
Groth’s zk-SNARK [79] 30000, 1000 4.47 — 4.60 0.035
Sub-ZK SNARK 30000, 1000 5.82 619.8 4.60 0.035
Sub-ZK SNARK batched 30000, 1000 5.82 3.89  4.60 0.035
Groth’s zk-SNARK [79] 60000, 1000 8.39 — 8.88 0.035
Sub-ZK SNARK batched 60000, 1000 11.0 736  8.88 0.035
Groth’s zk-SNARK [79] 120000, 1000 14.8 — 17.07 0.035
Sub-ZK SNARK batched 120000, 1000 18.9 14.04 17.07 0.035
Groth’s zk-SNARK [79] 250000, 1000 28.1 — 3396 0.035
Sub-ZK SNARK batched 250000, 1000 36.1 27.31 3396 0.035
Groth’s zk-SNARK [79] 500000, 1000 53.0 — 66.21 0.035
Sub-ZK SNARK batched 500000, 1000 68.1 5348 66.21 0.035

Table 3. A comparison of number of crs elements in Groth’s non-subversion zk-SNARK
and new subversion-resistant zk-SNARK

Crsp Crsy Crscy
SNARKSs Gy G, G Gy | Gr Gy Gy »

Groth’16 m+2n—mo+2 n+1 my+1 2 1 0 0
y mF3n—mo+3 o+ 3 0 m+3n+6

Groth' 16imp. | 3m+tn—mo+4 [ m+1 | mg | 2 [ 1 0 ][0
AmFn—mg+5 mo+3 0 dm+n+8

This work 3m+n—mog+4 [ m+3 [ m+1 ] 2 [ 1 2n [ 3
dm+n—mo+7 mo+4 2n+3 am+3n+14

This work imp. | 3m+n—mo+4 [ m+3 [ mo+1 ] 2 [ 1 2n+2 [ 3
Y dm—+n—my+7 mp +4 2n+5 4dm+3n+16
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CRS Verification vs. Proof Generation

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

n

Prover running time = == CV running time

Figure 7. Efficiency of the batched CV algorithm in comparison with efficiency of the
prover P.

The algorithm presented in Fig. 6 can be optimized even more. More precisely,
the verification equations in Steps 2, 6, and 8 can be merged into a single equation.
Such an operation adds 1 exponentiation in G| and 1 exponentiation in G, and
needs 4 pairings less. Similarly, the verification equation [a], e [3], = [af]; in
Step 9.c of the batched CV can be done inside Step 7.b of the algorithm, which will
drop one more pairing. Thus, we need 5 pairings less and 1 extra exponentiation
in G| and 1 extra exponentiation in G;. The batched CV can be executed in
total with 14 pairings, 5m+7n—4my+s(U) +s(V) — 11 (mostly, short-exponent)
exponentiations in Gy, m + s(W) + 3 (mostly, short-exponent) exponentiations in
G», and 1 exponentiation in Gr.
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4. SUBVERSION-RESISTANT SIMULATION
KNOWLEDGE SOUND SNARKS

4.1. Motivation

In Section 3, we defined subversion security in zk-SNARKSs and presented a vari-
ation of the state-of-the-art zk-SNARK, proposed by Groth [79] which achieves
Sub-ZK and knowledge-soundness. From the trust point of view, this means
that the prover does not need to trust CRS generators to achieve zero-knowledge,
but the verifier achieves knowledge-soundness assuming a trusted CRS generator.
However, in practice a knowledge-sound proof is vulnerable to man-in-the-middle
attacks !. Indeed, knowledge-soundness only guarantees that a successful prover
knows the witness, and it does not guarantee that the proofs are non-malleable.
Due to this fact, zk-SNARKSs that only guarantee knowledge-soundness cannot be
deployed in many practical applications straightforwardly [27,90, 93]. Privacy-
preserving cryptocurrencies such as Zerocash that use zk-SNARKSs [31,79] as a
subroutine, takes extra steps to prevent malleability attacks in the SNARK proofs
for pour transactions [27]. Similarly, smart contract systems like Hawk [90, 93]
showed that knowledge-soundness of zk-SNARKS is not enough in their system.

Simulation knowledge-soundness (defined in Def. 13) which is also known
as simulation extractability, is an amplified version of knowledge-soundness that
also guarantees non-malleability of proofs. Technically speaking, a Simulation-
Extractable (SE) zk-SNARK guarantees that the proof is succinct, zero-knowledge
and simulation-extractable. Simulation extractability implies that an adversary
cannot generate a new proof unless he knows a witness, even if he has seen an
arbitrary number of simulated proofs.

So, by considering the importance of simulation-extractability and subversion-
security in NIZKs, constructing a NIZK argument (particularly a zk-SNARK) that
requires less trust but achieves stronger security notions is an interesting research
question in cryptography. Constructing such zk-SNARKSs that achieve Sub-ZK
and simulation extractability can straightforwardly mitigate the trust and improve
the security in practical applications that use zk-SNARKSs as a building block
in their systems. From a different perspective, as already summarized in Sec-
tion 3.3, the best positive result of Bellare et al. [20] showed that in the face of
subverted parameters one can construct NIZK arguments that can achieve Sub-ZK
and (knowledge) soundness. So, an interesting research question can be if one can
improve their best positive result.

!For instance, in the verification equations that include pairings such as a e b = ¢, where a and b
are proof elements from G| and G, with prime orders, one can see that such a verification equation
will also be satisfied for new proof elements such as @’ = a” and b’ = b'/", for arbitrary r < Z,.
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4.2. Problem Statement

By considering the above discussions, in this section, we chase one main research
question which can also answer some other practically interesting research ques-
tions. Our main question is "Can one construct zk-SNARKSs (or NIZKs) that can
achieve Sub-ZK and simulation knowledge-soundness at the same time?" As the
notion Sub-ZK implies standard ZK, so answering the above question can also
answer the question "How can one efficiently achieve simulation-extractability in
zk-SNARKSs?".

Constructing such zk-SNARKSs can be interesting from various perspectives.
From one point of view, it will be an improved version of the construction pre-
sented in Section 3, as the prover again will achieve Sub-ZK, but the verifier will
achieve simulation-extractability which is a stronger notion in comparison with
knowledge-soundness that is achieved in the previous case. From a different per-
spective, this will amplify the best positive result about constructing subversion-
resistant NIZKs, shown by Bellare, Fuchsbauer, and Scafuro [20].

4.3. Simulation-Extractable zk-SNARKs

In this subsection, we show how one can efficiently achieve simulation-extractability
in zk-SNARKSs that would guarantee the non-malleability of proofs. This would
positively answer the second research question of this section.

A full detailed description of the result can be found in the paper [6] which is
joint work with Atapoor.

4.3.1. Previous Results

In Crypto 2017, Groth and Maller [82] proposed the first zk-SNARK in the CRS
model that can achieve nBB simulation-extractability (defined in Def. 13). They
proved that a Simulation-Extractable (SE) zk-SNARK requires at least two ver-
ification equations. Their scheme is constructed in the bilinear groups for SAPs
and achieves the lower bound in the number of verification equations. To verify a
proof, V needs to check two equations that are dominated by 5 pairings [82]. To
achieve simulation (knowledge) soundness, their scheme removes one of the bilin-
ear group generators from the CRS, which might create some different challenges
in some practical cases (e.g., in CRS generation by multi-party computation pro-
tocols [29], or in achieving subversion security as in Section 3. Above all, GM
zk-SNARK is constructed for SAPs that require twice the number of multiplica-
tion (MUL) gates, as ab = ((a+ b)* — (a — b)*)/4 [79]. Implementations also
prove that for a particular arithmetic circuit, QAP-based zk-SNARKSs, namely
Groth’s zk-SNARK [79] has considerably better efficiency than Groth-Maller’s
zk-SNARK [82], but Groth’s scheme does not achieve simulation extractability,
which makes its proofs vulnerable to the malleability attacks. For a Rank-1 Con-
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Table 4. Performance of zk-SNARKS proposed by Groth and Maller [82] and Groth [79]
for arithmetic circuit satisfiability with an R1CS instance with 10° constraints and 10°
variables, where 10 are input variables. SE: Simulation Extractable, KS: Knowledge
Soundness, MB: Megabyte, s: seconds, ms: milliseconds, P: paring.

SNARK CRS size, time Proof , P’s time Verify, V’s time | Notion

GM [82] | 376 MB, 103 s | 2G4+ 1G,, 1205 5P, 23 ms SE

Groth [79] | 196 MB, 75s | 2G|+ 1Gy, 83 s 3P, 1.4ms KS

straint System (R1CS) instance 2, efficiency metrics of both schemes are com-
pared in Tab. 4.

4.3.2. Our Solution and Technique

Next, we present an efficient version of Groth’s zk-SNARK that can achieve nBB
simulation-extractability and outperforms Groth and Maller’s zk-SNARK [82]
considerably. To this end, we use folklore OR technique [24] with a particular
instantiation from COCO framework [94] (reviewed in Section 2.4.5). Using the
OR technique we define a new language %" based on the language .# in Groth’s
zk-SNARK (more generally input NIZK) along with a PRF and perfectly binding
commitment that commits to secret randomness as a key for the PRF [24,54,94].

Let Isi; = (KGens;g, Sig, Vf) be a one-time signature scheme and Ilcom =
(KGencom, Com, Ver) be a perfectly binding commitment scheme.

Given the language . with the corresponding NP relation R, we define a
new language .#" such that ((x, it,vkg;g, p), (W, s,r)) € Rgn iff:

((X,W) €ERyV (I'L = fS(VkSig) AP = Com(s,r))) )

where {f; : {0,1}* — {0,1}} }seqo,1y2 is a pseudo-random function family. The
intuition for a pseudo-random function f;(-) is that without the knowledge of the
key s, fs(+) behaves like a true random function. However, given s, one can com-
pute f;(+) easily. In the new language .#”, for a statement-witness pair to be
valid, either a witness for R ¢ is provided (by honest prover) or an opening to
p together with the value of u = fs(kaig) is provided (by simulator), where s
is the open value of p (in CRS). One may note that in order for a statement to
pass the verification without a valid witness, the prover must generate f;(vkg;y)
without the knowledge of s (thus breaking the pseudo-random function f). The
vks;g s a verification key of a one-time secure signature scheme that each time the
prover samples and uses its associated signing key to sign the proof. By consid-
ering new language ", zk-SNARK of Groth for the relation R constructed from
PPT algorithms Ilyjizk = (KGenyzk, P, V,Sim) can be lifted to a nBB simulation-
extractable zk-SNARK ITy,z with PPT algorithms (KGeny,zx,P’,V’,Sim’) as

2A Rank One Constraint System (R1CS) is a way to express a computation that makes it
amenable to zero knowledge proofs. An R1CS is a sequence of groups of three vectors (d, B, ¢), and
the solution to an R1CS is a vector s, where 5 must satisfy the equation 5- @ * 5 b—5-2=0, where
- represents the dot product. More details on https://github.com/scipr-lab/libsnark.
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CRS generator KGeny 7 (Ry):
- Sample (crs || ts) < KGenyjzk (Rgn);
- 5,r+ {0,1}*; p := Com(s,r);
and output (crs’ || tc’) := ((crs,p) || (ts, (s,7))); where tc’ is new CRS
trapdoors.
Prover P' (R, crs’,x,w): Parse crs’ := (crs, p); abort if (x,w) ¢ Ry;
- generate (skgig, VKsig) < KGenS;g(l’l);
- sample  zg,z1,22 + {0, 1}1; generate T <« P(Rgr,
crs, (x,20, VKsig; ), (W, 21,22)) using the prover of Groth’s scheme;
- sign 6 « Sig(sksig, (X,20,7));
and return 7’ := (20,7, vkg;g, ).
Verifier V'(R ¢, crs',x,7'): Parse crs' := (crs,p) and 7' := (z0, 7, vksjg, O);
- abort if Vf(vkg, (x,20,7),0) = 0;
- call the verifier of Groth’s scheme V(R gr,crs, (x,20,VKsig, p), )
and abort if it outputs 0.
Simulator Sim’ (R ¢, crs’, tc’,x): Parsecrs’ := (crs,p) and tc’ := (ts, (s, 7)) and
using simulation trapdoor ts acts as follows:
- generate (skgig, VKs;g) < KGenS;g(ll);
- set 1 = fi(vksig):
- generate 7 < Sim(R g, crs, (x, U, Vksig, P ), 15);
- sign 0 « Sig(sksig, (X, U, T));
and output 7' := (U4, T, vkg;g, O ).

Figure 8. The construction of lifted SNARK (more generally NIZK) that can achieve ZK
and simulation-extractability.

described in Fig. 8. To simplify the description, we assume Com takes exactly A
random bits as randomness and that the witness for original language .Z is ex-
actly A bits; it is straight forward to adapt the proof when they are of different
lengths [94]. Note that in the simulation-extractable zk-SNARK Iy, the algo-
rithms of the original scheme will be executed for a new arithmetic circuit which
encodes new language %" and has slightly larger number of gates. Namely, the
CRS generation algorithm of Groth’s zk-SNARK will be executed with a new
QAP instance that has larger parameters; (crs || ts) <— KGenyjzk (R.¢»). Similarly
the prover of the new variation will execute the prover of Groth’s zZk-SNARK with
a new arithmetic circuit that has a larger number of gates; namely 7 < P(Ron,
crs, (%, 20, VKsig; P), (W, 21,22)), where z; and z; play the role of witnesses s and r
for prover.

Note that, in the simulation of NIZK argument ITy,,x, one could also use
the regular proof generation algorithm using the witness of the other OR branch,
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as 7 < P(Rgn,crs, (x, 14, Vksig, p), (s,7)). However, here we use the simulation
algorithm Sim of the input NIZK argument I1y,zk along with the simulation trap-
door ts. In the second part of the section, we will use a similar simulation proce-
dure along with a new technique to achieve Sub-ZK in the proposed construction.

In the paper [6], we prove the following theorem that results the completeness,
ZK, and simulation-extractability of the presented construction.

Theorem 2 (Completness, ZK, nBB Simulation Extractability). If the NIZK ar-
gument Ilyizk guarantees completeness, ZK, and (knowledge) soundness, the
pseudo-random function family is secure, and the one-time signature scheme is
secure, then the proposed construction in Fig. 8 achieves completeness, ZK, non-
black-box simulation extractability.

Proof. The proof is provided in [6] that is included in the thesis. O

4.3.3. An Efficient Instantiation

In the last subsection, we observed that the proposed construction (described
in Fig. 8) uses a PRF, a commitment scheme, and a one-time secure signature
scheme. In the rest, we discuss how the used primitives can be instantiated.

In similar practical cases, both pseudo-random function and commitment scheme
are instantiated using an efficient SHA-256 circuit that has around ~ 25 x 103
MUL gates for one block (512-bit input) [27, 93]3. About the signature scheme,
as Groth’s zk-SNARK is paring-based and is constructed with bilinear groups,
so we instantiate the signature scheme with Boneh and Boyen’s signature [38]
which works in bilinear groups and has very efficient verification; it requires only
one pairing and one multi-exponentiation. Their signature scheme is proven to
guarantee strong unforgeability under chosen message attack under the strong
Diffie-Hellman assumption. Consequently, it satisfy unforgeability under strong
one-time chosen message attack. The key generation, signing, and verification of
Boneh and Boyen’s signature scheme [38] is summarized below.

o Key Generation, (skgg, vkg;s) < KGenSig(ll): Given system parameters
for a prime-order bilinear group (p,G1,G2,Gr,é,[1],,[1],), randomly se-
lects x,y <—$Z;, and computes u := x-[1]; and v :=y-[1]; and returns
(sksig: Vksig) := ((,3) || (w,v; 1]y, [1]5,[17))-

e Signing, ([0]2,r) < Sig(skgig,m): Given system parameters, a secret key
sksig := (x,y), and a message m € Z,, it first samples r <—sZ,, and then
computes [0, = [1/(x+m+yr)], and returns ([G]>,r) as the signature.

e Verification, {1,0} < Vf(vks;g,m, ([0]2,7)): Given a verification key vkg;, :=
([xl;, 1,11y 51, ,[1]7). a message m, and a signature ([C], ), verifies if
[x+m+yr], o [1/(x+m+yr)], = [1];; if so, it returns 1; otherwise it re-
turns 0,

31t has 25.538 gates in the xjsnark library, https://github.com/akosba/xjsnark.
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where e denotes the paring operation. In our case, we use the same bilinear
group as in the original zk-SNARK and m would be the hash (e.g., with SHA224
or SHA256) of concatenations of the proof elements with the statement, i.e. m :=
H(x]|zo]|)*. As can be seen, the scheme generates two elements signature from
G, and Z,, its verification key consists of two elements from G, and above all its
verification only requires one paring; as [1]; can be preprocessed and shared in
the CRS.

So by considering the above instantiation, in the new argument 7’ = (u, 7,
Vksig, [0]1,7), where from the original scheme 7 = ([a];,[b],,[c];), and y is an
output of the PRF f(+), which is instantiated with SHA-256 hash function [93].
As a result, the argument in new scheme will consists of 4 elements from Gy, 2
elements from G, and two 256-bit strings. Consequently, new changes add only
one paring to the verification of the original scheme. To the best of our knowledge,
this is the first simulation-extractable zk-SNARK whose verification is dominated
with 4 pairings.

In an independent work, we show that the weak version of Boneh and Boyen’s
signature scheme [38] using a random oracle can satisfy unforgeability under
strong one-time chosen message attack which allows to be used as an instanti-
ation for our constructions. Namely, with instantiating the signature scheme with
the weak version but using a RO that returns field elements, the proof will be 3
elements from G, 2 elements from G, and one 256-bit string.

4.3.4. Efficiency Evaluation and an Implementation

Next, we analyze the empirical performance of the proposed zk-SNARK from dif-
ferent perspectives. Tab. 5 summarizes asymptotic and empirical performance of
the proposed scheme (in Section 4.3.2 and 4.3.3) and two zk-SNARKSs proposed
by Groth [79] and GM [82]. Implementations of Groth’s [79] and GM [82] zk-
SNARKSs are available in 1ibsnark library [31] >, so implementation of the new
scheme is done in the same library.

In Tab. 5, all empirical experiences are reported for a particular R1CS in-
stance. In the rest of the analysis, we evaluate the empirical performance of the
proposed scheme for different RICS instances and compare with the knowledge-
sound scheme of Groth [79] and simulation-extractable scheme of GM [82]. As
the first efficiency metric, in Fig. 9 and Fig. 10, respectively, we plot CRS size
and CRS generation time of the proposed scheme for different R1CS instances
with 100 input variables and various number of constraints between 25 x 10° and
2% 10° gates.

“As shown in [38], by taking hash of input message the signature scheme can be used to sign
arbitrary messages in {0,1}*.To do so, a collision-resistant hash function H : {0,1}* — {0,...,2"}
such that 2° < p is sufficient [38]. By considering recent analysis on Barreto-Naehrig curves by
Kim and Barbulescu [18], one can use different settings for various security levels which would
need to use different hash functions for signing arbitrary messages in [38] signature scheme.

3 Available on https://github.com/scipr-1lab/libsnark
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Table 5. An efficiency comparison of the proposed scheme (in Section 4.3.2 and 4.3.3)
with Groth’s [79] and GM [82] zk-SNARKSs for arithmetic circuit satisfiability with mg
elements instance, m wires, n MUL gates. In GM zk-SNARK [82], n MUL gates translate
to 2n squaring gates. Implementations (Implem.) are done on a Laptop with 2.50 GHz In-
tel Core 15-7200U CPU, with 16GB RAM, in single-threaded mode, for an R1CS instance
with n = 10 constraints and m = 10° variables, of which mg = 10 are input variables. G
and G,: group elements, E: exponentiations, P: pairings, BS: A-Bit String, B: Byte, MB:
Megabyte, s: seconds, ms: milliseconds, SE: Simulation-Extractable, KS: Knowledge
Soundness. In the new scheme, the statement contains (x, i, vks;,, ) Which has 3 new
elements ( M, VKsig, p), so m(, = mq +4. All asymptotic analysis of new scheme are done
based on our particular instantiation of the commitment scheme and PRF. So, as new
changes add ~ 50 x 10° MUL gates to n and m, so n’ = n+50.000 and m’ = m + 50.000.

SNARK CRS size & time | Proof P & P’s time V Sec.
GM [82] m+4n Gy 2 Gy m+4n—mo E; | mg E;

& 2n G2 1 Gz 2n Ez 5P SE

Implem. 376 MB, 103 s 127 B 120's 2.3 ms
Groth [79] m+2n—mg Gy 2 Gy m+3n—my E; mg E;

& n Gy 1G, nk, 3P KS
Implem. 196 MB, 75 s 127 B 83s 1.4 ms
Secd3s | M2 —m G 3 g; '+ 30 —mg By | o Ey

& n G2 2 BS n B2 P se
Implem. 205 MB, 80.5s | 318 B 90.1s 2.0 ms

Similarly, in Fig. 11, we plot prover’s running time in two mentioned zk-
SNARKS and the proposed one for various R1CS instances with 100 input vari-
ables and the different number of constraints.

Finally, the plot in Fig. 12 compares the verification time of new SE zk-
SNARK with two mentioned ones for various R1CS instances with 10° constraints
and the various number of input variables.

To sum up, from the comparisons in Tab. 5 and empirical analysis in Fig. 9-
12, one can observe that in order to give non-malleable proofs for an arithmetic
circuit satisfiability in circuits with larger than 50 x 10° multiplication gates, the
proposed SE zk-SNARK (described in Section 4.3.2 and 4.3.3) can outperform
GM SE zk-SNARK considerably. It is worth to mention that, the new construc-
tion generates larger proofs in comparison with GM zk-SNARK, 318 bytes in
comparison with 127 bytes, but as shown in Fig. 12, its verification still requires
fewer pairings, and in the worst cases it is as efficient as verification of GM SE
zk-SNARK [82].

4.4. Subversion-Resistant Simulation-Extractable SNARKs

In this rest of the section, we answer the main research question of the section
(discussed in Section 4.2) by constructing zk-SNARKSs that can achieve Sub-ZK
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Figure 9. CRS size in zk-SNARKSs of Groth [79], Groth-Maller [82] and the proposed

SE zk-SNARK (in Section 4.3.3). The plot is drawn for R1CS instances with 10 input
variables and various number of constraints.
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Figure 10. Average CRS generation time for 5 iterative in zk-SNARKSs of Groth [79],
Groth-Maller [82] and the proposed SE zk-SNARK (in Section 4.3.3). The plot is drawn

for R1CS instances with 10 input variables and various number of constraints.

and nBB simulation-extractability at the same time.
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Figure 11. Average proof generation time for 5 iterative in zk-SNARKSs of Groth [79],
Groth-Maller [82] and the proposed SE zk-SNARK (in Section 4.3.3). The plot is drawn
for R1CS instances with 10 input variables and various number of constraints.
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Figure 12. Average proof verification time for 5 iterative in zk-SNARKS of Groth [79],
Groth-Maller [82] and the proposed SE zk-SNARK (in Section 4.3.3). The plot is drawn
for various R1CS instances with 10° constraints and different number of inputs variables.

The new construction confirms that we can efficiently lift our presented subversion-
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resistant zk-SNARK in Section 3, such that it would achieve nBB simulation-
extractability and Sub-ZK. This also shows that one can amplify the best posi-
tive result of Bellare, Fuchsbauer, and Scafuro [20], with regards to constructing
subversion-resistant NIZKs. A full detailed description of the result can be found
in the paper [12].

4.4.1. Previous Results

As briefly discussed in Section 3.3, in ASIACRYPT 2016, Bellare, Fuchsbauer
and Scafuro [20] studied achievable security in NIZKs in the face of subverted
CRS. They defined the notions Sub-WI, Sub-ZK, and Sub-SND for subversion-
resistant NIZKs. Then they showed that the definitions of Sub-SND and (stan-
dard) ZK are not compatible: as the former requires that a prover should not be
able to generate a fake proof even if he generates the CRS, but the latter implies
that there exists a simulation algorithm that given trapdoors of CRS can gener-
ate a (fake) simulated proof indistinguishable from the real ones. This resulted
in a negative result that we cannot construct a NIZK argument satisfying ZK and
Sub-SND simultaneously.

The above negative result opened two possible directions for positive results
on subversion-resistant proof systems. One direction is achieving Sub-ZK and
a version of soundness (i.e. either soundness, knowledge-soundness or simula-
tion knowledge-soundness) and the second direction is achieving Sub-WI (the
strongest notion weaker than ZK) and a notion of Sub-SND (either subversion
soundness, subversion knowledge-soundness or subversion simulation knowledge-
soundness).

Along the first direction, Bellare et al. showed that one can construct NIZK ar-
guments that achieve Sub-ZK and (knowledge) SND at the same time [20]. After
the mentioned positive result, Abdolmaleki et al. [3] showed that the state-of-the-
art zZk-SNARK [79] can achieve Sub-ZK and knowledge soundness with minimal
changes in the CRS and executing an efficient public algorithm to check the well-
formedness of CRS elements. In a concurrent work, Fuchsbauer [60] showed
that most of the known pairing-based zk-SNARKS including Groth’s scheme can
achieve Sub-ZK and knowledge-soundness simultaneously. In the same direction,
Abdolmaleki et al. [4] showed that one can achieve Sub-ZK and SND in Quasi-
Adaptive NIZK (QA-NIZK) arguments.

In the second direction of possible positive results, Bellare et al. [20] showed
that Zap schemes proposed by Groth, Ostrovsky, and Sahai [84] achieves Sub-WI
and Sub-SND at the same time; as such proof systems do not require a CRS (con-
sequently they do not require a trusted setup phase) but provides weaker security
guarantees than ZK. Recently, Fuchsbauer and Orru [63] showed that one can
achieve even more in this direction, by presenting a Sub-WI and (Sub-)knowledge
sound Zap scheme.
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4.4.2. Our Construction and Technique

In this section, we show that the language %" that we defined in Section 4.3.2
would also allow us to construct a subversion-resistant zk-SNARK (more gen-
erally, a NIZK argument) that will satisfy Sub-ZK and simulation-extractability
(a.k.a. simulation knowledge-soundness). Indeed, we show that using such an
OR-based construction, given a NIZK argument that guarantees Sub-ZK and (knowl-
edge) soundness, we can construct a NIZK argument that will guarantee Sub-ZK
and simulation (knowledge) soundness. Defining such OR-based language can be
viewed as using the Bellare-Goldwasser paradigm [24], which was proposed to
construct signatures from NIZK arguments, in a non-black-box way.

Roughly speaking, we use the same defined language %" which was con-
structed based on OR of the language . in the input non-interactive argument
along with a PRF and a perfectly binding commitment scheme. But this time
we assume that the input non-interactive argument satisfies Sub-ZK (instead of
ZK) and (knowledge) soundness. Then we use the basic property of an OR con-
struction, namely OR proofs can be simulated using the trapdoors of one branch,
and show that if the input NIZK argument achieves Sub-ZK, then the lifted non-
interactive argument also guarantees Sub-ZK. As in the notion of Sub-ZK, the
prover does not trust the CRS generators and consequently, the simulation trap-
doors are not trustable, so in the proof of Sub-ZK, different from the previous
case (considered in Section 4.3.2), we use a technique from subversion-resistant
schemes and simulate the protocol.

As an instantiation, we show that the variation of Groth’s zk-SNARK that we

presented in Section 4.3.3 [6] which could achieve ZK and simulation extractabil-
ity can also achieve Sub-ZK with minimal extra computational cost. The cost is
similar to NIZK arguments that achieve Sub-ZK and knowledge-soundness (e.g.,
the one proposed in Section 3.4.2 or any of the ones proposed in [60]), the prover
only needs to execute an efficient CRS verification algorithm to check the well-
formedness of CRS elements before using them.
Construction. Consider a subversion-resistant NIZK argument ITyzk for R
which consists of PPT algorithms (KGenpzk, CV, P,V,Sim) and guarantees Sub-
ZK and (knowledge) soundness (e.g., the one proposed in Section 3.4.2). Let
IIsig = (KGensjg, Sig, Vf) be a one-time signature scheme and Icom = (KGencom,
Com, Ver) be a perfectly binding commitment scheme.

Using a similar technique proposed by Bellare-Goldwasser [24] (also used
in [94]), given the language . with the corresponding NP relation R &, we define
anew language . such that ((x, i, vkg;g,p), (W,s,7)) € R iff:

((X,W) €ERgV(u= fS(VkSig> NP = Com(s,r))) )

where as mentioned before {f; : {0,1}* — {0,1}* }seqo1y 1s a PRF family. Due
to the OR-based construction of the new language ., in order to generate a
valid proof, one would need either the witness w or the trapdoors of CRS, and
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since it is assumed that the CRS trapdoors are kept secret, soundness is guar-
anteed as long as the CRS trapdoors are secret. We note that due to using the
PRF f; with a random secret trapdoor s, the output of f is indistinguishable from
the outputs of a truly random function. By considering the new language, the
subversion-resistant NIZK argument Iy zk for the relation R with PPT algo-
rithms (KGenyjzk,CV, P,V,Sim) that achieves Sub-ZK and (knowledge) sound-
ness can be lifted to a subversion-resistant NIZK ITy,zx with PPT algorithms
(KGeny 7k, CV', P, V', Sim’) that guarantees Sub-ZK and simulation (knowledge)
soundness. Based on the language .#”, the construction of NIZK KGenyzx and
the corresponding algorithms are described in Fig. 13.

Recall that one of two main differences between a Sub-ZK NIZK argument and
a common NIZK argument is the existence of a public CRS verification algorithm
CV in the former. Basically, given a CRS crs the algorithm CV verifies the well-
formedness of its elements. Additionally, in the simulation of a Sub-ZK NIZK
argument, there exists a (non-black-box) extractor Exts,, (e.g., the one that we
constructed in Section 3.4.2) that can extract the simulation trapdoors ts from a
(possibly malicious) CRS generator Sub.

Similar to other subversion-resistant NIZK arguments [3, 20, 60], we aim to
achieve Sub-ZK (not standard ZK) and simulation (knowledge) soundness in our
constructions, so there are two key differences between new proposed construc-
tions and the one presented in Section 4.3.2 (that are shown in highlighted form
in Fig. 13). The first key difference is that we have an extra algorithm CV’ which
will be used by prover to check the well-formedness of CRS elements before us-
ing them. This is the cost that the prover needs to pay instead of trusting the CRS
generators. The second key difference is that in new constructions, the simulator
Sim’ does not get simulation trapdoors directly, as the prover does not trust the
CRS generators in this setting. Instead, the simulator Sim’ calls the extraction
algorithm Extg,p, constructed for the input NIZK argument ITyzx and extracts
simulation trapdoors ts of it, and then uses them for the rest of simulation.

In the paper [12], we prove the following theorem and show that given a

subversion-resistant NIZK argument that guarantees completeness, Sub-ZK, and
(knowledge) soundness, the described construction in Fig. 13 results in a NIZK
argument that achieves completeness, Sub-ZK and simulation (knowledge) sound-
ness.
Theorem 3 (Completness, Sub-ZK, nBB Simulation Extractability). If the NIZK
argument Iy zk guarantees completeness, Sub-ZK, and (knowledge) soundness,
the pseudo-random function family is secure, and the one-time signature scheme is
secure, then the proposed construction in Fig. 13 achieves completeness, Sub-ZK,
non-black-box simulation extractability.

Proof. The proof is provided in [12] that is included in the thesis. O
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CRS Generator KGenyz (Rg):

- Call CRS generator of the subversion-resistant NIZK Ilyjzx and
sample (crs || tc) + KGenyjzk (R ); Set simulation trapdoors ts
that are a subset of CRS trapdoors tc;

- 5,7 {0,1}*; p := Com(s,r);
and output crs’ := (crs, p).
CRS Verifier CV/(Rg,crs’): Parse crs’ := (crs,p);
- abort if p = 0 or is not well-formed;
- call CV algorithm of the input subversion-resistant NIZK Iy zk
and return b <— CV(R ¢, crs).
Prover P'(R.,crs’,x,w): Parse crs’ := (crs,p);
- abort if CV/(Rg,crs’) # 1 or (x,w) € Ry;
- generate (skgig, VKsig) < KGens;g(1*);
- sample  z9,z1,22 - {0, l}l; generate 7w <+ P(Rgr,

crs, (x,20, VKsig; P ), (W,21,22)) using the prover of subversion-
resistant NIZK Iy zk;

- sign 0 « Sig(sksig, (X,20,7));
and return 7’ := (20,7, vkg;g, ).

Verifier V'(R ¢, crs’,x,'): Parse crs’ := (crs,p) and ' := (29, 7, pksig, 0);

- abort if Vf(vksig, (x,20,7),0) = 0;

- call the verifier of the input subversion-resistant NIZK argument

V(Rgr,,crs, (x,20, VKsig, p), ) and abort if it outputs 0.

Simulator Sim’(R ¢, crs’,ts,x): Parse crs’ := (crs,p);

- call the extraction algorithm Exts,p constructed in the simulation

of the subversion-resistant NIZK Iy zk and extract simulation trap-
doors ts of Iy zk from the CRS generator Sub;

- generate (skgig, VKs;g) < KGenS;g(ll);

- sample  z9 <« {0,1}*; generate 7w < Sim(Rgr,
crs, (XaZOakaigap)7ts);

- sign 0 « Sig(sksig, (X,20,7));

and output = (20, TE,VkSig7 o).

Figure 13. An extension of the proposed construction in Section 4.3.2 that outputs a
Sub-ZK and simulation (knowledge) sound NIZK argument ITy,. Note that in our con-
struction, we assumed that the input NIZK Ilyzk guarantees Sub-ZK and (knowledge)
soundness. Due to this fact, we have a new algorithm CV’ to verify the well-formedness
of CRS elements, and a new simulation procedure by Sim’ to simulate the proofs without
trusting the CRS generators.
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4.4.3. Two Efficient Instantiations

To construct a SNARK that would guarantee Sub-ZK and simulation knowledge-
soundness, we instantiate the construction proposed in Section 4.4.2. As the defi-
nition of a new language " is the same as the language defined in Section 4.3.2,
so we use the same instantiation. The only difference is that in this case the in-
put NIZK should be subversion-resistant and guarantee Sub-ZK. As we showed
in Section 3, and Fuchsbauer showed in [60], Groth’s zk-SNARK can achieve
Sub-ZK (and knowledge-soundness), so one can use the variation of Groth’s zk-
SNARK proposed in either Section 3 or in [60] as an input subversion-resistant
NIZK argument IIyjzx. While proving Sub-ZK in Groth’s zk-SNARK, in Sec-
tion 3, we presented a CV algorithm (described in Fig. 4) which is constructed
based on the BDH-KEA assumption (which was more convenient while using
batching techniques) and needed to add around 2n elements to the CRS, where
n is the number of multiplication gates in the arithmetic circuit that encodes the
language. On the other hand, the CV algorithm that Fuchsbauer [60] proposed is
constructed based on a different knowledge assumption6 and does need to change
the CRS elements.

By considering the above discussion, in order to lift Groth’s zk-SNARK such
that it would achieve Sub-ZK and simulation knowledge-soundness, one can use
our construction described in Fig. 13 along with either of the following zk-SNARKGSs:

1. The variation we proposed in Section 3 along with our proposed CV algo-
rithm expressed in Fig. 4 or its batched version in Fig. 6.

2. The variation proposed by Fuchsbauer [60] along with his proposed CV
algorithm.

As in both above cases, the prover and the verifier (described in Fig. 5) are
unchanged in comparison with the original protocol of Groth [79], so basically
by picking each of them, the only difference would be in CRS elements and the
CV’ algorithm. In Figure 14, we present a CV' algorithms of which is constructed
based on the CV algorithm that we presented in Fig. 4. Basically, in addition to
CV algorithms, in CV’ algorithms we check whether p # 0 and well-formed, and
this is the only difference between CV’ and CV algorithms, but CV’ is executed for
a larger CRS. In Section 3.5, we showed that using batching techniques a similar
CV’ algorithm can be executed very efficiently, especially faster than running time
of prover.

To sum up, Tab. 6 summarizes current subversion-resistant constructions and
compares them with an instantiation of our result in this section. The first row
shows the negative result that achieving Sub-SND and ZK at the same time is im-
possible [20]. Next rows indicate the notions achieved in various non-interactive
proof systems presented in Sec 3.4, Section 4.4, and [4,20, 60, 63].

bCalled Square Knowledge of Exponent (SKE) which states for an asymmetric bilinear group,
given [1];, if an adversary manages to come out with [a]; and [az] 1, he must know a.

73



CRS of the variation of Groth’s zZk-SNARK presented in Section 3.4:

[a,B,S,( () /8) 0’(uj(x)ﬁﬂj(ﬁx)wwf'(%))f 0+1] 7
m 1

Crsp <— N R

Vi) B8 i
e o ([ (stnmspenin) | 1y o), fap, )

n—1

crsev < ([1, ()= (GO s [en 2. 27 ')

Where crs = (crscy, crsp,crsy ).
CRS of the zk-SNARK constructed in Section 4.4: crs' = (crs,p)

CRS Verifier for the construction in Section 4.4, {0,1} + CV'(R,crs'):
Return 1 if all the following checks were successful; otherwise return 0.

1. Fort € {y,0}: check that [1], # [0],

2. Fort € {a,p,y,0}: check that [1], e [1], = [1], ®[t],,

3. Fori=1ton— 1: check that [x’] Lol = (x'] V4P

4. Check that ([¢;(x)],)iz is correctly computed by using Alg. 2,
5. For j =0 tom:

(a) Check that [u;(x)], = X Uij [4i(x)];
(b) Check that [v;(x)], = v,, [6i(x)];
1
[

—_ =

)

)
(c) Set [w;i(x)]; < Xie, Wij [ ()]
(d) Check that [v;(x)], ®[1], = [1], @ [v;(x)],

[

6. For j =mo+1tom: check that [(u;(x)B+v;(x)ax+w;(x))/d],
(6], = [u; ()] o [Bla+ i ()] @ [ady + wi(2)]; @ [1],,

7. Check that [x"~'] e [1], =[1]; ¢ [x"'],.

8. For i =0 to n—2: check that [x'e(x)/8],0[8], = [x""], o
[xn_l]zf 2], o 112

9. Check that [a], ® [B], = [af3];.

10. Check that p is well-formed and p # 0.

Figure 14. A CRS verification algorithm for our construction presented in Section 4.4
when the input subversion-resistant NIZK is instantiated with our presented subversion-
resistant zZk-SNARK in Sec 3.4. Note that crs’ := (crs, p), where p := Com(s, ).

4.4.4. Efficiency Evaluation

Next, we analyze the efficiency of the instantiated construction from different
perspectives.

Setup phase. Similar to the presented construction in Section 4.3, the setup
phase needs to be done for a new arithmetic circuit that encodes the language .#”.
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Table 6. A comparison of our results with current subversion-resistant non-interactive
proof systems and their security guarantees. ZK: Zero-Knowledge, SND: Soundness, KS:
Knowledge Soundness, SKS: Simulation Knowledge Soundness, (S)WI: (Subversion)
Witness Indistinguishable, SZK: Subversion Zero-Knowledge, SSND: Sub-Soundness,
SubKS: Subversion Knowledge Soundness.

Prover’s Security Verifier’s Security
Result WI | ZK | SWI | SZK | SND | KS | SKS | SSND | SubKS

- [20] v v

[20] v v v v

[63] v v v v v v

[20] VA AN e v

[20] v |V v v v

(4] |V v v

Sec34,[60] | v | V v v v v

Sec 4.4 v |V v v v v IV

For the particular instantiation discussed in 4.3.3, the new changes will add around
52.000 multiplication gates to the QAP-based arithmetic circuits that encode .Z.
The number of gates is calculated from instantiating both the commitment scheme
and the PRF with SHA512 hash function [93]. Implementations show that this
will add a constant amount (e.g., 10 megabytes) to the size of the original CRS,
that for arithmetic circuits with a large number of gates the overhead is negligible
(see Fig. 9).

CRS Verification. To verify the well-formedness of CRS elements one needs
to execute CV’ algorithm which almost has the same efficiency as CV algorithm
in original NIZK argument IIyjzk. As we observed in Fig. 7, executing CV can
be even more efficient than executing P.

Prover. The prover needs to generate a proof for a new arithmetic circuit that
encodes new language %" and sign the proof with a one-time secure signature
scheme. Our practical analysis in Fig. 11 shows that the overhead for a QAP-based
zk-SNARK is very small in practical cases. For instance, for an R1CS instance
with 10® constraints and 10 input variables, already proof generation needed 83
seconds, but in the new construction, this will take ~ 90.1 seconds.

Proof size. By considering the considered instantiation, in the new construc-
tion the size of new proof 7' := (29, 7, vks;g, [G]1,7) will be equal to the size of the
original proof 7 plus two elements from G, one element from G, and two 256-
bit bit-strings that for 128-bit security will have size less than 318 bytes. Using
a RO and weak version of Boneh and Boyen’s signature scheme [38], this proof
size can be reduced to 256 bytes.

Verifier. In addition to the verification of input subversion-resistant NIZK ar-
gument Iy zk, the verifier of argument ITy,, will verify the validity of a one-
time secure signature which due to instantiating the signature scheme with Boneh
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and Boyen’s signature [38], verification of the signature scheme adds only 1 par-
ing and 1 exponentiation to the original one.
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5. COMMITMENT SCHEMES IN THE FACE OF
PARAMETER SUBVERSION

5.1. Motivation

Our results in the last two sections showed that one can construct NIZK argu-
ments that would guarantee Sub-ZK and simulation knowledge-soundness (a.k.a.
simulation extractability). Roughly speaking, the result showed that a prover of a
zk-SNARK in the CRS model can avoid trusting CRS generators by checking the
CRS elements using an efficient CRS verification algorithm. On the other hand,
the proofs will satisfy nBB simulation knowledge-soundness, defined in Def. 13.

Commitment schemes [34] are another fundamental and widely used primi-
tives in cryptography that in the CRS model requires a setup phase which is sup-
posed to be done by a trusted third party [47]. We reviewed definitions of com-
mitment schemes in Section 2.3.4. During last few decades, we have seen various
elegant non-interactive commitment schemes that are deployed as a sub-protocol
in a wide range of cryptographic protocols and applications, contract signing [56],
multi-party computation [68], zero-knowledge proofs [48,69], commit-and-proof
systems [53,86,98], e-voting [75,110], shuffle arguments [57,81,110], blockchains
and their by-products (e.g., cryptocurrencies [27, 58] and smart contracts [93]),
and many other sensitive practical applications.

Along with developing various cryptographic primitives in sensitive applica-
tions, recently there have been various attacks or flaw reports on the setup phase
of cryptographic systems that rely on public parameters generated honestly. Par-
ticularly about commitment schemes, recently two results [88,95] independently
discovered that the implementation of shuffle arguments in the SwissPost-Scytl
mix-net uses a trapdoor commitment scheme such that a malicious commitment
key generator can store the trapdoor, which allows breaking security of the main
system without being detected. Clearly speaking, in their case the used commit-
ment scheme has a trapdoor that enables one to alter the votes but still can produce
an acceptable shuffle proof. So, given such a trapdoor, a malicious party can do an
undetectable vote manipulation by an authority who sets up the mixing network! .
It is also possible to break voter’s privacy by manipulating the commitment keys
that will be used by the voters. Such flaw reports show the importance of commit-
ment key generation in commitments.

5.2. Related Works

In order to mitigate the trust in public parameters generated by a third party, a
known long-standing technique is distributed computations that are used in MPC

"More details in https://people.eng.unimelb.edu.au/vjteague/SwissVote and
https://e-voting.bfh.ch/publications/2019/
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protocols [64,83,91]. Another direction is subversion security that recently was
studied for various cryptographic primitives. Initiated by Bellare et al. [25], re-
cently this direction has received considerable attention with focus on different
cryptographic primitives including symmetric encryption schemes [25], signature
schemes [7], non-interactive zero-knowledge proofs [20], and public-key encryp-
tion schemes [8]. Each of the mentioned studies considers achievable security in
a particular cryptographic primitive under subverted public parameters. As men-
tioned above, non-interactive (trapdoor) commitment schemes are another promi-
nent family of cryptographic primitives whose public commitment keys are as-
sumed to be generated honestly by a trusted third party [51, 77,78, 84,96, 106].
As such commitment schemes are deployed in various areas of cryptography, so
their security is not only important on itself but also security of other practical
systems relies on it (e.g., guaranteeing the security of shuffling in the mix-net of
SwissPost-Scytl). Thus their security under subversion of public commitment key
can have a crucial effect on the security of the complete system.

5.3. Problem Statement

Considering the fact that constructing equivocal commitments (a.k.a. trapdoor
commitments) in the CRS model, requires a third party to generate the public
commitment key, studying the security of them in the face of subverted parameters
is an interesting research question from both theoretical and practical perspec-
tives. As mentioned before, using MPC protocols [64, 83,91] is an alternative
approach to mitigate the trust on public parameters generated by a third party. But
in general, the achievable security in the case that the public commitment key is
generated maliciously was not considered clearly.

In this section we focus on the following research question. What security we
can achieve in commitment schemes in the face of a maliciously chosen public
commitment key?

5.4. Security of Commitments with an Untrusted Parameters

In the rest, we focus on the research question mentioned in the last subsection
by studying achievable security in commitment schemes in the CRS model in the
face of subverted commitment keys and presenting constructions that can resist
against subverting public parameters.

To attain a clear understanding of achievable security, we first present a variety
of current definitions called subversion hiding, subversion equivocality, and sub-
version binding. Then we provide both negative and positive results on construct-
ing subversion-resistant commitment schemes, by showing that some combina-
tions of notions are not compatible, while presenting subversion-resistant com-
mitment schemes that can achieve other combinations.

A full detailed description of the results can be found in the paper [11].

78



5.4.1. Subversion-Resistant Notions: Sub-Hiding, Sub-Binding,
Sub-Equivocality

Definitions for standard (equivocal) commitment schemes in the CRS model and
their desired security guarantees were reviewed in Section 2.3.4. As discussed
before in the equivocal constructions in the CRS model, a critical assumption is
that the commitment key ck is honestly generated by a trusted third party. To
consider achievable security in CRS-based commitment schemes with compro-
mised setup phase, we first determine new goals and define subversion-resistance
analogs sub-hiding, sub-equivocality, and sub-binding as a variation of the stan-
dard notions [77], reviewed in Section 2.3.4.

In the new notions, the key difference is that the setup is compromised and the
key ck is selected by an adversary o7 (or a subverter) rather than via the honest
key-generation algorithm KGenc,,, prescribed by Icom. We consider the worst
case that the malicious key generator and the adversary are the same, but one can
separate them and assume that the subverter provides (part of) his secret infor-
mation to the adversary. Similar to the CRS verification algorithm in subversion-
resistant NIZKs (studied in Section 3 and Section 4), there is a new algorithm
CKVer which is used to verify the well-formedness of commitment key ck. In the
rest, we formally define a subversion-resistant equivocal commitment scheme and
the target goals. A subversion-resistant equivocal commitment scheme Ilc,,,, con-
sists of eight algorithms Ilcom = (KGencom, CKVer, Com, Ver, KGeng,,,, Com™,
Equiv) that are defined as follows,

e Key Generation, ck «+— KGencom(gk): Generates a commitment key ck and
associated trapdoor tk. It returns ck and keeps secret or removes tk. It also
specifies a message space .#, a randomness space %, and a commitment
space €. The algorithm is supposed to be executed by a trusted authority.

e Commitment Key Verification, 0/1 <— CKVer(gk,ck): CKVer is a deter-
ministic polynomial-time algorithm that given setup information gk and the
commitment key ck, returns either O (the ck is incorrectly formed) or 1 (the
ck is correctly formed);

e Committing, (c,op) +— Com(ck,m;r): Outputs a commitment ¢ and open-
ing information op. This algorithm specifies a function Com : .#Z x Z — €.
Given a message m € ./, the committer picks a randomness r € % and
computes (c,op) < Com(ck,m;r).

e Opening Verification, 0/1 < Ver(ck,c,m,op): Outputs 1 if m € A is
the committed message in the commitment ¢ with opening value op, and
returns 0 if (c,m,op) does not correspond to a valid message, opening and
commitment tuple.

¢ Simulation of Key Generation, (ck,tk) < KGeng,,,(gk): Generates and
returns a commitment key ck and associated trapdoor tk. It also specifies a
message space .# , a randomness space %, and a commitment space % .

e Trapdoor Committing, (c,ek) < Com*(ck,tk): Given commitment key
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ck and tk as input, outputs an equivocal commitment ¢ and an equivocation
key ek.

e Trapdoor Opening, op < Equiv(ek,c,m): On inputs ek, ¢ and a message m
creates an opening op := r of the commitment, s.t. (¢,op) = Com(ck,m;r)
and returns op.

A (subversion-resistant equivocal) commitment scheme satisfies completeness
if for ck <— KGencom(gk) and any honestly generated commitment of m € ., it
successfully passes the verification, i.e., Ver(ck, Com(ck,m;op),m,op) = 1.

In the following definitions, let Setup be an algorithm that takes as input the
security parameter A and outputs some setup information gk < Setup(l)L ).

Definition 17 (Subversion Hiding (Sub-Hiding)). A commitment scheme Ilcom
guarantees computationally subversion hiding if for any PPT adversary <7,

k o (gk),b <+s{0,1}, CKVer(gk,ck) =1
o RRIEBIGRL 0.1} CVE@RERISL, | | _,, 1)
ry s, (cp,0pp) < Com(ck,mp;rp),b < o/ (cp) :b' =b
The scheme is perfectly subversion hiding if the above probability is equal to 0.

Intuitively, subversion hiding states that an adversary .7 will not be able to say
which of two messages mg and m; is committed, even if it picks both messages
itself and generates the (well-formed) commitment key ck. In new definitions, by
well-formedness of ck we mean the CKVer will verify ck successfully.

Definition 18 (Subversion Binding (Sub-Binding)). A commitment scheme Ilcom
guarantees computationally subversion binding if for any PPT adversary <7,

(ck,c, (mp,0py), (mi,0p;)) < <7 (gk) : CKVer(gk,ck) =1A

= [(A) .
(mo # ) (Ver(ck,c,mo,0py) = 1) A (Ver(ck,c,mi,opy) = 1)| ~ "8 *)

The commitment is perfectly subversion binding if the probability is equal to 0.

Intuitively, subversion binding states that an adversary ./ will not be able to
do double open a commitment c, even if it generates the (well-formed) key ck.

Definition 19 (Subversion Equivocality (Sub-Equivocality)). A commitment scheme
Icom guarantees subversion equivocalability if for any PPT adversary <7,

[(ck,tk) < KGen*(gk),m « |
(c,ek) < Com™(ck,tk),

—Pr [op « Equiv(ek,c,m): <negl (1),
o/ (ck,c,op) = 1A

| CKVer(gk,ck) =1,

(ck,m) « o (gk),r <sZ%,
(c,op) < Com(ck,m;r) :
o (ck,c,op) = 1A
CKVer(gk,ck) =1

where of outputs m € A and KGen* is the key generator which also returns
trapdoor tk.
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Intuitively, subversion equivocality states that even if an adversary </ (a ma-
licious key generator) generates a (well-formed) commitment key ck, there still
exists an efficient algorithm KGen™ which is able to produce the full view of the
key generation phase. There also exist PPT algorithms Com* and Equiv that given
the trapdoor tk of commitment key ck, can come up with a fake commitment and
a valid opening s.t. they would be indistinguishable from the real ones.

Lemma 2. A commitment scheme that satisfies a security notion with subvertible
setup also satisfies the security notion with honest setup.

Proof. To prove the lemma, we must show that an adversary .<7 against an honest
setup can be used to construct an adversary % against a subvertible setup.
Adversary 4 first samples a commitment key ck honestly, i.e., ck < KGencom(gk)
and checks that CKVer(gk,ck) = 1. Next, sends ck to 7 and gets the answer and
sends it to the challenger. Similarly, follows the rest of experiment and wins the
game of (subversion security) with the same probability as the adversary 27 wins
the standard game. ]

Fig. 15 shows the relation between current and subversion-resistant notions in
commitment schemes.

sub-equivocality = —  sub-hiding sub-binding
3 \ +
equivocality — hiding binding

Figure 15. Relation between current and new-defined subversion-resistant notions in
commitment schemes.

5.5. Sub-binding with Equivocality are not Compatible

Next, we consider if we can construct commitment schemes that can guarantee
sub-binding without degrading hiding, binding, and equivocality. Unfortunately,
we show that the definitions of equivocality and sub-binding are not compatible
and constructing a commitment scheme which achieves both at the same time is
impossible.

The following theorem establishes the negative result, and its complete proof
is presented in the manuscript [11].

Theorem 4 (Impossibility of Sub-binding along with Equivocality). There cannot
exists a CRS-based commitment scheme Ilcom = (KGencom, CKVer, Com, Ver,
KGengym, Com™ Equiv) which can satisfy equivocality and sub-binding at the
same time.

Proof. (Sketch.) The definition of equivocality states that there exists KGen™ that
given gk generates (ck, tk), and given trapdoor tk there exist two algorithms Com*
and Equiv that allow one to create a fake commitment and a valid opening which
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are indistinguishable from an honestly generated commitment and opening. So,
given those algorithms, an adversary of sub-binding can first generate ck and tk
honestly. Then, it gives ck and tk as input to Com™ and calculates (c,ek) <
Com™(ck,tk). After that, it samples (mg,m;) € ek, where mg # m; and in-
vokes the algorithm Equiv twice for two different messages, and generates op <
Equiv(ek,c,mq) and op; < Equiv(ek,c,m;) and sends (c, (mo,0py), (m1,0p;)) to
the challenger of sub-binding game and wins with probability 1, as each of the
tuples (mqg,opy) and (m;,o0p,) are a (distinct) valid opening for c.

On the other hand, sub-binding requires that an adversary should not be able
to double open even if he generates the ck. But, one can observe that achieving
equivocality implies that given tk one can use Com* and Equiv and generate two
valid opening with different messages which will bread sub-binding. O

5.6. Commitment Schemes with Sub-equivocality and Binding

By considering the mentioned incompatibility and the negative result in Sec-
tion 5.5, we consider if we can construct subversion-resistant commitment schemes
in the CRS model that can guarantee sub-equivocality and binding at the same
time. Among the defined notions, this is the best one can achieve if they want to
retain equivocality when the commitment key is subverted.

As the first positive result, we show that one can construct a sub-equivocal and
binding commitment scheme in the CRS model. By considering the definition of
sub-equivocality (given in Def. 19), to achieve sub-equivocality in a commitment
scheme, there must be algorithms KGen*, Com* and Equiv, where KGen™ sim-
ulates a malicious setup phase, and Com™ and Equiv output a fake commitment
and the corresponding valid opening, consequently. With a compromised setup
phase, the algorithms Com™ and Equiv cannot get honestly generated trapdoors of
ck, and they also cannot extract the trapdoors from the malicious key generator .27
by rewinding, as they do not have any interaction with o/. So instead, similar to
the case in NIZK arguments [3, 12,20, 60], we will rely on a knowledge assump-
tion which allows extracting trapdoors of ck from a malicious key generator in a
non-black-box manner. Once we extracted the tk, we can provide the extracted
trapdoors to algorithms Com* and Equiv to generate a pair of fake but acceptable
commitment and opening. To guarantee binding, a minimal requirement is that an
adversary cannot obtain the tk of ck from an honestly generated ck and this is the
reason that still the versifier requires to trust the CRS generator yet.

Another key point is that in the case of compromised setup phase, similar
to [20], we assume that the setup information gk (e.g., group descriptions) are
generated in a deterministic way by each party of the protocol. In fact, the gk is
considered as a part of the scheme specification.

Construction: In 2012, Lipmaa [96] presented a variation of knowledge commit-
ment scheme proposed by Groth [78] (described in Fig. 16). In the rest, we show
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Setup, gk < BGgen(1*): Given 1%, return gk := (p,G1,G,,Gr, 8, ,,1[1],),
where p (a large prime) is the order of cyclic Abelian groups G, G,, and
Gr; é: Gy x Gy — Gr is an efficient non-degenerate bilinear pairing.

Key Generation, ck «+ KGencom(gk): Let I' be an (n,A)-nice tuple for some
n = poly (A) with n; =i in the original version, for i € [0..n]. Sample
a,x < Zp. Lett € {1,2}. Return the key ck = (ck;,cky) where ck; +
{[x'], [ax'],} for i € [0..n] and the corresponding trapdoor tk as tk = x.
Commitment Key Verification, 0/1 < CKVer(gk,ck): Given gk and the
commitment key ck, first parse ck := ({ [x'] . [ax'] il [x] ) [ax'] ,}) for
i € [0..n] and then do the following verification on elements of the ck,
- Check whether [a], o [1], = [1], ®[d],
- Fori € [1..n] check:
L[] (o1, = [1] [x}
2 fe] o1~ 07
3. [a]] o [¥],= [a 1,
1o [ } 1o v,

and return 1 1f all checks passed successfully; otherwise return 0.

Committing, (c,op) < Com(ck,;r): Given (ck,m) for CKVer(gk,ck) = 1,
to commit to m = (my,my,...,m,) € ZZ sample a random r <—sZ,, and
return (c,op := r) that are defined as follows,

c:=(c},cf) = (r[1],+ X0y my [x],,r[a], + X0y m; [ax])

Opening Verification, 0/1 < Ver(ck,c,m,op): Given ¢, m and op = r, re-
compute ¢ as original one and check if it is equal to given ¢ and return
0/1.

Simulation of Key Generation, (ck,tk) < KGeng,,(gk): Use the simulation
algorithm Sim.¢7 in Fig. 18 and generates a key pair (ck,tk := (x,4d)).

Trapdoor Committing, (c,ek) <— Com™(ck,tk): Given the a key pair (ck, tk),

output an equivocal commitment ¢ = [r]|, where r Z?, and an equivoca-
tion key ek = (tk, r).
Trapdoor Opening, op < Equiv(ek,c,): On input equivocation key ek =

(tk := (x,4),r € Zi), ¢ € ¢” and messages i create an opening ' =

r—Y" mgx') for any 7, so that (c,op) = Com(ck,d;r’) and return
/

op=r.

Figure 16. A variation of the commitment scheme of Groth [78] defined by Lip-
maa [96] that achieves sub-equivocality and binding. We note that in this setting,
gk:=(p,G1,G2,Gr,8é,[1],,][1],) is part of the scheme specification, and in practice each
party can run the deterministic algorithm BGgen and re-obtain gk.
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Extraction algorithm, tk < Ext,, (gk, ck,auxg):

Given source code and random coins of the malicious key generator .7, and
some auxiliary information auxg it extracts (x,d) < Ext. (gk,ck,auxg) and
set tk := (x,d); Finally, Return tk.

Figure 17. A BDH-KE assumption based extraction algorithm Ext, for the sub-
equivocal commitment scheme described in Fig. 16

Simulator Sim.e7 (gk) :

gk :== (p,G1,G1,Gr,8,[1);,[1],,auxg) < BGgen(1*);  ck « o/(gk);
#as inFig. 16

By executing CKVer(gk, ck),
Check whether [a], e [1], = [1], @ [d],
For i € [1..n] check:
1. [xi] . ® [1]2 = [1]1 ° [xi 5
2. [&xi] X (1], =[1], ® [Axi]z
3. [d], e [xi]z =[], ® [dxi]
4. [ax], e [xH]z =[], o]
if the checks pass, tk := (x,d) < Ext,(gk,ck,auxg) #as inFig. 17
Otherwise tk <— L
Return (ck, tk)

Figure 18. Sim of setup phase in the commitment scheme described in Fig. 16.

that his proposed variant for 1; = i can achieve sub-equivocality and binding un-
der the BDH-KE (defined in Assumption 4) and I'-PDL (defined in Assumption 3)
assumptions along with some well-formedness checking on ck.

The following theorem establishes the first positive result, and its complete
proof is presented in the manuscript [11].

Theorem 5 (Sub-equivocal and Binding Commitment Scheme). Let BGgen be a
bilinear group generator. Then the commitment scheme Ucom described in Fig. 16
is binding in G, fort € {1,2}, under the I-PDL assumption and also satisfies sub-
equivocality under the BDH-KE knowledge assumption.

Proof. (Sketch). As we did not change the key ck and committing procedure Com,
so the proof of binding is as in the original scheme which is done in [96] under
the I'-PSDL assumption in the group G, for ¢ € {1,2}. To prove sub-equivocality,
in [96], it is shown that the original scheme is equivocal under a trusted setup,
namely the setup phase is simulatable, and the algorithms Com™ and Equiv that
can generate a fake commitment and valid opening are shown in Fig. 16. The
algorithms Com™ and Equiv get the honestly generated trapdoor tk, but in this,
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our case the tk is not trustable anymore. To deal with this issue, instead of get-
ting tk directly from a malicious key generator <7, we construct a knowledge
assumption-based extraction algorithm Ext., (expressed in Fig. 17) that can ex-
tract the trapdoor tk from .7 and provide it to the algorithms Com™ and Equiv.
Next using the extracted trapdoor tk by the extraction algorithm Ext,/, one can
simulate a malicious setup phase by the algorithm Sim.e# described in Fig. 18.
Finally, after extracting the trapdoor tk, the rest of proof will be as in the standard
equivocality given in [96]. O

Remark 1. In the manuscript [11], we use batching techniques [23, 89] and
present a batched version of the original CKVer algorithm (described in Fig. 16)
that can be more efficient and practical.

5.7. Commitment Schemes with Sub-hiding and Sub-binding

Next, we discuss the second positive result by constructing commitment schemes
that achieve sub-hiding and sub-binding at the same time, but not equivocality. Let
H%;Kmy = (KGencom, Com, Ver) be a commitment scheme that does not require
a particular setup phase and the committer and verifier can ignore the output of
KGencom. Namely, the classical commitments that guarantee hiding and binding
and do not require a setup phase. We show that such a hiding and binding commit-
ment scheme, also guarantees sub-hiding and sub-binding. Roughly speaking, this
includes all commitment schemes that do not require a (particular) setup phase,
except choosing some public parameters that can be agreed between both parties,
e.g., agreeing on the order and generator of the underlying group or a particular
secure and collision resistant hash function family. Intuitively, one can see that in
such setting (e.g. ck = {}), there is no risk of subverting.

The following lemma and theorem establish the second positive result, and
their complete proof is presented in the manuscript [11].

Lemma 3. Let H%;f:my = (KGencom, Com, Ver) be a commitment scheme that

does not require a particular setup phase. If Hé;ffmy satisfies binding and hiding,
it also guarantees sub-binding and sub-hiding.

Proof. The proof is provided in the manuscript [11]. O

Theorem 6 (Sub-hiding and Sub-binding Commitment Schemes). In the CRS
model, under some standard assumptions, there exist commitment schemes that
achieve sub-hiding and sub-binding.

Proof. The commitment schemes that do not require a particular setup phase and

. g . . 2— t . .
guarantee hiding and binding are a Hcoﬁf" Y commitment scheme. For instance, a
1

commitment scheme built using a family of collision-resistant hash functions .

lE.g. https://cs.nyu.edu/courses/fall08/G22.3210-001/lect/lecturel4.pdf
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Therefore, by considering the result of Lemma 3, all of them can also guarantee
sub-hiding and sub-binding. More discussion can be found in [11]. O

5.8. Commitment Schemes with Sub-hiding, Equivocality and
binding

In the first positive result, we showed that under a knowledge assumption (a non-
falsifiable assumption) one can construct a commitment scheme that will guar-
antee sub-equivocality and binding at the same time. In this section, we show
that one can still achieve sub-hiding under standard assumptions (falsifiable as-
sumption) by requiring that there exist hiding, binding, and equivocal commit-
ment schemes.

Pedersen Commitment Scheme Can Achieve Sub-hiding. The Pedersen com-
mitment scheme [106] can guarantee sub-hiding with minimal checking. The
committer only needs to run the CKVer algorithm to verify ck before using the
key for committing, and the check for this scheme is quite simple. Basically a
committer needs to check whether both g # 0 and & # 0 before using ck = (g, h).

The following theorem establishes the third positive result, and its complete
proof is presented in the manuscript [11].

Theorem 7 (Subversion-Resistant Pedersen Commitment). The Pedersen com-
mitment scheme with checking g # 0 and h # 0, satisfies hiding, equivocal, bind-
ing and sub-hiding under the discrete logarithm assumption in G.

Proof. Proof is presented in [11]. O

5.9. Summary of Results

To sum up, we summarize the results of the section in Tab. 7. Each row considers
constructing commitment schemes that simultaneously can achieve the indicated
notions (by checkmark, v'). The last column lists the theorems that established
the results.

Table 7. A summary of presented negative and positive results. In each row we refer

to simultaneously achieving all selected notions. HD: Hiding, EQ: Equivocality, BD:
Binding, Sub-HD: Sub-hiding, Sub-EQ: Sub-Equivocality, Sub-BD: Sub-binding.

Committer’s Security Verifier’s Security
HD | EQ | Sub-HD | Sub-EQ | BD Sub-BD result in
negative v v Thm. 4
positive 1 | v | V v v v Thm. 5
positive 2 | v v v v Thm. 6
positive 3 | v | V v v Thm. 7
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6. EFFICIENT ZK-SNARKS FOR UC-SECURE
PROTOCOLS

6.1. Motivation

In Section 3 and Section 4, we showed how to decrease the required trust and im-
prove the achievable security in zk-SNARKS to achieve nBB simulation knowledge-
soundness (defined in Def. 13). But still, in some practical applications, nBB
simulation knowledge-soundness is not enough and one needs to amplify the se-
curity of zk-SNARKSs even more. For instance, there have been recently some
blockchain applications that are intended to achieve UC-security [44] and also
use zk-SNARKSs in their systems. Privacy-preserving smart contract systems such
as Hawk [93] and Gyges [90], or the private Proof-of-Stake (PoS) system like
Ouroboros Crypsinous [92] are some known examples.

But as the default security of zk-SNARKS is too weak to achieve UC-security,
none of them can be deployed directly in those UC-secure applications. The tech-
nical reason is that the security of all efficient zk-SNARKSs relies on some knowl-
edge assumptions and non-black-box extraction algorithms that depend on the
source code of a particular adversary and there is no universal extractor for all
adversaries which is required in the UC framework [44]. In other words, in the
UC framework, the UC-simulator should be able to simulate all honest and cor-
rupted parties, with only black-box access to them (either honest or corrupted).
Particularly, the simulator should be able to extract witnesses from the corrupted
parties without being dependent on their source code.

Already it was shown that to be able to use NIZK arguments in the UC frame-
work, a NIZK argument needs to guarantee black-box simulation knowledge-
soundness defined in Def. 14 (a.k.a. black-box simulation extractability) [45, 76,
85]. By considering this, in 2015, Kosba et al. [94] proposed the COCO frame-
work which allows lifting NIZK arguments that guarantee soundness to a NIZK
argument that will guarantee black-box simulation knowledge-soundness, which
is sufficient to achieve UC-security. We reviewed a construction of COCO frame-
work which is used in the mentioned applications in Section 2.4.5. Later, in
2016, Kosba et al. [93] and Juels et al. [90] proposed two UC-secure privacy-
preserving smart contract systems called Hawk and Gyges that both use a varia-
tion of zk-SNARK used in Zcash [27] that is lifted by COC0 framework. In both
works [90, 93], it is shown that efficiency of the whole systems are dominated
by the efficiency of the lifted zk-SNARK as lifting zk-SNARKS to achieve black-
box simulation extractability leads to proofs linear in the witness size (but still
circuit succinct), unlike the common zk-SNARKSs that have (witness and circuit)
succinct proofs. As we observed in Section 2.4.5, to lift a zZk-SNARK using the
COCO framework one would need to construct arithmetic circuits for a commit-
ment scheme, a PRF and a public-key encryption scheme.

So, it is obvious that constructing simpler and more efficient zk-SNARKSs that

87



can guarantee black-box simulation extractability can help us to simplify the con-
struction of UC-secure protocols that need to use zk-SNARKSs (e.g., the UC-secure
protocols in [90,92,93]) and also improve their efficiency in some cases.

6.2. Problem Statement

Following the motivation discussed above, can we construct zk-SNARKSs that
have simpler constructions and are more efficient than the one that is used in UC-
secure protocols like Hawk [93] and Gyges [90]? From a different perspective,
as recently there is an increasing number of UC-secure protocols that aim to use
zk-SNARKS as a building block, especially in the block-chain applications [92],
can we construct black-box simulation extractable zk-SNARKSs with simpler con-
structions and better efficiency?

6.3. A New Approach to Construct Black-Box SE zk-SNARKs

As discussed before, the main goal of the COCQ framework is to use some practi-
cally efficient primitives and construct NIZK arguments that can guarantee black-
box simulation extractability, which allows to use them in UC-secure protocols
and applications.

By considering recent progress in the construction of zk-SNARKSs, we revis-
ited their solution by having the same goal in mind. We observe that recent pro-
gresses and constructions proposed for zk-SNARKSs allows one to achieve the
same goal with simpler constructions and fewer extra primitives that sometimes
can even lead to more efficient NIZKs or zk-SNARKGs.

In the rest, we review our results and the used technique, but a full detailed
description of the results can be found in the full version of the paper [9] which is
available in [10].

6.3.1. Our Technique and Construction

Recall that given a sound NIZK argument ITyzk with PPT algorithms (KGenyzk,
CV,P,V,Sim) for language . and the corresponding NP relation R &, the strongest
construction of COCO framework defines a new language . such that

((x,¢, s VKsigs PREne, P ), (170, W, 50)) € Rgn iff:
c= Enc(pkEan;r) A ((X,W) €ERgyV ([.L = fSo(VkSig) Ap = COm(S();I”()))) ,

where {f; : {0,1}* — {0,1}* }seqo,1y» is @ PRF family; Com is a perfectly bind-
ing commitment scheme and Enc is a semantically secure public-key encryption
scheme (namely, IND-CPA secure). By considering recent developments on the
construction of zk-SNARKSs, we show that using currently available NIZK argu-
ments that guarantee nBB simulation (knowledge) soundness (defined in Def. 13),
e.g., [82,99], we can construct a BB simulation extractable NIZK argument by
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CRS generator, crs’ < KGenjyz«(1*,R¢): Given the security param-
eter A and description of language .#, sample (crs | tc) <«
KGennizk (1%, Ren);  (pPkgneSkgne) < KGengnc(1*); and output
(crs’ || " [| ') := ((crs, pkenc) | te || skgne)-

Prover, 7’ < P'(Rg,crs,x,w): Parse crs’ := (crs,pkg,); Abort if (x,w) ¢
Ry: sample r<s{0,1}*; compute ¢ = Enc(pkg,,w:r); execute the
prover of input NIZK and generate 7w < P(R »,crs, (x, ¢, pkgne), (hw));
output 7’ := (c, 7).

Verifier, 0/1 < V' (Rgn,crs’ ,x,7’): Parse  crs' := (crs,pkg,)  and
n' := (c,m); call the verifier of input NIZK and return 0 if

V(Rf”a Crs, (X7 pkEnc’ C)? 7[) =0.

Simulator, 7’ < Sim’(R.gn,crs’,tc’,x): Parse crs’ := (crs, pkg,c) and tc’ :=
tc; sample z,r<s{0,1}*; compute ¢ = Enc(pkgn,z:7); exe-
cute simulator of the input NIZK argument and generate 7 <
Sim(R g, crs, (x, ¢, pkgnc ), tc); and output a simulated proof 7’ := (c, 7).

Extractor, w < Ext'(Rg,crs’, tx',x,7'): Parse 7’ := (c,7), tX' := skg,.; ex-
tract w <— Dec(skgp,c); output w.

Figure 19. Lifting a nBB simulation (knowledge) sound NIZK to a BB simulation
knowledge-sound NIZK.

adding a linear size commitment and a NIZK proof for a new language which is
achieved by embedding an encryption of the witness in the old language. Tech-
nically speaking, we show that given a nBB simulation (knowledge) sound NIZK
argument with language .Z and the corresponding NP relation R &, we can define
a new and simpler language " such that ((x,c, pkgne ), (1, W)) € R.gn iff:

(¢ = Enc(pkgne,W;r)) A ((x,w) € Ry),

where (KGeng,c, Enc,Dec) is a set of algorithms for a semantically secure en-
cryption scheme with keys (pk,sk).

Accordingly, a nBB simulation (knowledge) sound NIZK argument system
Nz for Z constructed from PPT algorithms (KGenyzk, P, V, Sim) can be lifted
to BB simulation knowledge-sound NIZK ITy,,« with PPT algorithms (KGenyzk,
P’ V', Sim’ Ext’) described in Fig. 19.

Regard to the new constructions, shown in Fig. 19, we note that in the sim-
plified language .#”, all verifications will be done inside the verification of the
original NIZK argument, but prover will generate some new public outputs (ci-
phertexts) in the extended circuit which increase the size of communication (state-
ment) to linear in the witness size but still succinct in the circuit size. The def-
inition of a new language %" enforces a prover P to encrypt its witness with a
public key given in the CRS and send the ciphertext along with the proof. In this
scenario, in the security proof of BB simulation extractability, the secret key of the
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encryption scheme is given to the Ext which allows extracting witnesses in a BB
manner. This is an already known technique to achieve BB extraction that is used
in the COCO framework as well. The intuition behind our simplifications while
defining .#” is that the input NIZK already guarantees simulation (knowledge)
soundness and one does not need to use PRF and commitment schemes that are
used in COCO to achieve non-malleability in the proofs.

The following theorem is proven in [9], which shows that given a NIZK argu-

ment that guarantees completeness, ZK, and simulation (knowledge) soundness,
the described construction in Fig. 19 results in a construction that achieves com-
pleteness, ZK and black-box simulation knowledge-soundness (a.k.a. black-box
simulation extractability).
Theorem 8 (Completeness, ZK, Black-Box Simulation Extractability). Assum-
ing the encryption scheme Ilg, is semantically secure and perfectly correct, and
the input NIZK argument Ilyzx guarantees (non-black box) simulation (knowl-
edge) soundness, the NIZK argument Ty ;i constructed in Figure 19, satisfies
completeness, zero-knowledge and black-box simulation extractability.

Proof. The proof is given in [9] that is included in the thesis. U

6.3.2. Efficiency of New Constructions

Proof size and Prover: As can be seen in Fig. 19, the proof size of new con-
structions will be equal to the proof size of the input NIZK argument plus the size
of the ciphertext ¢ which gives us proofs linear in the witness size (but succinct
in circuit size). However, the prover needs to generate a proof for an arithmetic
circuit which encodes the new language %" and has a larger number of gates.
Remark 2. Note that the proposed construction also allows one to build a commit-
and-proof system. In that case, ¢ can be considered as the commitment, as it can
be sent in advance. But the rest of proof will be the proof of opening and will be
succinct.

Verifier: As in the new constructions, the verifier is unchanged, so the verification
of the new constructions will be the same as the input NIZK but with a larger
statement. By considering verification of current paring-based nBB simulation
extractable zk-SNARKSs [82, 99], verification of the new constructions will be
dominated by m( exponentiations, where my is the length of the statement.

Setup phase: By considering the simplified language %", in new constructions
(shown in Fig. 19), the setup phase will be done for a new arithmetic circuit which
is extended with a sub-circuit for encrypting the witness.

6.3.3. Two Black-Box SE zk-SNARKs

Next, we instantiate the proposed construction in Fig. 19 with two instances and
construct two NIZK arguments (precisely zk-SNARKSs) that will guarantee black-
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box simulation knowledge-soundness. Recall that the proposed construction takes
a NIZK argument that can achieve nBB simulation (knowledge) soundness, de-
fined in Def. 13.

First instantiation. In 2017, Groth and Maller [82] proposed the first SAP-
based zk-SNARK in the CRS model that can achieve nBB simulation (knowl-
edge) soundness and consequently guarantees non-malleability of the proofs. The
scheme is constructed using asymmetric bilinear groups and works for Square
Arithmetic Programs; this implies encoding the target language . to an arith-
metic circuit which has only squaring and addition gates. In their scheme the
proof is 2 elements in G| and 1 element in G5.

Second instantiation. Recently Lipmaa [99] proposed several zk-SNARKSs based
on different NP characterizations QAPs, SAPs, Quadratic Span Programs (QSPs)
and Square Span Programs (SSPs) that all guarantee nBB simulation knowledge-
soundness. All his proposed constructions are instances of our construction, but
here we focus on his QAP-based construction, as the QAP-based and SAP-based
constructions are more convenient when one works with arithmetic circuits.

Tab. 8 compares the efficiency of two instances that guarantee nBB simula-
tion knowledge-soundness from different perspectives. Lifting either of them will
result in a zk-SNARK (which are only circuit succinct) that guarantees BB sim-
ulation knowledge-soundness, and consequently sufficient for UC-secure proto-
cols [45,76,85]. As we observed in Tab. 4, in practice QAP-based zk-SNARKSs
are more efficient than the SAP-based zk-SNARKS, as the latter works with arith-
metic circuits with squaring gates that doubles the number of multiplication gates
(by considering ab = ((a+b)* — (a — b)?)/4). Due to this fact, we expect that in-
stantiating the construction with Lipmaa’s QAP-based zk-SNARK [99] will result
in a more efficient black-box simulation knowledge-sound zk-SNARK in compar-
ison with one instantiated with the Groth-Maller scheme [82].

Table 8. A comparison of Groth-Maller [82] and Lipmaa’s [99] (QAP-based) zk-
SNARKS for arithmetic circuit satisfiability with mg element instance (input values), m
wires, n multiplication gates. As Groth-Maller [82] is constructed for SAPs, so n multi-
plication gates translate to 2n squaring gates in comparison with QAP-based schemes. G
and G,: group elements, E: exponentiations, P: pairings and # VE: number of verification
equations.

SNARK CRS Size Proof Prover Verifier | # VE
GM [82] 2m+4n+5 G] 2@1 2m+4n—m0 E; mo Eq )
For SAPs 2n+3 Gy 1 Gy 2n E, 5P
Lip [99] m+3n+5Gy 3Gy m-+4n—mgy E; mo +1 E| 2
For QAPs n+4 G, 1 G, nk, 5P
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6.4. On the Efficiency of Privacy Preserving Smart Contracts

Two privacy-preserving smart contract systems Hawk [93] and Gyges [90] fre-
quently use a zk-SNARK to prove different statements in each smart contract.
As both systems are intended to achieve UC-security, they both use a particular
zk-SNARK which is obtained by applying the COCO framework on a variation
of the Pinocchio [105] non-UC-secure zk-SNARK that is proposed in [31]. In
Hawk (and similarly Gyges) the authors discuss that the efficiency of their system
is dominated by the efficiency of the underlying lifted zk-SNARK. Next, we dis-
cuss how the zk-SNARK constructed in Section 6.3.3 can improve efficiency of
both smart contract systems. We focus precisely on Hawk, but as Gyges have also
used the COCO framework and the same zk-SNARK, the discussion also holds for
Gyges.

As mentioned before, the designers of Hawk (and similarly Gyges) lifted Ben
Sasson et al.’s zk-SNARK [31] using the COCO framework to achieve black-box
simulation knowledge-soundness. As shown in Section 2.4.5, using the COCO
framework requires a more extended language .#”, consequently more changes
on the input NIZK or zk-SNARK. On the other hand, as we showed in Sec-
tion 6.3.1 and Fig. 19, our extended language .¢" requires fewer changes to
achieve the same goal. We should mention that the reason is that we use NIZKs
(particularity zk-SNARKSs) that already guarantee simulation (knowledge) sound-
ness. In fact, our changes are a subset of the changes required by the COCOQ frame-
work. So in the case of using zk-SNARKSs that are constructed for the same NP
characterization (e.g., QAPs), the overhead in our case would be smaller than the
case where one uses the COCO framework. In fact, if one use a QAP-based (nBB
simulation extractable) zk-SNARK (for instance [99]) which has better efficiency
than the QAP-based zk-SNARK used in Hawk and Gyges, our construction can
simplify their protocol and improve their practical efficiency.

Tab. 9 compares the asymptotic and practical performance of the zk-SNARK
used in HAWK and Gyges [31] with Groth and Maller’s [82] and Lipmaa’s [99]
zk-SNARKSs (before applying any changes). Empirical performance of [31] and
[82] based on their implementations in the libsnark library. The experiments are
done on a machine equipped with 3.40 GHz Intel Core 17-4770 CPU, in single-
threaded mode, using the BN128 curve. The performance of Lipmaa’s QAP-
based scheme is estimated based on similar existing QAP-based (e.g., Groth’s
scheme [79]) implementations on the same machine'.

Tab. 9 shows that both Lipmaa’s and the GM zk-SNARK outperform Ben Sas-
son et al.’s zZk-SNARK in all metrics. Beside faster running times in all algo-
rithms, Lipmaa’s and GM zk-SNARKSs has only 2 verification equations, instead
of 5in [31]. As already mentioned in Section 6.3.3, Lipmaa’s scheme [99] is con-

'Based on reported implementations on https://github.com/scipr-lab/libsnark/
tree/master/libsnark/zk_proof_systems/ppzksnark

92


https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark
https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark

Table 9. A comparison of Ben Sasson et al.’s [31] (BCTV), Groth-Maller [82] (GM)
and Lipmaa’s [99] (Lip) zk-SNARKSs for arithmetic circuit satisfiability with mq element
instance, m wires, n multiplication gates. G, and G;: group elements, E: exponentia-
tions, P: pairings, B: byte, sec: second, ms: millisecond. Implementations are reported
for an R1CS instance with n = 10° constraints (input values) and m = 10° variables, of
which my = 10 are input variables. Practical performance of [99] is estimated based on
asymptotic performance and current similar implementations in libsnark library.

SNARK CRS Proof Prover Verifier | #VE
BCTV [31] | 6m+n—mo Gy | 7 Gy 6m+n—my E; mg Eq 5
For QAPS m Gz 1 G2 mE, 12 P
in libsnark 104.8 sec 287 B 128.6 sec 4.2 ms —
GM [82] 2m+4n+5 Gy 2 Gy 2m+4n—mgy E| mg E| 2
For SAPs 2n+3 Gy 1 G, 2n E, 5P
in libsnark 100.4 sec 127 B 116.4 sec 2.3 ms —
Lip [99] m+3n+5 Gy 3Gy m+4n—mo E; | mg +1 E; )
For QAPs n+4 Gy 1 G, nk, 5P
Estimation ~ 82 sec 160 B ~ 94 sec ~23ms | —

structed for QAPs and appending a new sub-circuit for a particular computation to
Groth-Maller zk-SNARK is more costly than appending a sub-circuit for the same
computation to Lipmaa’s scheme. So, by considering efficiency report in Tab. 9,
and the fact that our changes (Shown in Fig. 19) are a subset of the changes ap-
plied on Ben Sasson et al.’s zk-SNARK before deployment in the Hawk system,
one can observe that a lifted version of Lipmaa’s zk-SNARK can simplify proto-
cols of both smart contract systems and also improve their efficiency.

The designers of both systems (especially Hawk) proposed various effective
optimizations to maximize the efficiency of underlying lifted zk-SNARKSs (Sec-
tion V in [93]). The same techniques can work with the new constructions. For
instance, it is shown that in the Finalize operation of a smart contract in Hawk, one
may use non-UC-secure zk-SNARK, whereas similarly in the new case one can
use non-UC-secure version of Lipmaa’s QAP-based [99] or GM SAP-based [82]
zk-SNARKSs that are more efficient than the one that currently used (as can be
seen in Tab. 9) and additionally they ensure nBB simulation extractability.
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7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

In this thesis, we focused on two following research questions related to zk-
SNARKSs and commitment schemes. (i) How much can we reduce the required
trust in the setup phase of zk-SNARKSs and equivocal commitment schemes in
the CRS model? (ii) How to efficiently improve the security of zk-SNARKS in
different (either UC-secure or non-UC-secure) practical applications?

To answer the first question, we first in Chapter 3 constructed a subversion-
resistant SNARK that guarantees Subversion ZK, ZK without trusting the third
party, and knowledge-soundness. The result showed that we can construct zk-
SNARKSs where the prover does not need to trust the CRS generators to achieve
ZK, but as before the verifier needs to trust the CRS generators to achieve knowledge-
soundness. Then, in Section 4.4, we showed that we can lift our presented con-
struction in Chapter 3 to achieve simulation knowledge-soundness while keeping
Sub-ZK. Roughly speaking, this showed that similar to previous constructions the
prover can achieve ZK without trusting the CRS generators, while the protocol
will also guarantee simulation (knowledge) soundness, which allows to have non-
malleable proofs. In Chapter 5, we showed that with similar techniques one can
construct subversion-resistant equivocal commitment schemes that require less
trust than before. Indeed, we showed that one can construct equivocal commit-
ment schemes where the committer will achieve equivocality without trusting the
key generators, while the scheme will guarantee binding as before, under a trusted
setup. Such constructions will allow mitigating the trust in the bigger crypto-
graphic protocols that aim to use an equivocal commitment scheme, e.g., [96].

In order to answer the second question, in Section 4.3, we showed that the
folklore OR technique [24] along with a proper instantiation allows us to lift
a zk-SNARK with nBB knowledge-sound to zk-SNARKSs with nBB simulation
knowledge-soundness efficiently. As an instance, we presented a variation of
Groth’s QAP-based zk-SNARK that can achieve nBB simulation extractability
and considerably outperforms Groth and Maller’s [82] SAP-based zk-SNARK,
which similarly guarantees nBB simulation extractability. Recall that compared
to (nBB) knowledge-soundness, the notion of (nBB) simulation extractability ad-
ditionally guarantees that the proofs are non-malleable, which is a necessary re-
quirement in practical applications but still is not sufficient for applications that
aim to achieve UC-security.

In Chapter 6, we observed that considering recent developments in building
zk-SNARKSs, namely due to existence of nBB simulation extractable zk-SNARKSs
(e.g. [82]), one can simplify the construction of the COC@ framework and more
simply build NIZK arguments that will achieve BB simulation extractability. We
showed that our proposed technique allows one to simplify the construction and
improve the efficiency of privacy-preserving smart contract systems such as Hawk
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and Gyges [90,93].

7.2. Future Directions and Ongoing works

Next, we discuss some open and ongoing research topics that can be considered
as future directions for our studied topics.

7.2.1. Beyond Subversion-Resistance in the CRS model

In this study, we showed that one can construct SNARKSs that can achieve Sub-
ZK and simulation knowledge-soundness (Chapters 3 and Section 4.4). From the
trust point of view, by considering the setting where the CRS is generated by an
MPC protocol [2,29], in new constructions the prover does not need to trust any
of CRS generators but the verifier needs to trust only 1 out of n parties in the
MPC protocol. After this result, an interesting question arose: can the the single
party among the n parties that the verifier needs to trust, be the verifier himself?
In other words, can the verifier join the MPC protocol whenever he/she likes,
such that after joining the CRS generation MPC protocol, similar to the prover,
the verifier also will not need to trust any of the CRS generators? In 2018, this
question was answered positively by Groth et al. [80], by presenting a zk-SNARK
with universal and updatable CRS that allows the verifier to update the CRS and
avoid trusting the third party. Following this result there have been some efficient
zk-SNARKSs with updatable CRS [5, 16, 80, 100].

Following the above constructions for NIZK arguments with updatable pa-
rameters, an interesting question is to extend the idea to different NIZK argu-
ments (e.g. Quasi-Adaptive NIZK arguments) or other cryptographical primi-
tives. Particularly, by considering our presented subversion-resistant commitment
scheme in Section 5.6, a possible research question is can we construct commit-
ment schemes with update commitment keys? Such that the verifier will be able
to update the commitment keys instead of trusting the key generators.

7.2.2. More Efficient zk-SNARKSs for UC-Protocols

In Chapter 6, we focused on constructing zk-SNARKSs with black-box simula-
tion knowledge-soundness which is shown to be a sufficient property to achieve
UC-security in NIZK arguments, consequently sufficient to use NIZKs in UC-
secure protocols. The key idea behind those constructions was that one can use
the simulation property of nBB simulation (knowledge) sound NIZK arguments
to simplify constructing black-box simulation extractable NIZK arguments that
the COCO framework constructs. We observed that depending on the underlying
language (e.g., QAP-based constructions are more efficient than the SAP-based
ones), new constructions can be more efficient.

By the above observation, constructing more efficient zk-SNARKSs that guar-
antee nBB simulation knowledge-soundness will allow constructing more effi-
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cient zk-SNARKSs with black-box simulation extractability.

From a different perspective, as zk-SNARKSs are constructed for QAPs, SAPs,
QSPs or SSPs characterizations, their size (order) depends on the number of mul-
tiplication gates of the circuit that encodes the language. Therefore, constructing
circuits that require a smaller number of multiplication gates to encode the lan-
guage can directly improve the efficiency of the constructions. For instance, to
compute SHA-256 the smart contract system Hawk [93] uses an arithmetic circuit
which has around 25500 multiplication gates, while the digital coin Zcash [27]
uses an arithmetic circuit that has around 28000 multiplication gates. Therefore,
using the first circuit leads to have a better efficiency in CRS size and prover’s
computations.

7.2.3. UC-Secure Parameter Generation for BB SE zk-SNARKs

In Chapter 6, we presented two constructions that achieve ZK and BB simulation
knowledge-soundness, which can be deployed in UC-secure protocols. In those
constructions, both the prover and verifier need to trust the CRS generators. To
mitigate the trust in such constructions, one can use MPC protocols for CRS gen-
eration which will distribute the trust to several parties. This can be considered
an interesting research question to mitigate trust in those systems. More clearly, it
would be interesting to consider how one can construct a UC-secure MPC proto-
col similar to the one proposed in [2], but for either of the presented constructions
in Section 6.3.3. Recently, in [16], we showed how to build such constructions
with updatable parameters which allows the parties to bypass the need for a trusted
third party. But still such constructions cannot achieve UC-security in the setup
phase. So, it would be interesting to consider if one can achieve UC-security in
the setup of such constructions.

Finally, an important research direction for all the studied topics is to consider
if similar protocols can be constructed based on cryptographic assumptions that
are secure against quantum adversaries. There are some valuable attempts in this
direction [40, 66, 104], but still they are not deployable in most of the applications
where zk-SNARKS are currently deployed in.
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SUMMARY IN ESTONIAN

Usalduse vahendamine ja turvalisuse parandamine
zk-SNARK-ides ja kinnitusskeemides

Uks olulisi tooriistu tinapievases kriiptograafias on nullteadmustdestus, mis voi-
maldab osapoolel tdestada viite paikapidavust ilma, et tema salajane info lekiks.
Ténu nendele suurepidrastele omadustele on mitteinteraktiivsed nullteadmustdes-
tused véimaldanud paljusi uudseid rakendusi: kontrollitavad arvutussiisteemid na-
gu Pinocchio, privaatsust sdilitavad kriiptovaluutad nagu Zcash, privaatsust siili-
tavad nutilepingusiisteemid Hawk ja Gyges ning privaatne panusetdendus siisteem
Ouroboros Crypsinous on moned praktilistest rakendustest, mis kasutavad t6hu-
said nullteadmustdestusi, mida nimetatakse zk-SNARK-ideks. zk-SNARK-id on
tohusad ja praktilised mitteinteraktiivsed tdestussiisteemid, mis on konstrueeritud
viitestringi mudelis ning tdnu kompaktsetele tdestustele ja viga tdhusale verifit-
seeritavusele on need laialdaselt kasutusele vOetud suuremahulistes praktilistes
rakendustes. Viitestringi mudelis tugineb zk-SNARK-ide konstruktsioon seadis-
tusfaasile ja kasutajad peavad usaldama seadistusfaasi viljundit, mille peaks ar-
vutama usaldatud kolmas osapool vai hajutatud siisteem. Lisaks on teada, et osa-
des rakendustes zk-SNARK-de tavaline turvalisuses ei ole piisav otseseks kasu-
tamiseks protokollides, mille eesmirkiks on saavutada moni tugevam turvalisu-
se vorm nagu nditeks tdestuste mitte deformeeritavus voi veelgi tugevam tdielik
koosluskindlus (TK). Selles t60s uurime zk-SNARK-e kahest vaatenurgast: nen-
de usalduse vihendamine ja turvalisuse tugevdamine. Esimeses suunas uurime
kui palju saab vihendada usaldust paaristuspohiste zk-SNARK-ide puhul ilma
nende tdhusust ohverdamata niiviisi, et kasutajad saavad teatud turvataseme ka
siis kui seadistusfaas tehti pahatahtlikult voi kui avalikustati seadistusfaasi sa-
lajane teave. Me pakume vilja moned tohusad konstruktsioonid, mis suudavad
takistada zk-SNARK-i seadistusfaasi riindeid ja mis saavutavad senisest tugeva-
ma turvataseme. Néitame ka seda, et sarnased tehnikad vdimaldavad leevendada
usaldust tagauksega kinnitusskeemides, mis on kriiptograafiliste primitiivide veel
iiks silmapaistev perekond ja mis samuti ndub usaldatud seadistusfaasi. Teises
suunas esitame moned tShusad konstruktsioonid, mis tagavad parema turvalisu-
se minimaalsete lisakuludega. Moned esitatud konstruktsioonidest vdimaldavad
lihtsustada praegusi TK-turvalisi protokolle. Nimelt privaatsust sdilitavate nuti-
lepingusiisteemide Hawk ja Gyges konstruktsiooni ja parandada nende tdhusust.
Uusi konstruktsioone saab aga otse kasutada uutes (mitte) TK-turvalistes proto-
kollides, mis soovivad kasutada zk-SNARK-e. Osa viljapakutud zk-SNARK-e on
implementeeritud teegis Libsnark ja empiirilised tulemused kinnitavad, et usal-
duse vihendamiseks vdi suurema turvalisuse saavutamiseks on arvutuslikud lisa-
kulud viikesed.
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