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1. INTRODUCTION 

Belowground biota are highly diverse and complex, ranging from microscopic 
components (bacteria and archaea), to fungi, protists and animals. Belowground 
microbial and animal organism groups can regulate aboveground biodiversity and 
the functioning of terrestrial ecosystems. Despite this, our knowledge on below-
ground biodiversity is poorly understood, compared to aboveground commu-
nities. Understanding taxonomic and functional diversity of belowground com-
munities, their distributions and their functions in ecosystems can help us to 
improve predictions of future changes in soil fertility, plant production, and climate. 

Belowground constitutes the largest repository of organic matter on earth, 
more than the atmosphere and vegetation combined (Schlesinger and Bernhardt, 
2013). Belowground communities govern the rate and biochemical pathway of 
this organic matter which in turn influence soil fertility, plant productivity, and 
the climate change (Crowther et al., 2019). Differences in the belowground bio-
diversity can lead to significant variation in biogeochemistry, for example, land 
use change from forests to grasslands drive differences in the structure of soil 
communities (Delgado-Baquerizo et al., 2018a) and subsequently drive enormous 
variation in nutrient cycling (Malik et al., 2016). By assessing abundance, taxo-
nomic and functional diversity and composition of belowground biodiversity 
along with environmental variables regulating their variations, we can enhance 
our understanding of global biogeochemical cycling in current and future climate 
scenarios. 

Traditionally, abiotic factors, such as climate and soil properties, and biotic 
factors such as aboveground herbivory were recognized as drivers of plant commu-
nity variations. Recent studies have demonstrated the role of plant – belowground 
biodiversity feedbacks in influencing plant performance and community com-
position (Bardgett and van der Putten, 2014; Wilschut and Geisen, 2021; Geisen 
et al., 2022). These studies show how plant-belowground biodiversity interplay can 
influence plant communities both directly (via changing herbivory, symbiosis, or 
pathogenesis) and indirectly (via changing soil chemical properties) (Wardle et 
al., 2004; Bezemer and van Dam, 2005). These biotic interactions can change the 
competitive ability, fitness and evolutionary adaptation of plant species. For 
instance, fungal diversity and mycorrhizal types directly or indirectly affect plant 
dispersal and competition that shape plant diversity (Tedersoo et al., 2020). 

 
 

1.1 Biotic factors 

Plant species regulate root-associated and soil biodiversity and composition 
(Fitzpatrick et al., 2018; Wen et al., 2020). Microbial communities colonize roots 
in two steps: the rhizosphere harbors a subset of the bulk soil community and, 
the rhizoplane selects a subset of the rhizosphere community (Bulgarelli et al., 
2013; Sasse et al., 2018). Therefore, variations in root microbiome depend on 
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both free-living soil microbes (bulk soil species pool) and plant variables including 
genetic factors, root morphology and root exudation (Wilschut et al., 2021). 
There is mixed evidence on the relative importance of environment, plant identity 
and their interactions in shaping soil microbial communities depending on geo-
graphic scale. Untangling the relative importance of these factors might shed light 
on the strength of plant influence on soil microbial communities and provide 
insight into the mechanisms by which plants regulate soil communities. 

Soil and root microbiome differ among plant species (Burns et al., 2015; Lareen 
et al., 2016; Sweet and Burns, 2017; Liu et al., 2020) and even within individuals 
of a single species (Wagner et al., 2016). It has been found that phylogenetic host 
distance correlates with root microbiome structure in various plant species such 
as Salicaceae, Poaceae (Bouffaud et al., 2014), Arabidopsis (Schlaeppi et al., 
2014), Rice (Edwards et al., 2015), and Maize (Bouffaud et al., 2014). Closely 
related plant species usually share similar characteristics, such as root morpho-
logy and production of secondary metabolites, which may contribute to shaping 
their associated microbial communities (Saleem et al., 2018; Pang et al., 2021). 
Several studies have assessed whether the diversity of plant exudates correlates 
with microbial diversity and found a link between plant exudation profiles and 
microbiome compositions (Sasse et al., 2018). Moreover, the addition of a diverse 
exudates to plant monocultures increased microbial diversity (Steinauer et al., 
2016). Plant functional traits and habitat specialization also explain soil microbial 
community diversity, and composition (Barberán et al., 2015; Boeddinghaus et al., 
2019). For example, forest specialist and habitat generalist plant species asso-
ciated with different arbuscular mycorrhizal fungal communities (Öpik et al. 
2009). Growing evidence indicates that host plant traits have a significant impact 
on the structure of belowground communities across various habitats (Becklin et 
al. 2012), successional stages (Martínez-García et al. 2015) and elevational gra-
dients (Li et al. 2014; Saitta et al. 2018). It has also been reported that plant func-
tional traits -such as specific leaf area index, leaf nitrogen and nitrogen fixation – 
can determine the distribution of soil bacteria and fungi communities at the 
regional scale (Delgado-Baquerizo, 2018a). Despite shifts in soil properties, 
variation in arbuscular mycorrhizal fungal (AMF) community composition over 
different ecosystem successional stages is explained by changes in plant commu-
nities (Martínez-García et al. 2015). In addition, a global-scale meta-analysis 
showed that plant community composition is directly associated with AMF com-
munity composition, whereas the effect of climate and other ecosystem properties 
remained indirect and secondarily mediated by host plants (Yang et al. 2012). 
Plant mycorrhizal niche space (PMNS) – defined as a plant’s ability to exploit 
and shape the mycorrhizal fungi pool of a habitat based on its dependency on 
mycorrhizal fungi and traits (Aslani et al., 2019) – can predict changes in the 
belowground in association with plant community variations. For example, the 
life cycle is a plant trait, as a component of PMNS, that could affect AMF com-
munities. Annual and perennial plants can harbor different AMF communities in 
the root, rhizosphere and bulk soil (Alguacil et al. 2012). In addition, plant-life 
form (herbaceous versus woody) can also act as a major determinant of AMF 
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community structure. Varela-Cervero et al. (2015) reported that similar AMF 
communities were harbored by herbaceous plant species (Thymus zygis and 
Thymus mastichina). López-García et al. (2014) found that annual herbs, 
perennial herbs and perennial semi-woody plants are associated with distinct 
AMF communities. Another major component of PMNS stems from ecological 
adaptations (ecosystem type) or ecological requirements of plant species (Öpik 
et al. 2009). In this context, plants associate with AMF according to their habitat 
preferences (habitat range). Veresoglou and Rillig (2014) suggested that the eco-
system type of plants, rather than their phylogenetic relatedness, determines the 
structure of AMF communities. For instance, forest specialist and habitat gene-
ralist plants tend to associate with specialist and generalist AMF, respectively 
(Davison et al. 2011; Öpik et al. 2009). 

We still know very little about tripartite associations between roots, symbiotic 
mycorrhizal fungi and bacteria and their responses to different environmental 
parameters. Since roots and fungi can provide plant-derived C directly to the soil 
ecosystem, they are important niches for colonization of bacteria and other micro-
organisms (Hassani et al., 2018; Gohar et al., 2022). Thus, plants influence soil 
and root associated microbial communities via mycorrhizal fungi. The fungi 
colonizing individual roots had a strong effect on the associated bacterial commu-
nities, closely related species within the same ectomycorrhizal genus had distinct 
bacterial microbiomes. Izumi and Finlay (2011) reported some selective effects 
of particular ectomycorrhizal symbionts on associated bacteria in Betula pubescens 
roots. Analysis of bacterial communities associated with Pinus muricata roots 
has also provided some evidence that bacterial communities in the roots were 
affected by fungal species identity (Nguyen and Bruns, 2015). However, other 
studies have failed to demonstrate any significant effect of ectomycorrhizal fungi 
colonizing plant roots on the associated bacterial communities (Tanaka and Nara, 
2009; Uroz et al., 2012). Generally, the results from these studies showed little to 
no specificity of bacteria to fungal hosts. However, an emerging pattern from 
these studies is that bacteria in the genera Burkholderia, Bacillus, Clostridium, 
Azospirillum, Pseudomonas, and the order Rhizobiales might have a strong link 
with fungal associated roots (Izumi et al., 2007; Nguyen and Bruns, 2015). 

 
 

1.2 Abiotic factors 

Recent studies, using molecular techniques, revealed that the global distributions 
of bacterial (Bahram et al., 2018), protistan (Oliverio et al., 2020), mycorrhizal 
(Öpik et al., 2006; Tedersoo et al., 2014) and faunal (Wu et al., 2011) taxa in soil 
are restricted by variations in climatic, soil and plant conditions. These studies 
indicate that multiple factors jointly determine the structure of various microbial 
groups, but the major underlying factors differ among bacteria, fungi, protists, 
and soil animals. While soil pH is of particular importance in determining bac-
terial diversity (Bahram et al., 2018; Delgado-Baquerizo et al., 2018b), fungi 
respond most strongly to climate (Tedersoo et al., 2014), protists to soil moisture 
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(Oliverio et al., 2020), and nematodes to soil texture (van den Hoogen et al., 2019). 
Climate variables and habitat cover were reported as more important factors in 
structuring earthworm communities than soil properties on a global scale (Phillips 
et al., 2019). Soil springtails were primarily affected by climatic variables followed 
by soil properties (Potapov et al., 2022). In addition, vegetation type determines 
the abundance and diversity of microbial groups locally and on a regional scale 
(Bahram et al., 2020; Geisen et al., 2018; Nielsen et al., 2010; Wilschut et al., 
2019).  

Recent studies have also shown that soil biota may not follow the latitudinal 
gradient of diversity pattern, i.e. species diversity peaks in the tropics and gradually 
drop towards the poles (Gaston, 2000). For example, bacterial richness may peak 
in mid-latitude soils with approximately neutral pH (Bahram et al. 2018), whereas, 
the richest fungal communities have been reported at low and high latitudes 
(Tedersoo et al., 2014; Větrovský et al., 2019). Thus, fungal and bacterial diversity 
exhibited contrasting patterns over the latitudinal gradient (Bahram et al., 2018). 
For soil animals, nematode abundance was found highest in sub-Arctic regions 
(van den Hoogen et al., 2019) while the relative abundance of springtails showed 
a U-shaped pattern across the latitudinal gradient (Potapov et al., 2022). It worth 
noting that contrasting responses to latitudinal gradients may occur for abun-
dance, biomass and diversity of soil animals (Bahram et al., 2018: Potapov et al., 
2022). Latitudinal diversity patterns may also differ for functional groups. For 
example, the richness of EM fungi peaks in high-latitude forests, supporting the 
greatest proportion of EM trees (Tedersoo et al., 2014), whereas AM diversity 
peaks in tropical regions (Davison et al., 2015; Hu et al., 2019). This suggests a 
lack of coupling between aboveground and belowground diversity at global scales, 
hinting that patterns of aboveground and belowground diversity are governed by 
different mechanisms, which are also scale dependent. Despite our accumulated 
knowledge about biogeographic patterns of soil biota, the underlying mechanisms 
of the distribution patterns remain little explored (Xu et al., 2020). 

 
 

1.3 Mechanisms underlying community assembly 

Historically, the niche-based or the neutral theories have been used to examine 
and interpret community assembly. The niche theory emphasizes the importance 
of both biotic and abiotic factors (deterministic processes) that affect the identi-
ties and abundance of species (Chesson, 2000). The neutral theory stresses that 
random factors (stochastic processes) can largely mediate the assembly and 
dynamic changes in community structures through birth, death, colonization, 
extinction, and speciation (Chave, 2004; Zhou and Ning, 2017). Nowadays, it has 
become widely accepted that soil biota biogeographic patterns are affected by 
both deterministic and stochastic processes (Martiny et al. 2006). Several studies 
have supported the importance of deterministic factors such as edaphic and biotic 
factors, in determining microbial community structure (Gralka et al., 2020). In 
contrast, various theoretical, observational, and experimental studies clearly 
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demonstrate the importance of stochastic processes in shaping microbial commu-
nity structure, succession, and biogeography (Zhou and Ning, 2017). The chal-
lenge lies in quantifying their relative influences and the mechanisms underlying 
their dynamics across space and time. Chase and Myers (2011) developed a frame-
work that disentangles the relative importance of these processes in variations of 
species composition over spatial and environmental gradients. They used null-
model approaches to compare observed patterns of species composition to null 
expectations. A larger deviation from the null expectation indicate more important 
role of deterministic processes.  

There is a little information about the factors that influence the relative impor-
tance of the different assembly mechanisms. Trait-based approaches could clarify 
the mechanisms underlying community assembly, and ecosystem responses to 
environmental change. The functioning of a community is ultimately governed 
by the traits expressed by individuals and not their taxonomic identity per se. 
Functional traits can include structural, morphological, biochemical, or genetic 
characteristics of organisms, which determine the performance of individuals in 
time or space. It is believed that species functional traits could have critical 
impacts on mediating stochastic community assembly (Fukami et al., 2015) and 
environmental filtering in shaping community structures (Kraft et al., 2015; 
Goberna et al., 2014). For example, the relative importance of stochastic assembly 
processes is higher in larger organisms with higher productivity (e.g., Chase, 
2010), probably because of higher priority effects (Steiner, 2014; Fukami, 2015). 
Further, it has been shown that the distribution of habitat generalists may be 
primarily determined by neutral processes due to their general indifference to the 
variation in habitat conditions (Liao et al., 2016).  

Using phylogenetic information is another way to infer community assembly 
processes, as phylogenetic distance could be related to ecological niche distance 
(phylogenetic signal) (Losos 2008). For example, studies have detected phylo-
genetic overdispersion, phylogenetic clustering and neutral effect in microbial 
communities (de Cárcer 2019). Combining phylogeny with ecological information 
of species could contribute to a better understanding of community assembly pro-
cesses. The idea of differentially conserved traits may generally help to predict 
compositional variation in any microbial system. Specifically, changes in the 
environment that select on shallow or deep traits should alter microbiome com-
position at various taxonomic levels (Lennon et al., 2012). Thus, the resolution at 
which microbiome composition varies among samples may provide information 
about the phylogenetic conservation of the traits under selection (Martiny et al., 
2015). Despite the promiscuity of horizontal gene transfer in bacteria, microbial 
traits appear to be phylogenetically conserved. For instance, traits such as pH and 
salinity preference are relatively deeply conserved, such that taxa within deep 
clades tend to share the trait (Martiny et al., 2015). These results suggest a pre-
dictive framework whereby the taxonomic resolution of microbiome variation 
among samples provides information about the traits under selection, developing 
predictions for how microbial composition responds to changing environmental 
conditions. 
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 2. HYPOTHESES AND OBJECTIVES 

The overarching hypothesis of this thesis is that different processes underlie 
belowground biodiversity variations depending on compartment niche (soil vs 
root-associated), plant host phylogeny and functional properties and organism’s 
functional traits. In particular, we hypothesized that plant’s ability to exploit and 
shape the mycorrhizal fungi pool of a habitat can be determined by its dependency 
on mycorrhizal fungi and functional traits (III). We also conducted an obser-
vational study to test the hypothesis that in contrast to free living (Bahram et al., 
2018), root-associated bacterial communities are mostly determined by host plant 
phylogeny (II). By assessing distribution patterns of soil fungi, protists, and 
animals (i.e., the eukaryome), we further expected to find a link between 
organism traits, such as body size and dispersal ability, and the relative impor-
tance of ecological processes in structuring soil biodiversity (I). 
 
These hypotheses were addressed via four main objectives concerning below-
ground biodiversity changes in association with biotic (e.g., plant species and root 
associated ectomyzorrhiza fungi) and abiotic factors, and taxonomic and func-
tional traits of organism groups. 

1) To review literature on how plant functional traits and mycorrhiza status struc-
ture the soil mycorrhizal fungi mediating plant invasion. 

2) To determine the relative contributions of Alnus species phylogeny, Alnus root-
associated ectomycorrhizal (EcM) fungi phylogeny, and environmental and 
spatial factors to the structure of root-associated bacterial communities.  

3) To evaluate latitudinal diversity patterns for soil fungi, protists, and animals 
(including Nematoda, Arthropoda, and Annelida). 

4) To assess a potential link between traits of soil eukaryotes and their diversity 
patterns and assemblage mechanisms. 
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3. MATERIALS AND METHODS 

3.1 Sampling 

To evaluate plant and its associated ectomycorrhizae species impacts on the root 
bacterial communities, a survey study was performed. Root and rhizosphere soil 
samples of 19 Alnus species were collected as described by Põlme et al. (2013) 
from 85 sites across all continents where Alnus is distributed (except North 
Africa, which shares Alnus glutinosa with Eurasia) (Fig. 1). Six soil samples 
(15 × 15 cm–10 cm depth) comprising Alnus roots were randomly collected at 
least 10 m apart in an area of 2500 m2 at each study site. Soil samples were placed 
into plastic bags and processed within 48 h after collection. Roots were carefully 
cleaned under tap water and placed into large Petri dishes filled with water. 
Ectomycorrhizal (EcM) morphotypes were distinguished based on color and 
roughness of mantle, presence of emanating hyphae and rhizomorphs under 
stereomicroscope. Two EcM root tips from each morphotype per soil sample 
were stored in CTAB buffer (1% cetyltrimethylammonium bromide, 100 mM 
Tris–HCl (pH 8.0), 1.4 M NaCl, 20 mM EDTA) for molecular analyses. Alnus 
roots were confirmed under a stereomicroscope based on root morphology 
(presence and shape of EcM and actinorhizal root nodules). 
 

 
Figure 1. Sampling sites locations (II; Fig. S2) 
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To assess distribution patterns and assembly mechanisms of soil organism groups 
in a trait-based framework, we used a global set of samples that were collected 
from plots of homogeneous vegetation, minimally affected by humans, following 
a standardized sampling and processing scheme (Tedersoo et al., 2014). We 
selected the 193 plots out of 365 based on geographical evenness (to minimize 
spatial autocorrelation) and high-quality DNA. 40 soil subsamples (5 cm 
diameter to 5 cm depth) were collected from each study plot (2500 m2). We 
randomly selected 20 trees located at least 8 m apart. In two opposite directions, 
1 to 1.5 m from each tree trunk, loose debris was removed from the forest floor. 
Polyvinyl chloride (PVC) tubes (5 cm in diameter) were hammered into the soil 
down to 5 cm depth. The 40 soil cores were pooled, coarse roots and stones were 
removed, and a subset of the soil was air-dried at <35 °C.  
 
 

3.2 Molecular analyses 

We applied amplicon sequencing to taxonomically characterize ectomycorrhizal 
root-associated bacterial communities. DNA extraction and identification of EcM 
fungi have been described in Põlme et al. (2013). To identify bacteria, the 16S 
rRNA gene V4 region was amplified using a universal prokaryote primer pair, 
515F (5′ GTGYCAGCMGCCGCGGTAA -3′) and 926R (5′- GGCCGYCAA 
TTYMTTTRAGTTT -3′) from each root tips following Bahram et al. (2018). It 
was reported that this primer pair has a better coverage of prokaryotic taxa in field 
and mock communities compared with another universal primer pair (515F-
C/806R) (Parada et al. 2016). Forward and reverse primers were indexed with  
12-base unique multiplex identifiers in the 5′-end. The 25 μl PCR mix comprised 
17 μl sterilized H2O, 5 μl 5 × HOT FIREPol Blend MasterMix (Solis Biodyne, 
Tartu, Estonia), and 0.5 μl each primer (200 nM) and 2 μl DNA extract. 
We included negative control samples in both PCR and sequencing runs. DNA 
was amplified using the following thermocycling conditions: 95 °C for 15 min, 
30 cycles of 95 °C for 30 s, 50 °C for 45 s and 72 °C for 1 min, with a final 
extension step at 72 °C for 10 min. 

The quality of PCR products was evaluated under UV light by electrophoresis 
of 5 μl PCR product on 1% agarose gel for 30 min. PCR products with no visible 
band or a strong band were excluded and their PCR mix amplified using 27 or 33 
cycles, respectively to provide as similar as possible bands for all samples. From 
each PCR product, 5 μl was pooled into seven libraries. Libraries were purified 
with FavourPrep Gel/PCR Purification Kit (Favorgen-Biotech Corp., Austria). 
Sequencing was performed using 2×300 paired-end chemistry on an Illumina 
MiSeq platform in the Estonian Genome Center (Tartu, Estonia). 

To identify soil eukaryotes a 2.0 g amount of each of homogenized composite 
samples was subjected to DNA extraction using the PowerMax Soil DNA Iso-
lation Mini kit (MoBio) following the manufacturer’s instructions (Tedersoo et 
al., 2014). We used universal eukaryote primers 1389f and 1510r in the poly-
merase chain reaction (PCR) mix to amplify the V9 region of the 18S rRNA gene 
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(Amaral-Zettler et al., 2009). It is shown that the use of 1389F/1510R primer pair 
detected a higher number of OTUs compared with 1380F/1510R (Wilcox and 
Hollocher, 2018). These universal primer pairs are known to detect various 
prokaryote and eukaryote organism groups, as well as, enable us to compare our 
results with other studies (Mahé et al., 2017; Zhang et al., 2021; Cohen et al., 
2021; Ladin et al., 2021). Forward and reverse primers were indexed with  
10-base to 12-base unique multiplex identifiers. The PCR mixture was prepared 
with 0.3 μl DNA extract, 0.5 μl each of the primers, 5 μl 5xHOT FIREPol Blend 
Master Mix (Solis Biodyne), and 16 μl double-distilled water. We performed 
PCR using the following thermocycling conditions: 95 °C for 15 min, 30 cycles 
of 95 °C for 30 s, 50 °C for 45 s and 72 °C for 1 min, with a final extension step 
at 72 °C for 10 min. Amplicon pools were quality-checked and quantified using 
Bioanalyzer HS DNA Analysis Kit (Agilent) and Qubit 2.0 Fluorometer with 
dsDNA HS Assay Kit (Thermo Fisher Scientific), respectively, and sequenced on 
an Illumina HiSeq 2500 platform (2 × 250 paired-end mode) at the Estonian 
Genome Center (Tartu, Estonia) following Bahram et al. (2018). 

 
 

3.3 Bioinformatics 

We used the LotuS pipeline (Hildebrand et al., 2014) for 16S and 18S rRNA 
amplicon sequence processing as outlined in Bahram et al. (2018). Reads were 
demultiplexed and quality-filtered based on the following settings: trimming of 
reads after an accumulated error of 1, rejecting reads of average quality <28 and 
estimated accumulated error >2.5 (probability ≥0.01). Chimeric reads were 
removed using both de novo and reference-based chimera checking algorithms 
and the RDP reference database (http://drive5.com/uchime/rdp_gold.fa) in 
UCHIME (Edgar, 2011). The passed reads were clustered with UPARSE (Edgar, 
2013) at 97% sequence similarity. Representative sequences for each non-
singleton OTUs were chosen for taxonomic assignment by aligning full-length 
sequences with lambda (Hauswedell et al., 2014) to the SILVA v.123 database 
(Pruesse et al., 2007) and using the LotuS least common ancestor (LCA) algo-
rithm (Hildebrand et al., 2014). Based on taxonomic assignments, we selected 
bacteria, fungi, protists, and animals for further analyses. 
 
 

3.4 Statistical analysis 

All statistical analyses were conducted using specific packages in R statistical 
computing environment (v.3.6.1).  
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3.4.1 Multivariate and correlation-based analysis 

The OTU-by-sample matrix was Hellinger-transformed and standardized using 
the function decostand in vegan package (Oksanen et al., 2020) in R statistical 
computing environment (v.3.6.1). Of highly correlated variables (R > 0.90), those 
that explained relatively less community variation were removed to reduce col-
linearity. To evaluate the extent of spatial autocorrelation, geographical coordi-
nates of plots were transformed into principal coordinates of neighbor matrices 
(PCNM) eigenvectors using vegan and packfor (Dray et al., 2016) packages.  

Mantel tests – as implemented in vegan package – were conducted to 
determine the correlation between community structure dissimilarity (Bray-
Curtis), environmental dissimilarity (Euclidean) matrices, and geographical 
distance. We computed the geographic distance between sampling sites using 
distm function of the geosphere package (Hijmans, 2019). To disentangle 
explained (e.g., the unique and shared effects of environmental and spatial 
vectors) and unexplained variation in phylogenetic dissimilarity matrix, we 
conducted variation partitioning separately for each organism group using vegan 
package. To test the effects of biome and continent on community structure, we 
used permutational multivariate analysis of variance (PERMANOVA) with 
Bray-Curtis dissimilarity and 999 permutations as implemented in adonis func-
tion in the vegan package. 
 
 

3.4.2 Regression analysis 

To assess latitudinal diversity patterns and the relationship between Operational 
Taxonomic Unit (OTU) diversity (Shannon index) and environmental gradients, 
linear and polynomial regressions were chosen based on the adjusted coefficient 
of determination (R2

adj) and visualized using ggplot2 package (Wickham, 2016). 
Shannon diversity index was calculated based on residuals of OTU diversity in 
relation to the square root of the number of obtained sequences to account for 
differences in sequencing depth according to Tedersoo et al. (2014). Relative 
abundances of dominant phyla were compared across biomes using the Kruskal–
Wallis test followed by Benjamini–Hochberg’s correction for multiple com-
parisons, as implemented in dplyr package (Wickham et al., 2020). 
 
 

3.4.3 Network Analysis 

Network inference analyses were conducted using the sparse correlations for 
compositional data (SparCC) program (Friedman and Alm, 2012). These analyses 
sought to recover linear associations between bacterial OTUs, by identifying co-
occurring OTUs with similar habitat preferences. Correlations with greater than 
0.2 were prepared for the network reconstruction. Because abundances of OTUs 
from amplicon-based datasets are compositional (zero-inflated data), traditional 
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correlation analysis of this type of data is not reliable. Thus, we applied SparCC 
method which is capable of estimating correlation values from compositional data 
to find linear relationships between OTUs (Kurtz et al., 2015). The network 
analysis was performed using sparcc functions in SpiecEasi packages (Kurtz et 
al., 2017) and network structure was visualized with Gephi software 
(https://www.sciencedirect.com/science/article/pii/S0038071717302122 Bastian 
et al., 2009) using undirected type (no direction for edges) and the Fruchterman–
Reingold layout. 
 
 

3.4.4 Phylogenetic tree construction 

To calculate phylogenetic distance between all pairs of OTUs, we generated 
sequence alignments of representative sequences of OTUs using mafft (version 7; 
Katoh & Standley, 2013), followed by masking alignment to minimize alignment 
ambiguity (Lane, 1991) with default parameters (including maximum relative fre-
quency of gap characters in a column = 1; minimum relative frequency of at least 
one non-gap character in a column = 0.4). Following this, we built the phylo-
genetic trees using RAxML (version 8) with a GTRCAT model with 100 boot-
strapped replicates (Stamatakis, 2014). Using the generated tree, we computed 
distances between all pairs of tips of the phylogenetic tree using distTips function 
in the adephylo package (Jombart & Dray, 2008). 

The phylogenetic distances of Alnus species were adopted from Põlme et al. 
(2013). For EcM fungal species, phylogenetic distances were calculated based on 
taxonomic ranks following the classification-based algorithms of Tedersoo et al. 
(2018). To quantify the relative effect of EcM fungal and Alnus phylogenies, their 
phylogenetic distance matrices were translated into a principal coordinate 
analysis of neighbor matrices (PCNM) according to Dray et al. (2006) using the 
vegan package. The PCNM vectors were forward selected using step function in 
the vegan package. 
 
 

3.4.5 Null model analysis 

To infer the relative importance of ecological processes on organism groups with 
various body sizes and niche breadths, we selected the most abundant phyla 
representing ≥10% of the total fungal, protist and animal reads. The average body 
size of each phylum was obtained from Briones (2014), Zinger et al. (2019) and 
Luan et al. (2020). To determine the average niche breadth for each organism 
group, we calculated the niche breadth for each OTU based on the Levins’ index 
(Levins, 1968) as implemented in niche.width function of spaa package (Zhang, 
2016). We used Community Assembly Mechanisms by Phylogenetic bin-based 
null model analysis (iCAMP) framework developed by Ning et al. (2020) from a 
previous framework (Stegen et al., 2013). Individual populations in a community 
might differently respond to ecological processes (Caruso et al., 2011; Hanson 
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et al., 2012; Ning et al., 2020). Therefore, the iCAMP framework quantifies the 
relative importance of different ecological processes for each phylogenetic group 
(bin) rather than only for the entire community, leading to obvious improvement 
in quantitative performance (Ning et al., 2020). Here we divided OTUs into dif-
ferent groups (‘bins’) based on their phylogenetic relationships (phylogenetic 
binning). To assess phylogenetic signal, we calculated Pearson correlation between 
the pairwise phylogenetic distances and niche preference differences for each 
individual bin with Mantel test (I; Table S2). Finally, we performed an abun-
dance-based null model analysis based on a phylogenetic dissimilarity metric 
using beta Net Relatedness Index (βNRI) and taxonomic dissimilarity metric 
using Bray–Curtis-based Raup–Crick (RCbray) (Stegen et al., 2012, 2013) for 
each bin. These methods enabled us to evaluate the deviation between the 
observed phylogenetic/Bray–Curtis dissimilarity and the null-expected phylo-
genetic/Bray–Curtis dissimilarity. To generate null expectations of community 
dissimilarities for each sample pair, average phylogenetic and Bray–Curtis dis-
similarities of 999 randomly assembled pairs of communities were calculated. 
The fraction of pairwise comparisons across communities (samples) with 
|βNRI| >1.96 was considered a selection threshold. The RC metric was applied 
for pairwise comparisons with |βNRI| ≤1.96. The fraction of pairwise com-
parisons with |RC| >0.95 was considered an indicative of dispersal limitation or 
homogenizing dispersal, whereas with |RC| ≤0.95 was interpreted as the con-
tribution of drift (ecological drift and other processes such as stochastic specia-
tion, weak selection, normal-rate stochastic dispersal). The fractions of ecological 
processes across all bins were weighted by the relative abundance of each bin and 
integrated to obtain the relative importance of ecological processes at the whole 
community level. 

The output of null-model-based approaches depends on the sampling effort 
and species pool setting (Chase & Myers, 2011). Comparing two communities 
with different regional species pool sizes, the absolute magnitude of the deviation 
from the null model expectation would be higher (showing stronger deterministic 
effects) in the community with a larger species pool size. To overcome this weak-
ness, we modified iCAMP framework to test different regional pool settings to 
count species in each continent sharing the same regional pool. We set each 
continent as a regional pool in the null model algorithm. We calculated the relative 
importance (%) of selection (e.g., heterogeneous selection and homogeneous 
selection), dispersal (e.g., dispersal limitation and homogenizing dispersal), and 
drift for each pair of communities (samples) and obtained the mean of percentage 
of ecological processes for each organism group. Following this, we compared 
the mean of each individual process among organism groups using a Kruskal-
Wallis Test. 
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4. RESULTS 

4.1 Plant mycorrhizal niche space impacts  
on soil mycorrhizal fungi (III) 

Evidence from literature suggest that based on plant mycorrhizal niche space 
(PMNS), we can classify plant species into different groups according to their traits 
such as life form (woody vs herbaceous), life cycle (annual, biennial, perennial), 
ecosystem types, mycorrhizal status (mycorrhizal vs non-mycorrhizal) (III; Fig. 3). 
This classification could be useful for a) predicting the potential invasiveness of 
each plant in a particular habitat, b) predicting plant invasion impacts on the 
mycorrhizal communities in a new habitat, and c) enhancing our knowledge to 
restore invaded areas. Exploring the effects of plant traits and phylogeny on their 
associated mycorrhizal fungi as an important component of PMNS is an important 
step towards a more predictive understanding of plant-plant competition. 
 
 

4.2 Taxonomic profile of bacterial community (II) 
We characterized the bacterial communities associated with root tips of Alnus 
species and soil eukaryotic communities. We found 3694 OTUs from the root tips 
of Alnus spp. belonging to 36 bacterial phyla. The top 10 most abundant phyla 
were considered as dominant phyla, including Proteobacteria (Alphaproteo-
bacteria, 13.2%; Gammaproteobacteria, 11.9%; Deltaproteobacteria, 9.2%), 
Bacteroidetes (11.1%), Planctomycetes (10.2%), Actinobacteria (9.0%), Chloro-
flexi (6.5%), Firmicutes (5.5%), Verrucomicrobia (4.8%), Acidobacteria (4.7%). 
Other phyla accounted for 13.9% of OTUs and 38% of total abundance (Fig. 2).  
 

 
Figure 2. The proportion of phyla dominate the bacterial communities across the sites. 
A) The proportion of bacterial phyla detected over sampling sites. B) Comparison of 
abundance (mean ± confidence interval) of dominant phyla C) Number of dominant and 
rare phyla relative to the total detected phyla D) Abundance of dominant and rare phyla 
relative to the total abundance (II; Fig. 1). 



20 

There were several significant correlations between the abundance of phyla and 
environmental variables (Fig. 3). For instance, Bacteroidetes dominated at higher 
latitudes in sites with higher Mg, pH, phosphate and Ca concentration, whereas 
negative correlations were observed between Bacteroidetes abundance and 
altitude and precipitation. Armatimonadetes was positively correlated with altitude 
but negatively with Mg, pH, and latitude. Furthermore, soil pH had a positive effect 
on the relative abundance of Bacteroidetes, Chloroflexi, Rokubacteria, and 
Verrucomicrobia, but a negative effect on Armatimonadetes. 
 

Figure 3. Spearman correlations between environmental variables and abundance of 16S-
based bacterial phyla (class for Proteobacteria) (II; Fig. S2) 
 
 

4.3 Taxonomic profile of soil eukaryome (I) 

Altogether 56.6%, 11.3%, and 17.7% of soil eukaryotic reads were assigned to 
fungi, protists, and animals, respectively (Fig. 2). Fungal reads were clustered 
into 2105 OTUs including 1000 Ascomycota (47.5% OTUs; 36.0% fungal reads) 
and 730 Basidiomycota (34.6% OTUs; 60.0% fungal reads). The 2558 protist 
OTUs belonged to 7 kingdoms, with SAR supergroups (Stramenopila, 9.91%; 
Alveolata, 43.99%; Rhizaria, 36.34%) and Amoebozoa (6.24%) accounting for 
96.48% of protist reads and 93.57% of OTUs. Animals comprised 1143 OTUs, 
with Annelida (5.7% OTUs; 17.3% reads), Arthropoda (48.3%; 54.3%), Nema-
toda (23.2%; 11.5%), and Rotifera (4.0%; 8.7%) collectively accounting for 
81.0% of OTUs and 86.0% of reads (Fig. 4). 
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The relative abundance of these groups varied among biomes (Table 1). Basi-
diomycota was significantly more abundant in tropical forests compared with 
boreal forests (p < 0.05). Alveolata was the dominant group in tropical forests, 
Rhizaria prevailed in Mediterranean biomes, and Stramenopila was relatively 
more abundant in temperate forests compared with tropical forests (p < 0.05). Of 
animals, Arthropoda and Annelida were relatively most abundant in tropical 
forests compared with temperate and savanna biomes. By contrast, Nematoda and 
Rotifera were most abundant in savannas (Table 1). 
 
Table 1. Cross-biome comparison of relative abundance of dominant taxa in each orga-
nism group using Kruskal-Wallis test with Benjamini-Hochberg’s correction for multiple 
comparisons (I; Table S2) 

 Nematoda
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.02 – – – 
Savannas 0.00 0.40 – – 
Temperate forests 0.07 0.23 0.05 – 
Tropical forests 0.14 0.08 0.02 0.40 

 Annelida
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.13 – – – 
Savannas 0.24 0.82 – – 
Temperate forests 0.41 0.05 0.13 – 
Tropical forests 0.06 0.02 0.05 0.05 

 Arthropoda
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.65 – – – 
Savannas 0.06 0.04 – – 
Temperate forests 0.49 0.29 0.10 – 
Tropical forests 0.11 0.18 0.00 0.00 

 Rotifera
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.33 – – – 
Savannas 0.04 0.01 – – 
Temperate forests 0.04 0.98 0.00 – 
Tropical forests 0.03 0.01 0.48 0.00 
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 Alveolata
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.93 – – – 
Savannas 0.93 0.93 – – 
Temperate forests 0.93 0.89 0.93 – 
Tropical forests 0.11 0.02 0.02 0.01 

 Rhizaria
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.12 – – – 
Savannas 0.19 0.31 – – 
Temperate forests 0.12 0.30 0.91 – 
Tropical forests 0.19 0.00 0.00 0.00 

 Stramenopila
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.57 – – – 
Savannas 0.57 0.18 – – 
Temperate forests 0.57 0.57 0.14 – 
Tropical forests 0.19 0.02 0.57 0.00 

 Ascomycota
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.85 – – – 
Savannas 0.85 0.83 – – 
Temperate forests 0.83 0.83 0.96 – 
Tropical forests 0.83 0.83 0.83 0.83 

 Basidiomycota
 Boreal forests Mediterranean Savannas Temperate forests 
Mediterranean 0.45 – – – 
Savannas 0.21 0.73 – – 
Temperate forests 0.06 0.49 0.64 – 
Tropical forests 0.01 0.06 0.06 0.06   

The values represent the corrected p value of Kruskal-Wallis test using Benjamini-Hochberg’s 
correction for multiple comparisons. Those are <0.05 considered significant (bolded). 
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4.4 Bacterial community variations (II) 

PERMANOVA and distance-based linear model revealed that Alnus phylogeny 
was the most important explanatory variable for structure and richness of root-
associated bacteria (structure: adjusted R2

adj = 0.172; richness: R2
adj= 0.185) 

(II, Table 1), whereas edaphic variables (e.g., soil Ca, Mg, N, P, K, pH) were of 
secondary importance (structure: R2

adj= 0.151; richness: R2
adj= 0.141) (II; Fig. 2). 

Spatial PCNM vectors (adjusted R2 = 0.132) explained OTU structure relatively 
more than climatic factors (MAT and MAP; R2

adj= 0.092), while climate  
(R2

adj= 0.116) was more effective predictor of OTU richness followed by spatial 
vectors (R2

adj= 0.082). To partition variation into pure and shared effects of 
different variable groups, we used variation partitioning analysis. This analysis 
confirmed that biotic fraction (phylogenetic vectors of Alnus and EcM) is the 
principal predictor of both OTU structure and richness (II; Fig. 3). 

Mantel test results also revealed significant relationships between bacterial 
community composition dissimilarity and biotic and abiotic variables. Among all 
variables tested, bacterial community dissimilarity showed the strongest corre-
lation with the phylogenetic distance of Alnus species (r = 0.33; p = 0.007), and 
to lesser extent, with phylogenetic distance of EcM fungi (r = 0.20; p = 0.042). 
Moreover, a significant negative correlation was found between phylogenetic 
distance and number of shared OTUs (II; Fig. 4 and Fig. 5C). This analysis 
showed that more phylogenetically distant Alnus species and EcM fungi harbored 
more dissimilar bacterial communities. In contrast, the bacterial diversity showed 
no correlation with phylogenetic distance of Alnus (R2

adj: −0.001148; p-value: 
0.3708) and EcM fungi (R2

adj −0.0007194; p-value: 0.3437), although the diver-
sity differed between Alnus species and EcM fungi (II; Fig. 4 and Fig. 5C). The 
climatic (r = 0.24; p = 0.001) and edaphic (r = 0.15; p = 0.001) also showed 
significant correlations with the bacterial community dissimilarity. 
 
 

4.5 Host preference of bacterial OTUs (II) 

SparCC network analysis revealed co-occurrence patterns of bacterial OTUs. The 
obtained network consisted of three components, representing three groups of co-
existing OTUs, sharing similar habitats. We then compared the relative abun-
dance of co-existing OTUs across their associated Alnus and EcM hosts. The 
results showed each component (OTU group) has significantly higher relative 
abundance in certain Alnus species (II; Fig. 6, Table 2), while no clear trend was 
observed for association between OTU groups and EcM species. For instance, 
thirteen OTUs clustered into the first ecological group, were mostly hosted by A. 
subcordata and A. incana. In contrast, OTUs belonged to the second ecological 
group tended to associated with A. fauriei, A. viridis, and A. rubra. Finally, the 
third bacterial group was found most in the root tips of A. serrulata, A. siebol-
diana, and A. nepalensis compared to other species. These OTUs were among the 
most abundant OTUs, such that they constitute more than 49% of the total 
abundance. Therefore, network analysis clustered abundant OTUs into three 
groups with different Alnus species. 
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4.6 Eukaryotic community variations (I) 

Mantel tests revealed that the structure of soil eukaryome is associated with both 
soil and climate variables. While the structure of fungal and protist communities 
was strongly related to soil pH, the community structure of animals was mainly 
related to mean annual precipitation (MAP), soil moisture and fire history 
(Table 3). More specifically, the community structure of Nematoda was mostly 
related to MAP and soil pH, whereas that of Arthropoda was mainly related to 
fire history, MAP, and soil moisture, and Annelida was more influenced by fire 
history followed by soil moisture (Table 3). 
 
Table 3. Spearman Correlations between community dissimilarity (Bray-Curtis) and 
environmental dissimilarity (Euclidean) based on Mantel tests (I; Table 1). 

Variables Fungi Protist Animal Nematoda Arthropoda Annelida 
pH 0.412**1 0.407** 0.254** 0.316** 0.169** 0.066* 
Moisture 0.217** 0.187** 0.300** 0.220** 0.272** 0.222** 
Soil carbon 0.1603** 0.201** 0.194** 0.150** 0.191** 0.139** 
MAP 0.269** 0.326** 0.345** 0.319** 0.276** 0.138** 
MAT 0.297** 0.378** 0.264** 0.242** 0.217** 0.067** 
Aridity index 0.130** 0.167** 0.054ns 0.085* 0.042 ns 0.024 ns 
Fire 0.158** 0.089** 0.298** 0.165** 0.287** 0.324** 

1Mantel r; **: p < 0.01; *: 0.01 < p <0.05; Non-significant: ns 
 
 
The PERMANOVA analysis revealed cross-biome differences in most soil 
organism groups including fungi (biome effect: R2

adj = 0.109, p < 0.01), protists 
(R2

adj = 0.129, p < 0.01), Nematoda (R2
adj = 0.127, p < 0.01) and Arthropoda 

(R2
adj = 0.098; p < 0.01) but not Annelida (I; Fig. 3). The biome effect was 

relatively stronger than continent effect for all organism groups (continent effect: 
fungi, R2

adj= 0.063; protists, R2
adj = 0.066; animals, R2

adj = 0.069; p < 0.01). 
Eukaryotic microbes and animals also showed contrasting latitudinal gradient 

of diversity patterns. Shannon index of fungi and protists showed a hump-shaped 
relationship with absolute latitude (I; Fig. 4). By contrast, Arthropoda and the 
total animal diversity showed a U-shaped pattern, with the highest diversity in 
tropical forests (I; Fig. 4), whereas the diversity of Nematoda and Annelida 
decreased linearly towards poles (I; Fig. 4). Our analysis also showed that larger-
bodied organisms exhibited a relatively stronger latitudinal gradient of diversity, 
compared to microbes (I; Fig. 4). 

Among all tested variables, MAP and soil pH were the strongest predictors of 
fungal diversity (R2

adj = 0.058; p < 0.001) and protist diversity (R2
adj = 0.098, 

p < 0.001), respectively. By comparison, MAP and mean annual temperature 
(MAT) were the strongest diversity determinants for Arthropoda (MAP: R2

adj = 
0.056; MAT: R2

adj = 0.098; p < 0.001), Annelida (MAP: R2
adj = 0.174; MAT 

R2
adj = 0.035; p < 0.001), and Nematoda (MAP: R2

adj = 0.127; MAT: R2
adj = 0.016; 

p < 0.001) (Fig. 5). 
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Figure 5. The relationships between the diversity of the eukaryotic organisms and environ-
mental gradients (I; Fig. S4). 
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4.7 Effects of ecological processes on  
community assembly (I) 

On average, larger organisms had a narrower niche compared with smaller 
groups, as reflected in the negative correlation between body size and niche 
breadth (r = −0.803, p < 0.05). Our analysis showed that drift was the most impor-
tant ecological process driving the community assembly of all organism groups. 
Dispersal was the second most important ecological processes for all organism 
groups, except for the smallest-bodied groups, Rhizaria and Basidiomycota. Drift 
affected more strongly animal groups (78.0%, 66.2%, and 75.5% for Annelida, 
Arthropoda, and Nematoda, respectively) compared with protist groups (47.9%, 
65.9%, and 59.7% for Alveolata, Stramenopiles, and Rhizaria, respectively) and 
fungal groups (44.1% and 38.4% for Ascomycota and Basidiomycota, respec-
tively) (I; Fig. 1). This points to a greater role of drift in shaping animal assem-
blages compared to eukaryotic microbes (I; Fig. 2a). By contrast, the relative 
importance of selection was higher for the smaller-bodied organism groups such 
as fungi (25.9%, 36.6% for Ascomycota and Basidiomycota, respectively) and 
protists (18.1%, 14.1%, and 20.4% for Alveolata, Stramenopiles, and Rhizaria, 
respectively) compared with animals (8.9%, 6.7% and 3.7% for Annelida, 
Arthropoda, and Nematoda, respectively). We found that body size was posi-
tively related to drift (R2

adj = 0.146, p < 0.01) and negatively related to selection 
(R2

adj = 0.195, p < 0.01) in community assembly (I; Fig. 1). By contrast, niche 
breadth was negatively related to drift (R2

adj = 0.073, p < 0.01) and positively to 
selection (R2

adj = 0.115, p < 0.01). Variation partitioning analyses supported this 
finding: more than 50% of the community structure of microbes (52% and 60% 
for fungi and protists, respectively) was explained by environmental factors and 
spatial vectors and their shared effects, whereas a large proportion of the com-
munity variation of Annelida (79%), Arthropoda (61%), Nematoda (62%), and 
all animals (69%) remained unexplained (I; Fig. 2b). Similarly, Mantel tests indi-
cated that fungi and protists were more strongly correlated with environmental 
dissimilarity matrix (Mantel r = 0.440 and r = 0.512 respectively; p < 0.001) 
compared with Nematoda (r = 0.275; p < 0.001), Arthropoda (r = 0.239; 
p < 0.001), Annelida (r = 0.076; p < 0.001), and the whole animal community 
(r = 0.315; p < 0.001) (I; Fig. 2c). Nevertheless, the community structure of 
microbes and animals showed comparable correlations with geographic distance 
(I; Fig. 2c, Fig. 4). 
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Figure 6. Relationships between the dissimilarity of eukaryotic communities (Bray–Curtis) 
and geographic distance (log) as well as environmental distance (Euclidean distance) (I; 
Fig. S3). 
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5. DISCUSSION 

5.1 Plant traits impacts on soil mycorrhizal  
mediating plant invasion 

Several studies have reported contrasting results regarding the effects of 
mycorrhizal fungi on plant invasion, from significant (Busby et al. 2013) to 
negligible (Rodríguez-Caballero et al. 2018) effects. Furthermore, there have 
been different observations regarding the mycorrhizal status of invasive plants 
and their potential invasiveness. For instance, Menzel et al. (2017) showed that 
mycorrhizal invasive plants can outcompete Non-Mycorrhizal (NM) invasive 
plants, whereas NM plant species comprise a greater proportion of invasive plants 
globally (Pringle et al. 2009). The relationship between mycorrhizae and plant 
invasion has been the subject of two review articles. Pringle et al. (2009) provided 
a framework based on the mycorrhizal status of invasive plants and the 
distribution and availability of mycorrhizae in novel habitats (biogeography and 
dispersal). The framework facilitates the prediction of invasiveness of an alien 
plant species based on whether the alien plant is NM, facultative, and flexible, 
i.e., able to associate with local mycorrhizal fungi in new habitats. In their review, 
Shah et al. (2009) highlighted the impact of the mycorrhizal status of invasive 
plants on the nutrient competition between native and invasive plants and the 
feedback between invasive plants and mycorrhizal fungi. These reviews and most 
of the research studies focused on the place of origin (invasive status) of plants and 
mycorrhizal status of invasive plants to explain the mycorrhizae-mediated plant 
invasion. 

We argue that these factors may not be sufficient to explain the potential 
invasiveness of a plant species and that other drivers may also be at play. We 
addressed this gap by focusing on research on how plant invasion is mediated by 
the plant mycorrhizal niche space (PMNS) of both native and invasive species, 
defined as their potential to exploit and shape the mycorrhizal fungi pool of a 
habitat depending on their dependence on mycorrhizal fungi status and functional 
traits. We characterized some biotic factors that influence PMNS. We suggest the 
relative contribution of mycorrhizal traits, qualitative and quantitative traits of 
plant species provide an opportunity to develop models to classify plant species 
into different PMNS. The model could help to predict the plant-to-plant compe-
tition in a particular habitat by comparing distance between their PMNS. A better 
understanding of the factors driving the mycorrhizal niche of plants will inform 
ecologists about the magnitude and direction of the role of mycorrhizal fungi in 
plant invasion trajectories as well as the impact of plant invasion on the structure 
of soil fungal communities in new habitats. 
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5.2 Biotic and Abiotic factors 

5.2.1 Host impacts on the bacterial community 

We evaluated the structure of bacterial communities associated with EcM root 
tips of Alnus species on a global scale, using comparable sampling, molecular 
analysis and data analysis methods (II). By controlling other factors, the results 
suggest that Alnus species phylogeny not only significantly affect bacterial rich-
ness (II; Table 1) but also strongly correlates with bacterial community structure 
(II; Fig. 4D), indicating the Alnus species phylogenetic imprint on bacterial 
communities associated with their mycorrhizal roots. Similar trends have been 
observed between phylogenetic relatedness of host plants and plant-associated 
and free-living soil fungal communities (Tedersoo et al., 2013; Yang et al., 2019; 
Koyama et al., 2019). In addition, several studies have been shown that host 
phylogeny is an important determinant of the root-associated bacterial commu-
nities (Naylor et al., 2017; Yeoh et al., 2017). 

Plant phylogeny also appears to be the main determinant of Alnus-associated 
EcM fungal and root nodulating Frankia actinobacterial community structure 
(Põlme et al., 2013, 2014). However, the observed effect on mycorrhiza-asso-
ciated bacteria is relatively weaker compared with these effects on the structure 
of EcM fungi (43%) and Frankia (37%) (Põlme et al., 2013, 2014). Such differen-
ces in the magnitude of host effects can be explained by two phenomena: both 
EcM fungi and Frankia form intimate relationships with host plants; and EcM 
fungi of Alnus are exceptional in their high reciprocal partner specificity in EcM 
symbiosis in general (Tedersoo et al., 2009; Wang et al., 2019). Other studies 
have similarly reported a stronger plant host control over root- and soil-associated 
fungal communities than bacterial communities (Barberán et al., 2015; Burns et 
al., 2015; Bergelson et al., 2019). The association between phylogenetic related-
ness of Alnus species and the structure of root-associated microbial communities 
could be attributed to the similarities in genes responsible for plant immunity and 
root morphology (Bergelson et al., 2019) and also in phylogenetically related 
functional traits (Wang et al., 2019). Taken together, phylogenetic signals from 
Alnus species explained a significant proportion of root-associated microbiome 
structure, although the magnitude of host phylogeny effects depended on the 
microorganism groups. 

We also found an association between EcM fungal phylogeny and the structure 
of bacterial communities (II; Fig. 5C and 5D). There is inconsistency among 
studies that have evaluated the structure of the bacterial communities inhabiting 
EcM root tips. Some studies reported a significant influence of EcM fungi in 
determining the assembly of bacterial communities (Nguyen and Bruns, 2015; 
Izumi and Finlay, 2011; Uroz et al., 2007), whereas others found no variations 
between bacterial communities associated with different EcM fungal species 
(Uroz et al., 2012; Bruke et al., 2008). These studies have been conducted on only 
one host plant species in relatively small sampling areas in different ecosystems. 
Furthermore, host plant genetic, growth stage and environmental variations, such 
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as N content (Marupakula et al., 2016, 2017) could alter the EcM fungi effects on 
their associated bacterial communities. For instance, the effects of some particular 
EcM fungi disappeared in illuvial soil with higher N content (Marupakula et al., 
2017). 

Despite EcM-associated bacteria being most closely associated with fungal 
hyphae and directly nourished by plant exudates modified by EcM fungi, the 
correlation strength for bacteria and EcM fungi was much lower than for bacteria 
and Alnus species phylogeny. Phylogenetically distant EcM fungi offer distinct 
nutrient-rich hot spots for their associated bacterial symbiosis by creating various 
chemical properties and releasing different secondary metabolites (Pent et al., 
2020). These contrasting phylogenetic-related chemical characteristics of fungal 
species enable them to harbor different bacterial communities to support their 
functional roles in ecosystems (Uroz et al., 2007; Pent et al., 2020). In our study, 
EcM fungal effects, at least partly, might be confounded with the strong effects 
of Alnus species in driving root-associated EcM fungal communities (Polme 
et al., 2013), meaning that it is unlikely that Alnus species independently 
influence EcM fungal and bacterial communities. Alnus species have been shown 
to determine EcM fungi, as microbial hubs (Agler et al., 2016), which in turn 
affect the bacterial communities. Therefore, ectomycorrhizosphere may also 
mediate the Alnus phylogeny effects on bacterial communities. Moreover, root-
associated fungi could alter root architecture (Ditengou et al., 2015) and the 
chemical profile of plant root exudates, which in turn alter the bacterial commu-
nities (Huang et al., 2014). In such a complex system, it remains unknown what 
the pure effect of each host is, but our results demonstrate the importance of 
phylogenetic relatedness of hosts, whether Alnus or EcM fungi on the assembly 
of their associated bacterial communities. 

Alnus species and EcM fungi harbor bacterial communities from the soil 
microbiome reservoir, which is in turn are shaped by abiotic variables especially 
soil pH (Philippot et al., 2013; Bahram et al., 2018; Erlandson et al., 2018). Not 
surprisingly, edaphic variables were the second most important factor deter-
mining bacterial structure and richness. The general trend is like associations 
between these variables and soil bacterial diversity, but the strength of relation-
ships is much weaker in the root, compared to soil-associated bacteria (Zhalnina 
et al., 2015; Bahram et al., 2018), possibly because of the confounding effect of 
biotic factors. This finding corroborates previous studies indicating that the struc-
ture of root-associated bacterial communities is less affected by soil conditions 
because of heterogeneous microenvironment provided by root exudates, root 
immune system, plant hormones and ectomycorrhizosphere (Lebeis et al., 2015; 
Lareen et al., 2016; Hu et al., 2018; Zhalnina et al., 2018). 

Network analysis revealed significant co-occurrence patterns for three groups 
of OTUs, which consisted of thirty, sixteen and thirteen abundant taxa. The 
relative abundance patterns showed that OTUs within each group associated with 
specific Alnus species (host preference clusters), but this was not the case for 
EcM fungi. This evidence corroborates the capability of the Alnus species to 
select bacterial communities, and also indicates host preference of most abundant 
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bacterial taxa. At the bacterial family level, there are only a few overlapping taxa 
between host preference clusters: Beijerinckiaceae and Chitinophagaceae were 
common families in group one and three, and Burkholderiaceae family were 
found in all three clusters (Table 2). The host preference of bacterial taxa could 
be related to their particular functions in the Alnus species as plant selection of 
bacterial community is based on the functional traits of bacteria rather than their 
taxonomic structure (Yan et al., 2017). For instance, species of Sphingomona-
daceae family are known to be able to enhance plant growth under various abiotic 
stresses such as salinity and drought (Asaf et al., 2020) and Flavobacteriaceae 
spp. tend to enhance plant defense (Kolton et al., 2014). Species of Burkhol-
deriaceae are known to increase disease resistance by producing antimicrobial 
compounds against plant pathogens (Riera et al., 2017) and express genes 
encoding host plant resistance (Zhang et al., 2017), and certain families (e.g., 
Xanthobacteraceae, Halomonadaceae and Rhizobiacea) are putative N-fixers. 
These data suggest that Alnus species associate with both nodulating Frankia 
actinobacteria and certain free-living EcM-associated proteobacteria that have a 
capacity to fix atmospheric N. The contribution of these free-living bacteria to 
their host’s N budget in the mycorrhizosphere remains to be determined. Taken 
together, co-occurrence of root-associated bacterial phylotypes could be attri-
buted to the selective power of host plant and host preference of bacterial taxa. 

 
 

5.2.2 Abiotic impacts on soil eukaryotes 

Our global study indicates that biome type, climate, soil factors, and fire history 
may all affect the eukaryome structure, but their impact differs among major 
groups of organisms. All studied soil organism groups (except Annelida) ex-
hibited differences in community structure across biomes, but the effect of con-
tinents was relatively weaker, supporting the importance of climate and vege-
tation type in shaping the eukaryome (Bahram et al., 2020; van den Hoogen et 
al., 2019; Nielsen et al., 2010; Oliverio et al., 2020; Tedersoo et al., 2014; 
Wilschut et al., 2019). 

Our results suggest that organism groups with different body sizes and niche 
breadths respond differently to environmental variables. The community structure 
of microbial groups was affected more strongly by soil pH, whereas MAP, soil 
moisture, and fire history were the main determinants of animal groups (Table 3). 
Microbial responses to environmental variables have also been shown to depend 
on gross morphology and microbial domain (Daws et al., 2020). Other studies 
have reported different environmental variables underlying the distribution of 
bacteria and fungi (Bahram et al., 2018), as well as between bacteria and protists 
(Oliverio et al., 2020; Xiong et al., 2021). Thus, it is tempting to speculate that 
traits such as body size and thereby niche breadth may determine how soil 
organisms respond to environmental change. 

Different groups of small eukaryotes differed in diversity patterns in relation 
to latitude (I; Fig 4), which are partly related to the prevalence of different edaphic 
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and climatic predictors of diversity (Fig. 3). Similarly to aboveground macro-
organisms (Gaston, 2000) and in line with the known effect of climate on soil 
animal diversity (Bastida et al., 2020), soil animal diversity increased towards the 
equator with increasing MAT and MAP. Conversely, the diversity of protists was 
mainly driven by soil pH, which is only weakly related to latitude. Similarly, a 
regional-scale study demonstrated that soil properties, particularly soil pH, 
determined soil microbial diversity but not animal diversity (George et al., 2019). 
Furthermore, there was a positive relationship between the strength of latitudinal 
diversity gradient and body size, which corroborates previous meta-analyses on 
a wide range of organisms (Hillebrand & Azovsky, 2001; Kinlock et al., 2018). 
Taken together, both the shape and strength of the latitudinal diversity gradient 
appear to depend on organisms’ body size and their associations with environ-
mental variables. 
 
 

5.3 Niche and neutral processes 

Our data indicate that the relative effects of ecological processes differ among 
organism groups within the soil eukaryome, which could be partly ascribed to the 
differences in body size as well as niche breadth. Despite their wider niche breadth 
and smaller body size, the community structure of fungi and protists was deter-
mined more strongly by deterministic processes (heterogeneous and homo-
geneous selections) compared with animals. This finding suggests that microbes 
with broader niches may be able to adapt to broader ranges of environmental 
conditions globally (Lennon et al., 2012). In line with this result, deterministic 
processes showed relatively stronger effects on the assembly of bacterial commu-
nities, with higher dispersal rate, compared to fungal communities (Powell et al., 
2015). Higher dispersal rates along with more rapid population growth rates, 
resulting from a smaller body size, can lead to relatively stronger deterministic 
processes, through better abilities to arrive at new habitats and faster establish-
ment. In addition, smaller organisms respond more rapidly to environmental 
change (Korhonen et al., 2010; Vellend et a., 2014). By contrast, a lower dispersal 
rate may hamper species to colonize various environmental conditions and thus 
reduce the effects of environmental selection on community assembly (Leibold 
et al., 2004). Compared to microbes, animals are known to be less abundant and 
diverse in soils (Decaëns, 2010), which may contribute to the greater stochasticity 
in their community structure (Jia et al., 2018) due to their narrower niches 
(Hanson et al., 2012). Alternatively, larger-bodied, less abundant, and less wide-
spread organisms are probably more prone to extinction (Fodelianakis et al., 
2021) and thus show more stochastic distribution patterns compared to smaller-
bodied taxa (De Bie et al., 2012; Nemergut et al., 2013; Zinger et al., 2019). 

Several studies have shown that larger-bodied organisms with narrower 
ecological niches are more strongly affected by deterministic processes (Chen et 
al., 2021; Farjalla et al., 2012; Luan et al., 2020; Soininen et al., 2013). Different 
ecosystems, geographical scales, and statistical approaches may affect the 
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relative importance of community assemblage processes (Evans et al., 2017; 
Forbes & Chase, 2002; Hanson et al., 2012; Ladau & Eloe-Fadrosh, 2019; Zhou 
& Ning, 2017). At the local scale, smaller organisms with higher dispersal rates 
are commonly ubiquitous and their community assembly is governed by 
stochastic processes due to small environmental gradients (Bahram et al., 2016). 
By contrast, broader environmental gradients and more diverse vegetation types 
could result in stronger environmental filtering of organisms with wider niche 
breadth.  
 
 

5.4 Limitations of study 

We note that accurate estimates of ecological processes remain a challenge 
because of the complexity of natural communities and their interactions as well 
as methodological limitations in inferring these processes. There are several 
limitations to inferring the relative importance of ecological processes using null-
model-based approaches. The results may vary depending on null model algo-
rithms, similarity metrics for randomization, selection of arbitrary thresholds 
between observed community dissimilarity, and the mean of the null distribution, 
spatial scale, and regional species pool (Ning et al., 2019). Therefore, the results 
should be cautiously interpreted on a relative basis (Zhou & Ning, 2017) such as 
our relative comparison among organism groups. 

We also note that since null model-based β-deviation might be influenced by 
sampling effort (Bennett & Gilbert, 2016; Xing & He, 2021), we performed null 
model tests with and without rarefaction. Although rarefication led to the 
overestimation of drift processes, we observed very similar patterns (Fig. 7). It is 
in line with a previous study showing that rarefication, as a random sub-sampling 
process, added artificial stochasticity to the results of the iCAMP framework, 
compared to the original communities (Ning et al., 2020). Sampling effort might 
also have an effect on the variations and assembly mechanisms of animal com-
munities, especially for low abundant groups (Jia et al., 2018; Lynch & Neufeld, 
2015). In addition, some limitations regarding the used primers and sequencing 
depth in uncovering certain eukaryotic groups (Tedersoo et al., 2015), especially 
the low resolution of 18S region for targeting animal groups (de Groot et al. 2016) 
may contribute to higher stochasticity in community assembly of animal groups. 
16S and 18S rRNA sequencing allow us to detect organism groups only at the 
coarse taxonomic levels, which is a limitation to explore distribution patterns at 
the genus and species levels. More sampling sites, sequencing depth and reso-
lution together with experimental studies are needed to obtain more confident 
results for a global-scale assessment. 
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Figure 7. The importance of ecological processes in the community assembly of fungi, 
protist and animal with and without rarefication (I; Fig. S5). 
 
 
Further, an adequate phylogenetic signal is necessary for the null model-based 
approach to infer ecological processes (Stegen et al., 2012, 2013). Within-bin 
phylogenetic signal test showed that the phylogenetic distance of most (but not 
all) of the bins of organism groups significantly correlated with the Euclidean 
distance matrix of at least one environmental factor (I; Table S2). In the previous 
study with simulated microbial communities, iCAMP showed robustness to this 
level of low phylogenetic signal, and the accuracy and precision were still adequate 
(>0.8) although indeed reduced (Ning et al., 2020). 
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6. CONCLUSION 

My thesis provides evidence for plant-belowground interactions, as well as soil 
eukaryome variations over environmental and spatial changes at large scale studies. 
The main conclusions from these studies follow. 
 
• We introduced PMNS as a plant’s ability to exploit and shape the mycorrhizal 

fungal pool depending on its dependency on mycorrhizal fungi association 
status and, plant functional traits. PMNS of plant species may enable us to 
better predict soil mycorrhizal fungi communities in a particular habitat (III). 

 
• Our observational study on the root tips of Alnus species demonstrates the 

associations between plant phylogenetic distance and their microbial com-
munity variation. The Alnus phylogeny effect on the associated bacterial 
community structure was weaker compared with that on EcM fungi and 
Frankia (Põlme et al., 2013, 2014), which we attribute to more intimate 
associations in the latter groups and the potentially blurring effect of EcM 
fungal species (II). 

 
• Co-occurrence of root-associated bacterial phylotypes could be attributed to 

the selective power of host plant and host preference of bacterial taxa (II). 
 
• In contrast to soil, biotic variables were relatively more important in shaping 

root-associated bacterial communities (II). 
 
• Our global survey suggests that drift is a key ecological process in shaping 

global community assembly of soil eukaryotes, but its relative strength 
depends on functional traits such as organism’s body size and niche breadth. 
These functional traits also determine the strength and direction of the 
association of soil organism groups to environmental effects and latitude (I).  
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SUMMARY 

Distribution of belowground biodiversity in response to changes in biotic and 
abiotic factors is critical not only for protecting these communities but also for 
predicting their potential responses to environmental changes. Belowground 
microbial and animal organism groups significantly regulate aboveground bio-
diversity and the functioning of terrestrial ecosystems. Despite this, our knowl-
edge on belowground biodiversity still is much less than aboveground than 
diversity and structure of aboveground communities. My thesis focused on the 
role of both biotic (e.g., phylogeny and traits of plant and ectomycorrhizal 
species) and abiotic factors in belowground biodiversity. By conducting review 
and research studies, we examined how spatial, environmental, and plant species 
changes affect the belowground composition and diversity and what ecological 
processes underlie the community variations in association with organism 
functional groups. We introduced plant mycorrhizal niche space (PMNS) as a 
plant’s ability to exploit and shape the mycorrhizal fungal pool depending on its 
dependency on mycorrhizal status and plant functional traits. We provide a model 
to classify plant species into different PMNS, helping to predict soil mycorrhizal 
fungi community in a particular habitat by comparing PMNS distance between 
plant species. Further, we aimed to determine the relative contributions of Alnus 
species and their associated mycorrhizal fungi, spatial, edaphic and climatic 
factors to the structure of root-associated bacterial communities. We used high-
throughput identification of bacteria based on 369 ectomycorrhizal root tips of 19 
Alnus species from 85 sites across the globe. We found that the Alnus species 
phylogeny was the primary determinant for the composition of root-associated 
bacterial communities, followed by edaphic, spatial and climate variables. In 
addition, we found Alnus species-specificity for some highly abundant bacterial 
phylotypes. We also conducted a molecular analysis of 193 composite soil 
samples spanning the world’s major biomes to provide a holistic understanding 
of the processes shaping the global distribution of soil fungi, protists, and animals 
(i.e., the eukaryome). Our analysis showed that the importance of selection 
processes was higher in the community assemblage of smaller-bodied and wider 
niche breadth organisms. Soil pH and mean annual precipitation were the primary 
determinants of the community structure of eukaryotic microbes and animals, 
respectively. We further found contrasting latitudinal diversity patterns and 
strengths for soil eukaryotic microbes and animals. Taken together, this thesis 
shows the role of plant functional traits in structuring soil mycorrhizal commu-
nities mediating plant-to-plant competition such that there is a negative relation 
between the similarity of PMNS and the role of mycorrhizal fungi in plant 
invasion and alteration of mycorrhizal fungi following invasion. It also highlights 
the importance of biotic variables in shaping root-associated bacterial commu-
nities and shows that different processes underlie root-associated and soil 
bacterial communities on a global scale. Finally, our results point to a potential 
link between body size and niche breadth in soil eukaryotes and the relative effect 
of ecological processes and environmental factors in driving their biogeographic 
patterns. 
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SUMMARY IN ESTONIAN 

Mullaorganismide biogeograafia 

Maa-aluse bioloogilise mitmekesisuse jaotumine vastavalt biootiliste ja abiootiliste 
tegurite muutustele on kriitilise tähtsusega mitte ainult nende koosluste kaits-
miseks, vaid on oluline ka prognoosimaks, kuidas need kooslused keskkonna-
muutustele võivad reageerida. Maa-alused mikroobsete ja loomsete organismide 
rühmad reguleerivad maapealset bioloogilist mitmekesisust ja maismaa-
ökosüsteemide toimimist. Sellest hoolimata on meie teadmised maa-alusest bio-
loogilisest mitmekesisusest palju väikesemad kui teadmised maapealsete koos-
luste mitmekesisuse ja struktuuri kohta. Minu doktoritöö keskendub nii biootiliste 
(nt taimede ja ektomükoriissete seeneliikide fülogenees ja tunnused) kui ka 
abiootiliste tegurite rollile maa-aluses elurikkuses. Vaatluslikke ja rakenduslikke 
uuringuid tehes tuvastasime, kuidas ruumi-, keskkonna- ja taimeliikide muutused 
maa-aluseid kooslusi ja elurikkust mõjutavad ning millised ökoloogilised prot-
sessid on organismide funktsionaalrühmadega seotud koosluse varieeruvuse 
aluseks. Võtsime kasutusele taimede mükoriisa niširuumi (PMNS – plant 
mycorrhizal niche space) mõiste, mis tähistab taimede võimet kasutada ja 
kujundada mükoriissete seente kogumit, olenedes selle sõltuvusest mükoriisa 
staatusest ja taime funktsionaalsetest tunnustest. Lõime mudeli, mille järgi 
taimeliigid erinevatesse PMNS-idesse jaotada, aidates taimeliikide vahelise 
PMNS-i kauguse võrdluse abil ennustada mullas leiduvate mükoriissete seente 
kooslust konkreetses elupaigas. Lisaks seadsime eesmärgi määrata kindlaks 
perekond lepp (Alnus) liikide ja nendega seotud mükoriissete seente, ruumiliste, 
edaafiliste ja klimaatiliste tegurite suhtelise panuse juurtega seotud bakteri-
koosluste struktuuri. Kasutasime bakterite määramiseks suure läbilaskevõimega 
sekveneerimismeetodit. See analüüs hõlmas üle maailma 85 kohast kogutud 19 
lepaliigi 369 ektomükoriisset juuretippu. Leidsime, et lepaliikide fülogenees oli 
juurtega seotud bakterikoosluste peamine mõjutaja, millele järgnesid edaafilised, 
ruumilised ja klimaatilised muutujad. Lisaks leidsime, et mõned arvukad bakte-
rite fülotüübid on liigispetsiifilised teatud lepaliikidele. Samuti viisime läbi maa-
ilma suurematest bioomidest kogutud 193 liitmullaproovi molekulaaranalüüsi, et 
anda terviklik arusaam protsessidest, mis kujundavad mullaseente, protistide ja 
loomade (ehk kokkuvõttes eukarüoomi) globaalset levikut. Meie analüüs näitas, 
et valikuprotsesside olulisus oli suurem väikesemate ja laiema nišiulatusega 
organismide kooslustes. Mulla pH ja aasta keskmine sademete hulk olid vastavalt 
eukarüootsete mikroobide ja loomade koosluste struktuuri peamised määrajad. 
Tuvastasime, et eukarüootide rühmadel võivad esineda vastandlikud mitme-
kesisuse mustrid laiuskraadi grandiendil. Käesolev doktoritöö näitab taimede 
funktsionaalsete tunnuste rolli mulla mükoriissete koosluste struktureerimisel, 
mis vahendavad taimedevahelist konkurentsi nii, et eksisteerib negatiivne seos 
PMNS-i sarnasuse ja mükoriissete seente rolli vahel. Samuti rõhutab doktoritöö 
biootiliste muutujate olulisust juurtega seotud bakterikoosluste kujundamisel ja 
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näitab, et globaalses mastaabis on juurtega seotud ja mullabakterite koosluste 
aluseks erinevad protsessid. Meie tulemused osutavad ka potentsiaalsele seosele 
mulla eukarüootide keha (raku) suuruse ja niši laiuse vahel ning nende biogeo-
graafilisi mustreid juhtivate ökoloogiliste protsesside ja keskkonnategurite suhte-
lise mõju vahel. 
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