NEALT PROCEEDINGS SERIES
VoL. 3

Proceedings of the
Workshop on NLP for Reading and Writing
— Resources, Algorithms and Tools

November 20, 2008
Stockholm, Sweden
SLTC 2008

Editors

Rickard Domelj
Sofie Johansson Kokkinakis
Ola Knutsson
Sylvana Sofkova Hashemi

NORTHERN EUROPEAN ASSOCIATION FOR LANGUAGE TECHNOLOGY

Proceedings of the Workshop on NLP for Reading and Writing
— Resources, Algorithms and Tools
NEALT Proceedings Series, Vol. 3

© 2009 The editors and contributors.
ISSN 1736-6305

Published by

Northern European Association for Language
Technology (NEALT)
http://omilia.uio.no/nealt

Electronically published at
Tartu University Library (Estonia)
http://dspace.utlib.ee/dspace/handle/ 10062/4116

Volume Editors

Rickard Domeij

Sofie Johansson Kokkinakis
Ola Knutsson

Sylvana Sofkova Hashemi

Series Editor-in-Chief
Mare Koit

Series Editorial Board
Lars Ahrenberg
Koenraad De Smedt
Kristiina Jokinen
Joakim Nivre

Patrizia Paggio
Vytautas Rudzionis

Contents

o =] =T SR POSRPRPR iv
Koenraad de Smedt (invited speaker): NLP for writing: What has changed?.............. 1
Eva Lindgren & Kirk Sullivan: Keystroke logging — a didactic tool

for analysis and development of writing and language skills..............ccooceiiveriinennnne, 12
Cerstin Mahlow & Michael Piotrowski: Opportunities and Limits

for Language Awareness in TeXt EAItOrScccvviieiiiierie e 14
Sjur Ngrstebg Moshagen: A language technology test bench —

automatized testing in the DIVVUN PrOJECT.......cccveiii i 19
Kenneth Wilhelmsson: Automatic Variation of Swedish Text

DY SYNtACHIC FIrONTINGoviiiiiiecee s 22

Preface

New tools and media are creating new possibilities for people to communicate and
find information over the Internet in a multilingual, global society. This is reflected in
the fact that writers now write more in everyday life, typically create text directly on
the computer and on the Internet (e.g. on blogs and other Web 2.0 technologies), and
use new forms of writing in e-mails, web chats or SMS-messages on mobile phones.
This concerns not only adults at work, but also children and youth.

However, the new possibilities also put higher demands on our skills in using
language for achieving our communicative goals in different situations. If the
demands are not met, a great number of people will risk being excluded from
participation in the emerging information society. Of course, this will have
unfortunate consequences not only for the individual, but also for society at large.
Therefore, there is a growing need for support in reading and writing.

Certainly, there already exists writing tools such as authoring aids in word
processors and instructional support in writing education. However, existing solutions
have great difficulties meeting the growing need of support. In part, this is due to
technical limitations of the tools in processing language, but also to the fact that these
tools are poorly adjusted to different tasks, target user groups, genres and media.

Another unfortunate fact is that both research activities and commercial
improvements have been lacking until recently. During the last years, the situation has
changed to some extent, and several workshops at the largest NLP-conferences have
included this field. A short review of workshop proceedings shows that the methods
used are based on machine-learning, while rule-based methods are more or less
abandoned. This raises a question: Is this due to limited economical resources, or are
grammar checking methods based on machine-learning the future for the field? Apart
from spelling and grammar checking, many other technologies are knocking on the
door, including for instance information retrieval, and speech technology.

In short, the communicative situation and the role of written language have
changed, and so has the development of NLP-techniques; this brings new
technological possibilities to this field. The purpose of the workshop was to gather
people with experience in developing, studying and using such NLP-tools, and to
discuss how they can be developed further in order to better meet the needs of
language users today and tomorrow — at work, in school or elsewhere.

Eight papers were submitted for review. Four of them were accepted. They were
approved in consensus after having been reviewed and ranked by each of the
reviewers: Rickard Domeij, Sofie Johansson Kokkinakis, Ola Knutsson and Sylvana
Sofkova Hashemi. After revision, the papers are now published in these proceedings
together with a written version of Koenraad de Smedt’s invited speech.

We were both surprised and pleased about the interest for the workshop from
contributors and visitors. It confirms the impression that NLP for reading and writing
now gets more attention again after a period of little interest. As exemplified by the
contents of these proceedings, there is a wide spectrum of interesting and promising
work going on for the benefit of the readers and writers of tomorrow.

Rickard Domeij, Sofie Johansson Kokkinakis,
Ola Karlsson, Ola Knutsson and Sylvana Sofkova Hashemi

Workshop on NLP for Reading and Writing

— Resources, Algorithms and Tools

November 20, 2008, Stockholm, Sweden

Workshop webpage:
http://spraakbanken.gu.se/personal/sofie/SLTC_2008/SLTC_2008.html

Conference webpage:
http://www.speech.kth.se/sltc2008/

INVITED SPEAKER

Koenraad de Smedt, Univ. of Bergen, Norway.

ORGANIZERS

Rickard Domeij (rickard.domeij@sprakradet.se)
Language Council of Sweden, Institute of Language and Folklore

Sofie Johansson Kokkinakis (sofie@svenska.gu.se)
Institute for Swedish as a Second Language, Sprakbanken, Department of Swedish,
University of Gothenburg

Ola Karlsson (ola.karlsson@sprakradet.se)
Language Council of Sweden, Institute of Language and Folklore

Ola Knutsson (knutsson@csc.kth.se)
School of Computer Science and Communication, KTH

Sylvana Sofkova Hashemi (sylvana@ling.gu.se)
Department of Linguistics, University of Gothenburg

NLP for writing: What has changed?

Koenraad De Smedt (University of Bergen)

Workshop on NLP for reading and writing — Resources,
algorithms and tools. Stockholm, Nov. 20, 2008

It might appear that few advances have been made in proofreading technol-
ogy since the 1980s!. On the one hand, spelling and grammar checking have
become standard features in many kinds of applications that involve writing.
On the other hand, a number of advanced research ideas and results from the
1980s do not seem to have been applied or further pursued in newer research.
While there is continued research activity in the area of NLP for writing, the
scale of projects in this area is not what it used to be. The present moment
is therefore an opportunity to look back and reflect on what has been done
so far and what has changed?.

In the 1980s, several academic and commercial research groups in NLP
started to turn their attention to automatic proofreading or text critiquing.
One of the earliest large scale projects was the Writer’s Workbench (Macdon-
ald et al., 1982), followed by IBM’s EPISTLE project (Heidorn et al., 1982),
continued as CRITIQUE (Richardson and Braden-Harder, 1988), which was
intended to check and correct the spelling, grammar and style of business
letters in English. CRITIQUE uses a parser and grammar of English with
relaxation and backoff, and applied lexical substitution to easily confused
words. Figures 1 and 2 present screenshots from IBM terminals showing
CRITIQUE feedback on mistakes in a business letter.

ESPRIT project OS-82 ‘Intelligent Workstation’” was one of the earliest
European applied IT projects that included the development of a proofread-
ing tool. Under the name Author Environment, the tool was targeted at
business letters in Dutch and English. Like CRITIQUE, Intelligent Work-
station used a grammar and a parser with relaxation to correct grammatical

'In his summary submitted to the present workshop, Sjur Ngrstebg Moshagen writes
“Utviklinga av grunnleggjande sprakteknologiske verkty for vanlege brukarar, slik som gode
stavekontrollar og presis orddeling, har i praksis ikkje gdatt framover sidan 1980-talet.”

2The present contribution has a limited scope and does not intend to present an en-
compassing overview of past work.

errors. It combined grapheme-to-phoneme conversion with trigrams so as to
find similar-sounding spellings (van Berkel and De Smedt, 1988) and it pro-
vided single-click consultation of a dictionary and encyclopedia. The most
advanced functionality consisted of the production of textual variants, not
only by finding synonyms and related words, but also by changing from sin-
gular to plural and from active to passive and vice versa. The necessary
changes were propagated throughout the document by means of a grammar
spreadsheet. Figures 3 to 6 show examples of interaction with the Author
Environment.

In the 1990s, some new techniques were explored and new insights were
gained. Vosse (1994) built further on some techniques from OS-82, result-
ing in the comprehensive CORRIE system for Dutch spelling and grammar
checking, which was also used as the basis for the SCARRIE project, sup-
ported by the European Commission and aimed at Danish, Norwegian and
Swedish. Both CORRIE and SCARRIE offer advanced compound analy-
sis, which is very important for the targeted languages. Parsing at sentence
level was also included and functional, but the parser was not disambiguat-
ing, so that the number of ambiguities in authentic text remain a prob-
lem. GRANSKA (Domeij et al., 2000) for Swedish concentrated on grammar
checking, using an HMM disambiguating tagger, tokenizer and rules, and
generated a lot of exciting research, not only on techniques but also on user
acceptance.

In the 1990s, commercialization by Microsoft, Lingsoft and other compa-
nies began to take a hold. Microsoft developed a grammar API and started
to provide comments through red squiggles, dialogue boxes and the now
discontinued paperclip ‘Clippy’ with a speech bubble. However, part of the
targeted application area was moving faster than the technology. By the turn
of the millennium, the typing of business letters was no longer a major office
chore. Today, formal business letters have to some extent been replaced by
communication through new channels such as email and web-based interac-
tion, while also SMS must be mentioned as a new medium and voice input is
starting to become a plausible option. The need for basic spelling and gram-
mar checking remains, so that these functions have also become available in
email and browser text windows, but the need for advanced functions like
the grammar spreadsheet no longer seem important enough to justify their
further development. Dictionaries, thesauri and encyclopedias have become
available for free online, and Google can often be useful to check a word’s
spelling. Translation and summarization systems are also available online.

While the original target for the early dedicated proofreading systems
had disappeared, the interest in the relation between NLP and the writing
process remained strong and was explored in different ways. Experience with

CRITIQUE had already revealed that different groups profit differently: non-
professional writers reported that more than 80% of CRITIQUE’s suggestions
to them were correct or useful, against 41% of professional writers. Domeij
(1998) conducted a study and found that such tools can have a positive effect,
but different writers cope differently with these tools. On the one hand,
studies like these emphasize the importance of a thorough evaluation of NLP
tools for writing in practical use. On the other hand, the larger cognitive
and societal context in which writing takes place means that we must also
consider the promotion of writing ability in the context of language learning
and teaching and in relation to language policy issues.

Language learning and teaching started to become a target for NLP for
writing relatively early. Research in proofreading had soon emphasized the
distinction between mechanical and cognitive errors. Since the latter are
in an obvious relation to language ability as the result of learning, they
can be the target of various learning and teaching schemes. On the one
hand, second language learners with gaps in their knowledge of the language
may benefit not only from corrections but also from additional explanatory
material that comes with good proofreading systems. On the other hand,
native language learners are sometimes insufficiently aware of homophones
with different spellings in different grammatical contexts, e.g. Norwegian a
vs. og or French verbal forms ending in -er, -ez, or -é.

In the early 1990s, the Dutch company Cognitech developed several sys-
tems for spelling and grammar learning. Among these, SPELRAAM focused
on spelling, and especially homophones, in syntactic contexts. The system is
targeted at native speakers of Dutch and uses a decision tree to make learners
aware of the grammatical choices that influence a word form. Figures 7-9
are screenshots of this system.

More recently, dedicated writing tools for second language learners were
developed that combine proofreading with targeted pedagogical components.
The Grim system (Knutsson, 2005) is a prime example of this line of research.
By targeting the system to a specific audience, it is easier to optimize its use-
fulness. This presupposes empirical studies of writing processes and prob-
lems. As more data is becoming available, a systematic study of spelling and
grammar problems in authentic writing situations is becoming feasible. The
ASK project (Tenfjord et al., 2006) has collected a large number of Norwe-
gian essays by students of Norwegian as a second language. These have been
carefully error-coded and made searchable. Figure 10 shows a selection of
the corpus revealing adjective form errors, while figure 11 shows the different
distribution of some error types among different learner groups.

The second link concerns language policy, especially for languages that
have complicated spelling systems. Public bodies governing language policy

tend to be very interested in promoting good spelling practice among lan-
guage users. It is interesting that in the preparations for the Dutch spelling
reform in the 1990s, consideration was given to NLP applications that would
handle this spelling. Ultimately a simplification was achieved by establishing
a single official spelling for each word, replacing preferred and less preferred
variants. The even more complicated variation in Norwegian presented a
headache for SCARRIE. Eventually, the Norwegian partners in SCARRIE
solved this by establishing a limited set of subnorms and enabling adherence
to a chosen subnorm though sophisticated dictionary and grammar codings.
In the wake of this research, attention was drawn to the complications of the
subnorms and the fact that many allowed lexical variants do not appear to
be ever used (Rosén, 2000). A simplification of the variation in Bokméal was
adopted by Norsk Sprakrad in 2005 and there are plans for further empirical
investigations of the situation. It should also be mentioned that political
priorities have spurred the development of special writing tools to promote
the participation of people with language-related disorders in social commu-
nication. In Norway, companies like Include and LingIT have been active in
the development of such tools.

In conclusion, I would like to observe, firstly, that NLP for writing has
been a research field that has seen important shifts in its intended application
environments during the past couple of decades. Secondly, there are links
between NLP for writing and other fields that directly or indirectly benefit
from this research or vice versa, including language learning and teaching
and language policy. Finally, a holistic approach to writing is needed, where
NLP research better interacts with the study of cognitive aspects of the
writing process (including first and second language learning and language
disorders) and with an investigation of the changing environments for written
communication and our appreciation of correctly written texts also in the new
media.

References

Domeij, Rickard. 1998. Detecting, diagnosing and correcting low-level prob-
lems when editing with and without compuiter aids. Text Technology
8(1):12-25.

Domeij, Rickard, Ola Knutsson, Johan Carlberger, and Viggo Kann. 2000.
Granska: An efficient hybrid system for Swedish grammar checking. In
Proceedings of the 12th Nordic Conference on Computational Linguistics

(NoDaLiDa).

Heidorn, George E., Karen Jensen, Lance Miller, Roy Byrd, and Martin
Chodorow. 1982. The EPISTLE text-critiquing system. IBM Systems
Journal 21(3):305.

Knutsson, Ola. 2005. Developing and Evaluating Language Tools for Writers
and Learners of Swedish. Ph.D. thesis, Kungliga Tekniska hogskolan.

Macdonald, Nina H., L. T. Frase, P. Gingrich, and S. A. Keenan. 1982. The
Writer’s Workbench: Computer aids for text analysis. In IEEFE Transac-
tions on Communication (Special Issue on Communication in the Auto-
mated Office), vol. 30, page 105.

Richardson, Stephen D. and Lisa C. Braden-Harder. 1988. The experience
of developing a large-scale natural language text processing system: CRI-
TIQUE. In Proceedings of the 2nd Conference on Applied Natural Language
Processing, Austin, TX, 9—12 February 1988, pages 195-202.

Rosén, Victoria. 2000. Er norsk et naturlig sprak? In (). Andersen, K. Flgt-
tum, and T. Kinn, eds., Menneske, sprik og felleskap, pages 157-173.
Novus forlag.

Tenfjord, Kari, Paul Meurer, and Knut Hofland. 2006. The ASK corpus: A
language learner corpus of Norwegian as a second language. In Proceedings
of the 5th International Conference on Language Resources and Fvaluation
(LREC), pages 1821-1824.

van Berkel, Brigit and Koenraad De Smedt. 1988. Triphone analysis: A
combined method for the correction of typographical and orthographical
errors. In Proceedings of the 2nd Conference on Applied Natural Language
Processing, Austin, TX, 1988, pages 77-83. ACL.

Vosse, Theo. 1994. The Word Connection: Grammar-based Spelling Error
Correction in Dutch. FEnschede: Neslia Paniculata.

Figures

SAMPLEZ MEMO % CRITIQUE **

Dear

I am writing in behalf of Susan Hayes, who's application for

ideration
for this p ition EGE in a 00030
how 2=Accept 3=Exit 4 i omment 12=Summary

Figure 1: Screenshot of CRITIQUE proposing a correction (from a 35mm
slide courtesy of Stephen Richardson).

SAMPLEZ MEMO C1 ** CRITIQUE *=

- 08005
20006
eoqa7
00008
00009
00010
00011
00012
20013

00014

80015
00016

eaeLv

00018
00019
00020
00021
00022

00023
00024
p0025

00026

1=Show 2=Accept 3=Exit 4=Prev 5=Nxt b=Profile 9=Tree 10=Comment 12=Summary

Figure 2: Screenshot of CRITIQUE highlighting suspected errors (from a
35mm slide courtesy of Stephen Richardson).

Proudly we present this entirely new demonstration of the
English author-system in Muenchen.

This system that performs a very difficult task is an
extremely powerful tool for text-processing.

The person that gives you this demonstration will tell you something
about the usage and advantages.

The system is not surprised by this strenuous demonstrations.

An interesting seﬁlcnc This sentence is ungrammatical

nl-parser is the follow]
the system is not surprised by this strenuous demonstrations.

1 saw that he whom s

. this strenuous demonstrations

R W T ety e Head with wrong determiner (sing/plu)
INIL

«Correction proposal:
the system is not surprised by these strenuous demonstrations.

Figure 3: Screenshot of Author Environment proposing a diagnosis and cor-
rection.

Proudly we present this entirely new demonstration of the
English author-system in Muenchen

This system that performs a very difficult task is an

extremely powerful tool for text-processin
_operations gn text Ieyei

The person that gives you this demonstr spelling

about the usage and advantages. grammar
[find&replace_with propagate

The system is not surprised by these stre] style

¥ TP ¥ readability
An interesting sentence that will show yo index

nl-parser is the following statement.

1 saw that he whom she saw saw the saw that i saw.

L
HEES {Author environment) demo-eng.author »eddies-new-dir>author>author-environments>introd
[13:52:39 Your request of 6/27/88 13:46:57 ("Screen Hardcopy') has finished printing on Lase

rHriter II.]

INIL

Figure 4: Screenshot of Author Environment menu including ‘Find and re-
place with propagate’.

Proudly we present this entirely new demonstration of the
English author-system in Muenchen.

This system that performs a very difficult task is an
extremely powerful tool for text-processing.

The person that gives you this demonstration will tell you something
about the usage and adw.ramtages"‘E

o = :
nter the word to be substituted: SYSTEM
Enter the new word that will be susbstituted: SYSTEMS

The system is not surprised by | et

An interesting sentence that will show you the capabilities of our
ml-parser is the following statement.

I saw that he whom she saw saw the saw that i saw.

ZMACS (Author environment) demo-eng.author >eddies-new-dir>author>author-environnents>introd
[13:52:39 Your request of 6/27-88 13:46:57 ("Screen Hardcopy') has finished printing on Lase
ririter II.]

IL

Figure 5: Screenshot of Author Environment where a word is being replaced.

Proudly we present this entirely new demonstration of the
English author-systems in Muenchen.

These systems that perform a very difficult task are
extremely powerful tools for text-processing.

The person that gives you this demonstration will tell you something
about the usage and advantages.

The systemsflare not surprised by these strenuous demonstrations.

An interesting sentence that will show you the capabilities of our
nl-parser is the following statement.

I saw that he whom she saw saw the saw that i saw.

ZMACS (Ruthor envirenment) demo-eng.author >eddies-new-dir>author>author-environments>introd
Iove point

Figure 6: Screenshot of Author Environment showing the result of propagat-
ing a change from singular to plural.

GEB.WIJS?

TIJD=TEGENW?

Is het getal
enkelvoud 7

INF:RIJDEN
ZIN:Straks hij met de fiets naar het werk.

Klik het antwoord aan of druk op "J" of "N”

Figure 7: Screenshot of SPELRAAM showing how the user completes a
decision tree (from a 35mm slide courtesy of Gerard Kempen).

De Formule

De juiste vorm is:
tegenw. tijd enkv. 3e
GEB .WIJS? pers.
Hierbij hoort de formule:
T1JD=TEGENW? “stan+t"”. On de

Juiste vorn te maken moet
GETAL=ENKU? Je deze fornule toepassen

op RIJDEN.

Dat ga je doen op het

volgende schern, dat
OND=J LJ/JEAU? Het Kladblok heet.

Druk op een toets.

FZ: Uoorspeller

Figure 8: Screenshot of SPELRAAM showing a spelling rule for conjugation
(from a 35mm slide courtesy of Gerard Kempen).

e Het Kladblok =————=
Tegenw. Tijd & Gebied. Wijs Opgave
Infinitief : RIJDEN
Fornule: stan+t
Spellingsregel Stan: RIJD
U->F 2->S RIJD
Stap

Voeg de juiste uitgang aan

Ueruaagingsel het woord toe.
+T iR

Spellingsregel
YY->¢

INF :RIJDEN
ZIN:Straks hij met de fiets naar het werk.

F1:Grann F10:Menu || FZ: Uoorspeller F3: Gok

Figure 9: Screenshot of SPELRAAM giving spelling advice for conjugation
by applying a rule (from a 35mm slide courtesy of Gerard Kempen).

10

Korpuset: ASK, Sok: @[type="* F .*' & features="* adj .*' & document!="no.*']

Treff 1- 35 av 3911. | [+ Vis kun ett treff per sic | neste 35 teff | | treff: | [kwic

| Hjemmeside

dokument
€n200312-0338
en200401-h0624
po200401-h0612
€n200310-h0549
ru200305-h0493
vi200406-0852
ty200205-h0244
ty199706-0965
ru200205-h0290
nel99706-0922
ty199706-0974
€n200305-h0441
en200305-h0441
ty199706-0908
en200310-h0579
po200105-h0144
ty200205-h0219
nel99706-0922
ru200205-h0273
se200105-h0147
ne200012-0396
5e200205-h0285
ru200310-h0554
en200306-0309
po200305-h0473
en200210-h0331

321KWIC1 23

&r sonn til naboen min fikk mobiltelefon til <sic> 10ars
:astiske foreldre, kan det vaere f vanskelig. <> <sic> Adoptert
nsket av mora si men ogsd ble gitt bort av «sic> adoptive
tror jeg at vi, enkelt og greit har blitt mer «sic> aggresiv
:ende vektet. <s» Vi er utsatt for et ganske <sic> agressivt
for eksempel § g4 pd bussen uten kort er <sic> akseptabel
p> <s> Jeg ser ingen sammenheng mellom <sic> akti

1 vaere nokk. <s> Og hvis man vil virk e lig «sic> aktif

- Den vinner som er den fortest, den mest «sic: aktiv

* kan vaere morsomt for & bruke denne tid <sic> aktiv

land. <s» Spesiellt i sommeren er vi veldig <sic> aktiv

4 lzere pé skolen hvordan & leve sunn og <sic> aktiv
1esker er mye opptatt, er de ikke fysikalsk <sic> aktiv
tetet med AL <p> s> Menneskerne som er «sic> aktiv
ndrere. «s> Norske politiker mé foreta noe <sic> aktiv

<s» Ansatte i den bransjen bruker kroppen <sic> alktiv
1y jobb. <s» For kvinner som ikke har vaert <sic> aktiv
- og andre slektninger hvem som feler seg «sic> aktiv
na ha ansvar for barn? s> De ville ha mer <sic> aktiv
t samfunn s3 ma hele det samfunne vaere <sic> aktiv

<s» Jeg er veldig opptatt med fotball, bide <sic> alktiv
an livsstil. <s» Den bruker bde folk som er <ic> aktiv

> Nar de vil finne seg en jobb, mé de veere <ic> aktiv
ne vre. «p> s> Jeg liker dette for vi har et «ic> aktiv
kke. «p» <53 Jeg tror at det er viktig & veere «sic aktive
erikansk kultur og mennesker. <s> De kan «sic> aktivt

bursdag </sic> sin. </s> Hiemme, i STED, di
</sic> barn har vanligvis lyst til & fa vite on
foreldre </sic:? </s» Det kan skade barnet f
</sicx i vare kjereméate og jeg tror at dette
</sic» reklame av varer med hayt innhold ;
<fsic>. <fs> Skilsmisse gker,... Mange vil no
</sic> mennesker som Ikke alltid har darlig
«fsic> vil bidra i dette projektet s kann mé
«/sics, som kan gjore flere ting samtidlig. <
</sic>. <fs> Det er jo mye bedre at de kan ¢
<fsic>. <fs> Vi bli delt | flere grupper fra ca.

«fsic>. </s> Hyis det er moro & vaere aktiv o
«/sics. «/s> Mange mennesker jobber i jobb
«/sic> e med Al og andre menneskerettigh
«/sic» for & forandre pa dette og gjevne de
</sic> hele dagen. «/s> De som er unge har
«fsic> 1 yrkeslivet i flere ar, er det nesten u
<fsic> kan gjere noe. </s> Kanskje du har s
«fsic> liv, & bli samme medlem av samfunr
«/sic> med det. /s> Folk kan kanskje bli hj
</sic> og passiv. </s> Jeg leser nesten alt ot
<fsic> og lever fort og folk som er passiv og
</sic> selv, vise interesse til arbeidsgiverer,
«/sic> sosial liv og vi finne vi feler ikke ensc
«/sic>. </s> Folk skal drive med idrett. De sk
bli en </sic> del av samfunnet istedenfor bi

= | bredde: [250px = | _Lastned || _Nyttsak

feiltype korreksjon
ORTF |tidirs|tifirsdagen|

F |Adopterte|

SPLF |adoptivforeldre|adoptiviore
ORT F |aggressiv|aggressive|

F |agressiv|

F PUNCM |akseptabelt|,|
ORTF |aktiv|aktive|
ORTF |aktiv]aktivt|
F Jaktive|
F Jaktivt]

F |aktive|

F |aktivt]

F |aktive|

F |aktive|

F Jaktivt]

F Jaktivt]

F |aktive|

F |aktive|

F |aktivt]

F Jaktivt]

F Jaktivt]

F |aktive|

F |aktive|

F |aktivt|

F Jaktiv|

F Jaktiv|bli en aktiv|

Figure 10: Screenshot of KWIC search result for wrong forms of adjectives

in ASK.

Figure 11: Frequencies of two error types in ASK,

targetmatch absolutt relativ

type lang frekvensfrekvens
[~ |F engelsk 634 0.16211
rIF tysk 484 0.12375
rIF spansk 480 0.12273
I~ IF nederlandsk | 453 0.11583
I~ IF polsk 424 0.10841
rIF russisk 395 0.10100
I IF serbokroatisk| 380 0.09716
I IF albansk 235 0.06009
I IF somali 227 0.05804
I IF vietnamesisk| 207 0.05293

target match absolutt relativ

itype lang frekvens frekvens
[T |ORT serbokroatisk| 1976 0.12869
[T |ORT polsk 1864 0.12139
[T |ORT spansk 1825 0.11885
[T|ORT engelsk 1746 0.11371
[T|ORT albansk 1602 0.10433
[T|ORT tysk 1589 0.10348
[T |ORT russisk 1565 0.10192
[T |ORT nederlandsk 1534 0.099%0
[T |ORT somali 1013 0.065%7
[T |ORT vietnamesisk| 652 0.04246

grouped according to

mother tongue: Wrong form of adjective (left); orthographical error (right).

11

Keystroke logging — a didactic tool for analysis
and development of writing and language skills

Eva Lindgren and Kirk Sullivan
Umea University
Sweden
eva.lindgren@educ.umu.se, kirk@ling.umu.se

Abstract

This paper presents several studies in
which keystroke logging has been
used as a didactic tool for writing
and language development. Key-
stroke logging, as presented here,
provides learners with a tool for
analysis and reflection on their own
written production and teachers with
a tool for analysis and individual
feed-back. The paper aims to out-
lines the theoretical assumptions be-
hind the studies, discuss the impact
of keystroke logging on writing and
language development and critically
examine the results from a class-
room perspective.

1. Keystroke logging

Keystroke logging is a method that is rep-
resented though a number of software pro-
grammes (e.g. JEdit, Scriptlog, Inputlog,
Translog) which all share the basic com-
mon principles of recording every key-
stroke and mouse action a writer under-
takes during a writing session. The pro-
grammes typically include a replay func-
tion and various statistics about, for exam-
ple, pauses and revisions. The data enables
export to other tools for visualisation and
statistical analyses.

1.1 An awareness-raising tool

When used retrospectively, the replay
function provides writers with an opportu-
nity to observe their own writing process
in detail. The main advantages of such an

12

approach are 1) that learners’ cognitive
load is reduced, 2) that noticing is pro-
moted, and 3) that learners are provided
with input on a suitable level. A group of
young writers improved their texts in their
first language after such a reflection and
discussion session (Lindgren, 2005). In
their foreign language retrospective replay
and discussion enhanced their awareness
of, in particular, stylistic aspects of writing
and the reader (Lindgren, Stevenson and
Sullivan, 2008).

1.2 A tool for analysis

For instructors, keystroke logging provides
a tool for analysis. Through the automatic
analyses of pauses and revisions, measures
of fluency can be easily calculated (Spel-
man-Miller, Lindgren and Sullivan, 2008;
Lindgren, Spelman-Miller and Sullivan, in
press). Measures of fluency include the
length of text span writers produce be-
tween interruption, i.e. a pause or a revi-
sion. By measuring fluency instructors
receive indications of writers development
in a first or a foreign language. Higher flu-
ency indicates that a writer has achieved a
higher level of automatisation of writing or
language aspects, such as spelling. Higher
level of automatisation of spelling enables
writers to focus more on other aspects of
writing, which results in better text quality.
Further, the automatic data can be used for
visualisation, which can assist both learn-
ers, individually or class, and instructors in
understanding what goes on during writing
(Lindgren and Sullivan, 2002; Lindgren,

Spelman-Miller, Lindgren and Sullivan,
2007).

2. Conclusions

The studies above present positive results
of the use of keystroke logging as a didac-
tic tool. However, they also raise questions
of how to best use the method to maximise
the result for each individual writer, how to
best provide feed-back and whether the
method is useful for all learners.

References

Lindgren, E. (2005). The uptake of peer-based
intervention in the writing classroom Rijlaarsdam,
G., Van den Bergh, H. & Couzijn, M. (Vol. Eds.),
Studies in writing, Volume 14, Effective learning
and teaching of writing, 2nd edition, (259-274).
Dordrecht: Kluwer Academic Publishers.

Lindgren, E. and Sullivan K.P.H. (2002). The LS
graph: A methodology for visualising writing revi-
sion. Language Learning 52(3), 565-595.

Lindgren, E., Sullivan, K.P.H., & Spelman Miller,
K. (in press, 2008). Development of fluency and
revision in L and L2 writing in Swedish high school
years 8 and 9. International Journal of Applied
Linguistics.

Spelman Miller, K., Lindgren, E., & Sullivan,
K.P.H. (2008). The psycholinguistic dimension in
second language writing: opportunities for research
and pedagogy. TESOL Quarterly.

Lindgren, E., Sullivan, K.P.H. & Stevenson, M.
(2008). Supporting the reflective language learner
with computer keystroke logging. In B. Barber and
F. Zhang (Eds.), Handbook of Research on Com-
puter Enhanced Language Acquisition and Learn-
ing (pp. 189 — 204). Hershey, NY: Information
Science Reference, |Gl Global.

Lindgren, E., Sullivan, K.P.H., Lindgren, U &
Spelman Miller, K. (2007). GIS for writing: apply-
ing geographic information system techniques to
data-mine writing’s cognitive processes. In G. Ri-
jlaarsdam (Series Ed.) and M. Torrance, L. Van
Waes & D. Galbraith (Vol. Eds), Writing and Cog-
nition: Research and Applications (pp. 83-96).
Amsterdam: Elsevier.

13

Opportunities and Limits for Language Awareness in Text Editors

Cerstin Mahlow and Michael Piotrowski
Institute of Computational Linguistics
University of Zurich
Zurich, Switzerland

{mahlow,

Abstract

In this paper we argue that the concept of
language awareness, as known from pro-
grammer’s editors, can be transferred to
writing natural language and word proces-
sors. We propose editing functions which
use methods from computational linguis-
tics and take the structures of natural lan-
guages into consideration. Such functions
could reduce errors and better support writ-
ers in realizing their communicative goals.
We briefly compare characteristics of pro-
gramming languages and natural languages
and their processing tools with respect to
their suitability for being used in language-
aware functions in editors. However, lin-
guistic methods have limits, and there are
various aspects software developers have
to take into account to avoid creating a so-
lution looking for a problem: Language-
aware functions could be powerful tools
for writers, but writers must not be forced
to adapt to their tools.

1 Introduction

Writing is a daily task for a great number of peo-
ple. However, today’s word processors offer only
limited support for writing and editing: Most func-
tions are character-based and thus force writers
to translate high-level goals into low-level func-
tions of the editor. This causes typical errors, e.g.,
missing verbs, agreement errors, or wrong word
order. Functions improving the “brain-to-hand-
to-keyboard-to-screen-connection” (Taylor, 1987,
p- 79) as proposed by Dale (1989; 1996) or Mahlow
and Piotrowski (2008) could help avoid several
types of errors. Additionally, as cognitive resources
are limited (McCutchen, 1996; Allen and Scerbo,
1983), language-aware functions could reduce the
effort needed to deal with word processors and help

14

mxp}@cl.uzh.ch

writers concentrate on their actual goals and remain
in control of their text. Writers should get inter-
active support during writing, very similar to the
support programmers get from their editors during
programming.

We will first describe the principles of language
awareness as they can be deduced from respective
functions in programmer’s editors and have a look
at the current situation in word processors. Then
we propose interactive editing functions operating
on linguistic elements and making use of tools and
methods of computational linguistics. From the
comparison of characteristics of programming lan-
guages and natural languages and the hence re-
sulting quality of the respective language process-
ing tools we will deduce opportunities and limits
language technologists have to be aware of when
implementing language-aware functions for word
processors.

2 Language Awareness in Editors

Both text written in natural languages (such as
English, German, or French) and computer pro-
grams written in programming languages (such
as Perl, Python, or C) have underlying syntactic
structures and are not merely strings of charac-
ters. In the context of programming languages,
text editors which are aware of this structure and
use this awareness to support the creation and edit-
ing of programs are referred to as syntax-directed,
language-sensitive, language-based, or language-
aware editors (Khwaja and Urban, 1993).

The ultimate goal of language awareness in pro-
grammer’s editors is to prevent errors in programs,
as the prevention of errors helps producing higher-
quality programs. Language awareness supports
programmers by giving them a better overview of
programs and by providing them with editing func-
tions operating on structural elements instead of
characters or lines.

In general, we can distinguish two types of
language-aware functionality: (1) Information func-
tions for highlighting individual language elements
and larger structures, or for displaying statistical
information regarding certain elements, which do
not change the text, and (2) operations for insert-
ing, reordering, modifying, or deleting elements,
i.e., functions changing the text. Both types of
functions operate on the elements defined by the
lexicon and the morphological and syntactical rules
of a concrete language.

Just as we can distinguish between formal lan-
guages (in this case: programming languages) and
natural languages, we can distinguish between two
major types of editors: Editors intended for writ-
ing computer programs (programmer’s editors) and
editors intended for writing natural-language text
(usually referred to as word processors). These two
types of editors can be seen as two instances of the
general class of text editors, each adapted to handle
writing, editing, and revising in specific languages.

We will now briefly analyze language awareness
in these two types of editors.

2.1 Language Awareness in Programmer’s
Editors

Programmer’s editors generally implement both
information functions and operations. Many editors
support different programming languages through
language-specific editing modes, which are either
activated automatically or can be selected by the
user.

Syntax highlighting is the most prominent in-
stantiation of an information function: Keywords,
variable names, and specific constructs can be high-
lighted using different colors or fonts. Program-
mer’s editors generally also help to ensure that
parentheses are properly nested, e.g., by highlight-
ing mismatches.

As instantiations of language-aware operations
we can typically find functions for deleting el-
ements, e.g., parenthesized expressions or com-
ments, for inserting or completing syntactic struc-
tures, such as conditional expressions or looping
constructs, and for selecting certain syntactic el-
ements (e.g., the current function definition) for
a subsequent operation. Some editors offer code
completion, i.e., the editor can complete an ini-
tial string typed by the user, either automatically
or upon request. The editor may take the context
into account; for example, in an object-oriented

15

programming language it may consider only the
names of those methods available for the particular
object.

Programmer’s editors also indent lines automati-
cally according to the syntax and may control the
insertion of whitespace and newlines (e.g., around
operators or after block-opening braces). In some
languages, such as Python, indentation serves to
indicate the block structure of the code. For lan-
guages like Perl, C, Java, or Lisp, indentation is not
mandatory but conventionally reflects the syntactic
structure, which is also marked by parentheses or
braces.

2.2 Language Awareness in Word Processors

Since programmer’s editors support developers
with specific functions for the programming lan-
guage being used, word processors could be ex-
pected to offer specific functions depending on the
language the writer is using.

However, unlike programmer’s editors, word
processors offer very few language-aware func-
tions: Almost all functions are based on characters
and lines. Thus, even state-of-the-art word pro-
cessors offer only a basic set of core operations
(e.g., select, cut, copy, paste, insert) (Piolat, 1991,
p- 262), (Sharples and Pemberton, 1990, p. 49),
regardless of the language the writer is using.

Checkers for spelling, grammar, and style, which
are nowadays available for various languages in
many word processors, provide a certain level of
“language awareness.” However, regardless of their
quality (Vernon, 2000; McGee and Ericsson, 2002),
they are essentially tools for post-writing: After a
draft is finished, they can detect errors and propose
modifications, but they generally do not support
writers during writing and editing, and thus do not
help to prevent errors.

This situation clearly is disappointing. Consid-
ering the fact that there already exist sophisticated
natural-language-processing methods and tools, we
think the time has come to add language-aware
functions to word processors as well.

3 Language-Aware Editing Functions in
Word Processors

Writers should receive interactive support from
their word processors, similar to the interactive
support programmers get. Supporting writers dur-
ing the writing and editing process reduces the
cognitive load and therefore helps avoiding errors.

Writers should be in control of their text, relying
on post-processing support only denies the fact that
writing is a very active and creative process.

We propose two types of functions operating
on linguistic elements, such as words, phrases,
or clauses. These functions are intended to work
analogously to the corresponding functions known
for programmer’s editors: (1) Information func-
tions for highlighting elements, such as verbs or
PP-attachments, or for providing writers with in-
formation about certain aspects of the text, such
as prepositions used, sentences without verbs, or
variants of multi-word expressions. Writers can
interpret the results themselves and decide how to
make use of them. (2) Operations for reordering,
modifying, or deleting linguistic elements. In or-
der to reduce the cognitive load, the number of
actions necessary to reach a specific goal should
be reduced drastically by combining sequences of
core operations into higher-level functions closer
to writers’ goals and their mental model of the task.
Examples would be the pluralization of an entire
phrase (a complex task for morphologically rich
languages as German), the reordering of conjunc-
tions, or the replacing of words or phrases through
the whole text (also a complex task for highly in-
flectional languages). See Mahlow et al. (2008) for
more details.

Both types of functions require linguistic knowl-
edge and linguistic resources. Linguistic knowl-
edge will influence the ideal combination of exist-
ing core operations into higher-level functions a
user can call with one keystroke: Reordering con-
juncts is a highly complex task if a writer has to
find the sequence of core operations on their own;
using one operation reduces the risk of producing
ungrammatical conjuncts. Linguistic resources will
be needed for operations that modify certain lin-
guistic elements: Pluralization of entire phrases
will obviously require morphological analysis and
generation.

4 Natural and Programming Languages

It is clear that there are significant differences
between programming languages and natural lan-
guages. Two important differences are:

1. The lexicon: The lexicon of programming lan-
guage is small and essentially closed. The
lexicon for a natural language is much bigger
and can be extended ad infinitum by morpho-
logical processes.

16

2. The syntactical rules: Syntactical rules for for-
mal languages are made a priori, i.e., prior
of creating a language. Users are not allowed
to change the rules. Syntactical rules for a
natural language, however, try to describe the
phenomena of a certain language a posteriori.
Natural languages “live,” i.e., users change
the rules as they are using the language — gen-
erally, native speakers are not even aware of
the rules. Linguists can only discover and
adapt the rules of a language afterwards by
observing the language.

Thus, as the lexicon of programming languages
is relatively small and — most importantly — closed,
functions for highlighting keywords, can be imple-
mented relatively easily. There are strict rules for
extending the “lexicon” of a language with variable
names (e.g., a name for a hash variable in Perl has
to begin with a “%”), so that these can generally
also be detected easily.

These properties of programming and natural
languages explain the difference in performance
of parsers for the respective types of languages:
Processors of programming languages can be im-
plemented easily, they are very sophisticated, work
very fast and deliver satisfying and reliable results.
Processors of natural language struggle with in-
complete rules, ambiguities, big and always incom-
plete resources, their results in general are not very
convincing, they need much time to deliver these
results, thus making them not very attractive for
interactive use — it is not acceptable for a writer to
wait several seconds for a phrase to be pluralized.

However, there exist morphological and syntac-
tical parsers for several natural languages which
work quite satisfactorily for restricted phenomena
or purposes. Additionally, nowadays computers
have sufficient processing power to reduce the time
needed to analyze word forms or generate phrases
drastically compared to the situation ten years ago.
We therefore propose to make use of those pro-
cessing tools in word processors in a similar way
programmer’s editors make use of parsers for pro-
gramming languages.

S Opportunities and Limits

5.1 Opportunities

Language-aware operations using syntactical and
morphological components could offer writers new
ways of working creatively with their texts: With

one click they could apply changes to their texts,
inspect the results, undo them, and try a different
change. They could concentrate on their goal, play
with words and phrases, and would not have to
care about how to realize these changes, would not
have to worry about forgetting one occurrence, and
would not have to keep in mind that other locations
may need changes because of the original change
(e.g., pluralizing the subject of a sentence requires
adjustment of the finite verb).

Like syntax highlighting and indentation in pro-
grammer’s editors assists programmers, the high-
lighting of specific linguistic elements could help
writers to get a better overview of the structure of
their text written so far or to identify characteris-
tics with respect to style, e.g., overuse of certain
conjunctions or identical beginnings of sentences.
When linguistic resources are carefully chosen and
cleverly combined with the existing core function-
ality of word processors, and when the principles of
the respective language are taken into account and
the available computing power is utilized, various
interesting scenarios for language-aware function-
ality emerge (see Mahlow and Piotrowski (2008)
and Mahlow et al. (2008)).

5.2 Limits

While today’s computers are capable of performing
analyses and generation of linguistic structures fast
enough to be suitable for interactive use, linguis-
tic components usually fail to produce results that
are 100% correct in terms of precision and recall.
Furthermore, for most of these components it can-
not be predicted whether the results will be correct.
When using them as basis for language-aware func-
tions in word processors, writers must be aware that
they should not blindly trust the system to avoid
frustrations similar to those often associated with
checkers.

A second limit are cases where linguistic re-
sources can deliver correct, but ambiguous results,
e.g., it may not be possible to determine the exact
category of a word form. The editing function then
cannot be executed automatically but has to inter-
act with the writer to resolve the ambiguity. For
example, the plural of the German word Mutter
‘mother; screw nut’ may either be Miitter or Mut-
tern, depending on which of the two meanings are
intended.

A third limit is the danger of concentrating on
aspects of (computational) linguistics rather than

17

on aspects of the writing process and on writers’
needs. For example, at first glance, it seems to be
obvious that only operations resulting in grammat-
ically well-formed structures should be allowed.
But, on the one hand, the structure may not (yet)
be completed and therefore not well-formed be-
fore executing an operation (e.g., when pluralizing
a phrase consisting only of a determiner and an
adjective, and the noun is added only after pluraliz-
ing). On the other hand, the relevant operation may
be used only as one step in a complex sequence:
After executing this operation more changes will
be applied, and the result is not the end result (e.g.,
a list of word forms, clearly not a phrase, shall be
pluralized, and some of these are then moved to
other parts of the text).

This has also been realized during the develop-
ment of programmer’s editors: Especially in the
1980s and 1990s there have been many attempts
at programmer’s editors which are not based on
characters and lines at all but where the program-
mer instead edits the abstract syntax tree of the
program directly (Khwaja and Urban, 1993), thus
ensuring that the program was syntactically valid
at all times. However, programmers did not accept
this type of syntax-directed editors; one important
problem was that it also prohibits invalid intermedi-
ate states, making editing very cumbersome (Neal,
1987). Current programmer’s editors are therefore
based on the textual program representation and
only provide assistance as described in section 2.1
above.

Syntactic variability may also be considered a
problem for language awareness. For languages
with free word order, such as German, we can have
sentences like:

(1) Ich gab dem Kind gestern einen Apfel.
(2) Gestern gab ich dem Kind einen Apfel.
(3) Dem Kind gab ich gestern einen Apfel.

All syntactical variants express the same basic
meaning, ‘yesterday I gave an apple to the child.’
Another example are passive and active versions
of a sentence. Obviously syntactic variants slightly
change the meaning of a sentence by changing the
focus, but they still express the same main idea.
Syntactic variants are one aspect of creativity in
writing.

However, similar phenomena also exist in pro-
gramming languages: Just as in natural languages,
one meaning can be expressed in different ways.

In addition, there are also many ways to layout the
code, e.g., by using more or less line breaks.

Programmer’s editors provide valuable support
for programmers without restricting their creativ-
ity by forcing them to use one specific syntactic
structure for expressing something. This would
in fact be impossible since the editor is not able
to predict what the programmer has in mind. The
same applies to natural-language editing.

6 Conclusion

We have presented the concept of language-aware
functions in word processors using methods and
systems from computational linguistics. They rep-
resent opportunities for supporting the writing pro-
cess, but developers should avoid concentrating
on technical aspects alone, expecting writers to
adapt to their tools, which would cause dissatis-
faction and ultimately rejection of the tools. The
goal clearly must be to support writers by lowering
the cognitive effort for complex operations and at
the same time allowing them to define their goals
and to be in control of their texts. This principle
has to direct the implementation with respect to
technology and usability. Today’s state-of-the-art
methods and tools for NLP and the available com-
puting power can be used — and should be used —
to develop language-aware functions for interactive
support in word processors.

In the LingURed project (see http://www.
lingured.info) we are developing prototyp-
ical implementations of various language-aware
editing functions. Depending on licences for the
used resources we will publish these functions un-
der an open source licence, and we will evaluate
them for usability and effectiveness together with
experts in writing research.

References
[Allen and Scerbo1983] Robert B. Allen and M. W.

Scerbo. 1983. Details of command-language
keystrokes. ACM Trans. Inf. Syst., 1(2):159-178,
April.

[Dale and Douglas1996] Robert Dale and Shona Dou-
glas. 1996. Two investigations into intelligent text
processing. In Mike Sharples and Thea van der
Geest, editors, The New Writing Environment: Writ-
ers at Work in a World of Technology, chapter 8§,
pages 123-145. Springer.

[Dale1989] Robert Dale. 1989. Computer-based edi-
torial aids. In Jeremy Peckham, editor, Recent De-
velopments and Applications of Natural Language

Processing, chapter 2, pages 8-22. Kogan Page Lim-
ited.

[Khwaja and Urban1993] Amir
Joseph E. Urban. 1993. Syntax-directed editing
environments: issues and features. In SAC ’93:
Proceedings of the 1993 ACM/SIGAPP symposium
on Applied computing, pages 230-237, New York,
NY, USA. ACM.

A. Khwaja and

[Mahlow and Piotrowski2008] Cerstin Mahlow and
Michael Piotrowski. 2008. Linguistic support
for revising and editing. In Alexander Gelbukh,
editor, Computational Linguistics and Intelligent
Text Processing: 9th International Conference,
CICLing 2008, Haifa, Israel, February 17-23, 2008.
Proceedings, pages 631-642, Heidelberg. Springer.

[Mahlow et al.2008] Cerstin Mahlow, Michael Pi-
otrowski, and Michael Hess. 2008. Language-
aware text editing. In Robert Dale, Aurélien Max,
and Michael Zock, editors, LREC 2008 Workshop
on NLP Resources, Algorithms and Tools for
Authoring Aids, pages 9-13, Marrakech, Morrocco.
ELRA.

[McCutchen1996] Deborah McCutchen. 1996. A ca-
pacity theory of writing: Working memory in com-
position. Educational Psychology Review, 8(3):299—
325.

[McGee and Ericsson2002] Tim McGee and Patricia Er-
icsson. 2002. The politics of the program: MS
Word as the invisible grammarian. Computers and
Composition, 19(4):453—470, December.

[Neal1987] Lisa R. Neal. 1987. Cognition-sensitive de-
sign and user modeling for syntax-directed editors.
In CHI ’87: Proceedings of the SIGCHI/GI confer-
ence on Human factors in computing systems and
graphics interface, pages 99-102, New York, NY,
USA. ACM.

[Piolat1991] Annie Piolat. 1991. Effects of word pro-
cessing on text revision. Language and Education,
5(4):255-272.

[Sharples and Pemberton1990] Mike Sharples and Lyn
Pemberton. 1990. Starting from the writer: Guide-
lines for the design of user-centred document pro-
cessors. Computer Assisted Language Learning,
2(1):37-57.

[Taylor1987] Lee R. Taylor. 1987. Software views:
A fistful of word-processing programs. Computers
and Composition, 5(1):79-90.

[Vernon2000] Alex Vernon. 2000. Computerized gram-
mar checkers 2000: capabilities, limitations, and
pedagogical possibilities. Computers and Composi-
tion, 17(3):329-349, December.

18

A language technology test bench — automatized testing in the Divvun
project

Sjur Nerstebe Moshagen
Norwegian Sami Parliament
Norway

sjur.moshagen@samediggi.no

Abstract

The presentation describes a language in-
dependent test bench for testing proofing
tools, and more generally language tech-
nology tools, where the testing is fully
automatized. The test results are trans-
formed into xml, and further to HTML.
The test bench is freely available as part
of the language technology resources in
the Divvun project' and Centre for Sami
Language Technology at the University
of Tromse”.

1 Introduction

The development of basic language technology
tools for regular end users, such as good spellers
and accurate hyphenators, has in practice not
progressed since the 1980s, especially within the
open source domain. All open source speller en-
gines of today are still list-based as they were in
the 70s — they all claim some sort of inheritance
from iSpell’, the (in)famous Unix speller devel-
oped originally for English. In the 80-ies the
two-level model was developed (Koskenniemi
1983), and further commercialised in proofing
tools by Lingsoft'. What happened in the 90s
was of course the development of grammar
checkers based on linguistic analysis, cf. the
SCARRIE project (de Smedt & Rosén 2000) and
the Constraint Grammar-based grammar check-
ers from Lingsoft (Birn 2000), but these are not
basic tools anymore, and we’ll keep them out of
the discussion in this article.

U http://www.divvun.no/

? http://giellatekno.uit.no/

3 http://fmg-www.cs.ucla.edu/geoff/ispell.html
* http://www.lingsoft.fi/

19

There are many reasons for this lack of devel-
opment, here we will present one cause: the lack
of systematic and comparable testing across lan-
guages and speller engines to enable easy and
automatic comparison of the qualities of avail-
able language technologies.

This has led to roughly four tiers in the proof-
ing tools market: 1) good, commercial tools for
the big languages — but based on closed source,
and with no independent and neutral quality ev-
aluation; 2) reasonably good tools for smaller but
rich language societies — still based on closed
source and no independent quality assessment; 3)
more or less bad tools for many languages, based
on open source; and 4) no tools for very many
languages.

To help solve this situation, one would need
an open, vendor-neutral test bench for proofing
tools, together with standardised measures for
the quality of these tools. That is what this paper
is all about.

2 The Divvun project and automatized

testing

The Divvun project develops proofing tools for
the Sami languages, and has so far released spell
checkers and hyphenators for North and Julev
Sami. An important secondary goal has been to
set up a good, language independent infrastruc-
ture to make it easy to add new languages, and
an important part of this infrastructure is a good
test bench for the tools we make.

In the following we will concentrate on the
testing of spell checkers, but we also support
testing of hyphenators, and the modular structure
of the test bench makes it easy to add support for
other tools as well.

The test bench takes three types of input:
XML formatted, as tab-separated lines of text, or

as generated or extracted data from our transdu-
cer lexicons. The XML format is used in corpus
files for correct-marked documents, and is auto-
matically added from a very simple mark-up sys-
tem[4] in a copy of the original document. An
example of this markup is shown in 1), and the
resulting XML is shown in 2).

1) Her er ein fiel$§(feil).
2) Her er ein <error
correct="feil”>fiel<error>.

The tab-separated data is used for regression
tests, typo tests, and word construction tests.
Finally we have a couple of specialised tests to
test the conversion from our Xerox-format-based
source code to the final proofing tools: baseform
tests and paradigm tests.

2.1 Data flow in the test bench

A simple diagram over how the data flows in the
test bench is shown in Figure 1.

2.2 How the test results are presented

The test output is read and parsed by a Perl
script, and transformed to a standard XML for-
mat. From the XML test reports, it is possible to
generate all sorts of reports — presently the only
supported output is a relatively simple HTML
page. In the future we hope to be able to generate
overview reports, cross-lingual comparisons, etc.

Although the HTML report is simple, it con-
tains all the relevant statistics for that test run, as
well as colour highlighting of essential features.
After an introduction with important metadata,
the statistics follow, and then the body of the test
output from the speller. An example of such a
test report can be found on our web site”.

3 Different speller engines

As seen in Figure 1, we support different speller
engines, and it is straightforward to add support
for new ones. It is easiest if the speller engine
has a command line interface (the test bench is
meant to be run from a Unix-like prompt), but it
is also possible to script a GUI host application.
This is how we run the MS spellers in Word —
by using an AppleScript (which can be started
from the command line) to script Word, we can
run the speller test suit through all languages
with built-in speller support in MS Word.

By supporting different spell checkers and
spell checker engines, it becomes easy to com-

* http://www.divvun.no/doc/proof/spelling/testing/
error-markup.html

20

pare both lexicons and speller engines. We have
developed two different versions of our North
Sami Speller, one for MS Office using a speller
engine from Polderland®, and another for
OpenOffice, using Hunspell’ as the speller en-
gine. Table 1 gives Precision and Recall for the
two spellers, using a gold standard document as

the test data®.
Regression data
Typos data
Baseform list
Paradigm data

Gold standard data

Pre-processing

Correct data Test data

eller testing
Sami MS spellers
Word+AppleScript

Post-processing

Regression
Base forms
Paradigms
Word constructions
Gold standards

Figure 1: Data flow in the test bench

Polderland Hunspell
Precision 89.57 84.07
Recall 98.10 90.48

Table 1: Precision and recall for two
North Sami spell checkers

These figures are of course mainly a measure of
how well we have been able to formulate the
North Sami grammar within the limits of the
formalism for each spell checker engine. The
point in this paper is rather that until now it has
been very hard to do such comparisons, while
our test bench has turned the task into one simple
command on the command line.

% http://www.polderland.nl/

7 http://hunspell.sourceforge.net/

8 http://www.divvun.no/doc/proof/spelling/
testing/Markansluska-pl-forrest-sme-20081013.html

There are other measures of the quality of a
spell checker. Table 2 shows the percentage of
all spelling errors with: correct suggestion (first
row); correct suggestion among the top five sug-
gestions (second row); only incorrect suggestions
(third row); and no suggestions (last row). That
is, these figures measure the ability to provide
relevant suggestions.

Polderland Hunspell
Corr sug/all errs 85.44 74.73
Corrsugintop5 82.52 74.73
Only incorr sug 13.59 25.27
No suggestions 0.97 0.0

Table 2: Suggestion quality for our two
North Sami spellers, gold standard test[7]

In Table 3 the same type of figures is given for
another type of test data, a collection of known
spelling errors and their corrections’.

Polderland Hunspell
Corr sug/all errs 81.22 72.72
Corr sug in top 5 78.84 72.40
Only incorr sug 15.67 27.28
No suggestions 3.11 0.0

Table 3: Suggestion quality for our two
North Sami spellers when tested on a col-
lection of known typos.

The figures in Table 2 & 3 show that there is a
significant difference between the two engines in
their ability to provide relevant suggestions. The
difference corresponds relatively well to the sub-
jective impression, although I had expected an
even bigger difference.

In normal usage the Polderland-based North
Sami speller has a correct suggestion more often
than the Hunspell-based one, roughly for 10%
more of the spelling errors. Another noticeable
difference is that Hunspell never returns nothing
— you always get one suggestion or another. In
Hunspell’s case this means that in regular use as
modelled by the gold standard test the speller
will suggest just noise in one out of 4 spelling
errors. The other speller does the same only in 1
out of 7.

This is a very noticeable difference for the end
users. The suggestions are so to speak the user
interface of the speller, and the perceived overall
quality of the speller will be influenced by the
quality of the suggestions. And for minority lan-
guage writers, the suggestions tend to be more
important than for majority language users, since
you can expect to find more insecure writers in
the minority language community.

? http://www.divvun.no/doc/proof/spelling/
testing/typos-pl-forrest-sme-20081113.html

21

4 Further development

The open-source'” test bench is a work in pro-
gress. Among the things we would like to add is
support for more speller engines, and other types
of proofing tools like grammar checkers. Also,
there is much that can be done to extract more
statistics and create better reports, as well as to
add precision and recall metrics on the sugges-
tions (cf Bick 2006). We would as well like to be
able to test more languages.

5 Conclusion

Having access to an open and modular test bench
for proofing tools will hopefully be a valuable
asset to further develop and improve the most
common and important writing aid, the spelling
checker. And the possibility to compare different
technologies could increase the interest in im-
proving existing tools, and in the best of cases
develop new ones. Basic proofing tools are a re-
quirement for supporting small language com-
munities, and the communities deserve better
tools than what they are served now. We hope
the test bench can be a small contribution in that
endeavour.

References

Bick, Eckhard (2006): “A Constraint Grammar Based
Spellchecker for Danish with a Special Focus on
Dyslexics” in 4 Man of Measure — Festschrift in
Honour of Fred Karlsson, pp. 387-396

Birn, Jussi (2000): “Detecting grammar errors with
Lingsoft’s Swedish grammar checker”. In Torbjern
Nordgard (ed.) NODALIDA ‘99 Proceedings from
the 12th Nordiske datalingvistikkdager, pp. 28—40.
Trondheim: Department of Linguistics, University
of Trondheim.

Koskenniemi, Kimmo. 1983. Two-Level Morphology:
A General Computational Model for Word-Form
Recognition and Production. [PhD dissertation].
Publications of the Department of General Linguis-
tics, University of Helsinki, No. 11.

de Smedt, Koenraad & Victoria Rosén (2000):
“Automatic proofreading for Norwegian: The chal-
lenges of lexical and grammatical variation”. Pub-
lished in: Nordgard, T. (ed.) NODALIDA '99: Pro-
ceedings from the 12th "Nordiske datalingvis-
tikkdager", Trondheim, 9-10 December, 1999 (pp.
206-215). Trondheim: NTNU.

10 Access to our Subversion repository is protected, but a
user name and a password will be given by sending an e-
mail to divvun@samediggi.no. Further instructions on our
home page, see Footnote 1.

Automatic Variation of Swedish Text by Syntactic Fronting

Kenneth Wilhelmsson
Department of Linguistics
University of Gothenburg

kw@ling.gu.se

Abstract

Ongoing work with a prototype imple-
mentation for automatic fronting of pri-
mary (main clause) constituents in Swed-
ish input text is described. Linguistic con-
straints and some technical aspects are
also discussed.

1 Introduction

Automatic variation of Swedish text is a relative-
ly unexplored area. Variation by lexical means
was tested in an experiment by Rosell (2005)
using Folkets synonymlexikon (Kann and Rosell,
2005). The program used the fact that synonymy
was expressed as a matter of degree (expressed
numerically), to vary a threshold value for admit-
ting lexical substitution. The lack of cases of true
lexical synonymy, however, seemed to be an im-
portant factor, as shown in the evaluation. Pro-
ducing truth-preserving (salva veritate) paraph-
rases by syntactic means from textual input is a
task that has been undertaken in two experimen-
tal projects. Pascoe & Ullner (2006) described
the process of automatic shift of voice in sen-
tences analyzed by CassSwe (Kokkinakis & Jo-
hansson Kokkinakis, 1998), producing active
sentences from their passive counterparts — a
transformation motivated by readability. Lind-
berg & Svensson (1992) earlier made use of Di-
derichsen’s topological clause description of
Nordic languages (Diderichsen, 1946), see table
1. The work dealt with syntactic fronting using a
Prolog implementation for achieving truth-
preserving variants of hand-picked sentences
analyzed by the MorP Parser (Kéllgren, 1992).
This paper describes ongoing work with a similar

approach to that of the latter, but for free text,
using the syntactic analysis described in Wil-
helmsson (2008).

Fundamental

- Nexus field Content field
field
. Non- .
Fundament ~FiMite Sub-— - giniee OB aqy.
V. ject v pred.
pa
Atomstorleken skulle [-] ju peka mot-
satsen.
atom- pa
*Ju skulle storle- [-] peka mot-
ken satsen.
atom-
Pa motsatsen skulle storle- ju peka [-]1
ken
atom- o
Motsatsen skulle storle- ju peka pa

[-]

ken

22

Table 1: An adaptation of Diderichsen’s main clause
schema showing basic Swedish declarative word or-
der together with fronting of different positional con-
tent, including fronting of the prepositional comple-
ment motsatsen of the adverbial p& motsatsen.

2 Generation of Paraphrases by Front-

ing in Input Text

The basic procedure for fronting of any constitu-
ent in simple declarative sentences is to place a
currently fronted constituent at its canonical (or,
at least, at an acceptable) position according to
the sentence schema, whereafter any constituent
that it is possible to topicalize may be fronted.
The implementation is focused on the task of
immediate paraphrase generation in the act of
writing to facilitate correct reformulations. It lets
a user point at an unbounded full syntactic con-
stituent in the main clause (i.e. subject, object,
predicative or adverbial, thus not the fourth ex-
ample in Table 1), which appear fronted. Thus,

! “Prepositional objects” are seen as a type of adver-
bials, in accordance with e.g. Teleman et al (1999).

the parsing is done in parallel with user input.
The prototype implementation is made in (un-
compiled) JavaScript. The inner representation is
an XML-like code, like below.

<subjekt>Atomstorleken</subjekt>
<pfv>skulle</pfv>
<adverbial>ju</adverbial>
<adverbial>ddrmed</adverbial>
<piv>peka</piv>

<adverbial>pa& motsatsen</adverbial>
<tom>.</tom>

A number of restrictions in this straightforward
procedure can be noted, of which some are dis-
cussed in Lindberg & Svensson (1992).

e Particles, reflexive pronouns and some
other primary constituents including a
group of adverbials, like ju in Table 1 and
back-referring expressions (‘“vilket var

bra”) cannot be fronted.

Very long constituents can be fronted, but
may make sentences seem clumsy or even
unnatural.

A number of verbs will, if not forming an
auxiliary verb construction, as in Table 1,
result in a potential violation of the truth-
preserving, through subject/object ambi-
guity. Bilden forestaller tavlan will easily
introduce a different meaning of a text if
transformed into Tavlan forestéller bil-
den’

This type of transformation relies heavily on
high accuracy of the syntax analysis, where exact
matching of primary constituents (including all
attributes) is necessary for grammatical output —
neither more than one constituent or parts of con-
stituents can be fronted (with a few exceptions
such as prepositional complements in Table 1).

A key idea behind the parsing method used is to
rely less on matching of unbounded (recursive)
primary constituents (subject, object/predicative
and adverbials), while identifying bounded ones
(e.g., verbs, see Wilhelmsson 2008), thereby de-
limiting fields in the schema. This particular
parsing method, and output format, seems to be

2 Pfv and piv here stand for ‘primary finite verb’ and
‘primary non-finite verb’, respectively.

% Note also, that fronting of a nominal constituent,
thereby producing a correct paraphrase, without hav-
ing made the correct subject/object identification from
the start, often is possible.

23

appropriate, or even necessary, for the task de-
scribed. Currently, a POS tagger with an esti-
mated accuracy of 95.3 % is used.

References

Paul Diderichsen, 1946. Elementer Dansk Gram-
matik. Gyldendal

Viggo Kann and Magnus Rosell, 2005. Free Con-
struction of a Free Swedish Dictionary of Syn-
onyms. In Proc. 15th Nordic Conference on Com-
putational Linguistics — (NODALIDA 05)

Dimitrios Kokkinakis and Sofie Johansson Kokkina-
kis, 1998, A Cascaded Finite-State Parser for Syn-
tactic Analysis of Swedish, Research Reports from
the Department of Swedish, GU-1SS-99-2, Univer-
sity of Gothenburg

Gunnel Kallgren, 1992. Making maximal use of sur-
face criteria in large-scale parsing: the MorP pars-
er, Papers from the Institute of Linguistics, Univer-
sity of Stockholm, 60. Stockholm: Univ. Institute
of Linguistics.

Janne Lindberg and Carin Svensson, 1992. Topikali-
sering som skrivstdd. En implementering med sats-
schema: NADA, KTH.

Maria Pascoe and David Ullner, 2006. VOICEover,
Att automatisk aktivera en passiv sats i svenskan,
(Datalingvistikprogrammet, University of Gothen-
burg)

Magnus Rosell, 2005, Automatisk synonymvariering
av text (Course project, Sprakgranskningsverktyg,
KTH)

UIf Teleman, Erik Andersson and Staffan Hellberg.
1999. Svenska Akademiens grammatik

Kenneth Wilhelmsson, 2008. Heuristic Schema Pars-
ing of Swedish Text, The Second Swedish Lan-
guage Technology Conference (SLTC 2008), KTH,
Stockholm

