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1. INTRODUCTION 
 

1.1. Cyanobacteria in aquatic ecosystems 
 
Cyanobacteria are known to be one of the oldest living organisms on the planet. 
In respect to their build they are unicellular bacteria, which often form colonies 
or filaments. Biologically are cyanobacteria like plants because of getting their 
energy trough photosynthesis (Golubic and Soeng-Joo, 1999; Lotter, 2001).  

Cyanobacteria are one of the main primary producers in the water’s 
ecosystem. Phytoplanktons primary production forms the basis of marine food 
webs and which expresses the production of chemical energy in the organic 
compounds (Waterbury et al., 1979; Ting et al., 2002). The primary factors of 
production controlling and limiting in the water are the presence of light and 
nutrients and the temperature level of the water, which is inherent to each 
species of phytoplankton. The light penetrates the aquatic environment mainly 
vertically, and then the light is absorbed, scattered and re-emitted as 
fluorescence. The mentioned processes taking place during light the mentioned 
processes taking place during the light propagation in the water depend on the 
amount of material in the water (living organisms and their pigments, organic 
matter, suspended sediments, detritial matter etc.). The more material in the 
superface layers of the water, the smaller is the maximum light penetration 
depth (Kirk, 1994; Lillesand and Kiefer, 1999). 

The most important nutrients of the phytoplankton include nitrogen and 
phosphorus. The more there are nutrients in the water, the more there are 
phytoplankton present. In certain high amount of distribution the condition is 
called formation of mass population i.e. the phytoplankton “bloom” (Fogg et 
al., 1973; Sutcliffe & Jones, 1992) (Fig.1.). Some species of cyanobacteria, 
mostly filamentous cyanobacteria, also have a unique ability to fixate gaseous 
nitrogen from the air. This is an advantage over other phytoplankton species as 
they only need phosphate to be present in the aquatic environment. For instance, 
it has been noticed that as a result of wastewater treatment most of the nitrogen 
is separated from the water but a lot of phosphate remains, which again, with 
the right light and water temperature gives cyanobacteria better production 
conditions and a possibility to form blooms (Vahtera et al. 2007).  
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Figure 1. Example of the very dense cyanobacterial bloom (photo by F. Andrews 
2005). 
 
 

Cyanobacterial mass populations increasingly attract the attention of 
environmental agencies, water authorities, human and animal health 
organizations, since cyanobacteria present a range of issues related with water 
quality and treatment problems, and hazards to human and animal health 
(Ferguson et al., 1996). The main reason why these problems arise is that about 
60–80 of 300 blooms forming species of phytoplankton can produce toxins 
(Smayda, 1997). There are various health issues associated with more than 60 
identified toxins of cyanobacteria. The main problem-causing toxins include 
neurotoxins, hepatotoxins, cytototoxins, skin irritants and gastrointestinal 
toxins. Toxins get into the food chain because shellfish such as clams, mussels, 
oysters, or scallops filter phytoplankton from the water and as a consequence of 
this the algal toxins eventually accumulate in their organisms on such a high 
level that they might be harmful to humans or other consumers (Codd, 1998).  

Some cyanobacterial blooms are not toxic but they may cause problems in 
other ways. It is well known that the decaying biomass of cyanobacterial bloom 
can cause oxygen depletion and widespread mortality of plants and animals in 
the affected area. Extensive blooms of cyanobacteria can also reduce light 
penetration to the bottom in very wide range of the water column, decreasing 
densities of submerged aquatic vegetation (Anderson, 2003). The incidence of 
dying blooms washing upon beaches during the peak of the summer holiday 
season has resulted in an economic loss (Subramaniam et al., 2000). 
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1.2. Detection of cyanobacterial blooms 
 
Cyanobacterial blooms may be detected using a range of techniques in labo-
ratories and in the field. Different water management authorities suggest water 
sampling in the regular monitoring stations and unattended flow-through 
systems on ships-of-opportunity. 

Conventional sampling stations are located in one fixed location and 
monitoring results are extrapolated for surrounding areas. Measurements are 
taken only during the determined time period and scale. It has been shown 
(Rantajärvi et al., 1998) that spatial and temporal frequencies of this type of 
conventional water-sampling programs may not be adequate to report changes 
in phytoplankton biomass, especially during bloom conditions when spatial and 
temporal variability in phytoplankton density is particularly high.  

The autonomous flow-through systems on ships-of-opportunity map 
chlorophyll fluorescence along their routes. This means that the studied area is 
very narrow. These flow-through systems take water from a fixed depth. It is 
assumed that the top water layer is well mixed and that the concentration of 
chlorophyll is constant in the upper mixed layer. However, some cyanobacteria 
species have the ability to regulate their buoyancy and in calm weather tend to 
keep themselves close to the water surface, forming very dense accumulations 
just below the water surface (Walsby et al. 1995). These remain undetected by 
flow-through systems as the water intake is often below the layer where the 
cyanobacteria are. These bloom areas are also often spread out by the ferries 
that are collecting the samples. Moreover, fluorometers commonly used in the 
flow-through systems to measure chlorophyll a, do not provide precise infor-
mation about the amount of cyanobacteria, which contain high level of 
phycobili-protein pigments (Lee et al., 1994; Simis et al., 2005; Seppälä et al., 
2007). This is so because most of the chlorophyll a in cyanobacteria is in non-
fluorescing photosystem I (Bryant, 1986).  

All of these problems suggest that new developments for monitoring 
methods are needed. Remote sensing could be one practical tool to support 
detection of cyanobacterial dynamics over extensive marine areas or large 
number of lakes. Research in remote sensing has been driven by the ongoing 
development of new sensors, with sufficient qualities for the monitoring of 
natural environment in the body of water (Richardson, 1996).  
 

1.3. Passive optical remote sensing 
 
Remote sensing is the science of obtaining information about an object, area or 
phenomenon through the analysis of data acquired by a sensor that is not in 
contact with the object, area or phenomenon. Usually this object is located on or 
in close proximity to the Earth’s surface and the sensor is located on an aircraft 
or on a satellite platform (Lillesand and Kiefer, 1999). 
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Remote sensing instruments exploit electromagnetic radiation to study 
surface processes on Earth. Passive sensors use reflected sunlight or heat 
emitted by objects along the Earth’s surface, while active sensors transmit laser 
beam or microwaves that are then reflected back to and recorded by the sensor. 
Many orbiting satellites currently map ocean properties such as colour, surface 
temperature, wind velocities, roughness of the ocean surface, and wave height. 
There are several advantages to using remote sensing techniques, such as 
accessing otherwise difficult locations and rapidly mapping large swaths of the 
Earth’s surface (Capone and Subramaniam, 2005). 

The characteristics of remote sensing sensors are described by their spatial, 
spectral, and radiometric resolution. The spatial resolution of the sensor 
describes the size of the ground area corresponding to one pixel in the image, 
e.g. 20x20 meters. The spectral resolution describes a sensor’s ability to define 
fine wavelength intervals, i.e., the width of the spectral bands in the sensor. 
Usually, the number and the position of the bands are also mentioned in 
connection with the spectral resolution. Radiometric resolution describes how 
many grey-levels the measured signal is divided into. Older satellite sensors 
have 8-bit radiometric resolution (256 gray-levels) while more advanced 
sensors have up to 16-bit resolution (65 536 gray-levels) (Lillesand and Kiefer, 
1999). 
 
 

1.4. Remote sensing of cyanobacterial blooms 
 
The use of airborne (Dekker et al. 1992; Jupp et al. 1994) and satellite remote 
sensing (Kahru 1993 and 1997; Kahru et al. 2000; Kutser 2004; Simis et al. 
2005 and 2007; Reinart and Kutser 2006) has been recommended for providing 
more reliable information about the extent of the cyanobacterial blooms than the 
conventional monitoring programs can provide.  

In calm weather conditions the aggregations of cyanobacterial cells accumu-
late just below the water surface or even form surface scum floating on the 
surface. Both are so distinct that the extent of the blooms (Fig.2.) can be 
mapped using almost any remote sensing instrument e.g. broadband sensors like 
the AVHRR (Kahru 1993; Håkanson and Moberg 1994), multispectral sensors 
such as the CZCS (Siegel et al. 1999) and the SeaWiFS (Joint and Groom 2000; 
Siegel and Gerth 2000). Even synthetic aperture radars have been utilised to 
map the extent of cyanobacterial blooms (Svejkovsky and Shandley, 2001) 
despite the fact that radar beam cannot penetrate water surface. Elevated sea 
surface temperature may indicate the presence of phytoplankton blooms (Kahru 
et al. 1993). However, the quantitative estimation of the phytoplankton 
concentration in turbid waters is still a challenge mainly because the standard 
chlorophyll retrieval algorithms, for the oceans, fail in coastal and inland waters 
(Vepsäläinen et al., 2005).  
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The standard products of chlorophyll produced by space agencies irregularly 
over- and underestimate measured chlorophyll values in turbid waters (Darecki 
and Stramski, 2004). Correlation between in situ and satellite chlorophyll is 
often very low. This can be explained by high absorption of light by CDOM at 
shorter wavelengths exploited in the standard chlorophyll retrieval algorithms. 
New approaches and new parameterizations for pigment algorithms are needed. 
Variability of the optical properties of water in different locations complicates 
the algorithm development even further (Darecki and Stramski, 2004). It may 
be that for different optically complex waters, regional or even seasonal remote 
sensing algorithms may be needed. 

As already mentioned, many phytoplankton accessory pigments are taxo-
nomically significant (Rowan, 1989). The presence and colour of the phycobilin 
pigments are typical features and main identification basis of cyanobacteria. All 
species of cyanobacteria contain phycobilin pigments in their cell structure. The 
pigments’ colour depends on which area of the spectrum they absorb light. 
There are several phycobilin pigments but two of them, phycoerythrin and 
phycocyanin, are usually distinguished. Phycoerythrin absorbs light in the 
spectrum’s green part (545 nm) and therefore has pink colour. Phycocyanin 
appears blue because it absorbs the orange light (615–620 nm) (cf. Viskari and 
Colyer, 2003). 

Therefore, detection of specific accessory pigments in aquatic systems can 
reveal what type(s) of phytoplankton is (are) present there (Gieskes, 1991; 
Millie et al., 1993). The development of algorithms for retrieving phycocyanin 
from remote sensing data could lead to better detection of the cyanobacteria. It 
is shown that the presence of phycocyanin can be detected from spectral 
reflectance (Dekker et al., 1991; Jupp et al., 1994; Simis et al. 2005). The 
development of the necessary remote sensing algorithms needs to be connected 
to the available in situ data. The problem is that phycocyanin and phycoerythrin 
are not routinely measured from water samples, and can not be regularly 
compared with available ocean colour satellite data.  

Comparing satellite and in situ data for developing and validating remote 
sensing algorithms and methods is complicated and may lead to several errors. 
A difference in spatial and temporal sampling frequency between ship-borne 
observations and satellite measurements is one of the main errors. For example, 
depending on the total time difference and wind speed, the bloom structures 
may be displaced a few kilometres away from their first sampling point for the 
time of satellite overpass.  

The concentration of chlorophyll a in cyanobacterial blooms may vary by 
orders of magnitude within tens of meters (Kutser 2004). Consequently, it is 
difficult to get exact matchups (in space and time) of remote sensing and in situ 
data. The spatial resolution of satellite sensors is typically around 1000 m 
meaning that the satellite result is an average chlorophyll a concentration over 
this 1000x1000 m area where the actual variability in chlorophyll a is unknown.  
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Figure 2. MODIS Aqua false colour RGB 1 km resolution image of cyanobacterial 
bloom (green coloured area) in the Gulf of Finland (the Baltic Sea) on the 7th of August 
2007.  
 
 

1.5. Thesis objectives 
 
In an ideal case the development of algorithms and methods for recognition and 
quantitative mapping of the potentially harmful cyanobacterial blooms should 
be carried out on the bases of in situ data. However, as mentioned above, the 
blooms can be extremely patchy both spatially and temporally. Collecting 
statistically significant amount of data about the properties of cyanobacterial 
blooms may require many years as there are years when the blooms do not 
occur and the blooms may occur in places where research vessels do not reach, 
and outside the planned cruise schedule. 

The above mentioned reasons gave the idea to use modelling as a primary 
approach in the current thesis. The models require knowledge about specific 
optical properties of the phytoplankton species present in the studied water area 
(in this thesis the Baltic Sea) as well as information on specific properties of 
other optically active substances and variability in their concentrations. 
Laboratory and in situ data used in this thesis were collected both by the author 
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and her colleagues. This thesis also includes some additional results from 
unpublished in situ data. 

The first objective of the thesis was to determine if it is possible to separate 
waters dominated by cyanobacteria from those dominated by other types of 
phytoplankton using remote sensing methods. The first part of this study (Paper 
I) was carried out for hyperspectral sensors. There are currently no hyper-
spectral sensors that could provide daily coverage of extended marine areas. 
Therefore, the second part of the study (Paper II) was carried out taking into 
account the spectral resolution of sensors that can provide such coverage and 
could therefore be suitable for operative monitoring of cyanobacterial blooms. 

The second objective of the thesis was to study the possibility of quantitative 
mapping of cyanobacterial blooms by means of remote sensing. The suitability 
of different available remote sensing sensors was assessed using model 
simulations (papers I, II and III).  

A modelling study (Paper III) was carried out to determine the possibility of 
using the MODIS 250 m data also for quantitative mapping of cyanobacterial 
biomass besides being useful in monitoring presence and dynamics of 
cyanobacterial blooms. MODIS sensors on Terra and Aqua satellites currently 
provide the highest revisit times (up to four times per day) making these sensors 
the most suitable for operative monitoring of water quality. Separating the 
cyanobacterial blooms from turbidity plumes is not possible using a single 
band. However, there are circumstances where it is almost certain that the 
elevated water leaving signal is caused by cyanobacterial bloom.  

Unlike most phytoplankton species cyanobacteria can regulate their 
buoyancy and move in the water column. This may have an impact on mea-
surable remote sensing signal and our ability to estimate cyanobacterial biomass 
by means of remote sensing. A modelling study (Paper IV) was carried out to 
determine the possible effect of inhomogeneous vertical distribution of cyano-
bacterial biomass on remote sensing signal. 

Bio-optical and radiative transfer models that are used to simulate water 
reflectance spectra have to be parameterised for the specific water body under 
investigation. The backscattering coefficient was the least known inherent opti-
cal property of the Baltic Sea. Therefore, there was a need to study variability of 
this parameter in the Baltic Sea waters (Paper V).  
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2. MATERIAL AND METHODS 
 

2.1. Study area 
 
The Baltic Sea (Fig. 3.) is one of the biggest brackish water bodies in the world. 
The tides are hardly noticeable and the depths are generally low (average ~50 
m). The average salinity in the Baltic Sea is 8–10 PSU, which is conditioned by 
river inflow, high amount of rainfall and poor exchange of the water with an 
ocean through shallow Danish straits. 

As the result of its seclusion the Baltic Sea has turned from being 
oligotrophic water to eutrophic water in the course of time and is very sensitive 
to the inflow of pollution and other biological and chemical matters. High 
amount of nutrients is the main character of europhication, which expresses in 
the extent and frequency of phytoplankton blooms. Those blooms cause the 
organic matter’s increase of quantity. Oxygen depletion may result when 
blooms decay, which has a negative influence on the benthic habitat and the fish 
(Voipio, 1981). 
 

 
 
Figure 3. Map of the Baltic Sea (Salleman 2008). 
 



19 

Baltic Sea waters are affected by seasonal variations in chlorophyll concent-
ration – chlorophyll a may even sometimes rise up to hundreds of mg m–3. 
There are essentially two annual blooms in the Baltic Sea. The spring bloom 
takes place from early March up to May depending on the area and year. The 
main phytoplankton groups forming the spring bloom are diatoms and 
dinoflagellates. The cyanobacterial blooms occur mainly in late summer, from 
July to September. The main summer bloom forming nitrogen-fixing cyano-
bacteria species is: Aphanizomenon flos-aquae, Nodularia spumigena and 
Anabaena ssp. (Öström, 1976; Niemistö et al., 1989). These blooms can cover 
areas of more than 100 000 km2 (Kahru 1997), affecting recreation, ecosystem 
integrity, human and animal health. In addition there can be regional algal 
blooms earlier or later in the summer, depending on the weather and the 
nutrients available in the water.  
 
 

2.2. Optical modelling 
 
Two different modelling approaches were used in this study. First a semi-
empirical model was used to calculate the reflectance spectra of the optically 
deep water just above the water surface. The basics of the model are taken from 
the results of Monte Carlo studies by Gordon et al. (1975) and Kirk (1994). The 
diffuse component of remote sensing reflectance was calculated using the 
following equation: 
 

    
)()(

)(
)975.0629.0(544.0)0( 0 λλ

λ
µλ

b

b

ba
b

R
+

+−=+  (1), 

 
where r (0+λ) is reflectance just above the water surface, µ0 is the cosine of 

solar zenith angle, bb(λ) is the total backscattering coefficient and a(λ) is the 
total absorption coefficient. 

It is assumed that there are three optically active components in the water: 
phytoplankton, coloured dissolved organic matter (CDOM), and suspended 
matter. Under these conditions the total spectral absorption coefficient, a(λ), is 
described by: 
 
    ,

** )()()()()( SMSMCDOMChlPhw CaaCaaa λλλλλ +++=      (2), 
 

where aw is the absorption coefficient of pure water, a*
Ph(λ) is the 

chlorophyll-specific spectral absorption coefficient of phytoplankton, aCDOM(λ) 
is the spectral absorption coefficient of CDOM, and a*

SM(λ) is the mass-specific 
absorption coefficient of suspended matter. CChl and CSM are concentrations of 
chlorophyll a and total suspended matter. 
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The total spectral backscattering coefficient bb(λ) can be described: 

    SMSMbChlPhbwb CbCbbb )()()(5.0)( ,
*

,
* λλλλ ++= ,           (3), 

 
where bw is the scattering coefficient of pure water and it is assumed that the 

backscattering probability is 50% in pure water. b*
b,Ph is chlorophyll-specific 

backscattering coefficient of phytoplankton and b*
b,SM is suspended sediment 

specific spectral backscattering coefficient of suspended matter. The detailed 
description of this model can be found in the papers I and II. 

The modelling was carried out for two distinctly different water types. Water 
type 1 is CDOM rich waters near a river estuary and water type 2 represents 
water parameters typical in the open Baltic Sea area. The suspended matter and 
CDOM values were selected based on in situ measurements. Specific absorption 
spectra of thirteen different phytoplankton species, including cyanobacteria, 
were used (more detailed description in the papers I and II). 

The Hydrolight 4.2 radiative transfer code (Mobley and Sundman, 2001) 
was used to study the effect of uneven vertical distribution of cyanobacteria on 
the remote sensing signal. The simulations were performed for waters with 
different chlorophyll a content and vertical distribution of cyanobacteria. The 
real vertical distribution of cyanobacteria in bloom conditions is practically 
unknown. Therefore, we used different hypothetical vertical distributions (Fig. 
4.). Wind speed was taken to be 2 ms–1 so that cyanobacteria are capable of 
migrating vertically in the water column. The solar zenith angle was assumed to 
be 30° which is typical for the time around midday in the July-August period 
when the cyanobacterial blooms occur in the Baltic Sea. Four different 
chlorophyll concentration ranges and six vertical distributions were used in the 
model simulation. Detailed description is presented in IV.  
 
 

2.3. Laboratory measurements 
 
Several authors (Davies-Colley et al. 1986, Ahn et al. 1992, Subramaniam et al. 
1999) have presented the specific absorption and scattering coefficients of 
different phytoplankton species. However, the specific optical parameters of the 
Baltic Sea phytoplankton species (including cyanobacteria) were virtually 
unknown. Niklas Strömbeck from University of Uppsala carried out the 
laboratory measurements describing the optical parameters of five phyto-
plankton cultures (three cyanobacteria species) present in the three largest 
Swedish lakes and the Baltic Sea. Detailed descriptions of the laboratory work 
are given in the papers I and II. Laboratory measurements results are presented 
on the different level in the papers I, II, III and IV.  
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Figure 4. Vertical distributions of chlorophyll a used in the model simulations. 
SL=slope, exponentially decreasing concentration; DM=‘‘Deep’’ max, where most of 
the cyanobacteria were located at depths between 1 and 2 m; 2m= top 2m, most 
cyanobacteria located in the top 2 m; 2L=two layers, where the top 5 m had a high 
concentration of cyanobacteria and the following 5 m had a low concentration of 
cyanobacteria; 1m=top 1m, most cyanobacteria located in the top 1 m; and 
Co=constant, for a mixed surface water. 
 
 

2.4. In situ data 
 
All the measurements presented in the paper V, were collected in 2005 and 
2006. The optical backscattering meter HydroScat-6 (HOBILabs) was used in 
the different regions of the Baltic Sea and some lakes. Concentrations of 
chlorophyll a, CDOM and total suspended matter were measured from the water 
samples taken at each station where the HydroScat measurements were carried 
out. 

Some unpublished fieldwork results are used in this thesis to assure the 
modelling results. Measurements of above-water reflectance were collected in 
August 2007, during the Finnish Institute of Marine R/V “Aranda” cruise on the 
Baltic Sea. Exact dates and station locations can be found in table 1. All the 
stations were monitored by using two TrioS RAMSES spectrometers. One of 
the spectrometers measured downwelling irradiance and one measured up-
welling radiance in spectral range 310–1130 nm. Water reflectance was 
calculated of this data. In order to understand the formation of water colour 
(reflectance) due to different concentrations of optically active substances 
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(phytoplankton, CDOM, suspended matter) we also collected water samples for 
chlorophyll (Tab. 1), CDOM and total suspended sediments. Filtration and 
laboratory analyses were carried out using methods described by Paavel (2008). 
 
 
Table 1. Dates and locations of the stations monitored. In situ measured chlorophyll 
concentrations for the each station are presented (laboratory measurements were carried 
out by B. Paavel). Stations were monitored during on R/V “Aranda” cruise on the Baltic 
Sea.  

STATION DATE LATITUDE LONGITUDE Cchl (mg/m3) 
39A 06.08.2007 60.04.013 N 024.58.822 E 3.8 
LL4A 06.08.2007 60.00.995 N 026.04.852 E 4.5 
LL3A 07.08.2007 60.04.057 N 026.20.778 E 9.2 
LL3B 07.08.2007 60.04.033 N 026.20.769 E 7.1 
LL6A 08.08.2007 59.55.001 N 025.01.810 E 5.9 
LL7 08.08.2007 59.50.790 N 024.50.270 E 7.1 
GF1 08.08.2007 59.42.291 N 024.40.950 E 5.0 
LL12 09.08.2007 59.29.010 N 022.53.814 E 5.2 
LL 12A 09.08.2007 59.28.993 N 022.53.921 E 7.3 
LL13 09.08.2007 59.22.001 N 022.27.809 E 5.0 
LL8 10.08.2007 59.46.011 N 024.25.811 E 43.1 



23 

3. RESULTS OVERVIEW AND GENERAL 
DISCUSSION 

 
3.1. Recognizing cyanobacterial bloom by means  

of remote sensing 
 
Simulating reflectance spectra of the Baltic Sea waters requires knowledge 
about specific optical properties of the phytoplankton species that are present in 
the Baltic Sea. Chlorophyll specific absorption coefficient spectra of three 
cultured cyanobacteria species Aphanizomenon flos-aquae, Nodularia spumi-
gena, Anabaena circinalis and two other cultured phytoplankton species 
Cyclotella cryptica (Diatomophyceae), Scenedesmus obliqus (Chlorophyceae) 
were measured in the laboratory by N. Strömbeck and the results are presented 
in papers I, II and III.  

A cyanobacterial specific pigment, phycocyanin, absorption feature (in vivo 
maximum at 627 nm, Dekker et al. 1992) was clearly seen in the results. Also 
the specific backscattering coefficient of cyanobacteria was higher than that of 
other phytoplankton species. Decreasing backscattering towards longer 
wavelengths was more significant in case of cyanobacteria. The same trends 
were also observed by Ahn et al. (1992) (for detail see paper I). 

A bio-optical model described in paper I was used to simulate reflectance 
spectra. Bio-optical model simulations were carried out for two different waters 
types: CDOM-rich coastal and typical characteristic open Baltic Sea waters. 
Just above the water surface reflectance R(0+λ) (Eq. 1.) spectra were calculated 
for chlorophyll a concentrations from 1 mg/m3 to 300 mg/m3, with different 
increments described in paper I. Measured absorption- and backscattering 
coefficients from all phytoplankton species studied by N. Strömbeck, and those 
presented in the paper by Ahn et al. (1992), were used. 

The phycocyanin absorption feature of all cyanobacteria species are also 
detectable in modelled reflectance spectra (Fig. 5.), simulated for remote 
sensing instruments. However, cellular pigment concentration of phycocyanin 
can be expected to fluctuate for changing nutrient and light environments 
(Tandeau de Marsac, 1977) and this can also cause variability of phycocyanin 
specific optical features.  

In typical waters of open Baltic Sea area remote sensing instruments with 
sufficient spectral resolution (10 nm or better) and high radiometric sensitivity 
can be used for recognition and quantitative mapping of cyanobacteria as 
absorption by phycocyanin is causing specific feature in reflectance spectra that 
is characteristic to cyanobacteria only. However, an exception among all 
modelled phytoplankton species was Isochrysis galbana (Prymnesiophyceae) 
(specific optical properties presented in Ahn et al., 1992). Reflectance spectrum 
of this species is similar to those of cyanobacteria i.e. there is absorption feature 
near 630 nm. This is probably caused by chlorophylls c1 and c2, which are the 
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major pigments (> 10%) of the total chlorophylls in the phytoplankton class 
Prymnesiophyceae (Jeffrey and Vesk, 1996). Chlorophylls c1 and c2 have 
absorption peaks near 628 and 630 nm, respectively (Jeffrey and Vesk, 1996). 
However, Cyanophyceae and Prymnesiophyceae sp. usually do not occur in 
similar aquatic environments. Therefore, separating cyanobacterial blooms from 
waters dominated by other algae should not be a problem provided that the 
amount of cyanobacteria is high enough. Two other phytoplankton species, 
Emiliania huxleyi and Hymenomonas elongata, studied by Ahn et al. (1992) 
also belong to the prymnesiophyceae. There was no significant absorption 
feature near 630 nm neither in the measured absorption coefficient spectra nor 
modelled reflectance spectra of these two species.  
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Figure 5. Modelled reflectance spectra of five cultured phytoplankton species, 
including three cyanobacterial species (Aphanizomenon flos-aquae “baltica”, 
Anabaena circinalis and Nodularia spumigena). Modelling was carried out using the 
following concentrations of optically active substances: Cchl = 30 mg/m3; CSM = 2 mg/l; 
aCDOM(380) = 1,5 m–1. The phycocyanin absorption feature (max near 620 nm) is clearly 
seen in reflectance spectra of cyanobacteria. 

 
 
Estimation for the open Baltic Sea waters (paper I) show that the 

concentration of chlorophyll a has to be 8–10 mg/m3 before the phycocyanin 
absorption feature becomes detectable in reflectance spectra of hyperspectral 
instruments with sufficient signal to noise ratio. Therefore, it is unlikely that 
remote sensing can be used for early warning of emerging potentially harmful 
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cyanobacterial blooms as chlorophyll concentrations higher than 4 mg/m3 are 
already considered as bloom in the Baltic Sea.  

It is important to point out that the specific absorption and backscattering 
coefficients were measured on pure algae cultures. Very intensive blooms may 
be dominated by a single species but usually the natural assemblages consist of 
several species. Consequently, the optical properties specific to cyanobacteria 
may be shadowed and even higher concentration of biomass is needed before 
waters dominated by cyanobacteria can be recognised by their spectral signa-
ture. 

In order to back up these modelling results an example of in situ optical 
measurements is presented. The variability in water reflectance spectra mea-
sured ~20 cm above the water surface is shown in Fig. 6. Surface bloom was 
visually noticed in station LL8. It is also clearly seen in reflectance spectrum as 
it appears in high values at near-infrared wavelengths. The reflectance spectrum 
of the station LL8 shows a clear minimum in reflectance around 620–630 nm 
caused by phycocyanin absorption, and a characteristic peak near 650 nm 
typical for cyanobacteria.  
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Figure 6. Reflectance spectra measured ~20 cm above the water surface at ten stations 
monitored during cruise on the Baltic Sea with R/V “Aranda” in August 2007. A 
surface bloom was visually noticed at station LL8 (chlorophyll concentration 43.1 
mg/m3). 

 
 
These features also occur in case of subsurface blooms if cyanobacteria are 

present in high enough quantity (chlorophyll a at least 8–10 mg/m3 according to 
our model simulations I). Concentration of chlorophyll a almost reached this 
level also in some other stations. However, the spectral features typical to 
cyanobacteria are not so clear in the reflectance spectra collected in these 
stations. It was detected in the laboratory that cyanobacteria were not the only 
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species present species in the bloom (personal comment by Maija Huttunen). 
This suggests that the actual concentrations where cyanobacteria become 
optically separable from other phytoplankton species can be even higher in 
some cases. It probably depends of the species that occur in the same bloom and 
environmental conditions. Also the condition of photosynthetic rate and energy 
transfer between different pigments of the bloom forming cyanobacterial 
species has an important impact on their optical signature.  

It is shown in paper II that multispectral sensors like ALI and Landsat are 
unlikely capable of separating the Baltic Sea waters dominated by cyanobacteria 
species (Fig. 7.) as their spectral band configuration does not allow detecting 
absorption features caused by phycocyanin (present primarily in cyanobacteria) 
or any other spectral features that are characteristic to cyanobacteria only. 
Vincent et al. (2004) have shown that it is possible to map phycocyanin 
concentration in lake waters using Landsat. However, the spectral bands of 
Landsat are so wide that both the absorption feature around 620–630 nm and 
peak at 650 are within the same spectral band. Increasing biomass should cause 
deepening in the absorption feature and increase of the peak at 650 nm. As a 
result the increasing biomass of cyanobacteria may cause decrease, increase or 
no change in radiance measured in this particular band (630–690 nm). The 
results of Vincent et al. (2004) can be explained with correlation of concent-
ration of phycocyanin with some other water characteristic (e.g. transparency or 
turbidity) in the Landsat data. Similar effects may also occur in other cases.  
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Figure 7. Modelled reflectance spectra of five cultured phytoplankton species 
(including three cyanobacterial species – red lines) using ALI band configuration. 
Modelling was carried out using the following concentrations of optically active sub-
stances: Cchl = 30 mg/m3; CSM = 2 mg/l; aCDOM(380) = 1,5 m–1. 
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MERIS bands 6 (615–625 nm) and 7 (660–670 nm) allow detecting 
phycocyanin absorption feature near 620–630 nm and a small peak in 
reflectance spectra near 650 nm characteristic only to waters dominated by 
cyanobacteria (Fig. 8.). Other MERIS bands useful for detecting phytoplankton 
are band 8 (677,5–685 nm) where the chlorophyll a absorption feature occurs, 
and band 9 (703,75–713,75 nm) at wavelengths where there is often a peak in 
reflectance spectra of waters which contain the high concentration of 
phytoplankton. 
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Figure 8. Modelled reflectance spectra of five cultured phytoplankton species 
(including three cyanobacterial species – red lines) using MERIS band configuration. 
Cyanobacteria specific pigment phycocyanin absorption feature (620 nm) is noticeable. 
Modelling was carried out using the following concentrations of optically active 
substances: Cchl = 30 mg/m3; CSM = 2 mg/l; aCDOM(380) = 1,5 m–1. 

 
 
MERIS can potentially be used to identify cyanobacteria if they are present 

in relatively large quantities. Detection of emerging blooms may not be possible 
because the phycocyanin absorption feature becomes detectable by MERIS 
when chlorophyll a concentrations reach values around 10–30 mg/m3 
(depending on species) which are much higher than the level of chlorophyll 
which is considered as bloom condition in the Baltic Sea (4 mg/m3).  

However the only data available regularly (up to 4 times per day) and with 
sufficient spatial resolution for coastal waters are MODIS band 1 (620 nm) and 
band 2 (842 nm) imagery with 250 m spatial resolution. Those bands were 
designed for mapping land, cloud, and aerosol boundaries, not for water 
environments. Pure water is a medium whose absorbance increases with 
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increasing wavelength at wavelengths beyond 580–590 nm. As a result the 
water leaving signal is very small already at wavelengths < 600 nm (Kirk, 1994) 
and almost negligible at wavelengths of MODIS band 1 in the case of clear 
natural waters (oceans, alpine lakes).The large amount of a suspended 
sediments or phytoplankton in turbid waters increases backscattering of light to 
the level where the water leaving signal in MODIS band 1 is not negligible any 
more. Hu et al. (2004) showed that MODIS band 1 can be used to map total 
suspended matter concentrations in coastal waters.  

Model simulations (paper III) show that MODIS band 1 is sensitive to 
changes in the concentration of cyanobacteria and can be used for quantitative 
mapping during cyanobacterial blooms. The relationship between MODIS band 
1 and the concentration of cyanobacteria is nonlinear. It is relatively easier to 
estimate the chlorophyll concentration in Nodularia spumigena bloom than in 
Anabaena circinalis or Aphanizomenon flos-aquae blooms as an increase in the 
concentration of Nodularia increases the reflectance the most strongly of the 
three bloom-forming cyanobacteria species studied. It should be kept in mind 
that the possibilities of using these results in accurate mapping of cyanobacterial 
biomass are limited as it is not possible to confirm the reason of increased 
signal using a single spectral band. Both high concentration of mineral particles 
and phytoplankton may cause the increase in the remote sensing signal. Single 
band algorithms can only be used if there is auxiliary information that confirms 
presence of cyanobacterial blooms as the main source of increased reflectance. 
 
 

3.2. Impact of cyanobacteria vertical distribution  
on remote sensing signal 

 
Mapping of the extent of surface cyanobacterial blooms with remote sensing is 
straightforward, but recognizing waters dominated by cyanobacteria mixed 
throughout the water column and quantitative mapping of cyanobacterial 
biomass with remote sensing is more complicated. It has been shown (Gordon 
and Clark, 1980; Stramska and Stramski, 2005) that vertical distribution of 
phytoplankton has an impact on the remotely sensed signal. However, these 
studies tend to concentrate on oceanic waters and on the impact of the deep 
(around 100 m) chlorophyll maximum on global chlorophyll algorithms (based 
on the blue-green ratio). An important fact is also that unlike most phyto-
plankton species, some cyanobacteria can regulate their buoyancy and move 
vertically in the water column (Walsby et al. 1995). This may cause problems in 
developing remote sensing algorithms for quantitative mapping of cyano-
bacteria. 

Results obtained with Hydrolight 4.2 radiative transfer modelling (paper IV) 
show that variability in reflectance spectra due to different vertical distributions 
of cyanobacteria was significant. The highest reflectance values occur when 
most of the cyanobacteria are close to the water surface, for example in the case 
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of vertical distributions where the concentration of chlorophyll a is decreasing 
exponentially with depth (Slope) or when most of the cyanobacteria are in the 
top 1 m (Top 1m). “Deep” maximum (Deep Max) distribution also gave higher 
reflectance values during low concentrations of cyanobacteria. It must be noted 
here that unlike in ocean waters we considered biomass maximum between  
1–2 m as a “deep maximum” (e.g. the maximum below the immediate surface 
layer). The reflectance spectra of a uniformly mixed water column are signi-
ficantly lower than those of uneven vertical distributions in all cases for the 
three species studied and all modelled concentration ranges. 

It indicates a strong need in in situ data concerning the real vertical 
distribution of the cyanobacterial biomass in the water column. Water sampling 
methods that can adequately reveal the vertical structure of the cyanobacterial 
distribution have to be used during blooms to get data that is suitable for 
developing reliable remote sensing methods for quantitative mapping of 
cyanobacteria. A single depth measurement or a mixed water sample of 
chlorophyll a may often be unsuitable for calibrating satellite data from 
cyanobacterial bloom areas.  

Some possible cyanobacterial vertical distribution in situ results can be 
found in paper V. A certain stratification pattern was observed in the Pakri Bay 
near the Port of Paldiski (Fig. 9.). The cyanobacterial bloom was visually 
noticeable in the water. However the vertical distribution of particles was 
bimodal with one maximum near the water surface and the second near 
thermocline. It is likely that both maxima were caused by cyanobacteria, but it 
may have happened that the first maximum was caused by cyanobacteria and 
the second maximum by other phytoplankton species.  

Accumulations of cyanobacteria were also observed in the northern part of 
the Baltic Proper where measurements were carried out (Fig. 10.). 
Unfortunately, it is practically impossible to measure surface accumulations 
with HydroScat (and other instruments) as the instrument disturbs natural 
stratification of cyanobacteria. It must also be noted that most of the 
cyanobacteria were in the top 3–4 meters of the water column as seen from the 
HydroScat measurement. It is important to note that the noisiness of the vertical 
profile was probably caused by aggregations of cyanobacteria, which are too 
large (from millimetres to centimetres) for the optical instrument to accurately 
measure. Aggregations in front of the instrument window gives high back-
scattering values and water between the aggregations (containing unicellular 
cyanobacteria) gives comparatively low backscattering values.  
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Figure 9. Vertical distribution of particles in the water column during visually detected 
cyanobacterial bloom in the Pakri Bay (near the Port of Paldiski, in Gulf of Finland). 
Data collected in July 2005. 
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Figure 10. Vertical distribution of particles in the water column during visually 
detected cyanobacterial bloom in the Baltic Proper area. Data collected in August 2006. 
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SUMMARY 
 
On the global scale cyanobacteria are common inhabitants of pristine aquatic 
and terrestrial environments. Natural populations of these organisms may be 
found everywhere and they influence environment and humanity in several 
ways. Remote sensing might be the only method providing sufficient infor-
mation on cyanobacterial blooms in their spatial and temporal variability. 
However, there are still several limitations and uncertainties in the applications 
where remote sensing is used.  

One approach to finding a solution to ocean colour remote sensing problems 
is using modelling. The model-based approaches show the feasibility of diffe-
rent optical and remote sensing instrumentation measurements. When in situ 
measurements of optical parameters are not available, the empirical proxy may 
be used or the parameter is allowed to vary and be optimized by the model. 
Always has to be taken into account that the models give results that support 
very extreme and so called ideal conditions, which are difficult to find in the 
nature. Nevertheless, the results of modelling may be useful for drawing the 
attention to the possibilities of how the problems that might arise (e.g which 
remote sensing and fieldwork instruments could be used and which 
presumptions should be kept in mind in those studies) could be solved in the 
future. 

In the present thesis bio-optical and radiative transfer models were used to 
show the remote sensing capabilities in pure culture conditions in the Baltic Sea 
area. Remote sensing instruments with sufficient spectral resolution (10 nm or 
better) and high radiometric sensitivity may be used for recognition and 
quantitative mapping of cyanobacteria. The absorption by phycocyanin is 
causing an appearance of a special feature in reflectance spectra that is typical 
to only cyanobacteria and can be detected with sufficient spectral resolution 
instruments. Estimation and some in situ data for the typical open Baltic Sea 
waters show that the concentration of chlorophyll a should be around 8–10 
mg/m3 so that the phycocyanin absorption feature would become detectable in 
reflectance spectra. However, in reality the chlorophyll concentrations can also 
be higher in order to have the phycocyanin absorption feature be detectable. The 
precise results depend on the bloom composition and the state of the 
phytoplankton species in that bloom. MERIS with suitable spectral bands could 
be a useful tool for detecting waters dominated by cyanobacteria and estimating 
phytoplankton biomass in blooms. MERIS bands 6 and 7 (620 and 665 nm 
respectively) allow detecting phycocyanin absorption feature around 620 nm.  

The vertical distributions of cyanobacteria also have a significant influence 
on remote sensing. The variability in reflectance spectra due to modelled 
different vertical distributions of cyanobacteria was significant in both cases of 
lower and higher concentrations of cyanobacterial biomass. Knowledge about 
the vertical distribution of cyanobacteria can help developing remote sensing 
algorithms and methods for quantitative mapping of cyanobacteria, likewise it 
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can even be used to validate the existing remote sensing algorithms. Using a 
single depth water sample for calibration and validation of remote sensing 
algorithms in some cases might lead to incorrect results.  

The results of this study indicate that there is a strong need for in situ studies 
on cyanobacterial blooms. First of all, the optical properties of natural 
phytoplankton assemblages in the Baltic Sea are not known. The second set of 
problems is related to the knowledge of the vertical distribution of cyano-
bacteria in bloom conditions. Using phycocyanin and chlorophyll a fluoro-
meters together in profiling the water column should reveal variability in 
stratification of cyanobacteria and how it is related to remote sensing signal.  

One of the issues related to the stratification of cyanobacteria is the depth of 
penetration of reflected sunlight. The layer from which the remote sensing 
signal is coming may be very thin if cyanobacteria reach very high quantities 
near the water surface. The optical properties of extremely dense cyanobacterial 
blooms differ significantly from moderate blooms because the light passing 
through them is more scattered than in the “normal” situations. The in situ 
sampling methodology should be changed when collecting data for calibration/ 
validation of remote sensing. Point samplings should be replaced by measure-
ments that take into account both vertical and horizontal heterogeneity of 
biomass in cyanobacterial blooms. This also concerns all other studies carried 
out in seas and lakes where cyanobacterial blooms occur as it is not possible to 
evaluate representativeness of a random single sample in situations where 
phytoplankton biomass is varying in orders of magnitude within small 
horizontal and vertical distances.  

Appropriate technical equipment may help to carry out these measurements. 
However, as already mentioned in the Introduction of the thesis, intensive 
cyanobacterial blooms do not occur every year. Cyanobacterial blooms may 
occur in areas not reachable by vessels, or at times when vessels are not 
available. These blooms are also extremely heterogeneous both horizontally and 
vertically.  

The capabilities of the aircraft mounted sensors should be studied as well. 
These sensors have better viewing angle and spectral band combination than 
satellite remote sensing sensors, which are important qualities in such extreme 
heterogenous environments like cyanobacterial blooms. 

Consequently, collecting the statistically significant amount of information 
about cyanobacterial blooms may take many years. Optical modelling can be a 
useful tool for developing remote sensing methods for quantitative mapping of 
cyanobacterial blooms. However, the models are only useful when we have 
good knowledge on the cyanobacterial blooms and other natural conditions. 
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SUMMARY IN ESTONIAN 
 

Mudelhinnang parandamaks kaugseire kasutamist 
tsüanobakterite tuvastamisel ja kvatitatiivsel seirel  

 
Tsüanobakterite õitsengud esinevad peaaegu igal suvel, kattes sageli rohkem kui   
100 000 km2 Läänemere pinnast (Kahru, 1997). Fütoplanktoni hulka vees on 
vaja teada näiteks mere primaarproduktsiooni ja vee kvaliteedi hindamiseks. 
Lisaks võivad tsüanobakterite toksiinid esile kutsuda erinevat tüüpi probleeme 
nii inimestel, kaladel kui loomadel ning põhjustada majanduslikku kahju 
olulistes mere-äärsetes rekreatsioonipiirkondades. Seetõttu on potentsiaalselt 
toksiliste tsüanobakterite õitsengute avastamine ja seire olulise tähtsusega.  

Merekeskkonna seire Eesti rannikuvetes põhineb veeproovide uurimisel, 
mida kogutakse piiratud arvul (kuni 35) mõõtejaamadest kord aastas ning 
suurema sagedusega (kaks korda kuus) mõõtejaamadest, mida on kokku 12. On 
selge, et nii väikese arvu mõõtejaamade ning suure ajalise intervalliga tehtud 
mõõtmiste abil ei ole võimalik adekvaatselt hinnata muutusi fütoplanktoni 
biomassis, seda eriti fütoplanktoni õitsengute ajal.  

Üheks võimaluseks koguda detailsemat informatsiooni fütoplanktoni hulga 
kohta on kasutada regulaarliinidel sõitvaid reisi- ja kaubalaevu, varustades need 
automaatsete mõõtesüsteemidega. Võrreldes punktmõõtmistega, suureneb 
sellise meetodi kasutamisel mõõtmiste sagedus ja enamasti ka uuritav ala, kuid 
selle piiranguks on vetikate biomassi hindamine vaid laevateede alal ja vaid 
ühelt fikseeritud sügavuselt.  

Fütoplanktoni hulka meres on võimalik tuvastada ka erinevate satelliitide või 
lennuvahenditel paiknevate kaugseire sensorite abil. Kui kaugseire meetoditel 
on tsüanobakterite õitsengute ulatuse hindamine suhteliselt levinud, milleks 
võib kasutada väga erinevaid sensoreid, siis õitsengute biomassi hindamine on 
senini lahendamata probleem.  

Antud töö eesmärgiks oli välja selgitada:  
• kas vee heleduskoefitsiendi spektrite järgi on tsüanobaktereid kaugseire 

meetodite abil võimalik eristada teistest fütoplanktoni liikidest  
• kui suur peaks sellisel juhul olema tsüanobakterite hulk vees  
• millise spektraalse ning ruumilise lahutusvõimega peaksid olema selleks 

kasutatavad kaugseire sensorid  
• kas satelliidi MODIS spektrikanaleid 1 ja 2 saab kasutada tsüanobakerite 

biomassi hindamiseks 
• millist mõju avaldab kaugseire signaalile tsüanobakterite ebaühtlane 

vertikaalne jaotus  
 
Kuna tsüanobakterite õitsengud on ajas ja ruumis väga varieeruvad, siis võib 
nende uurimine in situ mõõtmiste abil võtta aastaid või isegi aastakümneid. 
Sellepärast on käesolevas töös põhiliselt kasutatud mudelarvutusi, mis 
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baseeruvad labori ja in situ mõõtmistel ning võimaldavad simuleerida kaugseire 
sensoritega mõõdetavat signaali väga erinevates tingimustes.  

Töö tulemusena leiti, et piisava spektraalse lahutusvõimega (10 nm või 
vähem) ja kõrge tundlikkusega kaugseire instrumendid võimaldavad tsüano-
bakterite tuvastamist ainult tsüanobakteritele omase fükobiliproteiini, 
fükotsüaniini, kaudu (artikkel I). Fükotsüaniin neelab valgust kitsas laine-
pikkuste vahemikus (620–630 nm), mis tekitab vee heleduskoefitsiendi spektris 
lokaalse miinimumi. See miinimum on kaugseire abil tuvastatav juhul kui 
tsüanobakterite hulk vees on piisavalt suur. 

Mõned fütoplanktoni liigid (Prymnesiophyceae sp.) võivad sisaldada 
suuremal määral klorofülli c1 ja c2 ning seetõttu põhjustavad vee heleduskoefit-
siendi spektris muutuseid, mis on sarnased fükotsüaniini tekitatud mõjule. Kuid 
teadaolevalt tsüanobakterid ja Prymnesiphyceae sp. liigid üldjuhul ühes ja 
samas looduslikus keskkonnas ei esine. Seega ei tohiks tsüanobakterite 
tuvastamine kaugseire meetoditel olla võimatu. 

Mudelarvutuste tulemused näitavad (artikkel I), et Läänemere avaosale 
sarnaste optiliste omadustega vees peaks klorofüll a kontsentratsioon olema 
vähemalt 8–10 mg/m3, et fükotsüaniini põhjustatud neeldumine oleks vee 
heleduskoefitsiendi spektris tuvastatav hüperspektraalsete instrumentidega. 
Seega, antud tulemuste põhjal ei saaks tuvastada potentsiaalselt toksilisi tsüano-
bakterite õitsenguid Läänemeres väga varases faasis kuna klorofüll a kontsent-
ratsiooni üle 4 mg/m3 loetakse siin juba õitsenguks. Üksikud olemasolevad in 
situ mõõtmistulemused aga näitavad, et identifitseerimine võib esineda ka 
suuremate konsentratsioonide juures, sõltuvalt õitsengu koosluse moodus-
tavatest liikidest ja tsüanobakterite fotosünteetilisest aktiivsusest. 

Multispektraalsete sensoritega satelliitide, nagu ALI, Landsat ja MODIS, 
abil ei ole võimalik tsüanobaktereid teistest fütoplanktoni liikidest eristada kuna 
nendel sensoritel puuduvad 630 ja 650 nm piirkonnas spektrikanalid (artikkel 
II). Satelliitidest on vaid MERIS’el tsüanobakterite avastamiseks sobivad 
spektrikanalid. 

Tsüanobakterite õitsengute ulatuse operatiivseks seireks on hetkel sobivaim 
satelliit MODIS (kuni 4 pilti päevas). MODIS’e spektraalsete tulemuste järgi ei 
saa küll otseselt identifitseerida tsüanobakterite poolt domineeritavaid vee-
masse, kuid näiteks õitsengute ulatuse määramine on täiesti teostatav. Lisaks on 
satelliidil MODIS kaks spektrikanalit 250-meetrilise ruumilise lahutusega. 
Selline ruumilise lahutuse ja ajalise sageduse kombinatsioon on hetkel parim, 
mille abil tagada operatiivset seiret. Käesoleva töö modelleerimistulemused 
(artikkel III) näitavad, et kuigi MODIS’e esimene spektrikanal ei ole ette 
nähtud vee kaugseireks, saab siiski selle abil kaardistada tsüanobakterite õitsen-
gute ulatust ja hinnata biomassi. Antud tulemused on aga peamiselt teoreetilised 
ja ei ole reaalsetes mõõtmistes kasutatavad. 

Erinevalt teistest fütoplanktoni liikidest on tsüanobakterid suutelised 
reguleerima oma ujuvust ning kogunevad tihti veepinna alla või moodustavad 
pinnal ujuvaid kogumeid. Modelleerimistulemused (artikkel IV) näitasid, et 
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tsüanobakterite vertikaalsel jaotusel võib olla väga oluline mõju vee heledus-
koefitsiendi spektritele ja ka kaugseire abil saadud biomassi hinnangutele. 
Tsüanobakterite biomassi uurimiseks ja/või kaugseire algoritmide välja tööta-
miseks tsüanobakterite biomassi hindamisel on oluline teada tsüanobakterite 
vertikaalset jaotust veesambas ning ei ole õige kasutada ühest sügavusest kogu-
tud või segatud veeproovi. Kuna käesolevas töös kasutatud mudelid vajavad 
reaalsetel mõõtmistulemustel põhinevaid sisendeid, siis uuriti Läänemere vee 
optilisi omadusi nii in situ mõõtmiste kui laborimõõtmiste abil. Artiklis V on 
uuritud tagasihajumiskoefitsiendi muutlikust Läänemeres. Lisaks on töös 
kasutatud ka seni avaldamata in situ mõõtmiste tulemusi. 

Tuginedes väitekirja tulemustele võib välja tuua mõningad töösuunad, mis 
vajaksid esmajärjekorras arendamist. Kuna käesoleva töö järeldused on tehtud 
ideaalsetes kasvutingimustes paiknenud puhaste vetikakultuuride optilistel 
omadustel, siis oleks kindlasti vaja samast aspektist uurida looduslike füto-
planktoni koosluse optilisi omadusi. Tsüanobakterite õitsengute uurimisel oleks 
vajalik muuta veeproovide kogumise strateegiat. Detailsemalt peaks uurima 
tsüanobakterite ning teiste fütoplanktoni liikide vertikaalset jaotust tsüano-
bakterite õitsengute ajal. Kaugseire osas, eriti rannikuvetes, tuleks koguda 
andmeid ka lennuvahenditel paiknevate sensorite abil, kuna need on suure 
spektraalse ja ruumilise lahutusega. Kuna kaugseire algoritmide edasiseks 
väljatöötamiseks vajaliku materjali kogumine võib vaid merel teostatavate 
mõõdistuse baasil võtta aega aastakümneid, siis seetõttu jääb ka tulevikus väga 
oluline osa modelleerimisele.  
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